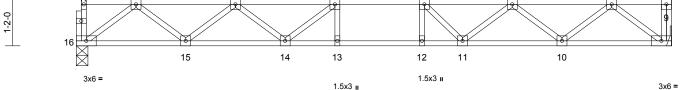

			APPROVAL	THIS LAYOUT IS THE SOLE SOURCE FOR FABRICATION OF TRUSSES AND VOIDS ALL PREVIOUS ARCHITECTURAL OR OTHER TRUSS LAYOUTS. REVIEW AND APPROVAL OF THIS LAYOUT MUST BE RECEIVED BEFORE ANY TRUSSES WILL BE BUILT. VERIFY ALL CONDITIONS TO INSURE AGAINST CHANGES THAT WILL RESULT IN EXTRA CHARGES TO YOU. DEVIEWED RY. DATE: DATE:		Carolina Structural Systems	Roof Trusses • Floor Trusses • EWP Carolina Structural Systems	P.O. Box 157, Ether, NC 27247 225 Frame Shop Rd., Star, NC 27356 910-491-9004
			SHOP DRAWING	JRCE FOR FABRICATION OF TRUSSES AND ' OVAL OF THIS LAYOUT MUST BE RECEIVED 5 THAT WILL RESULT IN EXTRA CHARGES T ADDROVED RV.		4 8	<u> DOF DATA</u>	Roof Area: 1969.3 SF
Truss Connector Total ListConnector SummarManufProductQtyQtyManufProductSimpsonLUS410352SimpsonHGL	-			THIS LAYOUT IS THE SOLE SOL LAYOUTS. REVIEW AND APPR TO INSURE AGAINST CHANGE BEVIEMEN BY-			<u>Я</u>	Roof
PlotID Length Product BM5 5' 0" 1-3/4X9-1/4 LP-LVL 2900Fb-2.0E BM34 34' 0" 1-3/4X14 LP-LVL 2900Fb-2.0E BM17 17' 0" 1-3/4X14 LP-LVL 2900Fb-2.0E BM15 15' 0" 1-3/4X14 LP-LVL 2900Fb-2.0E	Plies 2 2 2 3	Net Qty 2 2 2 3		cification of the ng designer is ign of the truss support tance regarding 53179.	Plan: AZALEA-A	Date: 11/1/2022	Sales Rep: RW	Designer: JSP
BMT3 13 0 1-3/4X14 LP-LVL 2900Fb-2.0E BM14 14' 0" 1-3/4X14 LP-LVL 2900Fb-2.0E EXTERIOR DIMENSIONS ARE TO FACE OF SHEATHING. SHEATHING IS FLUSH WITH FOUNDATION.	2	2	THIS IS A TRUSS PLACEMENT DIAGRAM	These trusses are designed as individual building components to be incorporated into the building design at the specification of the building designer. See individual design sheets for each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor system and for the overall structure. The design of the truss structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding bracing, consult "Bracing of Wood Trusses" available from the Truss Plate Institute, S83 D'Onifrio Drive; Madison, WI 53179.	Job #: GHAZAA FLOOR LAYOUT RIGHT	Customer: GARMAN HOMES	Site Address: TBD	City, ST, ZIP:


								APROVAL	THIS LAYOUT IS THE SOLE SOURCE FOR FABRICATION OF TRUSSES AND VOIDS ALL PREVIOUS ARCHITECTURAL OR OTHER TRUSS LAYOUTS. REVIEW AND APPROVAL OF THIS LAYOUT MUST BE RECEIVED BEFORE ANY TRUSSES WILL BE BUILT. VERIFY ALL CONDITIONS TO INSURE AGAINST CHANGES THAT WILL RESULT IN EXTRA CHARGES TO YOU.	DATE:		Carolina Structural Systems	Roof Trusses • Floor Trusses • EWP Carolina Structural Systems	P.O. Box 157, Ether, NC 27247 225 Frame Shop Rd. Star, NC 27356 910-491-9004
								SHOP DRAWING	URCE FOR FABRICATION OF TRUSSES AND KOVAL OF THIS LAYOUT MUST BE RECEIVED S THAT WILL RESULT IN EXTRA CHARGES T	APPROVED BY:	QUALITY AUDITED by: IBC 1704.2 ANGITET AUGUREN 4:2002 IBC 2303.4 ANGITET 4:2002 ANGITET 4:2004	CAROLINA STRUCTURAL SYSTEMS, LLC Star, NC - Plant E9-0-37 910-491-8004	<u>OOF DATA</u>	Roof Area: 1969.3 SF
Truss Cor Manuf Simpson	nnector To Product LUS410	t Qty	Qty 2	Connector Su Manuf Simpson	Prod	-			'HIS LAYOUT IS THE SOLE SO AYOUTS. REVIEW AND APPF O INSURE AGAINST CHANGE	REVIEWED BY:			<u>R(</u>	Roof
BM5 5 BM34 3 BM17 1	5' 0" 34' 0" 17' 0"	1-3/4X14 1-3/4X14	I/4 LP- LP-LV LP-LV	ducts LVL 2900Fb- L 2900Fb-2. L 2900Fb-2.	0E 0E	Plies 2 2 2 2	Net Qty 2 2 2 2	ONLY	support		Plan: AZALEA-A	Date: 11/1/2022	Sales Rep: RW	Designer: JSP
BM14	14' 0" DIMENSIOI	1-3/4X14 NS ARE T	LP-LV O FACE	L 2900Fb-2. L 2900Fb-2. E OF SHEATH ION.	0E	3 2	3 2	THIS IS A TRUSS PLACEMENT DIAGRAM	These trusses are designed as individual building components to be incorporated into the building design at the specification of the building designer. See individual design sheets for each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor system and for the overall structure. The design of the truss structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding bracing, consult "Bracing of Wood Trusses" available from the Truss Plate Institute, S83 D'Onifrio Drive; Madison, WI 53179.		Job #: GHAZAA FLOOR LAYOUT RIGHT	Customer: GARMAN HOMES	Site Address: TBD	City, ST, ZIP:

Job	Truss	Truss Type	Qty	Ply	GHAZAAF	
GHAZAA	F201	Floor	9	1	Job Reference (optional)	155484256

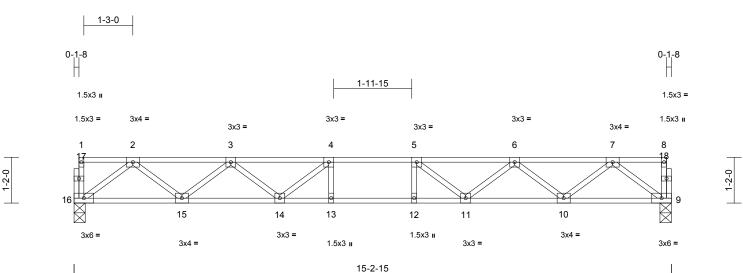
Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Tue Nov 29 15:06:23 ID:?T0WWin6mnKKCfOlsKzDcGzFmT?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

14-11-8 14-11-8

Scale = 1:29

		1										
Loading	(psf)	Spacing	1-7-3	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	тс	0.40	Vert(LL)	-0.14	13-14	>999	480	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.87	Vert(CT)		13-14	>947	240		
BCLL	0.0	Rep Stress Incr	YES	WB	0.32	Horz(CT)	0.04	9	n/a	n/a		
BCDL	5.0	Code	IRC2015/TPI2014	Matrix-S	_						Weight: 75 lb	FT = 20%F, 11%E
LUMBER												
TOP CHORD	2x4 SP No.2(flat)											
BOT CHORD	2x4 SP No.2(flat)											
WEBS	2x4 SP No.3(flat)											
OTHERS	2x4 SP No.3(flat)											
BRACING												
TOP CHORD			ed or									
	6-0-0 oc purlins, ex		-									
BOT CHORD	Rigid ceiling directly bracing.	applied of 10-0-0 of	U									
REACTIONS	Ū	anical, 16=0-3-8										
	Max Grav 9=647 (L0											
FORCES	(lb) - Maximum Corr	,, (,										
	Tension											
TOP CHORD	,											
	2-3=-1315/0, 3-4=-2											
	5-6=-2052/0, 6-7=-1	,	250									
BOT CHORD	15-16=0/795, 14-15 12-13=0/2258, 11-1											
	9-10=0/799	2-0/2230, 10-11-0/	1755,									
WEBS	7-9=-1002/0, 2-16=-	995/0, 7-10=0/670,										
	2-15=0/677, 6-10=-6	632/0, 3-15=-643/0,										
	6-11=0/386, 3-14=0											
	4-13=-108/110, 5-12	2=-100/153, 5-11=-4	44/0								, in the second	11111
NOTES											N'ITH CA	Roilin
,	ed floor live loads have	e been considered fo	or							N	A SECO	12. 11.11
this design	n. are 3x3 MT20 unless o	thenwise indicated							/	52	FEU	PN
	irder(s) for truss to trus								4			n
, 0	is designed in accorda								1	1		
,	nal Residential Code s		nd						=	:	SEA	L : =
R802.10.2	2 and referenced stand	lard ANSI/TPI 1.							E		0363	22 =
	end 2x6 strongbacks, c										. 0505	44 i E
	oc and fastened to eac										N	1 2
•	3") nails. Strongbacks		alls							2.1	N. En	-cRik S
	iter ends or restrained I, Do not erect truss ba									3	S. GIN	EF. A.S
LOAD CASE(,									1	CA C	BEIN
LOAD OAGE(Joj Stanuaru										A. C	
											Novembe	r 20 2022


818 Soundside Road Edenton, NC 27932

November 30,2022

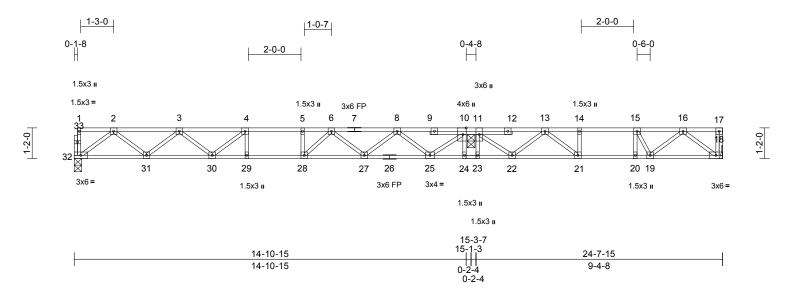
Job	Truss	Truss Type	Qty	Ply	GHAZAAF	
GHAZAA	F202	Floor	2	1	Job Reference (optional)	155484257

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Tue Nov 29 15:06:24 ID:3I7oYZ0FL9waPhRMMjTMPbzFkwa-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

15-2-15

Scale = 1:29.4


Scale = 1:29.4											
Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-7-3 1.00 1.00 YES IRC2015/TPI2014	CSI TC BC WB Matrix-S	0.38 0.87 0.33	DEFL Vert(LL) Vert(CT) Horz(CT)	(loc) 13-14 12-13 9	l/defl >999 >942 n/a	L/d 480 240 n/a	PLATES MT20 Weight: 76 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD WEBS	2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 9=0-3-8, Max Grav 9=655 (L0 (lb) - Maximum Com Tension 1-16=-33/0, 8-9=-33 2-3=-1347/0, 3-4=-2 5-6=-2104/0, 6-7=-1 15-16=0/812, 14-15	ccept end verticals. / applied or 10-0-0 or 16=0-3-7 C 1), 16=655 (LC 1) npression/Maximum 3/0, 1-2=-2/0, 2104/0, 4-5=-2350/0, 347/0, 7-8=-2350/0, 347/0, 7-8=-2/0 =0/1854, 13-14=0/2: 2=0/2350, 10-11=0/- -1017/0, 7-10=0/696 660/0, 3-15=-660/0, /374, 5-11=-461/0,	c 350, 1854,								11000
this design 2) This truss Internation R802.10.2 3) Recommendation 10-00-00 (0.131" X	is designed in accorda nal Residential Code s 2 and referenced stand end 2x6 strongbacks, o oc and fastened to ead 3") nails. Strongbacks iter ends or restrained	ance with the 2015 ections R502.11.1 a dard ANSI/TPI 1. on edge, spaced at ch truss with 3-10d s to be attached to w	nd					N. COLUMN.	K. M.	SEA 0363	22 EER.R.

A. GIL GI November 30,2022

Job	Truss	Truss Type	Qty	Ply	GHAZAAF	
GHAZAA	F203	Floor	3	1	Job Reference (optional)	155484258

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Tue Nov 29 15:06:25 ID:?6DdaQ3zxKIWd2iyuiPozbzFlvn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

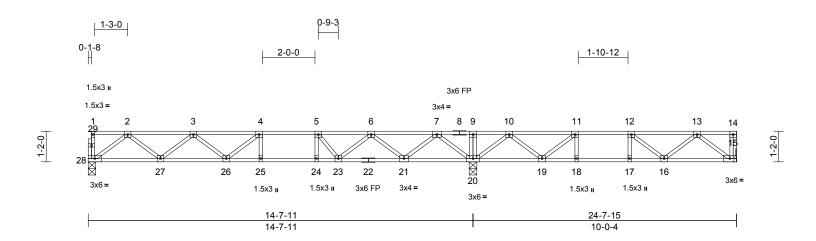
Scale = 1:43.8

Plate Offsets (X, Y): [10:0-3-0,Edge]

Plate Offsets (X, Y): [10:0-3-0,Edge	·]											
Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-7-3 1.00 1.00 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-S	0.47 0.85 0.39	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.14 -0.19 0.01	(loc) 29-30 29-30 11	l/defl >999 >943 n/a	L/d 480 240 n/a	PLATES MT20 Weight: 127 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.2(flat) Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 10=0-3-8, Mechanic Max Uplift 11=-117 (Max Grav 10=926 (I	applied or 10-0-0 oc , 11=0-3-8, 18= ;al, 32=0-3-7 (LC 3)	6) 7) 8)	Provide mec bearing plate 11. This truss is International R802.10.2 at Recommend 10-00-00 oc (0.131" X 3") at their outer Gap between diagonal or v CAUTION, E Bottom chord	er(s) for truss to tri hanical connection e capable of withst designed in accorr Residential Code nd referenced star 2x6 strongbacks, and fastened to ea nails. Strongback ends or restrainer n inside of top cho rertical web shall n to not erect truss b d under the bearin	n (by oth anding ' dance w sections ndard AN on edge ach truss ks to be d by oth rd bearin tot excer backward g from jo	ers) of truss t 17 lb uplift at ith the 2015 5 R502.11.1 a ISI/TPI 1. a, spaced at with 3-10d attached to w er means. rg and first ad 0.500in. 5. bint 23 to joint	joint nd alls 24					
FORCES	(lb) - Maximum Com	<i>,,</i>	,		be field removed be damaged or re		of installation.	No					
TOP CHORD	Tension 1-32=-34/0, 17-18=- 2-3=-1295/0, 3-4=-2 5-6=-2194/0, 6-8=-1 10-11=0/0, 11-13=-3 14-15=-826/0, 15-16	003/0, 4-5=-2194/0, 623/0, 8-10=-666/0, 374/0, 13-14=-826/0,	LC	DAD CASE(S)	Standard								
BOT CHORD	28-29=0/2194, 27-28 24-25=0/0, 22-23=0/	=0/1781, 29-30=0/21 8=0/2010, 25-27=0/1 /0, 21-22=0/667, =0/826, 18-19=0/450	224,								(r)	ORTH CA	ROUT
WEBS NOTES 1) Unbalance this design	16-18=-564/0, 11-22 13-22=-390/0, 13-21 10-25=0/822, 2-31= 3-31=-632/0, 8-27=0 6-27=-506/0, 4-30=- 5-28=-212/0, 6-28=0 15-20=-45/104, 15-1 11-23=-3/6 ed floor live loads have	2=0/459, 16-19=0/336 1=0/276, 2-32=-981/0 0/665, 8-25=-736/0, 0/520, 3-30=0/343, 392/0, 4-29=-97/81, 0/452, 14-21=-132/0, 19=-297/0, 10-24=0/6 a been considered for	, ,							A CHILLING		SEA 0363	

2) All plates are 3x3 MT20 unless otherwise indicated.

November 30,2022


Page: 1

Job	Truss	Truss Type	Qty	Ply	GHAZAAF	
GHAZAA	F204	Floor	9	1	Job Reference (optional)	155484259

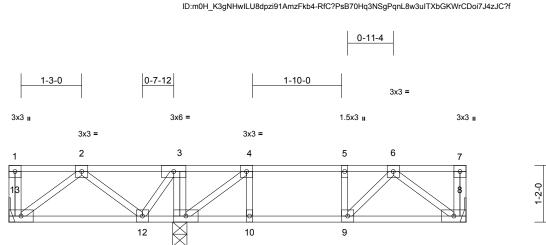
Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Tue Nov 29 15:06:25 ID:xihIXVyIkIPUSKmXeuckQqzFkdI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:43.8

		· · · · · · · · · · · · · · · · · · ·										
Loading	(psf)	Spacing	1-7-3	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.51	Vert(LL)	-0.14	25-26	>999	480	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	1.00	Vert(CT)	-0.18	25-26	>947	240		
BCLL	0.0	Rep Stress Incr	YES	WB	0.36	Horz(CT)	0.03	15	n/a	n/a		
BCDL	5.0	Code	IRC2015/TPI2014	Matrix-S							Weight: 123 lb	FT = 20%F, 11%E
LUMBER			4) This trus	s is designed in acco	ordance w	ith the 2015						
TOP CHORD	2x4 SP No.2(flat)			nal Residential Code			and					
BOT CHORD	2x4 SP No.2(flat)		R802.10	2 and referenced sta	andard AN	ISI/TPI 1.						
WEBS	2x4 SP No.3(flat)		5) Recomm	end 2x6 strongbacks	s, on edge	e, spaced at						
OTHERS	2x4 SP No.2(flat)		10-00-00	oc and fastened to e	each truss	s with 3-10d						
BRACING	()			3") nails. Strongba			valls					
TOP CHORD	Structural wood she	athing directly applie		uter ends or restraine								
	6-0-0 oc purlins, ex		6) CAUTIO	N, Do not erect truss	backware	ds.						
BOT CHORD		applied or 1-4-12 oc	LOAD CASE	(S) Standard								
REACTIONS	(size) 15= Mech	nanical, 20=0-3-8,										
	28=0-3-7											
	Max Grav 15=390 (I 28=582 (I		1),									
FORCES	(lb) - Maximum Com	/										
	Tension											
TOP CHORD	1-28=-34/0, 14-15=-	-25/2, 1-2=-2/0,										
	2-3=-1166/0, 3-4=-1	748/0, 4-5=-1830/0,										
	5-6=-1564/0, 6-7=-7	′02/0, 7-9 = 0/1036,										
	9-10=0/1036, 10-11											
		-13=-662/0, 13-14=0/										
BOT CHORD	,	=0/1596, 25-26=0/18	,									
		4=0/1830, 21-23=0/1	234,									
	20-21=-179/147, 19	,									, uninnin	11111
	18-19=-108/805, 17	,									"TH CA	Bolly
	16-17=-108/805, 15									1	OR FESO	S. S. Links
WEBS	9-20=-91/0, 2-28=-8 2-27=0/588, 7-21=0									1	U.FESO	Oit in
	6-21=-725/0, 3-26=0								6	15	it I	
		=-159/22, 13-15=-591	1/0									
		6=-44/248, 10-19=0/5							-		SEA	1 1 1
		-19=-594/0, 11-18=0/							=	:	SEA	• -
		=-2/238, 5-23=-552/0							=	:	0363	22 ; =
NOTES	, -	,								i i		1 5
	ed floor live loads have	e been considered for	r							1	·	1 1 E
this design										10	NGIN	FRIAN
	a a 1									1	A CONT	Chi Chi N

2) All plates are 3x3 MT20 unless otherwise indicated.


