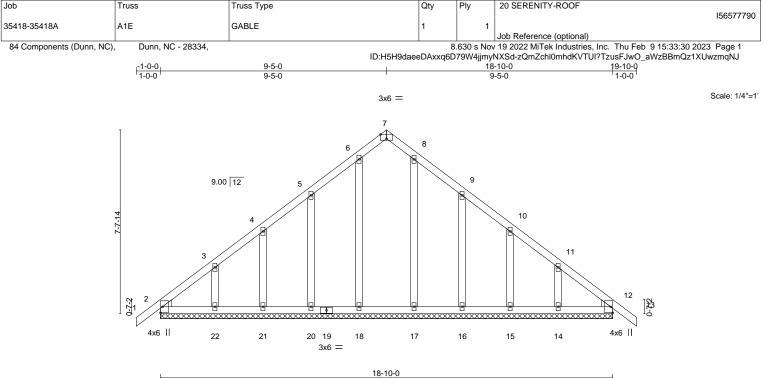


Trenco 818 Soundside Rd Edenton, NC 27932

Re: 35418-35418A 20 SERENITY-ROOF

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by 84 Components - #2383.

Pages or sheets covered by this seal: I56577790 thru I56577821


My license renewal date for the state of North Carolina is December 31, 2023.

North Carolina COA: C-0844

February 10,2023

Liu, Xuegang IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Plate Offsets (X,Y)-- [7:0-3-0.Edge]

18-10-0

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. i	n (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.07	Vert(LL) -0.0	0 13	n/r	120	MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.05	Vert(CT) -0.0	0 13	n/r	90		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.09	Horz(CT) 0.0	1 12	n/a	n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S					Weight: 116 lb	FT = 20%
	No.2 No.3 *Except* I7: 2x4 SP No.2		BOT CHORD	Rigid c	eiling dire	ectly applied	or 10-0-0 oc bracing.	
WEDGE Left: 2x4 SP No.3 , Righ								

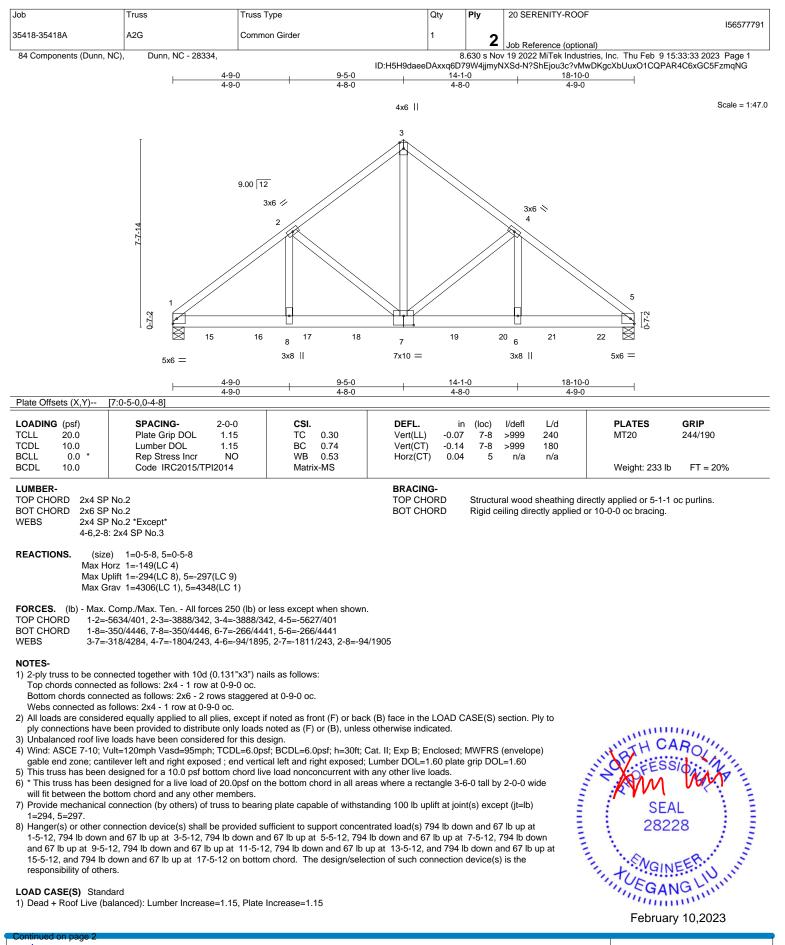
REACTIONS. All bearings 18-10-0.

(lb) - Max Horz 2=-165(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 2, 18, 20, 21, 22, 16, 15, 14

Max Grav All reactions 250 lb or less at joint(s) 2, 18, 20, 21, 22, 17, 16, 15, 14, 12

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.


NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 18, 20, 21, 22, 16, 15, 14.

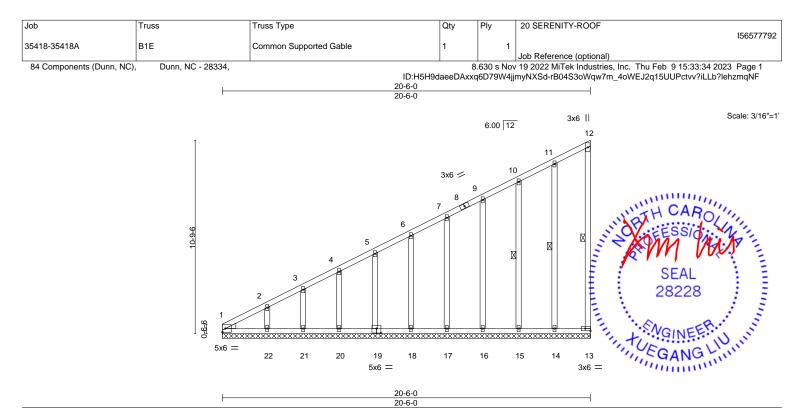
February 10,2023

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	20 SERENITY-ROOF
					156577791
35418-35418A	A2G	Common Girder	1	2	
				_	Job Reference (optional)
84 Components (Dunn, NC),	Dunn, NC - 28334,		8	.630 s Nov	19 2022 MiTek Industries, Inc. Thu Feb 9 15:33:33 2023 Page 2

ID:H5H9daeeDAxxq6D79W4jjmyNXSd-N?ShEjou3c?vMwDKgcXbUuxO1CQPAR4C6xGC5FzmqNG

LOAD CASE(S) Standard


Uniform Loads (plf)

Vert: 1-3=-60, 3-5=-60, 9-12=-20

Concentrated Loads (lb)

Vert: 7=-794(F) 15=-794(F) 16=-794(F) 17=-794(F) 18=-794(F) 19=-794(F) 20=-794(F) 21=-794(F) 22=-794(F)

Plate Offsets (X,Y)--[13:Edge,0-1-8], [19:0-3-0,0-3-0] LOADING (psf) SPACING-2-0-0 CSI. DEFL. in (loc) l/defl L/d PLATES GRIP TCLL 20.0 Plate Grip DOL 1.15 тс 0.58 Vert(LL) n/a n/a 999 MT20 244/190 TCDL 10.0 Lumber DOL 1.15 BC 0.27 Vert(CT) n/a n/a 999 WB BCLL 0.0 Rep Stress Incr YES 0.12 Horz(CT) -0.00 13 n/a n/a BCDL 10.0 Code IRC2015/TPI2014 Matrix-S Weight: 151 lb FT = 20% LUMBER-BRACING-TOP CHORD 2x4 SP No 2 TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, BOT CHORD 2x4 SP No.2 except end verticals. 2x4 SP No.2 BOT CHORD WFBS Rigid ceiling directly applied or 10-0-0 oc bracing. OTHERS 2x4 SP No.2 WEBS 1 Row at midpt 12-13, 11-14, 10-15 WEDGE

Left: 2x4 SP No.3

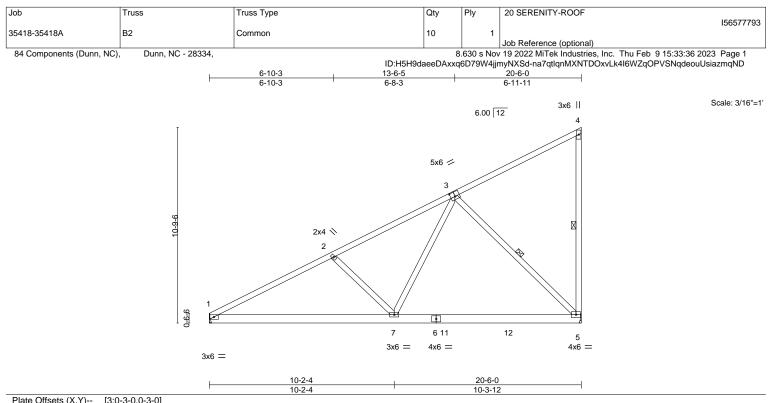
(lb) - Max Horz 1=349(LC 7)

Max Uplift All uplift 100 lb or less at joint(s) 13, 14, 15, 16, 17, 18, 19, 20, 21, 22

Max Grav All reactions 250 lb or less at joint(s) 13, 1, 14, 15, 16, 17, 18, 19, 20, 21, 22

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 1-2=-314/67, 2-3=-272/50, 3-4=-250/53


NOTES

- 1) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) All plates are 2x4 MT20 unless otherwise indicated.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 13, 14, 15, 16, 17, 18, 19, 20, 21, 22.

