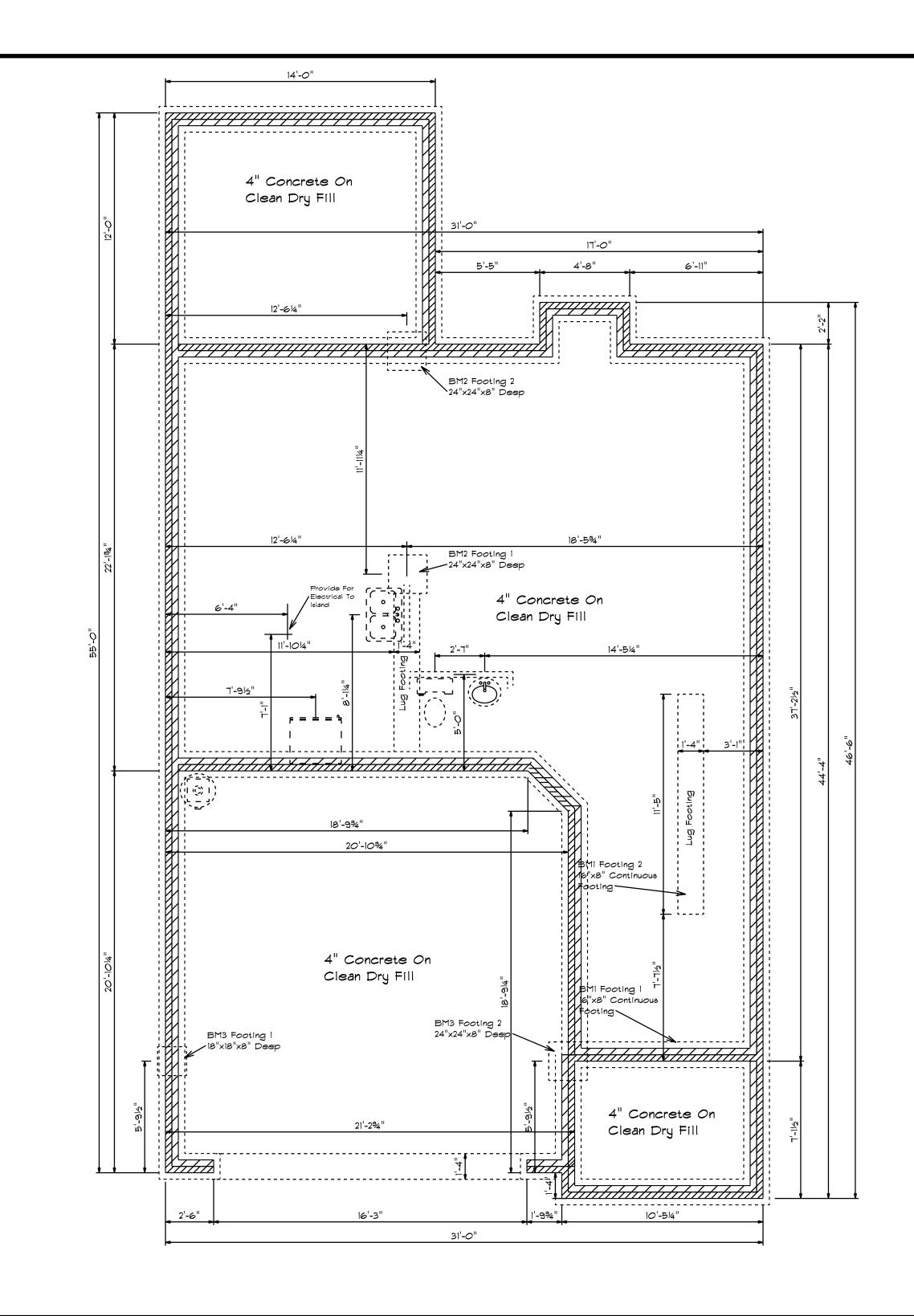
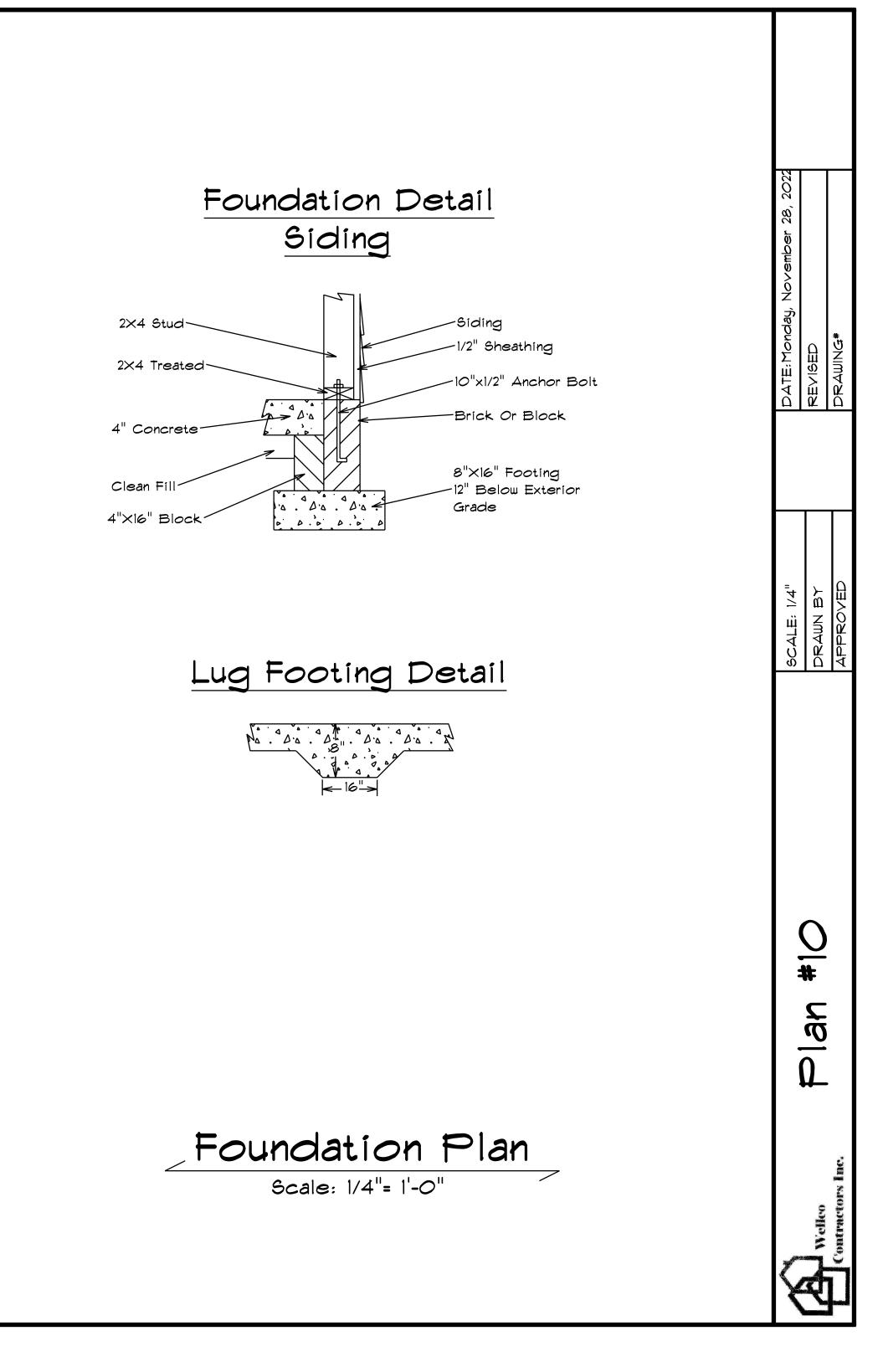


SCALE: 1/4"	DATE:Monday, November 28, 2022
DRAWN BY	REVIGED
APPROVED	DRAWING#

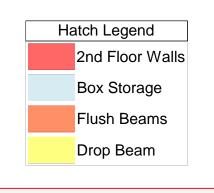
TURN-DOWN

FOOTING DETAIL

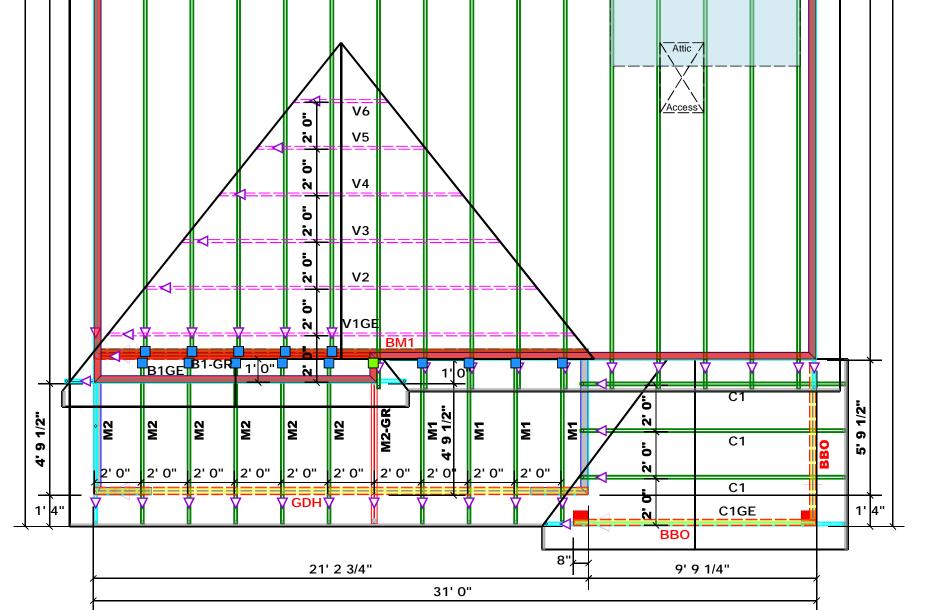


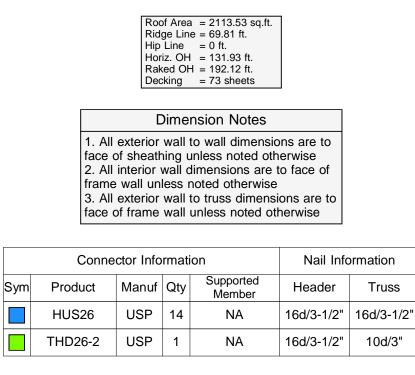

INTEGRAL SLAB FOOTING DETAIL AT BEARING WALL

Foundation Plan Scale: 1/4"= 1'-0"


Plan #10

J Welleo Contracto

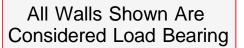


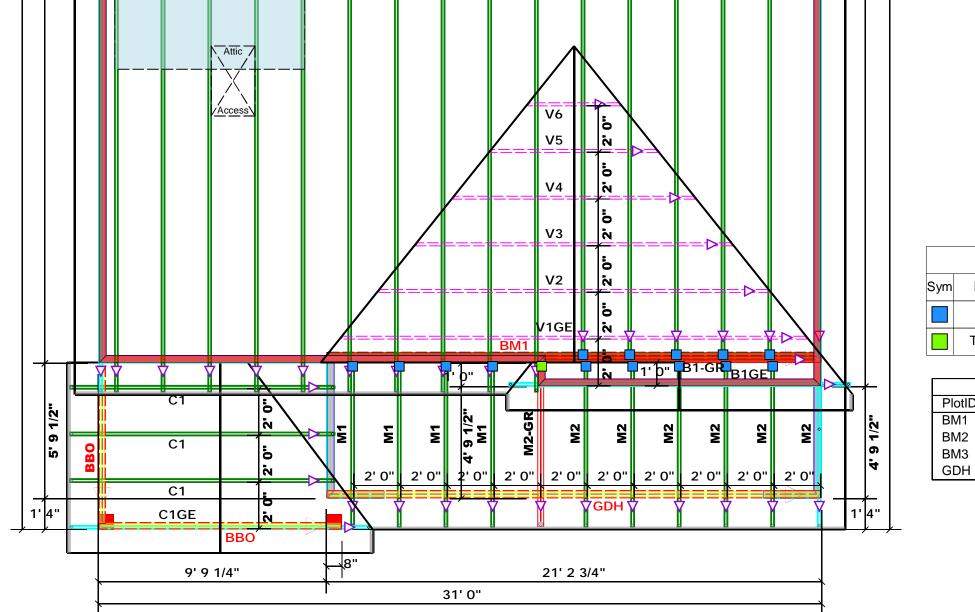


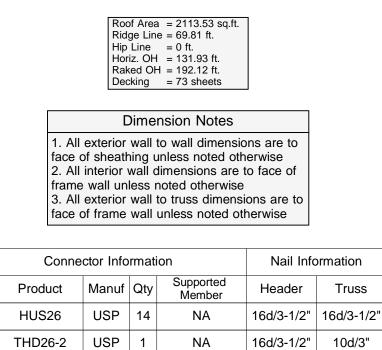
	ſ	ے بر				14' 0"				31' 0"			17	" 0"						
	•		=		BBC		D1GE													Ì
	 •						D1													
0	Ko						D1		*										.0	
12. 0"	(.	BM3					D1			BM3									12. 0"	
							D1													
			7	2		Î	D1	0										*		
2"			A3GE A3	A3	A3	A3	A3	A2	A2	A2	A2	A2	A1	A1 A1		A1	A1	A1GE	1/2"	
38' 2 1/2"	┢				2' 0"							2' 0"	.2' 0"		Mech Stor		2' 0"	8"	37' 2 1/2"	

All Walls Shown Are Considered Load Bearing

		Products		
PlotID	Length	Product	Plies	Net Qty
BM1	22' 0"	1-3/4"x 23-7/8" LVL Kerto-S	3	3
BM2	13' 0"	1-3/4"x 16" LVL Kerto-S	2	2
BM3	13' 0"	1-3/4"x 9-1/4" LVL Kerto-S	2	4
GDH	22' 0"	1-3/4"x 11-7/8" LVL Kerto-S	2	2


Truss Placement Plan Scale: 1/4"=1'


A= Indicates Left End of Truss (Reference Engineered Truss Drawing) Do NOT Erect Truss Backwards


	(04xEb c	RT FOR JAC	4.0-0	BUILDER	Wellco Contractors, Inc.	CITY/CO.	Spring Lake / Harnett	THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual building components to be incorporated into the building design at the specification of the building designer. See individual design sheets for each truss design identified on the placement drawing. The building designer	
Ŋ	669 669		100 CTCCN 100 CTCN 100 CT	JOB NAME	Lot 134 Hidden Lakes	ADDRESS	46 Sugarberry Place	is responsible for temporary and permanent bracing of the roof and floor system and for the overall structure. The design of the truss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding bracing, consult BCSI-B1 and BCSI-B3 provided with the truss delivery package	соттесн
N3	KC DELUD	and per cur cur cur curved curves	DIA STA DEC DATA	PLAN	Plan 10	MODEL	Roof	or online @ sbcindustry.com Bearing reactions less than or equal to 3000# are deemed to comply with the prescriptive Code requirements. The contractor shall refer to the attached Tables (derived from the prescriptive Code requirements) to determine the minimum foundation size and number of wood studs required to support reactions greater than 3000# but not greater than 15000#. A registered design professional shall be retained to design the support system for any reaction that exceeds those specified in the attached Tables. A registered design professional shall be retained to design the support system for all reactions that exceed 15000#. Signature David Landry David Landry	ROOF & FLOOR
170 340 510	02 03	2660 1 5100 2 7650 3	3400 1 6600 2 10200 3	SEAL DATE	Seal Date	DATE REV.	/ /		TRUSSES & BEAMS Reilly Road Industrial Park
680 850 1020	05	10200 4 12750 5 15300 6	13600 4 17000 5	QUOTE #	Quote #	DRAWN BY	David Landry		Fayetteville, N.C. 28309 Phone: (910) 864-8787
1190 1360 1530	8 0			JOB #	J1122-5607	SALES REP.	•		Fax: (910) 864-4444

					17'	0"			31' 0"				14' 0	" BBO				*	1	
1									0			D1GE								
									<u>r</u>			D1								
.0									c			D1								:0
12									2 Z						D N					7
									c						D N				0	
┢						*									* *	1		7		<u> </u>
	lGE	A1	A1	A1	A1	A1	A2	A2	A2	A2	A2	A3	A3	A3	A3	A3	A3GE			

		Products		
PlotID	Length	Product	Plies	Net Qty
BM1	22' 0"	1-3/4"x 23-7/8" LVL Kerto-S	3	3
BM2	13' 0"	1-3/4"x 16" LVL Kerto-S	2	2
BM3	13' 0"	1-3/4"x 9-1/4" LVL Kerto-S	2	4
GDH	22' 0"	1-3/4"x 11-7/8" LVL Kerto-S	2	2

Truss Placement Plan Scale: 1/4"=1'

Indicates Left End of Truss
 (Reference Engineered Truss Drawing)
 Do NOT Erect Truss Backwards

