

RE: J0322-1318 Precision/Lot 31 Liberty Meadows/Harnett

Site Information:

Customer: Project Name: J0322-1318 Lot/Block: Address: City:

Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014 Wind Code: ASCE 7-10 Roof Load: 40.0 psf Design Program: MiTek 20/20 8.4 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 42 individual, dated Truss Design Drawings and 0 Additional Drawings.

No. 1	Seal# I51978232	Truss Name A1-GE	Date 5/17/2022	No. 21	Seal# I51978252	Truss Name G1-GE	Date 5/17/2022
2	151978233	AT-GE A2	5/17/2022	21	151978253	G2	5/17/2022
3	151978234	A2 A3	5/17/2022	22	151978254	G2 G3	5/17/2022
4	151978235	A4	5/17/2022	23	151978255	G5	5/17/2022
5	151978236	A4-A	5/17/2022	25	151978256	G6	5/17/2022
6	151978237	A5	5/17/2022	26	151978257	G7-GE	5/17/2022
7	151978238	A6	5/17/2022	27	151978258	H1	5/17/2022
8	151978239	A7	5/17/2022	28	151978259	K1	5/17/2022
9	151978240	A8	5/17/2022	29	151978260	M1	5/17/2022
10	151978241	A9	5/17/2022	30	151978261	M2	5/17/2022
11	151978242	B1-GE	5/17/2022	31	151978262	M3	5/17/2022
12	151978243	B2	5/17/2022	32	151978263	P1	5/17/2022
13	151978244	B3	5/17/2022	33	151978264	VA1	5/17/2022
14	151978245	B4	5/17/2022	34	151978265	VA2	5/17/2022
15	151978246	C1-GE	5/17/2022	35	151978266	VA3	5/17/2022
16	151978247	C2	5/17/2022	36	151978267	VA4	5/17/2022
17	151978248	C3	5/17/2022	37	151978268	VB1	5/17/2022
18	151978249	D1-GE	5/17/2022	38	151978269	VC1	5/17/2022
19	151978250	D2	5/17/2022	39	151978270	XH1	5/17/2022
20	151978251	D3	5/17/2022	40	151978271	YH1	5/17/2022

The truss drawing(s) referenced above have been prepared by

Truss Engineering Co. under my direct supervision

based on the parameters provided by Comtech, Inc - Fayetteville.

Truss Design Engineer's Name: Gilbert, Eric

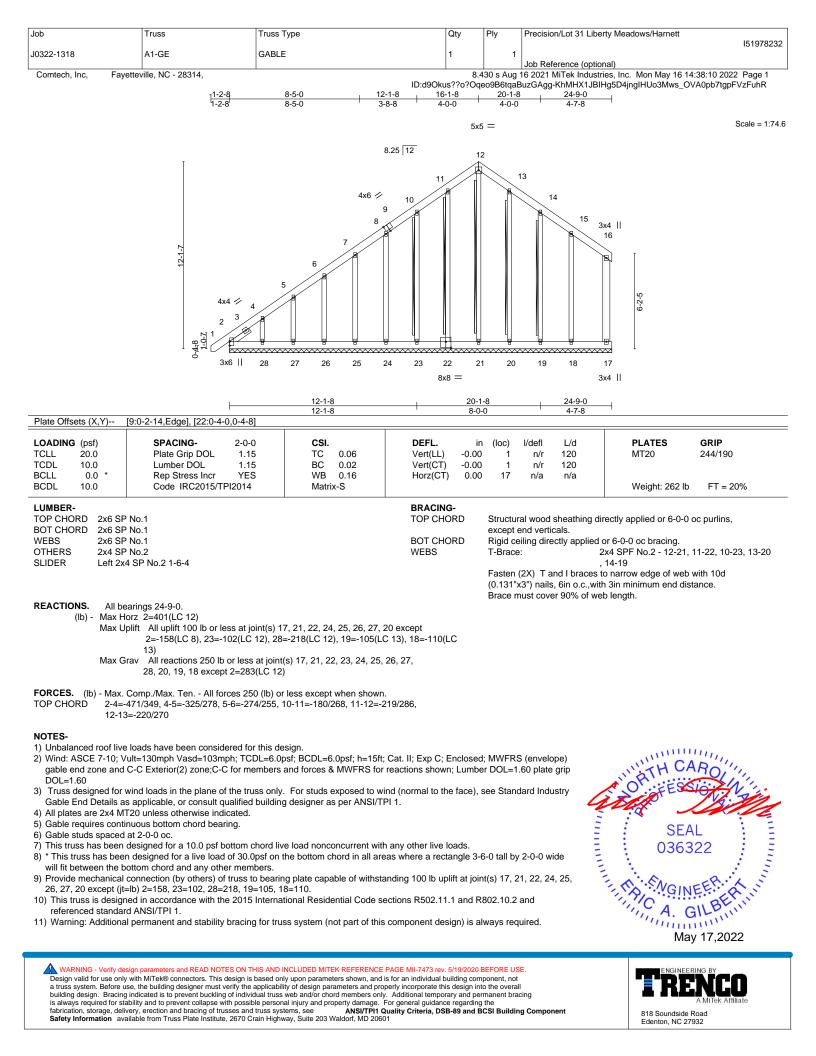
My license renewal date for the state of North Carolina is December 31, 2023

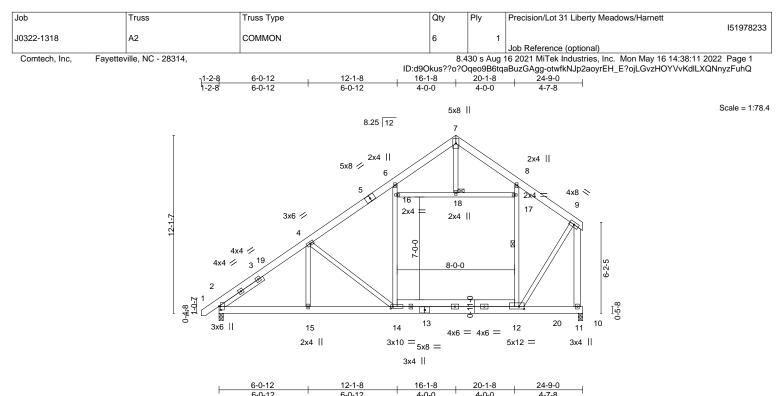
North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Gilbert, Eric

Trenco 818 Soundside Rd Edenton, NC 27932




RE: J0322-1318 - Precision/Lot 31 Liberty Meadows/Harnett

Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:

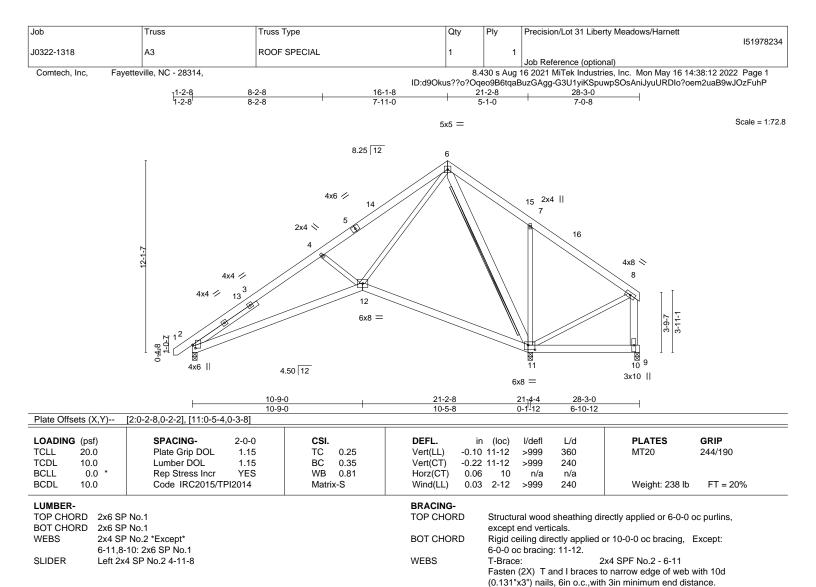
Projec Lot/Bl Addre	lock:	Project Name: J0	322-1318	Subdivision:
City, C	County:			State:
No. 41 42	Seal# I51978272 I51978273	Truss Name YH2 ZH1	Date 5/17/2022 5/17/2022	

Nata Officiata (X X)	[2:0 2 0 0 1 4] [12:0 1 1 0 2 0]	[44:0 4 42 0 4 0]	0-0-12	4-0-0		4-0-0		4-7-0		
late Offsets (X,Y)	[2:0-3-0,0-1-4], [12:0-4-4,0-2-0],	[14:0-1-12,0-1-8]								
OADING (psf)	SPACING- 2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL 20.0	Plate Grip DOL 1.15	TC	0.53	Vert(LL)	-0.26	14-15	>999	360	MT20	244/190
CDL 10.0	Lumber DOL 1.15	BC	0.80	Vert(CT)	-0.50	14-15	>590	240		
CLL 0.0 *	Rep Stress Incr YES	WB	0.76	Horz(CT)	0.01	11	n/a	n/a		
CDL 10.0	Code IRC2015/TPI2014	Matr	rix-S	Wind(LL)	0.26	14-15	>999	240	Weight: 238 lb	FT = 20%
UMBER-				BRACING-						
OP CHORD 2x6 SF	9 No.1			TOP CHOR	D	Structu	iral wood	sheathing di	rectly applied or 6-0-0 of	oc purlins.
OT CHORD 2x6 SF	2 No.1						end verti	0	,	
VEBS 2x4 SF	P No.2 *Except*			BOT CHOR					or 10-0-0 oc bracing, I	Except:
	2x6 SP No.1						c bracino			
	4 SP No.2 3-7-4			WEBS			at midpt		8-12	
20020				JOINTS			e at Jt(s):			
EACTIONS. (size	e) 2=0-3-8, 11=0-3-8					100	51(0).			
Max H	lorz 2=275(LC 9)									

Max Uplift 2=-55(LC 12), 11=-66(LC 12) Max Grav 2=1119(LC 19), 11=1266(LC 19)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

- TOP CHORD 2-4=-1523/250, 4-6=-977/214, 6-7=-470/198, 7-8=-585/227, 8-9=-869/205,
- 9-11=-1502/300
- BOT CHORD
 2-15=-308/1309, 14-15=-308/1309, 12-14=-117/745


 WEBS
 14-16=0/360, 6-16=0/333, 9-12=-162/1229, 4-14=-801/272, 4-15=0/390, 16-18=-252/92, 17-18=-252/92

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-0-15 to 3-3-14, Interior(1) 3-3-14 to 16-1-8, Exterior(2) 16-1-8 to 20-3-4, Interior(1) 20-3-4 to 24-4-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 11.
- 6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

REACTIONS. (size) 2=0-3-8, 11=0-3-8, 10=0-3-8 Max Horz 2=278(LC 9) Max Uplift 2=-28(LC 12), 11=-189(LC 12), 10=-502(LC 23) Max Grav 2=713(LC 1), 11=2003(LC 1), 10=107(LC 12)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-1184/296, 4-6=-831/253, 6-7=-48/761, 7-8=-114/757, 8-10=-69/560

BOT CHORD 2-12=-288/1116

WEBS 4-12=-539/332, 6-12=-141/1080, 6-11=-1338/121, 7-11=-488/297, 8-11=-677/209

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-0-15 to 3-3-14, Interior(1) 3-3-14 to 16-1-8, Exterior(2) 16-1-8 to 20-6-5, Interior(1) 20-6-5 to 27-10-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

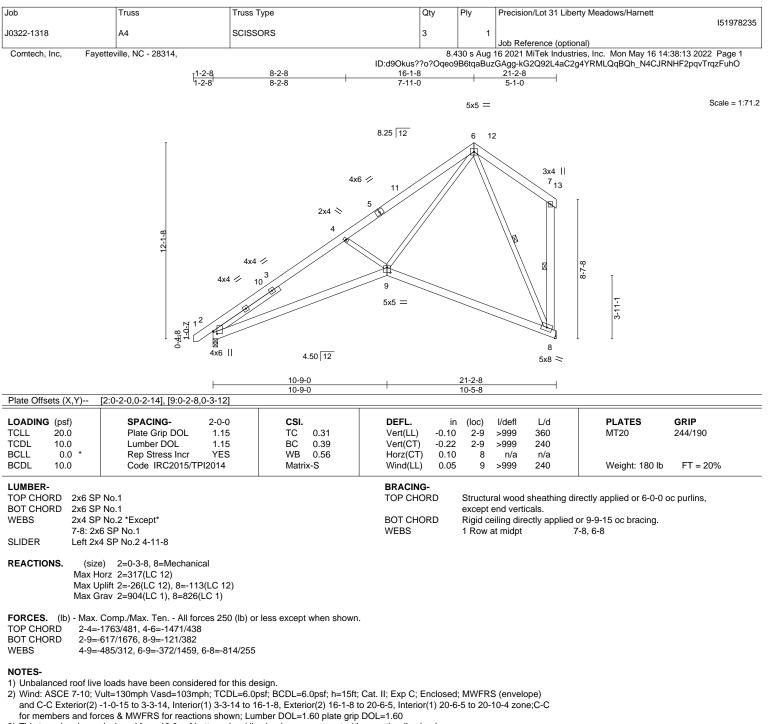
3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2 except (jt=lb) 11=189, 10=502.

7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


8) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

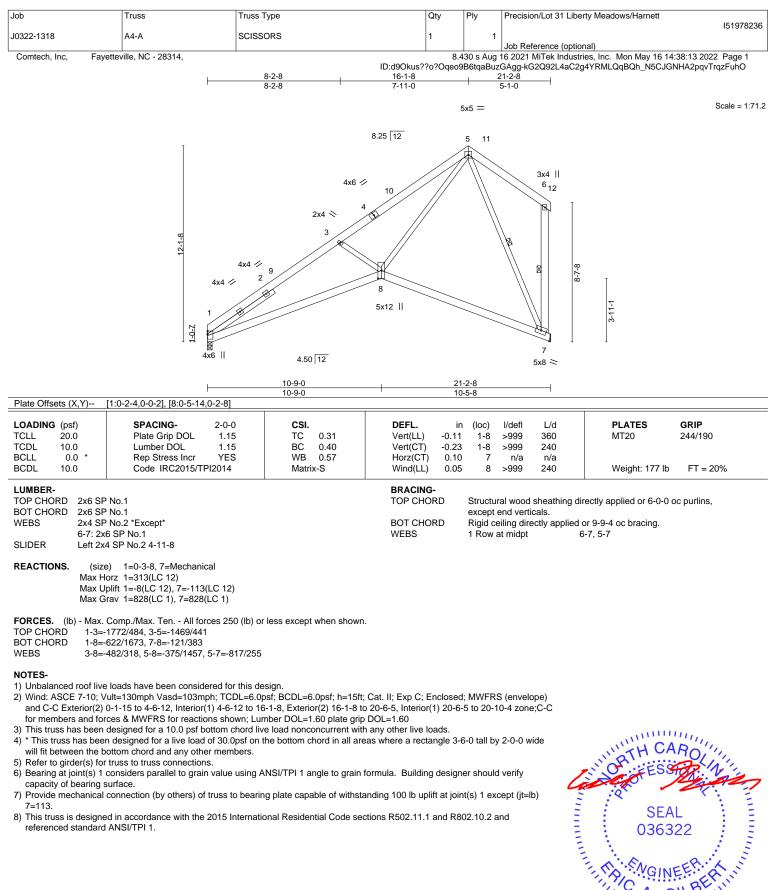
Brace must cover 90% of web length.