February 10,2023

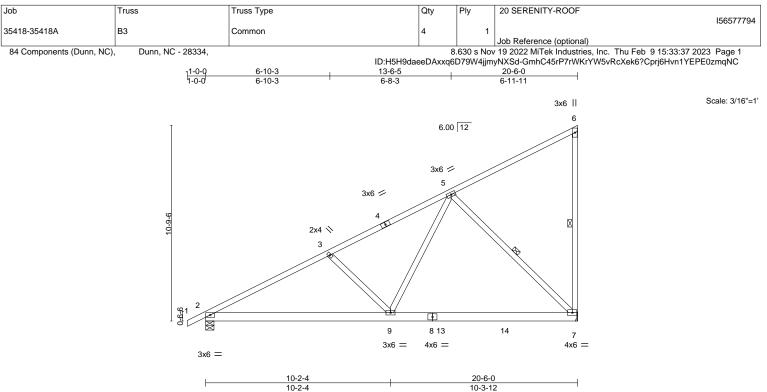
REACTIONS. All bearings 20-6-0.

LOADING (psf) TCLL 20.0	SPACING- 2-0-0 Plate Grip DOL 1.15	CSI. TC 0.61	DEFL. i Vert(LL) -0.13	n (loc) l/defl L/d 3 5-7 >999 240	PLATES GRIP MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.52	Vert(CT) -0.2	1 5-7 >999 180	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.35	Horz(CT) 0.02	2 5 n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-MS			Weight: 129 lb FT = 20%
LUMBER-			BRACING-		
TOP CHORD 2x4 SP	° No.2		TOP CHORD	Structural wood sheathi	ng directly applied or 4-8-0 oc purlins,
BOT CHORD 2x6 SP	° No.2			except end verticals.	
WEBS 2x4 SP	P No.2		BOT CHORD	Rigid ceiling directly ap	plied or 10-0-0 oc bracing.
			WEBS	1 Row at midpt	4-5, 3-5
REACTIONS. (size	e) 1=Mechanical, 5=Mechanical				

Max Horz 1=345(LC 9) Max Uplift 1=-47(LC 10), 5=-135(LC 10) Max Grav 1=814(LC 1), 5=815(LC 17)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- TOP CHORD 1-2=-1284/208 2-3=-1024/181
- BOT CHORD 1-7=-185/1080. 5-7=-99/577
- WFBS 2-7=-372/205, 3-7=-40/645, 3-5=-796/242


NOTES-

- 1) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 5=135.

February 10,2023

			10-2-4			1	10-3-12			1		
LOADING (p	osf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20	0.0	Plate Grip DOL	1.15	TC	0.61	Vert(LL)	-0.13	7-9	>999	240	MT20	244/190
TCDL 10	0.0	Lumber DOL	1.15	BC	0.52	Vert(CT)	-0.21	7-9	>999	180		
BCLL (0.0 *	Rep Stress Incr	YES	WB	0.34	Horz(CT)	0.02	7	n/a	n/a		
BCDL 10	0.0	Code IRC2015/TP	912014	Matri	k-MS						Weight: 130 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

WFBS

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x6 SP No.2WEBS2x4 SP No.2

REACTIONS. (size) 2=0-5-8, 7=Mechanical Max Horz 2=353(LC 9) Max Uplift 2=-63(LC 10), 7=-134(LC 10)

Max Grav 2=876(LC 1), 7=814(LC 17)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1279/204, 3-5=-1021/177

BOT CHORD 2-9=-184/1075, 7-9=-99/571

WEBS 3-9=-373/205, 5-9=-36/645, 5-7=-792/240

NOTES-

 Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

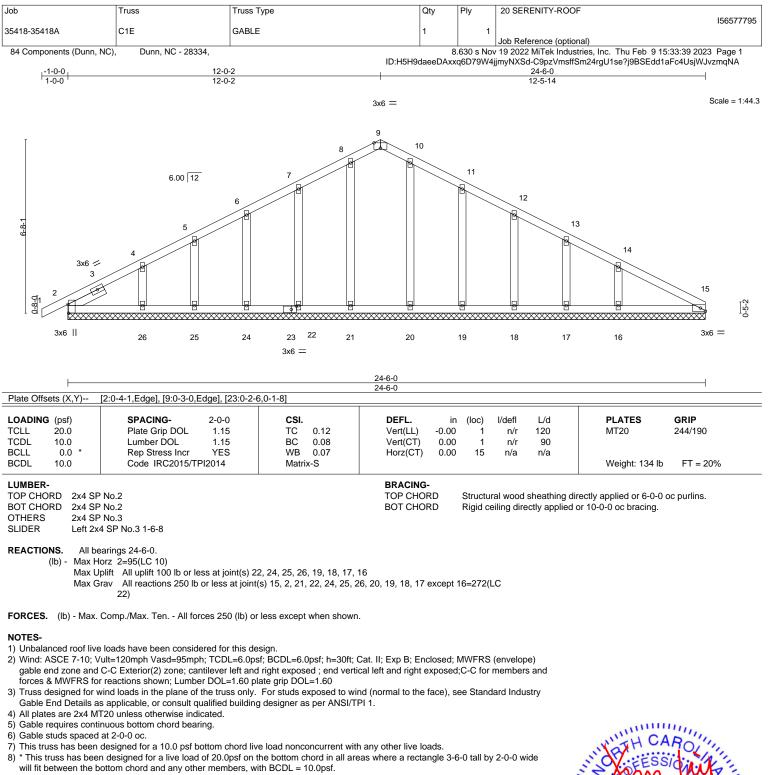
4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2 except (jt=lb) 7=134.

Structural wood sheathing directly applied or 4-8-7 oc purlins,

6-7.5-7

Rigid ceiling directly applied or 10-0-0 oc bracing.

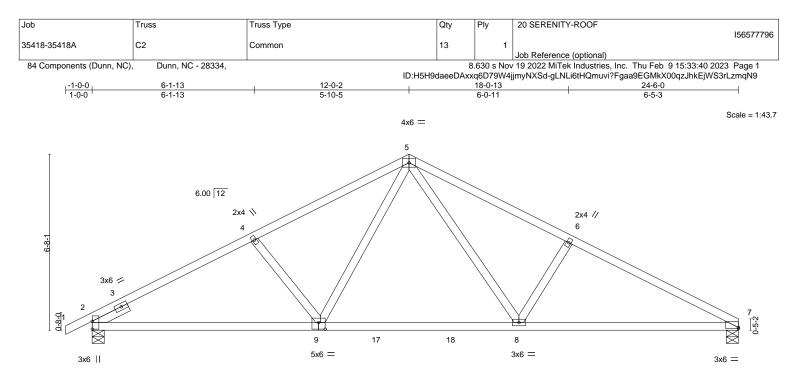

except end verticals.

1 Row at midpt

February 10,2023

TREENCO A MI Tek Attiliate 818 Soundside Road

Edenton, NC 27932


9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 22, 24, 25, 26, 19, 18, 17, 16.

February 10,2023

TRENGINEERING BY A MITEK Affiliate 818 Soundside Road

Edenton, NC 27932

Plate Offsets (X,Y)	<u>8-8-0</u> [2:0-3-9,0-0-1], [7:0-0-0,0-0-6], [9:0-3-0),0-3-0]	7-6-3			8-3-14	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.51 BC 0.68 WB 0.15 Matrix-MS	DEFL. in Vert(LL) -0.16 Vert(CT) -0.24 Horz(CT) 0.04	(,	L/d 240 180 n/a	PLATES MT20 Weight: 114 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP		Matrix-MS	BRACING- TOP CHORD	Structural wood	I sheathing dire	ectly applied or 4-0-8 c	

 BOT CHORD
 2x4 SP No.2

 WEBS
 2x4 SP No.2 *Except*

 4-9,6-8: 2x4 SP No.3
 SLIDER

REACTIONS. (size) 7=0-5-8, 2=0-5-8 Max Horz 2=97(LC 14) Max Uplift 7=-56(LC 11), 2=-69(LC 10) Max Grav 7=979(LC 1), 2=1041(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-4=-1568/289, 4-5=-1381/290, 5-6=-1509/320, 6-7=-1696/302

BOT CHORD 2-9=-176/1345, 8-9=-45/949, 7-8=-197/1456

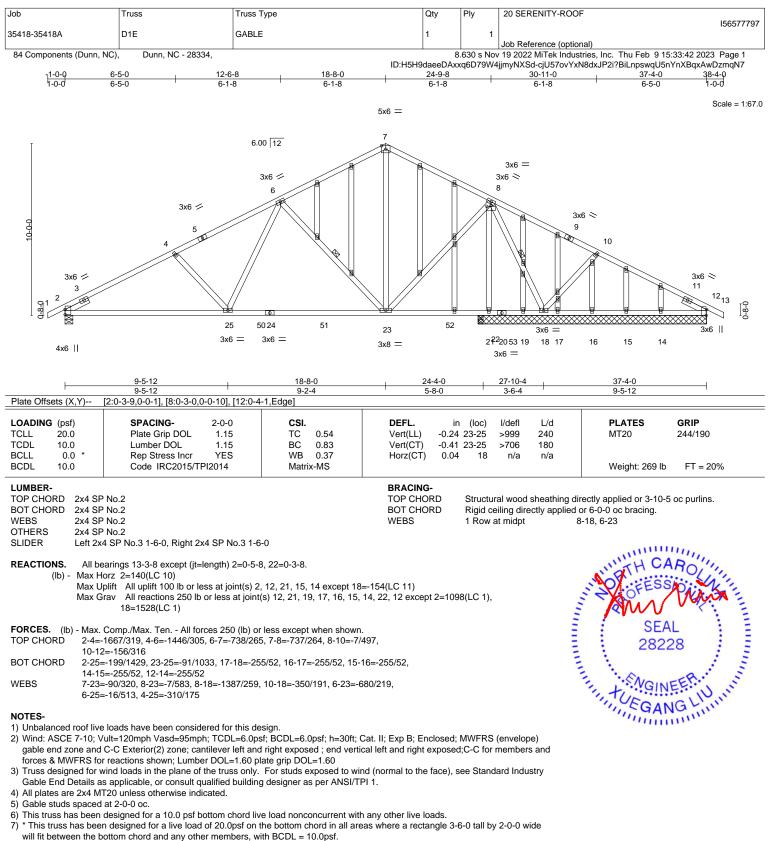
WEBS 4-9=-330/178, 5-9=-51/472, 5-8=-94/596, 6-8=-378/196

NOTES-

1) Unbalanced roof live loads have been considered for this design.

