

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 31857-31857A Hayden B.F.K

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by 84 Components - #2383.

Pages or sheets covered by this seal: I51643731 thru I51643748

My license renewal date for the state of North Carolina is December 31, 2022.

North Carolina COA: C-0844

April 29,2022

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

	6-10-0 13-0	0	23-0-0		29-2-0	36-0-0	
Plate Offsets (X Y)	6-10-0 6-2 [2:0-6-1 Edge] [8:0-3-0 Edge] [14)-6-1 Edgel	10-0-0		6-2-0	6-10-0	· · · · · · · · · · · · · · · · · · ·
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.85 BC 0.77 WB 0.52 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) 0.26 16-18 0.41 16-18 0.10 14	l/defl L/d >999 240 >999 180 n/a n/a	PLATES MT20 Weight: 233 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SF 1-5,11 BOT CHORD 2x4 SF 19-20: WEBS 2x4 SF 12-16, SLIDER Left 2x	P No.2 *Except* 15: 2x4 SP No.1 P No.1 *Except* 2x8 SP DSS P No.2 *Except* 4-23,7-9: 2x4 SP No.3 6 SP No.2 2-0-0, Right 2x6 SP No	2-0-0	BRACING- TOP CHORD BOT CHORD	9 Structu 9 Rigid c	ral wood sheathing di eiling directly applied	rectly applied or 2-2-0 c or 10-0-0 oc bracing.	oc purlins.
REACTIONS. (siz Max H Max U Max G	e) 2=0-3-8, 14=0-3-8 lorz 2=-132(LC 13) lplift 2=-87(LC 12), 14=-87(LC 13) irav 2=1470(LC 1), 14=1470(LC 1						
FORCES. (lb) - Max. TOP CHORD 2-4=- 12-14 12-14 BOT CHORD 2-23 WEBS 9-18 4-21: 12-14	Comp./Max. Ten All forces 250 2364/402, 4-6=-2020/398, 6-7=-20 4=-2364/402 =-268/2032, 21-23=-268/2032, 18- =-169/865, 10-18=-460/201, 12-18= =-401/139, 7-9=-1334/360	o) or less except when show 9/491, 9-10=-2009/491, 10- 1=-98/1486, 16-18=-268/203 401/140, 7-21=-169/865, 6-	n. 12=-2020/398, 32, 14-16=-268/2032 21=-460/202,				
 NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-10; V gable end zone and shown; Lumber DOI 3) All plates are 3x6 M 4) This truss has been will fit between the b 6) Provide mechanical 7) ATTIC SPACE SHO 	a loads have been considered for th /ult=120mph Vasd=95mph; TCDL= C-C Exterior(2) zone; end vertical _=1.60 plate grip DOL=1.60 T20 unless otherwise indicated. designed for a 10.0 psf bottom chu designed for a live load of 20.0ps vottom chord and any other member connection (by others) of truss to I WN IS DESIGNED AS UNINHABI	s design. 0.0psf; BCDL=6.0psf; h=30ft; 1.0psf; and right exposed;C-C for 1.0psf; and nonconcurrent wi 1.0psf; and the bottom chord in all a 1.0psf; 1.	; Cat. II; Exp B; Enclos r members and forces ith any other live loads reas where a rectangl tanding 100 lb uplift a	sed; MWFRS f s & MWFRS f s. le 3-6-0 tall b at joint(s) 2, 1-	s (envelope) or reactions y 2-0-0 wide 4.	SEA 0363	ROLL L 22 BERING

