

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 34893A 5 SERENITY

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by 84 Components - #2383.

Pages or sheets covered by this seal: I56131948 thru I56132001

My license renewal date for the state of North Carolina is December 31, 2023.

North Carolina COA: C-0844

January 17,2023

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type Qty		Ply	5 SERENITY		
34893A	A1E	Common Supported Gable	1	1	Job Reference (optional)	156131948	

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Jan 13 10:16:48 ID:C1WouytSkAbxAH8_CW9Vkiy6NQX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

January 17,2023

818 Soundside Road Edenton, NC 27932

Scale =	1:54.6
---------	--------

Plate Offsets (X, Y): [22:0-3-0,0-1-4]

Loading TCLL (roof) TCDL BCLL BCDL		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20 ⁷	15/TPI2014	CSI TC BC WB Matrix-MS	0.14 0.13 0.18	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(lo 1	c) I/de - n - n 16 n	efl /a /a /a	L/d 999 999 n/a	PLATES MT20 Weight: 171 II	GRIP 244/19 D FT = 2	90 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No 2x4 SP No 2x4 SP No 2x4 SP No SP No.2 Structural 6-0-0 oc p Rigid ceili bracing.	0.2 0.3 0.3 *Except wood shea purlins, exc ng directly	t* 23-9,24-8,21-10:2 athing directly applie cept end verticals. applied or 10-0-0 oc 16-26-8-8, 17-26-8	T 2x4 Bed or C 2. 8 V	OP CHORD	1-2=-116/91, 2-3=: 4-5=-73/156, 5-7=: 8-9=-103/265, 9-11 10-11=-89/198, 11 12-13=-63/106, 13 15-16=-26/16 1-29=-30/47, 28-2! 26-27=-30/39, 21-: 19-20=-30/39, 18- 16-17=-30/39 9-23=-162/22, 8-2!	-98/88, 3 -76/192, 0=-103/2 -12=-76/ -14=-49/ 9=-30/39 26=-30/3 23=-30/3 19=-30/3 19=-30/3	-4=-82/116, 7-8=-89/231, 56, 143, (68, 14-15=-35 9, 27-28=-30/3 9, 24-25=-30/ 9, 20-21=-30/ 9, 17-18=-30/ 09, 7-25=-115	5/35, 9, 39, 39, 39, 39,	8)	^t This tru on the b 3-06-00 chord ar Provide bearing 1, 3 lb up at joint 2 17 lb up at joint 2 28 lb up uplift at j	iss h otton d ar meclolate olift a 5, 27 ift at 1, 29 ift at oint	nas b n cho oy 1-0 hy oth hanic capa capa capa capa capa capa capa ca	een designed fc ord in all areas v 00-00 wide will fi her members, w cal connection (t able of withstan ht 16, 27 lb uplifi uplift at joint 26, 5 .28, 54 lb uplift at joint 20, 5 .18, 38 lb uplift	r a live loa /here a re t betweer th BCDL y others) ding 4 lb u at joint 2 30 lb uplif at joint 29 27 lb uplif at joint 17	ad of 20.0psf ictangle in the bottom = 10.0psf. of truss to uplift at joint 14, 29 lb uplift if at joint 27, i, 25 lb uplift if at joint 19, ' and 4 lb
REACTIONS	(size) Max Horiz Max Uplift Max Grav	1=26-8-8, 18=26-8-8 21=26-8-8 25=26-8-8 28=26-8-8 1=-24 (LC 6 (LC 13), 1 (LC 13), 2 (LC 12), 2 (L2	16=26-8-8, 17=26-8 8, 19=26-8-8, 20=26 9, 23=26-8-8, 24=26 1, 26=26-8-8, 30=26 2, 29=26-8-8, 30=26 2, 11), 30=128 (LC 12), 17 8=-28 (LC 13), 19=- 0=-29 (LC 13), 21=- 4=-27 (LC 12), 25=- 6=-27 (LC 12), 27=- 8=-17 (LC 12), 27=- 8=-17 (LC 12), 29=- 0=-4 (LC 8) 20), 16=31 (LC 22 C 24), 18=176 (LC 22 C 26), 20=198 (LC 22 C 26), 23=222 (LC 22) C 19), 25=198 (LC 22) C 25), 27=183 (LC 22) C 25), 27=182 (LC 22) C 25), 27=	5-8, -8-8, -8-8, -8-8, -8-8, -8-8, -8-8 1 7=-38 227 229 30 54), 22), 22), 32 22), 32 22), 32 22), 33 22), 33 22), 34 22), 34 32 34 34 34 34 34 34 34 34 34 34 34 34 34	IOTES) Unbalanced this design.) Wind: ASCE Vasd=91mpl II; Exp B; En and C-C Cor 15-8-12, Cor 20-3-2 to 26- exposed; er members an Lumber DOL) Truss desig only. For stu	5-26=-119/58, 4-2' 2-29=-202/160, 10 11-20=-119/99, 12 13-18=-125/114, 1 roof live loads hav 7-10; Vult=115mp n; TCDL=6.0psf; B closed; MWFRS (ner (3) 0-0 to 4- ner (3) 15-8-12 to 6-12 zone; cantile d vertical left and d forces & MWFR _=1.60 plate grip D ned for wind loads uds exposed to win	7=-127/6 -21=-12: -19=-11: 4-17=-9: we been of bh (3-sec CDL=6.0 envelope 6-6, Exte 20-3-2, ver left a right exp S for rea VOL=1.60 in the p nd (norm	4, 3-28=-88/4 9/107, 9/75, 5/98 considered for cond gust) 0psf; h=30ft; C 9) exterior zom rior (2) 4-6-6 : Exterior (2) and right oosed;C-C for ctions shown; 0) lane of the true al to the face)	8, Cat. e to ss	10) ⁻ I I LOA	This trus nternati R802.10 D CASE	s is conal .2 ar	desig Resi nd re Sta	gned in accordan dential Code se ferenced standa undard	AROC	he 2015 02.11.1 and TPI 1.
FORCES	28=101 (LC 1), 29=304 (LC 23), 30=131 (LC 20) (lb) - Maximum Compression/Maximum Tension (lb) - Maximum Compression/Maximum Tension (lb) - Maximum Compression/Maximum Tension (lb) - Maximum Compression/Maximum Tension (lb) - Maximum Compression/Maximum (lb) - Maximum Compression/Maximum Compression/Maximum Compression/Maximum Compression/Lb) - Maximum Compression/Lb) - Maximum Compression/Lb) - Max				d Industry Gable E lailfied building de § 1.5x4 MT20 unle es continuous bott spaced at 2-0-0 o ls been designed f ad nonconcurrent	nd Deta signer as ss othen com chor c. for a 10.0 with any	IIs as applicab s per ANSI/TP wise indicated d bearing. O psf bottom other live load	ble, 111. ds.			11110 March			322 NEER GILB	A State	

Job	Truss	Truss Type	Qty	Ply	5 SERENITY	
34893A	A2	Common	6	1	Job Reference (optional)	156131949

Run: 8,63 S Nov 19 2022 Print: 8,630 S Nov 19 2022 MiTek Industries, Inc. Fri Jan 13 10:16:51 ID:oXxNXBfDQ9njTGcUVgqltPy6NPW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

* This truss has been designed for a live load of 20.0psf

3-06-00 tall by 1-00-00 wide will fit between the bottom

bearing plate capable of withstanding 38 lb uplift at joint

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

This truss is designed in accordance with the 2015

on the bottom chord in all areas where a rectangle

Refer to girder(s) for truss to truss connections. Provide mechanical connection (by others) of truss to

chord and any other members.

1 and 11 lb uplift at joint 7.

LOAD CASE(S) Standard

BCDL							

Loading

TCDL

BCLL

B

W

в

T

B

W R

LUM	BER
TOP	CHC

OP CHORD	2x4 SP No.2
OT CHORD	2x4 SP No.2
'EBS	2x4 SP No.3 *Except* 9-4,9-5,9-2:2x4 SP
	No.2
RACING	
OP CHORD	Structural wood sheathing directly applied of
	2-4-4 oc purlins, except end verticals.
OT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing, Except:
	6-0-0 oc bracing: 7-8.
'EBS	1 Row at midpt 5-9, 2-9
EACTIONS	(size) 1=0-5-8, 7= Mechanical
	Max Horiz 1=128 (LC 11)
	Max Uplift 1=-38 (LC 12), 7=-11 (LC 13)
	Max Cray 1-1062 (LC 1) 7-1062 (LC 1)

Max Grav 1=1062 (LC 1), 7=1063 (LC 1) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-1842/98, 2-4=-1115/125, 4-5=-1108/120, 5-6=-919/68, 6-7=-1051/70 BOT CHORD 1-10=-100/1592, 8-10=-100/1592, 7-8=-31/35 WEBS 4-9=0/544, 5-9=-51/180, 5-8=-500/112, 2-9=-806/152, 2-10=0/339, 6-8=-56/1037

NOTES

- Unbalanced roof live loads have been considered for 1) this design
- Wind: ASCE 7-10; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-0-0 to 4-6-6, Interior (1) 4-6-6 to 15-8-12, Exterior (2) 15-8-12 to 20-3-2, Interior (1) 20-3-2 to 26-6-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

Varmonter MALLIN MALL SEAL 036322 GI mmm January 17,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

4)

5)

6)

7)

Job	Truss	Truss Type	Qty	Ply	5 SERENITY	
34893A	A2A	Attic	2	1	Job Reference (optional)	156131950

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Jan 13 10:16:51 ID:oXxNXBfDQ9njTGcUVgqltPy6NPW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-0-0 to 4-6-6, Interior (1) 4-6-6 to 15-8-12, Exterior (2) 15-8-12 to 20-3-2, Interior (1) 20-3-2 to 26-6-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 All plate are 26 MTC0.
- 3) All plates are 3x6 MT20 unless otherwise indicated.

Job	Truss	Truss Type	Qty	Ply	5 SERENITY	
34893A	АЗА	Attic	1	1	Job Reference (optional)	156131951

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Jan 13 10:16:52 ID:zB90_aCSqzSKNAY7ed8ICvy6NOp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Plate Offsets (X, Y): [12:0-2-12,0-4-0], [14:0-1-8,0-1-8], [16:0-4-12,0-2-0]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.39	Vert(LL)	-0.20	14-15	>999	240	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15		BC	0.90	Vert(CT)	-0.36	14-15	>833	180			
BCLL	0.0*	Rep Stress Incr	YES		WB	0.49	Horz(CT)	0.03	10	n/a	n/a			
BCDL	10.0	Code	IRC2015/	/TPI2014	Matrix-MS		Attic	-0.14	12-14	>737	360	Weight: 190 lb	FT = 20%	
L UMBER TOP CHORD BOT CHORD	2x4 SP No.2 2x6 SP No.2 *Excep	t* 13-10:2x6 SP DSS	2) S,	Wind: ASCE Vasd=91mpt II; Exp B; En	7-10; Vult=115n n; TCDL=6.0psf; closed; MWFRS	nph (3-sec BCDL=6.0 (envelope	ond gust) psf; h=30ft;) exterior zoi	Cat. ne						
WEBS	2x4 SP No.3 *Excep 16-2:2x6 SP No.2	t* 5-7:2x4 SP No.2,		to 15-8-12, E 20-3-2 to 26-	enor (2) -0-3-6 te exterior (2) 15-8- 6-12 zone; canti	12 to 20-3- lever left a	2, Interior (1) nd right) r						
TOP CHORD	Structural wood sheat 4-0-4 oc purlins, exc	athing directly applie	d or	members an Lumber DOL	d forces & MWF =1.60 plate grip	RS for rea DOL=1.60	ctions shown	n;						
BOT CHORD	Rigid ceiling directly	applied or 9-1-6 oc	3)	This truss ha chord live loa	s been designed ad nonconcurren	d for a 10.0 t with any) psf bottom other live loa	ads.						
WEBS JOINTS	1 Row at midpt 1 Brace at Jt(s): 17	3-16	4)	* This truss h on the bottor 3-06-00 tall b	has been designe n chord in all are by 1-00-00 wide	ed for a live as where will fit betw	e load of 20. a rectangle een the bott	0psf tom						

Ceiling dead load (5.0 psf) on member(s). 5-17, 7-17; Wall dead load (5.0psf) on member(s).5-14, 7-12

Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 12-14

Refer to girder(s) for truss to truss connections.

This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and

R802.10.2 and referenced standard ANSI/TPI 1.

ATTIC SPACE SHOWN IS DESIGNED AS

chord and any other members.

UNINHABITABLE.

5)

6)

7)

8)

9)

REACTIONS	(size)	10= Mechanical, 16=0-5-8					
	Max Horiz	16=131 (LC 11)					
	Max Grav	10=1330 (LC 2), 16=1298 (LC 2)					
FORCES	(lb) - Max	imum Compression/Maximum					
	Tension						
TOP CHORD	1-2=0/41,	2-3=-59/104, 3-5=-1742/0,					
	5-6=-402/48, 6-7=-416/47, 7-8=-1692/0,						
	8-9=-107	1/0, 9-10=-1206/0					
BOT CHORD	15-16=0/1	1771, 14-15=0/1770, 12-14=0/1496,					
	11-12=0/9	923, 10-11=-21/39					
WEBS	3-14=-497	7/143, 3-15=0/306, 9-11=0/1110,					
	5-14=0/416, 7-12=0/366, 5-17=-1208/0,						
	7-17=-120	08/0, 6-17=0/108, 8-11=-1079/0,					
	8-12=0/93	33, 2-16=-223/156, 3-16=-2060/0					

NOTES

1) Unbalanced roof live loads have been considered for this design.

SEAL 036322 January 17,2023

Job	Truss	Truss Type	Qty	Ply	5 SERENITY	
34893A	A4A	Attic	2	1	Job Reference (optional)	156131952

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Jan 13 10:16:52 ID:LE3_IX5EePfzdOd9QSxQfly6NNg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

			-		-							
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.79	Vert(LL)	-0.43	14-15	>727	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.81	Vert(CT)	-0.71	14-15	>441	180	M18AHS	186/179
BCLL	0.0*	Rep Stress Incr	YES	WB	0.95	Horz(CT)	0.04	11	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MS		Attic	-0.31	12-14	>319	360	Weight: 171 lb	FT = 20%
BCDL BCDL LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD JOINTS REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=91m II; Exp B; E and C-C E: to 15-8-12, 20-3-2 to 2 end vertica forces & M DOL=1.60 3) All plates a	10.0 2x4 SP No.1 2x4 SP DSS *Except 2x4 SP DSS *Except 2x4 SP No.3 *Except Left 2x6 SP No.2 2 Structural wood sheet 2-4-13 oc purlins, e: Rigid ceiling directly bracing. 1 Brace at Jt(s): 16 (size) 2=0-5-8, 1 Max Horiz 2=127 (LC Max Grav 2=1315 (L (lb) - Maximum Com 1-2=0/35, 2-4=-2040 6-7=-394/55, 7-8=-48 9-10=-79/60, 10-11= 2-15=-125/1759, 14- 12=14=-0/1493, 11-12 4-14=-616/174, 4-15 6-14=0/481, 8-12=0/ 8-16=-1190/0, 7-16= d roof live loads have CE 7-10; Vult=115mph ph; TCDL=6.0psf; BCI Enclosed; MWFRS (en xterior (2) -0-3-8 to 4-2 , Exterior (2) 15-8-12 to 7-0-4 zone; cantilever WFRS for reactions sist plate grip DOL=1.60 are MT20 plates unless	Code Code t* 14-12:2x6 SP No.2 t* 6-8:2x4 SP No.2 2-0-0 athing directly applier xcept end verticals. applied or 9-4-10 oc 1=0-5-8 C 11) C 2), 11=1350 (LC 2 pression/Maximum /0, 4-6=-1735/0, 50/53, 8-9=-1669/0, -122/39 15=0/1759, 2=0/1109 =-18/325, 9-11=-167 286, 6-16=-1190/0, 0/107, 9-12=0/604 been considered for (3-second gust) DL=6.0psf; h=30ft; C velope) exterior zono 2-14, Interior (1) 4-2- o 20-3-2, Interior (1) left and right exposed cf.C- for members a hown; Lumber s otherwise indicated	IRC2015/TPI2014 4) This truss chord live 5) * This trus on the bo 3-06-00 t chord and d or 6) Ceiling de Wall deax 7) Bottom cl chord dei 8) This truss Internation R802.10. 9) ATTIC SI UNINHAE LOAD CASE 3/0, at. at. <th>Matrix-MS Matrix-MS thas been designed load nonconcurrent is has been designed tom chord in all area all by 1-00-00 wide w d any other members bad load (5.0 psf) on me- hord live load (40.0 p d load (5.0 psf) apply is designed in according to a discidential Code 2 and referenced state PACE SHOWN IS DE BITABLE. (S) Standard</th> <th>for a 10.0 with any d for a liv as where vill fit betw s, member(s).1 wsf) and a lied only t rdance w a sections a sections</th> <th>Attic Attic) ps bottom other live load e load of 20. a rectangle ween the bott (s). 6-16, 8-1 5-14, 8-12 dditional bott o room. 12-1 ith the 2015 R502.11.1 a ISI/TPI 1. AS</th> <th>-0.31 ads. .0psf tom 6; tom 14 and</th> <th>12-14</th> <th>>319</th> <th>360</th> <th>Weight: 171 Ib H CA SEA 03632</th> <th>FT = 20%</th>	Matrix-MS Matrix-MS thas been designed load nonconcurrent is has been designed tom chord in all area all by 1-00-00 wide w d any other members bad load (5.0 psf) on me- hord live load (40.0 p d load (5.0 psf) apply is designed in according to a discidential Code 2 and referenced state PACE SHOWN IS DE BITABLE. (S) Standard	for a 10.0 with any d for a liv as where vill fit betw s, member(s).1 wsf) and a lied only t rdance w a sections a sections	Attic Attic) ps bottom other live load e load of 20. a rectangle ween the bott (s). 6-16, 8-1 5-14, 8-12 dditional bott o room. 12-1 ith the 2015 R502.11.1 a ISI/TPI 1. AS	-0.31 ads. .0psf tom 6; tom 14 and	12-14	>319	360	Weight: 171 Ib H CA SEA 03632	FT = 20%
												17.0000

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

January 17,2023

Job	Truss	Truss Type	Qty	Ply	5 SERENITY	
34893A	A5E	Common Supported Gable	1	1	Job Reference (optional)	156131953

Scale = 1:54.6

Plate Offsets	(X, Y):	[2:0-3-4,0-0-1]
---------------	---------	-----------------

8-4-1 8-2-6

Loading TCLL (roof) TCDL BCLL BCDL		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	15/TPI2014	CSI TC BC WB Matrix-MS	0.11 0.04 0.18	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(lo 31-3 31-3	c) l/defl 34 >999 34 >999 2 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 174 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP N 2x4 SP N 2x4 SP N 2x4 SP N SP No.2 Left 2x6 S Structural 6-0-0 oc r Rigid ceill bracing. (size)	o.2 o.2 o.3 SP No.2 1 I wood shea purlins, exc ing directly 2=26-2-0.	t* 25-11,26-10,23-12 -6-0 athing directly applied xept end verticals. applied or 10-0-0 oc 18=26-2-0, 19=26-2	- ::2x4 d or -0.	TOP CHORD BOT CHORD WEBS	1-2=0/35, 2-4=-10 5-6=-82/122, 6-7=- 9-10=-91/236, 10- 11-12=-104/261, 1 13-14=-77/150, 14 15-16=-51/73, 16- 2-31=-26/37, 30-3 28-29=-26/37, 23- 25-26=-26/37, 23- 21-22=-26/37, 20- 18-19=-26/37 11-25=-166/23, 10 9-27=-118/98, 7-21 	7/81, 4-5 -70/160, 11=-104/ 2-13=-9 -15=-65/ 17=-36/3 1=-26/37 28=-26/3 25=-26/3 25=-26/3 21=-26/3 21=-26/3 21=-26/3 21=-26/3	=-89/87, 7-9=-77/197, 270, 1/203, 111, 8, 17-18=-35/2 7, 29-30=-26/37 7, 29-30=-26/37 7, 22-23=-26/3 7, 19-20=-26/3 9/108, 8, 6-29=-121/6	23 7, 37, 37, 37, 37,	7) 7 8) 1 2 3 4 5 7 7 9) 7	This trust on the bott 3-06-00 ta chord and Provide m bearing pla 2, 6 lb uplift at joint 27, 14 lb uplift at joint 23, 27 lb uplift uplift at join This truss	s has bo om cho I by 1-0 any othe chanic te capa t at joint 27 lb u at joint 30 lb u at joint t 2. s desig	een designed for ord in all areas wh 00-00 wide will fit her members, with cal connection (by able of withstandid able of withstandid that 18, 27 lb uplift at pplift at joint 28, 37 30, 70 lb uplift at pplift at joint 22, 20 20, 39 lb uplift at aned in accordance	a live load of 20.0psf lere a rectangle between the bottom 1 BCDL = 10.0psf. others) of truss to ng 34 lb uplift at joint 1 lb uplift at joint 29, joint 31, 25 lb uplift 3 lb uplift at joint 21, joint 19 and 34 lb ce with the 2015
	Max Horiz Max Uplift Max Grav	20-20-20; 20-26-2-C 23=26-2-C 27=26-2-C 2=127 (LC 2=-34 (LC 19=-39 (L1 21=-28 (L1 23=-25 (L1 27=-29 (L1 27=-29 (L1 27=-29 (L1 29=-31 (L1 31=-70 (L1 27=203 (L1 23=207 (L1 23=207 (L1 23=204 (L1 23=204 (L1 23=204 (L1 23=204 (L1) 23=192 (L1) 23=19	$\begin{array}{l} 10-202, 0, 3-2022\\ 1, 21-26-20, 22-26-20, 22-26-20, 22-26-20, 22-26-20, 23-26-20, 23-26-20, 23-26-20, 23-26-20, 23-26-20, 23-20, 20-20,$	-2,-0, 2-0, 2-0, 2-0, 2-0, -1, -3), -2), -2), -2), -2), -2), -2), -2), -2), -2), -2), -2), -2, -2, -2, -2, -2, -2, -2, -2	NOTES 1) Unbalanced this design. 2) Wind: ASCE Vasd=91mp II; Exp B; Er and C-C Co to 14-8-12, (19-3-2 to 26 end vertical forces & MW DOL=1.60 p 3) Truss desig only. For st see Standar or consult q 0.41 blace or	5-30=-115/54, 4-3; 12-23=-129/107, 1 14-21=-120/67, 15 16-19=-106/105 roof live loads hav 57-10; Vult=115mp h; TCDL=6.0psf; B iclosed; MWFRS (ir mer (3) -1-3-8 to 3; Corner (3) 14-8-12 -0-4 zone; cantilev left and right expos /FRS for reactions late grip DOL=1.60 ned for wind loads uds exposed to win d Industry Gable E Jalified building det a 1 5/4 MT20 unlo	1=-137/1 3-22=-11 -20=-12: we been of bh (3-sec CDL=6.0 envelope -2-14, E) to 19-3- er left ar sed;C-C shown; b in the pl d (norm ind Detai signer as	09, 19/99, 3/108, considered for cond gust) 0psf; h=30ft; C c) exterior zone (terior (2) 3-2- 2, Exterior (2) d right expose for members a Lumber ane of the trus al to the face), ils as applicable s per ANSI/TPI	at. e l4 ed; und es e, 1.	LOA	Internation R802.10.2 D CASE(al Resi and rei 5) Sta	dential Code sect ferenced standard indard	In Store 11.1 and ANSI/TPI 1.
FORCES	(lb) - Max Tension	imum Com	pression/Maximum		 All plates ar Gable studs This truss had be chord live lo 	spaced at 2-0-0 or spaced at 2-0-0 or as been designed f ad nonconcurrent v	ss other c. for a 10.0 with any	wise indicated.) psf bottom other live load	s.				A C	EEP. KIN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