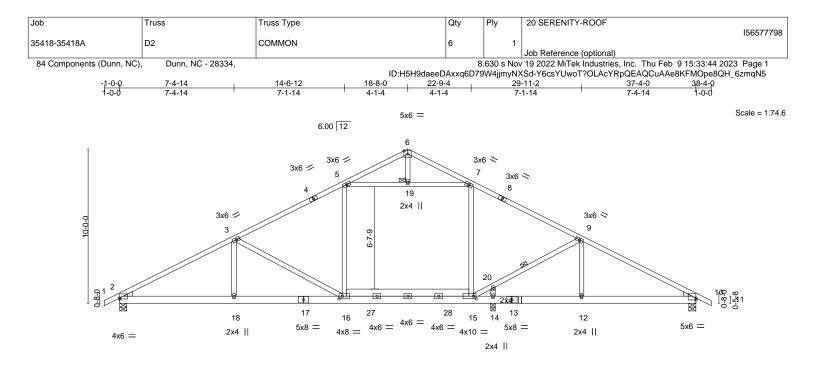
2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 2.

February 10,2023

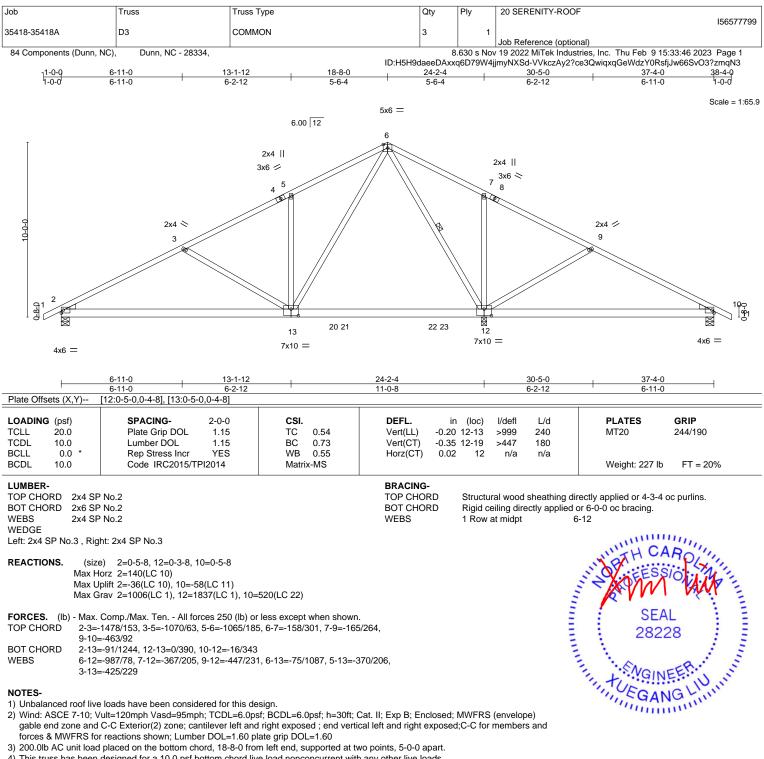

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 12, 21, 15, 14, 12 except (jt=lb) 18=154.

February 10,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

TRENCO

818 Soundside Road Edenton, NC 27932

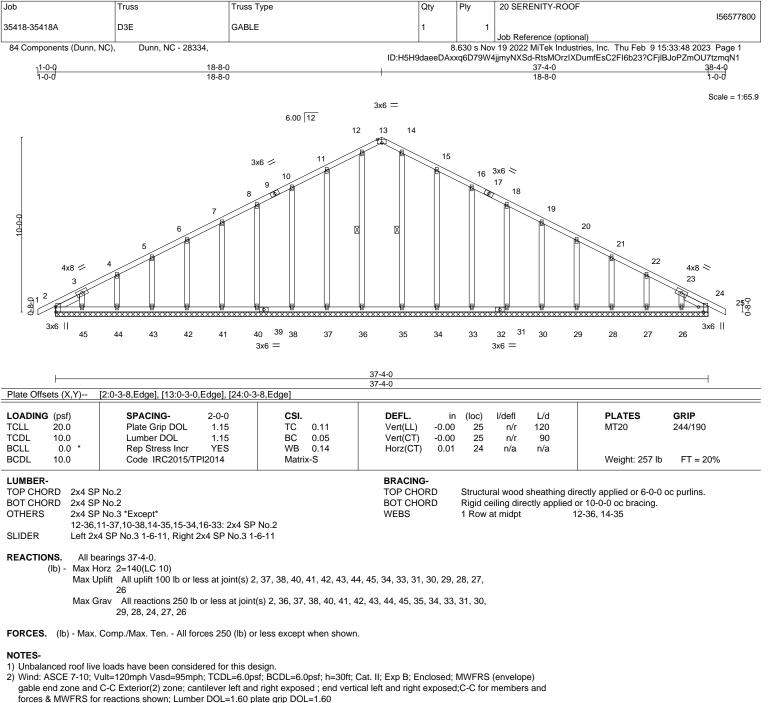


	7-4-14	14-6-12		22-9-4	24-4-0	29-11-2	37-4-0	1
	7-4-14	7-1-14	I	8-2-8	1-6-12	5-7-2	7-4-14	1
Plate Offsets (X,Y)) [2:0-0-0,0-0-13], [10:0-0-0,	0-1-9], [15:0-2-0,0-2-0]	, [16:0-2-8,0-2-0	0]				
LOADING (psf) TCLL 20.0	SPACING- Plate Grip DOL	2-0-0 CS		DEFL. Vert(LL)	in (loc) -0.20 16-18	l/defl L/d >999 240	PLATES MT20	GRIP 244/190
TCDL 10.0	Lumber DOL	1.15 IC		Vert(CT)	-0.20 16-18	>658 180	WIT20	244/190
BCLL 0.0 *		YES W		Horz(CT)	0.07 10	n/a n/a		
BCDL 10.0	Code IRC2015/TPL	2014 Ma	atrix-MS				Weight: 244 lb	FT = 20%
LUMBER-	1			BRACING-				
	4 SP No.2			TOP CHOR		iral wood sheathii	ng directly applied or 2-9-6	oc purlins
	6 SP No.2			BOT CHOR			blied or 10-0-0 oc bracing.	o parinio.
	4 SP No.2 *Except*			WEBS		at midpt	9-15	
	12,3-18,6-19,14-20: 2x4 SP No.	.3		JOINTS		e at Jt(s): 19		
WEDGE								• 18 a.c.
Left: 2x4 SP No.3	, Right: 2x4 SP No.3						, minin	initia.
REACTIONS.	(size) 2=0-5-8, 10=0-5-8, 14	=0-3-8					WATH CA	ROLLIN
	ax Horz 2=140(LC 10)						STO FESS	Qit tox
	lax Uplift 2=-51(LC 10), 14=-109		2)				S MAAAA	Cho Cho
IVI	lax Grav 2=1566(LC 1), 10=149	92(LC 1), 14=487(LC 2	2)					S & E
FORCES. (lb) - M	Max. Comp./Max. Ten All force	es 250 (lb) or less exce	pt when shown				E : SEA	L : E
	2-3=-2687/224, 3-5=-2085/179,						2822	
ç	9-10=-2470/214						2022	
	2-18=-101/2315, 16-18=-101/23	15, 15-16=0/1828, 14-	15=-77/2121, 12	2-14=-77/2121,			2822 + NGIN	1 8
	10-12=-77/2121						· · · · · ·	a: :
	7-15=0/649, 15-20=-461/200, 9-	,	551, 3-16=-646/	199, 3-18=0/285,			FUGIN	EFFICIA
Ę	5-19=-1581/184, 7-19=-1581/18	4					11 UFO	
NOTES-							1, GAN	Guin
	of live loads have been consider	ed for this design					in the second se	nn.
	10; Vult=120mph Vasd=95mph;		6.0psf: h=30ft (Cat. II: Exp B: Enc	losed: MWFRS	(envelope)		
	and C-C Exterior(2) zone; cant							
	RS for reactions shown; Lumber			J	,,			

- 3) 200.0lb AC unit load placed on the bottom chord, 18-8-0 from left end, supported at two points, 5-0-0 apart.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2 except (jt=lb) 14=109.