LOAD CHART FOR (045% CN1140 F5 R NUARCE OF DAGE STORE AG	8502.5(1) A (6))	BUILDER	Wellco Contractors, Inc.	CITY/CO.	Spring Lake / Harnett	THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual building components to be incorporated into the building design at the specification of the building designer. See individual design sheets for each truss design identified on the placement drawing. The building designer	
FEADERVED Z Ž L Z Š		CTICN 00 100 FOR 15/052	JOB NAME	Lot 134 Hidden Lakes	ADDRESS	46 Sugarberry Place	is responsible for temporary and permanent bracing of the roof and floor system and for the overall structure. The design of the truss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding bracing, consult BCSI-B1 and BCSI-B3 provided with the truss delivery package	соттесн
<u>8 96 7 9</u>	5.0 % N 100	DI DI SIA	PLAN	Plan 10	MODEL	Roof	enline @ sbcindustry.com earing reactions less than or equal to 3000# are deemed to comply with the escriptive Code requirements. The contractor shall refer to the attached Tables	ROOF & FLOOR
1700 1 2660 3400 2 5100 5100 3 7650	2 3	3400 1 6600 2 10200 3	SEAL DATE	Seal Date	DATE REV.	/ /	(derived from the prescriptive Code requirements) to determine the minimum foundation size and number of wood studs required to support reactions greater than 3000 ^s but not greater than 15000 ^s . A registered design professional shall be retained to design the support system for any reaction that exceeds those specified in the attached Tables. A registered design professional shall be retained to design the support system for all reactions that exceed 15000 ^s . David Landry	Reilly Road Industrial Park
6800 4 10200 8500 5 12750 10200 6 15300 11900 7	5	13600 4 17000 5	QUOTE #	Quote #	DRAWN BY	David Landry		Fayetteville, N.C. 28309 Phone: (910) 864-8787
13600 8 15300 9			JOB #	J1122-5607	SALES REP.	Lenny Norris	Signature David Landry	Fax: (910) 864-4444

RE: J1122-5607 Lot 134 Hidden Lakes

Trenco 818 Soundside Rd Edenton, NC 27932

Site Information: Customer: Project Name: J1122-5607 Lot/Block: Address: City:

Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014 Wind Code: ASCE 7-10

Roof Load: 40.0 psf

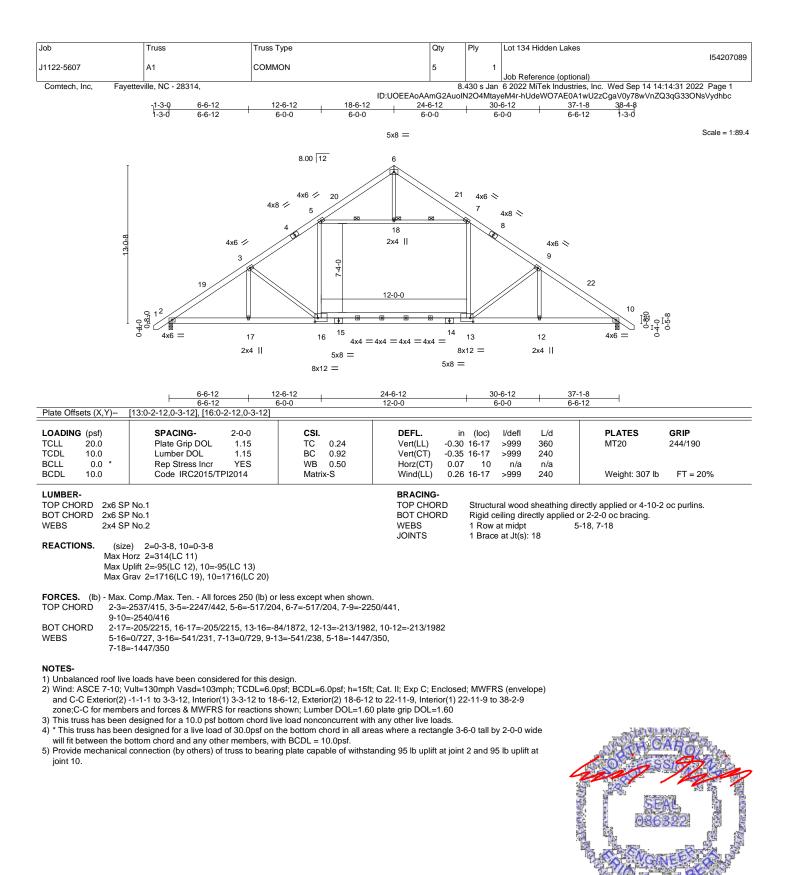
Design Program: MiTek 20/20 8.4 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 20 individual, dated Truss Design Drawings and 0 Additional Drawings.

No. 1 2 3 4	Seal# I54207089 I54207090 I54207091 I54207092	Truss Name A1 A1GE A2 A3	Date 9/14/2022 9/14/2022 9/14/2022 9/14/2022
4 5	154207092	A3 A3GE	9/14/2022
6	154207094	B1-GR	9/14/2022
7	154207095	B1GE	9/14/2022
8	154207096	C1	9/14/2022
9	154207097	C1GE	9/14/2022
10	154207098	D1	9/14/2022
11	154207099	D1GE	9/14/2022
12	154207100	M1	9/14/2022
13	154207101	M2	9/14/2022
14	154207102	M2-GR	9/14/2022
15	154207103	V1GE	9/14/2022
16	154207104	V2	9/14/2022
17	154207105	V3	9/14/2022
18	154207106	V4	9/14/2022
19	154207107	V5	9/14/2022
20	154207108	V6	9/14/2022

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision

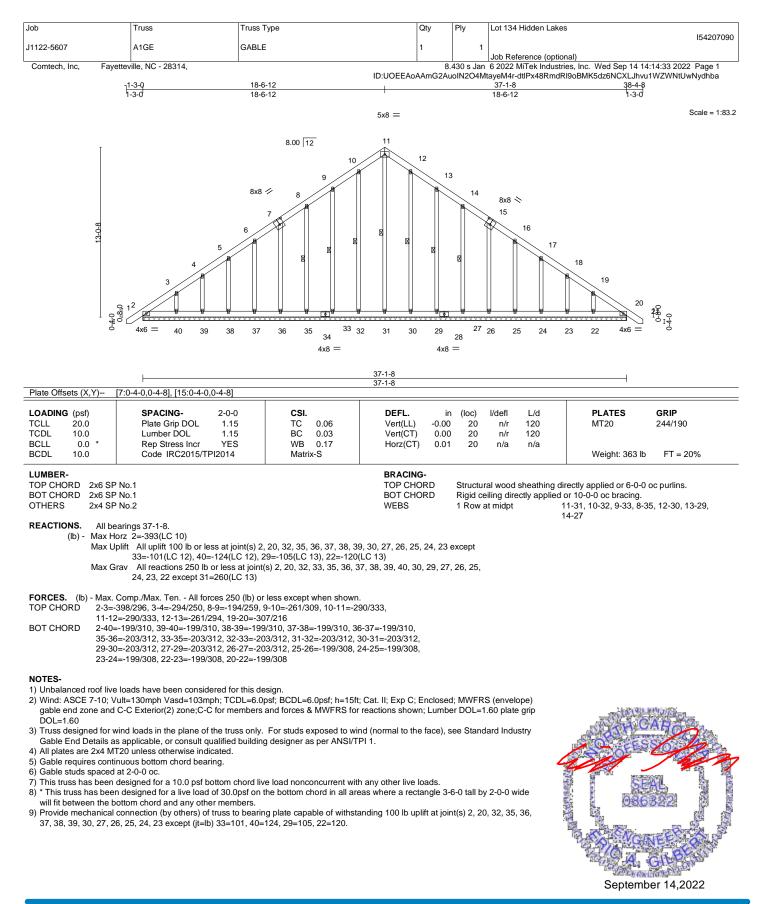
based on the parameters provided by Comtech, Inc - Fayetteville.


Truss Design Engineer's Name: Gilbert, Eric

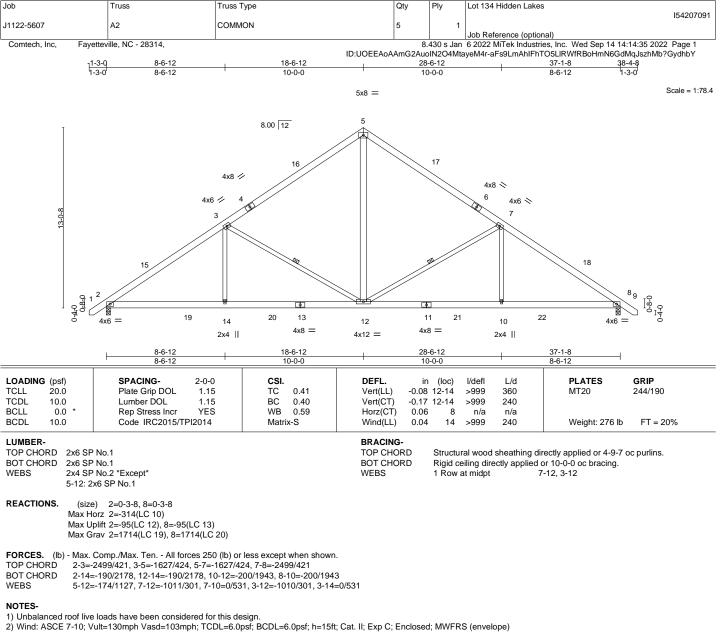
My license renewal date for the state of North Carolina is December 31, 2022 North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters obtained to a locate output dispersion and documents.

shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the design for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.



September 14,2022

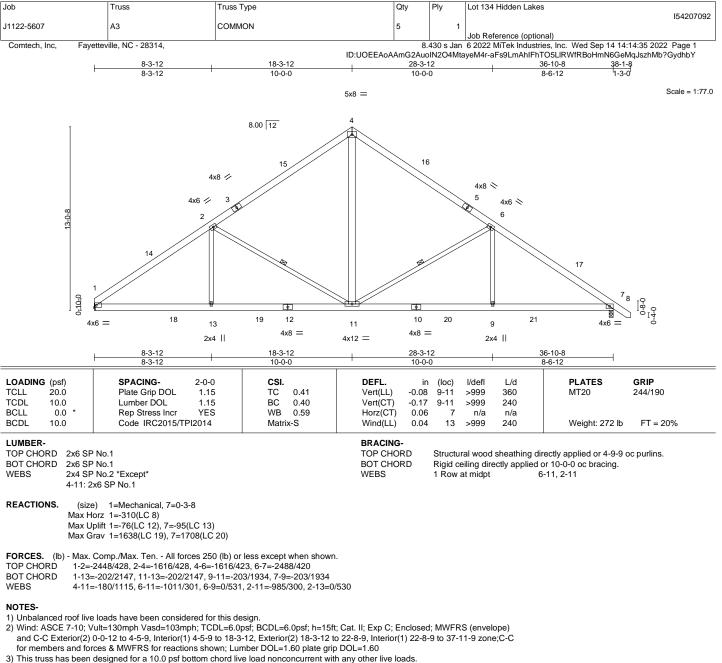

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITEk® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses systems, see **ANSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-1-1 to 3-3-12, Interior(1) 3-3-12 to 18-6-12, Exterior(2) 18-6-12 to 22-11-9, Interior(1) 22-11-9 to 38-2-9 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

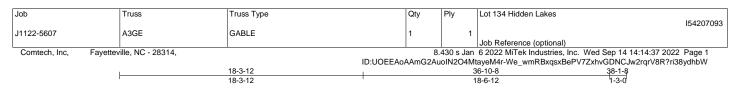

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8.

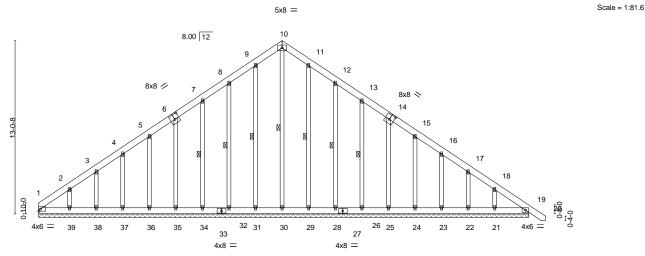
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITEk® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses systems, see **ANSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 4) will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Refer to girder(s) for truss to truss connections.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7.



🛕 WARNING - Verify design pa ameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MTek® connectors. This skip included only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual Truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent bucklings with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Plate Offsets (X,Y) [6	:0-4-0,0-4-8], [14:0-4-0,0-4-8]								
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.06	Vert(LL)	-0.00	19	n/r	120	MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.03	Vert(CT)	0.00	19	n/r	120		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.17	Horz(CT)	0.01	19	n/a	n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S						Weight: 358 lb	FT = 20%
LUMBER-			BRACING-						
LUMBER- TOP CHORD 2x6 SP N BOT CHORD 2x6 SP N OTHERS 2x4 SP N	No.1		BRACING- TOP CHOR BOT CHOR WEBS	D	Rigid c		ectly applie	directly applied or 6-0-0 d or 10-0-0 oc bracing. 10-30, 9-31, 8-32, 7-34 13-26	·
TOP CHORD 2x6 SP N BOT CHORD 2x6 SP N OTHERS 2x4 SP N	No.1		TOP CHOR BOT CHOR	D	Rigid c	eiling dire	ectly applie	d or 10-0-0 oc bracing. 10-30, 9-31, 8-32, 7-34	·
TOP CHORD 2x6 SP N BOT CHORD 2x6 SP N OTHERS 2x4 SP N REACTIONS. All beat	lo.1 lo.2		TOP CHOR BOT CHOR	D	Rigid c	eiling dire	ectly applie	d or 10-0-0 oc bracing. 10-30, 9-31, 8-32, 7-34	·

23, 22, 21 except 30=260(LC 13)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 1-2=-417/309, 2-3=-294/249, 7-8=-195/259, 8-9=-262/308, 9-10=-290/333,

10-11=290/333, 11-12=-26/255, 18-19=307/216 1-39=-199/310, 38-39=-199/310, 37-38=-199/310, 36-37=-199/310, 35-36=-199/310, BOT CHORD 34-35=203/312, 32-34=203/312, 31-32=203/312, 30-31=203/312, 29-30=203/312, 28-29=-203/309, 28-29=-203/309, 28-29=-203/309, 28-29=-203/309, 28-29=-203/312, 28-29=-203/312, 28-29=-203/312, 28-29=-203/312, 28-29=-203/312, 28-29=-203/312, 28-29=-203/312, 28-29=-203/312, 28-29=-203/312, 28-29=-203/312, 28-29=-203/309, 28-29=-203/309, 28-29=-203/309, 28-29=-203/309, 28-29=-203/309, 28-29=-203/309, 28-29=-203/309, 28-29=-203/309, 28-29=-203/309, 28-29=-203/309, 28-29=-203/309, 28-29=-203/309, 28-29=-203/309, 28-29=-203/200, 28-29=-200, 28-29-200, 28-29-20 22-23=-199/309, 21-22=-199/309, 19-21=-199/309

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

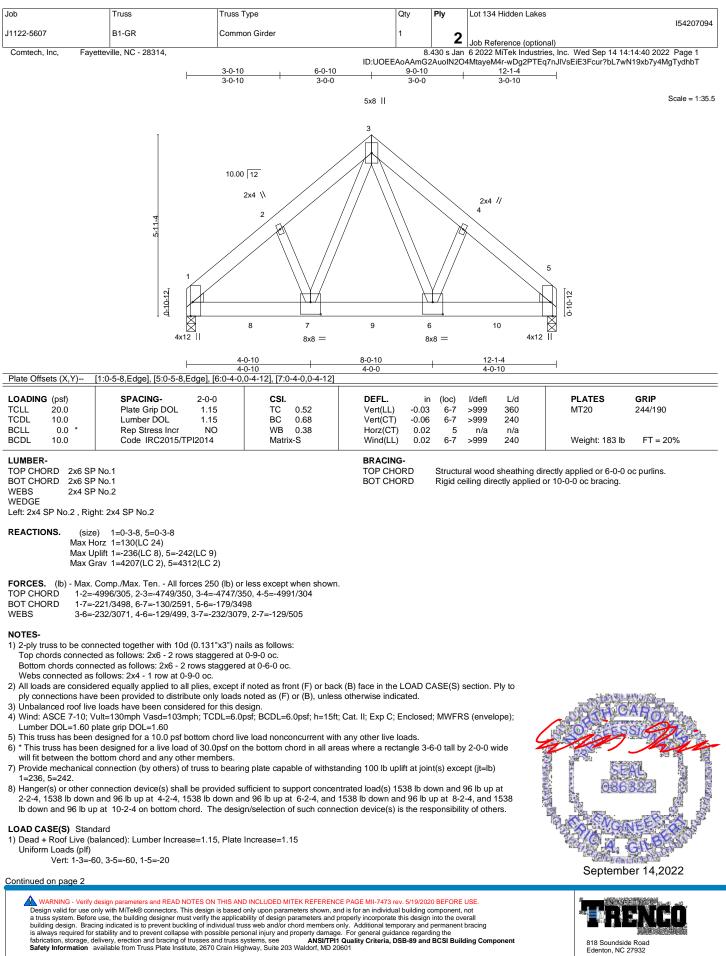
3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) All plates are 2x4 MT20 unless otherwise indicated.