TRENCINE ERING BY AMITEK Affiliate 818 Soundside Road

Edenton, NC 27932

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

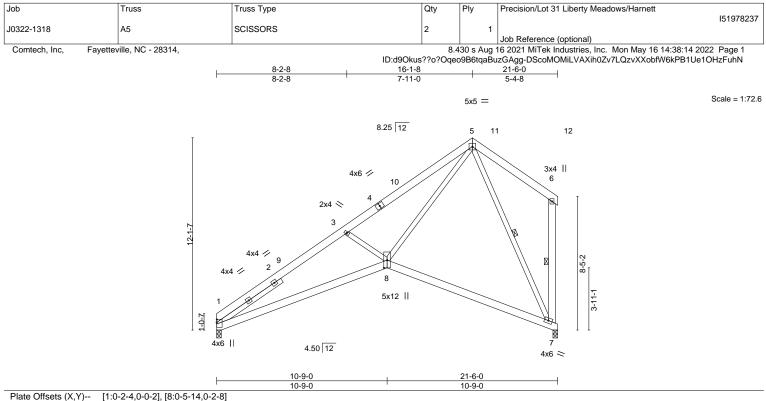
4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


5) Refer to girder(s) for truss to truss connections.

6) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2 except (jt=lb) 8=113.

8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Edenton, NC 27932

G mmm

036322

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.32 BC 0.40 WB 0.57 Matrix-S	DEFL. Vert(LL) -0.2 Vert(CT) -0.2 Horz(CT) 0.2 Wind(LL) 0.0	3 7-8 0 7	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 178 lb	GRIP 244/190 FT = 20%
6-7: 2x			BRACING- TOP CHORD BOT CHORD WEBS	excep Rigid	t end vert	icals. ectly applied	irectly applied or 5-11-2 or 9-9-7 oc bracing. 6-7, 5-7	? oc purlins,

REACTIONS. (size) 1=0-3-8, 7=0-3-8 Max Horz 1=308(LC 12) Max Uplift 1=-11(LC 12), 7=-109(LC 12) Max Grav 1=839(LC 1), 7=839(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-3=-1808/492, 3-5=-1508/450

BOT CHORD 1-8=-621/1697, 7-8=-124/404

WEBS 3-8=-478/317, 5-8=-372/1475, 5-7=-826/247

NOTES-

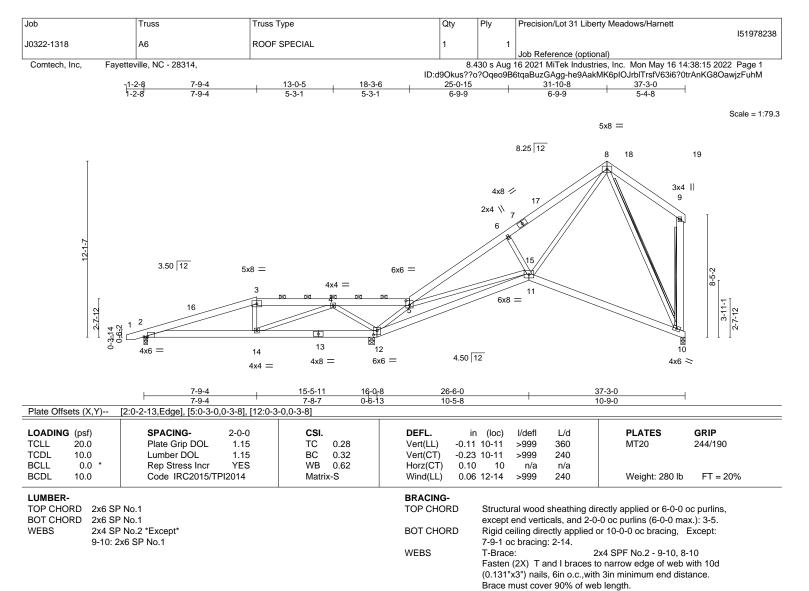
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-1-15 to 4-6-12, Interior(1) 4-6-12 to 16-1-8, Exterior(2) 16-1-8 to 20-6-5, Interior(1) 20-6-5 to 21-1-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Bearing at joint(s) 1, 7 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 7=109.

7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

TREENCO A MI TEK AT MI AT

Edenton, NC 27932

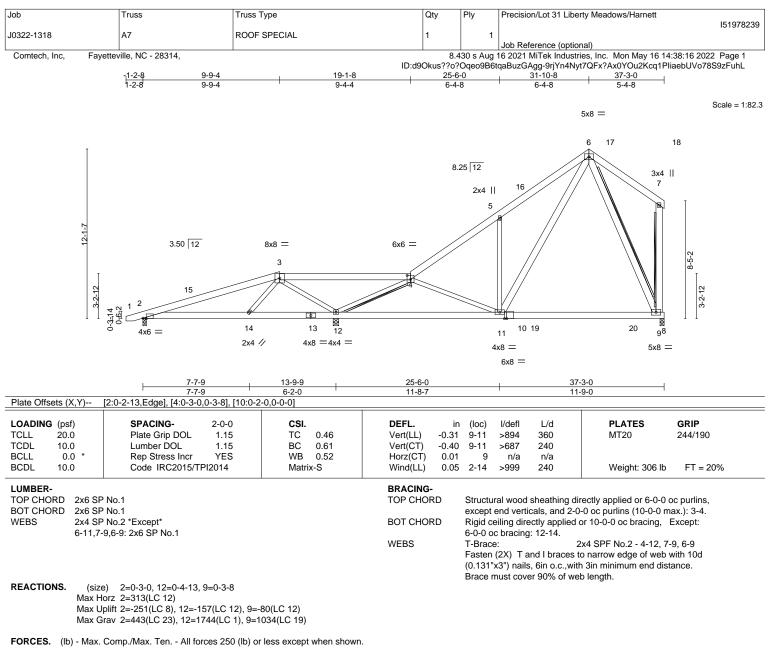
REACTIONS.	(size)	12=0-4-13, 2=0-3-0, 10=0-3-8
	Max Horz	2=313(LC 12)
	Max Uplift	12=-142(LC 12), 2=-285(LC 8), 10=-81(LC 12)
	Max Grav	12=1591(LC 1), 2=634(LC 23), 10=781(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

- TOP CHORD 2-3=-1100/800, 3-4=-1001/795, 4-5=-348/484, 5-6=-1551/316, 6-8=-1359/364
- BOT CHORD 2-14=-997/994, 12-14=-414/355, 11-12=-181/760, 10-11=-97/366
- WEBS 4-14=-639/696, 4-12=-1008/674, 5-12=-1439/357, 5-15=-266/656, 6-15=-439/273,
 - 11-15=-421/262, 8-11=-272/1316, 8-10=-736/184

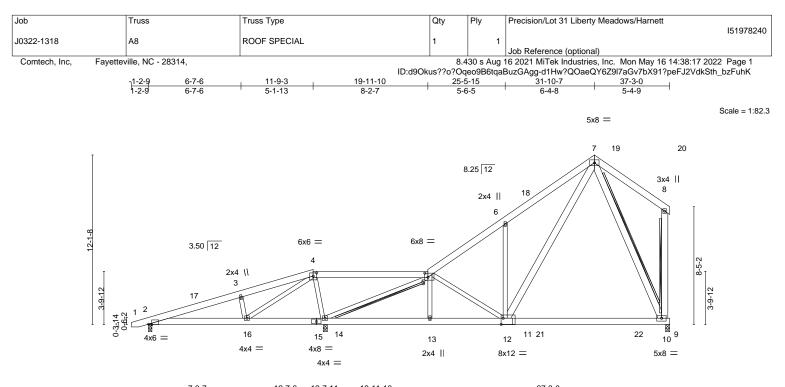
NOTES-

1) Unbalanced roof live loads have been considered for this design


2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-11-5 to 3-5-8, Interior(1) 3-5-8 to 31-10-8, Exterior(2) 31-10-8 to 36-3-5, Interior(1) 36-3-5 to 36-10-12 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 5) * This truss has been designed for a live load of 30 0 psf on the bottom chord in all areas where a rotated a 2.6 0 tell by
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Bearing at joint(s) 10 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 10 except (jt=lb) 12=142, 2=285.
- 8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 10) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

ENGINEERING BY REENCO AMITEK Affiliate 818 Soundside Road


Edenton, NC 27932

- TOP CHORD 2-3=-321/368, 3-4=-509/906, 4-5=-991/35, 5-6=-1045/250
- BOT CHORD 2-14=-553/233, 12-14=-327/97, 11-12=-161/863, 9-11=-56/323
- WEBS 3-14=-359/341, 3-12=-1212/788, 4-12=-1841/466, 5-11=-515/308, 6-11=-150/1041, 6-9=-693/146
- NOTES-
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-11-5 to 3-5-8, Interior(1) 3-5-8 to 31-10-8, Exterior(2) 31-10-8 to 36-3-5, Interior(1) 36-3-5 to 36-10-12 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 9 except (jt=lb) 2=251. 12=157.
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 9) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

			7-0-7	1	12-7-6 12	2-7-11	19-11-10	1				37-3-0	1	
			7-0-7	1	5-6-15 ()-0-5	7-3-15	1				17-3-6	1	
Plate Offse	ets (X,Y)	[2:0-2-12	2,Edge], [4:0-3-0,	,0-2-12], [5:0·	-2-12,0-3-8], [1	12:0-1-12	2,0-5-4]							
LOADING	(psf)	s	PACING-	2-0-0	CSI.			DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.Ó	P	late Grip DOL	1.15	TC	0.38		Vert(LL)	-0.27	10-12	>999	360	MT20	244/190
TCDL	10.0	L	umber DOL	1.15	BC	0.59		Vert(CT)	-0.39	10-12	>751	240		
BCLL	0.0 *	R	ep Stress Incr	YES	WB	0.74		Horz(CT)	0.01	10	n/a	n/a		
BCDL	10.0	C	ode IRC2015/TF	PI2014	Matrix	k-S		Wind(LL)	0.04	2-16	>999	240	Weight: 315 lb	FT = 20%
LUMBER-								BRACING-						
TOP CHO	RD 2x6	SP No.1						TOP CHOP	RD	Structu	ural wood	sheathing d	irectly applied or 6-0-0	oc purlins,
BOT CHO	RD 2x6	SP No.1											0-0 oc purlins (10-0-0 m	
WEDE	21/1		voont*							Digid	oiling dir	o othy opplied	or 6 0 0 oo brooing	,

TOP CHORD	2x6 SP No.1	TOP CHORD	Structural wood sh	neathing directly applied or 6-0-0 oc purlins,
BOT CHORD	2x6 SP No.1		except end vertica	lls, and 2-0-0 oc purlins (10-0-0 max.): 4-5.
WEBS	2x4 SP No.2 *Except*	BOT CHORD	Rigid ceiling direct	ly applied or 6-0-0 oc bracing.
	7-12,8-10,7-10: 2x6 SP No.1	WEBS	T-Brace:	2x4 SPF No.2 - 5-14, 8-10, 7-10
			Fasten (2X) T and	d I braces to narrow edge of web with 10d
			(0.131"x3") nails, 6	Sin o.c., with 3in minimum end distance.

REACTIONS. (size) 2=0-2-15, 14=0-3-8, 10=0-3-8 Max Horz 2=314(LC 12) Max Uplift 2=-214(LC 8), 14=-183(LC 12), 10=-76(LC 12) Max Grav 2=342(LC 23), 14=1806(LC 1), 10=1069(LC 19)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

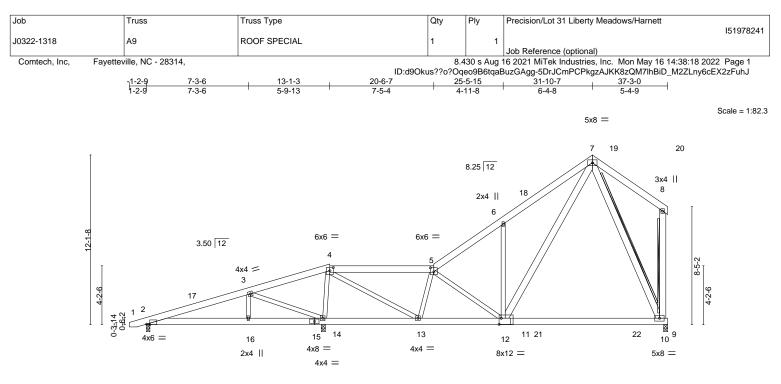
2-3=-200/312, 3-4=-122/339, 4-5=-408/764, 5-6=-1057/53, 6-7=-1111/259 TOP CHORD

- BOT CHORD 2-16=-449/142, 14-16=-577/137, 13-14=-118/1039, 12-13=-116/1039, 10-12=-59/340
- WEBS 3-16=-343/167, 4-16=-676/786, 4-14=-863/515, 5-14=-1882/360, 5-12=-306/10,

6-12=-483/290, 7-12=-163/1124, 7-10=-738/158

NOTES-

1) Unbalanced roof live loads have been considered for this design.

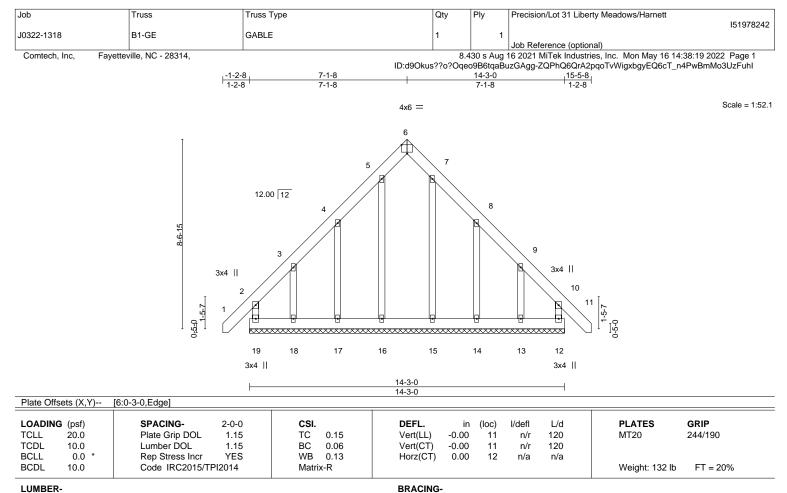

 Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-11-6 to 3-5-7, Interior(1) 3-5-7 to 31-10-7, Exterior(2) 31-10-7 to 36-3-4, Interior(1) 36-3-4 to 36-10-12 zone; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 6) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 2.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 10 except (jt=lb) 2=214. 14=183.
- 8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 10) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

ORTH 2000 Contraction SEAL 036322 G mm May 17,2022

Brace must cover 90% of web length.