3) Refer to girder(s) for truss to truss connections.

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	GHAZAAF	
GHAZAA	F205	Floor	3	1	Job Reference (optional)	155484260

1-2-0

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Tue Nov 29 15:06:25

3x3 =

5-10-12

3x6 =

Page: 1

3x6 =

3-6-4

Scale	=	1:23.7

Scale = 1:23.7												
Loading	(psf)	Spacing	1-7-3	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.17	Vert(LL)	-0.01	8-9	>999	480	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.18	Vert(CT)	-0.02	8-9	>999	240		
BCLL	0.0	Rep Stress Incr	YES	WB	0.08	Horz(CT)	0.00	8	n/a	n/a		
BCDL	5.0	Code	IRC2015/TPI2014	Matrix-S							Weight: 52 lb	FT = 20%F, 11%E
LUMBER												
TOP CHORD	2x4 SP No.2(flat)											
BOT CHORD	2x4 SP No.2(flat)											
WEBS	2x4 SP No.3(flat)											
BRACING												
TOP CHORD	Structural wood she	athing directly applie	ed or									

6-0-0 oc purlins,	except end verticals.
-------------------	-----------------------

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

	bracing.	
REACTIONS	(size)	8= Mechanical, 11=0-3-8, 13=
		Mechanical
	Max Grav	8=274 (LC 8), 11=375 (LC 7),

13=202 (LC 8) FORCES (lb) - Maximum Compression/Maximum

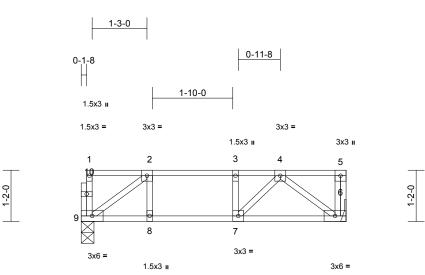
	Tension
TOP CHORD	1-13=-37/0, 7-8=-46/0, 1-2=0/0, 2-3=-203/0,
	3-4=-181/0, 4-5=-384/0, 5-6=-384/0, 6-7=0/0
BOT CHORD	12-13=0/209, 11-12=0/181, 10-11=0/384,
	9-10=0/384, 8-9=0/284
WEBS	3-11=-207/0 6-8=-357/0 4-11=-330/0

WEBS 4-10=0/35, 2-13=-262/0, 2-12=-84/42, 3-12=-4/92, 5-9=-99/0, 6-9=0/144

NOTES

- 1) Unbalanced floor live loads have been considered for this design.
- Refer to girder(s) for truss to truss connections 2)
- 3) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 4) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.


LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	GHAZAAF			
GHAZAA	F206	Floor	7	1	Job Reference (optional)	155484261		

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Tue Nov 29 15:06:26 ID:gsdCRgXXK2M77C8fBqSw5yzFkZy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

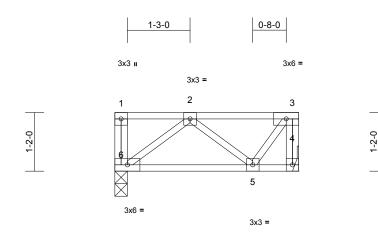
Scale = 1:26.3

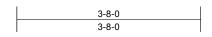
Loading	(psf)	Spacing	1-7-3	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.27	Vert(LL)	-0.02	6-7	>999	480	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.25	Vert(CT)	-0.03	6-7	>999	240		
BCLL	0.0	Rep Stress Incr	YES	WB	0.09	Horz(CT)	0.00	6	n/a	n/a		
BCDL	5.0	Code	IRC2015/TPI2014	Matrix-S							Weight: 32 lb	FT = 20%F, 11%E

TOP CHORD	2x4 SP No.2(flat)					
BOT CHORD	2x4 SP No.2(flat)					
WEBS	2x4 SP No.3(flat)					
OTHERS	2x4 SP No.2(flat)					
BRACING						
TOP CHORD	Structural wood sheathing directly applied or					
	6-0-0 oc purlins, except end verticals.					
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc					
	bracing.					
REACTIONS	(size) 6= Mechanical, 9=0-3-8					
REACTIONS	(size) 6= Mechanical, 9=0-3-8 Max Grav 6=255 (LC 1), 9=250 (LC 1)					
REACTIONS FORCES						
	Max Grav 6=255 (LC 1), 9=250 (LC 1)					
	Max Grav 6=255 (LC 1), 9=250 (LC 1) (lb) - Maximum Compression/Maximum					
FORCES	Max Grav 6=255 (LC 1), 9=250 (LC 1) (lb) - Maximum Compression/Maximum Tension					
FORCES	Max Grav 6=255 (LC 1), 9=250 (LC 1) (lb) - Maximum Compression/Maximum Tension 1-9=-34/23, 5-6=-44/0, 1-2=-2/1, 2-3=-325/0,					
FORCES TOP CHORD	Max Grav 6=255 (LC 1), 9=250 (LC 1) (lb) - Maximum Compression/Maximum Tension 1-9=-34/23, 5-6=-44/0, 1-2=-2/1, 2-3=-325/0, 3-4=-325/0, 4-5=0/0					

NOTES

- 1) Unbalanced floor live loads have been considered for this design.
- 2) Refer to girder(s) for truss to truss connections.
- This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 4) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 5) CAUTION, Do not erect truss backwards.
- LOAD CASE(S) Standard




Job	Truss	Truss Type	Qty Ply						
GHAZAA	F207	Floor	2	1	Job Reference (optional)	155484262			

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Tue Nov 29 15:06:26 ID:RgefhDrDRkWad2YT9aPncDzFkZZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

3x3 II

Scale = 1:23

Scale = 1:23												
Loading	(psf)	Spacing	1-7-3	CSI	-	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.17	Vert(LL)	0.00	5-6	>999	480	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.07	Vert(CT)	0.00	5-6	>999	240		
BCLL	0.0	Rep Stress Incr	YES	WB	0.05	Horz(CT)	0.00	4	n/a	n/a		
BCDL	5.0	Code	IRC2015/TPI2014	Matrix-P							Weight: 23 lb	FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS BRACING	2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.3(flat)					· · · ·						
TOP CHORD	Structural wood she		ed or									

	5-6-0 oc putilits, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc

 · · · · · · · · · · · · · · · · · · ·	 -
bracing.	

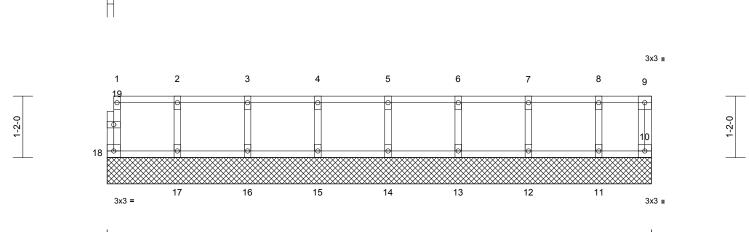
REACTIONS	(size)	4= Mechanical, 6=0-3-0
	Max Grav	4=150 (LC 1), 6=150 (LC 1)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-6=-32/0	, 3-4=-153/0, 1-2=0/0, 2-3=-66/0
BOT CHORD	5-6=0/144	4, 4-5=0/0

WEBS 2-6=-181/0, 2-5=-102/0, 3-5=0/109

NOTES

1) Refer to girder(s) for truss to truss connections.

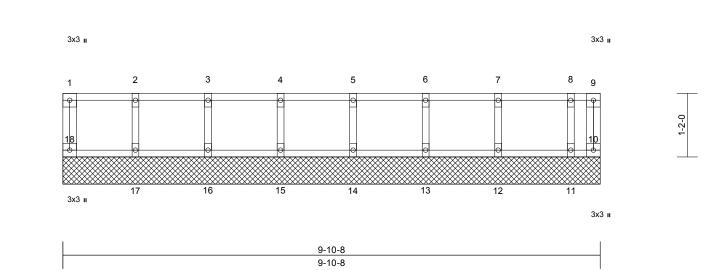
 Provide mechanical connection (by others) of truss to bearing plate at joint(s) 6.


- This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 4) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard

	Job	Truss	Truss Type	Qty	Ply	GHAZAAF	
	GHAZAA	K201	Floor Supported Gable	1	1	Job Reference (optional)	155484263
Carolina Structural Systems, LLC, Ether, NC - 27247,			Run: 8.63 S Nov 19	2022 Print: 8	.630 S Nov 1	9 2022 MiTek Industries, Inc. Tue Nov 29 15:06:26	Page: 1
ID:qNpuoHAY4CPr9zpIEs92bOzFm05-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJ(B70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f		

8₁1_۲8


Scale = 1:21.9											
Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL	40.0	Plate Grip DOL	0.90	TC 0.08	Vert(LL)	n/a	-	n/a	999	MT20	244/190
CDL	10.0	Plate Metal DOL	0.90	BC 0.02	Vert(TL)	n/a	-	n/a	999		
ICLL	0.0	Lumber DOL	0.90	WB 0.03	Horiz(TL)	0.00	10	n/a	n/a		
BCDL	5.0	Rep Stress Incr	YES	Matrix-R							
		Code	IRC2015/TPI2014							Weight: 45 lb	FT = 20%F, 11%E
UMBER OP CHORD OT CHORD VEBS OTHERS RACING OP CHORD	6-0-0 oc purlins, ex	eathing directly applie cept end verticals. applied or 10-0-0 oc	d or 8) CAUTION,	s designed in accordance al Residential Code section and referenced standard <i>A</i> d 2x6 strongbacks, on edg c and fastened to each tru ") nails. Strongbacks to b er ends or restrained by ot Do not erect truss backwa) Standard	ns R502.11.1 a NSI/TPI 1. ge, spaced at as with 3-10d e attached to v ner means.						
EACTIONS	13=10-4- 16=10-4- Max Grav 10=43 (L0 12=152 (J 14=147 (J	LC 5), 13=145 (LC 5) LC 5), 15=146 (LC 5) LC 5), 17=146 (LC 5)	4-0, 4-0 ,								
ORCES	(lb) - Maximum Com Tension	,									
TOP CHORD		37/0, 1-2=-7/0, 2-3=-7 5-6=-7/0, 6-7=-7/0,	//0,								1111.
BOT CHORD		/7, 15-16=0/7, 14-15 /7, 11-12=0/7, 10-11								"TH CA	ROTY
WEBS	2-17=-132/0, 3-16=- 5-14=-134/0, 6-13=- 8-11=-114/0							2	23	Q. FESS	C. A.
NOTES											
) Unbalance this design	ed floor live loads have n. are 1.5x3 MT20 unless									SEA 0363	
	uires continuous botto e fully sheathed from o										a 1. 3
braced aga	ainst lateral movemen ds spaced at 1-4-0 oc.								in the	S.S.NGIN	EERBERT
										11, A. C	allenin

November 30,2022

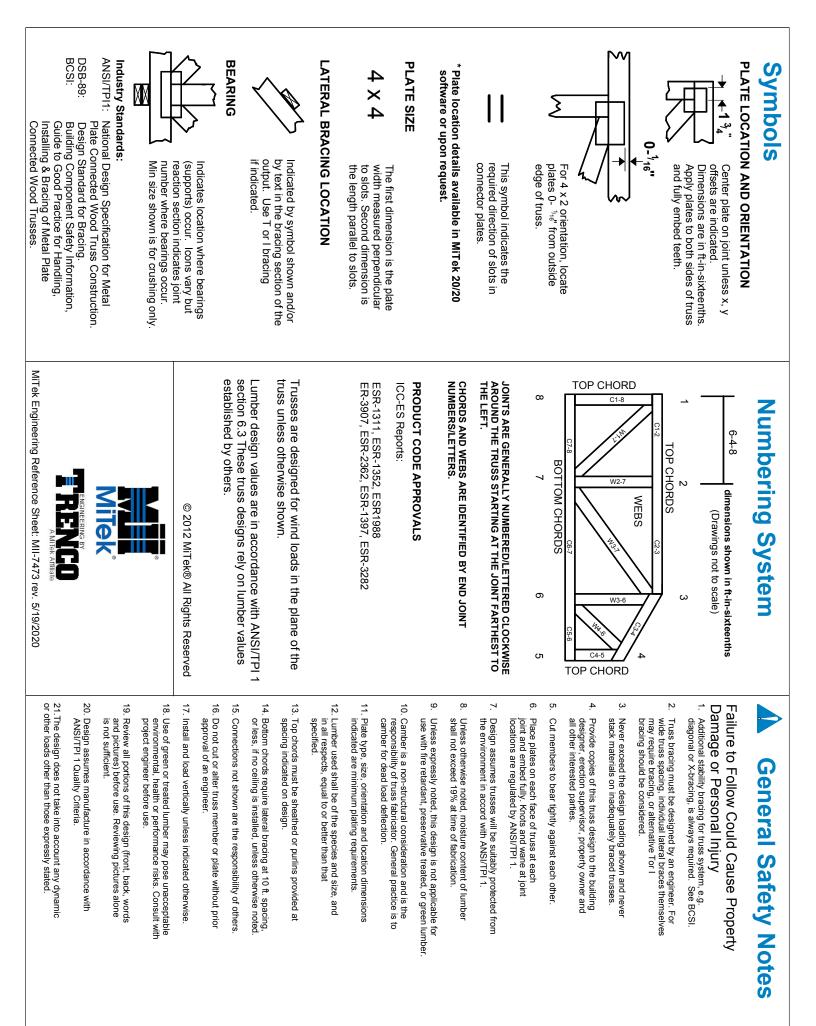
Job	Truss	Truss Type	Qty	Ply	GHAZAAF	
GHAZAA	K202	Floor Supported Gable	1	1	Job Reference (optional)	155484264

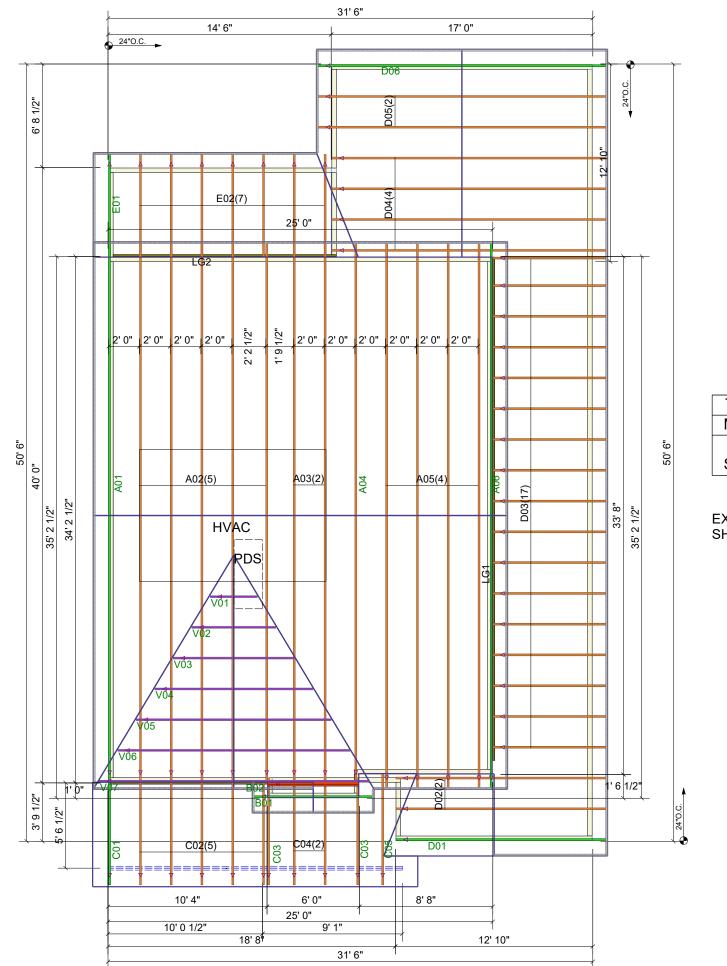
Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Tue Nov 29 15:06:26 ID:jQaqCTQj8f2sABwLzm1_yqzFm?m-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:21.2

1-2-0

Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.00 YES IRC2015/TPI2014	CSI TC BC WB Matrix-R	0.08 0.02 0.03	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 10	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 44 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING	2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat)		10-00-00 oc (0.131" X 3")	2x6 strongbacks, o and fastened to eac nails. Strongbacks ends or restrained Standard	ch truss to be	with 3-10d attached to wa	alls					
TOP CHORD	Structural wood she 6-0-0 oc purlins, ex	athing directly applied	lor									
BOT CHORD		applied or 10-0-0 oc										
REACTIONS	13=9-10- 16=9-10- Max Grav 10=14 (L0 12=153 (I 14=147 (I	_C 1), 13=145 (LC 1), _C 1), 15=147 (LC 1), _C 1), 17=147 (LC 1),)-8,)-8									
FORCES	(lb) - Maximum Com Tension	pression/Maximum										
TOP CHORD	1-18=-55/0, 9-10=-4 3-4=-7/0, 4-5=-7/0, 9 7-8=-7/0, 8-9=-7/0	/0, 1-2=-7/0, 2-3=-7/0 5-6=-7/0, 6-7=-7/0,	,									
BOT CHORD	17-18=0/7, 16-17=0	/7, 15-16=0/7, 14-15= /7, 11-12=0/7, 10-11=									MUL CA	Della
WEBS	2-17=-132/0, 3-16=- 5-14=-134/0, 6-13=- 8-11=-100/0	134/0, 4-15=-133/0,							4	- AN	OR FEES	TO NIL


NOTES


- 1) All plates are 1.5x3 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing. 2)
- Truss to be fully sheathed from one face or securely 3) braced against lateral movement (i.e. diagonal web). 4) Gable studs spaced at 1-4-0 oc.
- 5) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Page: 1

Truss Con	nector Tota	al List
Manuf	Product	Qty
	H2.5A	75
Simpson	THA29	1

EXTERIOR DIMENSIONS ARE TO FACE OF SHEATHING. SHEATHING IS FLUSH WITH FOUNDATION.