5) Gable requires continuous bottom chord bearing.

6) Gable studs spaced at 2-0-0 oc.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

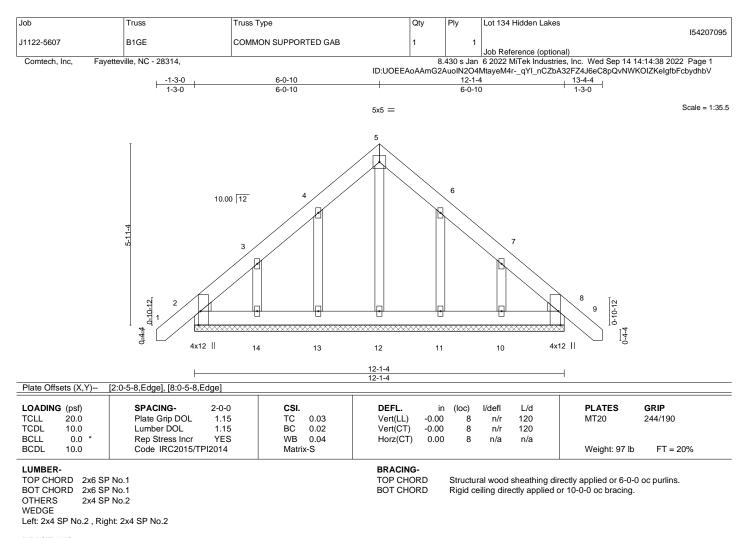
8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 19, 31, 34, 35, 36, 37, 38, 29, 26, 25, 24, 23, 22 except (jt=lb) 1=131, 32=101, 39=158, 28=105, 21=120.

September 14,2022

MARNING - Verify design pa ameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MTek® connectors. This skip included only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual Truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent bucklings with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932


Job	Truss	Truss Type	Qty	Ply	Lot 134 Hidden Lakes		
					154207094		
J1122-5607	B1-GR	Common Girder	1	2			
					Job Reference (optional)		
Comtech, Inc,	Fayetteville, NC - 28314,		8	.430 s Jan	6 2022 MiTek Industries, Inc. Wed Sep 14 14:14:40 2022 Page 2		
	ID:UOEEAoAAmG2AuoIN2O4MtayeM4r-wDg2PTEq7nJIVsEiE3Fcur?bL7wN19xb7y4MgTydhb1						

LOAD CASE(S) Standard Concentrated Loads (Ib)

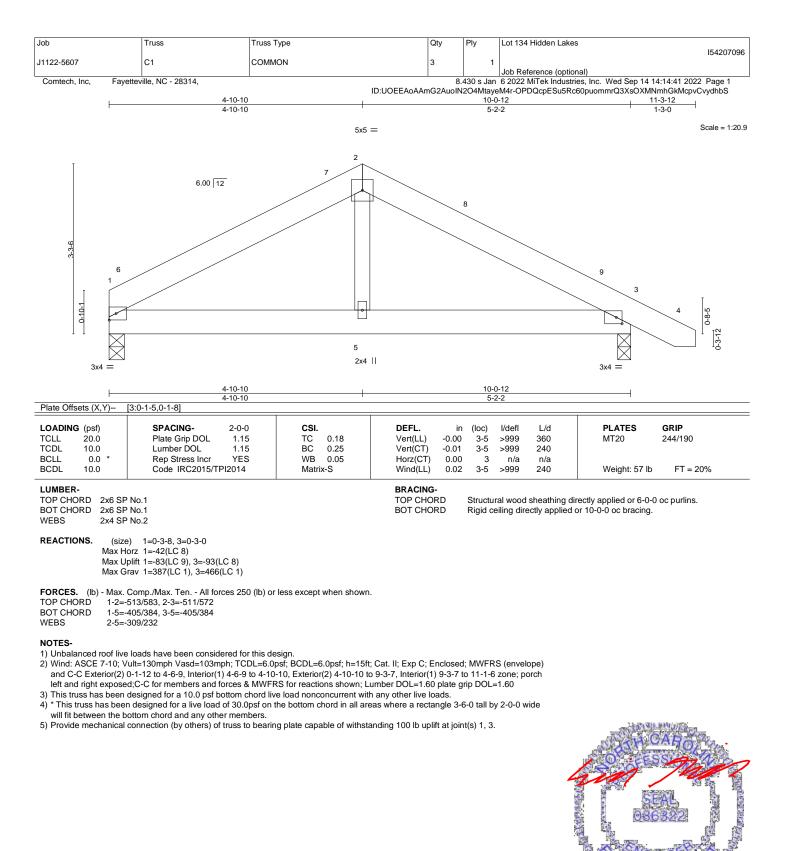
Vert: 6=-1445(B) 7=-1445(B) 8=-1445(B) 9=-1445(B) 10=-1445(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclidual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, terction and bracing of trusses and truss systems, see ANSUTPH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

REACTIONS. All bearings 12-1-4.

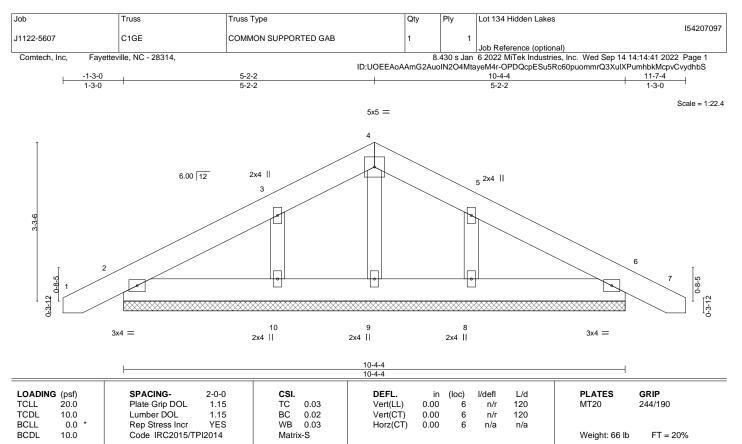
(lb) - Max Horz 2=179(LC 11) Max Uplift All uplift 100 lb or less at joint(s) 2, 8, 11 except 13=-102(LC 12), 14=-143(LC 12), 10=-141(LC 13) Max Grav All reactions 250 lb or less at joint(s) 2, 8, 12, 13, 14, 11, 10

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.


NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) The Fabrication Tolerance at joint 2 = 19%, joint 8 = 19%
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8, 11 except (jt=lb) 13=102, 14=143, 10=141.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oullapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses systems, see **ANSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



September 14,2022

TOP CHORD2x6 SP No.1BOT CHORD2x6 SP No.1OTHERS2x4 SP No.2

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 10-4-4. (lb) - Max Horz 2=-63(LC 17)

Max Uplift All uplift 100 lb or less at joint(s) 2, 6 except 10=-108(LC 12), 8=-105(LC 13) Max Grav All reactions 250 lb or less at joint(s) 2, 6, 9, 10, 8

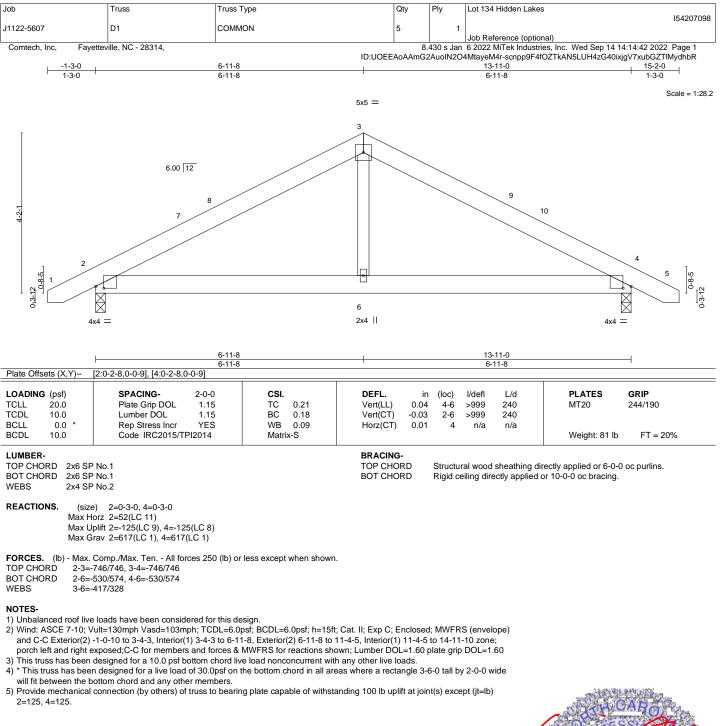
FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.

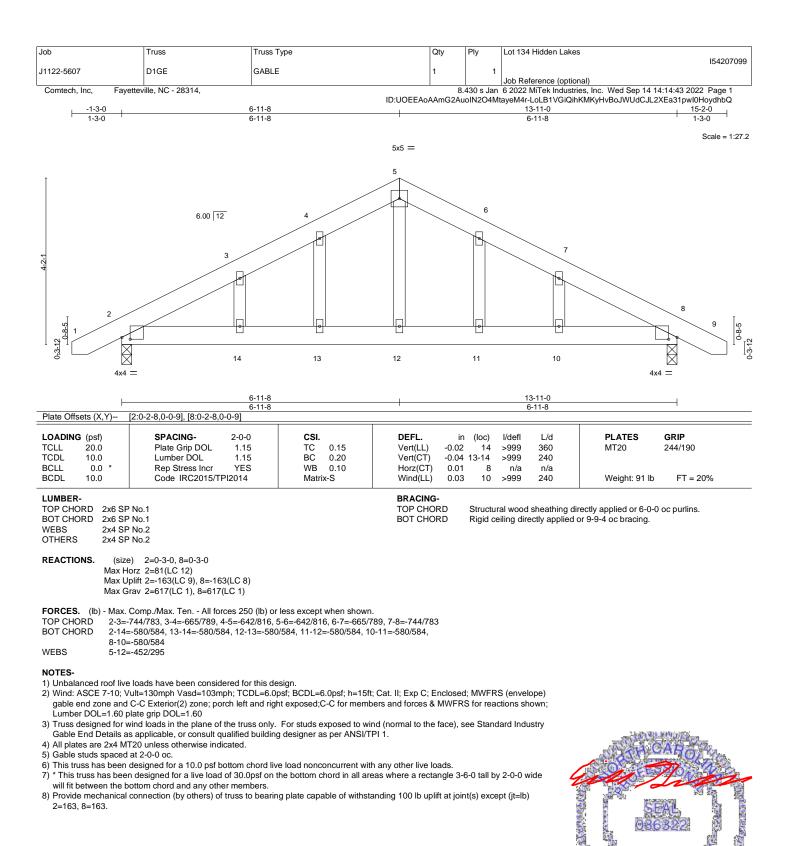
5) Gable studs spaced at 2-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

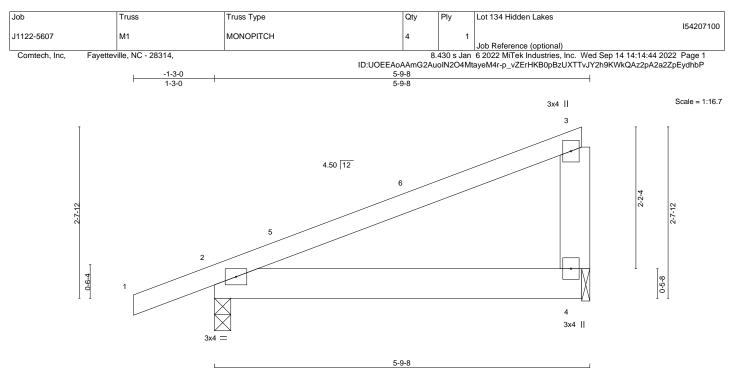

7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

- will fit between the bottom chord and any other members.
 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6 except (jt=lb) 10=108, 8=105.
- 9) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 6.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITEk® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses systems, see **ANSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITEk® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses systems, see **ANSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

September 14,2022

B18 Soundside Road Edenton, NC 27932

			5-9-8	
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) l/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.38	Vert(LL) -0.01 2-4 >999 360	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.11	Vert(CT) -0.02 2-4 >999 240	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) 0.00 n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P	Wind(LL) 0.00 2 **** 240	Weight: 29 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x6 SP No.1

WEBS 2x6 SP No.1

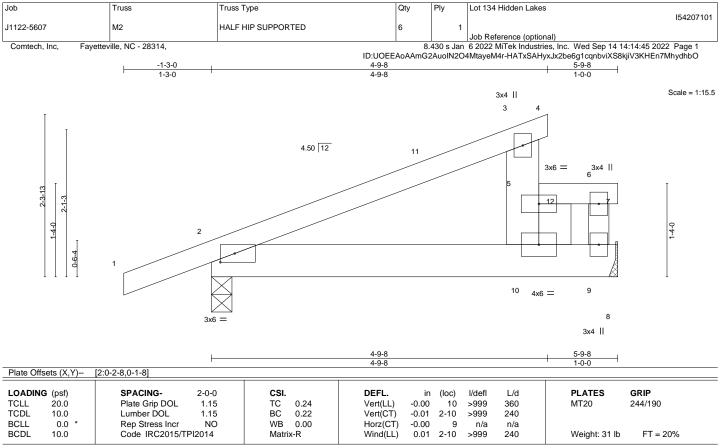
REACTIONS. (size) 2=0-3-0, 4=0-1-8 Max Horz 2=84(LC 8) Max Uplift 2=-58(LC 8), 4=-35(LC 12) Max Grav 2=310(LC 1), 4=207(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-3-0 to 3-1-13, Interior(1) 3-1-13 to 5-6-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.

Structural wood sheathing directly applied or 5-9-8 oc purlins,


Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BRACING-TOP CHORD 2x4 SP No.1 TOP CHORD Structural wood sheathing directly applied or 5-9-8 oc purlins, 2x6 SP No.1 BOT CHORD except end verticals, and 2-0-0 oc purlins: 3-10, 5-7. Except: 2x6 SP No.1 *Except* WEBS 6-0-0 oc bracing: 3-5 BOT CHORD 6-9: 2x4 SP No.2 Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 9=Mechanical, 2=0-3-8 Max Horz 2=104(LC 12)

Max Uplift 9=-61(LC 9), 2=-66(LC 8)

Max Grav 9=745(LC 19), 2=366(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-352/217, 5-10=-269/381, 6-9=-409/371

BOT CHORD 2-10=-354/292

NOTES-

- Unbalanced roof live loads have been considered for this design.
 Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Corner(3) -1-3-0 to 3-1-13, Exterior(2) 3-1-13 to 5-9-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Provide adequate drainage to prevent water ponding.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 9, 2. 10) Load case(s) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 12) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s). The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15. Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-3=-60, 3-4=-60, 5-12=-40, 6-12=-80, 6-7=-20, 2-8=-20

Continued on page 2

🗥 WARNING - Verify design pa meters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MTek® connectors. This skip included only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual Truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent bucklings with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 134 Hidden Lakes
14400 5007					154207101
J1122-5607	M2	HALF HIP SUPPORTED	6	1	Job Reference (optional)
Comtech, Inc,	Fayetteville, NC - 28314,		8	.430 s Jan	6 2022 MiTek Industries, Inc. Wed Sep 14 14:14:45 2022 Page 2

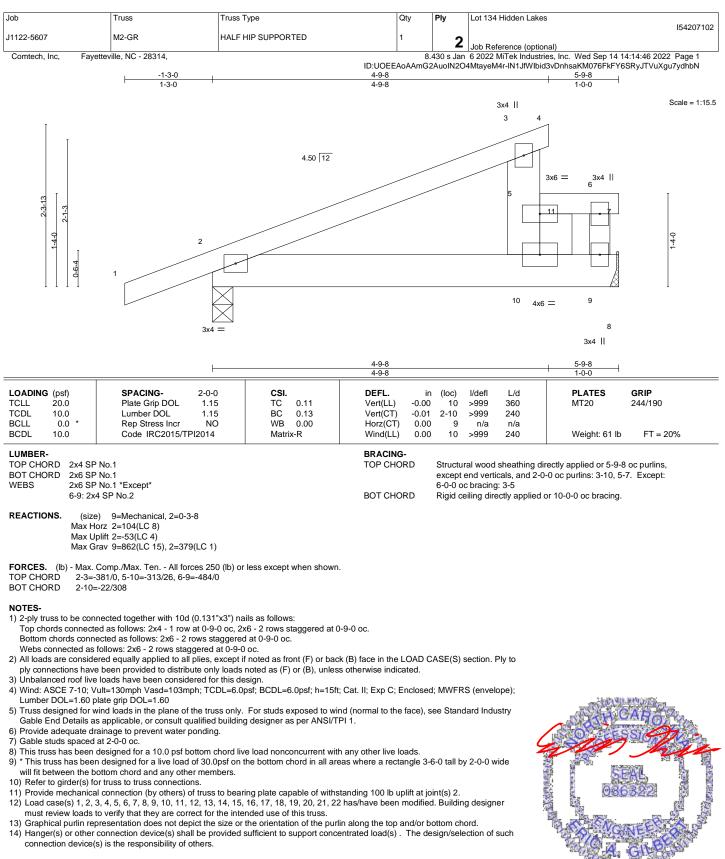
8.430 s Jan 6 2022 MiTek Industries, Inc. Wed Sep 14 14:14:45 2022 Page 2 ID:UOEEAoAAmG2AuoIN2O4MtayeM4r-HATxSAHyxJx2be6g1cqnbviXS8kjiV3KHEn7MhydhbO