Thunne . GI 1111111 April 29,2022

6-	-10-0	13-0-0		23-0-0		29-2-0	35-9-0	
Plate Offsets (X,Y)	[2:0-5-13,0-0-1], [8:0-3-0,E	dge], [14:0-7-9,Edge]		10-0-0		0-2-0	6-7-0	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TPI2	2-0-0 C 1.15 T 1.15 E YES V 2014 M	SI. C 0.84 C 0.76 /B 0.51 atrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.26 20-22 -0.42 20-22 0.12 14	l/defl L/d >999 240 >999 180 n/a n∕a	PLATES MT20 Weight: 230 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP 1-5: 2x BOT CHORD 2x4 SP 14-16: WEBS 2x4 SP 4-22,12 SLIDER Left 2x	P No.2 *Except* 4 SP No.1, 11-14: 2x4 SP [2 No.1 *Except* 2x4 SP DSS, 18-19: 2x8 SI No.2 *Except* 2-15,7-9: 2x4 SP No.3 6 SP No.2 2-0-0, Right 2x6	DSS P DSS SP DSS 1-6-0		BRACING- TOP CHOR BOT CHOR	D Structu D Rigid c	iral wood sheathing di eiling directly applied	irectly applied or 2-2-0 o or 10-0-0 oc bracing.	oc purlins.
REACTIONS. (size Max H Max U Max G	e) 2=0-3-8, 14=Mechanic orz 2=137(LC 12) plift 2=-87(LC 12), 14=-77(l irav 2=1460(LC 1), 14=143	al LC 13) 0(LC 1)						
FORCES. (lb) - Max. TOP CHORD 2-4=- 12-14 BOT CHORD 2-22= WEBS 4-20= 12-17	Comp./Max. Ten All force 2346/399, 4-6=-1999/394, (4=-2275/386 277/2016, 20-22=-277/20 403/139, 6-20=-463/201, 7=-333/135, 7-9=-1313/356	es 250 (lb) or less exi 6-7=-1991/487, 9-10: 16, 17-20=-107/1466 7-20=-169/867, 9-17:	ept when shown -1976/486, 10-7 15-17=-264/19 -167/842, 10-17	n. 2=-1985/392, 36, 14-15=-264/193 7=-464/201,	36			
 NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-10; V gable end zone and shown; Lumber DOI 3) All plates are 3x6 Mf 4) This truss has been 5) * This truss has been will fit between the b 6) Refer to girder(s) for 7) Provide mechanical 8) ATTIC SPACE SHO 	e loads have been consider (ult=120mph Vasd=95mph; C-C Exterior(2) zone; end v =1.60 plate grip DOL=1.60 T20 unless otherwise indica designed for a 10.0 psf bott in designed for a live load of iottom chord and any other truss to truss connections. connection (by others) of tr WN IS DESIGNED AS UNI	ed for this design. TCDL=6.0psf; BCDL vertical left and right ated. tom chord live load n f 20.0psf on the botto members, with BCDI uss to bearing plate INHABITABLE.	=6.0psf; h=30ft; exposed;C-C for onconcurrent wi m chord in all ar = 10.0psf. apable of withst	Cat. II; Exp B; Encl members and force th any other live loa eas where a rectan anding 100 lb uplift	losed; MWFRS es & MWFRS f ds. gle 3-6-0 tall b at joint(s) 2, 1-	e (envelope) for reactions y 2-0-0 wide 4.	SEA 0363	L 22 BERLIN

- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 14.
- 8) ATTIC SPACE SHOWN IS DESIGNED AS UNINHABITABLE.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 818 Soundside Road Edenton, NC 27932

GI minin April 29,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Edenton, NC 27932

April 29,2022

LOADING (ps TCLL 20. TCDL 10. BCLL 0. BCDL 10.	sf) .0 .0 .0 * .0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TF	2-0-0 1.15 1.15 YES Pl2014	CSI. TC 0.06 BC 0.03 WB 0.12 Matrix-S	DEFL. Vert(LL) -(Vert(CT) (Horz(CT) (in (lo 0.00 0.00 0.01 :	oc) l/defl 1 n/r 1 n/r 23 n/a	L/d 120 90 n/a	PLATES MT20 Weight: 251 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD BOT CHORD OTHERS SLIDER	2x4 SP 2x4 SP 2x4 SP 13-32,1 Left 2xt	No.2 No.2 No.3 *Except* 12-33,11-34,10-35,14-31, 6 SP No.2 1-7-15, Right 2	15-30,16-29: 2 x8 SP DSS 1-	2x4 SP No.2 11-6	BRACING- TOP CHORD BOT CHORD WEBS	Stru Rig 1 R	uctural wood jid ceiling dire Row at midpt	sheathing dir ectly applied o 1	rectly applied or 6-0-0 c or 10-0-0 oc bracing. I3-32, 12-33, 14-31	oc purlins.
REACTIONS. (lb)	All be - Max H Max U	earings 35-9-0. orz 2=-139(LC 17) plift All uplift 100 lb or le 24	ss at joint(s) 2	, 33, 34, 35, 36, 37, 38, 3	9, 40, 31, 30, 29, 28,	27, 26, 2	25,			

Max Grav All reactions 250 lb or less at joint(s) 2, 23, 32, 33, 34, 35, 36, 37, 38, 39, 40, 31, 30, 29, 28, 27, 26, 25, 24

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 1.5x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 33, 34, 35, 36, 37, 38, 39, 40, 31, 30, 29, 28, 27, 26, 25, 24.