THIS LAYOUT IS THE SOLE SOURCE FOR FABRICATION OF TRUSSES AND VOIDS ALL PREVIOUS ARCHITECTURAL OR OTHER TRUSS AYOUTS. REVIEW AND APPROVAL OF THIS LAYOUT MUST BE RECEIVED BEFORE ANY TRUSSES WILL BE BUILT. VERIFY ALL CONDITIONS TO INSURE AGAINST CHANGES THAT WILL RESULT IN EXTRA CHARGES TO YOU.
 Carolina
 Structural
 Systems

 P.O. Box 157, Ether, NC 27247
 225 Frame Shop Rd., Star, NC 27356

 225 Frame Shop Rd., Star, NC 27356
 ΕŇ Truss Carolina Structu Roof Trusses • Floor SHOP DRAWING APPROVAL ANSI/TPI 1-2002 ANSI/TPI 1-2007 ANSI/TPI 1-2014 SYSTEMS, LLC 30437 2110.8 SF DATA P **TURAL** STRUC ROOF IBC 1704.2 IBC 2303.4 Roof Area: CAR VIEWED BY: AZALEA-A Date: 2/14/2023 Sales Rep: RW Designer: JSP building components to be incorporated into the building design at the specification of the sheets for each truss design identified on the placement drawing. The building designer is not bracing of the roof and floor system and for the overall structure. The design of the truss s, and columns is the responsibility of the building designer. For general guidance regarding es" available from the Truss Plate Institute, 583 D'Onifrio Drive; Madison, WI 53179. Plan: THIS IS A TRUSS PLACEMENT DIAGRAM ONLY GARAGE RIGHT ROOF **GARMAN HOMES** ling headers, beams, walls, t "Bracing of Wood Trusse individual l aal design s TBD GHAZAAR are designed as i gner. See individu Site Address: City, ST, ZIP: Customer: nese trusses ar uilding design sponsible for :# dol ő ucture acing, '

Trenco 818 Soundside Rd Edenton, NC 27932

Re: GHAZAA Garman Homes - Azalea A Roof

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carolina Structural Systems, LLC.

Pages or sheets covered by this seal: I56629987 thru I56630014

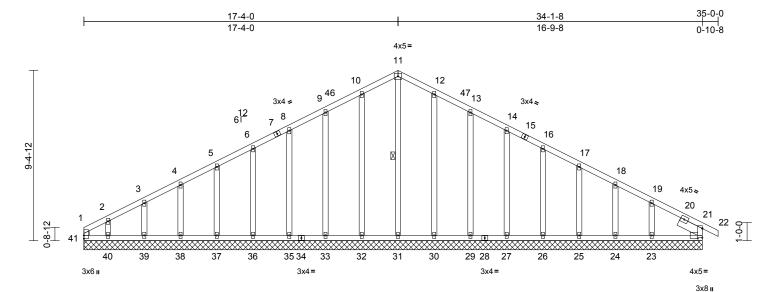
My license renewal date for the state of North Carolina is December 31, 2023.

North Carolina COA: C-0844

February 14,2023

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.


Job	Truss	Truss Type	Qty	Ply	Garman Homes - Azalea A Roof	
GHAZAA	A01	Common Supported Gable	1	1	Job Reference (optional)	156629987

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Tue Feb 14 08:03:29 ID:C62DD1be73YP1J7KS27d0BzFmPN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

February 14,2023

818 Soundside Road Edenton, NC 27932

34-1-8

Scale = 1:63.6

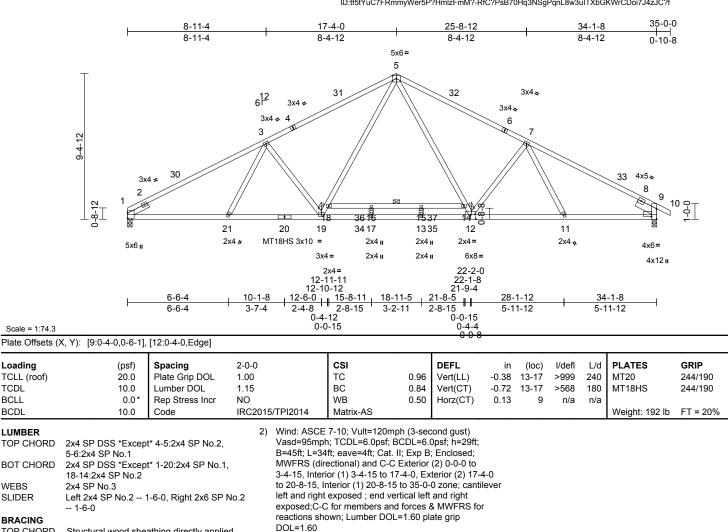
Plate Offsets (X, Y): [21:0-3-0,0-6-9]

). [21.0-3-0,0-0-8]									-		
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015/TPI	CSI TC BC WB 2014 Matri	0.08 0.08 0.16 x-AS	Vert(CT)	in n/a n/a 0.01	(loc) - - 21	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 229 lb	GRIP 244/190 FT = 20%	
BOT CHORD 2x4 WEBS 2x4 SLIDER Rig BRACING TOP CHORD Rig WEBS 1 F REACTIONS (size	scept end verticals gid ceiling directly Row at midpt e) 21=34-1-4 29=34-1-4 32=34-1-4 32=34-1-4 39=34-1-4 42=34-145(12)=34=34-14 24=145(12)=34=34-146(12)=34=146(12)=34=160(12)=34=1	athing directly applied. applied. 11-31 3, 23=34-1-8, 24=34 3, 26=34-1-8, 27=34 3, 30=34-1-8, 31=34 3, 33=34-1-8, 35=34 3, 37=34-1-8, 38=34 3, 40=34-1-8, 41=34 3 LC 10) C 12), 24=-10 (LC 12 C 12), 25=-19 (LC 12 C 12), 25=-19 (LC 12 C 12), 35=-19 (LC 12 C 12), 41=-63 (LC 10 LC 1), 25=164 (LC 22 LC 1), 35=160 (LC 22 LC 1), 35=160 (LC 22 LC 1), 35=160 (LC 22 LC 1), 35=160 (LC 21 LC 21), 39=166 (LC 12 LC 17), 41=112 (LC 11 2000	BOT Cl 1-8, 1-8, 1-8, 1-8, 1-8, 1-8, WEBS),),),),),),),),),),	Tension IORD 1-41=-{ 3-4=-1(6-8=-8! 10-11= 12-13= 14-16= 17-18= 21-22= IORD 40-41= 37-38= 30-31= 26-27= 23-24= 11-31= 9-33=-7 5-37=-7 2-40=-7 13-29= 16-26= 18-24= 18-24= ralanced roof liv design. d: ASCE 7-10; 7 d=95mph; TCD 5ft; L=34ft; eav FRS (directiona 0, Exterior (2) 3 3-15, Exterior (2) 3 3-	31/48, 1-2=-125/10 07/81, 4-5=-99/78, 5/160, 8-9=-79/200 -106/277, 11-12=- -93/253, 13-14=-79 -64/170, 16-17=-5 -60/87, 18-19=-69/	3, 2-3=-112/88 5-6=-92/119, ,9-10=-93/243 106/287, 3/210, 1/129, 54, 19-21=-65/ 90, 38-39=-33/ 90, 35-36=-33/ 90, 37-29=-33/ 90, 27-29=-33/ 90, 27-29=-32/ 90, 27-29=-32/ 90, 27-29=-32/ 90, 27-29=-32/ 90, 27-29=-32/ 90, 27-29=-32/ 90, 27-	s, 2 (47, 8 (90, 990, 990, 990, 990, 990, 990, 990,	only see or c 4) All 5) Gal 5) Gal 5) Gal 5) Gal 7) This cho 3-0 cho 9) Pro bea 41, upli 37, upli 29, upli	y. For sis Standa consult q plates ar ble requi ble studs s truss h ord live lc his truss the bottc 6-00 tall ord and a ovide me aring plat 10 lb up ift at join 21 lb up ift at join 19 lb up ift at join t 23.	tuds ex rd Ind. uvalifiere 2x4 irres coo s space caas beec caas beec caas beec caas beec caas beec caas beec caas beec bad noi by 2-0 any oth chanic t a t ji t 40, 11 t 40, 11 t 40, 11 t 40, 11 t 40, 11 t 25, 11	or wind loads in the sposed to wind (no. Istry Gable End D d building designed MT20 unless other MT20 unless other MT20 unless other inconcurrent with a een designed for a nconcurrent with a een designed for a nconcurrent with a een designed for a inconcurrent with a int 32, 23 lb uplif 0 lb uplift at joint 3 0 lb uplift at join	ormal to the face letails as applica er as per ANSI/T erwise indicated. chord bearing. 10.0 psf bottom any other live loa a live load of 20. ere a rectangle between the bott others) of truss ng 63 lb uplift at t at joint 33, 19 l 36, 19 lb uplift at t at joint 26, 22 l 24 and 48 lb upli	e), able, iPI 1.

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Azalea A Roof	
GHAZAA	A01	Common Supported Gable	1	1	Job Reference (optional)	156629987
Carolina Structural Systems (Sta	r, NC)), Ether, NC - 27247,	Run: 8.63 S Nov 19 2	2022 Print: 8.	.630 S Nov 1	9 2022 MiTek Industries, Inc. Tue Feb 14 08:03:29	Page: 2

- 10) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 21.
 11) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard


Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Tue Feb 14 08:03:29 ID:C62DD1be73YP1J7KS27d0BzFmPN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Azalea A Roof	
GHAZAA	A02	Common	5	1	Job Reference (optional)	156629988

Run: 8.63 S. Nov 19 2022 Print: 8.630 S. Nov 19 2022 MiTek Industries, Inc. Tue Feb 14 08:03:31 ID:tf5tYuC7FRmmyWer5P?HmlzFmM?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

All plates are MT20 plates unless otherwise indicated.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 21 lb uplift at joint

This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

This truss design requires that a minimum of 7/16"

structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to

All plates are 2x4 MT20 unless otherwise indicated.

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

DIVACING	
TOP CHORD	Structural wood sheathing directly applied.
BOT CHORD	Rigid ceiling directly applied. Except:
	6-0-0 oc bracing: 14-18
REACTIONS	(size) 1=0-3-8, 9=0-3-8
	Max Horiz 1=-139 (LC 10)
	Max Uplift 9=-21 (LC 12)
	Max Grav 1=1453 (LC 1), 9=1510 (LC 1)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-3=-2440/40, 3-5=-2198/85, 5-7=-2150/78,
	7-9=-2269/73, 9-10=0/23
BOT CHORD	,
	17-19=0/1616, 13-17=0/1616, 11-13=0/1983
	9-11=-55/1929, 16-18=-107/0, 15-16=-107/0,
	14-15=-107/0
WEBS	5-14=0/826, 12-14=0/700, 7-12=-403/163,
	7-11=-123/38, 18-19=0/775, 5-18=0/904,
	3-19=-514/164, 3-21=-14/143, 16-17=-73/0,
	13-15=-88/0

NOTES

Loading

TCDL

BCLL

BCDL

WEBS

SLIDER

LUMBER

Unbalanced roof live loads have been considered for 1) this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

3)

4) 5)

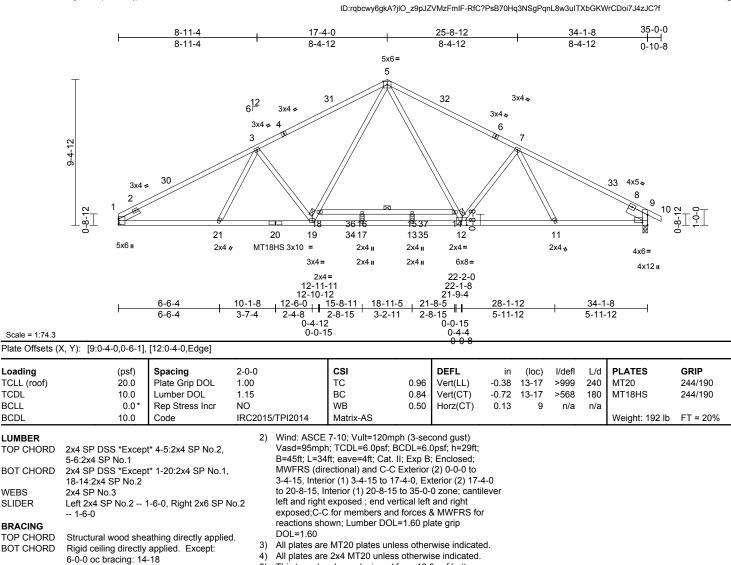
6)

7)

8)

9)

the bottom chord.


LOAD CASE(S) Standard

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Azalea A Roof	
GHAZAA	A03	Common	2	1	Job Reference (optional)	156629989

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries. Inc. Tue Feb 14 08:03:32

Page: 1

WEBS

TCDL

BCLL

BCDL

WEBS

SLIDER

REACTIONS

FORCES

TOP CHORD

BOT CHORD

(size)

Tension

14-15=-107/0

13-15=-88/0

- NOTES
- Unbalanced roof live loads have been considered for 1) this design.

Max Horiz 1=-139 (LC 10)

7-9=-2269/73. 9-10=0/23

1-21=-119/2194, 19-21=0/2193

Max Uplift 9=-21 (LC 12)

1= Mechanical, 9=0-3-8

Max Grav 1=1453 (LC 1), 9=1510 (LC 1)

(lb) - Maximum Compression/Maximum

1-3=-2440/40, 3-5=-2198/85, 5-7=-2150/78,

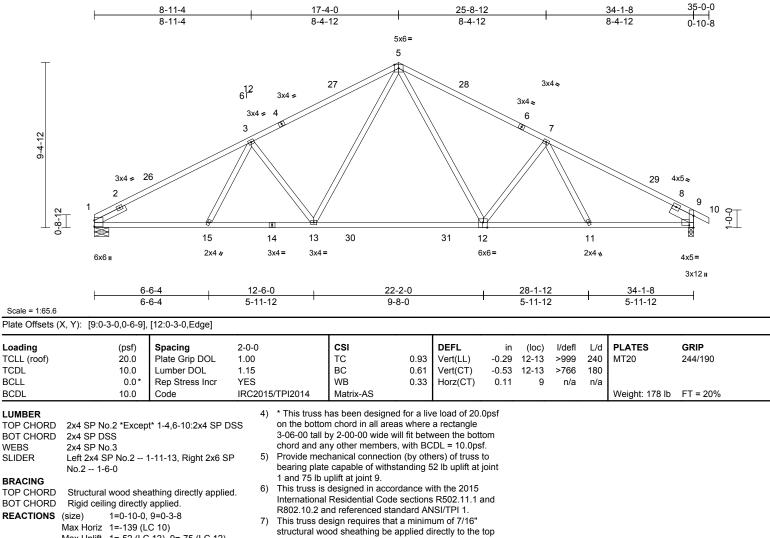
17-19=0/1616, 13-17=0/1616, 11-13=0/1983,

9-11=-55/1929, 16-18=-107/0, 15-16=-107/0,

5-14=0/826, 12-14=0/700, 7-12=-403/163,

3-19=-514/164, 3-21=-14/143, 16-17=-73/0,

7-11=-123/38, 18-19=0/775, 5-18=0/904,


- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 6) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 21 lb uplift at joint
- This truss is designed in accordance with the 2015 9) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) This truss design requires that a minimum of 7/16 structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Azalea A Roof	
GHAZAA	A04	Common	1	1	Job Reference (optional)	156629990

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Tue Feb 14 08:03:33 ID:5BoZDwSIbH zZSzJ9dobVmzFmGW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

chord and 1/2" gypsum sheetrock be applied directly to

- Max Uplift 1=-52 (LC 12), 9=-75 (LC 12) Max Grav 1=1381 (LC 1), 9=1401 (LC 1) FORCES (Ib) - Maximum Compression/Maximum Tension 1-3=-2115/135, 3-5=-1845/197, 5-7=-1833/192, 7-9=-2080/130, 9-10=0/23 TOP CHORD BOT CHORD 1-15=-24/1808. 13-15=-47/1822. 11-13=-49/1769, 9-11=-74/1759 WEBS 5-12=-13/667, 7-12=-436/146, 7-11=-63/110, 5-13=-16/685, 3-13=-459/148, 3-15=-38/132
- NOTES
- 1) Unbalanced roof live loads have been considered for this design
- 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=29ft; B=45ft; L=34ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) 0-0-0 to 3-4-15, Interior (1) 3-4-15 to 17-4-0, Exterior (2) 17-4-0 to 20-8-15, Interior (1) 20-8-15 to 35-0-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

ORTH CHIMAN MANNERS 11111111111 SEAL 036322 G mmm February 14,2023

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

the bottom chord.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Azalea A Roof	
GHAZAA	A05	Common	4	1	Job Reference (optional)	156629991

9-4-12

Scale

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Tue Feb 14 08:03:33 Page: 1 ID:FxPcI64PUyKA5o30NiCUoWzFmD7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -0-10-12 34-5-4 0-10-8 8-4-8 16-9-4 25-2-0 33-6-12 0-10-12 8-4-8 8-4-12 8-4-12 8-4-12 5x6= 6 1<u>2</u> 6 3x4 🞜 25 3x4 ≈ 26 3x4 ≉ 3x4 👟 5 7 л 8 4x5 ≉ 4x5≈ 24 27 9 3 10 11 0-0--0-2 ě 15 28 29 13 14 12 2x4 🖊 6x6= 6x6= 2x4 ง 3x12 u 4x5= 4x5= 3x12 II