818 Soundside Road Edenton, NC 27932



	7-3-6	12-7-2 12-7-11	19-4-12		26-2-7		7-3-0	
Plata Offacta (X X) [2:0.2	7-3-6	5-3-12 0-0-9	6-9-1		6-9-11	· 1	1-0-9	
Plate Offsets (X,Y) [2:0-2-	-12,Edge], [4:0-3-0,0-2-12], [5:0-3	-0,0-3-8], [12:0-1-12,0	0-5-4]					
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.39 BC 0.59 WB 0.51 Matrix-S		DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in (loc) -0.28 10-12 -0.39 10-12 0.01 10 0.04 2-16	l/defl L/d >999 360 >746 240 n/a n/a >999 240	PLATES MT20 Weight: 315 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.2 7-12,8-10,7-1	*Except* 0: 2x6 SP No.1			BRACING- TOP CHOR BOT CHOR WEBS	except D Rigid o T-Brac Faster (0.131	t end verticals, and 2-(ceiling directly applied ce: n (2X) T and I braces	2x4 SPF No.2 - 8-10, 7 to narrow edge of web th 3in minimum end dist	ax.): 4-5. -10 with 10d
Max Horz 2= Max Uplift 2= Max Grav 2= FORCES. (Ib) - Max. Comp TOP CHORD 2-3=-142/30 BOT CHORD 2-16=-384/8	20-2-15, 14=0-3-8, 10=0-3-8 =313(LC 12) =-208(LC 8), 14=-190(LC 12), 10= =335(LC 23), 14=1816(LC 1), 10= /Max. Ten All forces 250 (lb) o 15, 3-4=-449/803, 4-5=-807/0, 5-6 31, 14-16=-384/81, 13-14=-527/1 36. 4-14=-1340/417, 4-13=-246/	:1062(LC 19) : less except when sh 5=-1043/48, 6-7=-1090 36, 12-13=-115/1010,	0/248 10-12=-5					
6-12=-457/2	280, 4-14=-1340/417, 4-13=-240/ 280, 7-12=-150/1097, 7-10=-728/ have been considered for this de	154	5-12=-28	30/16,				

- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-11-6 to 3-5-7, Interior(1) 3-5-7 to 31-10-7, Exterior(2) 31-10-7 to 36-3-4, Interior(1) 36-3-4 to 36-10-12 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 2.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 10 except (jt=lb) 2=208, 14=190.
- 8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 10) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

ENGINEERING BY EREPACED A MITER ATMIATE 818 Soundside Road Edenton, NC 27932

LUMBER-

TOP CHORD 2x6 SP No 1 BOT CHORD 2x6 SP No.1 2x4 SP No.2 WFBS OTHERS 2x4 SP No.2

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 14-3-0.

(lb) -Max Horz 19=-297(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) except 19=-159(LC 8), 12=-142(LC 9), 17=-166(LC 12),

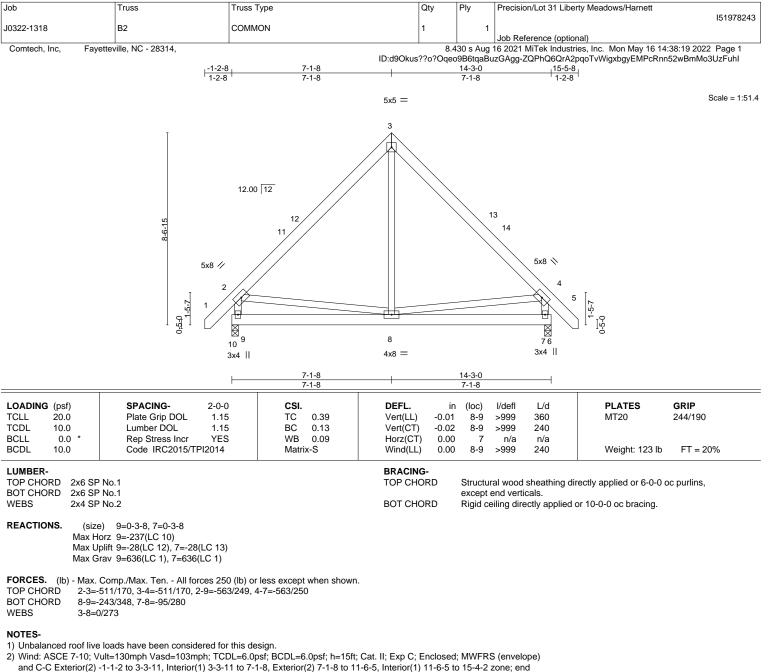
18=-244(LC 12), 14=-167(LC 13), 13=-240(LC 13)

```
Max Grav All reactions 250 lb or less at joint(s) 17, 14, 13 except 19=266(LC 20), 12=252(LC 19), 16=280(LC
          22), 18=255(LC 10), 15=276(LC 21)
```

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 4-5=-211/286, 7-8=-212/286

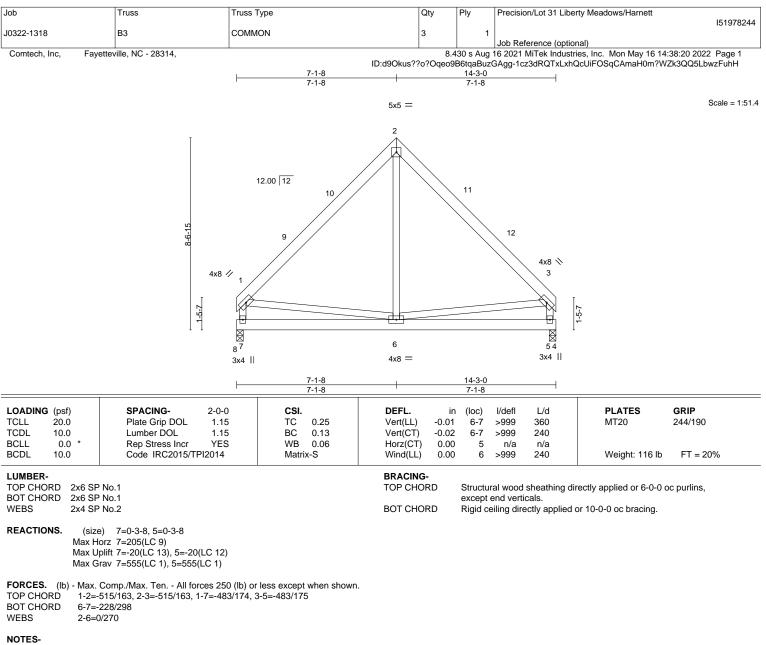
NOTES-


1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 159 lb uplift at joint 19, 142 lb uplift at joint 12, 166 lb uplift at joint 17, 244 lb uplift at joint 18, 167 lb uplift at joint 14 and 240 lb uplift at joint 13. 11) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and
- referenced standard ANSI/TPI 1.

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign valid to less only with with the contractors. This besign is based only upon parameters and properly incorporate this design into the overall a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

wertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

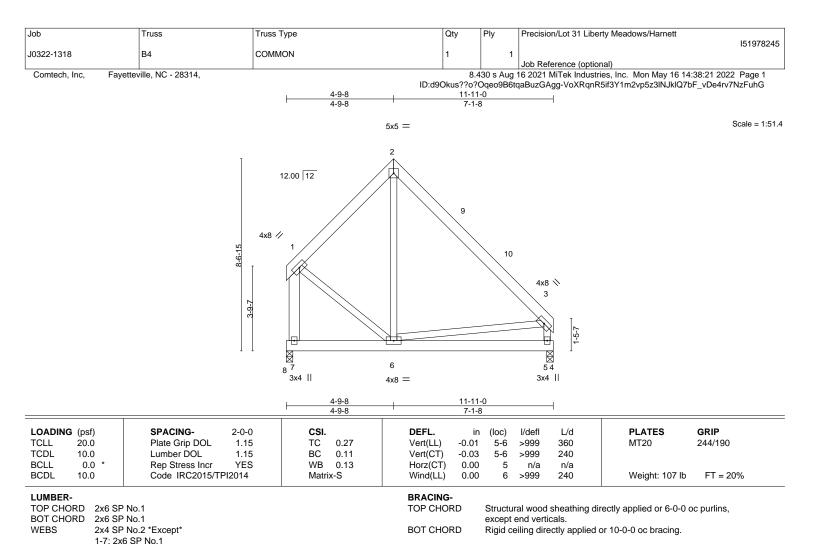

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 28 lb uplift at joint 9 and 28 lb uplift at joint 7.

6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-3-1 to 4-7-14, Interior(1) 4-7-14 to 7-1-8, Exterior(2) 7-1-8 to 11-6-5, Interior(1) 11-6-5 to 13-11-15 zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 20 lb uplift at joint 7 and 20 lb uplift at joint 5.

6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

REACTIONS. (size) 7=0-3-8, 5=0-3-8 Max Horz 7=-186(LC 8) Max Uplift 7=-45(LC 13), 5=-4(LC 12)

Max Uplift 7=-45(LC 13), 5=-4(LC 12) Max Grav 7=459(LC 1), 5=458(LC 1)

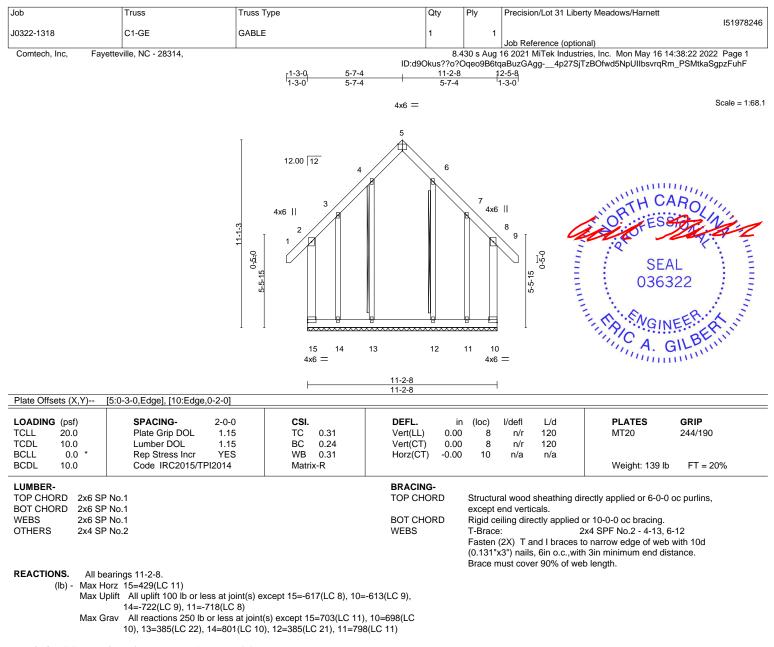
FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 1-2=-333/161, 2-3=-392/115, 1-7=-427/162, 3-5=-383/141

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-4-4 to 9-2-5, Interior(1) 9-2-5 to 11-7-15 zone; end vertical right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 45 lb uplift at joint 7 and 4 lb uplift at joint 5.

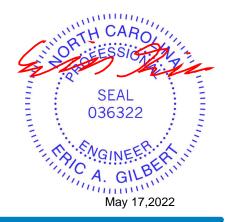
6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

- FORCES. (Ib) Max. Comp./Max. Ten. All forces 250 (Ib) or less except when shown.
- TOP CHORD 2-3=-325/317, 3-4=-201/364, 6-7=-202/365, 7-8=-322/315, 2-15=-363/345, 8-10=-361/343
- WEBS 3-14=-419/363, 7-11=-418/362
- NOTES-
- Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)
- gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 617 lb uplift at joint 15, 613 lb uplift at joint 10, 722 lb uplift at joint 14 and 718 lb uplift at joint 11.
- 11) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

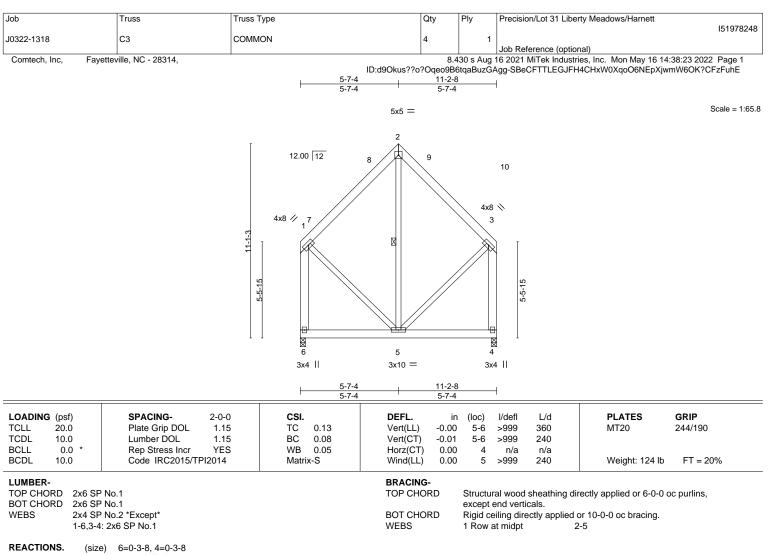
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **MSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 May 17,2022

Job	Truss	uss Type	Qty	Ply	Precision/Lot 31 Liberty	/ Meadows/Harnett	
J0322-1318		DMMON	2	1			151978247
					Job Reference (optiona		
Comtech, Inc, Faye	vtteville, NC - 28314,	ID:d9Okus 1-3-0 5-7-4 1-3-0 5-7-4		B6tqaBuz	16 2021 MiTek Industries GAgg-SBeCFTTLEGJFH 12-5-8 1-3-0		
		5x5 =	:				Scale = 1:65.8
	1-1-3	0 12.00 12 10 4x8 # 9 2 1 4x8 # 9 2 1 4x8 # 9 2 1 4x8 # 9 3 4x8 # 7 3x4 3x10 =	=	4x8 12 0 0 0 0 0 0 0 3x4	4 5 0.0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0		
		5-7-4	<u>11-2-8</u> 5-7-4		1		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. DEFL TC 0.14 Vert(L BC 0.08 Vert(C WB 0.12 Horz(C Matrix-S Wind(C Wind(C	L) -0.00 CT) -0.01 CT) -0.00	7-8) 6	l/defl L/d >999 360 >999 240 n/a n/a >999 240	PLATES MT20 Weight: 131 lb	GRIP 244/190 FT = 20%
		BRAC TOP (CING- CHORD	except Rigid ce	ral wood sheathing dire end verticals. eiling directly applied or at midpt 3-7	10-0-0 oc bracing.	oc purlins,
Max Ho Max Up) 8=0-3-8, 6=0-3-8 yrz 8=-342(LC 10) plift 8=-39(LC 8), 6=-39(LC 9) av 8=526(LC 20), 6=526(LC 19)						
TOP CHORD 2-3=-3 BOT CHORD 7-8=-3	Comp./Max. Ten All forces 250 (II 300/221, 3-4=-300/221, 2-8=-478/2 335/369 126/250						
NOTES-							

1) Unbalanced roof live loads have been considered for this design.