	L			36-0-0						
				36-0-0						1
Plate Offse	ts (X,Y)	[2:0-1-8,0-0-5], [3:0-2-5,0-2-4], [21:0-2-	5,0-2-4], [22:0-1-8,0-3-13],	[29:0-3-0,0-3-0], [35:0-3	-0,0-3-0]			
LOADING TCLL TCDL BCLL BCDL	(psf) 20.0 10.0 0.0 * 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.06 BC 0.03 WB 0.12 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.00 -0.00 0.01	(loc) 22 22 22	l/defl n/r n/r n/a	L/d 120 90 n/a	PLATES MT20 Weight: 253 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHOF BOT CHOF OTHERS SLIDER REACTION	RD 2x4 SP 2x4 SP 2x4 SP 12-32,1 Left 2xt IS. All be b) - Max H Max U Max G	No.2 No.2 No.3 *Except* 11-33,10-34,9-35,13-31,14-30,15-29: 2 6 SP No.2 2-2-1, Right 2x6 SP No.2 2- earings 36-0-0. orz 2=-132(LC 13) plift All uplift 100 lb or less at joint(s) 2 24 rav All reactions 250 lb or less at join 27, 26, 25, 24	(4 SP No.2 2-1 2, 33, 34, 35, 36, 37, 38, 39 1(s) 2, 22, 32, 33, 34, 35, 36	BRACING- TOP CHORI BOT CHORI WEBS 9, 40, 31, 30, 29, 21 6, 37, 38, 39, 40, 3	D D 8, 27, 2 31, 30,	Structu Rigid c 1 Row 26, 25, 29, 28,	ral wood eiling dire at midpt	sheathing ectly applied	directly applied or 6-0-0 d d or 10-0-0 oc bracing. 12-32, 11-33, 13-31	oc purlins.

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 1.5x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 33, 34, 35, 36, 37, 38, 39, 40, 31, 30, 29, 28, 27, 26, 25, 24.

	7-1-3		13-10-13		1		21-0-0	
	7-1-3		6-9-11		1		7-1-3	1
Plate Offsets (X,	Y) [2:Edge,0-2-12], [8:Edge,0-2-12], [10:0-	3-0,0-3-0]						
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 * Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.48 BC 0.50 WB 0.63 Matrix-MS	DEFL. in Vert(LL) -0.08 Vert(CT) -0.14 Horz(CT) 0.03	(loc) 9-10 9-10 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 116 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2 BOT CHORD 2 WEBS 2	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Except* 4-9,4-10: 2x4 SP No.2		BRACING- TOP CHORD BOT CHORD	Structu except Rigid co	ral wood end vertie eiling dire	sheathing dir cals. ctly applied o	ectly applied or 5-2-1 o	oc purlins,
REACTIONS.	(size) 11=0-3-8, 8=0-3-8 Max Horz 11=-76(LC 10) Max Uplift 11=-55(LC 12), 8=-55(LC 13) Max Grav 11=867(LC 1), 8=867(LC 1)							
FORCES. (Ib) TOP CHORD BOT CHORD WEBS	Max. Comp./Max. Ten All forces 250 (lb) o 2-3=-414/142, 3-4=-1131/259, 4-5=-1125/25 6-8=-351/141 10-11=-137/1042, 9-10=-31/746, 8-9=-136/1 4-9=-61/407, 4-10=-65/410, 3-11=-862/102,	less except when shown. 6, 5-6=-415/141, 2-11=-350/1 041 5-8=-860/104	41,					
-								

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 11, 8.