LOAD CASE(S) Standard	
Concentrated Loads (lb)	
Vert: 12=-500	
2) Dead + 0.75 Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15	
Uniform Loads (plf)	
Vert: 1-3=-50, 3-4=-50, 5-12=-100, 6-12=-130, 6-7=-20, 2-8=-20	
Concentrated Loads (lb)	
Vert: 12=-438	
3) Dead + Uninhabitable Attic Without Storage: Lumber Increase=1.25, Plate Increase=1.25	
Uniform Loads (plf)	
Vert: 1-3=-20, 3-4=-20, 5-6=-40, 6-7=-20, 2-8=-40 Concentrated Loads (lb)	
Vert: 12=-375	
4) Dead + 0.6 C-C Wind (Pos. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60	
Uniform Loads (plf)	
Vert: 1-2=124, 2-11=91, 3-11=57, 3-4=153, 5-6=40, 6-7=54, 2-8=-12	
Horz: 1-2=-136, 2-11=-103, 3-11=-69, 3-4=-165, 3-5=-65	
Concentrated Loads (Ib)	
Vert: 12=492	
5) Dead + 0.6 C-C Wind (Pos. Internal) Case 2: Lumber Increase=1.60, Plate Increase=1.60	
Uniform Loads (plf)	
Vert: 1-2=50, 2-3=91, 3-4=84, 5-6=76, 6-7=-12, 2-8=-12	
Horz: 1-2=-62, 2-3=-103, 3-4=-96, 3-5=-65	
Concentrated Loads (lb)	
Vert: 12=522	
6) Dead + 0.6 C-C Wind (Neg. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60	
Uniform Loads (plf)	
Vert: 1-2=-2, 2-3=-45, 3-4=-17, 5-6=-58, 6-7=-31, 2-8=-20 Horz: 1-2=-18, 2-3=25, 3-4=-37, 3-5=51	
Concentrated Loads (Ib)	
Vert: 12=524	
7) Dead + 0.6 C-C Wind (Neg. Internal) Case 2: Lumber Increase=1.60, Plate Increase=1.60	
Uniform Loads (plf)	
Vert: 1-2=-38, 2-3=-45, 3-4=-38, 5-6=-58, 6-7=-20, 2-8=-20	
Horz: 1-2=18, 2-3=25, 3-4=18, 3-5=51	
Concentrated Loads (Ib)	
Vert: 12=-524	
8) Dead + 0.6 MWFRS Wind (Pos. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60	
Uniform Loads (plf)	
Vert: 1-2=34, 2-3=19, 3-4=12, 5-6=-11, 6-7=2, 2-8=-12	
Horz: 1-2=-46, 2-3=-31, 3-4=-24, 3-5=7	
Concentrated Loads (lb)	
Vert: 12=42	
 Dead + 0.6 MWFRS Wind (Pos. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) 	
Vert: 1-2=6, 2-3=13, 3-4=28, 5-6=1, 6-7=14, 2-8=-12	
Horz: 1-2=-18, 2-3=-25, 3-4=-40, 3-5=-27	
Concentrated Loads (Ib)	
Vert: 12=54	
10) Dead + 0.6 MWFRS Wind (Neg. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60	
Uniform Loads (plf)	
Vert: 1-2=4, 2-3=-3, 3-4=4, 5-6=-33, 6-7=-6, 2-8=-20	
Horz: 1-2=-24, 2-3=-17, 3-4=-24, 3-5=34	
Concentrated Loads (lb)	
Vert: 12=-423	
11) Dead + 0.6 MWFRS Wind (Neg. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60	
Uniform Loads (plf)	
Vert: 1-2=-2, 2-3=-9, 3-4=-2, 5-6=-21, 6-7=6, 2-8=-20	
Horz: 1-2=-18, 2-3=-11, 3-4=-18, 3-5=-0	
Concentrated Loads (lb)	
Vert: 12=-292 12) Dead + 0.6 MWFRS Wind (Pos. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60	
Uniform Loads (plf)	
Vert: 1-2=14, 2-3=21, 3-4=14, 5-6=-11, 6-7=2, 2-8=-12	
Horz: 1-2=-26, 2-3=-33, 3-4=-26, 3-5=-39	
Concentrated Loads (lb)	
Ver: 12=54	
13) Dead + 0.6 MWFRS Wind (Pos. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60	
Uniform Loads (plf)	
Vert: 1-2=2, 2-3=9, 3-4=2, 5-6=1, 6-7=14, 2-8=-12	
Horz: 1-2=-14, 2-3=-21, 3-4=-14, 3-5=-27	
Concentrated Loads (lb)	
Vert: 12=54	
14) Dead + 0.6 MWFRS Wind (Pos. Internal) 3rd Parallel: Lumber Increase=1.60, Plate Increase=1.60	

Continued on page 3

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclings with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job		Truss	Truss Type	Qty	Ply	Lot 134 Hidden Lakes
						154207101
J1122-5607		M2	HALF HIP SUPPORTED	6	1	Job Reference (optional)
Comtech, Inc,	Fayettev	ille, NC - 28314,		8.	430 s Jan	6 2022 MiTek Industries, Inc. Wed Sep 14 14:14:45 2022 Page 3


ID:UOEEAoAAmG2AuoIN2O4MtayeM4r-HATxSAHyxJx2be6g1cqnbviXS8kjiV3KHEn7MhydhbO

LOAD CASE(S) Standard Uniform Loads (plf) Vert: 1-2=14, 2-3=21, 3-4=14, 5-6=-11, 6-7=2, 2-8=-12 Horz: 1-2=-26, 2-3=-33, 3-4=-26, 3-5=-39 Concentrated Loads (lb) Vert: 12=54 15) Dead + 0.6 MWFRS Wind (Pos. Internal) 4th Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=2, 2-3=9, 3-4=2, 5-6=1, 6-7=14, 2-8=-12 Horz: 1-2=-14, 2-3=-21, 3-4=-14, 3-5=-27 Concentrated Loads (lb) Vert: 12=54 16) Dead + 0.6 MWFRS Wind (Neg. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=6, 2-3=-1, 3-4=6, 5-6=-33, 6-7=-6, 2-8=-20 Horz: 1-2=-26, 2-3=-19, 3-4=-26, 3-5=-12 Concentrated Loads (lb) Vert: 12=-292 17) Dead + 0.6 MWFRS Wind (Neg. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-6, 2-3=-13, 3-4=-6, 5-6=-21, 6-7=6, 2-8=-20 Horz: 1-2=-14, 2-3=-7, 3-4=-14, 3-5=-0 Concentrated Loads (lb) Vert: 12=-292 18) Dead: Lumber Increase=0.90, Plate Increase=0.90 Plt. metal=0.90 Uniform Loads (plf) Vert: 1-3=-20, 3-4=-20, 5-6=-120, 6-7=-20, 2-8=-20 Concentrated Loads (lb) Vert: 12=-250 19) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) Left): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-32, 2-3=-37, 3-4=-32, 5-12=-95, 6-12=-125, 6-7=-10, 2-8=-20 Horz: 1-2=-18, 2-3=-13, 3-4=-18, 3-5=26 Concentrated Loads (lb) Vert: 12=-567 20) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) Right): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-37, 2-3=-42, 3-4=-37, 5-12=-86, 6-12=-116, 6-7=-1, 2-8=-20 Horz: 1-2=-13, 2-3=-8, 3-4=-13, 3-5=-0 Concentrated Loads (lb) Vert: 12=-469 21) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-31, 2-3=-36, 3-4=-31, 5-12=-95, 6-12=-125, 6-7=-10, 2-8=-20 Horz: 1-2=-19, 2-3=-14, 3-4=-19, 3-5=-9 Concentrated Loads (lb) Vert: 12=-469 22) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-40, 2-3=-45, 3-4=-40, 5-12=-86, 6-12=-116, 6-7=-1, 2-8=-20 Horz: 1-2=-10, 2-3=-5, 3-4=-10, 3-5=-0 Concentrated Loads (lb) Vert: 12=-469 23) 1st Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-60, 3-4=-60, 5-6=-40, 6-7=-20, 2-8=-20 Concentrated Loads (lb) Vert: 12=-500 24) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-20, 3-4=-20, 5-12=-40, 6-12=-80, 6-7=-20, 2-8=-20 Concentrated Loads (lb) Vert: 12=-500 25) 3rd Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-50, 3-4=-50, 5-6=-100, 6-7=-20, 2-8=-20 Concentrated Loads (lb) Vert: 12=-438 26) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-20, 3-4=-20, 5-12=-100, 6-12=-130, 6-7=-20, 2-8=-20 Concentrated Loads (lb)

Vert: 12=-438

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ollapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses systems, see **ANSUTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOAD CASE(S) Standard

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 September 14,2022

Job	Truss	Truss Type	Qty	Ply	Lot 134 Hidden Lakes	
						I54207102
J1122-5607	M2-GR	HALF HIP SUPPORTED	1	2		
				_	Job Reference (optional)	
Comtech, Inc,	Fayetteville, NC - 28314,		8	.430 s Jan	6 2022 MiTek Industries, Inc. Wed Sep 14 14:14:46 202	2 Page 2
			ID:UOEEAoAAmG	2AuoIN2O	4MtayeM4r-IN1JfWlbid3vDnhsaKM076FkFY6SRyJTVuXc	gu7ydhbN

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-60, 3-4=-60, 5-11=-160, 6-11=-200, 6-7=-20, 2-8=-20 Concentrated Loads (lb) Vert: 11=-500 2) Dead + 0.75 Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-50, 3-4=-50, 5-11=-220, 6-11=-250, 6-7=-20, 2-8=-20 Concentrated Loads (lb) Vert: 11=-438 3) Dead + Uninhabitable Attic Without Storage: Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf) Vert: 1-3=-20, 3-4=-20, 5-6=-160, 6-7=-20, 2-8=-40 Concentrated Loads (lb) Vert: 11=-375 4) Dead + 0.6 MWFRS Wind (Pos. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=34, 2-3=19, 3-4=12, 5-6=-131, 6-7=2, 2-8=-12 Horz: 1-2=-46, 2-3=-31, 3-4=-24, 3-5=7 Concentrated Loads (lb) Vert: 11=42 5) Dead + 0.6 MWFRS Wind (Pos. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=6, 2-3=13, 3-4=28, 5-6=-119, 6-7=14, 2-8=-12 Horz: 1-2=-18, 2-3=-25, 3-4=-40, 3-5=-27 Concentrated Loads (lb) Vert: 11=54 6) Dead + 0.6 MWFRS Wind (Neg. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=4, 2-3=-3, 3-4=4, 5-6=-153, 6-7=-6, 2-8=-20 Horz: 1-2=-24, 2-3=-17, 3-4=-24, 3-5=34 Concentrated Loads (lb) Vert: 11=-423 7) Dead + 0.6 MWFRS Wind (Neg. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-2, 2-3=-9, 3-4=-2, 5-6=-141, 6-7=6, 2-8=-20 Horz: 1-2=-18, 2-3=-11, 3-4=-18, 3-5=-0 Concentrated Loads (lb) Vert: 11=-292 8) Dead + 0.6 MWFRS Wind (Pos. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=14, 2-3=21, 3-4=14, 5-6=-131, 6-7=2, 2-8=-12 Horz: 1-2=-26, 2-3=-33, 3-4=-26, 3-5=-39 Concentrated Loads (lb) Vert: 11=54 9) Dead + 0.6 MWFRS Wind (Pos. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=2, 2-3=9, 3-4=2, 5-6=-119, 6-7=14, 2-8=-12 Horz: 1-2=-14, 2-3=-21, 3-4=-14, 3-5=-27 Concentrated Loads (lb) Vert: 11=54 10) Dead + 0.6 MWFRS Wind (Pos. Internal) 3rd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=14, 2-3=21, 3-4=14, 5-6=-131, 6-7=2, 2-8=-12 Horz: 1-2=-26, 2-3=-33, 3-4=-26, 3-5=-39 Concentrated Loads (lb) Vert: 11=54 11) Dead + 0.6 MWFRS Wind (Pos. Internal) 4th Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=2, 2-3=9, 3-4=2, 5-6=-119, 6-7=14, 2-8=-12 Horz: 1-2=-14, 2-3=-21, 3-4=-14, 3-5=-27 Concentrated Loads (lb) Vert: 11=54 12) Dead + 0.6 MWFRS Wind (Neg. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=6, 2-3=-1, 3-4=6, 5-6=-153, 6-7=-6, 2-8=-20 Horz: 1-2=-26, 2-3=-19, 3-4=-26, 3-5=-12 Concentrated Loads (lb) Vert: 11=-292 13) Dead + 0.6 MWFRS Wind (Neg. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=-6, 2-3=-13, 3-4=-6, 5-6=-141, 6-7=6, 2-8=-20 Horz: 1-2=-14, 2-3=-7, 3-4=-14, 3-5=-0 Concentrated Loads (lb)

Vert: 11=-292

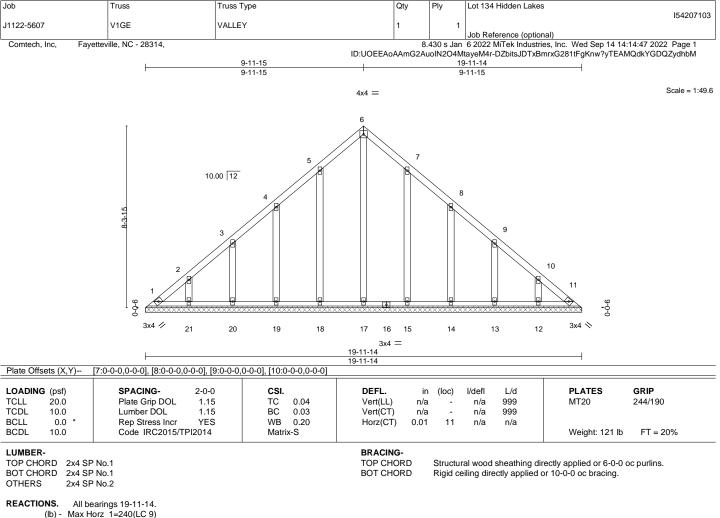
LOAD CASE(S) Standard

Continued on page 3

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITEk® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 134 Hidden Lakes
					154207102
J1122-5607	M2-GR	HALF HIP SUPPORTED	1	2	
				_	Job Reference (optional)
Comtech, Inc, Fayette	eville, NC - 28314,		8.	430 s Jan	6 2022 MiTek Industries, Inc. Wed Sep 14 14:14:46 2022 Page 3