	5-11-8	11-11-4	21-7-4	27-7-0	33-6-12	
	5-11-8	5-11-12	9-8-0	5-11-12	5-11-12	
e = 1:65.6						

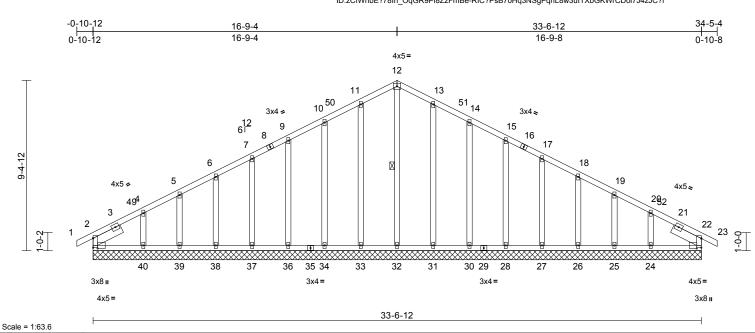
Plate Offsets (X, Y): [2:0-3-0,0-6-11], [10:0-3-0,0-6-9], [13:0-3-0,Edge], [14:0-3-0,Edge]

			,	0 1/1									-
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-AS	0.91 0.96 0.32	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.33 -0.60 0.11	(loc) 13-14 13-14 10	l/defl >999 >668 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 179 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 *Excep 2x4 SP DSS *Excep 2x4 SP No.3 Left 2x6 SP No.2 1-6-0 Structural wood she Rigid ceiling directly	t* 1-5,7-11:2x4 SP D t* 14-13:2x4 SP No.2 I-6-0, Right 2x6 SP N athing directly applie applied. I0=0-3-8 2 11) : 12), 10=-75 (LC 12) .C 1), 10=1395 (LC 12)	4) 2 No.2 5) d. 6) 7))	 * This truss on the botto 3-06-00 tall chord and a Provide med bearing plat 2 and 75 lb This truss is Internationa R802.10.2 a This truss du structural we chord and 1 the bottom c 	has been designed m chord in all area by 2-00-00 wide w ny other members chanical connection e capable of withst uplift at joint 10. designed in accor I Residential Code and referenced star esign requires that bood sheathing be a 2/2" gypsum sheetre chord.	is where ill fit betw , with BC n (by oth canding 7 dance w sections ndard AN a minim applied d	a rectangle yeen the bott DL = 10.0psi ers) of truss i 5 b uplift at j ith the 2015 5 R502.11.1 a ISI/TPI 1. um of 7/16"	om f. to ioint and					
TOP CHORD	Tension 1-2=0/24, 2-4=-2063	5/128, 4-6=-1816/190),	OAD CASE(S)	Standard								
BOT CHORD	6-8=-1819/191, 8-10 2-15=-84/1757, 12-1 10-12=-73/1749	,	0/23										
WEBS	6-13=-14/666, 8-13= 6-14=-13/662, 4-14=												
this desig 2) Wind: ASI Vasd=95r B=45ft; L= MWFRS (2-5-12, In to 20-1-12	ed roof live loads have n. CE 7-10; Vult=120mph mph; TCDL=6.0psf; BC =34ft; eave=4ft; Cat. II; (directional) and C-C E tterior (1) 2-5-12 to 16-3 2, Interior (1) 20-1-12 tr ght exposed ; end vertii	-8							CN. IIIII	TIT I	ORTH CA ORTHESS SEA 0363	• –	

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

DOL=1.60

exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip


annin Er G mmm February 14,2023

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Azalea A Roof	
GHAZAA	A06	Common Supported Gable	1	1	Job Reference (optional)	156629992

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Tue Feb 14 08:03:33 ID:zCfWhbE?78Ih_OqGR9PI8ZzFmBe-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [2:0-3-0,0-6-11], [22:0-3-0,0-6-9]

Loading		(psf)	Spacing	2-0-0		CSI TC	0.00	DEFL	in r/a	(loc)	l/defl	L/d	PLATES MT20	GRIP 244/190	
TCLL (roof) TCDL		20.0 10.0	Plate Grip DOL Lumber DOL	1.00 1.15		BC	0.08 0.06	Vert(LL) Vert(CT)	n/a n/a	-	n/a n/a	999 999	M120	244/190	
BCLL		0.0*	Rep Stress Incr	YES		WB	0.00	Horz(CT)	0.01	- 22	n/a	999 n/a			
BCDL		10.0	Code		5/TPI2014	Matrix-AS	0.10	11012(01)	0.01	22	n/a	n/a	Weight: 232 lb	FT = 20%	
LUMBER				FC	ORCES	(lb) - Maximum Co	mpressi	on/Maximum						ne plane of the truss	
TOP CHORD						Tension								ormal to the face),	
BOT CHORD				TC	OP CHORD	1-2=0/24, 2-4=-116								Details as applicable	
OTHERS	2x4 SP N					5-6=-107/84, 6-7=- 9-10=-87/207, 10-2							d building designe MT20 unless othe	er as per ANSI/TPI	
SLIDER			1-9-14, Right 2x6 SP			11-12=-115/284, 1							ntinuous bottom		
	No.2 1-	10-2				13-14=-102/253, 1							ed at 2-0-0 oc.	chord bearing.	
BRACING TOP CHORD	Structura	lwood sho	athing directly applie	d		15-17=-73/169, 17							en designed for a	10.0 psf bottom	
BOT CHORD		ing directly		u.		18-19=-73/86, 19-2	20=-82/5	3, 20-22=-67	/45,					any other live loads.	
WEBS	1 Row at		12-32			22-23=0/23				8) * T	his truss	has be	een designed for	a live load of 20.0ps	
REACTIONS		•	2, 22=33-6-12,	BC	OT CHORD	2-40=-30/87, 39-40							ord in all areas wh		
REACTIONS	(320)		12, 25=33-6-12,			37-38=-30/87, 36-3		,	,					between the bottom	
			12, 27=33-6-12,			33-34=-30/87, 32-3							er members.		
		28=33-6-	12, 30=33-6-12,			30-31=-30/87, 28-3 26-27=-30/87, 25-2								others) of truss to ng 10 lb uplift at join	
		31=33-6-	12, 32=33-6-12,			22-24=-30/87	2030/0	n, 2 4 -2550	07,					ft at joint 36, 19 lb	
			12, 34=33-6-12,	W	EBS	12-32=-163/26, 11	-33=-12	5/108.						38, 11 lb uplift at joir	
			12, 37=33-6-12,			10-34=-120/84, 9-3			0/67,					ft at joint 31, 23 lb	
			12, 39=33-6-12,			6-38=-122/71, 5-39	9=-113/5	6, 4-40=-155	132,					28, 19 lb uplift at joir	
		40-33-6-	12, 41=33-6-12,			13-31=-125/108, 1							oint 26, 10 lb uplit	ft at joint 25 and 47	
	Max Horiz		C 11), 41=137 (LC 1 [.]	1)		15-28=-120/66, 17-27=-120/67, 18-26=-122/71, 19-25=-113/56,					uplift at joint 24.				
			.C 12), 25=-10 (LC 1)								OPTHESSIC				
	max opint	· ·	.C 12), 27=-19 (LC 1)	2)		20-24=-147/132							munn	1111	
			C 12), 30=-23 (LC 1)	2) NC	OTES								WAH CA	ROUL	
			C 12), 33=-10 (LC 1	∠), ′		d roof live loads hav	e been	considered for	r			AN'	R	· Alle	
			C 12), 36=-19 (LC 1		this design	E 7-10; Vult=120mp	b (3 co)	ond quet)			/	5.	O. ESS	ON Vie	
			C 12), 38=-22 (LC 1	<u>~</u>), ′		ph; TCDL=6.0psf; B								19 -	
			C 12), 40=-47 (LC 1			34ft; eave=2ft; Cat. I					1		·Q`		
	Max Grav		C 18), 22=183 (LC 1) _C 18), 25=146 (LC 1			irectional) and C-C					-		SEA	1 1 =	
			_C 18), 25=146 (LC _C 22), 27=159 (LC ⁻			erior (2) 2-5-12 to 1			-8		=	:	JLA	- : :	
			_C 22), 27=159 (LC _C 22), 30=160 (LC			Exterior (2) 20-1-12					=		0363	22 : 3	
			_C 22), 32=146 (LC			eft and right expose						3	•	1 E	
			_C 21), 34=160 (LC			right exposed;C-C for members and forces & MWFRS					5 N.X. 28 8				
		36=160 (l	_C 21), 37=159 (LC	1),		eactions shown; Lumber DOL=1.60 plate grip					I AN WOINFER A				
	38=164 (LC 21), 39=147 (LC 1),				DOL=1.60					SEAL 036322					
			_C 17), 41=191 (LC	18),									A G	ILBUIN	
		45=183 (l	_C 1)										11111	in the second se	
														44 0000	

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

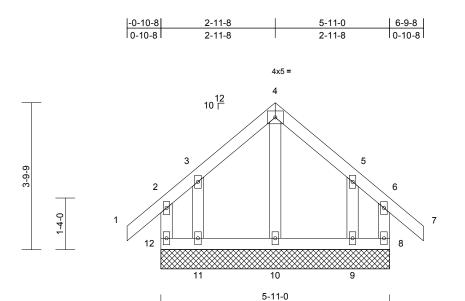
February 14,2023

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Azalea A Roof	
GHAZAA	A06	Common Supported Gable	1	1	Job Reference (optional)	156629992

- 10) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Tue Feb 14 08:03:33 ID:zCfWhbE?78Ih_OqGR9PI8ZzFmBe-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2



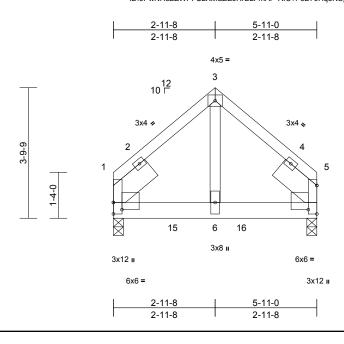
Job	Truss	Truss Type	Qty	Ply	Garman Homes - Azalea A Roof	
GHAZAA	B01	Common Supported Gable	1	1	Job Reference (optional)	156629993

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Tue Feb 14 08:03:34 ID:dfexAsVVXpTI_8N2buA2DJzFmcP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:29.8

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.00	TC 0.07	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15	BC 0.04	Vert(CT)	n/a	-	n/a	999			
BCLL	0.0*	Rep Stress Incr	YES	WB 0.04	Horz(CT)	0.00	8	n/a	n/a			
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-AS						Weight: 36 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she except end verticals Rigid ceiling directly (size) 8=5-11-0, 11=5-11-(Max Horiz 12=-92 (L Max Uplift 8=-56 (LC) 11=-48 (L Max Grav 8=111 (LC)	eathing directly applied , applied. , 9=5-11-0, 10=5-11-0 , 12=5-11-0 , C 10) C 12), 9=-45 (LC 8), C 9), 12=-59 (LC 8) C 17), 9=157 (LC 18), LC 1), 11=162 (LC 17 LC 18)	 Truss desig only. For stusee Standar or consult qu All plates are 5) Gable requir Truss to be f braced agair Gable studs This truss ha chord live loi * This truss ha on the bottor 3-06-00 tall h chord and ar Provide meco bearing plate 56 lb upl 	ned for wind loads in the j uds exposed to wind (norr d Industry Gable End Det ualified building designer a e 2x4 MT20 unless otherwise continuous bottom cho if ully sheathed from one fa ast lateral movement (i.e. spaced at 2-0-0 oc. as been designed for a 10 ad nonconcurrent with any nas been designed for a 10 m chord in all areas where by 2-00-00 wide will fit bet by other members. hanical connection (by ot e capable of withstanding iff at joint 8, 48 lb uplift at	nal to the face) ails as applicab is per ANSI/TP rise indicated. rd bearing. ce or securely diagonal web). .0 psf bottom / other live load ve load of 20.0 a rectangle ween the botto ners) of truss to 59 lb uplift at jo	, ile, I 1. Is. psf m oint						
	Tension 2-12=-91/96, 1-2=0/ 3-4=-62/100, 4-5=-6 6-7=0/39, 6-8=-90/9	' 39, 2-3=-48/55, 3/100, 5-6=-42/52,	International R802.10.2 a	9. designed in accordance v Residential Code section nd referenced standard A esign requires that a minir	s R502.11.1 ar NSI/TPI 1.	nd						
	11-12=-58/54, 10-11 8-9=-58/54	,	structural wo	ood sheathing be applied of 2" gypsum sheetrock be a	directly to the to					mmm	11111	
WEBS	4-10=-135/0, 3-11=-	110/75, 5-9=-106/74	the bottom c							W'TH CA	Rolly	
NOTES			LOAD CASE(S)	Standard					- 51	R	D. Link	
1) Unbalance	ed roof live loads have	been considered for	(-)					1	N's	2 the	102 man	2
this design								~	in		The second	·
Vasd=95m B=45ft; L=: MWFRS (c 2-1-8, Exte 5-9-4, Exte right expos for membe	CE 7-10; Vult=120mph pph; TCDL=6.0psf; BC 24ft; eave=2ft; Cat. II; directional) and C-C C erior (2) 2-1-8 to 2-11-i erior (2) 5-9-4 to 6-9-8 sed ; end vertical left a ers and forces & MWFI DL=1.60 plate grip DC	EDL=6.0psf; h=29ft; Exp B; Enclosed; corner (3) -0-10-8 to 8, Corner (3) 2-11-8 to zone; cantilever left a and right exposed;C-C RS for reactions show	and ;						A A A A A A A A A A A A A A A A A A A	SEA 0363	• •	


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

GI //////// February 14,2023

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Azalea A Roof	
GHAZAA	B02	Common Girder	1	2	Job Reference (optional)	156629994

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Tue Feb 14 08:03:35 ID:9PwNHcBZWPFUzXMSZEJHrDzFmAP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

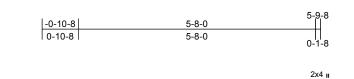
Scale = 1:33.5

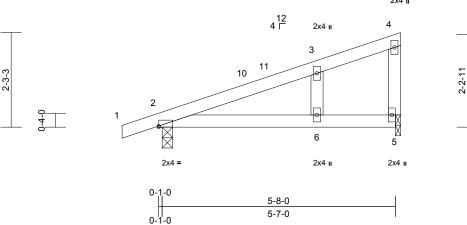
Plate Offsets (X, Y):	[1:0-3-0,0-2-8],	[5:0-3-0,0-8-7]
-----------------------	------------------	-----------------

	, .). [[
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code		5/TPI2014	CSI TC BC WB Matrix-MP	0.29 0.47 0.35	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.03 0.02	(loc) 6-9 6-9 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 79 lb	GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) 2-ply truss (0.131"x3", Top chords oc. Bottom cho staggered Web conne 2) All loads an except ifn c CASE(S) s provided to unless othe	Max Horiz 1=46 (LC Max Grav 1=1781 (L (Ib) - Maximum Com Tension 1-3=-1381/0, 3-5=-1 1-6=-162/997, 5-6=- 3-6=0/1682 to be connected toge) nails as follows: s connected as follows: ords connected as follows: ords connected as follows: ords connected as follows: exted as follows: 2x4 - re considered equally oted as fort (F) or ba section. Ply to ply com o distribute only loads erwise indicated.	athing directly applie applied or 10-0-0 oc 5=0-3-8 7) .C 1), 5=1559 (LC 1) pression/Maximum 388/0 108/997 ther with 10d s: 2x4 - 1 row at 0-9-0 ows: 2x6 - 2 rows 1 row at 0-9-0 oc. applied to all plies, ck (B) face in the LO nections have been noted as (F) or (B),	No.2 5) d or 6) 7) 8) 1) 0 AD	Vasd=95mpl B=45ft; L=22 MWFRS (dir end vertical I plate grip DC This truss ha chord live loa * This truss ha chord and ar This truss is International R802.10.2 a Hanger(s) or provided suf Ib down at 1 botton chord device(s) is f CAD CASE(S) Dead + Roo Plate Increa: Uniform Lo Vert: 1-3 Concentrat	s been designed ad nonconcurrent has been designe n chord in all area y 2-00-00 wide w hy other members designed in accor Residential Code dreferenced sta other connection ficient to support of -8-12, and 1437 I d. The design/sel he responsibility of Standard of Live (balanced) ase=1.00	CDL=6. II; Exp B er left an sed; Lun for a 10. with any d for a 10. s where s where s scotions how a soctions how a b down a ection of of others. Lumber 11=-20	Dpsf; h=29ft; ; Enclosed; d right exposibler DOL=1. D psf bottom other live loa e load of 20. a rectangle veen the bott ith the 2015 r R502.11.1 a ISI/TPI 1.) shall be ated load(s) 1 t 3-8-12 on such connect	60 ads. opsf om and 1437 tion				SEA 0363	22 EER.R.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Α. A. GILDIN GI February 14,2023

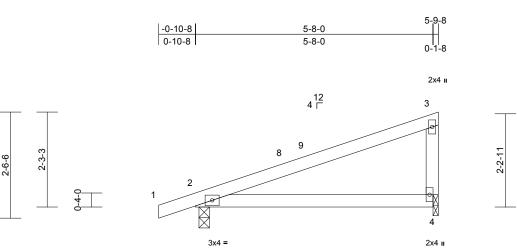

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Azalea A Roof	
GHAZAA	C01	Monopitch Structural Gable	1	1	Job Reference (optional)	156629995

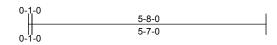

2-6-6

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Tue Feb 14 08:03:35 ID:YSjQsDVxfEfmeJBykVoVoRzFmIR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

818 Soundside Road Edenton, NC 27932


Scale = 1:27.6


Plate Offsets (X, Y): [2:Edge,0-0-5]