			21-0-0					
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.05 BC 0.04 WB 0.07	DEFL. i Vert(LL) 0.00 Vert(CT) 0.00 Horz(CT) 0.00	n (loc) 0 12 0 12 0 14	l/defl n/r n/r n/a	L/d 120 90 n/a	PLATES MT20	GRIP 244/190
BCDL 10.0	Code IRC2015/TPI2014	Matrix-R					Weight: 114 lb	FT = 20%
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF	2 No.2		BRACING- TOP CHORD	Structu	ural wood	sheathing di	rectly applied or 6-0-0 c	oc purlins,

 BOT CHORD
 2x4 SP No.2
 except end verticals.

 WEBS
 2x4 SP No.3
 BOT CHORD
 Rigid ceiling directly applied or 10-0 oc bracing.

 OTHERS
 2x4 SP No.3
 BOT CHORD
 Rigid ceiling directly applied or 10-0 oc bracing.

REACTIONS. All bearings 21-0-0.

(lb) - Max Horz 25=-76(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 25, 14, 20, 22, 23, 24, 18, 17, 16, 15 Max Grav All reactions 250 lb or less at joint(s) 25, 14, 19, 20, 22, 23, 24, 18, 17, 16, 15

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 1.5x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 25, 14, 20, 22, 23, 24, 18, 17, 16, 15.

Plate Offsets (X,Y)	[6:0-0-0,0-2-1], [7:0-5-4,0-1-8], [8:0-5-0,	<u>0-6-0], [9:0-6-0,0-6-4], [11</u>	1:0-3-8,0-6-0]			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrNOCodeIRC2015/TPI2014	CSI. TC 0.47 BC 0.53 WB 1.00 Matrix-MS	DEFL. in Vert(LL) -0.12 Vert(CT) -0.23 Horz(CT) 0.04	(loc) l/defl L 7-8 >999 24 7-8 >999 18 6 n/a n	/d PLATES 10 MT20 30 /a Weight: 366 II	GRIP 244/190 b FT = 20%
LUMBER- TOP CHORD 2x6 SF BOT CHORD 2x8 SF WEBS 2x4 SF 2-9,3-5 OTHERS 2x4 SF REACTIONS. (siz Max H Max U Max G	P No.2 P DSS P No.3 *Except* ,4-9,1-11: 2x4 SP No.2 P No.2 e) 6=(0-3-8 + TBE4 Simpson Strong-T lorz 12=-152(LC 6) plift 6=-478(LC 9), 12=-498(LC 9) irgay 6=7460(LC 1) 12=8209(LC 1)	īe) (req. 0-5-14), 12=0-3-	BRACING- TOP CHORD BOT CHORD	Structural wood shea Rigid ceiling directly	athing directly applied or 4-0-1 applied or 10-0-0 oc bracing.	10 oc purlins.
FORCES. (ib) - Max. TOP CHORD 1-2=- 1-12: BOT CHORD 9-11: WEBS 2-11: 5-8=-	Comp./Max. Ten All forces 250 (lb) or -5321/369, 2-3=-6281/468, 3-4=-6325/4 =-6958/439 =-243/4684, 8-9=-467/8828, 7-8=-669/1 =-1919/153, 2-9=-109/1743, 3-9=-341/5 -2639/235, 5-7=-115/2489, 1-11=-376/6	less except when shown. 54, 4-5=-9882/660, 5-6=-1 1087, 6-7=-669/11087 240, 4-9=-4763/388, 4-8=- 399	2529/811, -276/4807,			990 <i>0</i> .
NOTES- 1) 2-ply truss to be cor Top chords connect Bottom chords connect Webs connected as 2) All loads are consided ply connections hav 3) Unbalanced roof live 4) Wind: ASCE 7-10; N gable end zone; end 5) This truss has been 6) * Disearing at joint(s) 12 capacity of bearing at 8) Provide mechanical 12=498.	anected together with 10d (0.148"x3") na ed as follows: 2x6 - 2 rows staggered at ected as follows: 2x8 - 2 rows staggered follows: 2x4 - 1 row at 0-9-0 oc. ered equally applied to all plies, except i e been provided to distribute only loads bloads have been considered for this de /ult=120mph Vasd=95mph; TCDL=6.0ps d vertical left and right exposed; Lumber designed for a 10.0 psf bottom chord liv n designed for a live load of 20.0psf on to ototom chord and any other members. 2 considers parallel to grain value using surface. connection (by others) of truss to bearing	ils as follows: 0-9-0 oc. 1 at 0-7-0 oc. i noted as front (F) or bac noted as (F) or (B), unless sign. of; BCDL=6.0psf; h=30ft; C DOL=1.60 plate grip DOL e load nonconcurrent with he bottom chord in all are ANSI/TPI 1 angle to grain og plate capable of withsta	k (B) face in the LOAD C/ s otherwise indicated. Cat. II; Exp B; Enclosed; I .=1.60 n any other live loads. eas where a rectangle 3-6 n formula. Building design anding 100 lb uplift at joint	ASE(S) section. Ply to MWFRS (envelope) i-0 tall by 2-0-0 wide her should verify t(s) except (jt=lb)	SEA 036	ARO AL 322 VEERATION GILBERTING MILLIN
Continued on page 2 WARNING - Verify de Design valid for use onh a truss system. Before (building design. Bracin, is always required for st fabrication, storage, deli Safety Information av	sign parameters and READ NOTES ON THIS AND I y with MiTek® connectors. This design is based on use, the building designer must verify the applicabili g indicated is to prevent buckling of individual truss ability and to prevent collapse with possible person very, erection and bracing of trusses and truss sys ailable from Truss Plate Institute, 2670 Crain Highv	NCLUDED MITEK REFERENCE y upon parameters shown, and i ty of design parameters and proj web and/or chord members only al injury and property damage. I tems, see ANS/TPI Q ray, Suite 203 Waldorf, MD 2060	PAGE MII-7473 rev. 5/19/2020 B is for an individual building comp perly incorporate this design into Additional temporary and perr For general guidance regarding i kuality Criteria, DSB-89 and BC 11	EFORE USE. xonent, not the overall nanent bracing the CSI Building Component	B18 Soundsidi Edenton. NC 2	ERING BY ENCO A MITek Attiliate e Road 27932