January 17,2023

Job	Truss	Truss Type	Qty	Ply	5 SERENITY	
34893A	B1E	Common Supported Gable	1	1	Job Reference (optional)	156131954

Run: 8.63 S. Nov 19 2022 Print: 8.630 S. Nov 19 2022 MiTek Industries, Inc. Fri Jan 13 10:16:54 ID:uCk0ehjwrutpK8S6qJt4dmy6NLZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

818 Soundside Road Edenton, NC 27932

Scale = 1:43.4

Plate Offsets (X, Y): [2:0-3-8,Edge], [14:0-4-1,Edge], [20:0-3-0,0-3-0]

Loading TCLL (roof) TCDL BCLL BCDL		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	015/TPI2014	CSI TC BC WB Matrix-MS	0.07 0.05 0.06	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 14	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 110 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS SLIDER BRACING TOP CHORD BOT CHORD	2x4 SP N 2x4 SP N 2x4 SP N Left 2x4 S 1-6-0 Structura 6-0-0 oc I Rigid ceil	o.2 o.3 SP No.3 1 I wood shea purlins. ing directly	I-6-0, Right 2x4 SP I athing directly applie applied or 10-0-0 oc	No.3 ed or c	WEBS § NOTES 1) Unbalanced this design. 2) Wind: ASCE Vasd=91mpt II; Exp B; En	3-20=-104/0, 7-21= 5-23=-122/73, 4-24 9-19=-129/112, 10 11-17=-122/73, 12 roof live loads hav 7-10; Vult=115mp n; TCDL=6.0psf; Bi closed; MWFRS (e	129/11 I=-112/1 -18=-112 -16=-112 e been o h (3-sec CDL=6.0 envelope	2, 6-22=-118 08, 3/97, 2/108 considered fo cond gust) 0psf; h=30ft; (e) exterior zor	/97, r Cat. ie					
REACTIONS	bracing. (size) Max Horiz Max Uplift	2=20-0-0, 17=20-0-0 20=20-0-0 23=20-0-0 2=72 (LC 2=-7 (LC 17=-25 (L 19=-28 (L 22=-29 (L) 24=-47 (L)	14=20-0-0, 16=20-0 0, 18=20-0-0, 19=20-0 0, 21=20-0-0, 22=20 12), 25=72 (LC 12) 13), 16=-41 (LC 13), C 13), 18=-29 (LC 1 C 13), 21=-29 (LC 1 C 12), 23=-24 (LC 1 C 12), 23=-24 (LC 1	0-0, -0-0, -0-0, -0-0, 3), 2), 2),	and C-C Cor 10-0-0, Corn to 21-0-0 zor vertical left a forces & MW DOL=1.60 pl 3) Truss desig only. For stu see Standard or consult qu 4) All plates are 5) Gable requiri	ner (3) -1-0-0 to 3- er (3) 10-0-0 to 14 e; cantilever left a nd right exposed;C (FRS for reactions ate grip DOL=1.60 ned for wind loads dds exposed to win d Industry Gable E alified building des e 1.5x4 MT20 unles es continuous bott	6-6, Ext -6-6, Ex -C-C for n shown; in the p d (norm nd Deta signer as so other	erior (2) 3-6-6 terior (2) 14-6 exposed ; en hembers and Lumber ane of the tru al to the face is a applical s per ANSI/TR wise indicated d bearing.	6 to 6-6 d Iss), ble, PI 1. d.					
	Max Grav	24=-47 (L) 2=152 (LC) 16=155 (L) 18=158 (L) 20=212 (L) 22=158 (L) 24=155 (L) 29=152 (L)	C 12), 25=-7 (LC 13 C 1), 14=152 (LC 1), C 24), 17=161 (LC C 1), 19=176 (LC 2) C 22), 21=176 (LC 2) C 22), 21=176 (LC 1) C 23), 25=152 (LC C 1)	9 6), 25),), 1),	 6) Gable studs 7) This truss ha chord live loa 8) * This truss h on the bottor 3-06-00 tall b chord and ar 	spaced at 2-0-0 oc s been designed fr ad nonconcurrent w has been designed n chord in all areas by 1-00-00 wide will by other members,	or a 10.0 vith any for a liv s where Il fit betv with BC) psf bottom other live loa e load of 20.0 a rectangle veen the botto DL = 10.0psf	ds.)psf om		4		ORTH CA	ROLIN
FORCES	(lb) - Max	imum Com	pression/Maximum		 Provide mechanical plate 	hanical connection capable of withsta	(by oth anding 7	ers) of truss t Ib uplift at jo	o int		Ξ	- 1	SEA	L i E
TOP CHORD	1-2=0/27, 5-6=-48/8 8-9=-58/1 11-12=-4: 2-24=-13, 21-22=-1: 17-18=-1:	2-4=-75/40 31, 6-7=-44, 57, 9-10= 2/40, 12-14 /78, 23-24= 3/78, 19-21 3/78, 16-17	0, 4-5=-61/47, /118, 7-8=-58/155, 44/121, 10-11=-43/8 =-50/17, 14-15=0/21 -13/78, 22-23=-13/7 =-13/78, 18-19=-13, /=-13/78, 14-16=-13/	34, 7 78, /78, /78	2, 29 lb uplift uplift at joint 19, 29 lb upli uplift at joint 10) This truss is International R802.10.2 at LOAD CASE(S)	at joint 21, 29 lb u 23, 47 lb uplift at jo ft at joint 18, 25 lb 16 and 7 lb uplift a designed in accorr Residential Code nd referenced stan Standard	plift at joint 24, 2 uplift at t joint 2. dance w sections dard AN	bint 22, 24 lb 28 lb uplift at joint 17, 41 lt ith the 2015 R502.11.1 a ISI/TPI 1.	joint o		11112.	A MARTINE AND A		

Job	Truss	Truss Type	Qty	Ply	5 SERENITY	
34893A	B2	Common	9	1	Job Reference (optional)	156131955

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Jan 13 10:16:54 ID:yMf6Le6_JjhHA3uFi1RawWy6NL3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:45

Plate Offsets (X, Y): [2:0-3-8,Edge], [8:0-4-1,Edge], [10:0-4-0,0-3-0]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.32	Vert(LL)	-0.13	10-13	>999	240	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15		BC	0.83	Vert(CT)	-0.26	10-13	>907	180			
BCLL	0.0*	Rep Stress Incr	YES		WB	0.22	Horz(CT)	0.03	8	n/a	n/a			
BCDL	10.0	Code	IRC2015	/TPI2014	Matrix-MS							Weight: 95 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2		4)	* This truss h on the botton 3-06-00 tall b	as been designed a chord in all areas y 1-00-00 wide will y other members	for a liv where fit betw	e load of 20.0 a rectangle veen the botte	Opsf om						
SLIDER	Left 2x4 SP No.3 1-6-0	1-6-0, Right 2x4 SP N	lo.3 5)	Provide mech bearing plate	capable of withsta	(by oth Inding 3	ers) of truss t 5 lb uplift at j	to oint						
BRACING TOP CHORD	Structural wood she 5-2-0 oc purlins.	athing directly applied	dor 6)	2 and 35 lb u This truss is a International R802 10 2 ar	plift at joint 8. designed in accord Residential Code s of referenced stand	ance wi	ith the 2015 R502.11.1 a	Ind						
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 oc	LO	AD CASE(S)	Standard									
REACTIONS	(size) 2=0-5-8, 8 Max Horiz 2=72 (LC Max Uplift 2=-35 (LC Max Grav 2=860 (LC	3=0-5-8 12) \$ 12), 8=-35 (LC 13) \$ 1), 8=860 (LC 1)												
FORCES	(lb) - Maximum Com Tension	pression/Maximum												
TOP CHORD	1-2=0/27, 2-4=-1225 5-6=-947/84, 6-8=-12	5/107, 4-5=-947/84, 225/107, 8-9=0/27												
BOT CHORD	2-8=-138/1057	,												
WEBS	5-10=0/537, 4-10=-3	36/131, 6-10=-336/1	32											
NOTES													11.	
 Unbalance this design 	ed roof live loads have n.	been considered for										"TH CA	Bolin	
 Wind: ASC Vasd=91m II; Exp B; I and C-C E 10-0-0, Ex to 21-0-0 z vertical left forces & M DOL=1.60 This truss chord live 	CE 7-10; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (en xterior (2) -1-0-0 to 3-6 terior (2) 10-0-0 to 14- toone; cantilever left and t and right exposed;C- IWFRS for reactions sl plate grip DOL=1.60 has been designed for has noconcurrent wi	(3-second gust) DL=6.0psf; h=30ft; C ivelope) exterior zone 6-6, Interior (1) 3-6-6 6-6, Interior (1) 14-6- d right exposed ; end C for members and hown; Lumber r a 10.0 psf bottom th any other live load	at. eto 6							Willing		SEA 0363	L 22 EFR (1)	Manning
		,	-								11	CAG	BEIN	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

GI 111111111 January 17,2023

Job	Truss	Truss Type	Qty	Ply	5 SERENITY	
34893A	B3	Common	2	1	Job Reference (optional)	156131956

TCDL

BCLL

BCDL

1)

2)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Jan 13 10:16:54 ID:Q5HLhcXy3T5JsR4_FtZnruy6NKW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

3) chord live load nonconcurrent with any other live loads.

> 818 Soundside Road Edenton, NC 27932

GI mmm January 17,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall a duss system planteers and property incorporate using the dust very are approximately and be add/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	5 SERENITY	
34893A	B4G	Common Girder	1	2	Job Reference (optional)	156131957

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Jan 13 10:16:55 ID:cIYDHcUVTk25rac9NzUJYZy6NJH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

January 17,2023

818 Soundside Road Edenton, NC 27932

Scale = 1:43

Plate Offsets (X, Y): [1:Edge,0-3-1], [2:0-3-0,0-1-12], [4:0-3-0,0-1-12], [5:Edge,0-3-1]

Loading TCLL (roof) TCDL BCLL BCDL		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.97 0.72 0.68	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.13 -0.26 0.04	(loc) 8-11 6-14 5	l/defl >999 >927 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 225 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x6 SP DSS 2x4 SP No.3 Left: 2x4 SP Right: 2x4 S Structural we Rigid ceiling bracing. (size) 1= Max Horiz 1= Max Uplift 1= Max Grav 1=	2 3 *Except No.3 P No.3 ood sheat directly =0-5-8, 5 =-65 (LC =-83 (LC =5476 (L	t* 7-3:2x4 SP No.2 athing directly applied applied or 10-0-0 oc i=0-5-8 33) 12) C 1), 5=5615 (LC 1)	4) i. 5) 6)	Wind: ASCE Vasd=91mph II; Exp B; En and C-C Exter to 20-0.2 cor vertical left a forces & MW DOL=1.60 pl This truss ha chord live loa * This truss h on the bottom 3-06-00 tall b chord and an	7-10; Vult=115mp ; TCDL=6.0psf; B closed; MWFRS (erior (2) 0-0-0 to 4- ior (2) 10-0-0 to 1- le; cantilever left a nd right exposed; FRS for reactions ate grip DOL=1.60 s been designed f id nonconcurrent v has been designed in chord in all areas by 1-00-00 wide wi by other members.	ch (3-sec CDL=6.0 cDL=6.0 ch-6-6, Int ch-6-6, Int ch-6, Int ch	orond gust) Opsf; h=30ft; () exterior zor erior (1) 4-6-6 terior (1) 4-6-6 terior (1) 14-6 exposed ; en hembers and Lumber 0 psf bottom other live loa e load of 20.0 a rectangle veen the botto	Cat. ne 5 to 6-6 nd dds. Opsf					
TOP CHORD BOT CHORD WEBS NOTES 1) 2-ply truss (0.131"x3' Top chord oc. Bottom ch staggered Web conn 2) All loads a except if r CASE(S) provided t unless ott 3) Unbalanci	(Ib) - Maximi Tension 1-2=-8673/1 3-4=-6444/1 1-8=-133/76 3-7=-101/55 4-6=0/3046, s to be connecte ") nails as follow as connected as nords connected at 0-9-0 oc. nected as follow are considered toted as follow for the following of the following section. Ply to to distribute onlinerwise indicate ed roof live load n.	um Com 81, 2-3= 62, 4-5= 73, 6-8= 42, 2-7= 2-8=-5/2 ted toget ws: s follows d as follows d as follows d as follows f) or bac ply conn y loads r ed. ds have	Pression/Maximum -6442/165, -8707/27 -108/7791, 5-6=-95/7 -3036/141, 4-7=-311t 2932 her with 10d : 2x4 - 1 row at 0-9-0 ows: 2x6 - 2 rows 1 row at 0-9-0 oc. applied to all plies, ck (B) face in the LOA ections have been noted as (F) or (B), been considered for	7) 7706 6/0, 9) 10 LC 1)	Provide mect bearing plate 1. This truss is International R802.10.2 ar Use MiTek H 6-16d nails ir max. starting connect truss DAD CASE(S) Dead + Roo Plate Increa Uniform Loa Vert: 1-3: Concentratt Vert: 7=- 21=-1042 (F), 25=-	hanical connectior capable of withst designed in accord Residential Code of referenced star US26 (With 14-16 to Truss) or equiv at 2-0-12 from the s(es) to front face of les where hanger Standard of Live (balanced): isse=1.15 ads (lb/ft) =-60, 3-5=-60, 9-1 ed Loads (lb) 1042 (F), 19=-1042 (F), 22=-1042 (F) 1043 (F), 26=-115	1 (by oth anding 8 dance w sections idard AN id nails in alent sp e left enc of bottom is in cor Lumber 2=-20 2 (F), 20), 23=-10 1 (F)	ers) of truss t 3 lb uplift at j R502.11.1 a ISI/TPI 1. nto Girder & aced at 2-0-C to 18-0-12 t n chord. tact with lum Increase=1.	io oint) oc o ber. 15, 1043		Van 1111		SEA 0363	EER.K

Job	Truss	Truss Type	Qty	Ply	5 SERENITY	
34893A	C1	Common	3	1	Job Reference (optional)	156131958

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Jan 13 10:16:56 ID:ARSCp7pMrCKJ1xLrpLSWFWy6MjQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	-1-0-0 7- 1-0-0 7-	0-13 0-13	<u>13-2-14</u> 6-2-0	19-4 6-1	4-0 -2	25-6-12 6-2-12	27-0-0	<u>30-7-1</u> 3-7-1	 	<u>38-0-2</u> 7-5-1			46-4-0 8-3-14	47-4-0
							5x6	i=						
					5x6= 6 3	6	2x4 nr 7 37 8							
ΤT					Æ									
					//		27		9					
			6 ¹²	355	/2x4=		4x6=		Ŵ	38		2x4 <i>µ</i>		
5-15		2x4	4									0		
10-10-		3	~	/ \\ /	//		⊠ //	\$		\mathbb{N}		1	<	
	3	4		\\ //	, ,						. /	//	39	
٩_	1 2								_	```	\bigvee	/		12 13
\uparrow \uparrow \downarrow 4^{-1}			25 40	0 41 244222	46 - 1 20 43 21	<u>48</u> 19	 图 167	44	15	45	14			
	4x6=			5x8 🥡	2x4 II	4x8=	5x12=		4x6=					4x6=
				16-0-0 15-4-6	0 4x8=	2x4 II	25-6-12							
	ŀ	<u>9-11-7</u> 9-11-7	<u> </u>	<u>-11-2 15-3-9</u> 11-11 0-4-7	<u>19-4-0</u> 2 3-4-0 3	2-9-8 25-8 3-5-9 2-7	5-0 '-7	<u>32-0-0</u> 6-5-4		<u>36-4-9</u> 4-4-9	-+		46-4-0 9-11-7	
Scolo - 1:92				0-0-13 0-7-10	0		0-1-12							
Plate Offsets ((X, Y): [6:0-3-0,0-2-	0], [8:0-3-0,0-2-0]												
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DC	DL 1.15		TC BC	0.92	Vert(LL)	-0.34 -0.52	14-16 24	>734 >584	240 180	MT20	244/19	0
BCLL	0.0	* Rep Stress In	icr YES		WB	0.93	Horz(CT)	0.02	12	n/a	n/a			
BCDL	10.0	Code	IRC20	015/TPI2014	Matrix-MS							Weight: 30	3 lb FT = 20)%
LUMBER TOP CHORD	2x4 SP No.2 *Exc	ept* 4-1,10-13:2x4	4 SP No.1	WEBS	23-24=-120/6 6-26=-28/945	588, 23-26=-3 5, 3-25=-388/ ⁻	4/1066, 147, 5-25=-:	25/580,	LOAD	CASE(S)	Star	ndard		
BOT CHORD	2x4 SP DSS *Exc 23-17:2x4 SP No	ept* 15-12:2x4 SF 2	P No.1,		5-24=-729/17 11-14=-473/1	75, 9-14=-70/8 189, 16-17=-8	336, 31/121,							
WEBS	2x4 SP No.3 *Exc	ept* 24-6,7-16:2x4	4 SP		17-27=-773/1	130, 7-27=-62	4/121,							
	5-25,24-5,9-14,8-1	16,16-9,26-27,6-2	7:2x4 SP		18-19=-103/0), 20-21=-212	/0, 21-23=0	/1122,						
BRACING	NO.2				26-27=-17/30)3, 6-27=-768	/46							
TOP CHORD	Structural wood sl 2-2-1 oc purlins, e	heathing directly a except	applied or	NOTES 1) Unbalanced	d roof live load	ls have been	considered	for						
	2-0-0 oc purlins (2 Rigid ceiling direc	2-2-0 max.): 6-8.)-0 oc	this design.	E 7-10: \/ult–1	15mph (3-se	cond quet)							
BOT ONORD	bracing. Except:	. 17 00	, , , , , , , , , , , , , , , , , , , ,	Vasd=91m	ph; TCDL=6.0	psf; BCDL=6.	0psf; h=30f	t; Cat.						
WEBS	1 Row at midpt	16-27, 9-16		and C-C Ex	(terior (2) -1-0	-0 to 3-7-10, I	nterior (1) 3	8-7-10						
JOINTS REACTIONS	1 Brace at Jt(s): 2 (size) 2=0-5-8	7 3. 12=0-5-8. 16=0·	-5-8	to 19-4-0, E 25-10-10 to	27-0-0, Exter	-4-0 to 25-10- ior (2) 27-0-0	10, Interior to 33-6-10,	(1)						
	Max Horiz 2=-133	(LC 13)	12)	Interior (1)	33-6-10 to 47- ed ; end vertic	4-0 zone; car al left and rig	ntilever left a ht exposed;	and C-C						
	Max Grav 2=1585	i (LC 23), 12=144	0 (LC 1),	for member Lumber DC	rs and forces & DL=1.60 plate (& MWFRS for arip DOL=1.6	reactions s	hown;						
FORCES	16=142 (lb) - Maximum Co	0 (LC 26) ompression/Maxin	num	3) Provide ade	equate drainag	ge to prevent	water pond	ing.				min		
TOP CHORD	Tension 1-2=0/27, 2-3=-29	12/156. 3-5=-270	6/155.	5) This truss h	nas been desig	gned for a 10.	0 psf bottor	n			S	ATH	CARO	111
	5-6=-2277/220, 6- 7-81354/222, 8-	7=-1040/200,	(6) * This truss	has been des	rrent with any signed for a liv	e load of 20	oads. 0.0psf			K 2	OFE	SS	North Contraction
	9-11=-2366/213, 1	11-12=-2491/163,		on the botto 3-06-00 tall	om chord in all by 1-00-00 w	l areas where ide will fit betv	a rectangle ween the bo	e ottom		4	I		1-4	
BOT CHORD	2-25=-187/2566, 2	24-25=-80/2120,		chord and a 7) Provide me	any other men chanical conn	nbers, with BO	CDL = 10.0p ers) of trus	osf. s to		Ξ		S	EAL	1 E -
	21-24=0/1825, 19 14-16=-10/1547, 1	-21=0/1693, 16-19 12-14=-34/2180,	9=0/1727,	bearing pla	te capable of v	withstanding 2	2 lb uplift at	joint				. 03	6322	i E −
	20-23=-1411/0, 18 17-18=-25/613	3-20=-1411/0,	;	8) This truss is	s designed in	accordance w	vith the 201	5 and		11.		·		
				R802.10.2	302.10.2 and referenced standard ANSI/TPI 1.						115	A NG	INEE	P. M.
			4	9) Graphical p or the orien	ourlin represen Itation of the p	utation does n	ot depict the e top and/oi	e size				in A.	GILBL	111
				bottom cho	rd.							Jani	uary 17.20	23
													, ,_0	

Job	Truss	Truss Type	Qty	Ply	5 SERENITY	
34893A	C2	Common	1	1	Job Reference (optional)	156131959

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Jan 13 10:16:56 ID:8i3eSRXZJr7c_Hu1s1_kkTy6Mec-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:81.3