2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-1-2 to 3-3-11, Interior(1) 3-3-11 to 5-7-12, Exterior(2) 5-7-12 to 10-0-9, Interior(1) 10-0-9 to 12-4-10 zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 39 lb uplift at joint 8 and 39 lb uplift at joint 6.

6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Max Horz 6=129(LC 9) Max Uplift 6=-45(LC 13), 4=-45(LC 12)

Max Grav 6=433(LC 20), 4=433(LC 19)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 1-2=-284/158, 2-3=-284/158, 1-6=-386/145, 3-4=-386/145

NOTES-

1) Unbalanced roof live loads have been considered for this design.

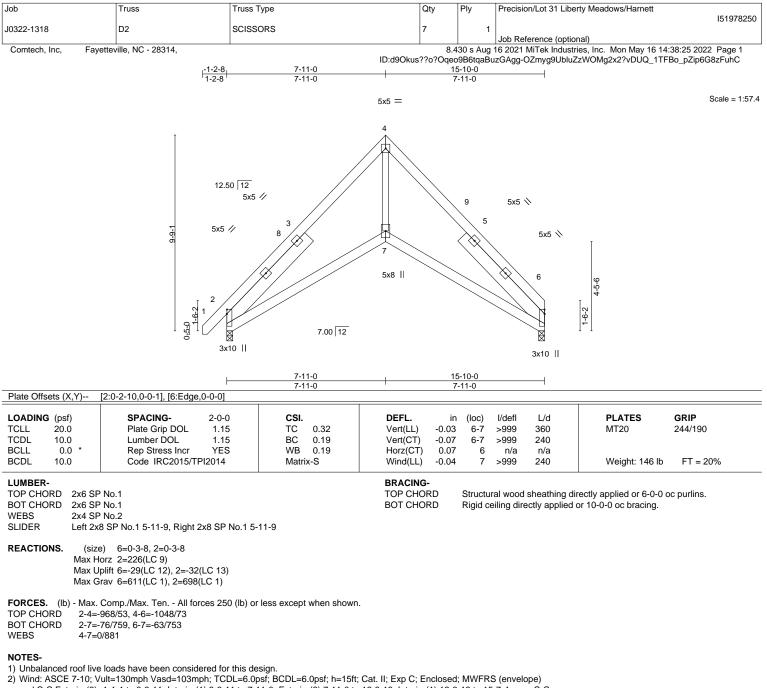
2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-3-4 to 4-8-1, Interior(1) 4-8-1 to 5-7-12, Exterior(2) 5-7-12 to 10-0-9, Interior(1) 10-0-9 to 11-0-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 45 lb uplift at joint 6 and 45 lb uplift at joint 4.

6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



Job	Truss	Truss Type	Qty	P	ly	Precision/Lot 31 Li	iberty Meadows/Harnett	
J0322-1318	D1-GE	GABLE	1	ľ	.,			151978249
		GABLE				Job Reference (op		
Comtech, Inc, Faye	etteville, NC - 28314,		ID:d9Okus??o?0	Dqeo9B	86tqaBu		istries, Inc. Mon May 16 1 PaR6vEnUUEXmN0xJbdA	
	- 1-2-8 1-2-8	7-11-0 7-11-0		15-1 7-1				
								Scale = 1:57.4
			5x5 =					Scale = 1.37.4
			6					
	Ī							
		/						
		5		7				
		12.50 12						
				//	8			
	8-8- 1-	4						
	б 6	x8 //	14		\square	6x8 \\	I	
	3x6 ∜	3		$\langle $		9 0x0 (* 3x6 /	<i>II</i>	
		1!	5 5x8 13	\searrow	s l	10	4-5-6	
	т 2	16		12	\sim		4	
	2 1 2 1	17					1-6-2	
	1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	17 xxxxxxxxxxxxxxxxxxxx 7.88 , 112 xxx	****	<u> </u>	xxxxx			
		10				3x10		
		7-11-0 7-11-0		15-1 7-1				
Plate Offsets (X,Y)	[2:0-1-5,0-0-1], [3:0-4-0,0-2-4],	9:0-4-0,0-2-4], [10:Edge,0-0-0]	1					
LOADING (psf)	SPACING- 2-0-		DEFL.		(loc)	l/defl L/d	PLATES	GRIP
TCLL 20.0 TCDL 10.0	Plate Grip DOL 1.1 Lumber DOL 1.1			0.00 0.00	1 1	n/r 120 n/r 120	MT20	244/190
BCLL 0.0 *	Rep Stress Incr YE	S WB 0.09		0.01	10	n/a n/a	Waisht 140 lb	FT 200/
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S					Weight: 149 lb	FT = 20%
LUMBER- TOP CHORD 2x6 SP	' No 1		BRACING- TOP CHORD	ç	Structur	al wood sheathing	directly applied or 6-0-0	oc purlins
BOT CHORD 2x6 SP	9 No.1		BOT CHORD				ed or 10-0-0 oc bracing.	
OTHERS 2x4 SP SLIDER Left 2x8	² No.2 8 SP No.1 2-10-15, Right 2x8 S	P No.1 2-10-14						
REACTIONS. All be	earings 15-10-0.						WORTH C	um.
(lb) - Max H	orz 2=283(LC 9)						WITH C	ARO
Max U		bint(s) 10 except 2=-269(LC 8), 14 C 12), 13=-122(LC 13), 12=-164(C 12),		NOR SES	3411
Max G	rav All reactions 250 lb or less	at joint(s) 10, 15, 16, 17, 13, 12,			4=543(A	Than
	13)					-	and a	
	Comp./Max. Ten All forces 25 399/292, 5-6=-232/254, 6-7=-23	0 (lb) or less except when shown					E : SEA	AL : E
BOT CHORD 2-17=	-175/271, 16-17=-188/275, 15-	16=-188/276, 14-15=-190/273, 13	3-14=-190/273,				E 0363	AL
	3=-188/275, 11-12=-188/275, 10 =-268/185, 3-17=-274/299, 9-11						SEA 0363	AL 322
							- So NGIN	IEER AN
NOTES- 1) Unbalanced roof live	e loads have been considered fo	r this design.					C A	BELIN
		DL=6.0psf; BCDL=6.0psf; h=15ft; embers and forces & MWFRS for				6 (envelope)	in the contraction of the contra	
DOL=1.60								
		uss only. For studs exposed to will building designer as per ANSI/T		ce), see	e Stanc	lard Industry		
4) All plates are 2x4 M	T20 unless otherwise indicated.							
5) Gable requires conti6) Gable studs spaced	nuous bottom chord bearing. at 2-0-0 oc.							
7) This truss has been	designed for a 10.0 psf bottom	chord live load nonconcurrent with						
	n designed for a live load of 30.0 ottom chord and any other merr	Opsf on the bottom chord in all are bers.	eas where a rectangl	ie 3-6-0	tall by	∠-U-U WIDE		
9) Provide mechanical	connection (by others) of truss t	o bearing plate capable of withsta	anding 100 lb uplift a	t joint(s	s) 10 ex	cept (jt=lb)		
	129, 16=164, 17=293, 13=122, him required to provide full beari	12=164, 11=281. ng surface with truss chord at joir	nt(s) 14, 15, 16, 17, 1	13, 12,	11.			
11) This truss is design referenced standar		International Residential Code se	ections R502.11.1 a	nd R80	2.10.2	and		
Toronolog Standar								
							R A	w 47 0000
							Ma	iy 17,2022

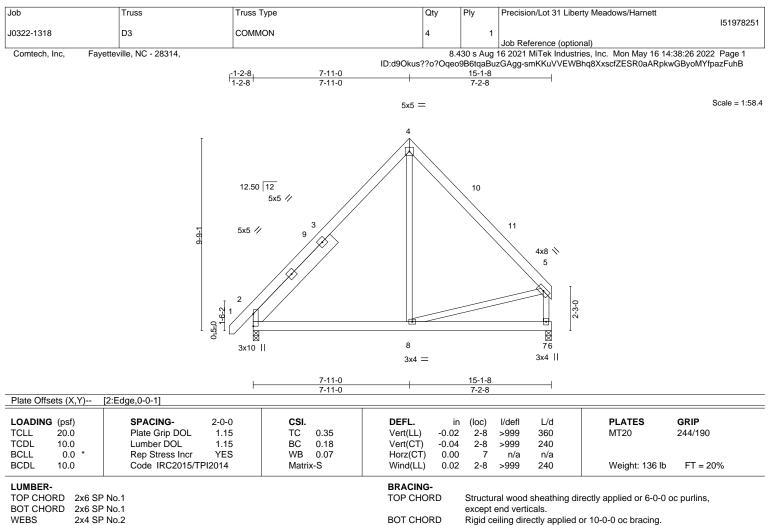
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

ιy ,

and C-C Exterior(2) -1-1-1 to 3-3-11, Interior(1) 3-3-11 to 7-11-0, Exterior(2) 7-11-0 to 12-3-13, Interior(1) 12-3-13 to 15-7-4 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


5) Bearing at joint(s) 6, 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 2.

7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

2x4 SP No 2 WFBS SLIDER Left 2x8 SP No.1 5-10-11

REACTIONS. (size) 2=0-3-8, 7=0-3-8 Max Horz 2=223(LC 9) Max Uplift 2=-26(LC 13), 7=-33(LC 12) Max Grav 2=662(LC 1), 7=598(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 2-4=-591/181, 4-5=-533/206, 5-7=-537/211 BOT CHORD 2-8=-21/309

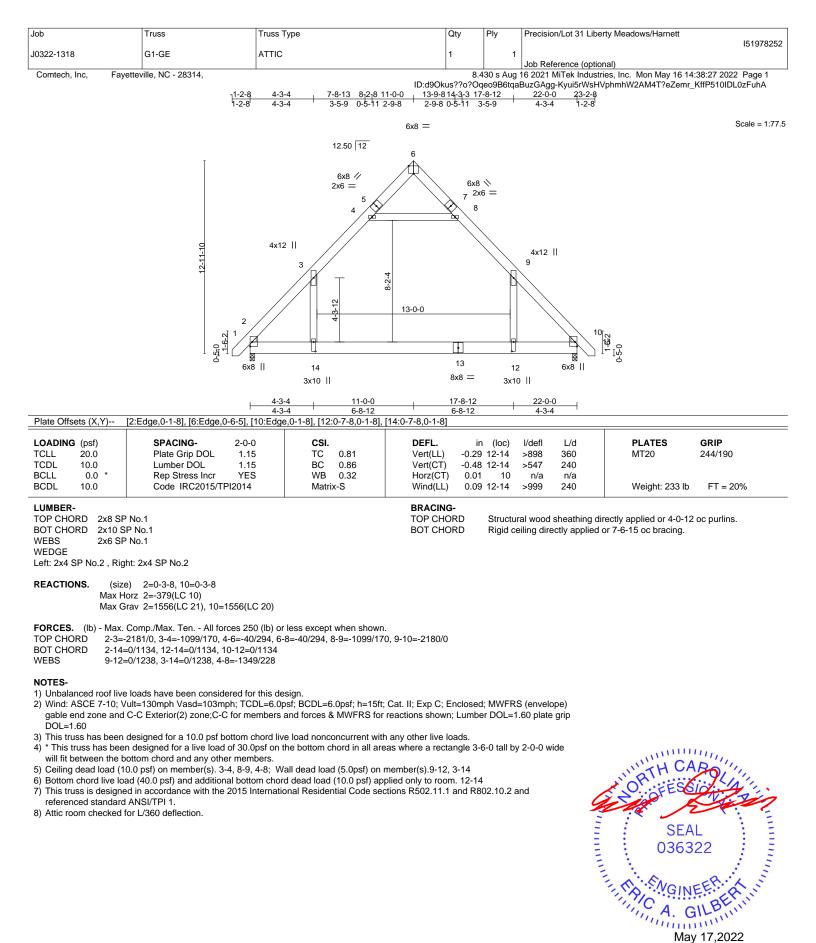
WEBS 4-8=0/296, 5-8=-54/287

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-1-1 to 3-3-11, Interior(1) 3-3-11 to 7-11-0, Exterior(2) 7-11-0 to 12-3-13, Interior(1) 12-3-13 to 14-10-8 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 7.

6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Job	Truss	Truss Type	Qty	Ply	Precision/Lot 31	iberty Meadows/Harnett]
J0322-1318	G2	ATTIC	6	1			151978253
	etteville, NC - 28314,				Job Reference (op	tional) Istries, Inc. Mon May 16 14	1:38:28 2022 Page 1
	1-2-8 1-2-8	4-3-4 7-8-13 81218 11-0-0 4-3-4 3-5-9 0-5-11 2-9-8		qeo9B6tq -8-12		KU2pxYNr5Fj3biXs6pWFK2 क्	
		6х	.8 =				Scale = 1:77.5
	-	12.50 12	3				
	2-11-10	6x8 // 2x6 = 4 16 4x12	6x8 7 2x6 8	17	4x12 9		
	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				18	10[23 14 0 14 0 0 14 0 0 0 0 0 0	
	6x6	14 3x10 4-3-4 , 11-0-0 ,	13 8x8 = 17-8-12	12 3x10	6x8	C	
Plate Offsets (X,Y)	⊦ [2:Edge,0-1-8], [6:Edge,0-6-5], [4-3-4 6-8-12 10:Edge,0-1-8], [12:0-7-8,0-1-8], [14:0-7-	6-8-12	1	4-3-4		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0- Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YE5 Code IRC2015/TPI2014	CSI. TC 0.81 BC 0.86 WB 0.32	DEFL. in Vert(LL) -0.29 Vert(CT) -0.48 Horz(CT) 0.01	12-14 10	l/defl L/d >898 360 >547 240 n/a n/a >999 240	PLATES MT20 Weight: 233 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x8 SP BOT CHORD 2x10 Sf WEBS 2x6 SP WEDGE Left: 2x4 SP No.2, Rigt	P No.1 No.1	1	BRACING- FOP CHORD BOT CHORD			directly applied or 4-1-9 of the directly applied or 4-1-9 of the directly applied or 7-6-15 oc bracing.	oc purlins.
REACTIONS. (size Max Ho	e) 2=0-3-8, 10=0-3-8 orz 2=-303(LC 10) rav 2=1562(LC 21), 10=1562(L	220)					
TOP CHORD 2-3=-2 BOT CHORD 2-14=			=-2152/0				
 Wind: ASCE 7-10; Vi and C-C Exterior(2) - zone;C-C for membe This truss has been (4) * This truss has been will fit between the bi 5) Ceiling dead load (10 Bottom chord live load 	-0-11-14 to 3-4-15, Interior(1) 3- ers and forces & MWFRS for readesigned for a 10.0 psf bottom of n designed for a live load of 30.0 ottom chord and any other mem 0.0 psf) on member(s). 3-4, 8-9, ad (40.0 psf) and additional botto d in accordance with the 2015 In ANSI/TPI 1.	DL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; 4-15 to 11-0-0, Exterior(2) 11-0-0 to 15-4 ctions shown; Lumber DOL=1.60 plate g hord live load nonconcurrent with any ot psf on the bottom chord in all areas whe	4-13, Interior(1) 15 grip DOL=1.60 ther live loads. ere a rectangle 3-6 r(s).9-12, 3-14 nly to room. 12-14	5-4-13 to : 6-0 tall by	22-11-14 2-0-0 wide nd	SEA 0363	• -
						ANGIN	EERAK