February 10,2023

Engineering by **REPACO** AMTek Atfiliate 818 Soundside Road Edenton, NC 27932

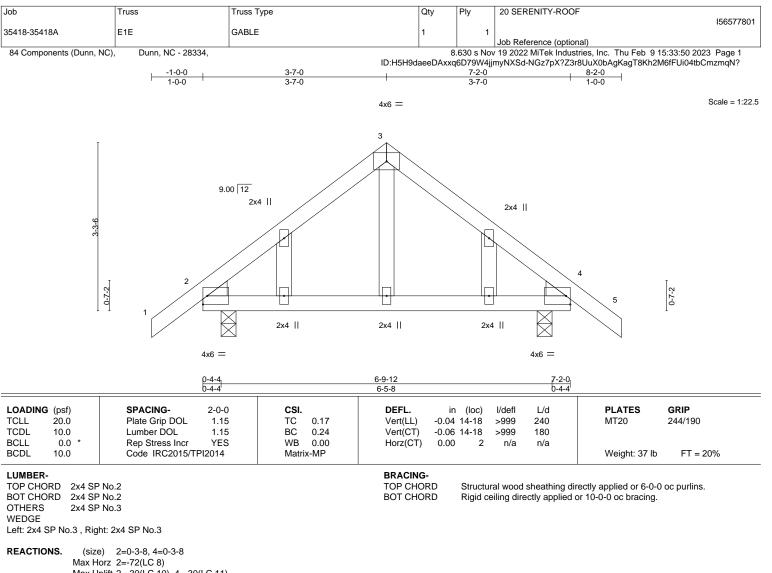

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 10.

February 10,2023

ENGINEERING BY EREACO AMITEK Atfiliate 818 Soundside Road Edenton, NC 27932



- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 37, 38, 40, 41, 42, 43, 44, 45, 34, 33, 31, 30, 29, 28, 27, 26.

February 10,2023

Max Uplift 2=-30(LC 10), 4=-30(LC 11) Max Grav 2=347(LC 1), 4=347(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

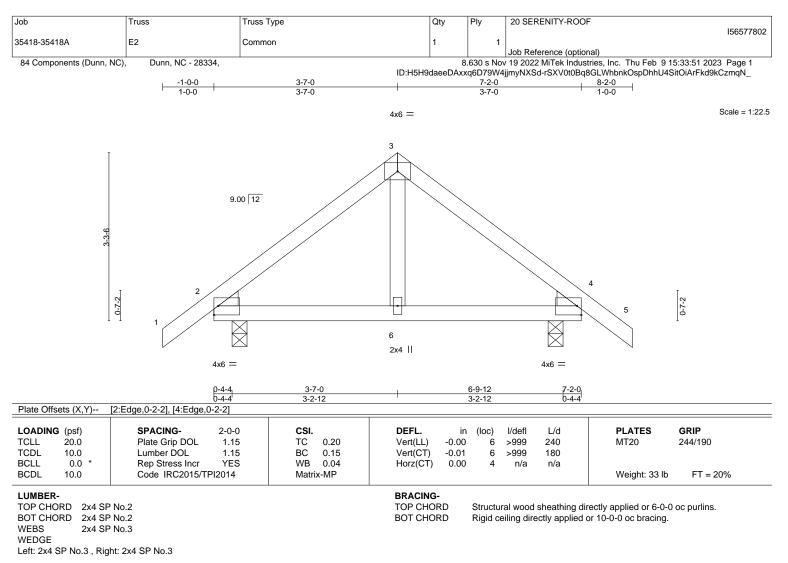
NOTES-

- 2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Gable studs spaced at 2-0-0 oc.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.

February 10,2023

Engineering BY ERENCOO A MITek Affiliate 818 Soundside Road Edenton, NC 27932

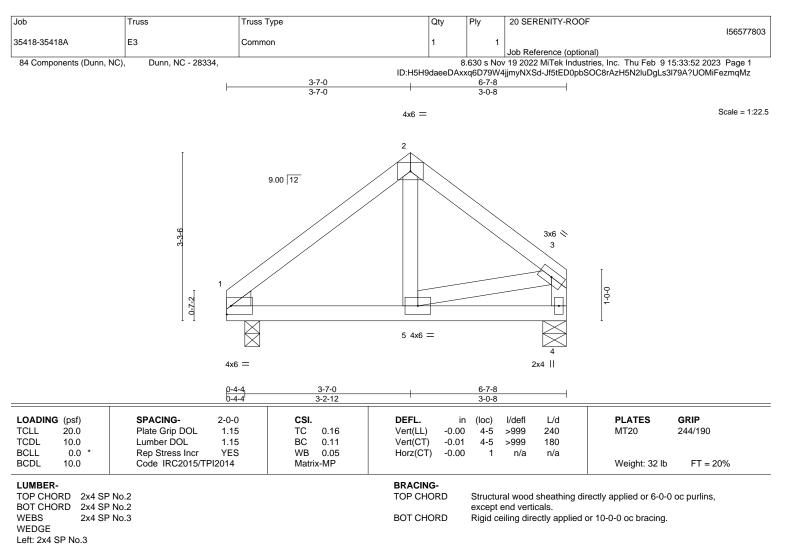
¹⁾ Unbalanced roof live loads have been considered for this design.

REACTIONS. (size) 2=0-3-8, 4=0-3-8 Max Horz 2=-72(LC 8) Max Uplift 2=-30(LC 10), 4=-30(LC 11)

Max Grav 2=347(LC 1), 4=347(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-


1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.

February 10,2023

Engineering BY ERENCO A MITek Affiliate 818 Soundside Road Edenton, NC 27932

REACTIONS. (size) 4=0-5-8, 1=0-3-8 Max Horz 1=68(LC 9) Max Uplift 4=-7(LC 11), 1=-11(LC 10) Max Grav 4=237(LC 1), 1=281(LC 1)

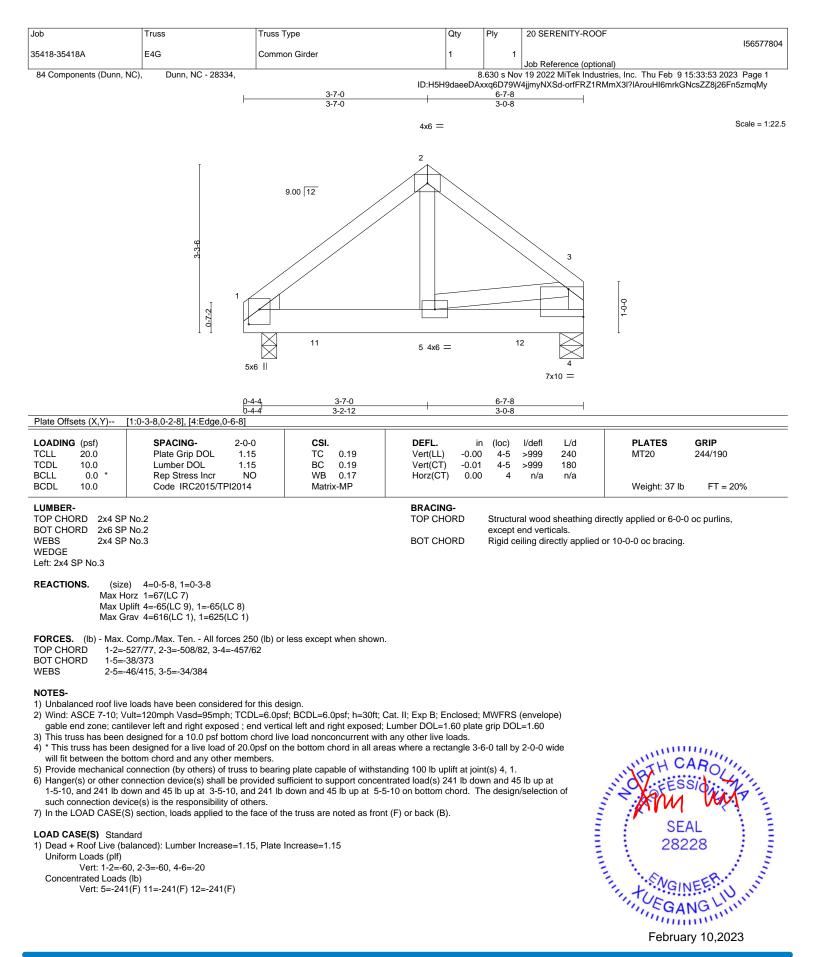
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

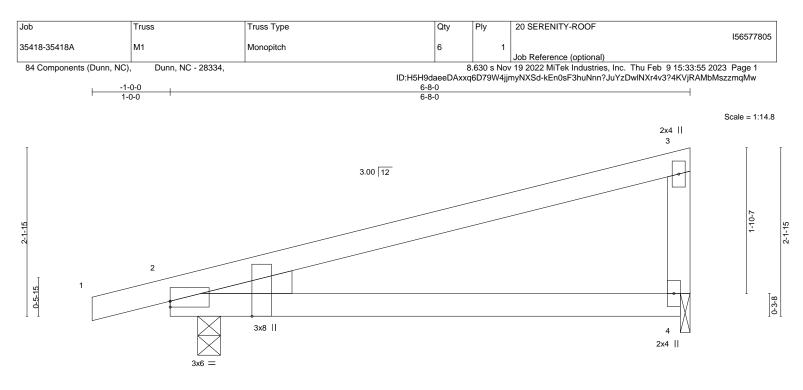
2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 1.