Plate Offsets (X, Y): [6:0-3-0,0-2-0], [8:0-3-0,0-2-0]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	1.00 0.84 0.59	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.47 -0.86 0.13	(loc) 15-17 15-17 12	l/defl >661 >360 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 251 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SP No.2 *Excep 2x4 SP DSS *Excep 2x4 SP No.2 *Excep No.3 Structural wood she except 2-0-0 oc purlins (2-2	t* 10-12,4-1:2x4 SP t* 12-14:2x4 SP No.1 t* 3-18,11-13:2x4 SF athing directly applied t-0 max.): 6-8.	2) No.1 ,	Wind: ASCE Vasd=91mph II; Exp B; En and C-C Ext to 19-4-0, Ex 23-11-10 to 2 Interior (1) 3 ⁻ right exposed for member PO	7-10; Vult=115mp n; TCDL=6.0psf; B closed; MWFRS (e arior (2) -1-0-0 to 3 terior (2) 19-4-0 to 27-0-0, Exterior (2) I-7-10 to 46-4-0 zc d; end vertical left and forces & MWI 1 60 pleta grip D	h (3-sec CDL=6.0 envelope 3-7-10, li 23-11- 27-0-0 one; can and righ FRS for	ond gust) Dpsf; h=30ft; (e) exterior zor terior (1) 3-7 10, Interior (1) to 31-7-10, tilever left and t exposed;C- reactions sho	Cat. he -10) d •C own;						
BOT CHORD WEBS REACTIONS	Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-5-8, 1 Max Horiz 2=139 (LC Max Uplift 2=-139 (L 15=-63 (L Max Grav 2=1726 (L	applied or 10-0-0 oc 7-15, 9-15 12= Mechanical, 15=(C 16) C 12), 12=-29 (LC 12 C 13) _C 23), 12=1609 (LC	3) 4) D-5-8 5) 2), 6) 1),	Lumber DOL Provide adeo All plates are This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar	=1.60 plate grip D juate drainage to p 3x6 MT20 unless s been designed f ad nonconcurrent v las been designed n chord in all areas by 1-00-00 wide willy o other members.	OL=1.60 orevent of or a 10.0 with any for a liv s where Il fit betw with BC) water ponding se indicated.) psf bottom other live loa e load of 20.0 a rectangle veen the botto DL = 10.0psf	g. ds.)psf om						
FORCES	15=819 (L (lb) - Maximum Com Tension	₋ C 26) pression/Maximum	7) 8)	Refer to gird Provide mec	er(s) for truss to tru hanical connection	uss conr (by oth	ections. ers) of truss t	0 oint						
TOP CHORD	6-7=-1764/285, 7-8= 2-3=-3164/290, 3-5= 5-6=-2498/329, 8-9= 9-11=-2855/296, 11-	1749/283, 1-2=0/27 2918/289, 1875/292, -12=-3004/245	, 9)	12, 139 lb up This truss is International R802 10 2 a	bearing plate capable of withstanding 29 lb uplift at joint 12, 139 lb uplift at joint 2 and 63 lb uplift at joint 15. This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and							WITH CA	Route	
BOT CHORD	2-18=-312/2784, 17- 15-17=-117/1764, 13 12-13=-132/2632	-18=-200/2306, 3-15=-109/1971,	10	or the orienta bottom chorc	rlin representation ation of the purlin a	does no	ot depict the s top and/or	size			A.S.	ORIFESS	Maria	7
WEBS	5-18=-41/544, 5-17= 3-18=-387/145, 11-1 6-17=-88/956, 7-15= 8-15=-147/1034, 9-1	=-711/187, 9-13=-79/8 3=-477/189, =-585/118, 5=-701/179	^{327,} L(DAD CASE(S)	Standard					N 1111		SEA 0363		
NOTES 1) Unbalance this design	ed roof live loads have 1.	been considered for								1111.			E.R. KIN	

Job	Truss	Truss Type	Qty	Ply	5 SERENITY	
34893A	C2A	Common	1	1	Job Reference (optional)	156131960

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Jan 13 10:16:57 ID:8i3eSRXZJr7c_Hu1s1_kkTy6Mec-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

7-0-13 13-2-14 19-4-0 27-0-0 30-7-1 38-0-2 46-2-0 25-6-12 7-0-13 6-2-0 6-1-2 6-2-12 3-7-1 7-5-1 8-1-14 1-5-4 5x6= 5x6= 2x4 II 6 27 7 8 3x6**≈** 9 3x6 🞜 6¹² 2x4 🏿 26⁵ 28 3x6 🞜 3x6 10-5-15 10-0-0 4 10 2x4 11 3 29 25 120-9 120-9 12-0 0-4-0 ⊟ Ŕ Ř 30 31 17 1632 35 18 34 14 13 335 3x6= 3x6= 4x6= 3x6= 4x6= 3x8= 4x6= 3x6= 9-11-7 14-11-2 25-6-12 36-4-9 46-2-0 10-7-10 10-9-13 9-9-7 9-11-7 4-11-11

Scale = 1:82.7

Plate Offsets (X, Y): [6:0-3-0,0-2-0], [8:0-3-0,0-2-0]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.80 0.75 0.59	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.46 -0.84 0.12	(loc) 15-17 15-17 12	l/defl >672 >367 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 250 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD WEBS	2x4 SP No.1 *Excep 2x4 SP DSS *Excep 2x4 SP DSS *Excep No.3 Structural wood shea 2-2-0 oc purlins, exc 2-0-0 oc purlins, exc 2-0-0 oc purlins (3-5 Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-5-8, 1 Max Horiz 2=141 (LC Max Uplift 2=-139 (Li 15=-61 (Li Max Grav 2=1722 (L 15=815 (L (Ib) - Maximum Com Tension 1-2=0/27, 2-3=-3156 5-6=-2489/351, 6-7= 7-8=-1741/323, 8-9= 9-11=-2799/335, 11- 2-18=-313/2776, 17- 15-17=-118/1756, 13 12-13=-169/2574 5-18=-41/544, 5-17= 3-18=-387/145, 11-1	t* 4-6,10-8:2x4 SP N t* 12-14:2x4 SP No.1 t* 3-18,11-13:2x4 SP athing directly applied ept -8 max.): 6-8. applied or 10-0-0 oc 7-15, 9-15 12=0-3-8, 15=0-5-8 C 12) C 12), 12=-30 (LC 12 C 12), 12=-30 (LC 1	2) b.2 d or 3) 4) 5) 6) 1), 7) 8) 9) 	Wind: ASCE Vasd=91mph II; Exp B; End and C-C Exte 19-4-0, Exter 25-6-12 to 27 (1) 33-6-6 to exposed; en members and Lumber DOL Provide adec All plates are This truss ha chord live loa * This truss ha chord live loa * This truss ha chord live loa * This truss ha on the bottom 3-06-00 tall b chord and an Provide mecl bearing plate 12, 139 lb up This truss is a International R802.10.2 ar Graphical pu or the orienta bottom chord	7-10; Vult=115mph ; TCDL=6.0psf; BC closed; MWFRS (ei erior (2) 1-0-0 to 3- ior (2) 19-4-0 to 25 '-0-0, Exterior (2) 2 46-2-0 zone; cantilid d vertical left and ri d forces & MWFRS =1.60 plate grip DC uate drainage to pi 3x6 MT20 unless of s been designed fo d nonconcurrent w as been designed fo d	a (3-sec DL=6.0 DL=6.0 7-6, Int -6-12, I 7-0-0 tc ever lef ght exp for rea DL=1.60 revent v botherwis for a liv where fit betw with BC (by oth- nding 3 Ib uplif ance wis lard AN does no ong the	ond gust) ond gust))psf; h=30ft; () exterior zor erior (1) 3-7-6 nterior (1) o 33-6-6, Inter t and right osed;C-C for ctions shown) vater ponding see indicated.) psf bottom other live loa e load of 20.0 a rectangle veen the bottod DL = 10.0psf ers) of truss t 0 lb uplift at jut t at joint 15. R502.11.1 a ISI/TPI 1. t depict the s t op and/or	Cat. ne 5 to rior ; g. ds. ppsf om oint nd iize				H CA	ROLIN	
NOTES 1) Unbalance this desigr	8-15=-173/1044, 9-1 ed roof live loads have 1.	5=-689/179 been considered for								HILF.	and the second s		EP. Kul	H Trans

NOTES

G

Job	Truss	Truss Type	Qty	Ply	5 SERENITY	
34893A	C3	Common Structural Gable	3	1	Job Reference (ontional)	156131961

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Jan 13 10:16:57 ID:?zX1aR2TILFeMZHCBE68sDy6MUw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Plate Offsets (X, Y): [1:0-3-11,0-1-2], [9:0-1-7,0-0-2]

	-												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.85	Vert(LL)	-0.08	13-15	>999	240	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15	BC	0.62	Vert(CT)	-0.16	13-15	>999	180			
BCLL	0.0*	Rep Stress Incr	YES	WB	0.70	Horz(CT)	0.03	9	n/a	n/a			
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MS							Weight: 289 lb	FT = 20%	

LUMBER

TOP CHORD	2x4 SP N	0.2		
BOT CHORD	2x6 SP N	o.2 *Exc	ept* 16-14:2x4 SP No.	2
WEBS	2x4 SP N	o.2 *Exc	ept* 8-10,2-17:2x4 SP	No.3
BRACING				
TOP CHORD	Structural 4-3-14 oc	wood s purlins.	heathing directly applie	d or
BOT CHORD	Rigid ceili bracing.	ng direc	tly applied or 6-0-0 oc	
WEBS	1 Row at	midpt	5-13, 6-13, 8-12, 4-1 2-15	3,
REACTIONS	(size)	1=0-5-8	3, 9= Mechanical, 13=0	-5-8
	Max Horiz	1=152	(LC 12)	
	Max Uplift	1=-39 (LC 12), 9=-54 (LC 13),	
		13=-26	(LC 12)	
	Max Grav	1=772	(LC 23), 9=548 (LC 24)	,
		13=255	i0 (LC 1)	
FORCES	(lb) - Max	imum Co	ompression/Maximum	
	Tension			
TOP CHORD	1-2=-1236	6/80, 2-4	=-481/78, 4-5=0/703,	
	5-6=0/956	6, 6-8=-3	4/477, 8-9=-737/110	
BOT CHORD	1-17=-140)/1028, ⁻	15-17=-140/1030,	
	13-15=-24	4/366, 12	2-13=-397/123,	
	10-12=-43	3/580, 9	10=-43/580	
WEBS	5-13=-109	92/35, 6	13=-824/183, 6-12=0/4	151,
	8-12=-782	2/125, 8	·10=0/387, 4-13=-981/1	65,
	4-15=0/59	92, 2-15	=-781/132, 2-17=0/376	
NOTES				

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-0-0 to 4-7-10, Interior (1) 4-7-10 to 23-2-0, Exterior (2) 23-2-0 to 27-9-10, Interior (1) 27-9-10 to 46-3-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom

chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 4) on the bottom chord in all areas where a rectangle 3-06-00 tall by 1-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Refer to girder(s) for truss to truss connections. Provide mechanical connection (by others) of truss to 6) bearing plate capable of withstanding 39 lb uplift at joint 1, 26 lb uplift at joint 13 and 54 lb uplift at joint 9.

This truss is designed in accordance with the 2015 7) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

818 Soundside Road Edenton, NC 27932

Page: 1

Job	Truss	Truss Type	Qty	Ply	5 SERENITY	
34893A	C4E	Common Structural Gable	1	1	Job Reference (optional)	156131962

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Jan 13 10:16:58 ID:OLtS_PDt2LihFa9VuBo1Lzy6MPX-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

Continued on page 2

34893A C4E Common Structural Gable 1 1 Job Reference (optional)	Job	Truss	Truss Type	Qty	Ply	5 SERENITY	
	34893A	C4E	Common Structural Gable	1	1	Job Reference (optional)	156131962

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Jan 13 10:16:58 ID:OLtS_PDt2LihFa9VuBo1Lzy6MPX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 39 lb uplift at joint 1, 24 lb uplift at joint 41 and 57 lb uplift at joint 29.
 This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and
- International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	5 SERENITY	
34893A	D1E	Common Supported Gable	1	1	Job Reference (optional)	156131963

Scale = 1:48.2

Loading

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Jan 13 10:16:59 ID:jR3nkdzOnUo5VhxSIXGa8Ry6MEE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

GRIP

January 17,2023

818 Soundside Road Edenton, NC 27932

	TCLL (roof) TCDL	20.0 10.0	Plate Grip DOL 1 Lumber DOL 1	1.15 1.15		TC BC	0.07	Vert(LL) Vert(CT)	n/a n/a	-	n/a n/a	999 999	MT20	244/190
	BCDL	10.0	Code I	RC201	15/TPI2014	WB Matrix-MP	0.09	Horz(CT)	0.00	10	n/a	n/a	Weight: 90 lb	FT = 20%
	LUMBER TOP CHORD BOT CHORD OTHERS WEDGE BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left: 2x6 SP No.2 Right: 2x6 SP No.2 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=13-9-0, 13=13-9-0 16=13-9-0 21=13-9-0 Max Horiz 2=-132 (L 12=-65 (LC 12=-70 (L 21=-65 (LC 12=-70 (L 14=-62 (L 12=-61 (L 12=137 (I 14=211 (I 18=127 (I 18=1	Pathing directly applied c r applied or 6-0-0 oc , 10=13-9-0, 12=13-9-0, 0, 14=13-9-0, 15=13-9-0 0, 23=13-9-0 C 10), 21=-132 (LC 10) C 3), 10=-29 (LC 9), C 13), 13=-54 (LC 13), C 13), 16=-63 (LC 12), C 12), 18=-152 (LC 12), C 20), 10=119 (LC 24), LC 20), 13=166 (LC 20) LC 20), 15=233 (LC 22), LC 19), 17=168 (LC 19), LC 19), 17=168 (LC 19), LC 24), 10224	V N 1 2 2 0, 0, 3 5 6 6 , 7 8	VEBS 6 3 VOTES) Unbalanced i this design.) Wind: ASCE Vasd=91mph II; Exp B; Enc and C-C Corner 7-2-0, Corner 15-4-0 zone; vertical left ar forces & MW DOL=1.60 pla) Truss design only. For stu see Standarc or consult qu) All plates are) Gable studs s) This truss ha chord live loa) * This truss ha on the bottom 3-06-00 tall b chord and an) Provide mech	-15=-124/57, 5-1 -18=-118/101, 7- -12=-111/73 roof live loads hav 7-10; Vult=115mm ; TCDL=6.0psf; E closed; MWFRS (ner (3) -1-0-0 to 3 · (3) 7-2-0 to 11-8 cantilever left and nd right exposed; FRS for reactions ate grip DOL=1.6 ted for wind loads ds exposed to wind I Industry Gable E alified building de 1.5x4 MT20 unle spaced at 22-0-0 o s been designed d nonconcurrent as been designed n chord in all area votice wind loads ter nembers nanical connectio	6=-142/8 14=-142/8 ve been of ph (3-sec 3CDL=6.1 envelope -6-6, Exte- d right ex- C-C for n s shown; 0 s in the p nd (norm End Deta signer a sis other is, for a 10.0 with any d for a liv as where ill fit betw NBCC n (by oth	 45, 4-17=-129 45, 8-13=-12 45, 8-13=-12 46, 8-13=-12 47, 90 48, 90 49, 90 49, 90 49, 90 49, 90 40, 90	v/80, v9/80, v9/80, vr Cat. ne 6 to i to usss), ble, PI 1. d. vi uds. Dpsf f. to vi		U	in the second	ORTH CA	ROLL
Tension TOP CHORD 1-2=0/38, 2-3=-135/96, 3-4=-69/83, 4-5=-56/72, 5-6=-116/119, 6-7=-116/119, 7-8=-56/66, 8-9=-63/74, 9-10=-109/88, 10-11=0/38 BOT CHORD 2-18=-67/114, 17-18=-67/114, 16-17=-67/114, 15-16=-67/114, 14-15=-67/114, 13-14=-67/114, 12-13=-67/114, 10-12=-67/114					bearing plate 2, 29 lb uplift uplift at joint joint 14, 54 lb	capable of withs at joint 10, 63 lb 17, 152 lb uplift at uplift at joint 13,	tanding 6 uplift at jo t joint 18, 70 lb upl	5 lb uplift at j pint 16, 51 lb 62 lb uplift a ift at joint 12,	oint t 65		THUN IN		SEA 0363	L 22
					 Ib uplift at joir Non Standard This truss is a International R802.10.2 ar OAD CASE(S) 	nt 2 and 29 lb upli d bearing condition designed in accor Residential Code nd referenced star Standard	ift at joint on. Revie rdance w sections ndard AN	10. w required. ith the 2015 R502.11.1 a ISI/TPI 1.	and		111.	A A A A A A A A A A A A A A A A A A A	AC A. G	EER. KING

Job	Truss	Truss Type	Qty	Ply	5 SERENITY	
34893A	D2	Common	4	1	Job Reference (optional)	156131964

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Jan 13 10:17:00 ID:8NN2Cj1a3Wuc2CfNv0rDi_y6MCs-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

-1-0-0 15-4-0 3-7-10 10-8-7 14-4-0 7-2-0 1-0-0 3-7-10 1-0-0 3-6-6 3-6-7 3-7-9 4x6= 4 12 10 Г 1.5x4 1.5x4 🥠 3 5 6-7-11 7-2-4 16 17 6 0-8-0 ĕ Ø 8 3x8= 3x8 II 3x8 II 14-4-0 7-2-0 14-1-8 6-9-8 6-11-8 0-2-8

Scale = 1:48.2			0-4-8							0-2-	0	
Plate Offsets	(X, Y): [2:Edge,0-0-1],	[6:Edge,0-0-1]										
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TI	CSI TC BC WB Pl2014 Matrix-MP	0.44 0.45 0.13	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.04 -0.08 -0.01	(loc) 8-15 8-15 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 79 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEDS WEDGE BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left: 2x6 SP DSS Right: 2x6 SP No.2 Structural wood shea 6-0-0 cc purlins. Rigid ceiling directly bracing. (size) 2=0-3-0, 6 Max Horiz 2=-132 (Li	athing directly applie applied or 10-0-0 or 3=0-3-0 C 10)	4) * oi 3 ct 5) P bi 2 2 d or 6) T ir c R c R	This truss has been dee n the bottom chord in al -06-00 tall by 1-00-00 w oord and any other mer rovide mechanical conr earing plate capable of and 18 lb uplift at joint of his truss is designed in ternational Residential 802.10.2 and reference D CASE(S) Standard	signed for a liv I areas where ide will fit betv hbers. hection (by oth withstanding 1 6. accordance w Code sections d standard AN	e load of 20 a rectangle veen the bot ers) of truss 8 lb uplift at ith the 2015 5 R502.11.1 ISI/TPI 1.	.0psf tom to joint and					
FORCES TOP CHORD BOT CHORD	Max Uplift 2=-18 (LC Max Grav 2=656 (LC (Ib) - Maximum Com Tension 1-2=0/38, 2-3=-603/6 4-5=-476/82, 5-6=-6 2-8=-37/422, 6-8=0/4	: 12), 6=-18 (LC 13) C 1), 6=610 (LC 1) pression/Maximum 66, 3-4=-466/79, 17/70, 6-7=0/38 441										
WEBS NOTES 1) Unbalanc: this desig 2) Wind: ASt Vasd=91r II; Exp B; and C-C E 7-2-0, Ext 15-40-00 vertical lei forces & M DOL=1.60	4-8=-43/358, 3-8=-19 ed roof live loads have n. CE 7-10; Vult=115mph mph; TCDL=6.0psf; BCI Enclosed; MWFRS (en Exterior (2) -1-0-0 to 3-6 terior (2) 7-2-0 to 11-8-6 ne; cantilever left and ri ft and right exposed;C-1 WWFRS for reactions sl 0 plate grip DOL=1.60	51/117, 5-8=-205/11 been considered for (3-second gust) DL=6.0psf; h=30ft; (ivelope) exterior zor 5-4, Interior (1) 3-6-4 5, Interior (1) 11-8-6 ight exposed ; end C for members and hown; Lumber	8 Cat. le 4 to to						(Walling)		SEA 0363	L 22

 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

January 17,2023

Job	Truss	Truss Type	Qty	Ply	5 SERENITY	
34893A	E1E	Common Supported Gable	1	1	Job Reference (optional)	156131965

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Jan 13 10:17:00 ID:3vyfz6tENv2hLUBccWHLJKy6LqX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

18-8-0

Scale = 1:58.2 Plate Offsets (X, Y); [2:Edge.0-0-1], [7:0-3-0.Edge], [12:Edge.0-0-1]

	(X, T). [2.Euge,0 0	i], [7:0 0 0,Euge], [12:	.Luge,o	1										
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	015/TPI2014	CSI TC BC WB Matrix-MS	0.07 0.09 0.10	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 12	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 122 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS WEDGE BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Exc Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood si 6-0-0 oc purlins. Rigid ceiling direc bracing. (size) 2=18-8 15=18- 22=18- Max Horiz 2=-167 Max Uplift 2=-32 (14=-12 16=-10 18=-22 20=-64 23=-32 Max Grav 2=227 14==22 Max Grav 2=227 14==22 20=-64 23=-32 Max Grav 2=227 (b) - Maximum Co Tension 1-2=0/38, 2-3=-21 4-5=-100/57, 5-6= 7-8=-71/56, 8-9=- 10-11=-123/74, 1*	ept* 18-6,17-8:2x4 SP 3 heathing directly applied tly applied or 10-0-0 o 0, 12=18-8-0, 14=18-1 3-0, 16=18-8-0, 17=18 3-0, 19=18-8-0, 20=18 3-0, 23=18-8-0, 26=18 (LC 10), 23=-167 (LC LC 8), 12=-16 (LC 9), 7 (LC 13), 15=-64 (LC (LC 12), 19=-98 (LC 1 (LC 12), 15=211 (LC (LC 20), 15=211 (LC (LC 19), 22=208 (LC (LC 19), 22=208 (LC (LC 21), 26=219 (LC compression/Maximum 2/137, 3-4=-137/78, -88/58, 6-7=-71/56, 73/44, 9-10=-88/36, 1-12=-197/140, 12-13=	ed or c 8-0, 3-8-0, 3-8-0, 10) 13), 12), 12), 12), 20), 20), 19), 22) =0/38	BOT CHORD WEBS 1) Unbalance this design 2) Wind: ASC Vasd=91m II; Exp B; E and C-C C 9-4-0, Corr to 19-8-0 z vertical left forces & M DOL=1.60 3) Truss des or consult 4) All plates a 5) Gable requ 6) Gable requ 6) Gable stuc 7) This truss chord live I 8) * This truss on the bott 3-06-00 tal chord and	2-22=-125/192, 20- 19-20=-125/192, 18 17-18=-125/192, 16 15-16=-125/192, 14 12-14=-125/192 6-18=-115/24, 8-17 4-20=-125/71, 3-22 10-15=-125/71, 3-22 10-15=-125/71, 3-22 10-15=-125/71, 3-22 10-15=-125/71, 11- ad roof live loads have by TCDL=6.0ps; BC Enclosed; MWFRS (e concer (3) -1-0-0 to 3- her (3) 9-4-0 to 13-10 cone; cantilever left at and right exposed; C WFRS for reactions : plate grip DOL=1.60 igned for wind loads studs exposed to wina rd Industry Gable Er qualified building des are 1.5x4 MT20 unles ilres continuous bottot is spaced at 2-0-0 oc has been designed for load nonconcurrent w s has been designed for and null areas II by 1-00-00 wide will any other members,	22=-12 3-19=-1 3-17=-1 4-15=-1 =-105/1 =-144/5 14=-14 a been of h (3-sec CDL=6. nvelope 6-6, Ext hd right -C for r shown; in the p d (norm nd Deta is other or a 10. vith any for a liv is where I fit betw with BC	5/192, 25/192, 25/192, 25/192, 2, 5-19=-138/ 7, 9-16=-138/ 4/96 considered for cond gust) Opsf; h=30ft; C 9) exterior zon erior (2) 3-6-6 erior (2) 3-6-6 erior (2) 13-10 exposed ; enc nembers and Lumber lane of the tru: al to the face) is as applicab s per ANSI/TP wise indicated d bearing. D psf bottom other live loac e load of 20.0 a rectangle veen the botto DL = 10.0psf.	93, 96, e to -6 d ss , le, , l. 1. s. psf m	 9) Probes 2, 1 at ju 129 upli join 10) This Inte R80 11) "NA (0.1 12) In ti of ti LOAD (1) De PI Ur Co 	vide metring plat 6 lb uplif bint 17, 9 1 lb uplif ft at joint t 2 and 1 s truss is rrationa 02.10.2 a JILED" irr 48"x3.2 the LOAD the truss CASE(S) cead + Ro ate Incredit Vert: 1- oncentra 22=-32 23=-40	chanic te capa ft at join 28 lb uj at join t 15, 12 16 lb uj a desig and ref dicate 5°) toe 0 CASI are no 0 CASI A CASI CASI A A	al connection (by able of withstandi nt 12, 22 lb uplift plift at joint 19, 64 t 22, 101 lb uplift 27 lb uplift at joint 12. ned in accordance dential Code sect dential Section, load ted as front (F) o ndard a (balanced): Lun .15 b/ft) 7-113=-60, 23-26: ads (lb) B), 17=-32 (B), 15=-32 (B), 15=-32 (B), 15=-32 (B), 15=-32 (B), 15=-32 (C), 15=-32 (C	others) of truss 19 32 lb uplift at at joint 18, 11 ll 1b uplift at joint at joint 16, 64 ll 14, 32 lb uplift e with the 2015 ions R502.11.1 1 ANSI/TPI 1. 3") or 3-12d Jidlines. Is applied to the r back (B). 10 10 10 10 10 10 10 10 10 10	to joint 20, at and face .15, .2 (B),