ID:UOEEAoAAmG2AuoIN2O4MtayeM4r-IN1JfWIbid3vDnhsaKM076FkFY6SRyJTVuXgu7ydhbN


LOAD CASE(S) Standard	
14) Dead: Lumber Increase=0.90, Plate Increase=0.90 Plt. metal=0.90	
Uniform Loads (plf)	
Vert: 1-3=-20, 3-4=-20, 5-6=-240, 6-7=-20, 2-8=-20	
Concentrated Loads (Ib)	
Vert: 11=-250	
15) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neq. Int) Left): Lumber Increase=1.60, Plate Increase=1.60	
Uniform Loads (plf)	
Vert: 1-2=-32, 2-3=-37, 3-4=-32, 5-11=-215, 6-11=-245, 6-7=-10, 2-8=-20	
Horz: 1-2=-18, 2-3=-13, 3-4=-18, 3-5=26	
Concentrated Loads (lb)	
Vert: 11=-567	
16) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) Right): Lumber Increase=1.60, Plate Increase=1.60	
Uniform Loads (plf)	
Vert: 1-2=-37, 2-3=-42, 3-4=-37, 5-11=-206, 6-11=-236, 6-7=-1, 2-8=-20	
Horz: 1-2=-13, 2-3=-8, 3-4=-13, 3-5=-0	
Concentrated Loads (Ib)	
Vert: 11=-469	
17) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=	1.60
Uniform Loads (plf)	
Vert: 1-2=-31, 2-3=-36, 3-4=-31, 5-11=-215, 6-11=-245, 6-7=-10, 2-8=-20	
Horz: 1-2=-19, 2-3=-14, 3-4=-19, 3-5=-9	
Concentrated Loads (lb)	
Vert: 11=-469	
18) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=	=1.60
Uniform Loads (plf)	
Vert: 1-2=-40, 2-3=-45, 3-4=-40, 5-11=-206, 6-11=-236, 6-7=-1, 2-8=-20	
Horz: 1-2=-10, 2-3=-5, 3-4=-10, 3-5=-0	
Concentrated Loads (Ib)	
Vert: 11=-469	
19) 1st Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15	
Uniform Loads (plf)	
Vert: 1-3=-60, 3-4=-60, 5-6=-160, 6-7=-20, 2-8=-20	
Concentrated Loads (lb)	
Vert: 11=-500	
20) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15	
Uniform Loads (plf)	
Vert: 1-3=-20, 3-4=-20, 5-11=-160, 6-11=-200, 6-7=-20, 2-8=-20	
Concentrated Loads (lb)	
Vert: 11=-500	
21) 3rd Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15	
Uniform Loads (plf)	
Vert: 1-3=-50, 3-4=-50, 5-6=-220, 6-7=-20, 2-8=-20	
Concentrated Loads (lb)	
Vert: 11=-438	
22) 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15	
Uniform Loads (olf)	
Vert: 1-3=-20, 3-4=-20, 5-11=-220, 6-11=-250, 6-7=-20, 2-8=-20	
Concentrated Loads (Ib)	

Vert: 11=-438

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclidual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, terction and bracing of trusses and truss systems, see ANSUTPH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Max Uplift All uplift 100 lb or less at joint(s) 1, 11 except 18=-110(LC 12), 19=-113(LC 12), 20=-110(LC 12), 21=-110(LC 12), 15=-108(LC 13), 14=-114(LC 13), 13=-110(LC 13), 12=-110(LC 13) Max Grav All reactions 250 lb or less at joint(s) 1, 11, 17, 18, 19, 20, 21, 15, 14, 13, 12

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-281/192

NOTES-

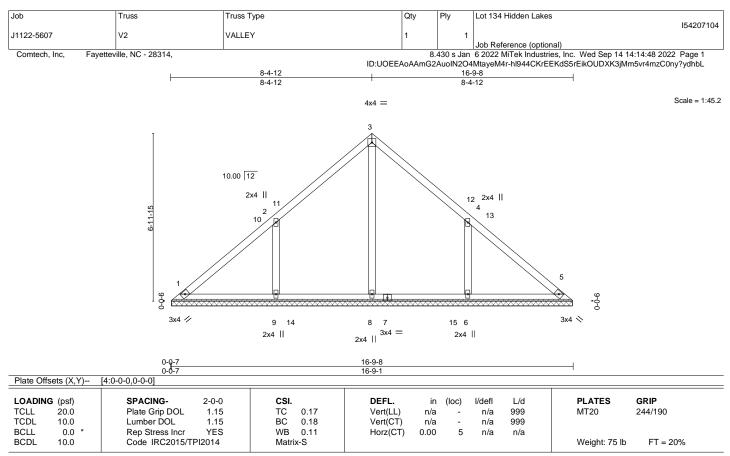
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) All plates are 2x4 MT20 unless otherwise indicated.

5) Gable requires continuous bottom chord bearing.


6) Gable studs spaced at 2-0-0 oc.

- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at ioint(s) 1, 11 except
- (jt=lb) 18=110, 19=113, 20=110, 21=110, 15=108, 14=114, 13=110, 12=110.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 OTHERS 2x4 SP No.2 BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 16-8-9.

(lb) - Max Horz 1=-160(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 1 except 9=-153(LC 12), 6=-153(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 8=416(LC 22), 9=479(LC 19), 6=479(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 2-9=-381/266, 4-6=-381/266

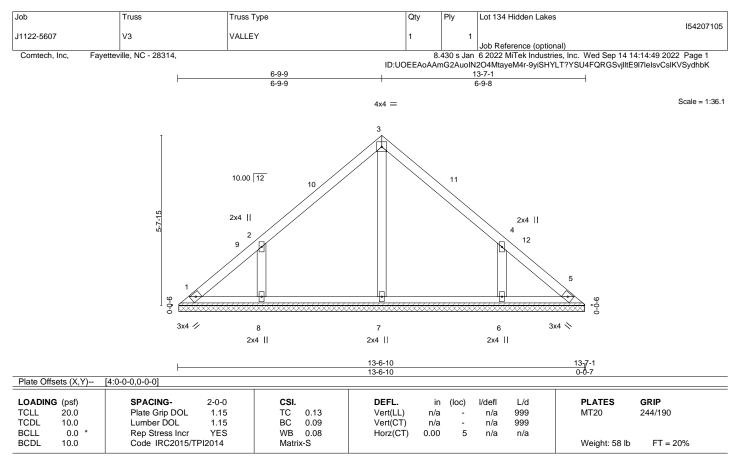
NOTES-

1) Unbalanced roof live loads have been considered for this design.

 Onbalanced foor live loads have been considered to this design.
 Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-4-13 to 4-9-10, Interior(1) 4-9-10 to 8-4-12, Exterior(2) 8-4-12 to 12-9-9, Interior(1) 12-9-9 to 16-4-11 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.


5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 9=153, 6=153.

6) Non Standard bearing condition. Review required.

🛕 WARNING - Verify design pa ameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MTek® connectors. This skip included only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual Truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent bucklings with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 OTHERS 2x4 SP No.2 BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 13-6-3.

(lb) - Max Horz 1=-128(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 1, 5 except 8=-127(LC 12), 6=-127(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 1, 5, 7 except 8=340(LC 19), 6=340(LC 20)

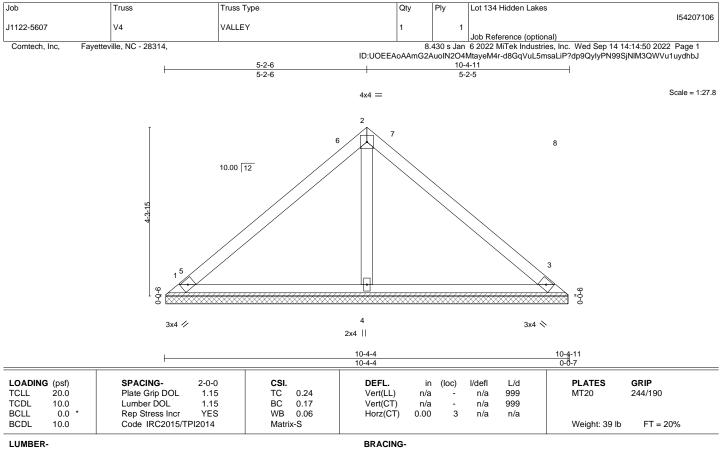
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 2-8=-319/240, 4-6=-319/240

NOTES-

 Unbalanced roof live loads have been considered for this design.
 Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-4-13 to 4-9-10, Interior(1) 4-9-10 to 6-9-9, Exterior(2) 6-9-9 to 11-2-6, Interior(1) 11-2-6 to 13-2-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=127.6=127.

MARNING - Verify design pa ameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MTek® connectors. This skip included only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual Truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent bucklings with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 2x4 SP No.2 OTHERS

TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 1=10-3-13, 3=10-3-13, 4=10-3-13 Max Horz 1=96(LC 11)

Max Uplift 1=-22(LC 13), 3=-31(LC 13)

Max Grav 1=205(LC 1), 3=205(LC 1), 4=357(LC 1)

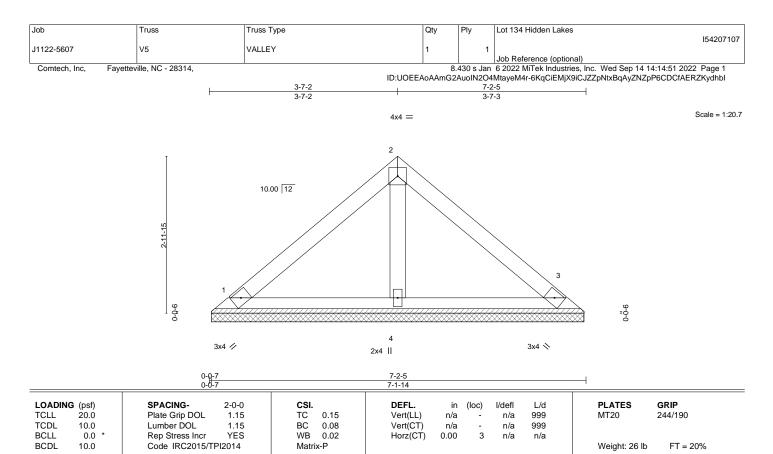
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-4-13 to 4-9-10, Interior(1) 4-9-10 to 5-2-6, Exterior(2) 5-2-6 to 9-7-2, Interior(1) 9-7-2 to 9-11-14 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.


- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing tabrication, storage, delivery, terection and bracing of trusses and truss systems, see **ANSITPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1

OTHERS 2x4 SP No.2

REACTIONS. (size) 1=7-1-6, 3=7-1-6, 4=7-1-6 Max Horz 1=-64(LC 10) Max Uplift 1=-22(LC 13), 3=-28(LC 13) Max Grav 1=148(LC 1), 3=148(LC 1), 4=215(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

6) Non Standard bearing condition. Review required.



Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

		3-11-7					0-0-7		
LOADING (psf) TCLL 20.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15	CSI. TC 0.03 BC 0.02	DEFL. i Vert(LL) n/ Vert(CT) n/			L/d 999 999	PLATES MT20	GRIP 244/190	
BCLL 0.0 * BCDL 10.0	Rep Stress Incr YES Code IRC2015/TPI2014	WB 0.01 Matrix-P	Horz(CT) 0.0		n/a	n/a	Weight: 14 lb	FT = 20%	

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 OTHERS 2x4 SP No.2

BRACING-

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 3-11-14 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS.

(size) 1=3-11-0, 3=3-11-0, 4=3-11-0 Max Horz 1=32(LC 9)

Max Uplift 1=-11(LC 13), 3=-14(LC 13)

Max Grav 1=74(LC 1), 3=74(LC 1), 4=107(LC 1)

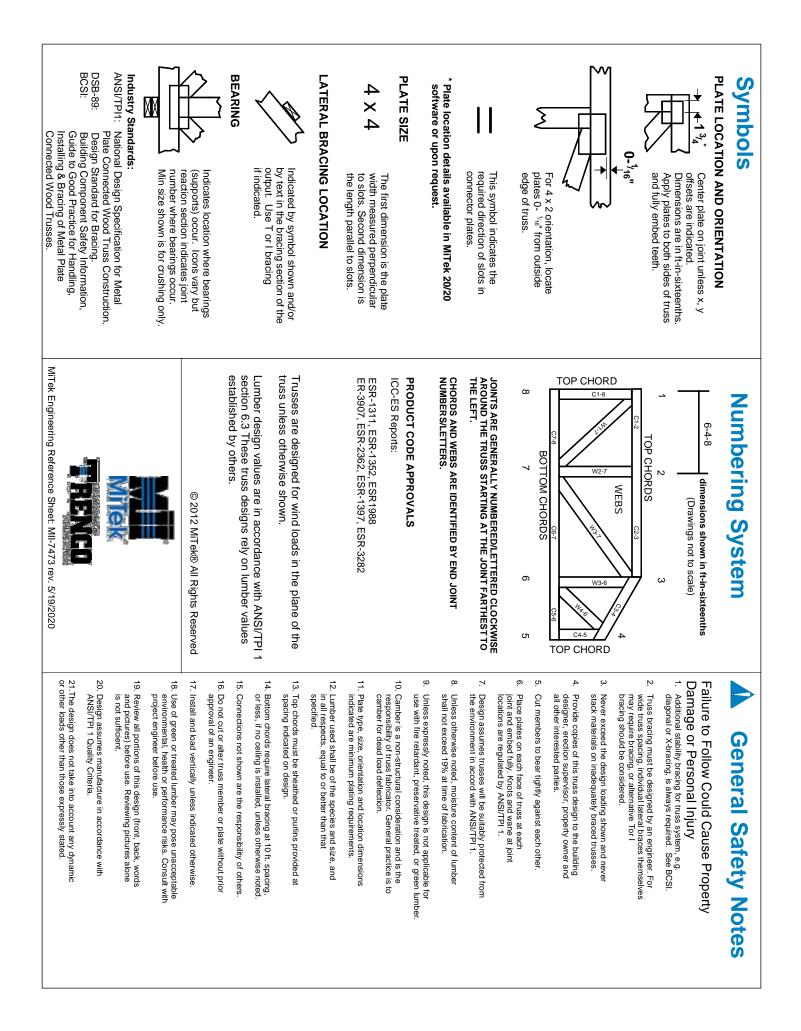
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

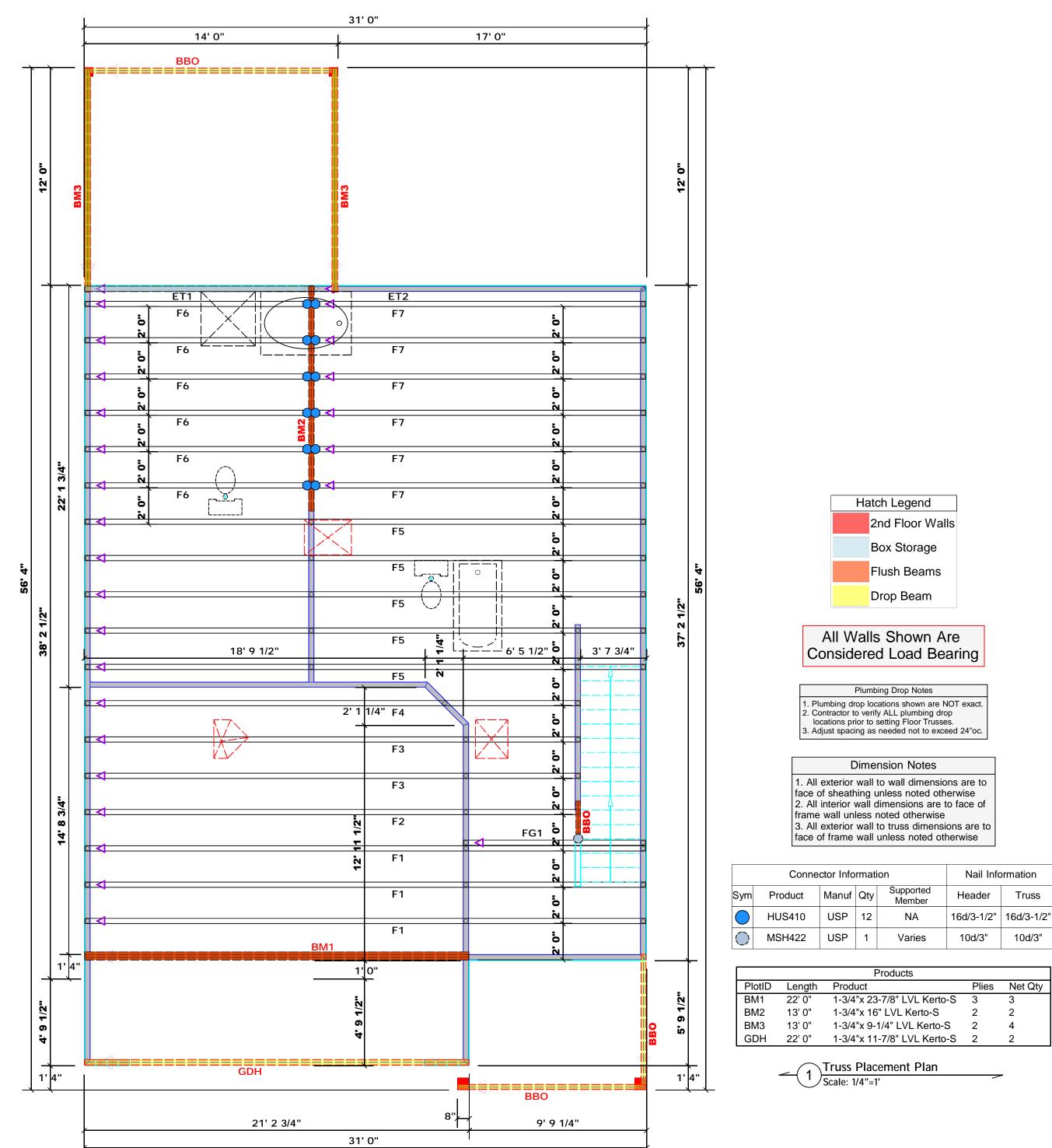
NOTES-

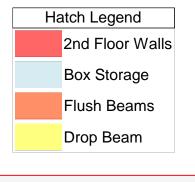
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