Loading (psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof) 20.0	Plate Grip DOL	1.00	TC	0.37	Vert(LL)	0.09	6-9	>736	240	MT20	244/190
TCDL 10.0	Lumber DOL	1.15	BC	0.41	Vert(CT)	-0.11	6-9	>595	180		
BCLL 0.0*	Rep Stress Incr	YES	WB	0.03	Horz(CT)	0.00	2	n/a	n/a		
BCDL 10.0	Code	IRC2015/TPI2014	Matrix-AS							Weight: 23 lb	FT = 20%
BOT CHORD Rigid ceiling direct REACTIONS (size) 2=0-3-0. Max Horiz 2=62 (L0 Max Uplift 2=-76 (L Max Grav 2=282 (I	5=0-1-8 C 12) C 12), 5=-65 (LC 12) .C 1), 5=222 (LC 1) mpression/Maximum 5/70, 3-4=-40/35 0 60/27 h (3-second gust) CDL=6.0psf; h=29ft; I; Exp B; Enclosed; Exterior (2) -0-10-8 to 2 zone; cantilever left I left and right expose C for members and shown; Lumber in the plane of the tru d (normal to the face) in the plane of the tru d (normal to the face) or a 10.0 psf bottom vith any other live load for a live load of 20.0 s where a rectangle	t d; using ÅNSI designer sf 7) Provide me bearing pla 8) Provide me bearing pla 2 and 65 lb 9) This truss is Internationa R802.10.2 10) This truss of structural w chord and 7 the bottom LOAD CASE(S t d; ss ble, Pl 1.		in formul y of bear n (by oth tanding 7 rdance w e sections ndard AN t a minim applied d	a. Building ing surface. ers) of truss t r6 lb uplift at j ith the 2015 s R502.11.1 a ISI/TPI 1. um of 7/16" irectly to the f	to joint and top				SEA 0363 SEA 0363 SEA 0363	EER A III

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Azalea A Roof				
GHAZAA	C02	Monopitch	5	1	Job Reference (optional)	156629996			

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Tue Feb 14 08:03:35 ID:ZMPPrwxadoetQcnqC_RP6XzFmja-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:27.5

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2018	5/TPI2014	CSI TC BC WB Matrix-AS	0.43 0.35 0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.09 -0.10 0.00	(loc) 4-7 4-7 2	l/defl >774 >690 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 21 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she Rigid ceiling directly (size) 2=0-3-0, 4 Max Horiz 2=62 (LC Max Uplift 2=-76 (LC Max Grav 2=282 (LC	applied. 4=0-1-8 12) C 12), 4=-65 (LC 12)	8)	bearing plat 2 and 65 lb This truss is Internationa R802.10.2 a This truss d structural w		hstanding 7 cordance w de sections standard AN nat a minim e applied d	'6 lb uplift at ith the 2015 R502.11.1 i ISI/TPI 1. um of 7/16" irectly to the	joint and top					
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-2=0/17, 2-3=-110/ 2-4=-94/95 3-4=-150/107												

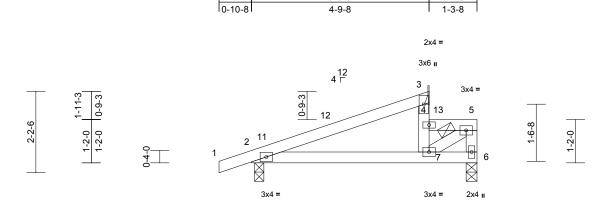
NOTES

- Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=29ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 5-7-12 zone; cantilever left and right exposed; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.

Page: 1

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Azalea A Roof	
GHAZAA	C03	Half Hip	2	1	Job Reference (optional)	156629997

4-9-8


-0-10-8

Carolina Structural Systems (Star, NC)), Ether, NC - 27247,

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Tue Feb 14 08:03:36 ID:Cd9t6qWutUZavkPtJC99SozFni5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

6-1-0

Page: 1

Scale = 1:31.1

Loading TCLL (roof) TCDL BCLL	(psf) 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.00 1.15 YES		CSI TC BC WB	0.33 0.26 0.01	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.03 -0.03 0.00	(loc) 7-10 7-10 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0	Code		5/TPI2014	Matrix-MP	0.01	11012(01)	0.00	2	n/a	11/a	Weight: 25 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex	cept end verticals, a		on the botton 3-06-00 tall I chord and an Refer to gird Provide med bearing plate	has been design m chord in all are by 2-00-00 wide ny other member er(s) for truss to shanical connecti e capable of with	eas where will fit betw rs. truss conr on (by oth	a rectangle veen the bott vections. ers) of truss	om to				~	
	2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. (size) 2=0-3-0, 3 Max Horiz 2=56 (LC Max Uplift 2=-61 (LC Max Grav 2=231 (LC 6=215 (LC	applied or 10-0-0 o 3= Mechanical, 6=0- 9) 2 12) 2 21), 3=608 (LC 1),	⁻³⁻⁸ 9)	 bearing plate capable of withstanding 61 lb uplift at joint 2. 8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 9) Load case(s) 1 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss. 10) Graphical purlin representation does not depict the size 									
FORCES TOP CHORD	(lb) - Maximum Com Tension 1-2=0/17, 2-3=-75/4	7, 4-7=-173/180,	11	bottom chore) Gap betwee diagonal or v	n inside of top ch /ertical web shall	nord bearir	ig and first						
BOT CHORD WEBS NOTES	3-4=0/500, 4-5=-23/ 2-7=-99/65, 6-7=-13 5-7=-47/41		LC 1)	Dead + Ro Plate Increa Uniform Lo	of Live (balanced ase=1.00	d): Lumber	Increase=1.	15,					
 Unbalance this design Wind: ASC 	ed roof live loads have n. CE 7-10; Vult=120mph	(3-second gust)	r	Vert: 1-3	=-60, 4-13=-60, and the second	5-13=-170	, 6-8=-20					TH CA	ROTY

- 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=29ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 5-11-4 zone; cantilever left and right exposed; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

ENGINEERING BY AMITEK Attiliate 818 Soundside Road Edenton, NC 27932

A. GILD.... February 14,2023

SEAL

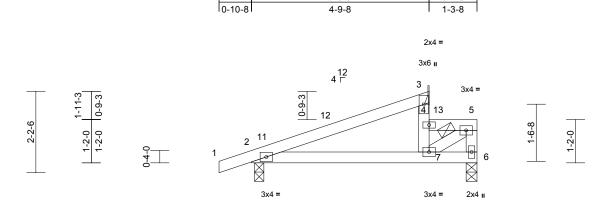
036322

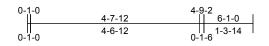
MULLIULIU,

CHARLEN WINDOW

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Azalea A Roof				
GHAZAA	C04	Half Hip	2	1	Job Reference (optional)	156629998			

4-9-8


-0-10-8


Carolina Structural Systems (Star, NC)), Ether, NC - 27247,

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Tue Feb 14 08:03:36 ID:Cd9t6qWutUZavkPtJC99SozFni5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

6-1-0

Page: 1

Scale = 1:31.1

Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.00		CSI TC	0.27	DEFL Vert(LL)	in 0.03	(loc) 7-10	l/defl >999	L/d 240	PLATES MT20	GRIP 244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.26	Vert(CT)	-0.03	7-10	>999	180		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.01	Horz(CT)	0.00	2	n/a	n/a		
BCDL	10.0	Code	IRC201	5/TPI2014	Matrix-MP							Weight: 25 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, exi			on the bottor 3-06-00 tall I chord and an Refer to gird Provide med	has been designe in chord in all area by 2-00-00 wide w hy other members er(s) for truss to t hanical connectio e capable of withs	as where vill fit betv s. russ conr n (by oth	a rectangle veen the bott nections. ers) of truss	om to					
BOT CHORD	2-0-0 oc purlins, ex 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing.	-0 max.): 4-7, 4-5.	0	3 and 62 lb t This truss is International	uplift at joint 2. designed in accou Residential Code	rdance w sections	ith the 2015 R502.11.1 a						
	(size) 2=0-3-0, 3 Max Horiz 2=56 (LC Max Uplift 2=-62 (LC Max Grav 2=230 (LC (LC 22)	, 12), 3=-72 (LC 12)	9)	 Load case(s designer mu correct for th Correct for th 	nd referenced sta) 1 has/have beer st review loads to e intended use of Irlin representation ation of the purlin	n modified verify the this trus n does no	d. Building at they are s. ot depict the s	size					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	1.	bottom chore		U	·						
TOP CHORD	1-2=0/17, 2-3=-74/4 3-4=-182/219, 4-5=-	-,,			vertical web shall								
BOT CHORD WEBS	2-7=-100/65, 6-7=-1 5-7=-51/37	3/15	1)	• • •	of Live (balanced)	: Lumber	Increase=1.	15,					
NOTES				Uniform Lo	ads (lb/ft)								
this design 2) Wind: ASC	ed roof live loads have n. CE 7-10; Vult=120mph nph; TCDL=6.0psf; BC	(3-second gust)		Vert: 1-3	=-60, 4-13=-60, 5	-13=-170	, 6-8=-20					TH CA	ROLIN

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=29ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 5-11-4 zone; cantilever left and right exposed ; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

Engineering by AMITEK Affiliate AMITEK Affiliate 818 Soundside Road Edenton, NC 27932

A. GILD.... February 14,2023

SEAL

036322

WWWWWWWW

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Azalea A Roof					
GHAZAA	C05	Monopitch	1	1	Job Reference (optional)	156629999				

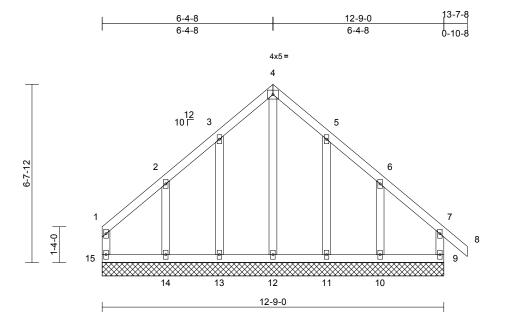
Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Tue Feb 14 08:03:36 ID:pCZxbxUNvC8UfLvZCK6WsvzFmZr-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

6-4-15

Page: 1

Scale = 1:28.4

Plate Offsets (X, Y): [3:0-2-13,0-0-4], [5:0-2-8,0-1-0]


Flate Olisets (7, 1). [3.0-2-13,0-0-4], [5.0-2-8,0-1-0]										
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-AS	0.43 0.36 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.09 -0.10 0.00	(loc) 5-8 5-8 4	l/defl >840 >742 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 23 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 Structural wood she except end verticals Rigid ceiling directly	applied. = Mechanical, 5=0- 9) 12), 4=-615 (LC 1), C 12) C 12) C 1), 4=180 (LC 12),	ed, 7) This true structura 3-8 the botto based of the botto based of the botto chord are based of the botto chord based of the botto	mechanical connection blate capable of withs 59 lb uplift at joint 5 as is designed in accord conal Residential Codu. 2 and referenced states a design requires that I wood sheathing be d 1/2" gypsum sheet in chord. E(S) Standard	standing 6 and 73 lb ordance w e sections andard AN at a minim applied d	15 Ib uplift at uplift at joint 2 ith the 2015 R502.11.1 a ISI/TPI 1. um of 7/16" irectly to the t	nd op					
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Com Tension 1-2=0/15, 2-3=-123/ 3-5=-842/452 2-5=-94/102											
NOTES	2-5=-94/102											
Vasd=95n B=45ft; L= MWFRS f(2-1-Rs, Inte right expo- left and rig MWFRS f(grip DOL= 2) This truss chord live 3) * This trus on the bot 3-06-00 ta chord and	CE 7-10; Vult=120mph nph; TCDL=6.0psf; BC =24ft; eave=4ft; Cat. II; directional) and C-C E: erior (1) 2-1-8 to 6-3-4 z sed ; end vertical left a ght exposed;C-C for me or reactions shown; Lu =1.60 has been designed for load nonconcurrent wi as has been designed for load nonconcurrent wi as has been designed for load nonconcurrent wi as has been designed for load nonconcurrent wi any other members. irder(s) for truss to trus	DL=6.0psf; h=29ft; Exp B; Enclosed; kterior (2) -0-10-8 to cone; cantilever left <i>i</i> and right exposed; pc embers and forces 8 mber DOL=1.60 pla a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle fit between the bottom	and orch & te ds. Dpsf						M. CONTRACTOR	The second secon	SEA 0363	• –

GI 11111111 February 14,2023

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Azalea A Roof	
GHAZAA	D01	Common Supported Gable	1	1	Job Reference (optional)	156630000

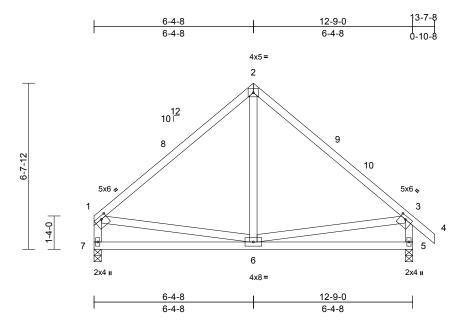
Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Tue Feb 14 08:03:37 ID:zheYZKvqpfK6f4C?vLiPz4zFmWj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:43

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.00 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-AS	0.11 0.07 0.14	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 9	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 79 lb	GRIP 244/190 FT = 20%
	except end verticals Rigid ceiling directly (size) 9=12-9-0. 15=12-9-0. Max Horiz 15=-141 (Max Uplift 9=-48 (LC 11=-31 (L 14=-58 (L Max Grav 9=181 (LC 11=165 (L	r applied. , 10=12-9-0, 11=12-9-0 0, 13=12-9-0, 14=12-9-0 1(C 10) C 12), 10=-65 (LC 12), C 12), 13=-33 (LC 12), C 12), 15=-56 (LC 8) C 17), 10=208 (LC 18) C 22), 12=193 (LC 12) C 21), 14=229 (LC 17)), 3) -0, 3) , 5) , 6)), 7)	Vasd=95mpf B=45ft; L=24 MWFRS (dir 3-1-12, Exter 9-4-8, Exterior and right exp exposed;C-C reactions sho DOL=1.60 Truss design only. For stu- see Standarc or consult qu All plates are Gable require Truss to be f braced again Gable studs This truss ha	7-10; Vult=120m n; TCDL=6.0psf; I ft; eave=2ft; Cat. ectional) and C-C rior (2) 3-1-12 to (or (2) 94-8 to 13- bosed ; end vertic c for members an boxn; Lumber DOI ned for wind load: ids exposed to wid d Industry Gable I ealified building de e 2x4 MT20 unles es continuous boi uilly sheathed from st lateral movem spaced at 2-0-0 o is been designed ad onoconcurrent	3CDL=6. II; Exp B Corner (3-4-8, Coe al left and d forces a L=1.60 pl s in the p ind (norm End Deta sesigner a: s otherwittom choir n one fac ent (i.e. co. c. for a 10.	Opsf; h=29ft; ; Enclosed; 3) 0-1-12 to rner (3) 6-4-8; ; cantilever le d right & MWFRS for ate grip lane of the tru al to the face ills as applical s per ANSI/TF se indicated. d bearing. se or securely liagonal web). 0 psf bottom	ft ble, PI 1.	prov dow des resp 14) In ti of ti LOAD (1) De Pla Ur Co	vided su (n and 2 ign/sele consibili ne LOAI ne truss CASE(S cad + Re ate Incre- niform L- Vert: 1-	Afficien Afficien Ction c ty of of D CAS are nc) Sta coof Live ease=1 oads (I 4=-60, ated Lo	o at 0-1-12 on bo of such connection thers. E(S) section, loa oted as front (F) of undard e (balanced): Lui 1.00 lb/ft) 4-7=-60, 7-8=-60 pads (lb)	entrated load(s) 69 lb ottom chord. The on device(s) is the ds applied to the face or back (B). mber Increase=1.15,
FORCES	(lb) - Maximum Corr Tension	pression/Maximum	9)	* This truss h	nas been designe n chord in all area	d for a liv	e load of 20.0						
TOP CHORD BOT CHORD WEBS	1-15=-94/45, 1-2=-9 3-4=-170/191, 4-5=- 6-7=-103/62, 7-8=0/ 14-15=-67/75, 13-14 11-12=-67/75, 10-11 4-12=-187/104, 3-13	.170/191, 5-6=-119/128 39, 7-9=-145/87 4=-67/75, 12-13=-67/75 1=-67/75, 9-10=-67/75	5, 10	3-06-00 tall b chord and an) Provide mec bearing plate 15, 48 lb upli	by 2-00-00 wide w by other members hanical connectio e capable of withs ff at joint 9, 33 lb 14, 31 lb uplift at	vill fit betw s. on (by oth standing f uplift at jo	veen the botto ers) of truss to 56 lb uplift at jo pint 13, 58 lb	o oint		4		ORTH CA	ROLL
NOTEO				,						-	8 - N		

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 11) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.