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

January 17,2023

-

Job	Truss	Truss Type	Qty	Ply	5 SERENITY	
34893A	E2G	Common Girder	1	2	Job Reference (optional)	156131966

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Jan 13 10:17:01 ID:Boy7DpBkBBs10AAJuOYciVy6Lbw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:59

Plate Offsets (X, Y): [8:0-5-0,0-4-8]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.30 0.46 0.45	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.06 -0.11 0.02	(loc) 8-9 8-9 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 251 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD	2x4 SP No.2 2x6 SP DSS 2x4 SP No.3 *Excep Left: 2x6 SP No.2 Right: 2x6 SP No.2 Structural wood she 5-7-3 oc purlins	ot* 8-4:2x4 SP No.2 Pathing directly applie	4) d or	Wind: ASCE Vasd=91mph II; Exp B; End and C-C Exte 9-4-0, Exterit to 18-8-0 zor vertical left a forces & MW DOL=1.60 pl	7-10; Vult=115mp 1; TCDL=6.0psf; B closed; MWFRS (erior (2) -1-0-0 to 3 or (2) 9-4-0 to 13- 10; cantilever left a nd right exposed; FRS for reactions ate grip DOL=1.60	oh (3-sec CDL=6.0 envelope 3-6-6, Int 10-3, Inte and right C-C for n shown; D	cond gust) Dpsf; h=30ft; e) exterior zon erior (1) 3-6- erior (1) 13-10 exposed ; er nembers and Lumber	Cat. ne 6 to 0-3 nd	Co	oncentra Vert: 17 (F), 21= 24=-158	ted Loa =-924 -528 (F 39 (F)	ads (lb) (F), 18=-580 (F), -), 22=-528 (F), 2	19=-586 (F), 20=-532 3=-528 (F),
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 oc	5)	This truss ha chord live loa * This truss h	s been designed f ad nonconcurrent	for a 10.0 with any 1 for a liv) psf bottom other live loa e load of 20 (ids. Opsf					
REACTIONS	(size) 2=0-5-8, Max Horiz 2=161 (L Max Uplift 2=-355 (L Max Gray 2=3297 (J	6=0-5-8 C 9) .C 12), 6=-289 (LC 13 LC 1), 6=4051 (LC 1)	3)	on the botton 3-06-00 tall b chord and an	n chord in all area by 1-00-00 wide wi by other members.	s where ill fit betv	a rectangle veen the bott	om					
FORCES	(lb) - Maximum Con Tension	npression/Maximum	7)	bearing plate	capable of withst	anding 2	89 lb uplift at	t					
TOP CHORD	1-2=0/38, 2-3=-4486 4-5=-3160/411, 5-6=	6/523, 3-4=-3154/406 =-4667/449	5, 8)	This truss is International	designed in accor Residential Code	dance w sections	ith the 2015 R502.11.1 a	and					
BOT CHORD	2-9=-405/3363, 7-9= 6-7=-271/3524	=-405/3524,	9)	R802.10.2 ar Use MiTek T	nd referenced star HD26-2 (With 18-	ndard AN 16d nails	ISI/TPI 1. s into Girder 8	&					
WEBS	3-9=-194/1555, 3-8= 4-8=-440/3659, 5-8=	=-1393/300, =-1614/214, 5-7=-81/	1786	12-10d nails left end to co	into Truss) or equ nnect truss(es) to	ivalent a front fac	t 4-1-8 from t e of bottom	the					11111
NOTES				chord.								"TH UA	ROM
1) 2-ply trus (0.131"x3 Top chore	s to be connected toge ") nails as follows: ds connected as follows	ther with 10d s: 2x4 - 1 row at 0-9-0	1(D)) Use MiTek J nails into Tru starting at 5- truss(es) to f	US24 (With 4-10d iss) or equivalent s 11-4 from the left ront face of botton	nails int spaced a end to 14 n chord	o Girder & 2- at 2-0-0 oc ma 4-4-12 to con	10d ax. nect		4	i	ON FESS	
Bottom cl staggered Web conr	hords connected as foll d at 0-6-0 oc. nected as follows: 2x4	ows: 2x6 - 2 rows - 1 row at 0-9-0 oc.	11	 Use MiTek H 4-16d nails ir left end to co 	IUS26 (With 14-16 nto Truss) or equiv nnect truss(es) to	od nails i alent at front fac	nto Girder & 16-4-12 from e of bottom	the				SEA 0363	L 22
2) All loads except if I	are considered equally noted as front (F) or ba	ck (B) face in the LO	AD 12	2) Fill all nail ho	les where hanger	is in cor	tact with lum	ber.		-			
CASE(S) provided unless ot	section. Ply to ply con to distribute only loads herwise indicated.	nections have been noted as (F) or (B),	L(1)	DAD CASE(S) Dead + Roo Plate Increa	Standard of Live (balanced): ase=1.15	Lumber	Increase=1.	15,				A CNGIN	EFREATING
 Unbalance this designation 	ed roof live loads have n.	been considered for		Uniform Loa Vert: 1-4	ads (lb/ft) =-60, 4-6=-60, 10-	13=-20						A. G	

January 17,2023

Page: 1

Job	Truss	Truss Type	Qty	Ply	5 SERENITY	
34893A	FG1	Flat Girder	1	2	Job Reference (optional)	156131967

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Jan 13 10:17:05 ID:STjoheRf8E5zdgg7rGYHEKy6Llx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

	6-6-0	12-10-4	19-2-8	25-6-12	30-8-10	35-10-8	41-0-6	46-4-0
1	6-6-0	6-4-4	6-4-4	6-4-4	5-1-14	5-1-14	5-1-14	5-3-10

Scale = 1:75.6

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)		20.0	Plate Grip DOL	1.15		TC	0.32	Vert(LL)	0.04	20	>999	240	MT20	244/190	
TCDL		10.0	Lumber DOL	1.15		BC	0.23	Vert(CT)	-0.08	20-21	>999	180			
BCLL		0.0*	Rep Stress Incr	NO		WB	0.52	Horz(CT)	0.02	12	n/a	n/a			
BCDL		10.0	Code	IRC2015	/TPI2014	Matrix-MS							Weight: 665 lb	FT = 20%	
				1)	2-ply truss to	be connected toge	ther wi	h 10d			CASE(S)	Sta	ndard		
	2x6 SP N	02		•,	(0.131"x3") n	ails as follows:		in rou		1) De	ad + Rc	of Live	e (balanced): I un	ber Increase	1 15
BOT CHORD	2x6 SP N	0.2			Top chords c	onnected as follow:	s: 2x4 -	1 row at 0-9-	-0	Pla	ate Incre	ase=1	.15	iser mereace	,
WFBS	2x4 SP N	o.3 *Excen	t*		oc, 2x6 - 2 ro	ws staggered at 0-	9-0 oc.			Ur	hiform Lo	ads (I	b/ft)		
	5-17,21-1	,20-2,18-3:	2x4 SP No.2		Bottom chord	Is connected as foll	ows: 2	6 - 2 rows			Vert: 1-1	11=-60	, 12-23=-20		
BRACING					staggered at	0-9-0 oc.				Co	oncentra	ted Lo	ads (lb)		
TOP CHORD	2-0-0 oc p	ourlins (6-0	-0 max.): 1-11, exce	pt	Web connect	ed as follows: 2x4	- 1 row	at 0-9-0 oc.			Vert: 4=	-38 (B), 11=-64 (B), 12=	=-41 (B), 9=-3	3 (B),
	end vertic	cals.	, ,	2)	All loads are	considered equally	applied	to all plies,			14=-32	(B), 8=	-38 (B), 15=-32 (B), 19=-32 (B)	,
BOT CHORD	Rigid ceili	ing directly	applied or 10-0-0 oc		except if note	d as front (F) or ba	ck (B) 1	ace in the LC	DAD		24=-38	(B), 25	i=-38 (B), 27=-38	(B), 28=-38 (B	3),
	bracing,	Except:			CASE(S) sec	tion. Ply to ply con	nection	s have been			29=-38	(B), 30)=-38 (B), 31=-38	(B), 32=-38 (I	3),
	6-0-0 oc b	bracing: 16	-17.		provided to d	vise indicated	noted	as (F) or (B),			33=-38	(B), 34	=-38 (B), 35=-38	(B), 36=-38 (B	3),
REACTIONS	(size)	12= Mech	anical, 17=0-5-8,	3)	Wind: ASCE	7-10. Vult–115mph	(3-500	and aust)			37=-38	(B), 38	3=-38 (B), 39=-38	(B), 40=-38 (B)	3),)
		23=0-5-8		5)	Vasd=91mph	TCDI =6 0psf: BC	DI = 6)nsf: h=30ft: (Cat		41=-38	(D), 43 (D) 47)=-38 (В), 44=-38 / 22 (В) 49 22	(B), 45=-32 (B)	5), 2)
	Max Horiz	23=-100 (LC 8)		II: Exp B: End	closed: MWFRS (er	nvelope) exterior zor	ne		40=-32 5032	(D), 47 (B) 51	=-32 (D), 40=-32 32 (B) 5232	(B) 5332 (B)	5), 3)
	Max Uplift	12=-181 (LC 9), 17=-626 (LC 9	9),	and C-C Exte	erior (2) 0-1-12 to 4	-9-6, In	terior (1) 4-9-	6 to		54=-32	(B) 55	= 32 (B), 52= 32 5=-32 (B) 56=-32	(B) 57=-32 (B)	3)
	May Cray	23=-221 (`	46-2-4 zone;	cantilever left and i	right ex	posed ; end			58=-32	(B). 59	=-32 (B), 60=-32	(B), 61=-32 (B	3).
	wax Grav	12=944 (L 23-1180 /	(LC 1), 17=3202 (LC 1),	vertical left a	nd right exposed;C·	C for n	nembers and			62=-32	(B), 63	8=-32 (B)		,,
FORCES	(lb) Max				forces & MW	FRS for reactions s	hown;	Lumber							
FORCES	(ID) - Max		pression/maximum	•	DOL=1.60 pl	ate grip DOL=1.60									
TOP CHORD	1-23=-108	87/259, 1-2	2=-1621/320.	4)	Provide adeq	uate drainage to pr	event v	vater ponding] .						
	2-3=-181	1/340. 3-5=	-708/132.	5) 6)	All plates are	4x6 IVI 1 20 Unless (se indicated.							
	5-6=-354/	/1624, 6-7=	-354/1624, 7-9=-41/2	28, 0)	chord live los	d nonconcurrent w	ith anv	other live loa	de						
	9-10=-890	0/184, 10-1	1=-909/194,	7)	* This truss h	as been designed f	for a liv	e load of 20 (nsf				minin	1111	
	11-12=-83	33/229		• ,	on the botton	n chord in all areas	where	a rectangle	,po:				WH CA	ROUL	
BOT CHORD	21-23=-92	2/120, 20-2	21=-364/1621,		3-06-00 tall b	y 1-00-00 wide will	fit betw	een the botto	om			N	R	all'	
	18-20=-38	84/1811, 17	7-18=-153/708,		chord and an	y other members.						1.	O' FESS	Diz V	11
	16-17=-3	7/64, 14-16)=-180/890, 42, 27/50	8)	Refer to girde	er(s) for truss to trus	ss conr	ections.			6	3	IP /	in	4
WERS	6 17 - 51	09/909, 12- 2/2/1 7 16	-13=-27/50	9)	Provide mech	nanical connection	(by oth	ers) of truss t	0				.0		-
WEB3	7-17196	2/241,7-10 67/386 9-1	=-23/730, 61084/212		bearing plate	capable of withsta	nding 2	21 lb uplift at			-		CEA	r 1.	1
	9-14=0/30	07/000, 0 1 02 10-14=-	-22/14 10-13=-424/2	19	joint 23, 181	lb uplift at joint 12 a	ind 626	Ib uplift at jo	int		-	:	SEA	- :	1
	11-13=-19	98/1081.5-	-17=-2670/530.	10)	17. This trues is a	decigned in eccord		th the 2015					0363	22 :	-
	2-21=-649	9/305, 1-21	=-355/1821,	10)	International	Residential Code s	ance W	R502 11 1 a	nd		-			1	E
	2-20=-49/	/218, 3-20=	0/269, 3-18=-1263/2	64,	R802 10 2 ar	d referenced stand	lard AN	ISI/TPI 1	nu -		-	-	1. A.		5
	5-18=-4/8	314		11)	Graphical pu	rlin representation of	does no	t depict the s	ize			20	N.S.NOW	EFR. X	2
NOTES				,	or the orienta	tion of the purlin al	ong the	top and/or	-			1	P/ GIN	F	
					bottom chord		•	-				1	A C	IL BUN	
				12)	"NAILED" inc	licates 3-10d (0.148	3"x3") c	r 3-12d					1111.6	in in its	
					(0.148"x3.25) toe-nails per NDS	S auidlii	nes.						LT 192	

12) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.

January 17,2023

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	5 SERENITY	
34893A	H1	Нір	1	1	Job Reference (optional)	156131968

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Jan 13 10:17:06 ID:QFT5X45i4kr93yZnQiPkOpy6Lc2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:79.8

Plate Offsets (X, Y): [3:0-2-12,Edge], [7:0-4-10,Edge]

Loading TCLL (roof) TCDL BCLL BCDL	(pst) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	TC BC WB Matrix-MS	0.88 0.59 0.86	Vert(LL) Vert(CT) Horz(CT)	in -0.11 -0.23 0.04	(loc) 11-13 11-13 9	l/defl >999 >999 n/a	L/d 240 180 n/a	MT20 Weight: 243 lb	244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD BOT CHORD TOP CHORD BOT CHORD WEBS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS WEBS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Except 16-2,14-3,13-4,11-6, Structural wood sheat 4-3-12 oc purlins, ex 2-0-0 oc purlins, ex 2-0-0 oc bracing: 11- 1 Row at midpt (size) 1=0-5-8,9 Max Horiz 1=-78 (LC Max Uplift 1=-31 (LC 13=-27 (LI Max Grav 1=838 (LC (18) - Maximum Com 1-2=-1446/106, 2-3= 4-6=0/892, 6-7=-272 4-9=-934/113 1-17=-73/1251, 16-1 14-16==9/750, 13-14 11-13=-638/111, 10- 9-10=-39/794 2-17=0/250, 2-16=-5 3-14=-682/47, 4-14= 6-13=-1178/145, 6-1 7-11=-253/76, 8-11= ed roof live loads have n.	t* 11-8:2x4 SP No.2 athing directly applied cept -0 max.): 3-7. applied or 10-0-0 oc -13. 3-14, 4-13 = Mechanical, 13=0- 13) 12), 9=-52 (LC 13), C 9) 2 23), 9=606 (LC 24) (LC 1) pression/Maximum -905/107, 3-4=-260/x /112, 7-8=-389/98, 7=-73/1251, =-42/258, 11=-39/794, 83/118, 3-16=0/473, 0/587, 4-13=-1466/8 1=-51/1069, -592/121, 8-10=0/24 been considered for	2) d or 3) 4) 5) -5-8 6) 7) 8) 95, 9) 10 LC 7, 1	Wind: ASCE Vasd=91mph II; Exp B; En and C-C Exti to 12-0-11, E 18-7-5 to 34- (1) 40-9-15 ti exposed ; en members an Lumber DOL Provide adee All plates are This truss ha chord live loa * This truss ha chord and ar Refer to girdd Provide mec bearing plate 1, 52 lb uplift This truss is International R802.10.2 ar) Graphical pu or the orienta bottom chorc DAD CASE(S)	7-10; Vult=115mpf ; TCDL=6.0psf; BC closed; MWFRS (e rior (2) 0-0-0 to 4- xterior (2) 12-0-11 3-5, Exterior (2) 34 0 46-4-0 zone; cand d vertical left and ri d forces & MWFRS =1.60 plate grip DC juate drainage to p 3x6 MT20 unless s been designed for d nonconcurrent w as been d nonconcurrent w as been designed for d nonconcurrent w as been d	n (3-sec CDL=6.0 nvelope 7-10, In to 18-7 -3-5 to illever le ight exp for rea DL=1.60 revent v otherwi for a 10.0 thith any for a liv where fit betw with BC ss conr (by oth nding 3 ance w sections dard AN does no ong the	ond gust) ppsf; h=30ft; C) exterior zon terior (1) 4-7- 5, Interior (1) 40-9-15, Interior (1) 40-9-15, Interior eff and right oseed;C-C for ctions shown;) vater ponding se indicated.) psf bottom other live load e load of 20.0 a rectangle veen the botto DL = 10.0psf. tections. arcs of truss to 1 lb uplift at jc t joint 13. th the 2015 R502.11.1 at 15 depict the si t op and/or	Cat. e 10 ior ds. psf m c bint nd ize				SEAL 03632	ER. KIN	

NC

818 Soundside Road Edenton, NC 27932

GI A. GIL January 17,2023

Job	Truss	Truss Type	Qty	Ply	5 SERENITY	
34893A	H2	Half Hip	1	1	Job Reference (optional)	156131969

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Jan 13 10:17:07 ID:fgtnAonWO83TSAU6yPrxRwy6LUi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1.5x4 🛚

3x6 =

Scale = 1:33.8

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MP	0.49 0.53 0.04	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.08 -0.19 0.00	(loc) 6-11 6-11 2	l/defl >972 >423 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 26 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins; a-4 Rigid ceiling directly bracing	athing directly appli cept end verticals, a applied or 10-0-0 o	7; 8; and 9; c L	Provide mec bearing plate 5 and 51 lb u This truss is International R802.10.2 an Graphical pu or the orienta bottom chorc DAD CASE(S)	hanical connection capable of withst plift at joint 2. designed in accor Residential Code nd referenced star rlin representatior ation of the purlin a l. Standard	n (by oth anding 1 dance wi sections ndard AN n does no along the	ers) of truss : 9 lb uplift at j ith the 2015 R502.11.1 a ISI/TPI 1. t depict the s top and/or	to joint and size						
REACTIONS	(size) 2=0-3-0, 5 Max Horiz 2=50 (LC Max Uplift 2=-51 (LC Max Grav 2=347 (LC	5= Mechanical 11) C 8), 5=-19 (LC 8) C 1), 5=248 (LC 1)												
FORCES	(lb) - Maximum Corr Tension	pression/Maximum												
TOP CHORD	1-2=0/15, 2-3=-113/ 4-529/16	78, 3-4=-20/22,												
BOT CHORD WEBS NOTES	2-6=-84/89, 5-6=-20 3-6=-177/89	/22	or.											
this design			/1									mun	1111	
ZI Wind AS(- /-10: Vult-115mph	I K-SECOND DUST)												

- 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -1-0-0 to 3-6-6, Interior (1) 3-6-6 to 5-8-8, Exterior (2) 5-8-8 to 6-8-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Provide adequate drainage to prevent water ponding.
 This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 1-00-00 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Page: 1

A MiTek Aff 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	5 SERENITY	
34893A	H3G	Half Hip Girder	1	1	Job Reference (optional)	156131970

3-8-8

3-8-8

84 Components (Dunn), Dunn, NC - 28334,

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Jan 13 10:17:07 ID:qn1xUYwQoWRvGtqD5DYXNFy6LUX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

6-10-0

3-1-8

-1-0-0

1-0-0

NAILED NAILED

Scale = 1:34.9

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2015	5/TPI2014	CSI TC BC WB Matrix-MP	0.44 0.97 0.05	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.15 -0.32 0.00	(loc) 6-11 6-11 2	l/defl >536 >250 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 24 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD 30T CHORD WEBS 3RACING TOP CHORD 30T CHORD 30T CHORD 30T CHORD 30T CHORD WEBS NOTES 1) Wind: ASC	2x4 SP No.2 2x4 SP No.1 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins; 3:4 Rigid ceiling directly bracing. (size) 2=0-3-0, 5 Max Horiz 2=34 (LC Max Grav 2=382 (LC (lb) - Maximum Com Tension 1-2=0/15, 2-3=-143/2 4-5=-111/44 2-6=-85/110, 5-6=-1: 3-6=-260/86 CE 7-10; Vult=115mph	athing directly applic cept end verticals, a applied or 5-0-0 oc 5= Mechanical 11) 8), 5=-10 (LC 8) 1), 5=332 (LC 1) pression/Maximum 77, 3-4=-13/14, 3/14 (3-second gust)	7) ed or 9) 10 LC 1)	This truss is international R802.10.2 ar Graphical pu or the orienta bottom choro "NAILED" ind (0.148"x3.25) In the LOAD of the truss a DAD CASE(S) Dead + Roo Plate Increas Uniform Loa Vert: 1-3: Concentrate Vert: 3=-3	designed in accorr Residential Code nd referenced star rlin representation ation of the purlin a dicates 3-10d (0.14 ") toe-nails per NE CASE(S) section, re noted as front (Standard of Live (balanced): ase=1.15 ads (lb/ft) =-60, 3-4=-60, 5-7 ed Loads (lb) 28 (F), 6=-29 (F),	dance w sections (dard AN does no long the #8"x3") of S guidlin loads ap F) or ba Lumber =-20 12=-31 (ith the 2015 R502.11.1 a ISI/TPI 1. of depict the set top and/or or 3-12d nes. oplied to the ck (B). Increase=1.	and size face 15, -)						
Vood 01p	anh: TCDL 6 Onof: BC	DI 6 Opofi h 20fti (Cot											

asd=91mph; TCDL 6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- Provide adequate drainage to prevent water ponding. 2)
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 4) on the bottom chord in all areas where a rectangle 3-06-00 tall by 1-00-00 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to 6) bearing plate capable of withstanding 10 lb uplift at joint 5 and 50 lb uplift at joint 2.