May 17,2022

FΠ

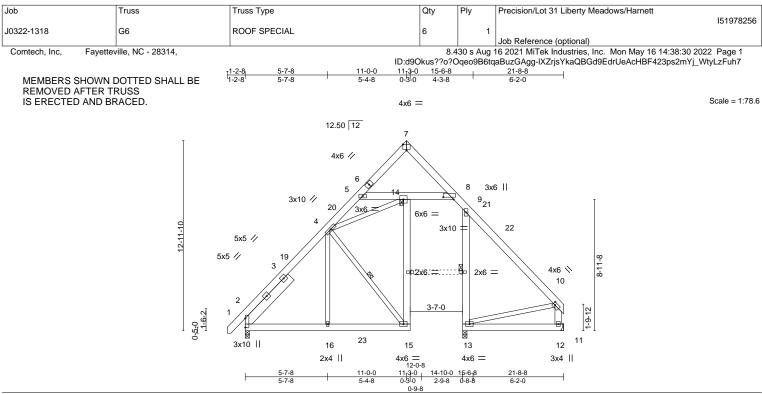
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

REN

Job	Truss	Truss Type	Qty	Ply	Precision/Lot 31	berty Meadows/Harnett]
J0322-1318	G3	ATTIC	6	1			151978254
	etteville, NC - 28314,				Job Reference (op	tional) stries, Inc. Mon May 16 14	-38-28 2022 Page 1
	1-2 1-2	ID:d: 8 4-3-4 7-8-13 81218 11-0-0 1 8 4-3-4 3-5-9 0-5-11 2-9-8		qeo9B6tq		(U2pxYNr5Fj3biXs6pQFKT	
		6x8 =	=				Scale = 1:77.5
	12-11-10 1_6-2 1_6-2	$12.50 \overline{12}$ 6 $6x8 / 2x6 =$ 5 $4x12 $ 15 $4x12 $ 3 14 7 7 7 7 7 7 7 7 7 7	7	48 \\ 2x6 = 8 16	4x12 9 10	1-6-2	
		x8 13 3x10 	12 8x8 = <u>17-8-12</u> 6-8-12	3x 2	11 5x8 (10 + 22-0-0 4-3-4		
Plate Offsets (X,Y)	[2:Edge,0-1-8], [6:Edge,0-6-5], [0-0-12				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	TC 0.82 Vert(L BC 0.86 Vert(C	L) -0.29 CT) -0.48 CT) 0.01		l/defl L/d >888 360 >541 240 n/a n/a >999 240	PLATES MT20 Weight: 229 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x8 SP BOT CHORD 2x10 S WEBS 2x6 SP WEDGE Left: 2x4 SP No.2 , Rig	P No.1 No.1		:ING- Chord Chord			directly applied or 4-0-12 d or 7-5-9 oc bracing.	e oc purlins.
Max H	e) 2=0-3-8, 10=0-3-8 orz 2=300(LC 11) rav 2=1564(LC 21), 10=1518(L0	\$ 20)					
TOP CHORD 2-3=- BOT CHORD 2-13=			4/0				
 Wind: ASCE 7-10; V and C-C Exterior(2) zone;C-C for membe This truss has been will fit between the b Ceiling dead load (1 Bottom chord live load 	-0-11-14 to 3-4-15, Interior(1) 3- ers and forces & MWFRS for rea designed for a 10.0 psf bottom of n designed for a live load of 30.0 ottom chord and any other mem 0.0 psf) on member(s). 3-4, 8-9, ad (40.0 psf) and additional botto d in accordance with the 2015 In ANSI/TPI 1.	DL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp I-15 to 11-0-0, Exterior(2) 11-0-0 to 15-4-13, I ctions shown; Lumber DOL=1.60 plate grip D hord live load nonconcurrent with any other lin psf on the bottom chord in all areas where a r	Interior(1) 15 OL=1.60 ve loads. rectangle 3-6 -11, 3-13 room. 11-13	5-4-13 to : 6-0 tall by	21-10-4 2-0-0 wide nd	SEA 0363	EER ALU

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



May 17,2022

$\frac{1}{1224} + \frac{1}{1224} + 1$	Job	Truss	Truss Type	Qty	Ply	Precision/Lot 31 Lib	erty Meadows/Harnett	
Contract, Inc. Payetewine, NC - 22314. Contract, Inc. Add S and P (222) Third indicates and P (223) Third indicates and P (224) Third indinates and P (224) Third indin	J0322-1318							151978255
<pre> Disclustration_page into the page inthe page into the page into the page int</pre>	Comtech, Inc, Fay	etteville, NC - 28314,		8.4	30 s Aug			4:38:29 2022 Page 1
$\begin{tabular}{l l l l l l l l l l l l l l l l l l l $	· · ·	1-2-8 1-2-8		-0-0 13-9-814-3-3 17	-8-12	21-8-8	o63P??gRHn7x43ezcegy	7ZxOUKnKPvzFuh8
June Office (X/Y) 254ge 0.549, [E56ge 0.543, [11:05-10-05], [120:7-30-14], [140-4.01-18] Construction 153ge 1.21 Construction 151ge 1.21 Constren 151ge 1.21				6x8 =				Scale = 1:77.
Junction Output			12.50 12	6				
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $			2x6 =	7 ^{2x6}	6 =			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		2	3 15 21-5 7-5 8 7-5 8 7-5 8 7-5 8 7-5 8 7-5 8 7-5 8 7-5 8 7-5 8 7-5 8 7-7 7 7-7 8 7-7 8 7-7 8 7-7 8 7-7 8 7-7 7 7 7	13-0-0		9 4x6 10		
4.3.4 6.8-12 9.8-12 9.11-12 Jate Offsets (X,Y)- [2:Edge.0-6.5], [10:0-8-1,0-0-5], [14:0-7-8,0-1-8], [14:0-6-4,0-1-8] Plate Gip DQL Plate Gip DQL 1.5 TC 0.85 Vert(L) -0.28 12:41 >566 240 CDL 10.0 Lumber DOL 1.15 TC 0.85 Vert(L) -0.48 12:44 >566 240 SCLL 0.0 * Rep Stress Incr YES WB 0.32 Horz(CT) 0.01 11 n/a n/a SCLL 0.0 * Rep Stress Incr YES WB 0.32 Horz(CT) 0.01 11 n/a n/a SCDL 0.0 * Code IRC2015/TPI2014 Matrix-S Wind(LL) 0.06 12:14 >999 240 Weight: 232 lb FT = 20% JUMER- 10.0 Code IRC2015/TPI2014 Matrix-S Wind(LL) 0.06 12:14 >999 240 Weight: 232 lb FT = 20% JUMER- 10.0 Code IRC2015/TPI2014 Matrix-S Wind(LL) <td< td=""><td></td><td>© ⊠ 8x8</td><td>3x10 </td><td>6x12 =</td><td></td><td>) </td><td></td><td></td></td<>		© ⊠ 8x8	3x10	6x12 =)		
OADING (nsf) CTCL SPACING- 2-0-0 TCL 2-0-0 1.15 CSI. TC DEFL. in (loc) I/deft L/d PLATES GRIP CTCL 10.0 Lumber DOL 1.15 TC 0.85 Vert(C1) -0.04 12-14 >566 240 MT20 244/190 SCLL 0.0* Rep Stress Incr YES WB 0.32 Horz(CT) -0.04 11 yr/d yr/d SCDL 10.0 Code IRC2015/TPI2014 Matrix-S WB 0.32 Horz(CT) -0.04 11 yr/d yr/d JUMBER- TOP CHORD 2x8 SP No.1 TOP CHORD Structural wood sheathing directly applied or 7-9-4 oc bracing. Weight: 232 lb FT = 20% JUDER Right 2x6 SP No.1 Structural wood sheathing directly applied or 7-9-4 oc bracing. Weight: 232 lb FT = 20% Stace SP No.2 SLIDER Right 2x6 SP No.1 TOP CHORD Right 2x6 SP No.1 Stace SP No.1 WEB 2:32-2155/D, 3-4-110/157, 4-6-462/76, 6-8-392/826, 8-91083/160, 9-11=-2143/10 Stace SP No.1 Stace SP No.2 Stace SP No.1	Plata Offacta (Y V)		4-3-4 6-8-12	6-8-12				
TCDL 10.0 Lumber DOL 1.15 BC 0.85 Veri(CT) -0.46 12.14 >566 240 Matrix-S Wind(LL) 0.01 11 na	LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in				
COP CHORD 2x8 SP No.1 TOP CHORD Structural wood sheathing directly applied or 2-4-4 oc purlins. SOT CHORD 2x10 SP No.1 BOT CHORD Rigid ceiling directly applied or 7-9-4 oc bracing. WEBS 2x6 SP No.1 BOT CHORD Rigid ceiling directly applied or 7-9-4 oc bracing. WEDGE exft: 2x4 SP No.2 SLIDER Right 2x6 SP No.1 2-9-15 REACTIONS. (size) 2=0-3-8, 11=Mechanical Max Horz Amax Grav Max Grav 2=1565(LC 21), 11=1518(LC 20) FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. COP CHORD 2:3=2-1565(JC 3:4=-1101/11/57, 4-6=-46/276, 6-8=-39/286, 8-9=-1089/160, 9-11=-2143/0 SOT CHORD 2:14=0/1105, 12-14=0/1105, 11-12=0/1105 VEBS 9:12=0/1213, 3-14=0/1228, 4-8=-1354/203 VOTES- Vimit ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0.11-14 to 3-4-15, Interior(1) 13-4-15 to 15-4-13, Interior(1) 15-4-13 to 21-10-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 10) Unbalanced root live loads have been considered for this design. 11-0-0 to 15-4-13, Interior(1) 15-4-13 to 21-10-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 10-15-4-13, Interior(1) 15-4-13 to 21-10-8 zone; C-C for members and forces & MWFRS for neatons shown;	TCDL 10.0 BCLL 0.0 *	Lumber DOL 1.15 Rep Stress Incr YES	BC 0.85 WB 0.32	Vert(CT) -0.46 Horz(CT) 0.01	12-14 11	>566 240 n/a n/a		
REACTIONS. (size) 2=0-3-8, 11=Mechanical Max Horz 2=300(LC 9) Max Grav 2=1565(LC 21), 11=1518(LC 20) FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. (OP CHORD 2-3=-2155/0, 3-4=-1101/157, 4-6=-46/276, 6-8=-39/286, 8-9=-1089/160, 9-11=-2143/0 30T CHORD 2-14=0/1105, 12-14=0/1105, 11-12=0/1105 WEBS 9-12=0/1213, 3-14=0/1228, 4-8=-1354/203 NOTES-) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-11-14 to 3-4-15, Interior(1) 3-4-15 to 11-0-0, Exterior(2) 11-0-0 to 15-4-13, Interior(1) 15-4-13 to 21-10-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DDL=1.60 plate grip DDL=1.60 3) This truss has been designed for a live load of 30.0psf on the bottom chord inal areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 5) Ceiling dead load (10.0 psf) on member(s). 3-4, 8-9, 4-8; Wall dead load (5.0psf) on member(s).9-12, 3-14 3) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 12-14 4) Refer to grider(s) for truss to truss connections.	BOT CHORD 2x10 SI WEBS 2x6 SP WEDGE Left: 2x4 SP No.2	P No.1 No.1		TOP CHORD				oc purlins.
 COP CHORD 2-3=-2155/0, 3-4=-1101/157, 4-6=-46/276, 6-8=-39/286, 8-9=-1089/160, 9-11=-2143/0 SOT CHORD 2-14=0/1105, 12-14=0/1105, 11-12=0/1105 9-12=0/1213, 3-14=0/1228, 4-8=-1354/203 NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-11-14 to 3-4-15, Interior(1) 3-4-15 to 11-0-0, Exterior(2) 11-0-0 to 15-4-13, Interior(1) 15-4-13 to 21-10-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a live load of 30.0psf on the bottom chord real moneconcurrent with any other live loads. b) * This truss has been designed for a live load of 30.0psf on the bottom chord real members. c) Ceiling dead load (10.0 psf) on member(s). 3-4, 8-9, 4-8; Wall dead load (5.0psf) on member(s).9-12, 3-14 b) Bottom chord live load of 30.0psf on the dottom chord dead load (10.0 psf) applied only to room. 12-14 c) Refer to girder(s) for truss to truss connections. 	REACTIONS. (size Max Ho	e) 2=0-3-8, 11=Mechanical orz 2=300(LC 9)	20)					
NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-11-14 to 3-4-15, Interior(1) 3-4-15 to 11-0-0, Exterior(2) 11-0-0 to 15-4-13, Interior(1) 15-4-13 to 21-10-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 5) Ceiling dead load (10.0 psf) on member(s). 3-4, 8-9, 4-8; Wall dead load (5.0psf) on member(s).9-12, 3-14 6) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 12-14 7) Refer to girder(s) for truss to truss connections.	TOP CHORD 2-3=-2 BOT CHORD 2-14=	2155/0, 3-4=-1101/157, 4-6=-46/ 0/1105, 12-14=0/1105, 11-12=0/	276, 6-8=-39/286, 8-9=-1089/160 1105	, 9-11=-2143/0				
	NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-10; V and C-C Exterior(2) - zone;C-C for membe 3) This truss has beer will fit between the bi 5) Ceiling dead load (10 6) Bottom chord live loa 7) Refer to girder(s) for 8) This truss is designe referenced standard	e loads have been considered for ult=130mph Vasd=103mph; TCE -0-11-14 to 3-4-15, Interior(1) 3-4 ers and forces & MWFRS for read designed for a 10.0 psf bottom cl n designed for a live load of 30.0 ottom chord and any other memt 0.0 psf) on member(s). 3-4, 8-9, - ad (40.0 psf) and additional botto truss to truss connections. d in accordance with the 2015 In ANSI/TPI 1.	this design. L=6.0psf; BCDL=6.0psf; h=15ft; (-15 to 11-0-0, Exterior(2) 11-0-0 titons shown; Lumber DOL=1.60 ford live load nonconcurrent with sof on the bottom chord in all area ers. I-8; Wall dead load (5.0psf) on m n chord dead load (10.0 psf) app	to 15-4-13, Interior(1) 15 plate grip DOL=1.60 any other live loads. as where a rectangle 3-6 nember(s).9-12, 3-14 lied only to room. 12-14	5-4-13 to 5	21-10-8	SEA 0363	EER HUIL

May 17,2022

Plate ()tteete (X Y)	12.60060.000117.60060.4.13118.0.8.80.1.141110.0.1.1700.2.01	
	[2:Edge,0-0-0], [7:Edge,0-4-13], [8:0-8-8,0-1-14], [10:0-1-12,0-2-0]	