Job	Truss	Truss Type	Qty	Ply	Hayden B.F.K	
21057 210574		Common Cirdor	1	_		151643739
51657-51657A	DOK	Common Girder		2	Job Reference (optional)	
84 Components (Dunn),	Dunn, NC - 28334,			3.530 s Deo	c 6 2021 MiTek Industries, Inc. Thu Apr 28 12:34:28 202	2 Page 2
		ID:OzVU6VtZe	lu0DaSZC	T8WpBzM	ICQc-Eqm?qIVFHHzQuASA6LV2W9sqtCQEXn9 5bxUK	KzMBHP

NOTES-

9) TBE4 Simpson Strong-Tie connectors recommended to connect truss to bearing at jt(s) 6. This connection does not consider lateral forces.

10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1412 lb down and 95 lb up at 0-11-4, 1410 lb down and 97 lb up at 2-11-4, 1410 lb down and 97 lb up at 6-11-4, 1410 lb down and 97 lb up at 8-11-4, 1410 lb down and 97 lb up at 10-11-4, 1410 lb down and 97 lb up at 10-11-4, 1410 lb down and 97 lb up at 12-11-4, 1410 lb down and 97 lb up at 14-11-4, and 1410 lb down and 97 lb up at 12-11-4, 1410 lb down and 97 lb up at 14-11-4, and 1410 lb down and 97 lb up at 12-11-4, 1410 lb down and 97 lb up at 14-11-4, and 1410 lb down and 97 lb up at 18-11-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 3-6=-60, 12-13=-20

Concentrated Loads (lb)

Vert: 10=-1410(B) 16=-1412(B) 17=-1410(B) 18=-1410(B) 19=-1410(B) 20=-1410(B) 21=-1410(B) 22=-1410(B) 23=-1410(B) 24=-1410(B) 24=-140(B) 2

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code JRC2015/TPI2014	CSI. TC 0.55 BC 0.39 WB 0.00 Matrix-MP	DEFL. in (loc) l/defl L/d Vert(LL) -0.05 4-7 >999 240 Vert(CT) -0.12 4-7 >592 180 Horz(CT) 0.02 2 n/a n/a	PLATES GRIP MT20 244/190 Weight: 22 lb ET = 20%
LUMBER-	2 No 2		BRACING-	directly applied or 6-0-0 oc purlins

BOT CHORD

except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3

REACTIONS. (size) 2=0-3-8, 4=0-1-8 Max Horz 2=78(LC 11)

Max Uplift 2=-37(LC 8), 4=-32(LC 12)

Max Grav 2=265(LC 1), 4=233(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.