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	5 SERENITY	
34893A	H4	Flat	1	1	Job Reference (optional)	156131971

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Jan 13 10:17:08 ID:HSLt8Lh5t8OHRdibeP6a?Cy5wMH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:79.6

Plate Offsets (X, Y): [3:0-4-12,0-3-0], [7:0-2-8, Edge]

Loading TCLL (roof) TCDL BCLL BCDL LUMBER TOP CHORD BOT CHORD	(psf) 20.0 10.0 0.0* 10.0 2x4 SP No.2 *Excep 2x4 SP No.2	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015 2)	5/TPI2014 Wind: ASCE Vasd=91mph II; Exp B; End	CSI TC BC WB Matrix-MS 7-10; Vult=115mph; ; TCDL=6.0psf; BC closed; MWFRS (er	0.81 0.59 0.74 (3-sec DL=6.0	DEFL Vert(LL) Vert(CT) Horz(CT) ond gust) 0psf; h=30ft; e) exterior zor	in -0.11 -0.25 0.04 Cat.	(loc) 15-17 15-17 9	I/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 M18AHS Weight: 240 lb	GRIP 244/190 186/179 FT = 20%	
WEBS	2x4 SP No.3 *Excep No.2	t* 15-3,14-4,13-7:2x4	4 SP	and C-C Exte to 10-5-8, Ex 17-0-2 to 35-	rior (2) 0-0-0 to 4-7 terior (2) 10-5-8 to 10-8, Exterior (2) 3	r-10, İn 17-0-2, 5-10-8	, Interior (1) 4-7- Interior (1) to 42-5-2, Int	-10 erior						
TOP CHORD	Structural wood she 4-4-12 oc purlins, ex 2-0-0 oc purlins (6-0	athing directly applie ccept -0 max.): 3-7.	d or	(1) 42-5-2 to exposed ; en members and	46-4-0 zone; cantile d vertical left and ri forces & MWFRS	ever lef ght exp for rea	t and right osed;C-C for ctions shown	r 1;						
BOT CHORD	Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 13	applied or 10-0-0 oc -14.	3) 4)	Provide adec All plates are	uate drainage to pr MT20 plates unles	s other	vater ponding wise indicate	g. ed.						
WEBS	1 Row at midpt	3-15, 4-14	5)	All plates are	3x6 MT20 unless of	otherwi	se indicated.							
REACTIONS	(size) 1=0-5-8, 9 Max Horiz 1=67 (LC Max Uplift 1=-23 (LC 14=-65 (L Max Grav 1=835 (LC 14=2325 (LC)	}= Mechanical, 14=0 16) ; 12), 9=-43 (LC 13), C 9) C 23), 9=600 (LC 24) (LC 1)	-5-8 (7) , , 8)	chord live loa * This truss h on the botton 3-06-00 tall b chord and an Refer to girde	d nonconcurrent w as been designed f a chord in all areas y 1-00-00 wide will y other members, v er(s) for truss to trus	ith any for a liv where fit betw with BC	other live loa e load of 20.0 a rectangle veen the botto DL = 10.0pst ections.	ids. Opsf om f.						
FORCES	(lb) - Maximum Com Tension	pression/Maximum	9)	Provide mech	nanical connection	(by oth nding 2	ers) of truss t 3 lb uplift at i	to oint						
TOP CHORD	1-2=-1477/112, 2-3= 4-6=0/1032, 6-7=0/2 8-9=-966/91	1039/103, 3-4=-387 15, 7-8=-500/86,	7/91, 10	1, 43 lb uplift This truss is International	at joint 9 and 65 lb designed in accorda	uplift a ance w	t joint 14. th the 2015 R502 11 1 a	and				TH CA	RO	
BOT CHORD	1-18=-63/1284, 17-1 15-17=-13/886, 14-1 13-14=-609/102, 11- 10-11=-30/827, 9-10	8=-63/1284, 5=-45/385, -13=0/400, 9=-30/827	11	R802.10.2 ar) Graphical pu or the orienta	id referenced stand lin representation of tion of the purlin al	lard AN does no ong the	ISI/TPI 1. of depict the s top and/or	size		4	in the	ORIEESS	Bener,	
WEBS	2-18=0/195, 2-17=-4 3-15=-634/49, 4-15= 6-14=-1252/132, 6-1 7-11=0/378, 8-11=-4	66/106, 3-17=0/446, 0/577, 4-14=-1679/9 3=0/759, 7-13=-762/ 99/96, 8-10=0/229	4, LC 78,	DAD CASE(S)	Standard							SEAI 03632	22	
NOTES										-		N	1 5	
 Unbalance this design 	ed roof live loads have n.	been considered for									in the	A G	ERERTIN	

NOTES

G A. GIL January 17,2023

Job	Truss	Truss Type	Qty	Ply	5 SERENITY	
34893A	J1	Jack-Partial Supported Gable	1	1	Job Reference (optional)	156131972

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Jan 13 10:17:08 ID:5WwvdwNWKiThWvn92jz6XHy6Lm0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:32.4

L oading TCLL (roof) TCDL BCLL BCDL	(ps 20. 10. 0. 10.	f) Spacing 0 Plate Grip DOL 0 Lumber DOL 0* Rep Stress Inc 0 Code	2-0-0 - 1.15 1.15 r YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MP	0.20 0.05 0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 24 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD 30T CHORD WEBS DTHERS WEDGE BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Left: 2x4 SP No.3 Structural wood 3-11-8 oc purlin: Rigid ceiling dire bracing.	3 sheathing directly ap s, except end vertica ectly applied or 10-0-	5) 6) pplied or als. 0 oc 8) 1 8	This truss ha chord live loa * This truss h on the bottom 3-06-00 tall b chord and an Provide mect bearing plate 2, 19 lb uplift uplift at joint : This truss is International	s been designe ad nonconcurre has been design n chord in all ar hy 1-00-00 wide y other membe hanical connec capable of witi at joint 5, 75 lb 2. designed in acc Residential Co	ed for a 10.0 ont with any ned for a live reas where a will fit betw ers. tion (by othe hstanding 1 o uplift at join cordance wi de sections	o psf bottom other live loa e load of 20. a rectangle even the bott ers) of truss 1 lb uplift at j tt 6 and 11 ll th the 2015 R502.11.1 a	ads. Opsf om to joint b						
FORCES TOP CHORD	(size) 7=3-1 7=3-1 Max Horiz 2=11' (LC 1 Max Grav 2=14: 6=18: (lb) - Maximum 1 Tension 1-2=0/38, 2-3=- 4-5=-88/60 2-6=-118/123, 5 2-6=-110/106	1-8, 0=3-11-8, 0=3-1 1-8 1 (LC 11), 7=111 (LC (LC 8), 5=-19 (LC 9 2), 7=-11 (LC 8) 7 (LC 20), 5=68 (LC - 7 (LC 19), 7=147 (LC Compression/Maximu 158/168, 3-4=-79/94, -6=-50/67	: 11) LC : 11) LC), 6=-75 19), : 20) um	R802.10.2 ar DAD CASE(S)	nd referenced s Standard	standard AN	SI/TPI 1.						11	

NOTES

- Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
 Gable requires continuous bottom chord bearing.
- Gable studs spaced at 2-0-0 oc.

Job	Truss	Truss Type	Qty	Ply	5 SERENITY	
34893A	J2	Jack-Open	23	1	Job Reference (optional)	156131973

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Jan 13 10:17:08 ID:XTqiWjUtHj?t9vygcFrRmKy5wQQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3x6 II

4-0-0

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.20	Vert(LL)	0.02	4-7	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.18	Vert(CT)	-0.03	4-7	>999	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.01	3	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MP							Weight: 17 lb	FT = 20%
L UMBER TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2		6) This truss is Internationa R802.10.2 a	designed in acc Residential Co and referenced s	cordance w de sections tandard AN	ith the 2015 R502.11.1 a	and	-	-			
WEDGE	Left: 2x6 SP No.2		LOAD CASE(S	Standard								
BRACING												
	Structural wood cho	athing directly appli	od or									

TOP CHORD	Structura	wood sheathing directly applied or
	4-0-0 oc p	ourlins.
BOT CHORD	Rigid ceili bracing.	ing directly applied or 10-0-0 oc
REACTIONS	(size)	2=0-5-8, 3= Mechanical, 4= Mechanical
	Max Horiz	2=121 (LC 12)
	Max Uplift	3=-62 (LC 12)
	Max Grav	2=225 (LC 1), 3=105 (LC 19), 4=73 (LC 3)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	

Scale - 1.29 7

TOP CHORD 1-2=0/38, 2-3=-92/67 BOT CHORD 2-4=-80/92

NOTES

- Wind: ASCE 7-10; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -1-0-0 to 3-6-6, Interior (1) 3-6-6 to 3-11-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 2) chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 1-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections. 4)
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 62 lb uplift at joint 3.

Job	Truss	Truss Type	Qty	Ply	5 SERENITY	
34893A	J3	Jack-Open Structural Gable	2	1	Job Reference (optional)	156131974

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Jan 13 10:17:09 ID:bjPHmmsccbwqkKcQ3pm6n7y6LqY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3x6 =

Scale = 1:24.2

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.15		тс	0.07	Vert(LL)	0.00	4-9	>999	240	MT20	244/190
TCDL		10.0	Lumber DOL	1.15		BC	0.06	Vert(CT)	0.00	4-9	>999	180		
BCLL		0.0*	Rep Stress Incr	YES		WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL		10.0	Code	IRC201	5/TPI2014	Matrix-MP							Weight: 10 lb	FT = 20%
LUMBER				7)	This truss is	designed in accord	lance w	ith the 2015						
TOP CHORD	2x4 SP N	o.2			International	Residential Code	sections	R502.11.1 a	nd					
BOT CHORD	2x4 SP N	0.2			R802.10.2 ar	nd referenced stan	dard AN	ISI/TPI 1.						
BRACING				L	DAD CASE(S)	Standard								
TOP CHORD	Structura	wood shea	athing directly applie	ed or										
	2-10-0 oc	purlins.												
BOT CHORD	Rigid ceili bracing.	ing directly	applied or 10-0-0 o	C										
REACTIONS	(size)	2=0-3-0, 3 Mechanica	= Mechanical, 4= al											
	Max Horiz	2=31 (LC	8)											
	Max Uplift	2=-44 (LC	8), 3=-14 (LC 12)											
	Max Grav	2=203 (LC	C 1), 3=52 (LC 1), 4=	=40										
		(LC 3)												
FORCES	(lb) - Max Tension	imum Com	pression/Maximum											
TOP CHORD	1-2=0/15,	2-3=-51/82	1											
BOT CHORD	2-4=-87/7	'1												
NOTES														
1) Wind: AS	CE 7-10; Vu	lt=115mph	(3-second gust)											
Vasd=91n	nph; TCDL=	6.0psf; BC	DL=6.0psf; h=30ft; (Cat.										
II; Exp B;	Enclosed; N	IWFRS (en	velope) exterior zor	ne										
and C-C E	Exterior (2) z	one; cantile	ever left and right											
exposed ;	end vertica	l left and rig	ht exposed;C-C for										WILL CA	D''''
members	and forces a	& MWFRS	for reactions shown	;								1	THUA	ROIL
2) This trues	OL=1.60 pla	ate grip DO	L=1.60									5	N .= 50	All's
z) This truss chord live	load nonco	esigned for	a 10.0 psi bollom	de							1	82		THAT
3) * This trus	s has been	designed for	or a live load of 20 0	us. Insf							-	D	121 1	4. 4.
on the bot	tom chord i	n all areas v	where a rectangle	, , , , , , , , , , , , , , , , , , , ,							-			
3-06-00 ta	all by 1-00-0	0 wide will f	fit between the botto	om							=	:	SEA	L : =
chord and	any other n	nembers.									=	:	0363	22 =
4) Refer to a	irder(s) for	trues to true	ss connections								-		0303	44 : E

Reter to girder(s) for truss to truss connections.
 Provide mechanical connection (by others) of truss to

bearing plate at joint(s) 2.Provide mechanical connection (by others) of truss to

bearing plate capable of withstanding 14 lb uplift at joint 3 and 44 lb uplift at joint 2.

SEAL 036322 January 17,2023

Page: 1

Job	Truss	Truss Type	Qty	Ply	5 SERENITY	
34893A	J4	Jack-Open Structural Gable	8	1	Job Reference (optional)	156131975

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Jan 13 10:17:09 ID:bjPHmmsccbwqkKcQ3pm6n7y6LqY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3x6 =

Scale = 1:24.2

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.07	Vert(LL)	0.00	4-9	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.06	Vert(CT)	0.00	4-9	>999	180		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC201	5/TPI2014	Matrix-MP							Weight: 10 lb	FT = 20%
LUMBER			7)	This truss is	designed in accor	dance w	ith the 2015						
TOP CHORD	2x4 SP No.2			International	Residential Code	sections	R502.11.1 a	nd					
BOT CHORD	2x4 SP No.2			R802.10.2 a	nd referenced star	ndard AN	ISI/TPI 1.						
BRACING			LC	DAD CASE(S)	Standard								
TOP CHORD	Structural wood she 2-10-0 oc purlins.	athing directly appli	ed or										
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 o	C										
REACTIONS	(size) 2=0-3-0, 3 Mechanic	3= Mechanical, 4= al											
	Max Horiz 2=31 (LC	8)											
	Max Uplift 2=-44 (LC	28). 3=-14 (LC 12)											
	Max Grav 2=203 (L0	C 1), 3=52 (LC 1), 4	=40										
	(LC 3)												
FORCES	(lb) - Maximum Corr	pression/Maximum											
	Tension												
TOP CHORD	1-2=0/15, 2-3=-51/8	1											
BOT CHORD	2-4=-87/71												
NOTES													
1) Wind: AS	CE 7-10; Vult=115mph	(3-second gust)											
Vasd=91n	nph; TCDL=6.0psf; BC	DL=6.0psf; h=30ft;	Cat.										
II; Exp B;	Enclosed; MWFRS (er	velope) exterior zor	ne										
and C-C E	Exterior (2) zone; cantil	ever left and right											111.
exposed ;	end vertical left and rig	ght exposed;C-C for	r									N' ULCA	Dalle
members	And forces & MWFRS	TOF reactions shown	1;									TH UN	MO1 11
2) This trucs	bas been designed fo	r = 1.00									A	OFFE	in Alle
2) This truss	load nonconcurrent wi	th any other live loa	de								27	10 PL	No. Sin
3) * This trus	s has been designed f	or a live load of 20 (Onsf							-			All
on the bot	tom chord in all areas	where a rectangle	000							1			
3-06-00 ta	all by 1-00-00 wide will	fit between the bott	om							=	:	SEA	L : =
chord and	any other members.		- 1							=	:	0262	22 : =
4) Refer to g	irder(s) for truss to tru	ss connections.								1		0303	

- Provide mechanical connection (by others) of truss to bearing plate at joint(s) 2.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 14 lb uplift at joint 3 and 44 lb uplift at joint 2.

818 Soundside Road Edenton, NC 27932 Page: 1

Job	Truss	Truss Type	Qty	Ply	5 SERENITY	
34893A	J5	Jack-Open	2	1	Job Reference (optional)	156131976

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Jan 13 10:17:09 ID:MbTZHCvo1CJ2ejF1XW0Ir1y6LUY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

818 Soundside Road Edenton, NC 27932 Page: 1

Scale = 1:23.9

LUMBER TOP CHORD 2x4 SP No BOT CHORD 2x4 SP No BRACING TOP CHORD Structural 3-8-8 oc p BOT CHORD Rigid ceili bracing. REACTIONS (size)	0.2 0.2 wood shea vurlins. ng directly a 2=0-3-0, 3	thing directly applie applied or 10-0-0 oc	LOAD CASE(S)	Standard					
REACTIONS (size)	2=0-3-0, 3								
Max Horiz Max Uplift Max Grav	2=38 (LC 8 2=-40 (LC 2=214 (LC (LC 3)	= Mechanical, 4= tl 8), 3=-22 (LC 12) 1), 3=88 (LC 1), 4=	63						
 FORCES (Ib) - Maxi Tension TOP CHORD 1-2=0/15, BOT CHORD 2-4=-18/6 NOTES 1) Wind: ASCE 7-10; Vull Vasd=91mph; TCDL= II; Exp B; Enclosed; M and C-C Exterior (2) z exposed ; end vertical members and forces & Lumber DOL=1.60 pla 2) This truss has been du chord live load noncor 3) * This truss has been du chord live load noncor 3) * This truss has been du chord live load noncor 3) * This truss has been du chord live load noncor 3) * This truss has been du chord and any other m 4) Refer to girder(s) for t 5) Provide mechanical cc bearing plate capable 3 and 40 lb uplift at joi 6) This truss is designed International Resident R802.10.2 and referer 	mum Comp 2-3=-78/18 8 (t=115mph 6.0psf; BCI WFRS (envone; cantile left and rig WFRS (envone; cantile left and rig wwFRS fit esigned for a current wit designed for a current wit designed for a current wit designed for a all areas v o wide will fi tembers. rruss to trus onnection (to of withstan- nt 2. in accordati ial Code se acced standati	(3-second gust))L=6.0psf; h=30ft; C yelope) exterior zone ver left and right ht exposed;C-C for or reactions shown; _=1.60 a 10.0 psf bottom h any other live load or a live load of 20.0p where a rectangle it between the botton is connections. by others) of truss to ding 22 lb uplif at jo nce with the 2015 ctions R502.11.1 ar ard ANSI/TPI 1.	cat. e Is. psf m int				Manual and a second sec	SEA 0363	ROL 22 L L L BER L L L L L L L L L L L L L L L L L L L

Job	Truss	Truss Type	Qty	Ply	5 SERENITY	
34893A	M1	Monopitch	3	1	Job Reference (optional)	156131977

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Jan 13 10:17:10 ID:q7I4P7THF2pZNfaU7BHidYy6LOf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1.76.4	Scale = 1	1:76.4
----------------	-----------	--------

Plate Offsets (X, Y): [6:0-3-0,0-2-0], [12:0-1-12,0-2-0]

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)		20.0	Plate Grip DOL	1.15		TC	0.93	Vert(LL)	-0.24	15-16	>999	240	MT20	244/190	
TCDL		10.0	Lumber DOL	1.15		BC	0.37	Vert(CT)	-0.48	16-21	>566	180			
BCLL		0.0*	Rep Stress Incr	YES		WB	0.90	Horz(CT)	0.02	8	n/a	n/a			
BCDL		10.0	Code	IRC2015	5/TPI2014	Matrix-MS							Weight: 164 lb	FT = 20%	
BECL LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS	2x4 SP No. 2x4 SP No. 2x4 SP No. 2x4 SP No. No.2, 15-6; Structural w 4-3-1 oc pu 2-0-0 oc pu Rigid ceiling bracing, E 6-0-0 oc bra 1 Row at m 1 Brace at 1 7 (size) 2 Max Horiz 2 Max Horiz 2 Max Horiz 2 Max Grav 2 (lb) - Maxim Tension 1-2=0/27, 2 5-6=-829/1 10-18=-630 2-16=-193/ 12-15=-210 11-14=-653 5-16=-25/6 3-16=-384/ 14-17=-67// 17-18=-105	10.0 1 *Except S *Except 0.2 3 *Except 0.2 3 *Except 0.2 3 *Except 0.2 3 *Except 0.2 3 *Except 0.2 3 *Except 0.2 10.0 10.	Code * 4-6:2x4 SP No.2 * 14-10:2x4 SP No.2 * 14-10:2x4 SP No.2 * 5-16,15-5:2x4 SP P DSS athing directly applies expt end verticals, ar 0-0 max.): 6-7. applied or 10-0-0 oc 0. -14 7-8 = Mechanical 2:11) 12) C 1), 8=1037 (LC 1) pression/Bacimous 59, 3-5=-1316/58, 51/370, 8-10=-1024/2 =-121/33 16=-143/835, 2=0/792, 8-9=-692/2 =-657/0 -754/175, 5=-112/515, =-56/614, 8=-1213/172, -66/1293,	IRC2015 2) 2 or d or id 3) 4) 5) 6) 7) 8) 9) 77, LC 36,	5/TPI2014 Wind: ASCE Vasd=91mph II; Exp B; End and C-C Exte 19-4-0, Exter left and right exposed;C-C reactions sho DOL=1.60 Provide aded This truss ha chord live loa * This truss for a-06-00 tall b chord and an Refer to girdd Provide mecl bearing plate 2. This truss is International R802.10.2 ar Graphical puo or the orienta bottom chorc DAD CASE(S)	Matrix-MS 7-10; Vult=115mpt; ; TCDL=6.0psf; BC closed; MWFRS (eri- rior (2) 19-4-0 to 22 exposed; end vert for members and 1 wm; Lumber DOL= uate drainage to p is been designed for d nonconcurrent w as been d nonconcurrent w as been designed for d nonconcurrent w as been d nonconcure	a (3-sect DL=6.6 Int IDL=6.6 I	oond gust))psf; h=30ft; i)) exterior zor erior (1) 3-6- one; cantilevu and right & MWFRS for ate grip water ponding) psf bottom other live loa e load of 20.0 a rectangle veen the bottw DL = 10.0psf hections. ers) of truss t 6 lb uplift at j ith the 2015 R502.11.1 a ISI/TPI 1. ot depict the se top and/or	Cat. ne 6 to er g. ds. Dpsf om f. oint size		With the		Weight: 164 Ib WH CA OR FESS SEA 03632	FT = 20%	Norman .
this design	n.												111111	in in its	