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2015/TPI2014	CSI. TC 0.36 BC 0.68 WB 0.22 Matrix-S	DEFL. ir Vert(LL) -0.09 Vert(CT) -0.20 Horz(CT) 0.22 Wind(LL) 0.11	5-14 >894 24 12 n/a n/	0 MT20 0 /a	GRIP 244/190 DFT = 20%			
LUMBER-			BRACING-						
	SP No.1		TOP CHORD	TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins,					
	SP No.1			except end verticals.					
	SP No.2 *Except*		BOT CHORD	• • •	applied or 10-0-0 oc bracing.	Except:			
10-	12: 2x6 SP No.1			6-0-0 oc bracing: 9-13					
SLIDER Lef	2x8 SP No.1 4-5-13			8-11-0 oc bracing: 8-					
			WEBS	S 1 Row at midpt 4-15					
			JOINTS	1 Brace at Jt(s): 14					
Ma	size) 2=0-3-8, 13=0-3-8, 12=Mechanical x Horz 2=302(LC 9) x Uplift 2=-93(LC 13), 12=-144(LC 13)								

Max Grav 2=663(LC 20), 13=1034(LC 19), 12=234(LC 20)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

- TOP CHORD 2-4=-678/235, 4-5=-741/76, 5-7=-282/38, 7-8=-332/64, 8-9=-541/273, 9-10=-182/251
- BOT CHORD 2-16=-113/444, 15-16=-113/444, 14-15=-112/598, 8-14=-172/377, 9-13=-970/31
- WEBS 4-15=-671/177, 4-14=-112/547

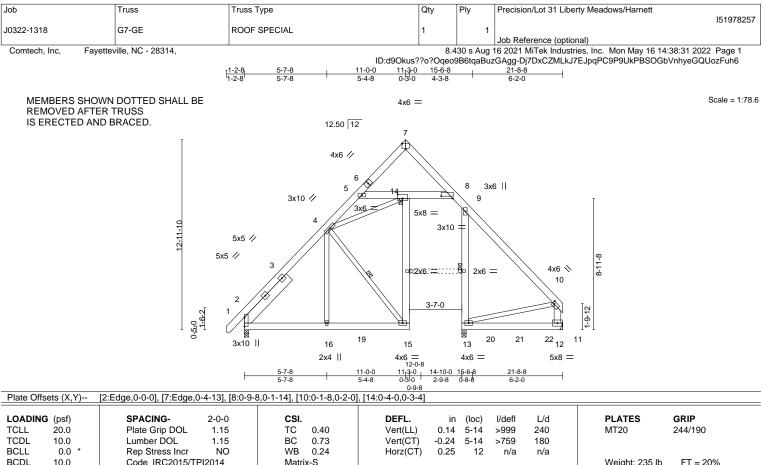
NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-1-1 to 3-3-11, Interior(1) 3-3-11 to 11-0-0, Exterior(2) 11-0-0 to 15-4-13, Interior(1) 15-4-13 to 21-4-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.


5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2 except (jt=lb) 12=144.

7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

ENGINEERING BY EREPACED A MITEK Affiliate 818 Soundside Road Edenton, NC 27932

BCDL I	1.0	Code IRC2015/1F12014	Maurix-S			Weight. 235 lb FT = 20%
LUMBER-				BRACING-		
TOP CHORD	2x6 SF	' No.1		TOP CHORD	Structural wood sheathing dir	rectly applied or 6-0-0 oc purlins,
BOT CHORD	2x6 SF	' No.1			except end verticals.	
WEBS	2x4 SF	No.2 *Except*		BOT CHORD	Rigid ceiling directly applied	or 10-0-0 oc bracing. Except:
	10-12:	2x6 SP No.1			6-0-0 oc bracing: 9-13	U .
SLIDER	Left 2x	8 SP No.1 4-4-13			8-3-0 oc bracing: 8-14	
				WEBS	1 Row at midpt 4	-15
				JOINTS	1 Brace at Jt(s): 14	
REACTIONS	(size	e) 2=0-3-8, 13=0-3-8, 12=Mechanical				

REACTIONS.	(Size)	2=0-3-8, 13=0-3-8, 12=Mechanical
	Max Horz	2=374(LC 24)
	Max Uplift	2=-209(LC 9), 13=-168(LC 8), 12=-311(LC 9)
	Max Grav	2=669(LC 34), 13=1350(LC 33), 12=659(LC 20)

- FORCES. (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown.
- TOP CHORD
 2-4=-718/290, 4-5=-768/163, 5-7=-285/51, 7-8=-346/114, 8-9=-455/262, 9-10=-163/309, 10-12=-174/305

 BOT CHORD
 2-16=-177/474, 15-16=-177/474, 14-15=-191/635, 8-14=-172/515, 9-13=-1002/166, 12-13=-121/347
- WEBS 10-13=-343/102, 4-15=-717/279, 4-14=-172/598

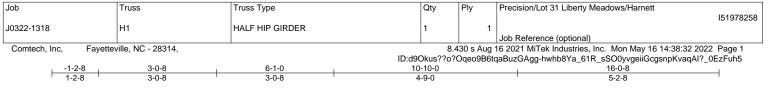
NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=209, 13=168, 12=311.
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 312 lb down and 38 lb up at 16-8-0, and 289 lb down and 34 lb up at 18-8-0, and 248 lb down and 67 lb up at 20-8-0 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

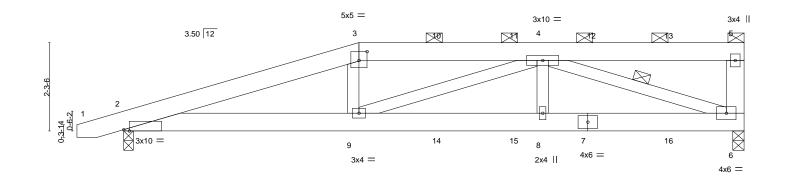
LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Juntinued on page 2



Job	Truss	Truss Type	Qty	Ply	Precision/Lot 31 Liberty Meadows/Harnett			
10322-1318	G7-GE	ROOF SPECIAL	1	1	1519	78257		
					Job Reference (optional)			
Comtech, Inc, Fayetteville, NC - 28314, 8.430 s Aug 16 2021 MiTek Industries, Inc. Mon May 16 14:38:31 2022 Page 2								
		ID:d9Okus??o?Oqeo9B6tqaBuzGAgg-Dj7DxCZMLkJ7EJpqPC9P9UkPBSOGbVnhyeGQUozFuh6						


LOAD CASE(S) Standard

Uniform Loads (plf) Vert: 1-7=-60, 7-10=-60, 2-15=-20, 8-14=-20, 11-13=-20 Concentrated Loads (lb) Vert: 20=-283(B) 21=-289(B) 22=-248(B)

Scale = 1:29.8

<u>3-0-8</u> 3-0-8	6-1-0	<u> </u>)		
[2:0-1-12,Edge], [3:0-2-8,0-2	2-12]	 -			
Plate Grip DOL Lumber DOL Rep Stress Incr	1.15 TC 1.15 BC NO WB	0.39 Horz(CŤ)	in (loc) l/defl 0.11 8-9 >999 0.16 8-9 >999 0.04 6 n/a	240 MT2 240 n/a	ATES GRIP 20 244/190 ight: 100 lb FT = 20%
No.1 No.2 *Except*			except end ver Rigid ceiling di	rticals, and 2-0-0 oc purlin rectly applied or 7-2-4 oc	is (4-5-0 max.): 3-5.
orz 2=71(LC 19)	,				
	3-0-8 [2:0-1-12,Edge], [3:0-2-8,0- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TPI2 No.1 No.2 *Except* 6 SP No.1 9) 6=0-3-8, 2=0-3-0 orz 2=71(LC 19) plift 6=-512(LC 4), 2=-490(L	3-0-8 3-0-8 [2:0-1-12,Edge], [3:0-2-8,0-2-12] [3:0-2-8,0-2-12] SPACING- 2-0-0 CSI. Plate Grip DOL 1.15 TC Lumber DOL 1.15 BC Code IRC2015/TPI2014 WB No.1 No.1 No.2 *Except* 6 SP No.1 e) 6=0-3-8, 2=0-3-0 orz 2=71(LC 19) plift 6=-512(LC 4), 2=-490(LC 4) [2:0-1]	3-0-8 3-0-8 4-9-0 [2:0-1-12,Edge], [3:0-2-8,0-2-12] CSI. DEFL. Plate Grip DOL 1.15 TC 0.29 Lumber DOL 1.15 BC 0.45 Lumber DOL 1.15 BC 0.45 Code IRC2015/TPI2014 WB 0.39 No.1 No.1 TOP CHORE No.1 BOT CHORE WEBS *) 6=0-3-8, 2=0-3-0 WEBS orz 2=71(LC 19) plift 6=-512(LC 4), 2=-490(LC 4)	3-0-8 3-0-8 4-9-0 [2:0-1-12,Edge], [3:0-2-8,0-2-12] [3:0-2-8,0-2-12] Image: Constant of the second	3-0-8 3-0-8 4-9-0 5-2- [2:0-1-12,Edge], [3:0-2-8,0-2-12] SPACING- 2-0-0 CSI. DEFL. in (loc) I/defi L/d PLA Plate Grip DOL 1.15 TC 0.29 Vert(LL) 0.11 8-9 >999 240 MT2 Lumber DOL 1.15 BC 0.45 Vert(CT) -0.16 8-9 >999 240 MT2 Code IRC2015/TPI2014 WB 0.39 Matrix-S Vert(CT) -0.16 8-9 >999 240 Wei No.1 No.1 No.1 No.2 *Except* Structural wood sheathing directly applied except end verticals, and 2-0-0 oc purlin BOT CHORD Rigid ceiling directly applied or 7-2-4 oc 8) 6=0-3-8, 2=0-3-0 0 VEBS 1 Row at midpt 4-6 9) 6=0-512(LC 4), 2=-490(LC 4) 1 0 4-6 0

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when show

TOP CHORD 2-3=-3039/1239. 3-4=-2825/1190. 5-6=-258/100

BOT CHORD 2-9=-1204/2856, 8-9=-1042/2473, 6-8=-1042/2473

WEBS 3-9=-185/484, 4-6=-2449/1032, 4-8=-86/382, 4-9=-158/375

NOTES-

1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope);

porch left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

2) Provide adequate drainage to prevent water ponding.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 6=512, 2=490.

- 6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

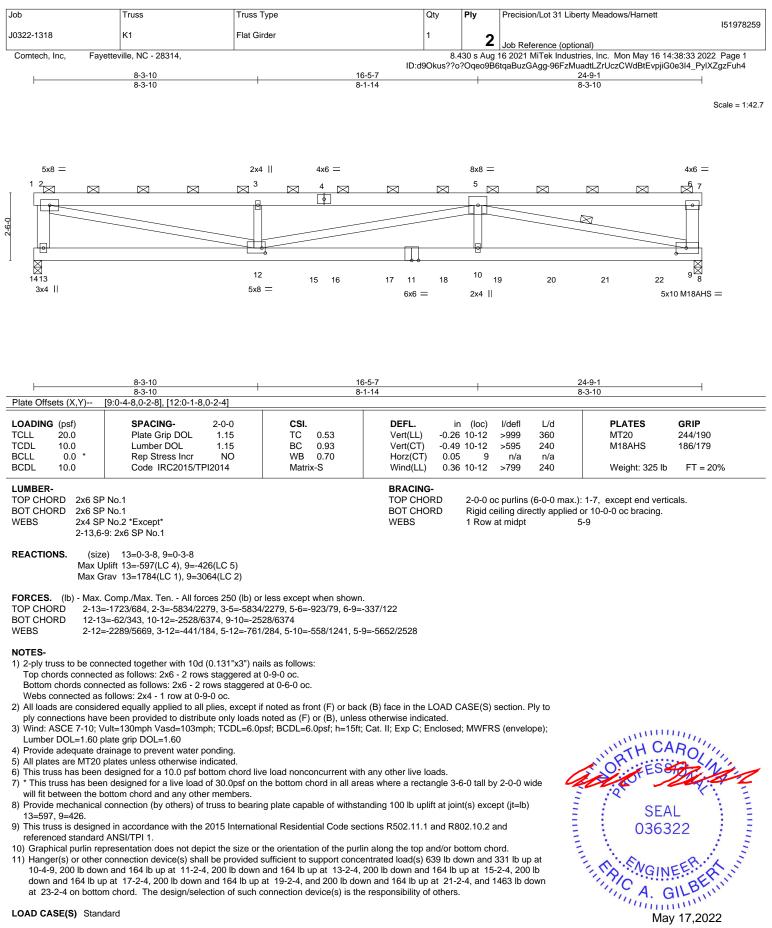
8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 108 lb down and 81 lb up at 6-1-0, 108 lb down and 81 lb up at 8-1-12, 108 lb down and 81 lb up at 10-1-12, and 108 lb down and 81 lb up at 12-1-12, and 108 lb down and 81 lb up at 14-1-12 on top chord, and 380 lb down and 234 lb up at 6-1-0, 78 lb down and 50 lb up at 8-1-12, 78 lb down and 50 lb up at 10-1-12, and 78 lb down and 50 lb up at 12-1-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-3=-60, 3-5=-60, 2-6=-20


Job		Truss	Truss Type	Qty	Ply	Precision/Lot 31 Liberty Meadows/Harnett
						151978258
J0322-1318		H1	HALF HIP GIRDER	1	1	
						Job Reference (optional)
Comtech, Inc,	Fayettev	ille, NC - 28314,		8.4	30 s Aug	16 2021 MiTek Industries, Inc. Mon May 16 14:38:32 2022 Page 2
	-		15 10	<u>.</u>	a a a a a	

ID:d9Okus??o?Oqeo9B6tqaBuzGAgg-hwhb8Ya_61R_sSO0yvgeiiGcgsnpKvaqAI?_0EzFuh5

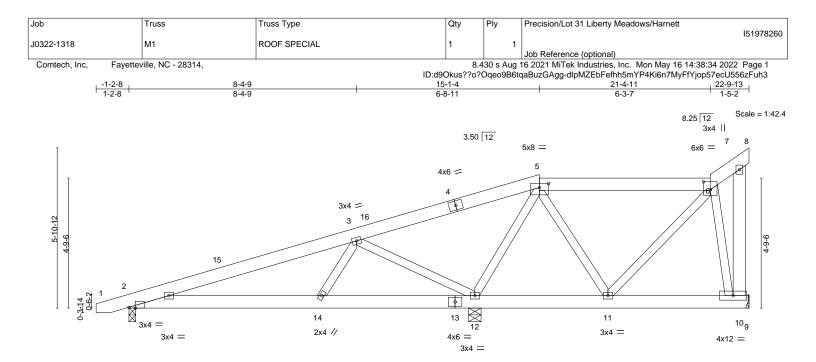
LOAD CASE(S) Standard Concentrated Loads (lb)

Vert: 3=-108(B) 7=-39(B) 9=-380(B) 10=-108(B) 11=-108(B) 12=-108(B) 13=-108(B) 14=-39(B) 15=-39(B) 16=-39(B)

Job	Truss	Truss Type	Qty	Ply	Precision/Lot 31 Liberty Meadows/Harnett
				-	151978259
J0322-1318	K1	Flat Girder	1	ົ	
				_	Job Reference (optional)
Comtech, Inc, Fa	/etteville, NC - 28314,		8.4	30 s Aug	16 2021 MiTek Industries, Inc. Mon May 16 14:38:33 2022 Page 2