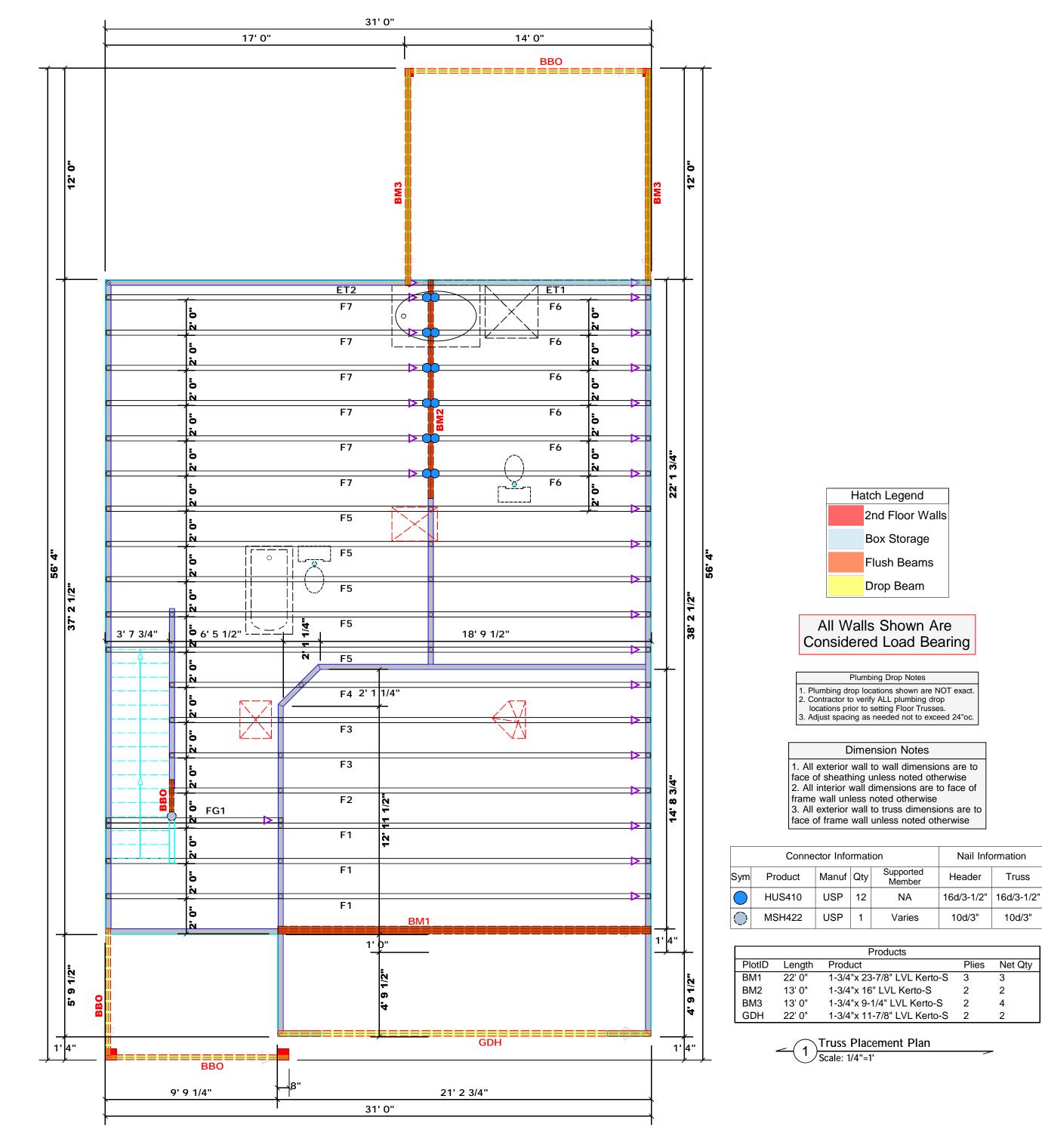
3) Gable requires continuous bottom chord bearing.

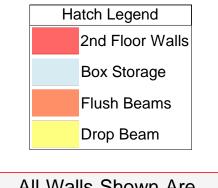

 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



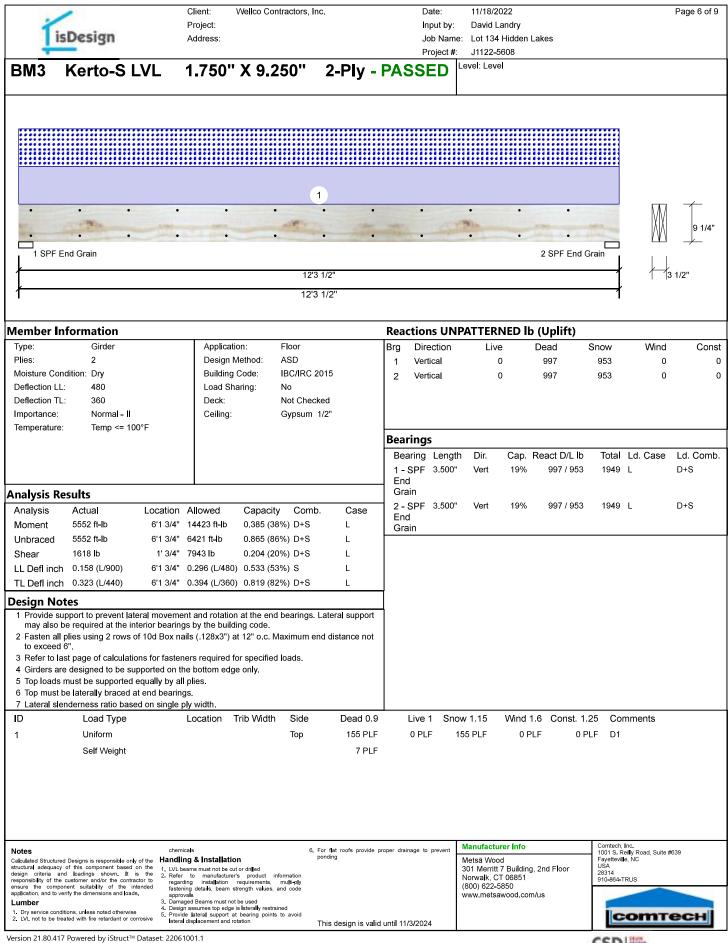


A= Indicates Left End of Truss (Reference Engineered Truss Drawing) Do NOT Erect Truss Backwards

LOAD CHART FOR (BANFE ON 1 ABLES OF SUMER OF JACK STUDS AGO	(8502.5(1) 4.(6))	BUILDER	Wellco Contractors, Inc.	СІТҮ / СО.	Spring Lake / Harnett	THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual building components to be incorporated into the building design at the specification of the building designer. See individual design sheets for each truss design identified on the placement drawing. The building designer	
HEADEWER 2 2 2 2 2 2 1 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		JOB NAME	Lot 134 Hidden Lakes	ADDRESS	46 Sugarberry Place	is responsible for temporary and permanent bracing of the roof and floor system and for the overall structure. The design of the truss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding bracing, consult BCSI-B1 and BCSI-B3 provided with the truss delivery package	соттесн
nin allo allo allo allo allo allo allo all		PLAN	Plan 10	MODEL	Floor	or online @ sbcindustry.com Bearing reactions less than or equal to 3000# are deemed to comply with the prescriptive Code requirements. The contractor shall refer to the attached Tables	ROOF & FLOOR
1700 1 2550 2 3400 2 5100 2 5100 3 7650 2	2 6600 2 3 10200 3	SEAL DATE	Seal Date	DATE REV.	11/18/22	(derived from the prescriptive Code requirements) to determine the minimum foundation size and number of wood studs required to support reactions greater than 3000# but not greater than 15000#. A registered design professional shall be retained to design the support system for any reaction that exceeds those	TRUSSES & BEAMS Reilly Road Industrial Park
6800 4 10200 4 8500 5 12750 5 10200 6 15300 6	5 17000 5	QUOTE #	Quote #	DRAWN BY	David Landry	specified in the attached Tables. A registered design professional shall be retained to design the support system for all reactions that exceed 15000#.	Fayetteville, N.C. 28309 Phone: (910) 864-8787
11900 7 13600 8 15300 9		JOB #	J1122-5608	SALES REP.	Lenny Norris	Signature David Landry	Fax: (910) 864-4444

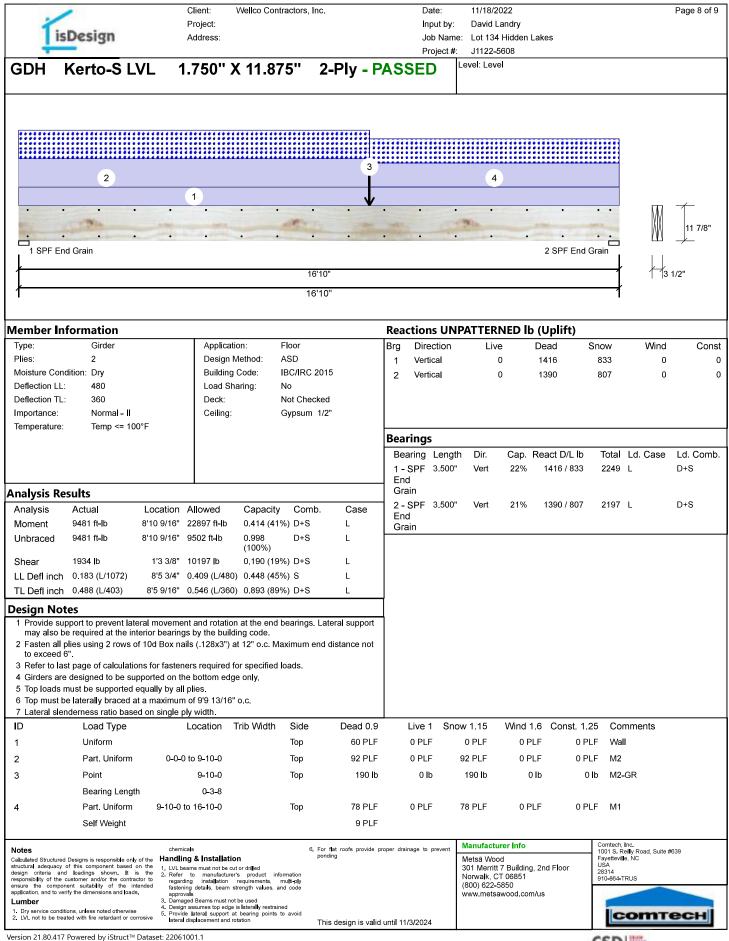
A= Indicates Left End of Truss (Reference Engineered Truss Drawing) Do NOT Erect Truss Backwards

(0.4	HART FOR JAC) WEB ON TABLES (\$502.5(1) J F JACK STUDG ACQUIRADS &	4.0-0	BUILDER	Wellco Contractors, Inc.	CITY/CO.	Spring Lake / Harnett	THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual building components to be incorporated into the building design at the specification of the building designer. See individual design sheets for each truss design identified on the placement drawing. The building designer	
ND CON	FEADER/STROER	0 00 00 60 60 60 60 60 60	JOB NAME	Lot 134 Hidden Lakes	ADDRESS	46 Sugarberry Place	is responsible for temporary and permanent bracing of the roof and floor system and for the overall structure. The design of the truss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding bracing, consult BCSI-B1 and BCSI-B3 provided with the truss delivery package	соттесн
Che size (1 c) (1	n Handler Liter (1984) Liter (1984)	HANO	PLAN	Plan 10	MODEL	Floor	or online @ sbcindustry.com Bearing reactions less than or equal to 3000# are deemed to comply with the prescriptive Code requirements. The contractor shall refer to the attached Tables	ROOF & FLOOR
1700 1 3400 2 5100 3	2550 1 5100 2 7650 3	3400 ! 6600 2 10200 3	SEAL DATE	Seal Date	DATE REV.	11/18/22	(derived from the prescriptive Code requirements) to determine the minimum foundation size and number of wood studs required to support reactions greater than 3000# but not greater than 15000#. A registered design professional shall be retained to design the support system for any reaction that exceeds those	TRUSSES & BEAMS Reilly Road Industrial Park
6800 4 8500 5 10200 6	10200 4 12750 5 15300 6	13600 4 17000 5	QUOTE #	Quote #	DRAWN BY	David Landry	specified in the attached Tables. A registered design professional shall be retained to design the support system for all reactions that exceed 15000#. David Landry	Fayetteville, N.C. 28309 Phone: (910) 864-8787
11900 7 13600 8 15300 9			JOB #	J1122-5608	SALES REP.	Lenny Norris	Signature David Landry	Fax: (910) 864-4444


1		Clie Pro	ent: Wellco ject:	Contractors, Inc.		Date Input	by: David La	ndry			Page 1 of
IS	Design	Ado	dress:			Job I Proje		Hidden Lakes			
BM1 I	Kerto-S LVI	17	50" X 24	.000" 3.	-Ply - P		Level: Level				
			00 A 24								
										e e	
					5			••••••		• •	
						6					
	2	<u> </u>	· · ·		<u> </u>				· · · · · · · · · · · · · · · · · · ·		
-										E M	
	C. C. Then		•	att The			TT The				2'
	The state of the s					1000				. Ш	
1 SPF End	d Grain							2 SPF	End Grain		
1				21'1 3/4	t"					- / / 1:	5 1/4"
ł				21'1 3/4	4''					7	
/lember In	formation					Reactions	UNPATTERN	IED lb (Uplift	:)		
Type: Plies:	Girder 3		Application: Design Method	Floor ASD		Brg Direct			Snov		Con
Moisture Con			Building Code:	IBC/IRC 201	5	1 Vertica 2 Vertica			366 557		
Deflection LL:	480		Load Sharing:	Yes		2 101100					
Deflection TL: Importance:	: 360 Normal – II		Deck: Ceiling:	Not Checked Gypsum 1/2							
Temperature:	Temp <= 100°F	=	Celling.	Gypsull 1/2							
						Bearings					
						Bearing Lo	-	Cap. React D/I		otal Ld. Case	Ld. Com D+S
						1 - SPF 3. End	500" Vert	50% 4121/3	00/ /	788 L	D+5
nalysis Re	sults					Grain	E00" \/ort	750/ 6020 / 5	E7E 11	206	D+S
Analysis		Location Allo	•	=	Case	2-SPF 3. End	500" Vert	75% 6030 / 5	575 11	506 L	D+3
Moment Unbraced	61594 ft ⊣ b 61594 ft ⊣ b	12' 131 12' 618		9 (47%) D+S 7 D+S	L	Grain					
	10110 1	0140 4 48 000	(100)		i						
Shear		8'10 1/4" 309 '3 15/16" 0 5	18 (L/480) 0.37	7 (33%) D+S 9 (38%) S	L						
	()		90 (L/360) 0.59	. ,	L						
esign Not	tes										
	pport to prevent latera e required at the interi				eral support						
2 Fasten all p	olies using 3 rows of 1		-		distance not						
to exceed 6 3 Refer to las	o". st page of calculations	for fasteners	required for spec	ified loads.							
4 Concentrat present.	ed load fastener spec	ification is in a	ddition to hange	fasteners if a har	iger is						
	e designed to be suppo										
•	nust be supported equestion of the supported equestication of the support of the										
	nderness ratio based o			-ltile Oistle	Deedloo	16.54	0		+ 4.05	0	
ID 1	Load Type Tie-In Far	0-0-0 to 21	cation Trib Wi 1-1-12 1-0-0	dth Side Top	Dead 0.9 15 PSF	Live 1 40 PSF	Snow 1.15 0 PSF	Wind 1.6 Cons 0 PSF	0 PSF	Comments Floor	
1	Tie-In Near		1-1-12 0-0-0	Тор	15 PSF	40 PSF	0 PSF	0 PSF		Floor	
2	Part. Uniform	0-0-0 to 1		Near Face		0 PLF	188 PLF	0 PLF		M2	
3	Point	1	12-0-0	Near Face	431 lb	0 lb	431 lb	0 lb	0 lb	M2-GR	
ontinued on pa	age 2										
Notes		chemicals		6. For		oper drainage to pre			100	ntech, Inc. 1 S. Rei∎y Road, Suite :	#639
structural adequacy	Designs is responsible only of t of this component based on t loadings shown. It is t	the 1. LVL beams r	Installation must not be cut or driled manufacturer's produ		ing			Building, 2nd Floor	US/ 283	14	
esponsibility of the ensure the compor	customer and/or the contractor tent suitability of the intend rify the dimensions and loads.	to regarding led fastening de	manufacturer's produ installation requireme stails, beam strength va	nts, multi-ply			Norwalk, CT (800) 622-58	350	910	-864-TRUS	
	my are dimensions and loads.	approvals 3. Damaged Be	eams must not be used				www.metsav	vood.com/us			
Lumber	ions, unless noted otherwise	Design assu	mes top edge is laterally rai support at bearing	restrained							