NOTES

A. GILBERT January 17,2023

Job	Truss	Truss Type	Qty	Ply	5 SERENITY	
34893A	M2	Monopitch Structural Gable	1	1	Job Reference (optional)	156131978

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Jan 13 10:17:10 ID:fYenD_liq6jIeBqvzWC52Oy6LOI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

3x6 =

Scale = 1:26.5

Loading TCLL (roof) TCDL BCLL BCDL	(ps 20. 10. 0. 10.	f) 0 0 0* 0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MP	0.41 0.32 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.08 0.00	(loc) 4-9 4-9 2	l/defl >999 >837 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 21 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=91m II; Exp B; E and C-C E 5-8-4 zone vertical left forces & M DOL=1.60 2) This truss chord live I 3) * This truss on the bott 3-06-00 tal chord and 4) Refer to gi 5) Provide me bearing pla 4 and 49 lt 5) This truss in Internation R802.10.2	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood 5-10-0 oc purlin: Rigid ceiling dire bracing. (size) 2=0-3 Max Horiz 2=50 Max Uplift 2=-49 Max Grav 2=309 (lb) - Maximum T Tension 1-2=0/15, 2-3=-4 2-4=-85/74 CE 7-10; Vult=115in ph; TCDL=6.0psf Enclosed; MWFRS xterior (2) -1-0-0 t c; cantilever left ar t and right expose IWFRS for reaction plate grip DOL=1 has been designe load nonconcurrent s has been designe hom hom hom hom hom hom hom hom hom hom	shea s, ex s, ex sectly a sectly a sectly a sl-0, 4 (LC - O (LC - Comp 38/79 mph (S (LC Comp 38/79 mph (S (LC Comp 5 S (LC S (LC Comp 5 S (LC S (LC	athing directly applied coept end verticals. applied or 10-0-0 oc = Mechanical 11) 8), 4=-18 (LC 12) i 1), 4=206 (LC 1) pression/Maximum 0, 3-4=-138/76 (3-second gust) DL=6.0psf; h=30ft; C velope) exterior zone i-6, Interior (1) 3-6-6 ht exposed ; end C for members and nown; Lumber a 10.0 psf bottom h any other live load or a live load of 20.0p where a rectangle it between the bottor s connections. by others) of truss to ding 18 lb uplift at jo nce with the 2015 vections R502.11.1 an ard ANSI/TPI 1.	at. at. at. b to s. s. s. f m int int id	Standard							SEA 0363	ROU 22 E.R. H.	
												candary	,_0_0	

Job	Truss	Truss Type	Qty	Ply	5 SERENITY	
34893A	M3	Monopitch Structural Gable	8	1	Job Reference (optional)	156131979

5-10-0

5-10-0

-1-0-0

1-0-0

84 Components (Dunn), Dunn, NC - 28334,

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Jan 13 10:17:10 ID:yuZQhNq5BFbIzGsFtUqkqsy6LOB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:26.5

Plate Offsets (X, Y): [4:Edge,0-1-12]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MP	0.41 0.32 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.08 0.00	(loc) 4-9 4-9 2	l/defl >999 >837 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 21 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood sh 5-10-0 oc purlins, Rigid ceiling direct bracing.	eathing directly applie except end verticals. y applied or 10-0-0 oc	6) Provide m bearing pl 2 and 18 II 7) This truss Internation R802.10.2 LOAD CASE(echanical connection ate capable of withst o uplift at joint 4. Is designed in accor al Residential Code and referenced star 5) Standard	n (by oth anding 4 dance w sections ndard AN	ers) of truss t 19 lb uplift at j ith the 2015 \$ R502.11.1 a ISI/TPI 1.	to oint and					
REACTIONS	(size) 2=0-3-0 Max Horiz 2=50 (L Max Uplift 2=-49 (L Max Grav 2=309 (4=0-1-8 C 11) C 8), 4=-18 (LC 12) LC 1), 4=206 (LC 1)										
FORCES	(lb) - Maximum Co	mpression/Maximum										
TOP CHORD	1-2=0/15, 2-3=-88/	79, 3-4=-138/76										
BOT CHORD	2-4=-85/74											
NOTES												
 Wind: ASC Vasd=91n II; Exp B; I and C-C E 5-8-4 zone vertical lef forces & M DOL=1.60 	CE 7-10; Vult=115mp nph; TCDL=6.0psf; B Enclosed; MWFRS (Exterior (2) -1-0-0 to 3 e; cantilever left and t and right exposed; MWFRS for reactions o plate orip DDL=1.6	h (3-second gust) CDL=6.0psf; h=30ft; C novelope) exterior zon -6-6, Interior (1) 3-6-6 ight exposed ; end >-C for members and shown; Lumber	Cat. e 6 to							- Martin	OR FESS	ROUT
2) This truss	has been designed f	or a 10.0 psf bottom							4			h
chord live	load nonconcurrent	vith any other live load	ds. Inst						-		OF A	
on the bot 3-06-00 ta chord and	tom chord in all area Ill by 1-00-00 wide wi any other members.	where a rectangle if the tween the botto	psi pm								0363	L
 Bearing at using ANS designer s 	t joint(s) 4 considers SI/TPI 1 angle to grai should verify capacity	barallel to grain value formula. Building of bearing surface.									S. SNGINI	ERA
5) Provide m bearing pla	echanical connection ate at joint(s) 4.	(by others) of truss to	2							11	CA. G	ILBENIN

818 Soundside Road Edenton, NC 27932

January 17,2023

Job	Truss	Truss Type	Qty	Ply	5 SERENITY	
34893A	M4	Monopitch	1	1	Job Reference (optional)	156131980

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Jan 13 10:17:11 ID:WbNIDi5MUwPpE?KyoNnuBkzvowA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale =	1:68.3
---------	--------

Scale = 1:68.3													
_oading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
FCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.65	Vert(LL)	-0.45	7-9	>562	240	MT20	244/190	
FCDL	10.0	Lumber DOL	1.15	BC	0.86	Vert(CT)	-0.68	7-9	>369	180			
BCLL	0.0*	Rep Stress Incr	YES	WB	0.36	Horz(CT)	0.03	7	n/a	n/a			
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MS							Weight: 116 lb	FT = 20%	
- UMBER JOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.1 *Excep 2x4 SP No.2 *Excep	t* 8-7:2x4 SP No.2 t* 9-3:2x4 SP No.3	5) This truss is International R802.10.2 a LOAD CASE(S)	designed in ac Residential Co nd referenced s Standard	cordance wi ode sections standard AN	th the 2015 R502.11.1 a ISI/TPI 1.	and						

WEBS	2x4 SP No.2 *Except* 9-3:2x4 SP No.3
BRACING	
TOP CHORD	Structural wood sheathing directly applied or 3-9-5 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.
WEBS	1 Row at midpt 6-7, 5-7
REACTIONS	(size) 2=0-5-8, 7=0-5-8
	Max Horiz 2=329 (LC 11)
	Max Uplift 2=-39 (LC 12), 7=-105 (LC 12)
	Max Grav 2=896 (LC 1), 7=834 (LC 19)
FORCES	(lb) - Maximum Compression/Maximum Tension
TOP CHORD	1-2=0/27, 2-3=-1319/73, 3-5=-1050/74,
	5-6=-202/127, 6-7=-171/113
BOT CHORD	2-9=-185/1135, 7-9=-152/585
WEBS	5-7=-813/163, 5-9=0/675, 3-9=-424/162

NOTES

- 1) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -1-0-0 to 3-6-6, Interior (1) 3-6-6 to 20-10-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 3) on the bottom chord in all areas where a rectangle 3-06-00 tall by 1-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 105 lb uplift at joint 7 and 39 lb uplift at joint 2.

Job	Truss	Truss Type	Qty	Ply	5 SERENITY	
34893A	PB1	Piggyback	3	1	Job Reference (optional)	156131981

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Jan 13 10:17:11 ID:q7I4P7THF2pZNfaU7BHidYy6LOf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

2x4 =

1.5x4 =

Scale = 1:28.2

		-											
Loading TCLL (roof) TCDL BCLL	(psf) 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.12 0.04 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0	Code	IRC2018	5/TPI2014	Matrix-MP							Weight: 12 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	$\begin{array}{c} 2x4 \text{ SP No.2} \\ 2x4 \text{ SP No.2} \\ 2x4 \text{ SP No.3} \\ \\ \text{Structural wood she} \\ 3-8-0 \text{ oc purlins, ex} \\ \text{Rigid ceiling directly} \\ \text{bracing.} \\ (size) & 1=3-8-0, 2 \\ & 5=3-8-0, 6 \\ \\ \text{Max Horiz} & 1=49 (\text{LC} \\ \text{Max Uplift} & 1=-60 (\text{LC} 12), 6 \\ \\ \text{Max Grav} & 1=21 (\text{LC} \\ (\text{LC 1}), 6= \\ \end{array}$	athing directly applie cept end verticals. applied or 10-0-0 oc 2=3-8-0, 4=3-8-0, 5=3-8-0 11) 5:1, 2=-23 (LC 12), 4 5=-23 (LC 12) 9), 2=243 (LC 1), 4= -243 (LC 1)	6) 7) ed or 5 8) 9) 4=-10 =85 10	* This truss I on the bottor 3-06-00 tall I chord and ar Bearing at jo value using designer sho Provide mec bearing plate 2, 10 lb upliff uplift at joint This truss is International R802.10.2 a) See Standar Detail for Co consult quali	has been designe n chord in all area by 1-00-00 wide w ny other members int(s) 2, 4, 1, 5, 2 ANSI/TPI 1 angle vald verify capacit hanical connectio e capable of withs a t joint 4, 60 lb u 2. designed in accoo Residential Code nd referenced sta d Industry Piggyb nnection to base fied building desig	d for a liv as where vill fit betw consider: to grain f y of bear n (by oth tanding 2 plift at joi rdance wi e sections ndard AN wack Truss truss as a gner.	e load of 20. a rectangle veen the bott s parallel to g ormula. Buil ng surface. ers) of truss 3 lb uplift at nt 1 and 23 l ith the 2015 R502.11.1 a (SI/TPI 1. s Connectior applicable, or	Opsf om grain ding to joint b and					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	LC	DAD CASE(S)	Standard								
TOP CHORD BOT CHORD	1-2=-83/100, 2-3=-3 2-4=-28/30	4/32, 4-5=0/0, 3-4=-	57/29										
NOTES													
1) Wind: ASC Vasd=91m	CE 7-10; Vult=115mph nph; TCDL=6.0psf; BC	(3-second gust) DL=6.0psf; h=30ft; (Cat.									muu	10.

- II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) Gable requires continuous bottom chord bearing.

4) Gable studs spaced at 2-0-0 oc.

5)

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

11111111111 SEAL 036322 GILB munin January 17,2023

Job	Truss	Truss Type	Qty	Ply	5 SERENITY	
34893A	PB2	Piggyback	5	1	Job Reference (optional)	156131982

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Jan 13 10:17:11

1.5x4 🛚

5-9-6

2x4 =

Scale = 1:24

Loading (psf) TCLL (roof) 20.0 TCDL 10.0 BCLL 0.0*	Spacing2-Plate Grip DOL1.Lumber DOL1.Rep Stress IncrYI	-0-0 .15 .15 ′ES	CSI TC 0.13 BC 0.07 WB 0.02	DEFLinVert(LL)n/aVert(TL)n/aHoriz(TL)0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL 10.0	Code IR	RC2015/TPI2014	Matrix-MP					Weight: 23 lb	FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 OTHERS 2x4 SP No.3 BRACING TOP CHORD Structural wood shea 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly a bracing. REACTIONS (size) 1=7-8-0, 2 5=7-8-0, 6 10=7-8-0 Max Horiz 1=-23 (LC Max Uplift 1=-81 (LC 7=-38 (LC Max Grav 1=28 (LC 1 4=-42 (LC 7=-38 (LC 10=259 (LC FORCES (lb) - Maximum Comp Tension TOP CHORD 1-2=-32/63, 2-3=-63/4 4-5=-16/55 BOT CHORD 2-6=-23/30, 4-6=-23/3 WEBS 3-6=-99/29 NOTES 1) Unbalanced roof live Ioads have B this design. 2) Wind: ASCE 7-10; Vult=115mp h Vasd=91mph; TCDL=6-0psf; BCC II; Exp B; Enclosed; MWFRS (env and C-C Exterior (2) zone; cantile exposed ; end vertical left and rig members and forces & MWFRS fe	athing directly applied or applied or 10-0-0 oc =7-8-0, 7=7-8-0, =7-8-0, 7=7-8-0, 13) 23), 2=-39 (LC 12), 13), 5=-77 (LC 24), 12), 10=-42 (LC 13) 12), 2=274 (LC 23), c 24), 5=20 (LC 13), 1), 7=274 (LC 23), c 24) pression/Maximum 44, 3-4=-64/44, 30 been considered for (3-second gust) DL=6.0psf; h=30ft; Cat. velope) exterior zone ever left and right ht exposed;C-C for for reactions shown; i=160	 3) Truss design only. For stu see Standarc or consult qu 4) Gable require 5) Gable studs: 6) This truss ha chord live loa 7) * This truss ha on the botton 3-06-00 tall b chord and an 8) Provide med bearing plate 2, 42 lb uplift at joint 5, 39 9) This truss is International R802.10.2 ar 10) See Standard Detail for Con consult qualifit LOAD CASE(S) 	ned for wind loads in the p lds exposed to wind (norm d Industry Gable End Deta valified building designer a es continuous bottom chor spaced at 2-0-0 oc. Is been designed for a 10. ad nonconcurrent with any has been designed for a liv n chord in all areas where by 1-00-00 wide will fit betw y other members. hanical connection (by oth e capable of withstanding 3 at joint 4, 81 lb uplift at joi lb uplift at joint 2 and 42 lb designed in accordance w Residential Code sections and referenced standard AN d Industry Piggyback Trus nnection to base trus as a fied building designer. Standard	lane of the truss al to the face), ils as applicable, s per ANSI/TPI 1. d bearing. 0 psf bottom other live loads. e load of 20.0psf a rectangle veen the bottom ers) of truss to 9 lb uplift at joint nt 1, 77 lb uplift o uplift at joint 4. ith the 2015 r R502.11.1 and ISI/TPI 1. s Connection applicable, or			2	SEA 0363	

Job	Truss	Truss Type	Qty	Ply	5 SERENITY	
34893A	V1	Valley	1	1	Job Reference (optional)	156131983

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Jan 13 10:17:12 ID:5WwvdwNWKiThWvn92jz6XHy6Lm0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:43.9

Loa TCL TCC BCL BCL	i ding .L (roof) DL .L DL		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-P	0.22 0.14 0.13	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 52 lb	GRIP 244/190 FT = 20%
LUN TOF BOT WEI OTH BR/ TOF BOT	ABER CHORD CHORD BS HERS ACING CHORD CHORD ACTIONS	2x4 SP N 2x4 SP N 2x4 SP N 2x4 SP N Structura 6-0-0 oc Rigid ceil bracing. (size)	0.2 0.2 0.3 0.3 I wood shea ourlins, exc ing directly 4=10-3-15 7=10-3-15	athing directly applie cept end verticals. applied or 10-0-0 or 5, 5=10-3-15, 6=10-3	5) 6) 7) ed or 8) c 3-15, 9)	Gable studs : This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and an Provide mecl bearing plate 7, 39 lb uplift uplift at joint : This truss is	spaced at 4-0-0 o s been designed id nonconcurrent ias been designed n chord in all area y 1-00-00 wide w y other members hanical connection capable of withs at joint 4, 5 lb upl 5.	c. for a 10.0 with any d for a liv is where ill fit betw , with BC n (by oth tanding 3 lift at join) psf bottom other live loa e load of 20.0 a rectangle veen the bott DL = 10.0psf ers) of truss t 6 lb uplift at j t 6 and 127 lb th the 2015	ds. Dpsf om oint o					
7=10-3-15 Max Horiz 7=-150 (LC 8) Max Uplift 4=-39 (LC 9), 5=-127 (LC 13), 6=-5 (LC 8), 7=-36 (LC 9) Max Grav 4=127 (LC 19), 5=384 (LC 20), 6=382 (LC 20), 7=151 (LC 19)						International R802.10.2 ar AD CASE(S)	Residential Code nd referenced star Standard	sections ndard AN	R502.11.1 a ISI/TPI 1.	Ind					
FOF	RCES	(lb) - Max	imum Com	pression/Maximum											
TOF	P CHORD	1-7=-125/	/98, 1-2=-1	12/121, 2-3=-149/12	22,										
BO WE	r CHORD BS	3-4=-153/ 6-7=-123/ 2-6=-197/	/161 /130, 5-6=- /54, 3-5=-28	123/130, 4-5=-123/1 85/175	30										
NO ⁻ 1) 2) 3)	TES Unbalance this design Wind: AS(Vasd=91m II; Exp B; and C-C E 9-11-6 zor vertical lef forces & M DOL=1.60 Truss des only. For see Stand	ed roof live I n. CE 7-10; Vu ph; TCDL= Enclosed; M Exterior (2) (ne; cantileve ft and right e dWFRS for 0 plate grip I signed for w studs expos dard Industry	loads have lt=115mph :6.0psf; BC WFRS (en)-1-12 to 7- er left and r exposed;C- reactions sl DOL=1.60 ind loads ir sed to wind v Gable End	been considered for (3-second gust) DL=6.0psf; h=30ft; 0 velope) exterior zon 5-6, Interior (1) 7-5-1 ight exposed ; end C for members and hown; Lumber n the plane of the tru (normal to the face) d Details as applicat	r Cat. ne 6 to ss), obe,							M. Contraction		SEA 0363	ROLUMENTING

- II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-1-12 to 7-5-6, Interior (1) 7-5-6 to 9-11-6 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.

818 Soundside Road Edenton, NC 27932

GI

11111111 January 17,2023

Job	Truss	Truss Type	Qty	Ply	5 SERENITY	
34893A	V2	Valley	1	1	Job Reference (optional)	156131984

2-11-0

2-11-0

84 Components (Dunn), Dunn, NC - 28334,

5-2-6

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Jan 13 10:17:12 ID:ZiUHrGO840bY82MLcQUL3Uy6Lm?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

2x4 💊

1.5x4 u

Scale	= 1:37.9	
oouic	- 1.07.0	

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-P	0.21 0.10 0.09	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 43 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 4=9-1-8, Max Horiz 7=-120 (L Max Uplift 4=-58 (LC 7=-32 (LC Max Grav 4=89 (LC (LC 20),	Pathing directly applie cept end verticals. r applied or 10-0-0 oc 5=9-1-8, 6=9-1-8, 7= C 8) C 11), 5=-119 (LC 13 C 12) 8), 5=335 (LC 20), 6 7=127 (LC 19)	6) 7) d or 8) 9) 9-1-8), L), L	 This truss ha chord live loa * This truss h on the bottor 3-06-00 tall t chord and ar Provide mec bearing plate 7, 58 lb uplifi This truss is International R802.10.2 a OAD CASE(S) 	as been designed ad nonconcurrent has been designe in chord in all are by 1-00-00 wide hanical connectio e capable of withs at joint 4 and 11 designed in acco Residential Cod nd referenced sta Standard	I for a 10.0 t with any ed for a liv- as where will fit betw s, with BC on (by oth- standing 3 9 lb uplift ordance wi e sections andard AN) psf bottom other live load e load of 20. a rectangle veen the bott DL = 10.0ps ers) of truss 2 lb uplift at at joint 5. th the 2015 R502.11.1 a ISI/TPI 1.	ads. Opsf om f. to joint and					
FORCES	(lb) - Maximum Con Tension	npression/Maximum											
TOP CHORD	1-7=-115/88, 1-2=-9	6/104, 2-3=-138/102											

1.5x4 u

9-1-8

 TOP CHORD
 1-7=-115/88, 1-2=-96/104, 2-3=-138/102

 3-4=-134/136
 3-4=-134/136

 BOT CHORD
 6-7=-90/104, 5-6=-90/104, 4-5=-90/104

 WEBS
 2-6=-194/42, 3-5=-262/164

NOTES

- Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-1-12 to 7-5-6, Interior (1) 7-5-6 to 8-9-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.

Job	Truss	Truss Type	Qty	Ply	5 SERENITY	
34893A	V3	Valley	1	1	Job Reference (optional)	156131985

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Jan 13 10:17:12 ID:ZiUHrGO840bY82MLcQUL3Uy6Lm?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2-11-0 7-7-0 2-11-0 4-8-0

7-11-2

Page: 1

Scale = 1:33.7

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-P	0.43 0.17 0.07	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 34 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood shea 7-11-7 oc purlins, e: Rigid ceiling directly bracing. (size) 3=7-11-2, Max Horiz 5=-90 (LC Max Grav 3=177 (LC 5=112 (LC 5=112 (LC	athing directly applia xcept end verticals. applied or 10-0-0 or 4=7-11-2, 5=7-11-2 2 10) 2 13), 5=-40 (LC 12) 2 1), 4=331 (LC 20), 2 19)	7) 8) ed or 9) c 2 Lu	* This truss f on the bottor 3-06-00 tall f chord and ar Provide mec bearing plate 5 and 14 lb u This truss is International R802.10.2 a DAD CASE(S)	has been desig in chord in all a by 1-00-00 wid hy other memb hanical conne e capable of wi uplift at joint 3. designed in ac Residential C nd referenced Standard	gned for a liv areas where e will fit betw vers. ction (by oth- ithstanding 4 ccordance wi ode sections standard AN	e load of 20. a rectangle veen the bott o lb uplift at j ith the 2015 R502.11.1 a ISI/TPI 1.	Opsf om to joint and					
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD BOT CHORD WEBS	1-5=-105/77, 1-2=-8 4-5=-67/81, 3-4=-67/ 2-4=-234/57	0/86, 2-3=-116/104 /81											

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 4)

5) Gable studs spaced at 2-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

Job	Truss	Truss Type	Qty	Ply	5 SERENITY	
34893A	V4	Valley	1	1	Job Reference (optional)	156131986

2-11-0

12 10 ∟

84 Components (Dunn), Dunn, NC - 28334,

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Jan 13 10:17:13 ID:ZiUHrGO840bY82MLcQUL3Uy6Lm?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

> 4x6 = 2

٢

4

1.5x4 u 6-8-12 6-4-10

3-5-10

6-8-12

3

2x4 💊

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

3-2-6

2-10-14 3-2-6

0-9-3

Scale = 1:29.6

Plate Offsets (X, Y): [5:0-4-2,0-1-8]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-P	0.22 0.10 0.04	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 27 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood shea 6-9-0 oc purlins, exc Rigid ceiling directly bracing. (size) 3=6-8-12, Max Horiz 5=-61 (LC Max Grav 3=130 (LC 5=111 (LC (lb) - Maximum Com Tension 1-5=-94/67, 1-2=-63/ 4-5=-53/58, 3-4=-53/ 2-4=-191/22 d roof live loads have E 7-10; Vult=115mph	athing directly applie cept end verticals. applied or 10-0-0 oc 4=6-8-12, 5=6-8-12 (3) (12), 5=-41 (LC 12) (1), 4=269 (LC 20), (1), 4=269 (LC 20), (1), 4=269 (LC 20), (1), 4=269 (LC 20), (2), 4=269 (LC 20), (3), 4=268 (AC 20), (4), 4=268 (AC 20), (5), 5=268 (AC 20), (5), 4=268 (AC 20), (5), 5=268 (AC 20),	7) 8) 9) 5 LC	* This truss h on the botton 3-06-00 tall b chord and an Provide mect bearing plate 5 and 28 lb u This truss is of International R802.10.2 ar DAD CASE(S)	as been designed a chord in all areas y 1-00-00 wide will y other members. nanical connection capable of withsta plift at joint 3. designed in accord Residential Code s d referenced stand Standard	for a live where fit betw (by othen nding 4 ance with sections dard AN	e load of 20.0 a rectangle reen the botto ers) of truss ti 1 lb uplift at ju th the 2015 R502.11.1 a ISI/TPI 1.	0psf om ooint nd			. In the second s	H CA	ROLIN	
Vasd=91m II; Exp B; E and C-C E: exposed; c members a Lumber DO 3) Truss desis only. For s see Standa or consult (4) Gable requ 5) Gable stud 6) This truss h chord live I	ph; TCDL=6.0psf; BCI inclosed; MWFRS (en kterior (2) zone; cantile and forces & MWFRS (en lend vertical left and rig and forces & MWFRS DL=1.60 plate grip DO gigned for wind loads in studs exposed to wind rud Industry Gable Enc qualified building desig irres continuous bottor is spaced at 2-0-0 oc. has been designed for oad nonconcurrent wit	DL=6.0psf; h=30ft; C vvelope) exterior zon ever left and right ght exposed;C-C for for reactions shown; L=1.60 the plane of the tru (normal to the face) d Details as applicat gner as per ANSI/TP n chord bearing.	Cat. e ss ole, ole, rl 1.							V. minner		SEA 0363	22 E.R. A.L. 17,2023	Normanning.