Page: 1

ENGINEERING BY EREPACED A MITTek Attrillate 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Azalea A Roof	
GHAZAA	D02	Common	2	1	Job Reference (optional)	156630001

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Tue Feb 14 08:03:37 ID:rjPUzW9?s6_7gJI2eFaKKVzFmWO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

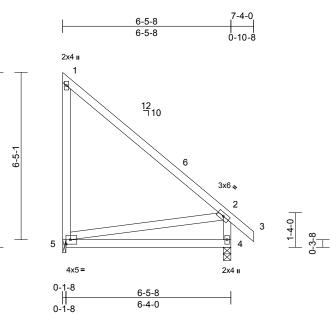
Scale = 1	:46.1
-----------	-------

Plate Offsets (X, Y): [1:0-2-12,0-1-8], [3:0-2-12,0-1-8]

Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.00	CSI TC	0.62	DEFL Vert(LL)	in -0.03	(loc) 6-7	l/defl >999	L/d 240	PLATES MT20	GRIP 244/190
TCDL BCLL	10.0 0.0*	Lumber DOL Rep Stress Incr	1.15 YES	BC WB	0.32 0.09	Vert(CT) Horz(CT)	-0.06 0.00	6-7 5	>999 n/a	180 n/a		
BCDL	10.0	Code	IRC2015/TPI2014		0.09	11012(C1)	0.00	5	11/a	n/a	Weight: 75 lb	FT = 20%
	Max Horiz 7=-141 (L Max Uplift 5=-47 (LC	applied. '=0-3-8 C 10) 12), 7=-19 (LC 12)	bearing 7 and 4 6) This tru- Internat R802.11 7) This tru- structur- chord a the bott	mechanical connectii plate capable of with: 7 Ib uplift at joint 5. ss is designed in acccional Residential Cod 0.2 and referenced st ss design requires tha al wood sheathing be nd 1/2" gypsum sheet om chord. E(S) Standard	standing ordance w e sections andard Al at a minim applied d	9 lb uplift at ith the 2015 R502.11.1 a ISI/TPI 1. um of 7/16" irectly to the	joint and top					
FORCES	Max Grav 5=562 (LC (lb) - Maximum Com	,, , ,										
TOP CHORD	Tension 1-2=-479/79, 2-3=-4 1-7=-437/78, 3-5=-5 6-7=-88/262, 5-6=-5	03/112 4/223										
WEBS NOTES	2-6=0/237, 1-6=-32/	175, 3-6=-60/177										
1) Unbalance	ed roof live loads have	been considered fo	r									
Vasd=95m B=45ft; L=2 MWFRS (c 3.1-12, Intr 9-4-8, Inter and right e exposed;C reactions s DOL=1.60	CE 7-10; Vult=120mph ph; TCDL=6.0psf; BC :24ft; eave=4ft; Cat. II; directional) and C-C E: error (1) 3-1-12 to 6-4- rior (1) 9-4-8 to 13-7-8 exposed ; end vertical I C-C for members and fr shown; Lumber DOL=1	DL=6.0psf; h=29ft; Exp B; Enclosed; tterior (2) 0-1-12 to 8, Exterior (2) 6-4-8 zone; cantilever lef eft and right orces & MWFRS for 1.60 plate grip	t						M. HILL		NUTH CA	• -
 chord live I 4) * This truss on the bott 3-06-00 tal 	has been designed for load nonconcurrent wi s has been designed f tom chord in all areas II by 2-00-00 wide will any other members.	th any other live loa or a live load of 20.0 where a rectangle)psf							A A A A A A A A A A A A A A A A A A A	A. C	EER. KINN

* This truss has been designed for a live load of 20.0psf 4) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

818 Soundside Road Edenton, NC 27932


A. GILB

A. GIL February 14,2023

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Azalea A Roof	
GHAZAA	D03	Roof Special	17	1	I566300 Job Reference (optional)	002

6-8-9

Run: 8.63 S. Nov 19 2022 Print: 8.630 S. Nov 19 2022 MiTek Industries. Inc. Tue Feb 14 08:03:37 ID:ZwYhekUxVPNIPTsEjQZgwCzFmVz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.00	тс	0.61	Vert(LL)	-0.09	4-5	>853	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.49	Vert(CT)	-0.17	4-5	>427	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.19	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-AS							Weight: 43 lb	FT = 20%

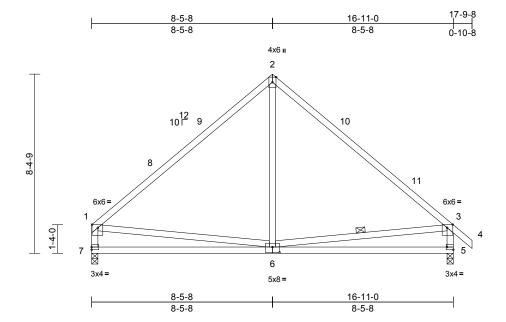
LUIVIDER		
TOP CHORD	2x4 SP N	0.2
BOT CHORD	2x4 SP N	0.2
WEBS	2x4 SP N	o.3 *Except* 4-2:2x4 SP No.2
BRACING		
TOP CHORD	Structural	wood sheathing directly applied
	except en	nd verticals.
BOT CHORD	Rigid ceili	ing directly applied.
REACTIONS	(size)	4=0-3-8, 5=0-1-8
	Max Horiz	5=-202 (LC 10)
	Max Uplift	4=-15 (LC 12), 5=-81 (LC 8)
	Max Grav	4=315 (LC 17), 5=275 (LC 18)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	-
TOP CHORD	1-5=-265/	(198, 1-2=-220/218, 2-3=0/39,
	2-4=-253/	115
BOT CHORD	4-5=-17/1	8
WEBS	2-5=-259/	285

NOTES

- 1) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=29ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) 6-3-12 to 10-6-11, Interior (1) 10-6-11 to 13-6-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 2) chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- Provide mechanical connection (by others) of truss to 5) bearing plate at joint(s) 5.

4 and 81 lb uplift at joint 5.

- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- This truss design requires that a minimum of 7/16" 8) structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- LOAD CASE(S) Standard


Page: 1

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Azalea A Roof	
GHAZAA	D04	Common	4	1	Job Reference (optional)	156630003

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Tue Feb 14 08:03:38 ID:Gr8Tk9cC9Uetc?d9JWk0KJzFmVp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

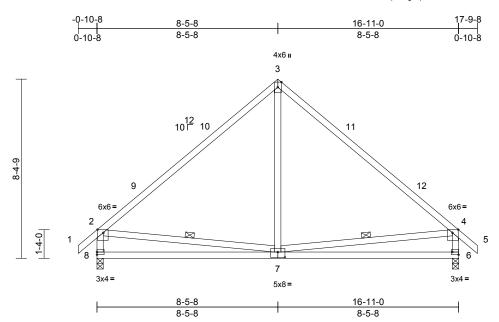
Page: 1

Scale = 1:53.9

Plate Offsets (X, Y): [1:0-3-4,0-1-12], [3:0-3-4,0-1-12], [5:Edge,0-1-8], [6:0-4-0,0-3-0]

		1										
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.00	TC	0.72	Vert(LL)	-0.08	6-7	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.59	Vert(CT)	-0.17	6-7	>999	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.13	Horz(CT)	0.01	5	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2	014 Matrix-AS							Weight: 98 lb	FT = 20%
				ide mechanical connecti ing plate capable of with								
TOP CHORD BOT CHORD				d 53 lb uplift at joint 5.	stanuing z	.5 ib upilit at j	joint					
WEBS	2x4 SP No.2 2x4 SP No.3 *Excep	** 7 1 5 3.2v4 CD N		truss is designed in acco	ordance w	ith the 2015						
BRACING	214 OF NU.3 EXCEP	JU 7-1,0-0.2X4 OF IN		national Residential Cod			and					
TOP CHORD	Structural wood she	othing directly applic	DOO	2.10.2 and referenced st								
TOP CHORD	except end verticals		a, 7) This	truss design requires that	at a minim	um of 7/16"						
BOT CHORD			struc	tural wood sheathing be	applied d	irectly to the	top					
WEBS	0 0 ,	3-6	chor	d and 1/2" gypsum shee	trock be a	oplied directly	y to					
REACTIONS			the t	ottom chord.								
REACTIONO	Max Horiz 7=-173 (L		LOAD C	ASE(S) Standard								
	Max Uplift 5=-53 (LC											
	Max Grav 5=728 (L0	<i>// / /</i>										
FORCES	(lb) - Maximum Com	<i></i>										
1 ONOLO	Tension	procession										
TOP CHORD		72/90, 3-4=0/39,										
	1-7=-586/87, 3-5=-6	51/118										
BOT CHORD	5-7=-111/414											
WEBS	2-6=0/339, 1-6=-81/	198, 3-6=-143/212										
NOTES												
1) Unbalance	ed roof live loads have	been considered for	r									
this desig	jn.										minin	Uni.
	CE 7-10; Vult=120mph										IN'TH CA	ROUL
	mph; TCDL=6.0psf; BC									1	A	Chille .
	=24ft; eave=4ft; Cat. II;									N'	Q'.FESS	10 Vil
	(directional) and C-C E		to						6	25	11-1	Kill
	nterior (1) 3-1-12 to 8-5- nterior (1) 11-5-8 to 17-9										100	- T: -
	exposed ; end vertical l								-		CEA	n 1 E -
	C-C for members and f								=		SEA	• -
	shown; Lumber DOL=								1	:	0363	22 : =
DOL=1.6		5 F 5 5 5 F							-			- 1 2
3) This truss	s has been designed for	r a 10.0 psf bottom								-		1 - 1 - S
	e load nonconcurrent wi		ds.							21	N. ENO	-ERIX S
	ss has been designed f		psf							1	S, GIN	EF R N
on the bo	ttom chord in all areas	where a rectangle								1	CA C	IL BEITH
0 00 00 1		COL 1 1 1 1 11										

- and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 This truss has been designed for a 10.0 psf bottom 3)
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 4)
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.


GI

mmm

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Azalea A Roof	
GHAZAA	D05	Common	2	1	Job Reference (optional)	156630004

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Tue Feb 14 08:03:38 ID:oSANEFCZNrxnchSmE0ekLszFmV1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:53.9

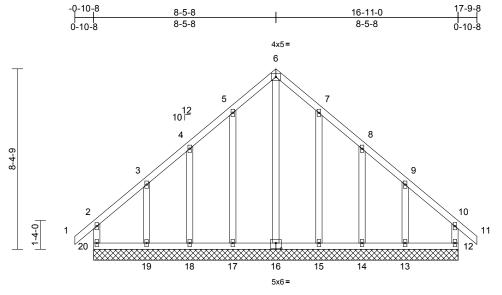
Plate Offsets (X, Y): [2:0-3-4,0-1-12], [4:0-3-4,0-1-12], [6:Edge,0-1-8], [7:0-4-0,0-3-0]

			-						-	-			
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES	5/TPI2014	CSI TC BC WB Matrix-AS	0.72 0.59 0.13	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.08 -0.17 0.01	(loc) 6-7 6-7 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 100 lb	GRIP 244/190 FT = 20%
LUMBER			5)		hanical connection								
TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Excep Structural wood she	athing directly applie		8 and 53 lb t This truss is International R802.10.2 a	e capable of withsta uplift at joint 6. designed in accord Residential Code s nd referenced stand esign requires that a	ance w sections dard AN	ith the 2015 R502.11.1 a ISI/TPI 1.						
BOT CHORD WEBS	CHORD Rigid ceiling directly applied. structural wood sheathing be applied directly to the top BS 1 Row at midpt 2-7, 4-7 chord and 1/2" gypsum sheetrock be applied directly to ACTIONS (size) 6=0-3-8 8=0-3-8												
REACTIONS (size) 6=0-3-8, 8=0-3-8 LOAD CASE(S) Standard Max Horiz 8=-178 (LC 10) LOAD CASE(S) Standard Max Gray 6=726 (LC 1), 8=726 (LC 1) Standard													
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD	1-2=0/39, 2-3=-668/ 4-5=0/39, 2-8=-649/												
BOT CHORD WEBS	6-8=-147/493 3-7=0/343, 2-7=-137	//211, 4-7=-144/212											
NOTES 1) Unbalance this design	Unbalanced roof live loads have been considered for												
 Wind: ASC Vasd=95m B=45ft; L= 	DE 7-10; Vult=120mph nph; TCDL=6.0psf; BC 24ft; eave=4ft; Cat. II;							A.	ORTH CA	RAM			

Vasd-Somph, TCDL-OLOBA, BCDL-OLOBA, THEAST, B=45ft; L=24ft; eave=4ft; Cat. IJ; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 8-5-8, Exterior (2) 8-5-8 to 11-5-8, Interior (1) 11-5-8 to 17-9-8 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
4) * This truss has been designed for a live load of 20.0psf

4) * This truss has been designed for a live load of 20.0ps on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.


Engineering By Engineering By A MiTek Affiliate 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Azalea A Roof	
GHAZAA	D06	Common Supported Gable	1	1	Job Reference (optional)	156630005

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Tue Feb 14 08:03:39 ID:d9aUdxhfy7_6PqWSaQM6zIzFmUP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

818 Soundside Road Edenton, NC 27932

16-11-0

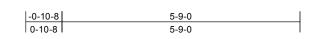
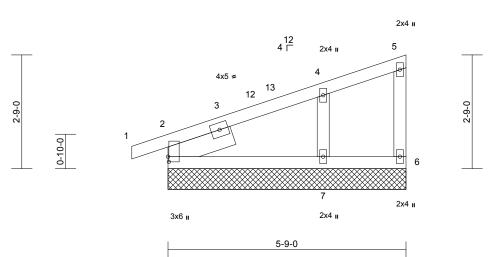

Scale = 1:53.5

Plate Offsets (X, Y): [16:0-3-0,0-3-0]

Flate Olisets (χ, Τ). [10.0-3-0,0-3-0]											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code		5/TPI2014	CSI TC BC WB Matrix-AS	0.14 0.09 0.32	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 12	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 116 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she except end verticals Rigid ceiling directly (size) 12=16-11 14=16-11 18=16-11 20=16-11 Max Horiz 20=-178 (Max Uplift 12=-44 (L 17=-32 (L 19=-65 (L 14=156 (L 16=260 (L	applied. -0, 13=16-11-0, -0, 15=16-11-0, -0, 17=16-11-0, -0 LC 10) C 12), 13=-65 (LC 12) C 12), 15=-32 (LC 12) C 12), 18=-43 (LC 12) C 12), 20=-52 (LC 8) .C 17), 13=226 (LC 18) .C 12), 17=176 (LC 17) .C 12), 17=176 (LC 17) .C 1), 19=232 (LC 17)), 4)), 5)), 5)), 6) 3), 7), 8)	this design. Wind: ASCE Vasd=95mph B=45ft; L=24 MWFRS (dird 2-1-8, Exterior 11-5-8, Exterior 11-5-8, Exterior and right exp exposed;C-C reactions sho DOL=1.60 Truss design only. For stu see Standard or consult qu All plates are Gable requird Truss to be fi braced again Gable studs a This truss ha chord live loa * This truss fit	roof live loads hav 7-10; Vult=120mp ; TCDL=6.0psf; B ft; eave=2ft; Cat. I ectional) and C-C or (2) 2-1-8 to 8-5- ior (2) 11-5-8 to 1 osed ; end vertica ; for members and own; Lumber DOL hed for wind loads ids exposed to wir d Industry Gable E alified building de: 2x4 MT20 unless es continuous bott ully sheathed from ist lateral moveme spaced at 2-0-0 or is been designed d ad nonconcurrent ist been designed	ch (3-sec iCDL=6. iI; Exp B Corner (8, Corner (9, Co	cond gust) Opsf; h=29ft; ; Enclosed; 3) -0-10-8 to er (3) 8-5-8 to ne; cantilever d right & MWFRS for ate grip lane of the tru al to the face) ils as applicat s per ANSI/TF se indicated. d bearing. te or securely liagonal web). D psf bottom other live load e load of 20.0	left ss , ગેલ, ગે 1. ds.	LOAD	CASE(S) Sta	ndard	Route
FORCES	(lb) - Maximum Com Tension	,		3-06-00 tall b	n chord in all area by 2-00-00 wide wi	II fit betw		om			A	ORTEESS	Chilling .
TOP CHORD	2-20=-159/80, 1-2=0 3-4=-104/118, 4-5=- 6-7=-210/246, 7-8=-)/39, 2-3=-122/100, 160/188, 5-6=-210/24 159/187, 8-9=-105/11 =0/39, 10-12=-150/78	6, 9,) Provide mech bearing plate 20, 44 lb upli	ny other members. hanical connectior capable of withst ft at joint 12, 32 lb 18, 65 lb uplift at jo	n (by oth anding 5 uplift at	52 lb uplift at jo joint 17, 43 lb	pint		6	N	SEA	
BOT CHORD	19-20=-83/85, 18-19)=-83/85, 17-18=-83/8 ;=-83/85, 13-14=-83/8	5,	15, 43 lb upli) This truss is	ft at joint 14 and 6 designed in accord Residential Code	5 lb upli dance w	ft at joint 13. ith the 2015			THE PARTY		0363	• -
WEBS	6-16=-256/154, 5-17	/=-133/69, 4-18=-127/ j=-132/68, 8-14=-126/	05	R802.10.2 ar) This truss de structural wo	nd referenced star sign requires that od sheathing be a 2" gypsum sheetro	ndard AN a minim pplied d	ISI/TPI 1. um of 7/16" irectly to the to	ор				SEA 0363	ILBERTUUT
												February	14,2023


Job	Truss	Truss Type	Qty	Ply	Garman Homes - Azalea A Roof	
GHAZAA	E01	Monopitch Supported Gable	1	1	Job Reference (optional)	156630006

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Tue Feb 14 08:03:39 ID:Sr?c1cAlXQ0QCzZ8wp4VbjzFmTn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

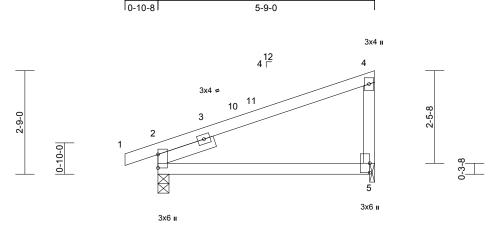
Scale = 1:27.8

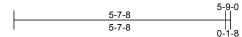
Plate Offsets (X, Y): [2:0-1-8,0-0-4]

Loading (psf) TCLL (roof) 20.0 TCDL 10.0 BCLL 0.0*	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.00 1.15 YES	CSI TC BC WB	0.13	DEFL Vert(LL) Vert(CT)	in n/a n/a	(loc) - -	l/defl n/a n/a	L/d 999 999	PLATES MT20	GRIP 244/190
BCLL 0.0* BCDL 10.0	Rep Stress Incr Code	IRC2015/TF		0.06 AS	Horz(CT)	0.00	2	n/a	n/a	Weight: 28 lb	FT = 20%
Max Horiz 2=74 (LC Max Uplift 2=-22 (LC 8=-22 (LC Max Grav 2=183 (LC	athing directly applie applied. i=5-9-0, 7=5-9-0, 8= 11), 8=74 (LC 11) 12), 7=-27 (LC 12), 12) (1), 6=23 (LC 1), 7= 183 (LC 1) pression/Maximum 30, 4-5=-47/47, 49 (3-second gust) DL=6.0psf; h=29ft; Exp B; Enclosed; orner (3) -0-10-8 to zone; cantilever left nd right exposed;C-CRS for reactions sho L=1.60 the plane of the true (normal to the face) d Details as applicab gner as per ANSI/TP	and C wn; ss, ple,	s truss has been d rd live load nonco nis truss has been the bottom chord ii 6-00 tall by 2-00-0 rd and any other r vide mechanical c tring plate capable 7 lb uplift at joint 7 s truss is designed rmational Residen 02.10.2 and refere s truss design requictural wood sheat ord and 1/2" gypsu bottom chord. CASE(S) Standa	ncurrent with any designed for a liv n all areas where on all areas where hembers. Donnection (by oth of withstanding 2 and 22 lb uplift a in accordance w ial Code sections need standard AN irres that a mining be applied d n sheetrock be a	other live load e load of 20. a rectangle veen the bott ers) of truss 22 lb uplift at it joint 2. ith the 2015 a R502.11.1 at JSI/TPI 1. um of 7/16" irectly to the	Opsf tom to joint and top				SEA 0363	L 22 EER

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Azalea A Roof	
GHAZAA	E02	Monopitch	7	1	Job Reference (optional)	156630007

5-9-0


-0-10-8


Carolina Structural Systems (Star, NC)), Ether, NC - 27247,

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Tue Feb 14 08:03:39 ID:Df03G9UQe6Atip_xuZ0M6?zFmTO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

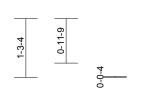
Page: 1

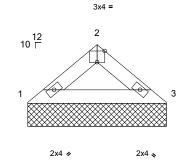
Scale = 1:30.6

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2018	5/TPI2014	CSI TC BC WB Matrix-AS	0.39 0.23 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.04 0.01	(loc) 5-8 5-8 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 24 lb	GRIP 244/190 FT = 20%
BOT CHORD 2: OTHERS 2: SLIDER La BRACING TOP CHORD S BOT CHORD R REACTIONS (siz Ma	Rigid ceiling directly ze) 2=0-3-8, 9 ax Horiz 2=110 (LC ax Uplift 2=-12 (LC	eathing directly applied applied. 5=0-1-8 C 12)	7) 8) ^{d.} LC	International R802.10.2 ar This truss de structural wo		sections dard AN a minim pplied d	R502.11.1 a NSI/TPI 1. um of 7/16" irectly to the t	top					
TOP CHORD 1: BOT CHORD 2: NOTES 1) Wind: ASCE 7 Vasd=95mph B=45ft; L=24f MWFRS (dire	ension -2=0/17, 2-4=-156/ -5=-189/133 7-10; Vult=120mph ; TCDL=6.0psf; BC t; eave=4ft; Cat. II; ectional) and C-C E	n (3-second gust) DL=6.0psf; h=29ft;	nd										

- Inis truss has been designed for a 10.0 pst bottom chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 5.