DEFL.

Vert(LL)

Vert(CT)

Horz(CT)

in (loc)

-0.00

0.00

0.00

l/defl

1

4

n/r

n/r

n/a

L/d

120

90

n/a

SPACING-2-0-0CSI.Plate Grip DOL1.15TCLumber DOL1.15BCRep Stress IncrYESWB

BCDL 10.	.0	Code	e IRC2015/TPI2	2014	Matrix-P		
LUMBER-	01 0.0					BRACI	NG-
BOT CHORD	2x4 SP 2x4 SP	No.2 No.2				TOP CF	IORD
WEBS	2x4 SP	No.3				BOT CH	IORD

Structural wood sheathing directly applied or 2-0-0 oc purlins, except end verticals.
 Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 4=2-0-0, 2=2-0-0 Max Horz 2=29(LC 9)

Max Hold 2=29(LC 9)Max Uplift 4=-10(LC 12), 2=-24(LC 8)

Max Grav 4=70(LC 1), 2=108(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

LOADING (psf)

20.0

10.0

0.0

TCLL

TCDL

BCLL

1) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

ł

0.05

0.04

0.00

- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry
- Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

3) Gable requires continuous bottom chord bearing.

4) Gable studs spaced at 2-0-0 oc.

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2.

GRIP

244/190

FT = 20%

PLATES

Weight: 8 lb

MT20

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.55 BC 0.39 WB 0.00 Matrix-MP	DEFL. ii Vert(LL) -0.05 Vert(CT) -0.12 Horz(CT) 0.02	n (loc) l/defi L/d 5 4-9 >999 240 2 4-9 >592 180 2 2 n/a n/a	PLATES GRIP MT20 244/190 Weight: 24 lb FT = 20%
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP WEBS 2x4 SP	No.2 No.2		BRACING- TOP CHORD	Structural wood sheathing dir except end verticals.	rectly applied or 6-0-0 oc purlins,

OTHERS 2x4 SP No.3 **REACTIONS.** (size) 2=0-3-8, 4=0-1-8 Max Horz 2=78(LC 11) May Horz 127(C 0) 4 of

Max Uplift 2=-37(LC 8), 4=-32(LC 12) Max Grav 2=265(LC 1), 4=233(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable studs spaced at 2-0-0 oc.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.

TOP CHORD

BOT CHORD

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.3 OTHERS

REACTIONS. All bearings 23-0-0.

Max Horz 1=78(LC 12) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 1, 11, 13, 9, 8

Max Grav All reactions 250 lb or less at joint(s) 1, 7 except 10=378(LC 19), 11=344(LC 23), 13=302(LC 1), 9=344(LC 24), 8=302(LC 1)

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. FORCES. WEBS 3-11=-264/144, 5-9=-264/144

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) All plates are 1.5x4 MT20 unless otherwise indicated.

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 11, 13, 9, 8.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

NOTES-

1) Unbalanced roof live loads have been considered for this design

2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5, 9, 6.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek Affilia 818 Soundside Road Edenton, NC 27932

Max Uplift All uplift 100 lb or less at joint(s) 1, 8, 6

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=279(LC 1), 8=328(LC 23), 6=328(LC 24)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 8, 6.

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.10 BC 0.03 WB 0.03 Matrix-P	DEFL. ir Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.00	n (loc) l/defl L/d n n/a 999 n n/a 999 5 n/a n/a	PLATES GRIP MT20 244/190 Weight: 25 lb FT = 20%
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF OTHERS 2x4 SF	2 No.2 No.2 2 No.3 2 No.3		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing di except end verticals. Rigid ceiling directly applied	rectly applied or 6-0-0 oc purlins, or 10-0-0 oc bracing.

REACTIONS. All bearings 6-2-8.

(lb) - Max Horz 1=91(LC 9)

Max Uplift All uplift 100 lb or less at joint(s) 5, 6, 7

Max Grav All reactions 250 lb or less at joint(s) 1, 5, 6, 7

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

 Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 2) Gable requires continuous bottom chord bearing.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 6, 7.