	-	Client: Wellco Contra	ctors, Inc.		Date:	11/18/2	2022		Page 2 of 9
4		Project:			Input b				0
8	isDesign	Address:					4 Hidden Lakes		
-					Project				
BM1	Kerto-S LVL	1.750" X 24.000)" 3-	Ply - PA	SSED	Level: Lev	rel		
•••••	2	1	••••		6	4			
			•	<u> </u>			• • •		Π \uparrow
									MM
•					• •	-		• •	2'
			-					1111	
1 SPF	End Grain						2 SPF E	End Grain	
			21'1 3/4"						5 1/4"
									5 1/4
1			21'1 3/4					1	
	I from page 1	La carta da Tribuna du	0.1	Durilaa					
ID	Load Type		Side	Dead 0.9		Snow 1.15	Wind 1.6 Cons		ients
4	Part. Uniform		Near Face	52 PLF	0 PLF	52 PLF	0 PLF	0 PLF M1	
5	Point		Тор	2156 lb	0 lb	2156 lb	0 lb	0 lb B1-GR	
	Bearing Length	0-3-8	-	100 DI 5		100 51 5			
6	Part. Uniform	12-0-0 to 21-1-12	Тор	429 PLF	0 PLF	429 PLF	0 PLF	0 PLF A2	
	Self Weight			28 PLF					
Notes		chemicals	6. For fla	at roofs provide prope	er drainage to preven	nt Manufact	urer Info	Comtech, Inc.	Road, Suite #639
Calculated Strue	ctured Designs is responsible only of the uacy of this component based on the	Handling & Installation	pondir	,		Metsä Wo		Fayetteville, No USA	C
design criteria responsibility of	and loadings shown. It is the for the customer and/or the contractor to	 Refer to manufacturer's product inform regarding installation requirements, mu 	ti-ply			Norwalk, (28314 910-864-TRUS	\$
ensure the co application, and	omponent suitability of the intended to verify the dimensions and loads.	fastening details, beam strength values, and approvals	code			(800) 622 www.mets	-5850 awood.com/us		
Lumber 1. Dry service	conditions, unless noted otherwise	 Damaged Beams must not be used Design assumes top edge is laterally restrained Provide lateral support at bearing points to a 	avoid					lass	macul
2. LVL not to b	be treated with fire retardant or corrosive	ateral displacement and rotation		design is valid un	til 11/3/2024			CO	тесн
Version 21.80	.417 Powered by iStruct™ Datas	set: 22061001.1						CODI	NW

-	Client: Wellco Contractors	, Inc. [Date:	11/18/2022	Page 3 of 9
-	Project:		Input by:	David Landry	
isDesign	Address:		Job Name:	Lot 134 Hidden Lakes	
÷		F	Project #:	J1122-5608	
	4 75011 ¥ 24 0001			evel: Level	
BM1 Kerto-S LVL	1.750" X 24.000"	3-Ply - PASSE	ן ע		
		1			
		\checkmark			,
· · · · ·		· · · · · ·	•	• • • •	$\overline{\cdot}$
					5
	• • • • •	• • • •	·	• • • • • •	· 21 2'
			•		
1 SPF End Grain				2 SPF End	Grain (
/	2	414 0741			
	2	1'1 3/4"			5 1/4
1	21	1'1 3/4"			
Multi-Ply Analysis					
Fasten all plies using 3 rows of 1	10d Roy pails (128v2") at 12"	o c avcont for ragions	covorod	by concentrated lead fa	stoning
			covereu	by concentrated load la	stering.
Nail from both sides. Maximum		D.			
Capacity 88.8					
	7 PLF 4 PLF				
Yield Limit per Fastener 94.1					
Yield Mode IV					
Edge Distance 1 1/2	2"				
Min. End Distance 3"					
Load Combination D+S					
Duration Factor 1.15					
Concentrated Load					
Featon at concentrated side loss	d at 12 0 0 with a				
Fasten at concentrated side load					
minimum of (8) – 10d Box nails					4-
pattern shown. Repeat fasteners	s on both sides.	in/wax tastener distar	ices for	Concentrated Side Loa	as
Capacity 76.4		Min. 3"-+	++-1	Min. 1 1/4"	
Load 574.		+			
Total Yield Limit 752.0		1/2"			
Cg 0.999 Yield Limit per Fastener 94.1			•		
Yield Limit per Fastener 94.1 Yield Mode IV	ID.	Min. 11	/4"	0\/0	0.001
Load Combination D+S	102	· ·		° V °	
Duration Factor 1.15	1.0	n. 3"		0 X 0	
		- Min. 5'	"	° a / La °	
				o / \ o	
			•	0 0	• •
				Min. 3"	
		-	-Max. 12	Max.	12"
Notes	chemicals	6. For flat roofs provide proper drainage t	to prevent	Manufacturer Info	Comtech, Inc.
Calculated Structured Designs is responsible only of the H	andling & Installation	ponding		Metsä Wood	1001 S. Reilly Road, Suite #639 Fayetteville, NC
structural adequacy of this component based on the 1 design criteria and loadings shown. It is the 2	LVL beams must not be cut or drilled Refer to manufacturer's product information			301 Merritt 7 Building, 2nd Floor	USA 28314
responsibility of the customer and/or the contractor to ensure the component suitability of the intended	regarding installation requirements, multi-ply fastening details, beam strength values, and code			Norwalk, CT 06851 (800) 622-5850	910-864-TRUS
application, and to verify the dimensions and loads.	approvals Damaged Beams must not be used			www.metsawood.com/us	
1. Dry service conditions, unless noted otherwise 45	Design assumes top edge is laterally restrained Provide lateral support at bearing points to avoid				loomto out
2. LVL not to be treated with fire retardant or corrosive	lateral displacement and rotation	This design is valid until 11/3/20	24		соттесн
Version 21.80.417 Powered by iStruct [™] Dataset:	22061001.1				CCDI
					CSD


Project: Address: BM2 Kerto-S LVL 1.750'' X 1	6.000" 2-Ply -	Input by: David Landry Job Name: Lot 134 Hidden Lakes Project #: J1122-5608 PASSED Level: Level	1'4"
BM2 Kerto-S LVL 1.750" X 1	12'2 1/4"	Project #: J1122-5608 Level: Level	1'4"
2 1 SPF 1 SPF Member Information	12'2 1/4"	PASSED Level: Level	1'4"
2 1 SPF Member Information	12'2 1/4"		1'4"
I SPF Member Information	12'2 1/4"		1'4"
1 SPF	12'2 1/4"		1'4"
1 SPF	12'2 1/4"		1'4"
/	12'2 1/4"		1'4"
/	12'2 1/4"		1'4"
Aember Information			1'4"
/			1'4"
/			<u> </u>
/			
		[] 3 1/2	
	12'2 1/4"		2"
		ł	
Type: Girder Application:	<u>Eleve</u>	Reactions UNPATTERNED lb (Uplift)	
Plies: 2 Design Meth	Floor od: ASD	BrgDirectionLiveDeadSnowWind1Vertical3790134300	Cons (
Moisture Condition: Dry Building Cod		2 Vertical 3790 1343 0 0	(
Deflection LL: 480 Load Sharing Deflection TL: 360 Deck:	: No Not Checked		
Importance: Normal - II Ceiling:	Gypsum 1/2"		
Temperature: Temp <= 100°F			
		Bearings Bearing Length Dir. Cap. React D/L lb Total Ld. Case L	_d. Comb
			Lu. Comb D+L
			D+L
. nalysis Results Analysis Actual Location Allowed Ca	apacity Comb. Case		
•	121 (42%) D+L L		
	000 D+L L		
	00%) 409 (41%) D+L L		
LL Defl inch 0.134 (L/1054) 6'1 1/8" 0.294 (L/480) 0.4	155 (46%) L L		
TL Defl inch 0.181 (L/778) 6'1 1/8" 0.392 (L/360) 0.4	462 (46%) D+L L		
Design Notes			
 Provide support to prevent lateral movement and rotation at t may also be required at the interior bearings by the building of 			
2 Fasten all plies using 4 rows of 10d Box nails (.128x3") at 12 to exceed 6".	o.c. Maximum end distance no	ot	
3 Refer to last page of calculations for fasteners required for sp4 Girders are designed to be supported on the bottom edge on			
5 Top must be laterally braced at a maximum of 8'1 1/2" o.c.	y.		
6 Lateral slenderness ratio based on single ply width. ID Load Type Location Trib	Width Side Dead 0.	0.9 Live 1 Snow 1.15 Wind 1.6 Const. 1.25 Comments	
51			
	Near Face 124 PL		
Self Weight	12 PL	ιLF	
1 Uniform 2 Uniform	Far Face 84 PL Near Face 124 PL	PLF 250 PLF 0 PLF 0 PLF 0 PLF F6 PLF 372 PLF 0 PLF 0 PLF 0 PLF F7	

-	Client: Wellco Contractors	, Inc. Dat	e: 11/18/2022	Page 5 of 9
LinDesting	Project:		ut by: David Landry	
isDesign	Address:		Name: Lot 134 Hidden Lakes	
			ject #: J1122-5608 Level: Level	
BM2 Kerto-S LVL	1.750" X 16.000"	2-Ply - PASSED		
	• • •	• • •	• • •	M 1
	• • •	• • •		1'4"
			$\overline{\sqrt{\sqrt{2}}}$	M I.
1 SPF			2 SPF	
1	12'2 1/4"		1	13 1/2"
1	12'2 1/4"		1	
Multi-Ply Analysis				
Fasten all plies using 4 rows of 1	l0d Box nai l s (.128x3") at 12"	o.c Maximum end distan	ce not to exceed 6".	
Capacity 75.7	%			
	0 PLF 4 PLF			
Yield Limit per Fastener 81.9				
Yield Mode IV				
Edge Distance 1 1/2 Min. End Distance 3"				
Load Combination D+L				
Duration Factor 1.00				
Notes	chemicals	6. For flat roofs provide proper drainage to pr	revent Manufacturer Info	Comtech, Inc. 1001 S. Rei∎y Road, Suite #639
Calculated Structured Designs is responsible only of the structural adequacy of this component based on the	andling & Installation . LVL beams must not be cut or drilled	ponding	Metsä Wood 301 Merritt 7 Building, 2nd Floor	Fayetteville, NC USA
design criteria and loadings shown. It is the 2 responsibility of the customer and/or the contractor to	Refer to manufacturer's product information regarding installation requirements, multi-ply		Norwalk, CT 06851	28314 910-864-TRUS
ensure the component suitability of the intended application, and to verify the dimensions and loads.	fastening details, beam strength values, and code approvals		(800) 622-5850 www.metsawood.com/us	
1. Dry service conditions, unless noted otherwise 4	Damaged Beams must not be used Design assumes top edge is laterally restrained Provide lateral support at bearing points to avoid			соттесн
2. LVL not to be treated with fire retardant or corrosive	lateral displacement and rotation	This design is valid until 11/3/2024		CONTECH
Version 21.80.417 Powered by iStruct [™] Dataset:	22061001.1			CSD

isDesign	Client: Wellco Contractors Project: Address:	Inp Jot	te: 11/18/2022 ut by: David Landry o Name: Lot 134 Hidden Lakes oject #: J1122-5608	Page 7 of 9
BM3 Kerto-S LVL	1.750" X 9.250"	2-Ply - PASSE		
• • • •	• •	• • •	· · · ·	
1 SPF End Grain			2 SPF End C	
		2'3 1/2"		
	12	2'3 1/2"		I
Multi-Ply Analysis Fasten all plies using 2 rows of 10d Capacity 0.0 % Load 0.0 PLF Yield Limit per Foot 163.7 PLF Yield Limit per Fastener 81.9 lb. Yield Mode IV Edge Distance 1 1/2" Min. End Distance 3" Load Combination Duration Factor Duration Factor 1.00		o.c Maximum end distar	ace not to exceed 6".	
beign citiena and loadings shown, it is the responsibility of the customer and/or the contractor to ensure the component suitability of the intended application, and to verify the dimensions and loads. 2. Refer regar fasten approximation provide the suitability of the intended application, and to verify the dimensions and loads. 3. Dama J. Dry service conditions, unless noted otherwise S. Provide	ng & Installation aams must not be cut or drilled to manufacturer's product information fing installation requirements, multi-ply ing details, beam strength values, and code	6. For flat roofs provide proper drainage to p ponding This design is valid until 11/3/2024	vrevent Manufacturer Info Metsä Wood 301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851 (800) 622-5850 www.metsawood.com/us	Comtech, Inc. 1001 S. Relly Road, Suite #639 Fayetteville, NC USA 28314 910-864-TRUS

Version 21.80.417 Powered by iStruct™ Dataset: 22061001.1

	/		Client:	Wellco Contractor	s, Inc.	Date:	11/18/2022	Page 9 of 9
1	isDesign		Project: Address:				me: Lot 134 Hidden Lakes	
GDH	Kerto-S	LVL	1.750"	X 11.875"	2-Plv -	Project	#: J1122-5608 Level: Level	
					,			
· · ·	• •	•	• •	• •	• •	• •	· · · ·	
	• •	•	• •	• •		• •		<u> </u>
1 SPF	End Grain						2 SPF End	d Grain
					16'10"			3 1/2"
1					16'10''			1
Multi-Ply	Analysis							
Fasten all	-			(.128x3") at 12	' o.c Maximi	um end distance	not to exceed 6".	
Capacity Load		0.0 0.0	% PLF					
Yield Limit pe Yield Limit pe		163 81.9	.7 PLF 9 lb.					
Yield Mode		IV						
Edge Distand Min. End Dist		1 1/ 3"	2					
Load Combin	nation							
Duration Fac	tor	1.00	J					
Notos			chemicals		6 For flat roofe pro-	ride proper drainage to preven	Manufacturer Info	Comtech, Inc.
structural adequa	tured Designs is responsibl acy of this component ba	ased on the	Handling & Installa 1. LVL beams must not be	e cut or dri∎ed	ponding	Propor granage to bigogi	Metsä Wood 301 Merritt 7 Building, 2nd Floor	1001 S. Rei∎y Road, Suite #639 Fayetteville, NC USA 28314
responsibility of ensure the cor	and loadings shown the customer and/or the o mponent suitability of th o verify the dimensions and	It is the contractor to ne intended	 Refer to manufact regarding installatio fastening details, bear 	urer's product information n requirements, multi-ply m strength values, and code			Norwalk, CT 06851 (800) 622-5850	28314 910-864-TRUS
Lumber 1. Dry service co	onditions, unless noted othe	erwise	approvals 3. Damaged Beams must 4. Design assumes top e 5. Provide lateral suppo	dge is laterally restrained rt at bearing points to avoid			www.metsawood.com/us	соттесн
	treated with fire retardant	or corrosive	lateral displacement ar	nd rotation	This design is	valid until 11/3/2024		Connech

Version 21.80.417 Powered by iStruct™ Dataset: 22061001.1

RE: J1122-5608

Lot 134 Hidden Lakes

Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:

Customer: Project Name: J1122-5608 Lot/Block: Address: City:

Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014 Wind Code: N/A Roof Load: N/A psf

Design Program: MiTek 20/20 8.4 Wind Speed: N/A mph Floor Load: 55.0 psf

This package includes 10 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date
1	154207109	ET1	9/14/2022
2	154207110	ET2	9/14/2022
3	154207111	F1	9/14/2022
4	154207112	F2	9/14/2022
5	154207113	F3	9/14/2022
6	154207114	F4	9/14/2022
7	154207115	F5	9/14/2022
8	154207116	F6	9/14/2022
9	154207117	F7	9/14/2022
10	154207118	FG1	9/14/2022

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville.

Truss Design Engineer's Name: Gilbert, Eric

into the overall building design per ANSI/TPI 1, Chapter 2.

My license renewal date for the state of North Carolina is December 31, 2022 North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs

Gilbert, Eric

Job	Truss	Truss Type	Qty	Ply	Lot 134 Hidden Lakes
					154207109
J1122-5608	ET1	GABLE	1	1	
					Job Reference (optional)
Comtech, Inc, Fayettev	ille, NC - 28314,				6 2022 MiTek Industries, Inc. Wed Sep 14 14:14:34 2022 Page 1
		ID:UOEE	EAoAAmG	2AuoIN2O	4MtayeM4r-OFV_aFF_Zq3eY5MJIOv0h4lh3i1WdWsil1d1TpydhbZ
0 ₁ 1 ₇ 8					0 <u>1</u> 18
					Scale = 1:20.3

Plate Offs	1-0-0 1-0-0 ets (X,Y)	2-4-0 1-4-0 [5:0-1-8,Edge], [1	3-8-0 1-4-0 7:0-1-8.Edgel	5-0-0 1-4-0		-4-0 -4-0	+ 7-8- 1-4		-	9-0-0 1-4-0		10-4-0 1-4-0	<u> 11-8-</u> 1-4-0	
LOADING TCLL TCDL BCLL		SPACING Plate Grip Lumber D Rep Stres	- 2-0-0 DOL 1.00 OL 1.00	TC BC	0.06 0.01 0.03		DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 12	l/defl n/a n/a n/a	L/d 999 999 n/a		PLATES MT20	GRIP 244/190
BCDL	5.0		2015/TPI2014		rix-S		1012(01)	0.00	12	n/a	n/a		Weight: 59 lb	FT = 20%F, 11%E
LUMBER TOP CHC BOT CHC	ORD 2x4 S	P No.1(flat) P No.1(flat)					BRACING- TOP CHOR	RD		ral wood end verti	cals.	• •	applied or 6-0-0	oc purlins,

2x4 SP No.3(flat) 2x4 SP No.3(flat) WEBS OTHERS BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 12-4-0.