 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 12 lb uplift at joint 2 and 31 lb uplift at joint 5. SEAL 036322 February 14,2023


> ENGINEERING BY EREENCO A MITEK Affiliate 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Azalea A Roof	
GHAZAA	V01	Valley	1	1	I56630008 Job Reference (optional)	

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Tue Feb 14 08:03:40 ID:qARewOGCL4Mf?pSRCjhbEizFmSN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

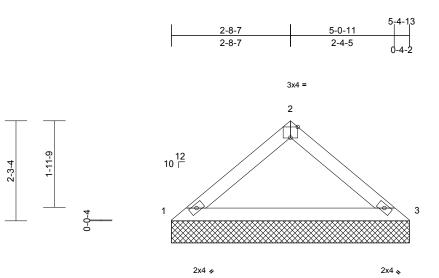
3-0-0

Scale = 1:25

Plate Offsets (X, Y): [2:0-2-0,Edge]

Plate Offsets (X, Y): [2:0-2-0,Edg	jej									-	
Loading (psf) TCLL (roof) 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	Plate Grip DOL Lumber DOL * Rep Stress Incr	2-0-0 1.00 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MP	0.07 0.09 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 9 lb	GRIP 244/190 FT = 20%
BOT CHORD 3-0-0 oc purlins. Rigid ceiling direct bracing. REACTIONS (size) 1=3-0- Max Horiz Max Uplift 1=20 (Max Grav	LC 12), 3=-4 (LC 12) (LC 1), 3=120 (LC 1) ompression/Maximum =-155/24 we been considered for uph (3-second gust) BCDL=6.0psf; h=29ft; II; Exp B; Enclosed; Exterior (2) zone; ed ; end vertical left and rs and forces & MWFRS DOL=1.60 plate grip s in the plane of the truss ind (normal to the face), End Details as applicable esigner as per ANSI/TP1 tom chord bearing. DC. for a 10.0 psf bottom	on the botto 3-06-00 tall chord and a 9) Provide me bearing pla and 4 lb up 9) This truss i Internationa R802.10.2 LOAD CASE(S 1.	thas been designed om chord in all area by 2-00-00 wide w any other members schanical connection te capable of withst lift at joint 3. s designed in accor al Residential Code and referenced star b) Standard	is where ill fit betw n (by oth anding 4 dance w sections	a rectangle veen the botto ers) of truss to b uplift at joi ith the 2015 s R502.11.1 a	om o int 1				SEA 0363	EER A U

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2870 Crain Highway, Suite 203 Waldorf, MD 20601


February 14,2023

Job	Truss	russ Truss Type Qty Ply Garman Home		Garman Homes - Azalea A Roof		
GHAZAA	V02	Valley	1	1	Job Reference (optional)	156630009

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Tue Feb 14 08:03:40 ID:X52Q0pOT_8dECLDMnqsyepzFmSD-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-4-13

Page: 1

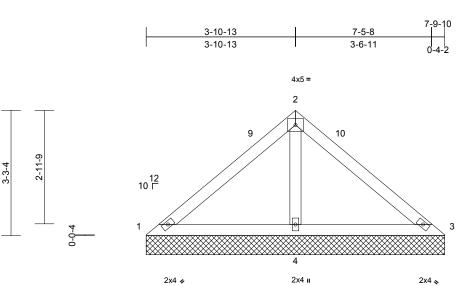
Scale = 1:26.2

Plate Offsets (X, Y): [2:0-2-0,Edge]

	, 1). [2.0-2-0,Luge]										-	
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-AS	0.20 0.28 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 17 lb	GRIP 244/190 FT = 20%
BOT CHORD BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS (S M FORCES TOP CHORD BOT CHORD BOT CHORD NOTES 1) Unbalanced this design. 2) Wind: ASCE Vasd=95mp B=45ft; L=2- MWFRS (dii cantilever le right expose for reactions DOL=1.60 3) Truss desig only. For st see Standar or consult qu 4) Gable requii 5) Gable studs 6) This truss ha chord live lo 7) * This truss	2x4 SP No.2 2x4 SP No.3 Structural wood she Rigid ceiling directly size) 1=5-4-13, 4ax Horiz 1=39 (LC Max Uplift 1=-8 (LC Max Grav 1=216 (LC (Ib) - Maximum Com Tension 1-2=-300/43, 2-3=-3 1-3=-25/224 roof live loads have 57-10; Vult=120mph h; TCDL=6.0psf; BC 4f; eave=2f; Cat. II; rectional) and C-C C ft and right exposed d; C-C for members a shown; Lumber DC upled for wind loads in uds exposed to wind rd Industry Gable En ualified building desig res continuous bottoo spaced at 6-0-0 oc. as been designed fo ad nonconcurrent wi has been designed fo m chord in all areas by 2-00-00 wide will ny other members.	applied. 3=5-4-13 11) 12), 3=-8 (LC 12) C 1), 3=216 (LC 1) pression/Maximum 00/43 been considered for (3-second gust) DL=6.0psf; h=29ft; Exp B; Enclosed; orner (3) zone; ; end vertical left and and forces & MWFR orl=1.60 plate grip In the plane of the tru (normal to the face) d Details as applicat gner as per ANSI/TFF m chord bearing. r a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle	d ss bearing and 8 lb 9) This true R802.10 10) This true structure chord at the both LOAD CAS	mechanical connection plate capable of withs puplift at joint 3. ss is designed in acco- ional Residential Codu- ional Residential Codu- ss design requires that al wood sheathing be nd 1/2" gypsum sheet om chord. E(S) Standard	standing 8 ordance w e sections andard AN at a minim applied d	B lb uplift at jo ith the 2015 R502.11.1 a ISI/TPI 1. um of 7/16" irectly to the f	and top				SEA 0363	EER REPUT

- 6 chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf
- 7) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

Man Ginn February 14,2023


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty Ply Garman Homes - Azalea A Roof		Garman Homes - Azalea A Roof	
GHAZAA	V03	Valley	1	1	Job Reference (optional)	156630010

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Tue Feb 14 08:03:40 ID:Iv2sGMh95qmhiBd9lapp94zFmRq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

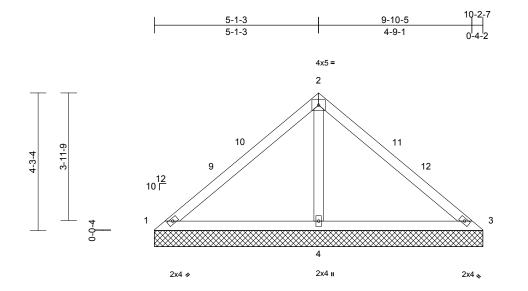
7-9-10

Scale = 1:30.1

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.00		TC	0.18	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.30	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.10	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2015/	/TPI2014	Matrix-AS							Weight: 29 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	Rigid ceiling directly (size) 1=7-9-10 Max Horiz 1=-58 (L0 Max Uplift 1=-12 (L0 4=-56 (L0	, 3=7-9-10, 4=7-9-10 C 10) C 22), 3=-12 (LC 21),	8) I. 9) 10)	on the botton 3-06-00 tall b chord and ar Provide mec bearing plate 1, 12 lb uplift This truss is International R802.10.2 ar This truss de structural wo	as been designe n chord in all are y 2-00-00 wide w y other member: capable of withs at joint 3 and 56 designed in accc Residential Cod do referenced sta sign requires that od sheathing be 2" gypsum sheet pord	as where will fit betw s. on (by oth standing 1 i lb uplift a ordance w e sections andard AN andard AN applied di	a rectangle veen the botto 2 lb uplift at j t joint 4. ith the 2015 R502.11.1 a ISI/TPI 1. um of 7/16" rectly to the t	om to oint and top					
FORCES	(lb) - Maximum Con Tension	npression/Maximum	LO	AD CASE(S)	Standard								
TOP CHORD	1-2=-62/220, 2-3=-6	61/220											
BOT CHORD	1-4=-179/102, 3-4=	-179/102											
WEBS	2-4=-401/116												
NOTES													
,	ed roof live loads have	e been considered for											
this design	ז.												

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=29ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) 0-0-5 to 3-0-5, Interior (1) 3-0-5 to 3-11-2, Exterior (2) 3-11-2 to 7-0-9, Interior (1) 7-0-9 to 7-9-15 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 4)
- 5) Gable studs spaced at 6-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 6) chord live load nonconcurrent with any other live loads.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type Qty Ply Garman Homes - Azalea A F		Garman Homes - Azalea A Roof		
GHAZAA	V04	Valley	1	1	Job Reference (optional)	156630011

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Tue Feb 14 08:03:40 ID:q_0wdquBKInQderEhx5ZoSzFmRa-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

10-2-7

Scale = 1:35.8

Ocale - 1.55.0										-	
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.00 1.15 YES IRC2015/TPI2014	27 N 39 N	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 39 lb	GRIP 244/190 FT = 20%
	Rigid ceiling directly (size) 1=10-2-7, Max Horiz 1=-77 (LC Max Uplift 1=-24 (LC 4=-71 (LC	, 3=10-2-7, 4=10-2-7 2 10) 2 22), 3=-24 (LC 21), 2 12) 2 1), 3=79 (LC 22), 4= appression/Maximum	on the bottor 3-06-00 tall b chord and ar 8) Provide mec bearing plate 1, 24 lb upliff 9) This truss is International R802.10.2 ar 10) This truss de structural wo	others others ng 24 ift at ju e with ons R ANSI himun d dire	rectangle en the bottor s) of truss to lb uplift at joi joint 4. the 2015 \$502.11.1 an l/TPI 1. n of 7/16" ectly to the to	n int d					
BOT CHORD WEBS	1-2=-67/311, 2-3=-6 1-4=-219/106, 3-4=- 2-4=-575/148										

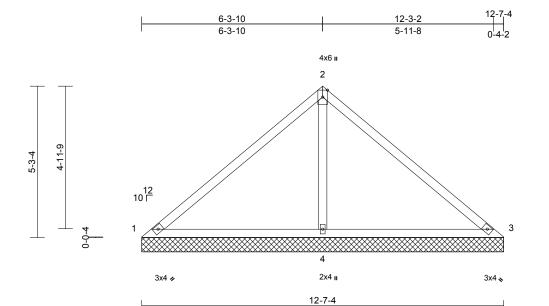
NOTES

1) Unbalanced roof live loads have been considered for this design.

Wind: ASCE 7-10; Vult=120mph (3-second gust) 2) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=29ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) 0-0-5 to 3-0-5, Interior (1) 3-0-5 to 5-1-8, Exterior (2) 5-1-8 to 8-1-8, Interior (1) 8-1-8 to 10-2-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 4)
- 5) Gable studs spaced at 6-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 6) chord live load nonconcurrent with any other live loads.

ORT CHILDRAN WIND MALINE IN THE SEAL 036322 GI (1111111) February 14,2023


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Azalea A Roof			
GHAZAA	V05	Valley	1	1	Job Reference (optional)	156630012		

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Tue Feb 14 08:03:41 ID:UHIS8w1jVRIj3UmYOSJNI_zFmRO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scal	e =	1:40.1	1

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015/7	TPI2014	CSI TC BC WB Matrix-AS	0.41 0.35 0.38	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 49 lb	GRIP 244/190 FT = 20%
	Rigid ceiling directly	3=12-7-4, 4=12-7-4 11) 22), 3=-54 (LC 21), C 12)	8) 9) 10)	on the bottom 3-06-00 tall b chord and an Provide mecl bearing plate 1, 54 lb uplift This truss is International R802.10.2 ar This truss de structural wo	as been design n chord in all ar by 2-00-00 wide y other membe capable of witi at joint 3 and 1 designed in acc Residential Co dreferenced s sign requires th od sheathing b 2" gypsum shee	reas where e will fit betw ers. tion (by oth hstanding 5 108 lb uplift cordance w de sections standard AN nat a minim e applied d	a rectangle veen the both ers) of truss i 4 lb uplift at j at joint 4. ith the 2015 5 R502.11.1 a ISI/TPI 1. um of 7/16" irectly to the	om to joint and top					
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-2=-106/441, 2-3=- 1-4=-309/153, 3-4=- 2-4=-785/227	106/441		ND CASE(S)									

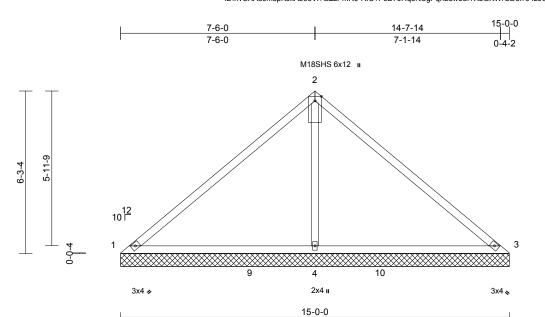
NOTES

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=29ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner (3) 0-0-5 to 3-0-5, Exterior (2) 3-0-5 to 6-3-15, Corner (3) 6-3-15 to 9-3-15, Exterior (2) 9-3-15 to 12-7-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing.

4) 5) Gable studs spaced at 6-0-0 oc.


6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. VIIIIIIIIIIIIIIII VIIIIIIIIIII SEAL 036322 G (1111111) February 14,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty Ply		Garman Homes - Azalea A Roof					
GHAZAA	V06	Valley	1	1	Job Reference (optional)	156630013				

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Tue Feb 14 08:03:41 ID:nvCXA8JmspKJxAb9oVI?G2zFmR0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale	=	1:44	5

Scale = 1:44.5													
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.00	TC	0.59	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15	BC	0.51	Vert(TL)	n/a	-	n/a	999	M18SHS	244/190	
BCLL	0.0*	Rep Stress Incr	YES	WB	0.70	Horiz(TL)	0.01	3	n/a	n/a			
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-AS							Weight: 58 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3	2x4 SP No.2 3-06-00 tall by 2-00-00 wide will fit between the bottom											
BRACING			Provide med	chanical connec	tion (by oth	iers) of truss	to						

BRACING		
TOP CHORD	Structural	wood sheathing directly applied.
BOT CHORD	Rigid ceili	ng directly applied.
REACTIONS	(size)	1=15-0-0, 3=15-0-0, 4=15-0-0
	Max Horiz	1=-114 (LC 10)
	Max Uplift	1=-95 (LC 22), 3=-95 (LC 21),

Max Uplift 1=-95 (LC 22), 3=-95 (LC 21), 4=-153 (LC 12) Max Grav 1=55 (LC 21), 3=55 (LC 22), 4=1295 (LC 17)

FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-151/597, 2-3=-151/597 BOT CHORD 1-4=-419/196, 3-4=-419/196

- WEBS 2-4=-1029/296
- NOTES

 Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=29ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner (3) 0-0-5 to 3-0-5, Exterior (2) 3-0-5 to 7-6-5, Corner (3) 7-6-5 to 10-6-5, Exterior (2) 10-6-5 to 15-0-5 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- All plates are MT20 plates unless otherwise indicated.
 Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 6-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

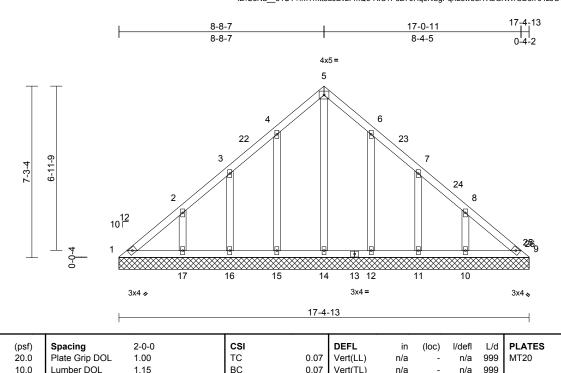
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 95 lb uplift at joint 1, 95 lb uplift at joint 3 and 153 lb uplift at joint 4.
- 10) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Azalea A Roof	
GHAZAA	V07	Valley	1	1	Job Reference (optional)	156630014

Run: 8.63 S. Nov 19 2022 Print: 8.630 S. Nov 19 2022 MiTek Industries. Inc. Tue Feb 14 08:03:42 ID:UeNa 31UY?fmYmttoLJEvzFmQ3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