February 10,2023



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **MSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road

Edenton, NC 27932

Plate Offsets (X,Y) [0-4-4 0-4-4 [2:0-0-0.0-0-14], [2:0-2-5,Edge]		6-8-0 6-3-12		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.53 BC 0.45 WB 0.00 Matrix-MP	DEFL. ii Vert(LL) -0.00 Vert(CT) -0.14 Horz(CT) 0.01	4-9 >545 180	PLATES GRIP MT20 244/190 Weight: 26 lb FT = 20%
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP WEBS 2x4 SP	No.2		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dir except end verticals. Rigid ceiling directly applied o	rectly applied or 6-0-0 oc purlins,

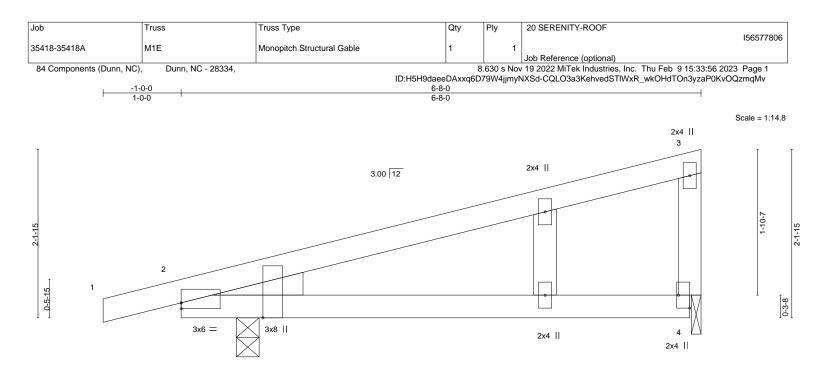
WEDGE

Left: 2x4 SP No.3

REACTIONS. (size) 2=0-3-8, 4=0-1-8 Max Horz 2=65(LC 9) Max Uplift 2=-63(LC 6), 4=-30(LC 10) Max Grav 2=344(LC 1), 4=238(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-


- Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
- will fit between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.

February 10,2023

TRENGINEERING BY A MITEK Affiliate 818 Soundside Road

Edenton, NC 27932

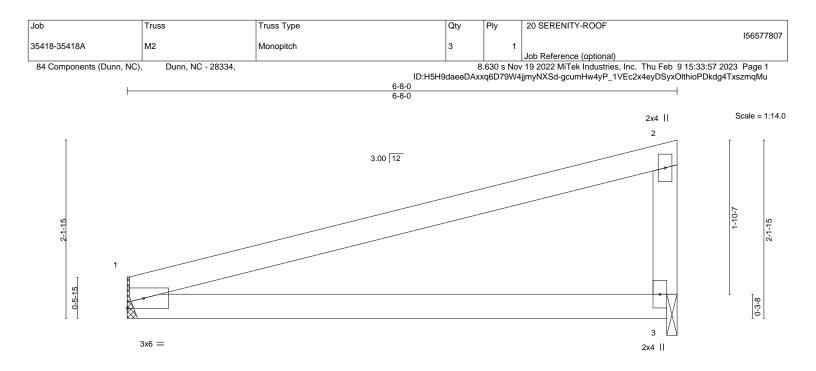
Plate Offsets (X,Y)	1-0-0 1-0-0 [2:0-2-5,Edge], [2:0-0-0,0-0-14], [4:Edg	0 1 12]				
	[2.0-2-3,Euge], [2.0-0-0,0-0-14], [4.Eug	s,0-1-12]				
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. ir	(loc) l/defl L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.40	Vert(LL) -0.03	4-11 >999 240	MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.29	Vert(CT) -0.08	4-11 >994 180		
SCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) 0.01	2 n/a n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-MP			Weight: 27 lb	FT = 20%
UMBER-		· · · · · · · · · · · · · · · · · · ·	BRACING-			
OP CHORD 2x4 SP	P No.2		TOP CHORD	Structural wood sheathing dire	ectly applied or 6-0-0	oc purlins,
BOT CHORD 2x4 SP	° No.2			except end verticals.		
VEBS 2x4 SP	° No.3		BOT CHORD	Rigid ceiling directly applied o	r 10-0-0 oc bracing.	
OTHERS 2x4 SP	° No.3				-	
VEDGE						

Left: 2x4 SP No.3

REACTIONS.

(size) 4=0-1-8, 2=0-3-8 Max Horz 2=65(LC 9) Max Uplift 4=-25(LC 10), 2=-70(LC 6) Max Grav 4=197(LC 1), 2=384(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.


NOTES-

- 1) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable studs spaced at 2-0-0 oc.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2.

February 10,2023

H					
LOADING (psf) TCLL 20.0	SPACING- 2-0-0 Plate Grip DOL 1.15	CSI. TC 0.70	DEFL. in Vert(LL) -0.08	n (loc) l/defl L/d 3 3-6 >999 240	PLATES GRIP MT20 244/190
TCDL 10.0 BCLL 0.0 *	Lumber DOL 1.15 Rep Stress Incr YES	BC 0.50 WB 0.00	Vert(CT) -0.19 Horz(CT) 0.02	3-6 >421 180	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-MP			Weight: 22 lb FT = 20%
LUMBER-			BRACING-	.	
TOP CHORD 2x4 SP I BOT CHORD 2x4 SP I			TOP CHORD	Structural wood sheathing dir except end verticals.	rectly applied or 6-0-0 oc purlins,
WEBS 2x4 SP	No.3		BOT CHORD	Rigid ceiling directly applied	or 10-0-0 oc bracing.

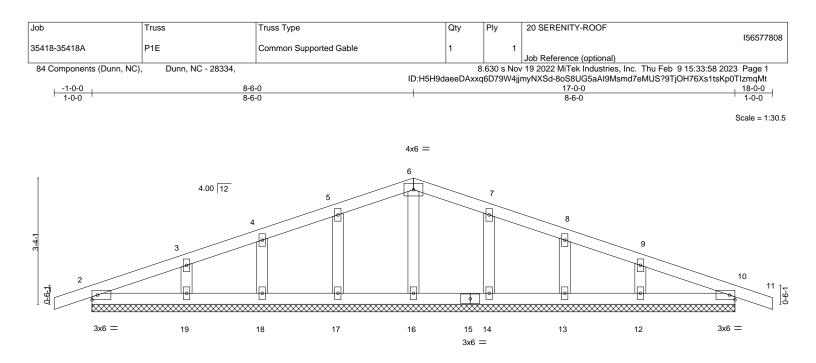
REACTIONS. (size) 1=Mechanical, 3=0-1-8

Max Horz 1=61(LC 9) Max Uplift 1=-25(LC 6), 3=-33(LC 10)

Max Grav 1=261(LC 1), 3=261(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-


- 1) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Bearing at joint(s) 3 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 6) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 3.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

February 10,2023

ENGINEERING BY REENCO A MITEK Affiliate 818 Soundside Road

Edenton, NC 27932

OADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP	
CLL 20.0	Plate Grip DOL 1.15	TC 0.06	Vert(LL) -0.00 10 n/r 120	MT20 244/190	
CDL 10.0	Lumber DOL 1.15	BC 0.04	Vert(CT) -0.00 10 n/r 90		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.03	Horz(CT) 0.00 10 n/a n/a		
3CDL 10.0	Code IRC2015/TPI2014	Matrix-S	· ·	Weight: 72 lb FT = 20%	

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.3 OTHERS

REACTIONS. All bearings 17-0-0.

Max Horz 2=-45(LC 11) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 2, 17, 18, 19, 14, 13, 12, 10

Max Grav All reactions 250 lb or less at joint(s) 2, 16, 17, 18, 19, 14, 13, 12, 10

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

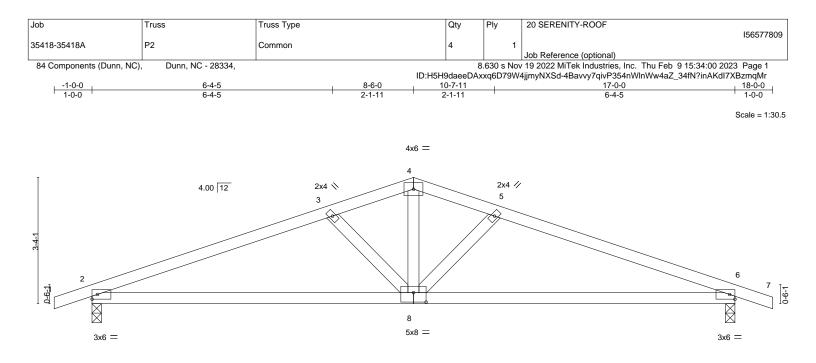
2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.

5) Gable requires continuous bottom chord bearing.

6) Gable studs spaced at 2-0-0 oc.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 17, 18, 19, 14, 13, 12, 10.