2-11-0

1

5

Ř

3x8 II

Page: 1

Job	Truss	Truss Type	Qty	Ply	5 SERENITY	
34893A	V5	Valley	1	1	Job Reference (optional)	156131987

1-10-11

-0-0

2-2-6

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Jan 13 10:17:13 ID:ZiUHrGO840bY82MLcQUL3Uy6Lm?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-2-11

Scale - 1:25.6

00010 = 1.20.0														
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-P	0.15 0.09 0.02	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 19 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.3 2x4 SP No.3 2x4 SP No.3 Structural wood sheat 5-3-4 oc purlins. Rigid ceiling directly bracing. (size) 1=5-2-11, Max Horiz 1=36 (LC Max Uplift 1=-11 (LC Max Grav 1=102 (LC (LC 1)	athing directly applie applied or 10-0-0 or 3=5-2-11, 4=5-2-11 9) 13), 3=-15 (LC 13) 2 1), 3=102 (LC 1), 4	7) 8) ed or C 9) L1 4=154	 * This truss h on the bottor 3-06-00 tall b chord and ar Provide med bearing plate 1 and 15 lb u This truss is International R802.10.2 ar OAD CASE(S) 	as been design n chord in all are by 1-00-00 wide y other member hanical connect hanical connect e capable of with uplift at joint 3. designed in acco Residential Coo nd referenced st Standard	ed for a liv was where will fit betw rs. on (by oth standing 1 ordance w le sections andard AN	e load of 20.0 a rectangle veen the botto ers) of truss t 1 lb uplift at j ith the 2015 R502.11.1 a ISI/TPI 1.	Dpsf om oint nd						
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalanc this desig 2) Wind: AS Vasd=91r	(lb) - Maximum Com Tension 1-2=-65/30, 2-3=-62/ 1-4=-7/29, 3-4=-7/29 2-4=-98/23 ed roof live loads have n. CE 7-10; Vult=115mph mph; TCDL=6.0psf; BC	pression/Maximum /26 been considered fo (3-second gust) DL=6.0psf; h=30ft; (r Cat.											

only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. 4)

5)

Gable studs spaced at 2-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

C anninnin an CHILLIAN AND AND SEAL 036322 GI 111111111 January 17,2023

Page: 1

Job	Truss	Truss Type	Qty	Ply	5 SERENITY	
34893A	V8	Valley	1	1	Job Reference (optional)	156131988

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Jan 13 10:17:13 ID:ZiUHrGO840bY82MLcQUL3Uy6Lm?-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

13-7-5

Scale = 1:50.9

Loading	(ps	f) Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20	0 Plate Grip DC	L 1.15		TC	0.28	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10	0 Lumber DOL	1.15		BC	0.18	Vert(TL)	n/a	-	n/a	999		
BCLL	0	0* Rep Stress In	cr YES		WB	0.17	Horiz(TL)	0.00	5	n/a	n/a		
BCDL	10	0 Code	IRC202	5/TPI2014	Matrix-P							Weight: 69 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 *E Structural wood 6-0-0 oc purlins Rigid ceiling dir	ccept* 7-3:2x4 SP N sheathing directly a except end vertica ectly applied or 10-0	3 0.2 4 5 pplied or 6 Is. -0 oc 7	 Truss desig only. For st see Standa or consult q Gable requi Gable studs This truss h chord live lc * This truss 	gned for wind lo tuds exposed to rd Industry Gab ualified building res continuous s spaced at 4-0 as been desigr aad nonconcurr has been desig	bads in the p bowind (norm ble End Deta g designer a bottom chor -0 oc. ned for a 10. ent with any gned for a liv	lane of the tr ial to the face ils as applica s per ANSI/T d bearing. 0 psf bottom other live loa re load of 20.	uss e), ble, PI 1. ads. 0psf					
REACTIONS	(size) 5=13 8=13 Max Horiz 9=-15 Max Uplift 5=-46 8=-10 Max Grav 5=17 7=42 9=49	7-5, 6=13-7-5, 7=1(7-5, 9=13-7-5 9 (LC 8) 6 (LC 9), 6=-144 (LC 2 (LC 12), 9=-104 (2 (LC 12), 6=461 (L0 3 (LC 20), 8=432 (L0 (LC 12)	3-7-5, 8 13), LC 2) C 20), 9 C 19), 9	on the botto 3-06-00 tall chord and a) Provide me bearing plat joint 9, 45 lt 144 lb uplift) This truss is Internationa	om chord in all a by 1-00-00 wid nny other memb chanical conne te capable of w o uplift at joint 5 at joint 6. s designed in ac al Residential C	areas where le will fit betw bers, with BC ction (by oth ithstanding 1 5, 132 lb uplit ccordance w ode sections	a rectangle veen the bott CDL = 10.0ps ers) of truss 104 lb uplift a t at joint 8 ar ith the 2015 s R502.11.1 a	om f. to t id					
FORCES	(lb) - Maximum Tension	Compression/Maxim	^{num} L	OAD CASE(S) Standard	Stanuaru Ar	NOI/TETT.						
TOP CHORD	1-9=-63/93, 1-2 3-4=-167/174, 4	=-56/91, 2-3=-162/1 -5=-170/184	62,										
BOT CHORD	8-9=-118/142, 7 5-6=-118/142	-8=-118/142, 6-7=-1	18/142,									mm	um.
WEBS NOTES	3-7=-213/51, 2-	3=-289/176, 4-6=-32	25/199									TH CA	ROU

 \vdash

- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-10; Vult=115mph (3-second gust)
 Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-1-12 to 4-8-2, Interior (1) 4-8-2 to 5-1-0, Exterior (2) 5-1-0 to 9-7-6, Interior (1) 9-7-6 to 13-2-13 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Page: 1

Job	Truss	Truss Type	Qty	Ply	5 SERENITY	
34893A	V9	Valley	1	1	Job Reference (optional)	156131989

. ... -

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Jan 13 10:17:14 ID:ZiUHrGO840bY82MLcQUL3Uy6Lm?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

12-4-15 5-1-0 12-0-13 5-1-0 6-11-13 4x6 = 3 11 12 10 □ 1.5x4 II 12 1.5x4 **I** 1.5x4 **I** 5-10-0 6-1-8 6-1-8 4 2 10 13 1 1-10-11 5 9 8 14 15 6 3x6 💊 1.5x4 u 1.5x4 u 1.5x4 II

1.5x4 **I**

12-4-15

Scale = 1:46.5													
oading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.22	Vert(LL)	n/a	-	n/a	999	MT20	244/190
FCDL	10.0	Lumber DOL	1.15		BC	0.15	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.14	Horiz(TL)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC2015	5/TPI2014	Matrix-P							Weight: 59 lb	FT = 20%
UMBER			3)	Truss desig	ned for wind loa	ds in the p	ane of the tru	uss					
	2x4 SP No 2		0)	only. For stu	ids exposed to v	wind (norm	al to the face	acc e).					
BOT CHORD	2x4 SP No.2			see Standar	d Industry Gable	e End Deta	Is as applica	ible,					
WEBS	2x4 SP No.3			or consult qu	alified building	designer as	per ANSI/TI	PI 1.					
OTHERS	2x4 SP No.3		4)	Gable requir	es continuous b	ottom chor	d bearing.						
BRACING			5)	Gable studs	spaced at 4-0-0	OC.							
TOP CHORD	Structural wood she	eathing directly applie	dor ⁶⁾	This truss ha	as been designe	d for a 10.0) psf bottom						
	6-0-0 oc purlins, ex	cept end verticals.		chord live lo	ad nonconcurrer	nt with any	other live loa	ads.					
BOT CHORD	Rigid ceiling directly	/ applied or 10-0-0 oc	; ()	1 his truss i	has been design	ied for a liv	e load of 20.0	Upst					
	bracing.			On the botton	n chord in all ar	eas where	a rectangle	~ m					
REACTIONS	(size) 5=12-4-1	5, 6=12-4-15, 7=12-4	-15,	chord and a	by 1-00-00 wide	re with BC		6 f					
	8=12-4-1	5, 9=12-4-15	8)	Provide mer	hanical connect	ion (by oth	DL = 10.0ps	to					
	Max Horiz 9=-129 (L	_C 8)	0)	bearing plate	capable of with	nstanding 9	4 lh unlift at i	ioint					
	Max Uplift 5=-53 (LC	C 9), 6=-127 (LC 13),		9 53 lb uplif	t at joint 5 135 l	b uplift at id	pint 8 and 12	7 lb					
	8=-135 (L	_C 12), 9=-94 (LC 19))	uplift at joint	6.	2 ap							
	Max Grav 5=124 (L	C 19), 6=376 (LC 20)	, 9)	This truss is	designed in acc	ordance w	th the 2015						
	7=411 (L	C 20), 8=390 (LC 19)	, -/	International	Residential Co	de sections	D502 11 1 c	and					

- 9=46 (LC 12) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-9=-58/88, 1-2=-47/83, 2-3=-147/146, 3-4=-149/154, 4-5=-145/158 BOT CHORD 8-9=-104/119, 7-8=-104/119, 6-7=-104/119,
- 5-6=-104/119 WEBS 3-7=-216/34, 2-8=-291/177, 4-6=-282/173 NOTES
- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-10; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-1-12 to 4-8-2, Interior (1) 4-8-2 to 5-1-0, Exterior (2) 5-1-0 to 9-7-6, Interior (1) 9-7-6 to 12-0-6 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Page: 1

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	5 SERENITY	
34893A	V10	Valley	1	1	Job Reference (optional)	156131990

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Jan 13 10:17:14 ID:5WwvdwNWKiThWvn92jz6XHy6Lm0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

-200:1

11-2-8

Scale = 1:42

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TP	12014	CSI TC BC WB Matrix-P	0.22 0.12 0.09	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 49 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins, exx Rigid ceiling directly bracing. (size) 5=11-2-8, 8=11-2-8, Max Horiz 9=-100 (L Max Uplift 5=-68 (LC 8=-137 (L Max Grav 5=83 (LC 9=43 (LC	athing directly applied cept end verticals. applied or 10-0-0 oc 6=11-2-8, 7=11-2-8, 9=11-2-8 C 8) 9), 6=-121 (LC 13), C 12), 9=-90 (LC 19) 10), 6=332 (LC 20), 2 20), 8=366 (LC 19), 12)	3) Tr onl sea or (4) Ga 5) Ga 5) Ga 5) Ga 5) Ga 7) * T on 3-C chc 8) Prc bea 9, (upl 9) Thi Intu Pra	uss design ly. For stu e Standarc consult qu able require able studs s is truss ha rord live loa his truss ha the botton 06-00 tall b ord and an ovide mect aring plate 68 lb uplift lift at joint (i is truss is o ernational 02 10 2 ar	ted for wind load: ds exposed to wi l Industry Gable I alified building de es continuous boi spaced at 4-0-0 c s been designed id nonconcurrent as been designed d nonconcurrent as been designed y 1-00-00 wide w y other members nanical connectio capable of withs at joint 5, 137 lb 6. designed in acco Residential Code	s in the pi nd (norm End Deta ssigner as ttom chor oc. for a 10.0 with any d for a 1iva as where with BC n (by oth tanding 9 uplift at jo rdance w e sections nedard AD	ane of the true al to the face) ils as applicab s per ANSI/TP d bearing. D psf bottom other live loac e load of 20.0 DL = 10.0psf. ers) of truss to 0 lb uplift at jc oint 8 and 121 ith the 2015 R502.11.1 at	ss le, l 1. ls. osf m int lb					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	LOAD	CASE(S)	Standard								
TOP CHORD	1-9=-53/82, 1-2=-38/ 3-4=-138/136, 4-5=-	/84, 2-3=-131/129, 123/143											
BOT CHORD	8-9=-89/95, 7-8=-89/ 5-6=-89/95	/95, 6-7=-89/95,										mun	un.
WEBS NOTES	3-7=-213/25, 2-8=-29	93/180, 4-6=-262/161									11	"TH CA	ROLIN

1) Unbalanced roof live loads have been considered for this design.

 Wind: ASCE 7-10; Vult=115mph (3-second gust)
 Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-1-12 to 4-8-2, Interior (1) 4-8-2 to 5-1-0, Exterior (2) 5-1-0 to 9-7-6, Interior (1) 9-7-6 to 10-10-0 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MITek Affiliate 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	5 SERENITY	
34893A	V11	Valley	1	1	Job Reference (optional)	156131991

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Jan 13 10:17:15 ID:5WwvdwNWKiThWvn92jz6XHy6Lm0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:33.4	

			_										
Loading TCLL (roof) TCDL BCLL	(psf) 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.41 0.21 0.06	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=9-10-4, Max Horiz 1=73 (LC Max Uplift 1=-22 (LC Max Grav 1=209 (LC (LC 1)	code eathing directly applie v applied or 10-0-0 oc , 3=9-10-4, 4=9-10-4 11) C 13), 3=-31 (LC 13) C 1), 3=209 (LC 1), 4	(1000) (1	* This truss h on the bottor 3-06-00 tall h chord and ar Provide mec bearing plate 1 and 31 lb u This truss is International R802.10.2 ar DAD CASE(S)	Matrix-P has been design in chord in all an oy 1-00-00 wide hanical conneccies hanical conneccies capable of witi uplift at joint 3. designed in act Residential Co nd referenced s Standard	ned for a liv reas where e will fit betw ers. tion (by oth hstanding 2 cordance w de sections standard AN	l e load of 20. a rectangle veen the bott ers) of truss s 22 lb uplift at j ith the 2015 s R502.11.1 a ISI/TPI 1.	Opsf om to joint and				vveignt: 38 ib	FT = 20%
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC	(lb) - Maximum Corr Tension 1-2=-135/62, 2-3=-1 1-4=-14/61, 3-4=-14 2-4=-197/40 ed roof live loads have 0. E 7-10: Vult=115mph	npression/Maximum 30/50 //61 : been considered for											

Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing.
- 4)
- 5) Gable studs spaced at 4-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

GI

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

C

Job	Truss	Truss Type	Qty	Ply	5 SERENITY	
34893A	V12	Valley	1	1	Job Reference (optional)	156131992

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Jan 13 10:17:15 ID:Yx2rTE1Bsg3FMTxHAn5yLly6LMe-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

7-5-7

Coolo	_	1.20 E
Scale	=	1:29.5

			1			1		· · · ·					1	
Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.15		TC	0.29	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL		10.0	Lumber DOL	1.15		BC	0.18	Vert(TL)	n/a	-	n/a	999		
BCLL		0.0*	Rep Stress Incr	YES		WB	0.09	Horiz(TL)	0.00	3	n/a	n/a		
BCDL		10.0	Code	IRC2	015/TPI2014	Matrix-MP							Weight: 28 lb	FT = 20%
LUMBER					7) * This truss	has been desid	ned for a liv	e load of 20.	Opsf					
TOP CHORD	2x4 SP N	0.3			on the botto	m chord in all a	areas where	a rectangle						
BOT CHORD	2x4 SP N	0.2			3-06-00 tall	by 1-00-00 wid	e will fit betv	veen the bott	om					
OTHERS	2x4 SP N	0.3			chord and a	ny other memb	ers.							
BRACING					Provide med	hanical conne	ction (by oth	ers) of truss	to					
TOP CHORD	Structura	wood she	athing directly applie	d or	bearing plate	e capable of wi	thstanding 8	B lb uplift at jo	pint					
	7-5-7 oc p	ourlins.			1, 8 lb uplift	at joint 3 and 3	17 lb uplift at	joint 4.						
BOT CHORD	Rigid ceili bracing.	ng directly	applied or 6-0-0 oc		9) This truss is International	Residential Co	ode sections	R502.11.1 a	and					
REACTIONS	(size)	1=7-5-7, 3	3=7-5-7, 4=7-5-7		R802.10.2 a	nd referenced	standard AN	NSI/TPI 1.						
	Max Horiz	1=-57 (LC	; 8)		LOAD CASE(S)	Standard								
	Max Uplift	1=-8 (LC	24), 3=-8 (LC 23), 4=	-37										
		(LC 12)												
	Max Grav	1=66 (LC (LC 1)	23), 3=66 (LC 24), 4	=519										
FORCES	(lb) - Max	imum Com	pression/Maximum											
	Tension													
TOP CHORD	1-2=-48/2	00, 2-3=-4	8/200											
BOT CHORD	1-4=-157/	87, 3-4=-1	57/87											
WEBS	2-4=-367/	94												
NOTES														
1) Unbalanc	ed roof live l	oads have	been considered for											
this desig	n													

- 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing.

4)

- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

GILB munin January 17,2023

SEAL

036322

The manual start

Job	Truss	Truss Type	Qty	Ply	5 SERENITY	
34893A	V13	Valley	1	1	Job Reference (optional)	156131993

2-1-8

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Jan 13 10:17:15 ID:cNWNI_dwKkFJk?BhYaURq4y6LLt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2x4 💊

Page: 1

2x4 🧳

5-0-11

Scale = 1:25.5

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.11	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15		BC	0.14	Vert(TL)	n/a	-	n/a	999			
BCLL	0.0*	Rep Stress Incr	YES		WB	0.04	Horiz(TL)	0.00	3	n/a	n/a			
BCDL	10.0	Code	IRC201	5/TPI2014	Matrix-MP							Weight: 18 lb	FT = 20%	
LUMBER			7)	* This truss h	nas been desigr	ned for a liv	e load of 20.0	0psf						
TOP CHORD	2x4 SP No.3		,	on the bottor	n chord in all ar	eas where	a rectangle							
BOT CHORD	2x4 SP No.3			3-06-00 tall b	y 1-00-00 wide	will fit betw	veen the bott	om						
OTHERS	THERS 2x4 SP No.3 chord and any other members.													
BRACING			8)	Provide mec	hanical connect	tion (by oth	ers) of truss t	to						
TOP CHORD	Structural wood she 5-0-11 oc purlins.	athing directly applie	ed or	bearing plate and 14 lb up	e capable of with lift at joint 4.	nstanding 3	lb uplift at jo	int 3						
BOT CHORD	CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. 9) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and													
REACTIONS	(size) 1=5-0-11	3=5-0-11, 4=5-0-11		R802.10.2 a	nd referenced s	tandard AN	ISI/TPI 1.							
	Max Horiz 1=37 (LC	11)	L	DAD CASE(S)	Standard									
	Max Uplift 3=-3 (LC	13), 4=-14 (LC 12)												
	Max Grav 1=62 (LC	23), 3=62 (LC 24), 4	4=306											
	(LC 1)													
FORCES	(lb) - Maximum Com	pression/Maximum												
	Tension													
TOP CHORD	1-2=-55/97, 2-3=-55	/97												
BOT CHORD	1-4=-77/48, 3-4=-77	/48												
WEBS	2-4=-193/41													
NOTES														
1) Unbalanc	ed roof live loads have	been considered fo	r											
this desig	n.													
2) Wind: AS	CE 7-10; Vult=115mph	(3-second gust)	• •									mm	UIII.	
Vasd=91r	mpn; ICDL=6.0psf; BC	DL=6.0pst; h=30tt; (Uat.								-	WHY CA	Pall	
ii; ⊑xp B; and C-C I	II; Exp B; Enclosed; MWERS (envelope) exterior zone and C-C Exterior (2) zone: cantilever left and right													

members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable,

exposed ; end vertical left and right exposed;C-C for

- or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. 4)
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.