Page: 1

GRIP

Weight: 98 lb

244/190

FT = 20%

BCLL	

TCLL (roof)

TCDI

Scale = 1:48.9 Loading

BCDL		10.0	Code	IRC2015	5/TPI2014
LUMBER TOP CHORD BOT CHORD OTHERS	2x4 SP No 2x4 SP No 2x4 SP No	o.2		2)	Wind: AS Vasd=95 B=45ft; L MWFRS 2-8-11, Ir
BRACING TOP CHORD BOT CHORD REACTIONS		ng directly 1=17-4-13	athing directly applied. applied. 5, 9=17-4-13, 10=17-4 3, 12=17-4-13,		11-8-11, left and r exposed; reactions
	Max Horiz Max Uplift	14=17-4-1 16=17-4-1 1=-131 (L0	3, 15=17-4-13, 3, 17=17-4-13	3)	DOL=1.6 Truss de only. For see Stan
	Max Grav	11=-47 (L0 15=-38 (L0 17=-43 (L0	C 12), 12=-38 (LC 12) C 12), 16=-46 (LC 12)		or consul All plates Gable red Gable stu
	Max Glav	10=221 (L 12=176 (L	C 18), 11=147 (LC 18 C 18), 14=156 (LC 1) C 17), 16=144 (LC 17	, 8)	This trust chord live * This tru on the bo
FORCES	(lb) - Max Tension		pression/Maximum		3-06-00 t chord an
TOP CHORD	1-2=-134/ 4-5=-101/		34/89, 3-4=-65/77, 101/113, 6-7=-46/61, 101	9)	Provide r bearing p 1, 38 lb u uplift at jo
BOT CHORD	14-15=-87		=-87/86, 15-16=-87/86 =-87/86, 11-12=-87/86 -87/86		11 and 4 This trus: Internatio
WEBS		2/73, 6-12=	-135/76, 3-16=-123/7(-133/76, 7-11=-123/7	a '	R802.10. This trust structural
NOTES					chord and
1) Unbalance	ea root live l	oads have	been considered for		the botto

0.0*

Rep Stress Incr

YES

this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=29ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) 0-0-5 to 2-8-11, Interior (1) 2-8-11 to 8-8-11, Exterior (2) 8-8-11 to 11-8-11, Interior (1) 11-8-11 to 17-0-9 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Vert(TL)

Horiz(TL)

0.11

n/a

0.00

n/a

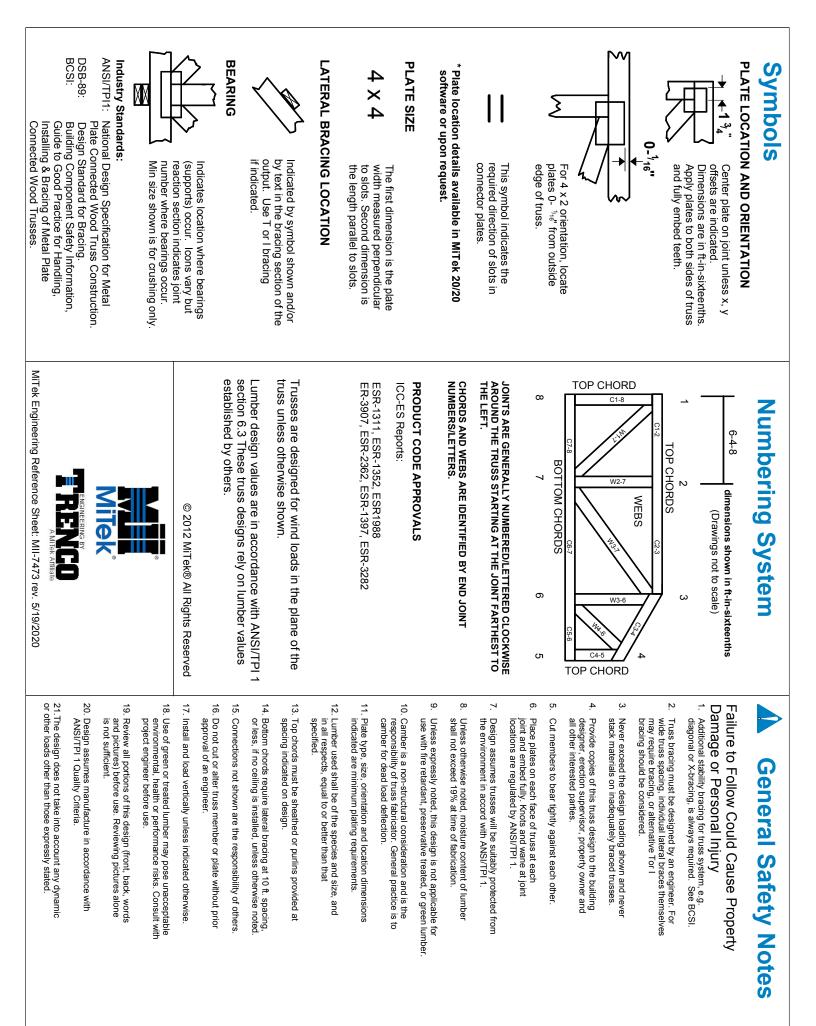
n/a n/a

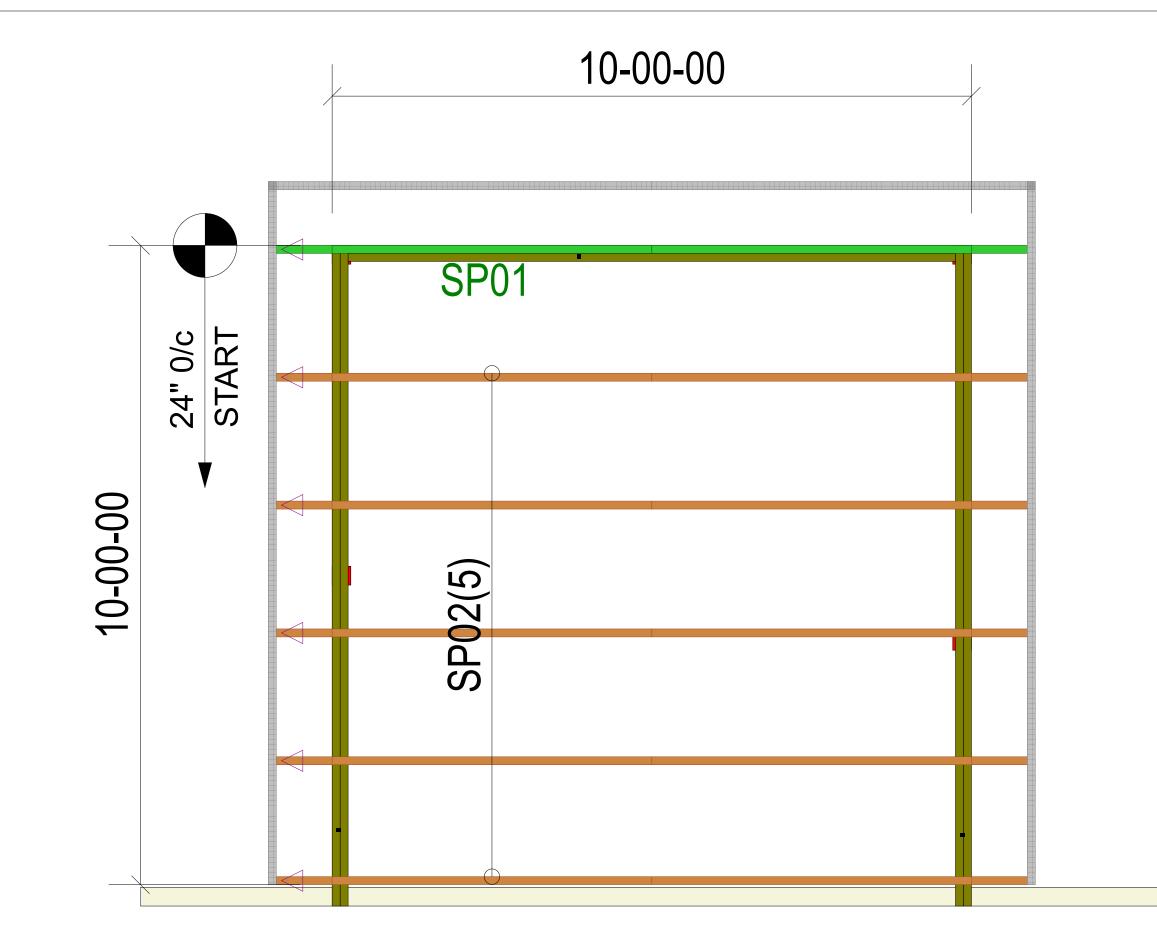
9

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. All plates are 2x4 MT20 unless otherwise indicated. 4)
- Gable requires continuous bottom chord bearing. 5)

WB

Matrix-AS


- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 9 lb uplift at joint 1, 38 lb uplift at joint 15, 46 lb uplift at joint 16, 43 lb uplift at joint 17, 38 lb uplift at joint 12, 47 lb uplift at joint 11 and 41 lb uplift at joint 10.
- 10) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) This truss design requires that a minimum of 7/16 structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.


LOAD CASE(S) Standard

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

OPTIONAL SERENITY SCREENED POF

RCH			
THIS IS A TRUSS PLACEMENT DIAGRAM ONLY		SHOP DRAWING APPROVAL	APPROVAL
These trusses are designed as individual building components to be incorporated into the building design at the specification of the building designer is building designer. See individual design sheets for each truss design identified on the placement drawing. The building designer is the provident of the trust of the building designer. For general guidance regarding to the including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding to consult. "Bracing of Wood Trusses" available from the Truss Plate Institute, 583 D'Onifrio Drive; Madison, WI 53179.	at the specification of the THIS LAYOUT IS The building designer is The design of the truss support LAYOUTS. REVIEW neral guidance regarding to INSURE AGAIN: dison, WI 53179.	THIS LAYOUT IS THE SOLE SOURCE FOR FABRICATION OF TRUSSES AND VOIDS ALL PREVIOUS ARCHITECTURAL OR OTHER TRUSS LAYOUTS. REVIEW AND APPROVAL OF THIS LAYOUT MUST BE RECEIVED BEFORE ANY TRUSSES WILL BE BUILT. VERIFY ALL CONE TO INSURE AGAINST CHANGES THAT WILL RESULT IN EXTRA CHARGES TO YOU.	oids all previous architectural or other truss before any trusses will be built. Verify all conditions 1 you.
	REVIEWED BY:	APPROVED BY:	DATE:
Job #: SER SCRN PCH	Plan: SERENITY SCREEN PORCH		
Customer: GARMAN HOMES	Date: 9/14/2022	CAROLINA STRUCTURAL SYSTEMS, LLC Star, NC - PME E3-427 910-481-8004	Carolina Structural Systems
Site Address:	Sales Rep: RW	ROOF DATA	Roof Trusses • Floor Trusses • EWP Carolina Structural Systems
City, ST, ZIP:	Designer: JSP	Roof Area: 139.14 SF	P.O. Box 157, Ether, NC 27247 225 Frame Shop Rd., Star, NC 27356 910-491-9004

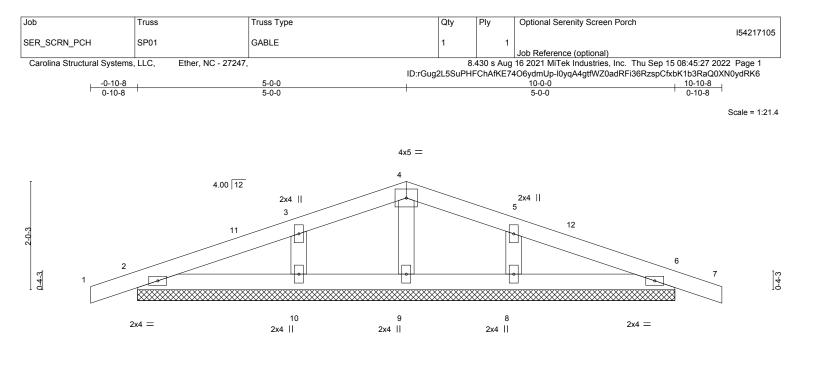
Trenco 818 Soundside Rd Edenton, NC 27932

Re: SER_SCRN_PCH Optional Serenity Screen Porch

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carolina Structural Systems, LLC.

Pages or sheets covered by this seal: I54217105 thru I54217106

My license renewal date for the state of North Carolina is December 31, 2022.


North Carolina COA: C-0844

September 15,2022

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

			10-0-0					
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.00	TC 0.10	Vert(LL)	D.00 7	n/r	120	MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.06	Vert(CT)	0.00 7	n/r	120		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.06	Horz(CT)	0.00 6	n/a	n/a		
BCDL 10.0	Code IRC2018/TPI2014	Matrix-S					Weight: 38 lb	FT = 20%
LUMBER-			BRACING-					

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.3 OTHERS

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 10-0-0.

(lb) - Max Horz 2=-19(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 2, 6, 10, 8 Max Grav All reactions 250 lb or less at joint(s) 2, 6, 9, 10, 8

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

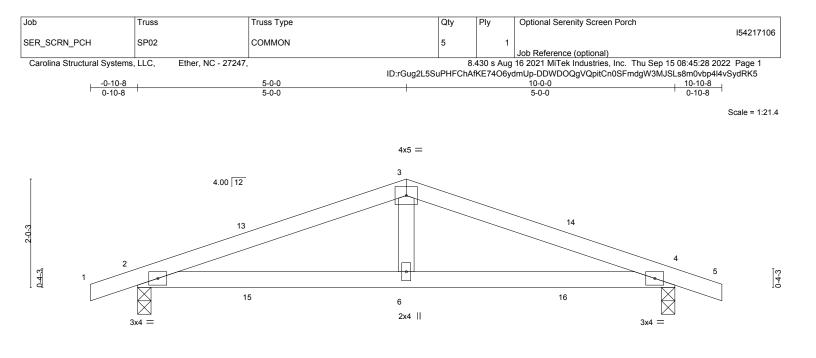
NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=125mph (3-second gust) Vasd=99mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner(3E) -0-10-8 to 2-1-8, Exterior(2N) 2-1-8 to 5-0-0, Corner(3R) 5-0-0 to 8-0-0, Exterior(2N) 8-0-0 to 10-10-8 zone; cantilever left and right exposed ; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 7) will fit between the bottom chord and any other members.


8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6, 10, 8. 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and

referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	5-0-1 5-0-1		10-0-0 5-0-0	I
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) l/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.00	TC 0.35	Vert(LL) 0.06 6-12 >999 240	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.35	Vert(CT) -0.05 6-12 >999 180	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.09	Horz(CT) -0.01 4 n/a n/a	
BCDL 10.0	Code IRC2018/TPI2014	Matrix-MS		Weight: 36 lb FT = 20%
UMBER-			BRACING-	

TOP CHORD

BOT CHORD

TOP CHORD

2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.3 WFBS

REACTIONS. (size) 2=0-3-0, 4=0-3-0 Max Horz 2=-19(LC 10) Max Uplift 2=-130(LC 12), 4=-130(LC 12) Max Grav 2=453(LC 1), 4=453(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-721/898, 3-4=-721/893

BOT CHORD 2-6=-781/657 4-6=-781/657

3-6=-334/224 WEBS

NOTES

1) Unbalanced roof live loads have been considered for this design.

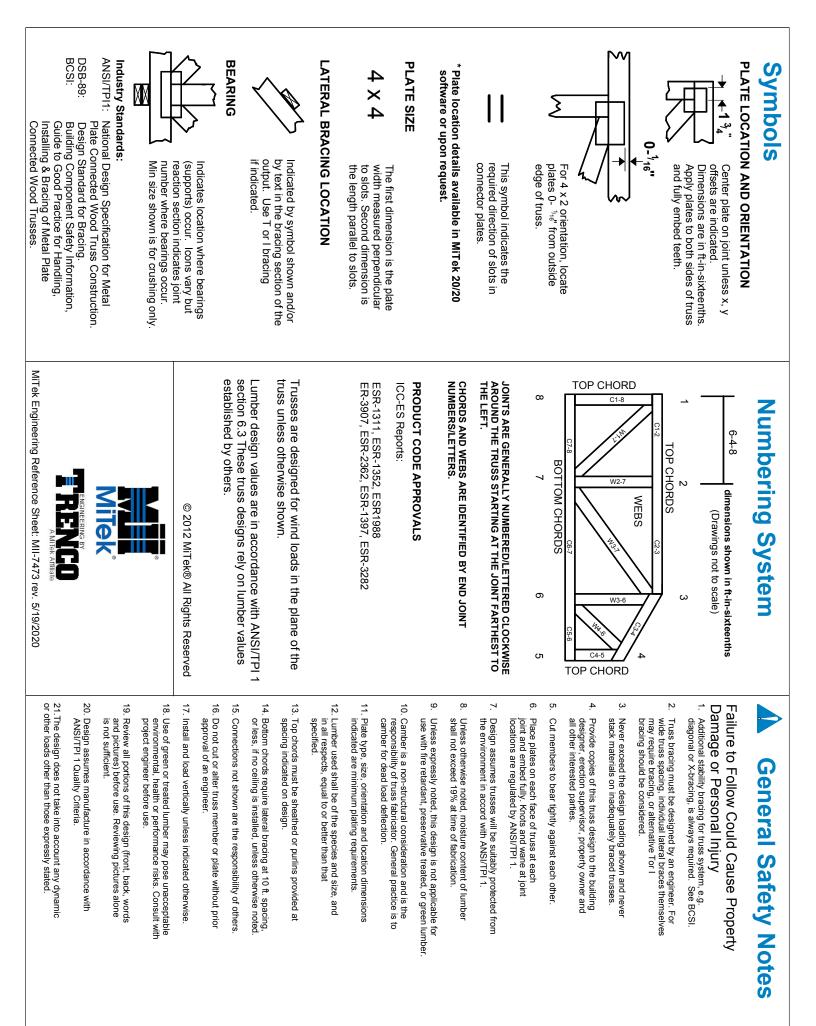
2) Wind: ASCE 7-16; Vult=125mph (3-second gust) Vasd=99mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 5-0-0, Exterior(2R) 5-0-0 to 8-0-0 , Interior(1) 8-0-0 to 10-10-8 zone; cantilever left and right exposed ; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=130, 4=130.

6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 6-4-7 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