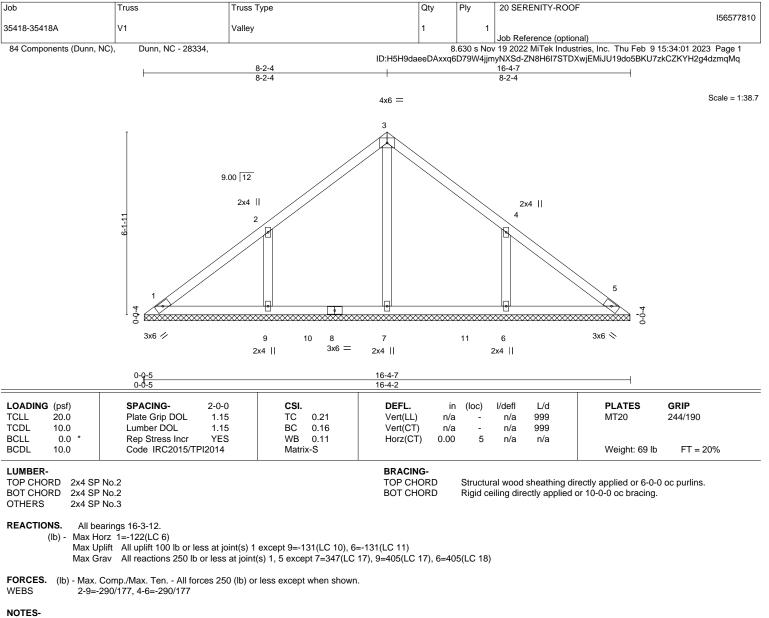
February 10,2023

Plate Offsets (X,Y)	<u>8-6-0</u> 8-6-0 [8:0-4-0.0-3-0]				17-0-0 8-6-0		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.37 BC 0.70 WB 0.27 Matrix-MS	Vert(LL) -0.08 Vert(CT) -0.19 Horz(CT) 0.02	n (loc) l/defl 8-14 >999 8-14 >999 8-14 >999 6 n/a	240 180	PLATES MT20 Weight: 68 lb	GRIP 244/190 FT = 20%
	No.2		BRACING- TOP CHORD BOT CHORD			ectly applied or 4-6-1 or 10-0-0 oc bracing.	oc purlins.
Max G FORCES. (lb) - Max. TOP CHORD 2-3=- BOT CHORD 2-8=-	plift 2=-83(LC 6), 6=-83(LC 7) rav 2=740(LC 1), 6=740(LC 1) Comp./Max. Ten All forces 250 (lb) or 1332/234, 3-4=-1073/178, 4-5=-1073/17 150/1209, 6-8=-150/1209 103/649, 5-8=-343/144, 3-8=-343/144						
NOTES-							

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6.

February 10,2023

818 Soundside Road Edenton, NC 27932

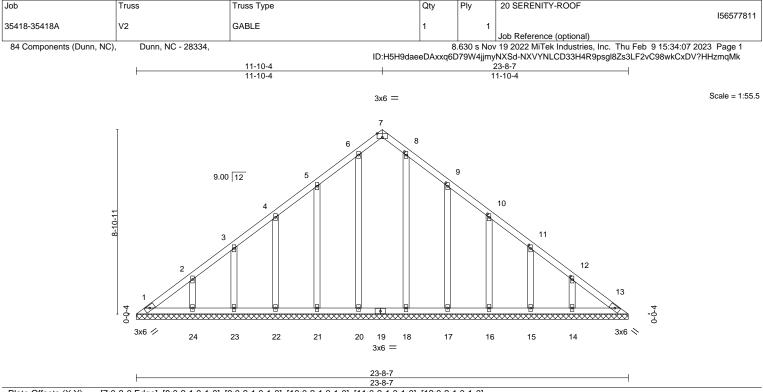
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 9=131, 6=131.

February 10,2023

Plate Offsets (X,Y)	[7:0-3-0,Edge], [8:0-2-1,0-1-0], [9:0-2-1	,0-1-0], [10:0-2-1,0-1-0], [2	11:0-2-1,0-1-0], [12:0-2-	1,0-1-0]		Т
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.07 BC 0.05 WB 0.13	DEFL. ii Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.07	a -	l/defl L/d n/a 999 n/a 999 n/a n/a	PLATES GRIP MT20 244/190
		Matrix-S	BRACING- TOP CHORD BOT CHORD		0	Weight: 144 lb FT = 20% directly applied or 6-0-0 oc purlins. d or 10-0-0 oc bracing.

REACTIONS. All bearings 23-8-7. (lb) - Max Horz 1=180(LC

Max Horz 1=180(LC 7)
 Max Uplift All uplift 100 lb or less at joint(s) 1, 13, 21, 22, 23, 24, 17, 16, 15, 14
 Max Uplift All uplift 100 lb or less at joint(s) 1, 13, 21, 22, 23, 24, 17, 16, 15, 14

Max Grav All reactions 250 lb or less at joint(s) 1, 13, 20, 21, 22, 23, 24, 18, 17, 16, 15, 14

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

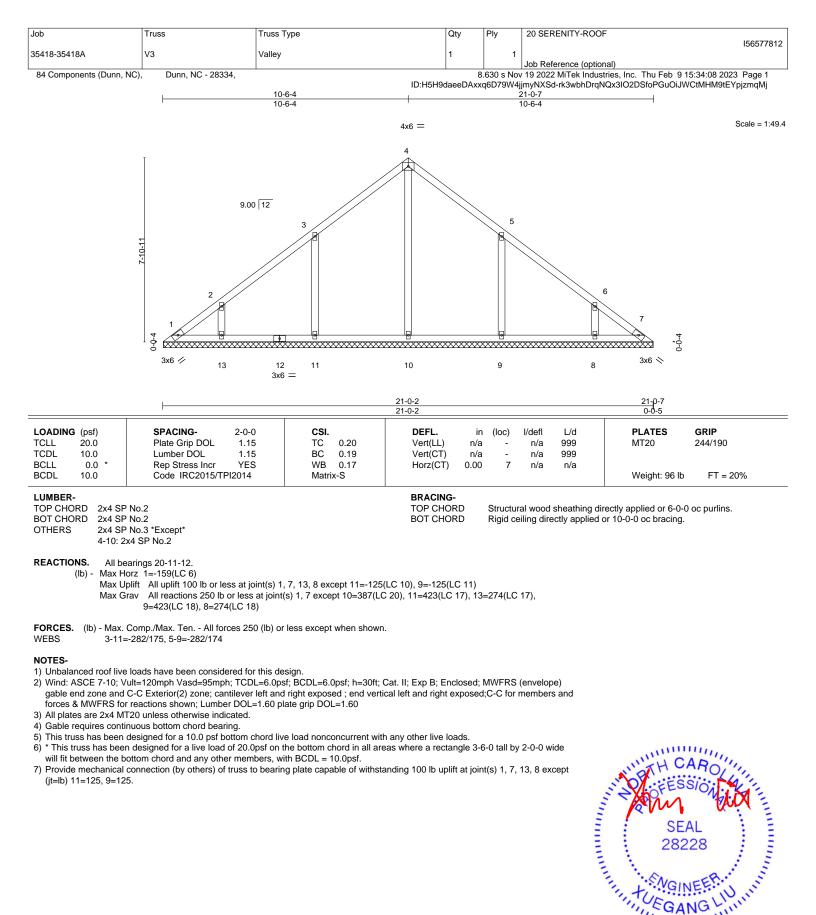
2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) All plates are 2x4 MT20 unless otherwise indicated.

4) Gable requires continuous bottom chord bearing.

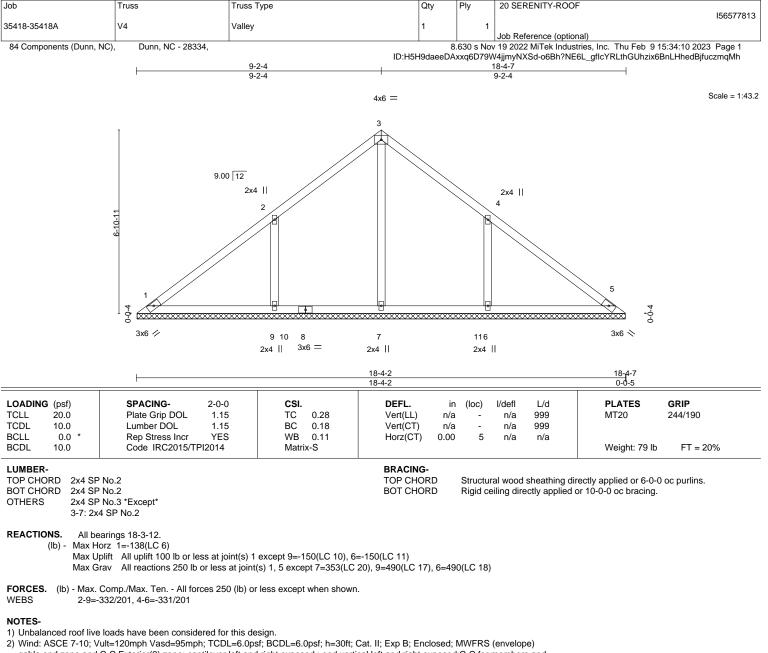
5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.


7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 13, 21, 22, 23, 24, 17, 16, 15, 14.