818 Soundside Road Edenton, NC 27932

GI munin January 17,2023

SEAL 036322

Annun mana

Job	Truss	Truss Type	Qty	Ply	5 SERENITY	
34893A	V15	Valley	1	1	Job Reference (optional)	156131994

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Jan 13 10:17:16 ID:5Smkx04C3bMH7SMmandaiNy6LK?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:49.3	
Plate Offsets (X, Y):	[6:0-3-0,Edge], [16:0-2-1,0-1-8]

												-	
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.05	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.05	Vert(TL)	n/a	-	n/a	999	-	
BCU	0.0*	Rep Stress Incr	YES		WB	0.08	Horiz(TL)	0.00	11	n/a	n/a		
BCDL	10.0	Code	IRC20	15/TPI2014	Matrix-MS	0.00		0.00				Weight: 99 lb	FT = 20%
												- 5	
LUMBER			١	WEBS	5-17=-118/35, 7-1	5=-108/2	24, 4-18=-132	/89,					
TOP CHORD	2x4 SP No.2			:	3-19=-129/81, 2-2	0=-118/5	54, 8-14=-132	/91,					
BOT CHORD	2x4 SP No.2			9	9-13=-130/81, 10-	12=-113	/50						
OTHERS	2x4 SP No.3		1	NOTES									
BRACING				1) Unbalanced	roof live loads have	ve been	considered fo	r					
TOP CHORD	Structural wood she	athing directly applied	lor	this design.									
	6-0-0 oc purlins.		2	Wind: ASCE	7-10; Vult=115m	ph (3-seo	cond gust)						
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc		Vasd=91mpl	h; TCDL=6.0psf; E	BCDL=6.	0psf; h=30ft; (Cat.					
	bracing.			II; Exp B; En	closed; MWFRS (envelope	e) exterior zor	ie					
REACTIONS	(size) 1=17-7-14	4, 11=17-7-14,		and C-C Cor	mer (3) 0-0-5 to 4-	-6-11, Ex	terior (2) 4-6-	11					
	12=17-7-2	14, 13=17-7-14,		to 8-10-4, Co	orner (3) 8-10-4 to	13-4-10	, Exterior (2)						
	14=17-7-1	14, 15=17-7-14,		13-4-10 to 1	7-3-10 zone; canti	lever left	and right						
	17=17-7-1	14, 18=17-7-14,		exposed; er		ngni exp	osed;C-C Ior						
	19=17-7-1	14, 20=17-7-14		Internitiers an	1 60 ploto grip F		cuons snown	,					
	Max Horiz 1=139 (LC	C 9)		2) Truce decig	= 1.00 plate grip L	in the n) Iana of tha tru						
	Max Uplift 1=-24 (LC	5 10), 11=-11 (LC 11),	. ·	only Forst	ids exposed to wi	nd (norm	al to the face	155					
	12=-11 (L	.C 13), 13=-60 (LC 13),	see Standar	d Industry Gable F	Ind (norm	ils as annlicat	/, hle					
	14=-67 (L	C 13), 17=-9 (LC 12),	、 、	or consult a	alified building de	signer a	s per ANSI/TE	911					
	18=-05 (L	C 12), 19=-59 (LC 12),	 All plates are 	a 1 5x4 MT20 unle	ess other	wise indicated	4					
	20=-21 (L Max Cray 1-106 (L(0 12) 2 21) 11 02 (I C 12)	!	5) Gable requir	es continuous bot	tom chor	d bearing.						
	12-165 (LC	C 1) 13-166 (LC 13),	\ (6) Gable studs	spaced at 2-0-0 o	ю.							
	14-200 (1	C(20) 15-212 (LC 20)	,, n) 7	 This truss has 	s been designed	for a 10.	D psf bottom						1111
	17=230 (1	C 19) 18=197 (LC 1)	9), 9)	chord live loa	ad nonconcurrent	with any	other live loa	ds.				White CA	Dalle
	19=164 (I	C 19) 20=173 (I C 1)	9) 8	B) * This truss h	nas been designed	d for a liv	e load of 20.0)psf				"aTH OH	10/11
FORCES	(lb) - Maximum Com	nression/Maximum	.,	on the bottor	n chord in all area	as where	a rectangle	•			- 5	O .: FSS	A. M.
1 ONOLO	Tension	procoroni, maximum		3-06-00 tall b	oy 1-00-00 wide w	ill fit betv	veen the botto	om		/	20	CO	1 al
TOP CHORD	1-2=-197/133 2-3=-	155/95 3-4=-102/58		chord and ar	ny other members	, with BC	DL = 10.0psf			4		:0	1. 1
	4-5=-82/41 5-6=-61	/45 6-7=-61/45	ę	Provide mec	hanical connection	n (by oth	ers) of truss to	0		-	2 B		
	7-8=-69/27, 8-9=-93	/42. 9-10=-143/95.		bearing plate	e capable of withst	tanding 2	24 lb uplift at jo	oint		=	:	SEA	L 1 1
	10-11=-182/132	,,		1, 11 lb uplif	t at joint 11, 9 lb u	plift at joi	nt 17, 65 lb u	plift		-	:	0262	oo : =
BOT CHORD	1-20=-105/157, 19-2	20=-105/157,		at joint 18, 5	9 lb uplift at joint 1	9, 21 lb	uplift at joint 2	20,		1		0303	ZZ : :
	18-19=-105/157, 17-	-18=-105/157,		67 lb uplift at	t joint 14, 60 lb up	lift at join	t 13 and 11 lb)			8		1
	15-17=-105/157, 14	-15=-105/157,		uplift at joint	1Z.		11 th - 0045				2	·	all S
	13-14=-105/157, 12-	-13=-105/157,		10) This truss is	designed in accor	dance w	itn the 2015	I			3.5	A SAGINI	Envir
	11-12=-105/157			International	Residential Code	sections	5 K502.11.1 a	nd			11	710	THE AND
			-	ROUZ. 10.2 a	Oten dend	nuaru Ar	NOI/ I PI I.					A G	ILD
			1	LUAD CASE(S)	Standard							1111	in the second se
												1111	Carl Martin

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	5 SERENITY	
34893A	V16	Valley	1	1	Job Reference (optional)	156131995

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Jan 13 10:17:16 ID:?ODfKum05c?Qwz3gnA8PNvy6LHp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:45

Loading TCLL (roof) TCDL BCLL BCDL LUMBER TOP CHORD	2x4 SP N	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201 4) 5)	5/TPI2014 Gable requir Gable studs	CSI TC BC WB Matrix-MP es continuous bott spaced at 4-0-0 o	0.23 0.16 0.15 tom chor c.	DEFL Vert(LL) Vert(TL) Horiz(TL) d bearing.	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 67 lb	GRIP 244/190 FT = 20%	
BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP N 2x4 SP N Structura 10-0-0 oc Rigid ceil bracing. (size) Max Horiz Max Uplift Max Grav	o.2 o.3 I wood she purlins. ing directly 1=15-3-1, 7=15-3-1, 1=120 (L0 8=-127 (L 8=-127 (L 6=407 (L)	athing directly applie applied or 6-0-0 oc 5=15-3-1, 6=15-3-1 8=15-3-1 2 9) 6 8), 6=-125 (LC 13), C 12) 2 20), 5=95 (LC 24), 2 20), 5=95 (LC 24),	6) 7) ed or 8) , 9)	This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Provide mec bearing plate 1, 127 lb upli This truss is International R802.10.2 ar DAD CASE(S)	is been designed to ad nonconcurrent has been designed in chord in all area by 1-00-00 wide w by other members hanical connection e capable of withst ff at joint 8 and 12 designed in accor Residential Code nd referenced star Standard	for a 10.0 with any d for a liv is where ill fit betw, with BC n (by oth- canding 1 25 lb uplif dance with sections ndard AN) psf bottom other live loa e load of 20.0 DL = a rectangle veen the botto DL = 10.0psf ers) of truss t 4 lb uplift at jy t at joint 6. th the 2015 R502.11.1 a ISI/TPI 1.	ds. Dpsf o oint nd						
FORCES TOP CHORD	(lb) - Max Tension 1-2=-134, 4-5=-111	8=409 (L(imum Com /149, 2-3=- /118	C 19) pression/Maximum 91/104, 3-4=-72/93,												
BOT CHORD	1-8=-85/1	14, 7-8=-8 1	5/91, 6-7=-85/91,												

WEBS NOTES

1) Unbalanced roof live loads have been considered for this design.

3-7=-218/0, 2-8=-288/168, 4-6=-286/167

- Wind: ASCE 7-10; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) 0-0-5 to 4-6-11, Exterior (2) 4-6-11 to 7-7-13, Corner (3) 7-7-13 to 12-2-4, Exterior (2) 12-2-4 to 15-3-6 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

 \cap SEAL 036322 G

mmm January 17,2023 1111111111

Job	Truss	Truss Type	Qty	Ply	5 SERENITY	
34893A	V17	Valley	1	1	Job Reference (optional)	156131996

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Jan 13 10:17:16 ID:iJqRQJulkhG?7VqbMHKIn0y6LHf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:40.6

Loading TCLL (roof) TCDL BCLL BCDL		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MP	0.22 0.12 0.07	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 54 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No 2x4 SP No 2x4 SP No Structural 6-0-0 oc p Rigid ceilin bracing. (size) Max Horiz Max Uplift Max Grav	0.2 0.2 0.3 veg directly 1=12-10-4 1=-20 (LC 8=-113 (L1 1=92 (LC (LC 20), 7 19)	athing directly applie applied or 10-0-0 or 4, 5=12-10-4, 6=12-4 5, 8=12-10-4 C 10) 8), 6=-110 (LC 13), C 12) 20), 5=73 (LC 19), 8=34	4; 5; 6; 7; ed or c 8; 10-4, 9; , 5=344 L 6=344 L	 Gable requir. Gable studs This truss ha chord live loa * This truss f on the bottor 3-06-00 tall t chord and ar Provide mec bearing plate 1, 113 lb upli This truss is International R802.10.2 ai OAD CASE(S) 	es continuous bo spaced at 4-0-0 is been designed ad nonconcurren nas been designed ad ponconcurren in chord in all are by 1-00-00 wide that ical connecti e capable of with ff at joint 8 and 1 designed in acco Residential Cod nd referenced st Standard	ottom chor oc. d for a 10. t with any ed for a liv ass where will fit betw s, with BC on (by oth standing 2 110 lb uplil ordance w le sections andard AN	d bearing.) psf bottom other live load e load of 20.0 DL = 10.0psf ers) of truss tr 0 lb uplift at joint 6. ith the 2015 R502.11.1 a ISI/TPI 1.	ds. psf o bint					
FORCES	(lb) - Maxi Tension	mum Com	pression/Maximum											
TOP CHORD	1-2=-113/9	94, 2-3=-1: 1	36/94, 3-4=-130/89,											
BOT CHORD	1-8=-31/82 5-6=-31/7	2, 7-8=-31/ 1	68, 6-7=-31/68,											
WEBS	3-7=-145/0), 2-8=-27	5/163, 4-6=-274/162	2									MILLIN	un,
NOTES 1) Unbalance	ed roof live lo	oads have	been considered fo	r								and the	OR FES	ROLIN

Wind: ASCE 7-10; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) 0-0-5 to 4-6-11, Exterior (2) 4-6-11 to 6-5-7, Corner (3) 6-5-7 to 10-11-13, Exterior (2) 10-11-13 to 12-10-9 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Voumment WWWWWWWW SEAL 036322 GI mmm January 17,2023

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	5 SERENITY	
34893A	V18	Valley	1	1	Job Reference (optional)	156131997

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Jan 13 10:17:17 ID:fzTdPo6CGXflvQnE_m9C20y6LHM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

10-5-7

Scale = 1:36.2

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	15/TPI2014	CSI TC BC WB Matrix-MP	0.39 0.33 0.23	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 40 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 10-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=10-5-7 Max Horiz 1=-81 (LC Max Uplift 1=-58 (LC 4=-84 (LC Max Grav 1=46 (LC (LC 1)	eathing directly applied y applied or 6-0-0 oc , 3=10-5-7, 4=10-5-7 C 8) C 24), 3=-58 (LC 23), C 12) 2 3), 3=50 (LC 12), 4=	€ 7 1 or ε ⊊ 855	 This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Provide mec bearing plate 1, 58 lb upliff This truss is International R802.10.2 ai CAAD CASE(S) 	as been designed f ad nonconcurrent has been designed n chord in all area by 1-00-00 wide wi y other members. hanical connection capable of withst at joint 3 and 84 I designed in accor Residential Code nd referenced star Standard	for a 10.0 with any s where ill fit betw h n (by oth anding 5 b uplift a dance w sections ndard AN	D psf bottom other live load e load of 20.0 a rectangle veen the botto ers) of truss to 8 lb uplift at jo t joint 4. ith the 2015 R502.11.1 a ISI/TPI 1.	ds. Ipsf om oint nd					
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Con Tension 1-2=-107/388, 2-3=- 1-4=-298/148, 3-4=- 2-4=-659/181	npression/Maximum -107/388 -298/148											
1) Unbalance this design	ed roof live loads have	been considered for										mm	90.5

2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) 0-0-5 to 4-6-11, Exterior (2) 4-6-11 to 5-3-0, Corner (3) 5-3-0 to 9-8-6, Exterior (2) 9-8-6 to 10-5-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
 Gable requires continuous bottom chord bearing.

5) Gable studs spaced at 4-0-0 oc.

SEAL 036322 January 17,2023

Job	Truss	Truss Type	Qty	Ply	5 SERENITY	
34893A	V19	Valley	1	1	Job Reference (optional)	156131998

3-4-8

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Jan 13 10:17:17 ID:UOMKEgOerbY19y1fq54cUty6LH?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

8-0-11 4-0-5 7-8-8 4-0-5 3-8-3 4x6 = 2 3-0-13 12 10 Г 3 0-0-4 Р 4 1.5x4 u 2x4 💊 2x4 🍫

8-0-11

Scale - 1:30 5

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MP	0.35 0.21 0.11	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 30 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.3 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shee 8-0-11 oc purlins. Rigid ceiling directly bracing. (size) 1=8-0-11, Max Horiz 1=62 (LC Max Uplift 1=-16 (LC 4=-45 (LC Max Grav 1=64 (LC (LC 1)	athing directly applie applied or 6-0-0 oc 3=8-0-11, 4=8-0-11 11) 24), 3=-16 (LC 23), 12) 23), 3=64 (LC 24), 4	7) 8) 9) LC =580	* This truss h on the botton 3-06-00 tall b chord and an Provide mect bearing plate 1, 16 lb uplift This truss is of International R802.10.2 ar DAD CASE(S)	as been designe n chord in all are by 1-00-00 wide w by other members hanical connectio ocapable of withs at joint 3 and 45 designed in acco Residential Cod hd referenced sta Standard	ed for a liv as where vill fit betv s. on (by oth standing 1 Ib uplift a ordance w e sections andard AN	e load of 20.0 a rectangle veen the bottc ers) of truss tr 6 lb uplift at jc t joint 4. ith the 2015 R502.11.1 at ISI/TPI 1.)psf om o oint nd						
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Windt ASC	(lb) - Maximum Com Tension 1-2=-58/233, 2-3=-58 1-4=-182/98, 3-4=-18 2-4=-419/110 ed roof live loads have 0. E 7-10: Vult=115mph	pression/Maximum 8/233 82/98 been considered for (3-second gust)										mmm	000,-	

- 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Gable requires continuous bottom chord bearing.

5) Gable studs spaced at 4-0-0 oc. 6)

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

ORT COLORADO DE CARACTERISTA WWWWWWWW SEAL 036322 GI munin

CAR

С

January 17,2023

Job	Truss	Truss Type	Qty	Ply	5 SERENITY	
34893A	V20	Valley	1	1	Job Reference (optional)	156131999

2-9-15

2-9-15

84 Components (Dunn), Dunn, NC - 28334,

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Jan 13 10:17:18 ID:uEatRVeB8k4CZ1ZV?IRIH5y6LGh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-3-12

2-5-13

5-7-14

3

2x4 💊

3x6 =

2x4 🍫

5-7-14

Scale = 1:26.6

Plate Offsets (X, Y): [2:0-3-0,Edge]

Plate Olisets	(A, T). [2.0-3-0,Euge]											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MP	0.36 0.33 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 18 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT	2x4 SP No.3 2x4 SP No.3 Structural wood she 5-7-14 oc purlins. Rigid ceiling directly bracing. (size) 1=5-7-14, Max Horiz 1=42 (LC Max Uplift 1=-3 (LC Max Uplift 1=-3 (LC Max Grav 1=226 (LC (lb) - Maximum Com Tension 1-2=-315/39, 2-3=-3 1-3=-22/238 ed roof live loads have n. CE 7-10; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er Enclosed; MWFRS (sc Enclosed; MWFRS (sc) and forces & MWFRS OL=1.60 plate grip DO signed for wind loads in studs exposed to wind lard Industry Gable En- qualified building desig uires continuous botton load nonconcurrent wi ss has been designed for load nonconcurrent wi ss has been designed for lo	athing directly applied applied or 10-0-0 oc 3=5-7-14 11) 12), 3=-3 (LC 13) C 1), 3=-226 (LC 1) pression/Maximum 15/39 been considered for (3-second gust) DL=6.0psf; h=30ft; C ivelope) exterior zone ever left and right ght exposed;C-C for for reactions shown; L=1.60 n the plane of the trus (normal to the face), d Details as applicabl gner as per ANSI/TPI m chord bearing. r a 10.0 psf bottom th any other live load or a live load of 20.0p where a rectangle fit between the bottor	8) Provide r bearing p and 3 lb (9) This truss Internatic R802.10. LOAD CASE	nechanical connectio late capable of withs uplift at joint 3. is is designed in acco nal Residential Code 2 and referenced sta (S) Standard	rdance w e sections andard AN	ers) of truss tu Ib uplift at joi ith the 2015 R502.11.1 a ISI/TPI 1.	o int 1 nd				SEA 0363	L 22 L 11,2023

ENGINEERING BY EREPACIO A MITEK Affiliate 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	5 SERENITY	
34893A	V21	Valley	1	1	Job Reference (optional)	156132000

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Jan 13 10:17:18 ID:7F8iuOyU0jLWh0YVWmvOLay6LGH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

3-3-1

2x4 🎣

2x4 💊

Scale = 1:23.5

Plate Offsets (X, Y): [2:0-3-0,Edge]

		-											
oading	(nsf)	Spacing	2-0-0	CSI		DEEL	in	(loc)	l/defl	l /d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOI	1 15	TC	0 13	Vert(LL)	n/a	(100)	n/a	999	MT20	244/190	
	10.0	Lumber DOI	1 15	BC	0.11	Vert(TL)	n/a	-	n/a	999		210,000	
BCLI	0.0*	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a			
BCDI	10.0	Code	IRC2015/TPI2014	Matrix-MP	0.00		0.00	0			Weight [.] 10 lb	FT = 20%	
5052		0000				-					troight to is	2070	
LUMBER			Provide me	echanical connectio	n (by oth	ers) of truss t	0						
TOP CHORD	2x4 SP No.3		bearing pla	ate capable of withs	tanding 2	lb uplift at jo	int 1						
BOT CHORD	2x4 SP No.3		and 2 lb up	olift at joint 3.									
BRACING			9) This truss	is designed in accor	rdance w	ith the 2015							
TOP CHORD	Structural wood sh	eathing directly applie	d or Internation	al Residential Code	sections	R502.11.1 a	nd						
	3-3-1 oc purlins.		R802.10.2	and referenced sta	ndard AN	151/TPL1.							
BOT CHORD	Rigid ceiling direct	ly applied or 10-0-0 oc	; LOAD CASE(5) Standard									
	bracing.												
REACTIONS	(size) 1=3-3-1	, 3=3-3-1											
	Max Horiz 1=-23 (L	_C 10)											
	Max Uplift 1=-2 (LC	C 12), 3=-2 (LC 13)											
	Max Grav 1=130 (LC 1), 3=130 (LC 1)											
FORCES	(lb) - Maximum Co	mpression/Maximum											
	Tension												
	0 1-2=-170/21, 2-3≕	-170/21											
BOICHORL	1-3=-10/127												
NOTES													
1) Unbaland	ced roof live loads hav	e been considered for											
this desig	jn.												
2) Wind: AS	CE 7-10; Vult=115mp	on (3-second gust)	No.										
	Enclosed: MW/EBS (CDL=0.0psi, n=30ii, C	/al.										
and C-C	Enclosed, MWERS (tilever left and right	e									1111	
exposed	end vertical left and	right exposed C-C for								13	IN THUA	ROUL	
members	and forces & MWFR	S for reactions shown:								15	A	De lat	6
Lumber [DOL=1.60 plate grip D	OL=1.60								11		Di	1
3) Truss de	signed for wind loads	in the plane of the tru	SS						1		19 10	Va.	1
only. Fo	r studs exposed to wir	nd (normal to the face)	,						-		. 4	× :	-
see Stan	dard Industry Gable E	ind Details as applicab	ole,						=	1	SEA	L 🗄	Ξ
or consul	t qualified building de	signer as per ANSI/TP	11.						=		0000		
 Gable red 	quires continuous bott	om chord bearing.							1		0363	22 :	-
5) Gable stu	uds spaced at 2-0-0 or	C.							-	8			2
b) This trust about 1	s has been designed f	or a 10.0 pst bottom								2	·	a.i.	3
cnora live	e load nonconcurrent	with any other live load	15. nof							3.5	NGINI	FERIA	5
on the bo	ss has been designed	s where a rectangle	hai							11,	710	- AFT	
3-06-00 t	all by 1-00-00 wide wi	Il fit between the botto	m								IL A G	ILD	
chord an	d any other members										1111111	11111	
0.1014 011											lanuary	17 2023	
											January	17,2020	

Job	Truss	Truss Type	Qty	Ply	5 SERENITY				
34893A	V22	Valley	1	1	Job Reference (optional)	156132001			

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Jan 13 10:17:18 ID:??TEpGWXYMWfaMbCIDhZony6LBg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

7-9-12

Page: 1

Scale = 1:24.9

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MP	0.29 0.19 0.07	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 25 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.3 2x4 SP No.2 2x4 SP No.3 Structural wood she 7-9-12 oc purlins. Rigid ceiling directly bracing. (size) 1=7-9-12, Max Horiz 1=-24 (LC Max Uplift 1=-5 (LC (LC 12) Max Grav 1=80 (LC (LC 1))	athing directly applie applied or 6-0-0 oc 3=7-9-12, 4=7-9-12 13) 12), 3=-10 (LC 13), 4 23), 3=80 (LC 24), 4	7) 8) ed or 9) 	 * This truss h on the botton 3-06-00 tall b chord and an Provide mecl bearing plate 1, 10 lb uplift This truss is of International R802.10.2 ar OAD CASE(S) 	as been designe n chord in all are: by 1-00-00 wide w by other members hanical connection a capable of withs a t joint 3 and 8 II designed in acco Residential Code nd referenced sta Standard	d for a liv as where vill fit betw s. on (by oth- itanding 5 b uplift at rdance wi e sections undard AN	e load of 20.0 a rectangle veen the bottc ers) of truss tr lb uplift at joi joint 4. ith the 2015 R502.11.1 ar ISI/TPI 1.	ipsf om nt nd						
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design	(lb) - Maximum Com Tension 1-2=-86/246, 2-3=-8 1-4=-195/95, 3-4=-1 2-4=-354/117 ed roof live loads have	pression/Maximum 6/246 95/95 been considered fo	r											
		(0 ()										ALL DE LE DE	111,	

- 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Gable requires continuous bottom chord bearing.

5) Gable studs spaced at 2-0-0 oc. 6)

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. Vanannon WILLING THE SEAL 036322 GI munin January 17,2023