8.430 s Aug 16 2021 Mi Lek Industries, Inc. Mon May 16 14:38:33 2022 Page 2 ID:d9Okus??o?Oqeo9B6tqaBuzGAgg-96FzMuadtLZrUczCWdBtEvpjiG0e3I4_PyIXZgzFuh4

LOAD CASE(S) Standard


1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-2=-60, 2-6=-60, 6-7=-60, 8-14=-20

Concentrated Loads (lb)

Vert: 15=-639(F) 16=-177(F) 17=-177(F) 18=-177(F) 19=-177(F) 20=-177(F) 21=-177(F) 22=-1168(F)

	7-1-3		<u>12-8-12</u> 5-7-9	17-7-8 4-10-12	<u>22-9-13</u> 5-2-5
Plate Offsets (X,Y)	[2:0-2-13,Edge], [5:0-4-0,0-1-12], [6:0-3	-0,0-3-8]			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.28 BC 0.17 WB 0.39 Matrix-S	DEFL.inVert(LL)0.04Vert(CT)-0.04Horz(CT)0.00		PLATES GRIP MT20 244/190 Weight: 163 lb FT = 20%
			BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dire except end verticals, and 2-0- Rigid ceiling directly applied o 6-0-0 oc bracing: 11-12.	· · · · · · · · · · · · · · · · · · ·
Max U	e) 10=Mechanical, 2=0-3-0, 12=0-5-8 orz 2=180(LC 12) plift 10=-47(LC 12), 2=-172(LC 8), 12=- rav 10=268(LC 1), 2=455(LC 1), 12=11				

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-511/339, 3-5=-425/463

BOT CHORD 2-14=-502/429, 12-14=-328/340

WEBS 3-14=-357/324, 3-12=-856/738, 5-12=-705/403, 6-10=-255/81

NOTES-

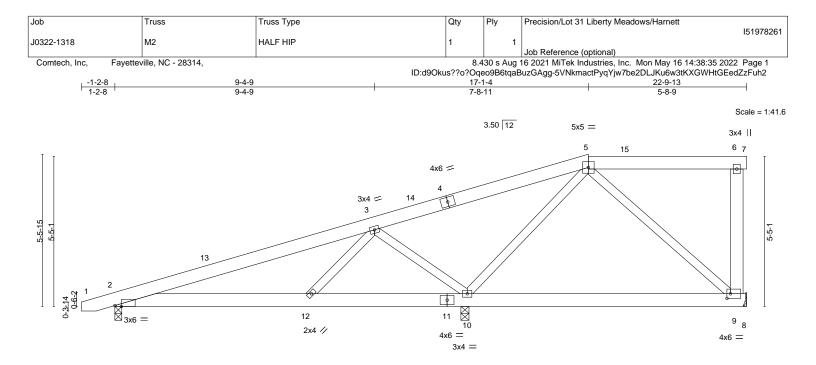
 Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-11-5 to 3-5-8, Interior(1) 3-5-8 to 15-1-4, Exterior(2) 15-1-4 to 21-4-11, Interior(1) 21-4-11 to 22-9-13 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Provide adequate drainage to prevent water ponding.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Refer to girder(s) for truss to truss connections.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 10 except (jt=lb) 2=172, 12=347.

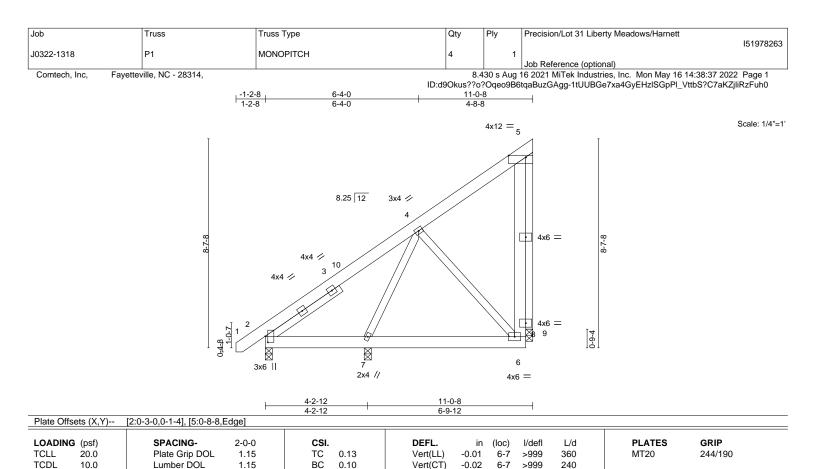
7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.


F	<u>7-1-3</u> 7-1-3		12-6-0 5-4-13		12 2-12				9-13 -1-1	
Plate Offsets (X,Y)	[2:0-2-13,Edge], [9:0-1-8,0-2-0]									
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.35 BC 0.21 WB 0.44 Matrix-S		DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	-0.05 -0.10 0.00	(loc) 9-10 9-10 9 2-12	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 153 lb	GRIP 244/190 FT = 20%
BOT CHORD 2x6 S WEBS 2x4 S	P No.1 P No.1 P No.2 *Except* x6 SP No.1			BRACING- TOP CHORI BOT CHORI		except Rigid c	end vertic	als, and 2-0- ctly applied o	rectly applied or 6-0-0 (-0 oc purlins (6-0-0 ma or 10-0-0 oc bracing,	x.): 5-7.
Max I Max (Max (FORCES. (lb) - Max TOP CHORD 2-3= BOT CHORD 2-12	 2e) 9=Mechanical, 2=0-3-0, 10=0-3-8 Horz 2=173(LC 8) Uplift 9=-14(LC 9), 2=-174(LC 8), 10=-33 Grav 9=309(LC 24), 2=471(LC 23), 10=1 Comp./Max. Ten All forces 250 (lb) or a-510/370, 3-5=-378/395 2=-503/421, 10-12=-206/290 2=-453/319, 3-10=-805/661, 5-10=-576/44 	120(LC 23) less except when sh	own.							
 2) Wind: ASCE 7-10; and C-C Exterior(2) members and force 3) Provide adequate of 4) This truss has beer 5) * This truss has beer will fit between the 6) Refer to girder(s) for 	ve loads have been considered for this de Vult=130mph Vasd=103mph; TCDL=6.0p) -0-11-5 to 3-5-8, Interior(1) 3-5-8 to 17- es & MWFRS for reactions shown; Lumbe drainage to prevent water ponding. In designed for a 10.0 psf bottom chord live en designed for a live load of 30.0psf on the bottom chord and any other members. For truss to truss connections. I connection (by others) of truss to bearing	bsř, BCDL=6.0psf; h= I-4, Exterior(2) 17-1-4 r DOL=1.60 plate gri e load nonconcurrent he bottom chord in al	4 to 22-9- p DOL=1 t with any Il areas v	13 zone; porcl .60 / other live load where a rectang	h left e ds. gle 3-6	exposed	;C-C for y 2-0-0 wi	de	TH CA	RO

8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.



- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-11-5 to 3-5-8, Interior(1) 3-5-8 to 19-1-4, Exterior(2) 19-1-4 to 22-9-13 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 9 except (jt=lb) 2=175, 10=321.
- 8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 10) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

ORTH CHARLEN CONTRACT 11111111111 SEAL 036322 G mmm May 17,2022

Horz(CT)

-0.00

9

n/a

n/a

BCDL 10.0		Code IRC2015/TP	12014 Mat	rix-S	Wind(LL)	0.00	9 2-7	>999	240	Weight: 110 lb	FT = 20
LUMBER-				·	BRACING-						
TOP CHORD	2x6 SP	No.1			TOP CHOP	RD	Structu	ural wood	l sheathing di	rectly applied or 6-0-0 o	c purlins,
BOT CHORD	2x6 SP	No.1					except	end vert	icals.		
WEBS	2x4 SP	No.2 *Except*			BOT CHOF	RD	Rigid c	eiling dir	ectly applied	or 10-0-0 oc bracing.	
	5-6: 2x6	SP No.1									
OTHERS	2x4 SP	No.2									
SLIDER	Left 2x4	SP No.2 3-8-8									
REACTIONS.	(size)) 2=0-3-8, 7=0-3-8, 9=0)-3-8								
	Max Ho	rz 7=258(LC 12)									
	Max Up	lift 2=-42(LC 9), 9=-167(L	LC 12)								
	Max Gr	av 2=327(LC 1), 7=335(L	_C 3), 9=337(LC 19)								

0.24

WB

TOP CHORD 6-8=-178/332, 5-8=-178/332

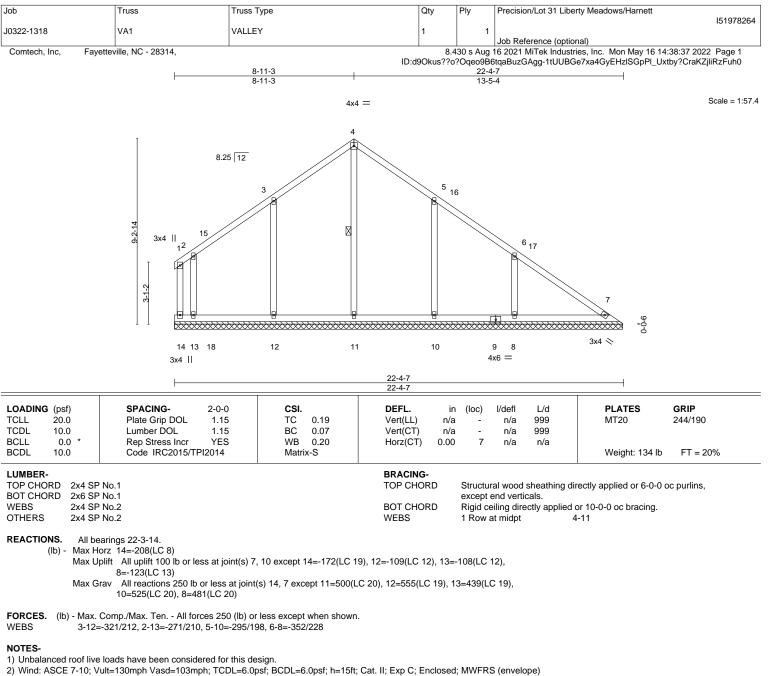
0.0

Rep Stress Incr

YES

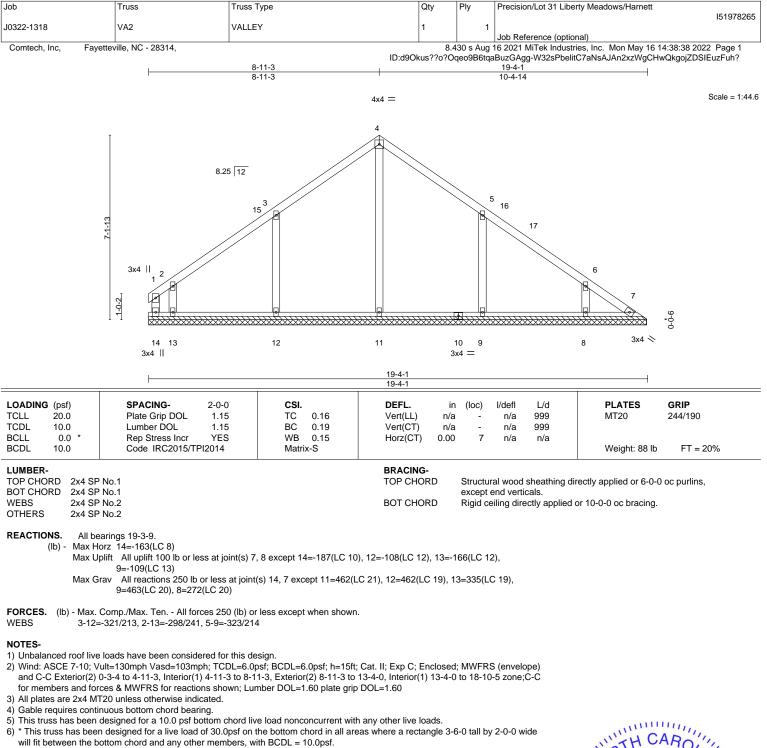
BCLL

- BOT CHORD 6-7=-200/265
- WEBS 4-6=-367/294, 5-9=-421/229


NOTES-

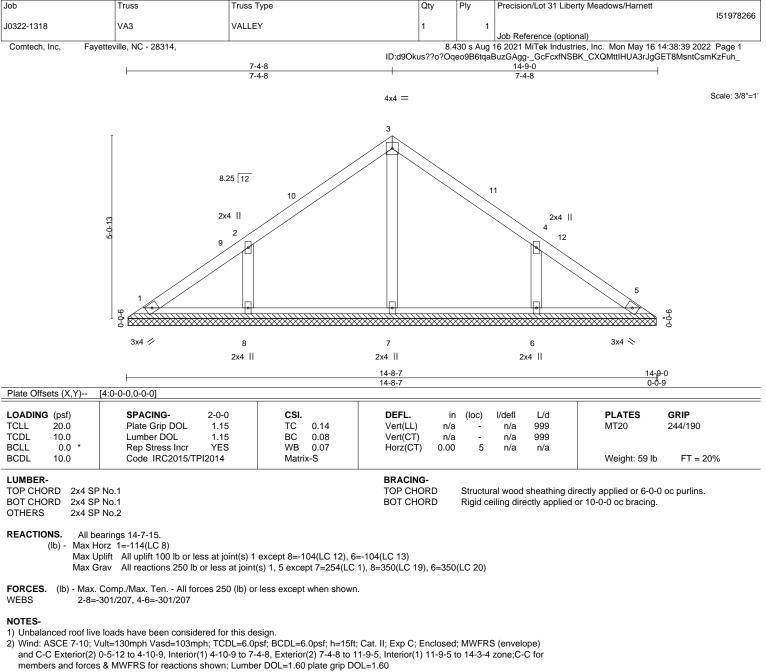
- 1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-0-15 to 3-3-14, Interior(1) 3-3-14 to 10-6-4 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Bearing at joint(s) 9 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2 except (jt=lb) 9=167.
- 6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

FT = 20%


818 Soundside Road Edenton, NC 27932

- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-3-4 to 4-11-3, Interior(1) 4-11-3 to 8-11-3, Exterior(2) 8-11-3 to 13-4-0, Interior(1) 13-4-0 to 21-7-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) All plates are 2x4 MT20 unless otherwise indicated.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 10 except (jt=lb) 14=172, 12=109, 13=108, 8=123.
- 8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

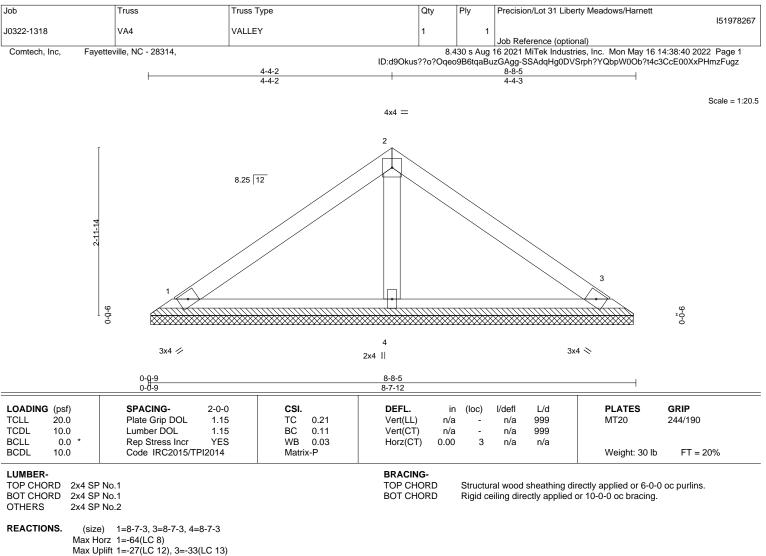
818 Soundside Road Edenton, NC 27932



7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 8 except (jt=lb) 14=187, 12=108, 13=166, 9=109.