February 10,2023

¹⁾ Unbalanced roof live loads have been considered for this design.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

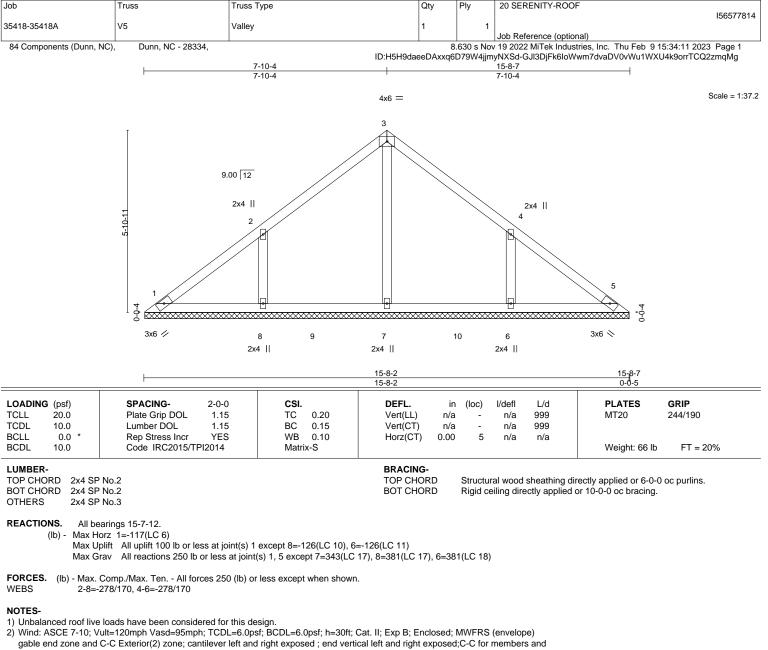
February 10,2023

GANG

2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

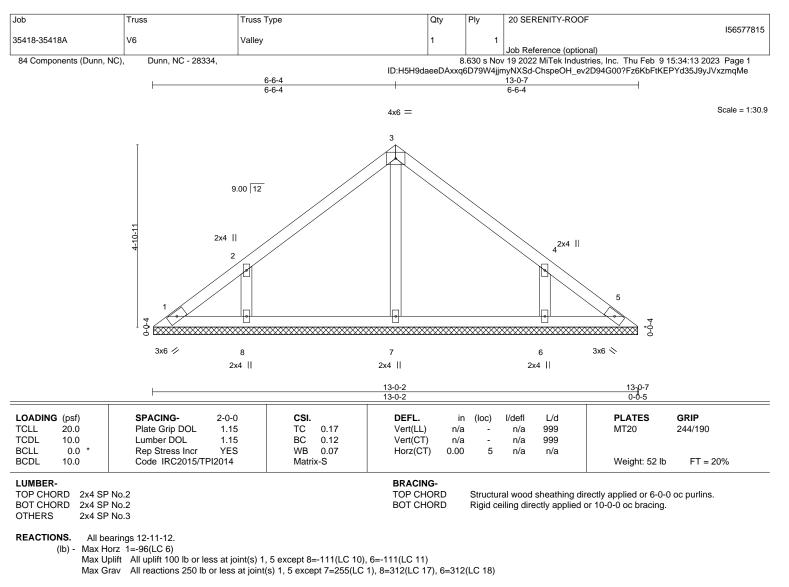
4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 9=150, 6=150.

February 10,2023

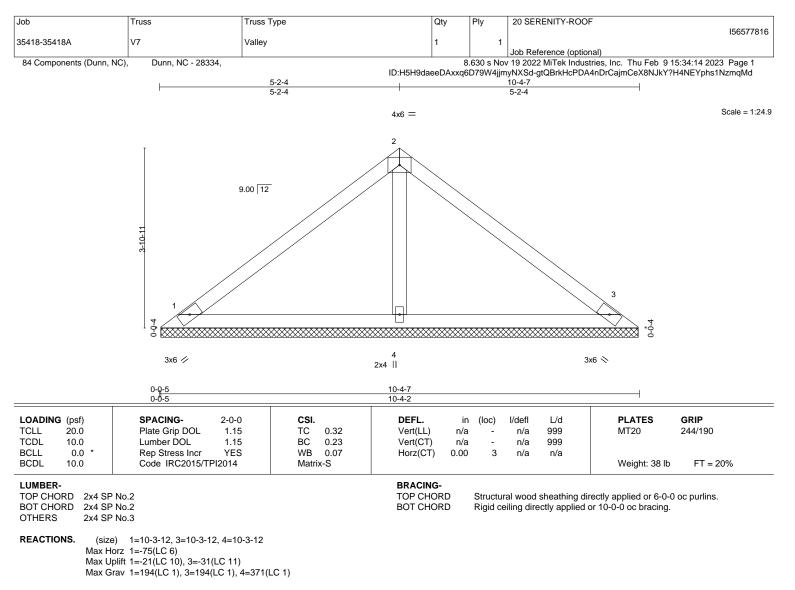
- forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.


4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
- will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 8=126, 6=126.

February 10,2023

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

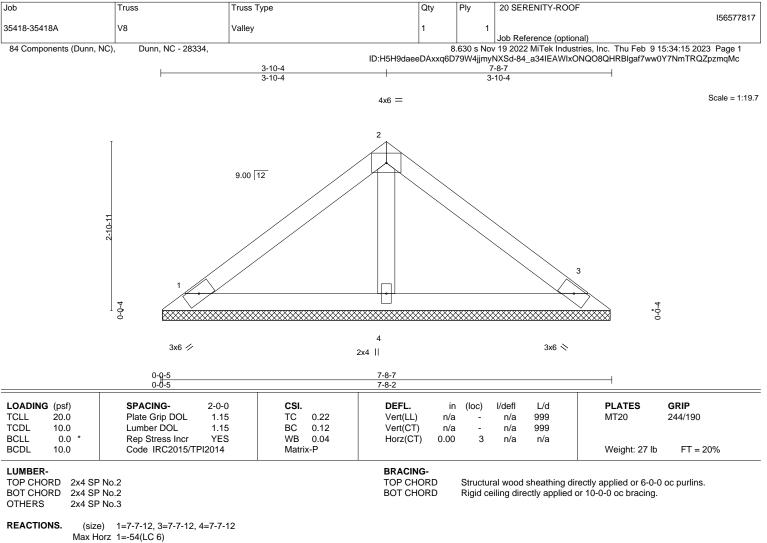

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=111, 6=111.

February 10,2023

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-


- 2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

February 10,2023

TENGINEERING BY A MITEK Affiliate 818 Soundside Road Edenton, NC 27932

¹⁾ Unbalanced roof live loads have been considered for this design.

Max Uplift 1=-22(LC 10), 3=-29(LC 11)

Max Grav 1=152(LC 1), 3=152(LC 1), 4=242(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-


- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

February 10,2023

OADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	тс	0.08	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.21	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code IRC2015/T	PI2014	Matrix	к-Р						Weight: 15 lb	FT = 20%

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

REACTIONS. (size) 1

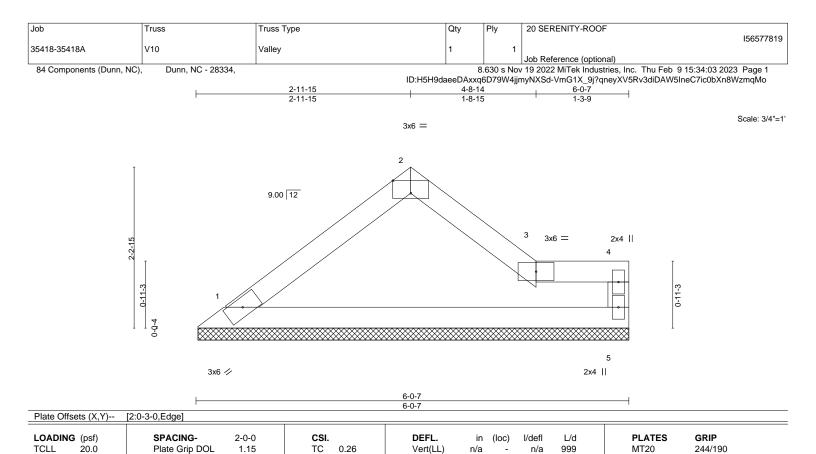
(size) 1=4-11-12, 3=4-11-12 Max Horz 1=33(LC 7) Max Uplift 1=-7(LC 10), 3=-7(LC 11)

Max Uplift 1=-7(LC 10), 3=-7(LC 11) Max Grav 1=166(LC 1), 3=166(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.



February 10,2023

TRENGINEERING BY A MITCH Affiliate 818 Soundside Road

Edenton, NC 27932

¹⁾ Unbalanced roof live loads have been considered for this design.

Vert(CT)

Horz(CT)

BRACING-

TOP CHORD

BOT CHORD

n/a

0.00

n/a

n/a

except end verticals.

5

999

n/a

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

Weight: 20 lb

FT = 20%

FORCES.	(lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown.	

NOTES-

TCDL

BCLL

BCDL

WFBS

LUMBER-

TOP CHORD

BOT CHORD

REACTIONS.

10.0

10.0

0.0 *

2x4 SP No.2

2x4 SP No 2

2x4 SP No.3

1) Unbalanced roof live loads have been considered for this design.