8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

3) Gable requires continuous bottom chord bearing.


4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 8=104, 6=104.

7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Max Grav 1=169(LC 1), 3=170(LC 1), 4=280(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

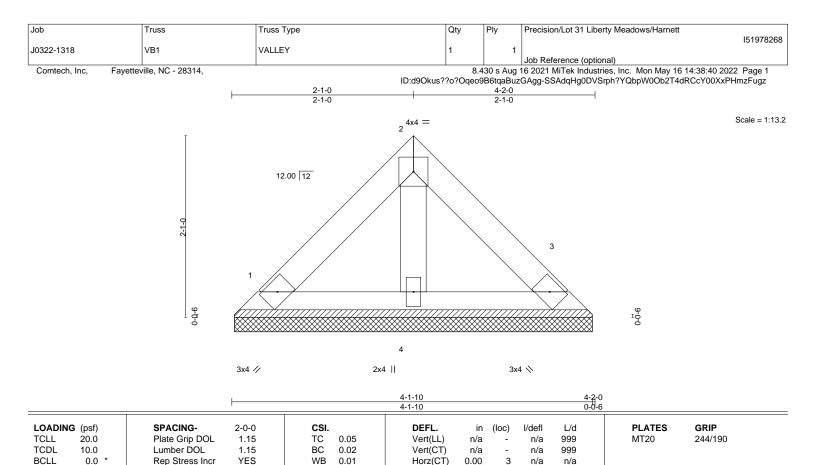
NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

6) Non Standard bearing condition. Review required.

7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

BRACING-

TOP CHORD

BOT CHORD

NOTES-

BCDL

LUMBER-

OTHERS REACTIONS.

TOP CHORD

BOT CHORD

10.0

2x4 SP No.1

2x4 SP No.1

2x4 SP No.2

Max Horz 1=-42(LC 8)

1) Unbalanced roof live loads have been considered for this design.

(size) 1=4-1-4, 3=4-1-4, 4=4-1-4

Max Uplift 1=-15(LC 13), 3=-15(LC 13) Max Grav 1=84(LC 1), 3=84(LC 1), 4=108(LC 1) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

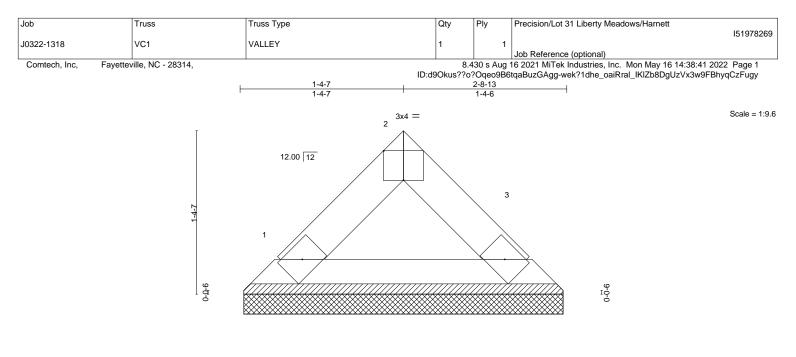
Code IRC2015/TPI2014

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

Matrix-P

- and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Weight: 16 lb


Structural wood sheathing directly applied or 4-2-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

FT = 20%

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek Affilia 818 Soundside Road Edenton, NC 27932

3x4 🕢

3x4 📏

Rigid ceiling directly applied or 10-0-0 oc bracing.

Plate Offsets (X,Y) [2:0-2-0,Edge]	1	1		
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/def	I L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.02	Vert(LL) n/a - n/a	a 999	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.03	Vert(CT) n/a - n/a	a 999	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) 0.00 3 n/a	a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P			Weight: 8 lb FT = 20%

BOT CHORD

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1

REACTIONS. (size) 1=2-8-1, 3=2-8-1

Max Horz 1=24(LC 9) Max Uplift 1=-3(LC 12), 3=-3(LC 12)

Max Grav 1=81(LC 1), 3=81(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

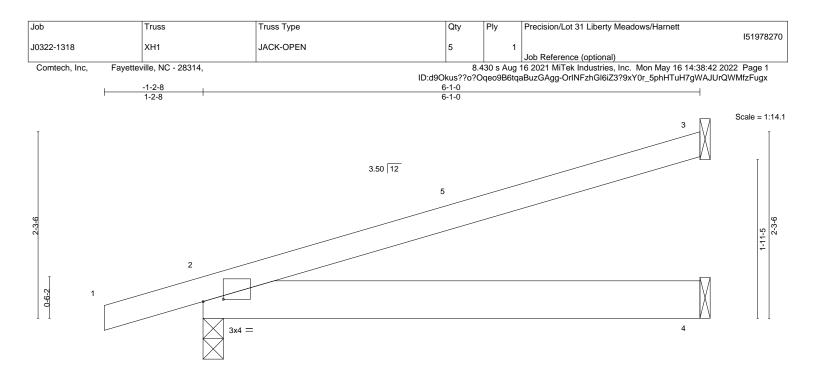
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

						<u> </u>	-					
Plate Offse	ets (X,Y)	[2:0-2-15,0-0-5]				-	-				T	
LOADING TCLL	(psf) 20.0		-0-0 1.15	CSI. TC	0.46	DEFL. Vert(LL)	in -0.02	(loc) 2-4	l/defl >999	L/d 360	PLATES MT20	GRIP 244/190
TCDL	10.0 0.0 *	Lumber DOL 1	1.15 YES	BC	0.14	Vert(CT) Horz(CT)	-0.02 -0.03 -0.00	2-4 2-4 3	>999 >999 n/a	240 n/a	101120	244/130
BCDL	10.0	Code IRC2015/TPI20)14	Matrix		Wind(LL)	0.04	2-4	>999	240	Weight: 26 lb	FT = 20%

LUMBER-

TOP CHORD2x4 SP No.1BOT CHORD2x6 SP No.1

BRACING-TOP CHORD

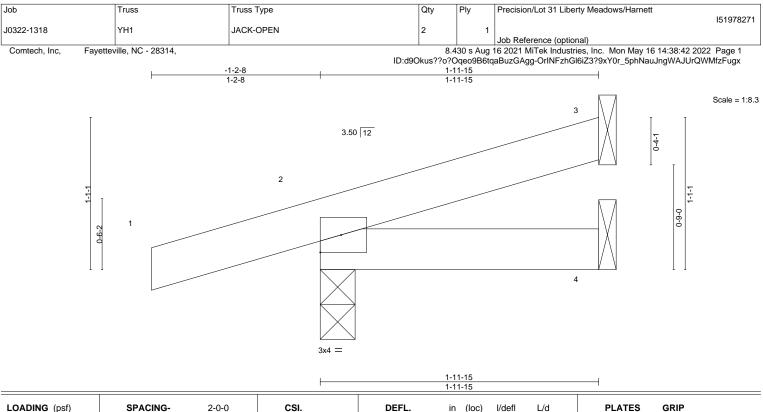
TOP CHORDStructural wood sheathing directly applied or 6-0-0 oc purlins.BOT CHORDRigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 3=Mechanical, 2=0-3-0, 4=Mechanical Max Horz 2=72(LC 8)

Max Horz 2=72(LC 8)Max Uplift 3=-68(LC 12), 2=-135(LC 8), 4=-30(LC 8) Max Grav 3=168(LC 1), 2=325(LC 1), 4=118(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-


- Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-2-8 to 3-2-5, Interior(1) 3-2-5 to 6-0-4 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4 except (jt=lb) 2=135.
- 6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOADING	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.07	Vert(LL)	-0.00	2	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.03	Vert(CT)	-0.00	2-4	>999	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.00	3	n/a	n/a		
BCDL	10.0	Code IRC2015/TP	12014	Matri	x-P	Wind(LL)	0.00	2-4	>999	240	Weight: 8 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1

REACTIONS. (size) 3=Mechanical, 2=0-3-0, 4=Mechanical

Max Horz 2=33(LC 8)

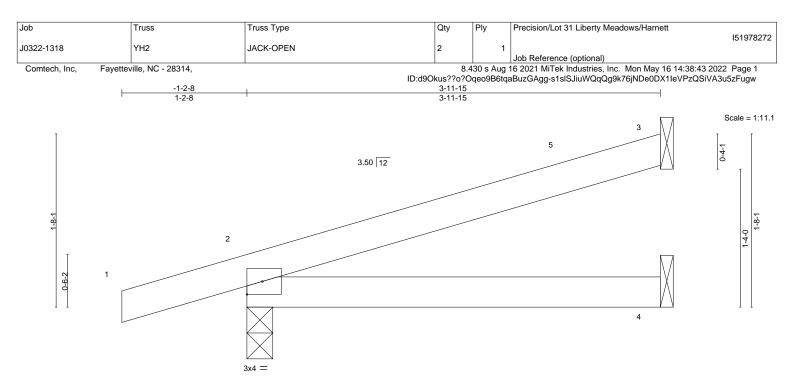
Max Uplift 3=-20(LC 12), 2=-84(LC 8), 4=-10(LC 8)

Max Grav 3=35(LC 1), 2=176(LC 1), 4=39(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


4) Refer to girder(s) for truss to truss connections.

- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2, 4.
- 6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- SEAL 036322 May 17,2022

Structural wood sheathing directly applied or 1-11-15 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

			3-11- 3-11-			
LOADING (psf) TCLL 20.0	SPACING- 2-0-0 Plate Grip DOL 1.15	CSI. TC 0.15	DEFL. Vert(LL) -0	in (loc)).01 2-4	l/defl L/d >999 360	PLATES GRIP MT20 244/190
TCDL 10.0 BCLL 0.0 *	Lumber DOL 1.15 Rep Stress Incr YES	BC 0.13 WB 0.00	Vert(CT) -0).02 2-4).00 3	>999 240 n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P	- (-) -	0.02 2-4	>999 240	Weight: 14 lb FT = 20%

BRACING-TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1

REACTIONS. (size) 3=Mechanical, 2=0-3-0, 4=Mechanical

Max Horz 2=51(LC 8)

Max Uplift 3=-44(LC 12), 2=-108(LC 8), 4=-20(LC 8)

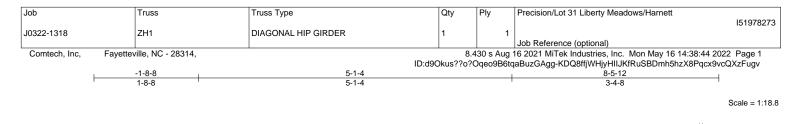
Max Grav 3=100(LC 1), 2=246(LC 1), 4=76(LC 3)

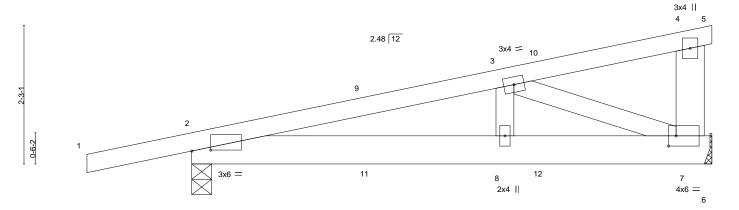
FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-2-8 to 3-2-5, Interior(1) 3-2-5 to 3-11-3 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.


- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4 except (jt=lb) 2=108.
- 6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



Structural wood sheathing directly applied or 3-11-15 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

	 	<u>5-1-4</u> 5-1-4				<u>8-5-12</u> 3-4-8	
Plate Offsets (X,Y)	[2:0-3-11,0-0-3], [7:0-1-8,0-2-0]	J-1- 1				340	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2015/TPI2014	CSI. TC 0.20 BC 0.14 WB 0.12 Matrix-P	DEFL. in Vert(LL) 0.02 Vert(CT) -0.02 Horz(CT) 0.00	2-8 >999	L/d 240 240 n/a	PLATES MT20 Weight: 44 lb	GRIP 244/190 FT = 20%
			BRACING- TOP CHORD BOT CHORD	except end vert	icals.	ectly applied or 6-0-0 10-0-0 oc bracing.	oc purlins,
Max H Max U	e) 7=Mechanical, 2=0-3-14 lorz 2=71(LC 19) Jplift 7=-150(LC 4), 2=-203(LC 4) Grav 7=370(LC 1), 2=458(LC 1)						
FOP CHORD 2-3=- BOT CHORD 2-8=-	Comp./Max. Ten All forces 250 (lb) -639/228 -255/587, 7-8=-255/587 -631/274	or less except when shown.					
 porch left and right e 2) This truss has been 3) * This truss has beee will fit between the b 4) Refer to girder(s) foi 5) Provide mechanical 7=150, 2=203. 6) This truss is designer referenced standard 7) Hanger(s) or other c 2-10-15, 17 lb down chord, and 3 lb dow down and 42 lb up a 	/ult=130mph Vasd=103mph; TCDL=6. exposed; Lumber DOL=1.60 plate grip designed for a 10.0 psf bottom chord i on designed for a live load of 30.0psf or oottom chord and any other members. r truss to truss connections. connection (by others) of truss to bear ed in accordance with the 2015 Interna d ANSI/TPI 1. connection device(s) shall be provided and 17 lb up at 2-10-15, and 40 lb do n and 22 lb up at 2-10-15, 3 lb down a at 5-8-14 on bottom chord. The design S) section, loads applied to the face of	DOL=1.60 ive load nonconcurrent with any in the bottom chord in all areas w ing plate capable of withstandin tional Residential Code sections sufficient to support concentrate wn and 54 lb up at 5-8-14, and ind 22 lb up at 2-10-15, and 21 h/selection of such connection di	other live loads. here a rectangle 3-6 g 100 lb uplift at join R502.11.1 and R80 d load(s) 17 lb dowr 40 lb down and 54 l b down and 42 lb u evice(s) is the respo	5-0 tall by 2-0-0 v t(s) except (jt=lb) 02.10.2 and n and 17 lb up at b up at 5-8-14 o p at 5-8-14, and	<i>i</i> ide	SE/ 0363	
Uniform Loads (plf) Vert: 1-4=-6 Concentrated Loads	palanced): Lumber Increase=1.15, Plat 60, 4-5=-60, 2-6=-20				100 M	SE/ 0363	IEER.

May 17,2022