Max Uplift 1=-9(LC 10), 5=-13(LC 11) Max Grav 1=218(LC 1), 5=218(LC 1)

(size) 1=6-0-1, 5=6-0-1 Max Horz 1=48(LC 7)

Lumber DOL

Rep Stress Incr

Code IRC2015/TPI2014

2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

BC

WB

Matrix-R

0.28

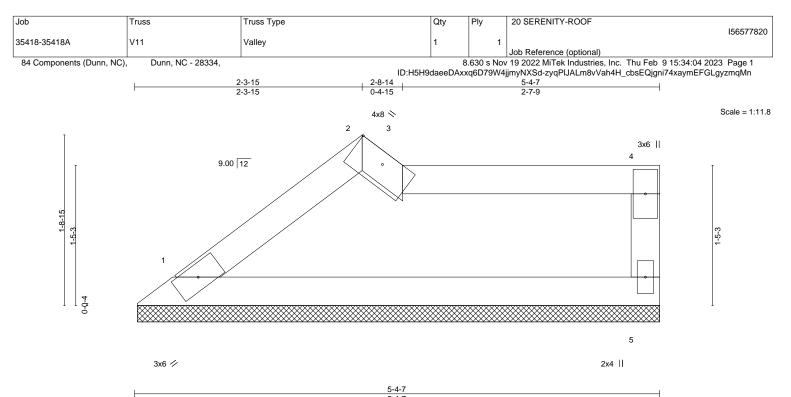
0.00

3) Provide adequate drainage to prevent water ponding.

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

1.15


YES

- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5.

February 10,2023

		1		5-4-7						
SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
Plate Grip DOL	1.15	TC	0.33	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Lumber DOL	1.15	BC	0.20	Vert(CT)	n/a	-	n/a	999		
Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	5	n/a	n/a		
Code IRC2015/TF	PI2014	Matri	x-R						Weight: 18 lb	FT = 20%
				BRACING-						
LUMBER- TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2					· · · · · · · · · · · · · · · · · · ·				oc purlins,	
lo.3				BOT CHOR					or 10-0-0 oc bracing.	
	Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TF	Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	Plate Grip DOL 1.15 TC Lumber DOL 1.15 BC Rep Stress Incr YES WB Code IRC2015/TPI2014 Matri	Plate Grip DOL 1.15 TC 0.33 Lumber DOL 1.15 BC 0.20 Rep Stress Incr YES WB 0.00 Code IRC2015/TPI2014 Matrix-R	Plate Grip DOL 1.15 TC 0.33 Vert(LL) Lumber DOL 1.15 BC 0.20 Vert(CT) Rep Stress Incr YES WB 0.00 Horz(CT) Code IRC2015/TPI2014 Matrix-R BRACING- TOP CHOR Io.2	Plate Grip DOL 1.15 TC 0.33 Vert(LL) n/a Lumber DOL 1.15 BC 0.20 Vert(CT) n/a Rep Stress Incr YES WB 0.00 Matrix-R Code IRC2015/TPI2014 Matrix-R BRACING- TOP CHORD	Plate Grip DOL 1.15 TC 0.33 Vert(LL) n/a - Lumber DOL 1.15 BC 0.20 Vert(CT) n/a - Rep Stress Incr YES WB 0.00 Horz(CT) 0.00 5 Code IRC2015/TPI2014 Matrix-R BRACING- TOP CHORD Structu lo.2 Structu	Plate Grip DOL 1.15 TC 0.33 Vert(LL) n/a - n/a Lumber DOL 1.15 BC 0.20 Vert(CT) n/a - n/a Rep Stress Incr YES WB 0.00 Horz(CT) 0.00 5 n/a Code IRC2015/TPI2014 Matrix-R BRACING- TOP CHORD Structural wood except end verti	Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014 Matrix-R No.2	Plate Grip DOL 1.15 TC 0.33 Vert(LL) n/a - n/a 999 MT20 Lumber DOL 1.15 BC 0.20 Vert(CT) n/a - n/a 999 Rep Stress Incr YES WB 0.00 Horz(CT) 0.00 5 n/a n/a Vert(L1) N/a - n/a 999 Horz(CT) 0.00 5 n/a Code IRC2015/TPI2014 Matrix-R Matrix-R BRACING- Weight: 18 lb Weight: 18 lb Io.2 Do Structural wood sheathing directly applied or 5-4-7 except end verticals. 5-4-7

REACTIONS. (size) 1=5-4-1, 5=5-4-1 Max Horz 1=43(LC 7) Max Upliff 1=-6(LC 10), 5=-1

Max Uplift 1=-6(LC 10), 5=-19(LC 11) Max Grav 1=191(LC 1), 5=191(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

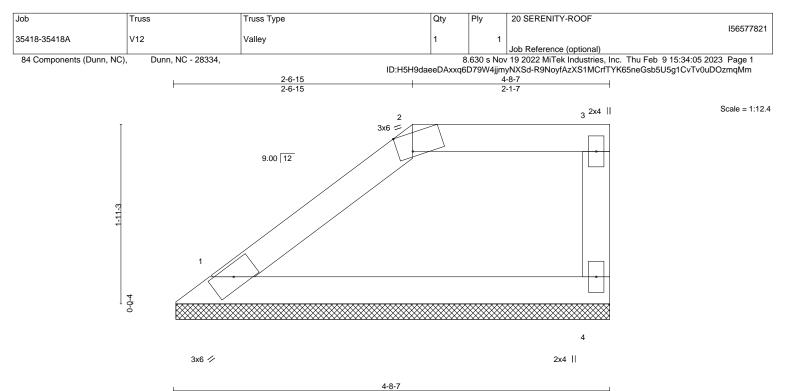
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5.

February 10,2023

4-8-7

OADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc) l/d	lefl L/d	PLATES	GRIP
CLL 20.0	Plate Grip DOL 1.15	TC 0.26	Vert(LL) n/	'a - I	n/a 999	MT20	244/190
CDL 10.0	Lumber DOL 1.15	BC 0.15	Vert(CT) n/	'a - ı	n/a 999		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) 0.0	0 4 1	n/a n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-R				Weight: 16 lb	FT = 20%
LUMBER-			BRACING-				
TOP CHORD 2x4 SP	No.2	TOP CHORD	Structural v	ectly applied or 4-8-7	oc purlins,		
BOT CHORD 2x4 SP	No.2		except end	verticals.		•	
WEBS 2x4 SP	No.3		BOT CHORD	r 10-0-0 oc bracing.			

IONS. (size) 1=4-8-1, 4=4-8-1 Max Horz 1=53(LC 7) Max Uplift 1=-6(LC 10), 4=-21(LC 7) Max Grav 1=165(LC 1), 4=165(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

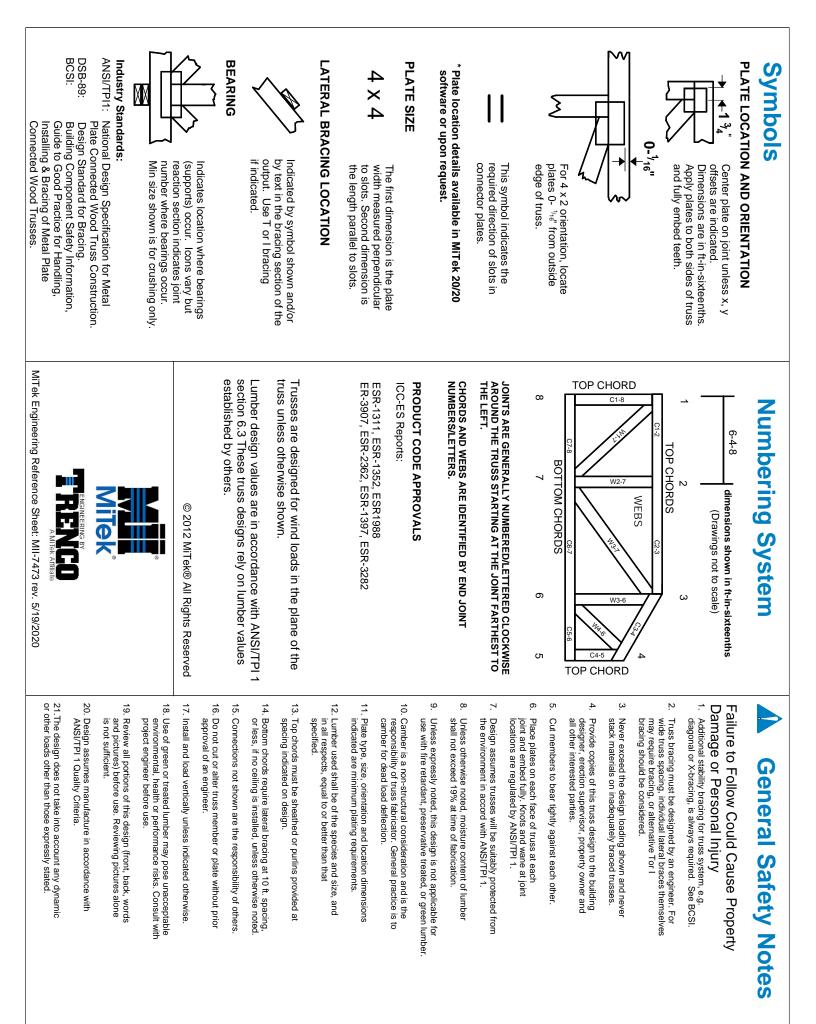
NOTES-

 Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Provide adequate drainage to prevent water ponding.

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 4.

February 10,2023