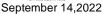
(lb) - Max Grav All reactions 250 lb or less at joint(s) 22, 12, 21, 20, 19, 18, 17, 16, 15, 14, 13

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

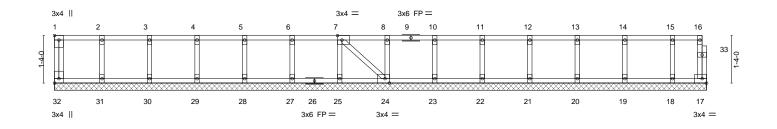
2) Plates checked for a plus or minus 1 degree rotation about its center.


3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.
Strongbacks to be attached to walls at their outer ends or restrained by other means.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rerection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job		Truss	Truss Type	Qty	Ply	Lot 134 Hidden Lakes			
J1122-5608		ET2	GABLE	1	1	154207110			
						Job Reference (optional)			
Comtech, Inc,	Fayettev	ille, NC - 28314,		8.430 s Jan 6 2022 MiTek Industries, Inc. Wed Sep 14 14:14:36 2022 Page 1					
			ID:UOEEAoAAmG2AuoIN2O4MtayeM4r-Ledk?wGE5RJMnPWitpxUmVq1WWi_5QL?CL68Xiydhb						

0-<u>1</u>-8

Scale = 1:30.4

<u>1-4-0</u> 	2-8-0 4-0-0 1-4-0 1-4-0 [1:Edge,0-1-8], [7:0-1-8]	1-4-0 1-		0-4-0 <u>10-8-0</u> -4-0 <u>1-4-0</u>	12-0-0 1-4-0	13-4-0 14-8-0 1-4-0 1-4-0		-4-0 <u> 18-3-8</u> 4-0 0-11-8
LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	(/	l/defl L/d	PLATES	GRIP
TCLL 40.0 TCDL 10.0	Plate Grip DOL Lumber DOL	1.00 1.00	TC 0.06 BC 0.01	Vert(LL) Vert(CT)	n/a - n/a -	n/a 999 n/a 999	MT20	244/190

BCLL BCDL	0.0 5.0	Rep Stress Incr YES Code IRC2015/TPI2014	WB 0.03 Matrix-S	Horz(CT) 0.0	0 17	n/a	n/a	Weight: 84 lb	FT = 20%F, 11%E
LUMBER TOP CHC BOT CHC WEBS OTHERS	ORD 2x4 SI ORD 2x4 SI 2x4 SI	P No.1(flat) P No.1(flat) P No.3(flat) P No.3(flat)		BRACING- TOP CHORD BOT CHORD	except	end ver	ticals.	rectly applied or 6-0-0 o or 10-0-0 oc bracing.	oc purlins,

REACTIONS. All bearings 18-3-8.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 32, 17, 31, 30, 29, 28, 27, 25, 24, 23, 22, 21, 20, 19, 18

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

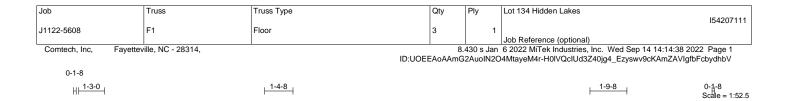
1) All plates are 1.5x3 MT20 unless otherwise indicated.

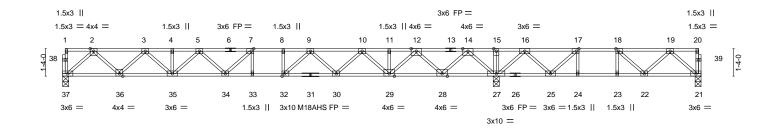
2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.


6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.
 Strongbacks to be attached to walls at their outer ends or restrained by other means.


7) CAUTION, Do not erect truss backwards.

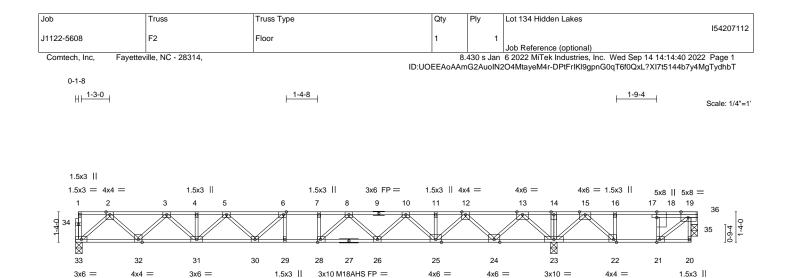
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rerection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

 	21-0-0					<u>30-11-0</u> 9-11-0		
Plate Offsets (X,	Y) [7:0-1-8,Edge], [17:0-1-8,Edge], [18:0-1						9-11-0	
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.92 BC 0.95 WB 0.69 Matrix-S	DEFL. ir Vert(LL) -0.32 Vert(CT) -0.44 Horz(CT) 0.07	33 33	l/defl >771 >569 n/a	L/d 480 360 n/a	PLATES MT20 M18AHS Weight: 162 lb	GRIP 244/190 186/179 FT = 20%F, 11%
BOT CHORD 2	2x4 SP No.1(flat) 2x4 SP No.1(flat) 2x4 SP No.3(flat)	· /	BRACING- TOP CHORD BOT CHORD	except	end vert	icals.	rectly applied or 2-2-0 or 2-2-0 or 2-2-0 oc bracing.	oc purlins,
N FORCES. (lb) -	(size) 37=0-3-8, 27=0-3-8, 21=0-3-8 Max Uplift 21=-133(LC 3) Max Grav 37=1017(LC 10), 27=2125(LC 1), 2 Max. Comp./Max. Ten All forces 250 (lb) or 2-3=-1879/0, 3-4=-3155/0, 4-5=-3155/0, 5-7- 9-10=-3227/0, 10-11=-2076/0, 11-12=-2076/ 15-16=0/2520, 16-17=-224/1413, 17-18=-67	less except when shown. 3785/0, 7-8=-3906/0, 8-9 0, 12-14=-260/184, 14-15=						
BOT CHORD WEBS	15-16=0/25/20, 16-17=-224/1413, 17-16=-60 36-37=0/1105, 35-36=0/2622, 34-35=0/3611 29-30=0/2788, 28-29=0/1267, 27-28=-1137/ 23-24=-831/671, 22-23=-831/671, 21-22=-12 2-37=-1469/0, 2-36=0/1076, 3-36=-1034/0, 3 12-28=-1434/0, 12-29=0/1134, 10-29=-1001, 7-34=-420/202, 9-30=-636/0, 9-32=-49/665, 17-25=-1104/0, 19-21=-607/171, 19-22=-34	, 33-34=0/3906, 32-33=0/3 0, 25-27=-1825/0, 24-25=- 9/457 -35=0/724, 14-27=-1842/0 0, 10-30=0/641, 5-35=-62 8-32=-268/0, 16-27=-1091	831/671, , 14-28=0/1457, 1/0, 5-34=-20/377, /0, 16-25=0/862,					
2) All plates are M	17-24=0/393 oor live loads have been considered for this d MT20 plates unless otherwise indicated. 3x4 MT20 unless otherwise indicated.	esign.						ABA

3) All plates are 3x4 MT20 unless otherwise indicated.

4) Plates checked for a plus or minus 1 degree rotation about its center.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 133 lb uplift at joint 21.


6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

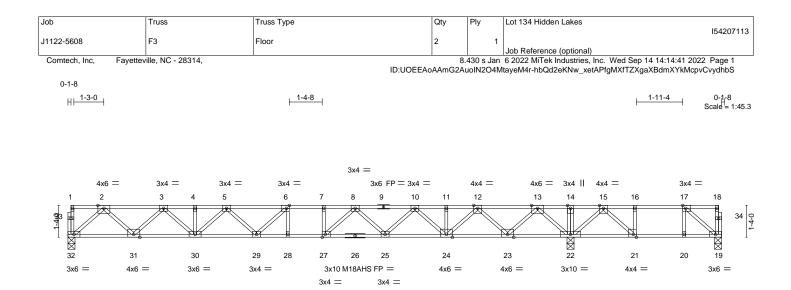
7) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters shown, and is for an individual building component, not building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ocliapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rection and bracing of trusses sand truss systems, see **ANSUTP1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

		<u>21-0-0</u> 21-0-0			6-3-12	
Plate Offsets (X,Y)	[6:0-1-8,Edge], [18:0-3-0,0-0-0], [19:0-3	-12,Edge], [21:0-1-8,Edg	e], [22:0-1-8,Edge], [28:0)-1-8,Edge]		
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.78 BC 0.89 WB 0.69 Matrix-S	DEFL. in Vert(LL) -0.30 Vert(CT) -0.41 Horz(CT) 0.07	29 >842 48 29 >618 36		GRIP 244/190 186/179 FT = 20%F, 11%E
BOT CHORD 2x4 WEBS 2x4	SP 2400F 2.0E(flat) SP No.1(flat) SP No.3(flat) SP No.2(flat)		BRACING- TOP CHORD BOT CHORD	except end verticals.	applied or 10-0-0 oc bracing,	•
Max	ize) 33=0-3-8, 23=0-3-8, 36=0-3-8 Uplift 36=-315(LC 3) Grav 33=1025(LC 10), 23=2032(LC 1), 3	36=181(LC 4)				
TOP CHORD 2-3 8- 14	x. Comp./Max. Ten All forces 250 (lb) o =-1896/0, 3-4=-3192/0, 4-5=-3192/0, 5-6: 0=-3319/0, 10-11=-2183/0, 11-12=-2183/ -15=0/2143, 15-16=-94/767, 16-18=-97/8	=-3838/0, 6-7=-3974/0, 7- 0, 12-13=-393/24, 13-14=)7, 18-19=-94/767	-8=-3974/0, =0/2143,			

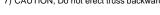
BOT CHORD $32 - 33 = 0/1115, \ 31 - 32 = 0/2648, \ 30 - 31 = 0/3655, \ 29 - 30 = 0/3974, \ 28 - 29 = 0/3974, \ 26 - 28 = 0/3737, \ 26 -$ 25-26=0/2886, 24-25=0/1387, 23-24=-783/0, 22-23=-1499/0, 21-22=-767/94 WEBS 18-21=-87/486, 19-21=-1012/98, 2-33=-1481/0, 2-32=0/1087, 3-32=-1045/0, 3-31=0/739,

5-31=-629/0, 5-30=-10/404, 6-30=-447/170, 13-23=-1811/0, 13-24=0/1446, 12-24=-1397/0, 12-25=0/1095, 10-25=-969/0, 10-26=0/613, 8-26=-596/0, 8-28=-84/649, 7-28=-282/8, 15-23=-997/0, 15-22=0/1138, 16-22=-613/0, 19-36=-192/295


NOTES-

- 1) Unbalanced floor live loads have been considered for this design.
- 2) All plates are MT20 plates unless otherwise indicated.
- 3) All plates are 3x4 MT20 unless otherwise indicated.
- Plates checked for a plus or minus 1 degree rotation about its center.
- 5) Bearing at joint(s) 36 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 315 lb uplift at joint 36.
 7) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.
- Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 8) CAUTION, Do not erect truss backwards.

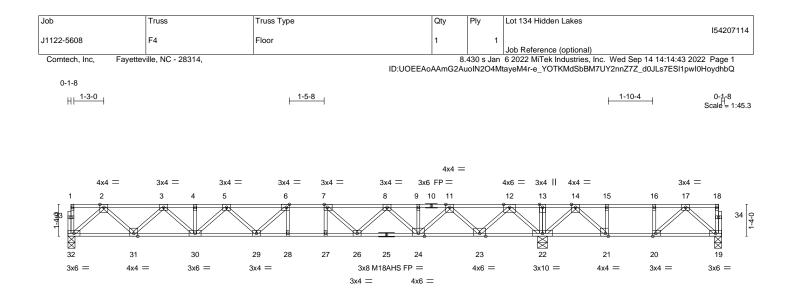
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclidates with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rector and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



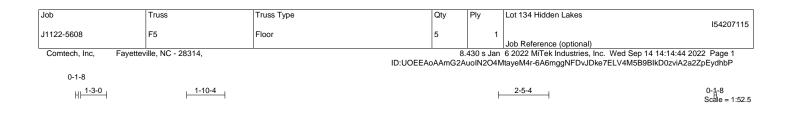
L		21-0-0					27-3-12	
Plate Offsets (X,	Y) [6:0-1-8,Edge], [17:0-1-8,Edge], [21:0-1	21-0-0 -8,Edge], [27:0-1-8,Edge]					6-3-12	
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.94 BC 0.94 WB 0.67 Matrix-S	DEFL. in Vert(LL) -0.35 Vert(CT) -0.47 Horz(CT) 0.08	28 28	l/defl >725 >532 n/a	L/d 480 360 n/a	PLATES MT20 M18AHS Weight: 144 lb	GRIP 244/190 186/179 FT = 20%F, 11%
BOT CHORD 2	2x4 SP No.1(flat) 2x4 SP No.1(flat) 2x4 SP No.3(flat)		BRACING- TOP CHORD BOT CHORD	except e	nd vertion	cals.	rectly applied or 2-2-0 o	oc purlins,
r	(size) 32–0-3-8, 22–0-3-8, 19=0-3-8 Max Uplift 19=-208(LC 3) Max Grav 32=1053(LC 3), 22=1919(LC 1), 19 Max. Comp./Max. Ten All forces 250 (lb) or 2-3=-1957/0, 3-4=-3312/0, 4-5=-3312/0, 5-6= 8-10=-3625/0, 10-11=-2545/0, 11-12=-2545/ 14-15=0/1732, 15-16=-141/507, 16-17=-141/ 31-32=0/1146, 30-31=0/2738, 29-30=0/3802	2 less except when shown. 4019/0, 6-7=-4201/0, 7-8: 0, 12-13=-817/0, 13-14=0/ /507	1732,					
WEBS	24-25=0/3219, 23-24=0/1781, 22-23=-392/0 19-20=-507/141 2-32=-1524/0, 2-31=0/1128, 3-31=-1086/0, 3 6-29=-496/151, 13-22=-1784/0, 13-23=0/141 10-24=-934/0, 10-25=0/581, 8-25=-560/0, 8- 16-21=-475/0, 17-19=-179/671	, 21-22=-1105/0, 20-21=-5 -30=0/780, 5-30=-666/0, 5 6, 12-23=-1361/0, 12-24=0	07/141, -29=0/432, 0/1057,					
 2) All plates are I 3) All plates are ' 4) Plates checked 	oor live loads have been considered for this do MT20 plates unless otherwise indicated. 1.5x3 MT20 unless otherwise indicated. d for a plus or minus 1 degree rotation about i anical connection (by others) of truss to bearin	ts center.	nding 208 lb unlift at ioin	t 19			ASH C	ABOL

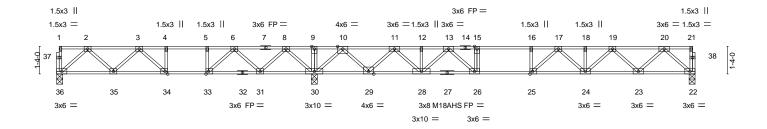
5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 208 lb uplift at joint 19.
6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X Strongbacks to be attached to walls at their outer ends or restrained by other means.


7) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters shown, and is for an individual building component, not building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent locality possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rection and bracing of trusses systems, see **ANSUTP1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


		<u>19-10-0</u> 19-10-0				27-3-12 7-5-12	
Plate Offsets (X,Y)	[6:0-1-8,Edge], [7:0-1-8,Edge], [20:0-1-4	3,Edge], [21:0-1-8,Edge]					
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.92 BC 1.00 WB 0.63 Matrix-S	Vert(LL) -0.29	(loc) l/defl 28 >824 28-29 >602 22 n/a	L/d 480 360 n/a	PLATES MT20 M18AHS Weight: 144 lb	GRIP 244/190 186/179 FT = 20%F, 11%E
BOT CHORD 2x4 SI	P No.1(flat) P No.1(flat) P No.3(flat)		BRACING- TOP CHORD BOT CHORD	except end vert	cals.	ectly applied or 2-2-0 o	oc purlins,
Max L Max C FORCES. (lb) - Max. TOP CHORD 2-3= 8-9= 14-1	 2e) 32=0-3-8, 22=0-4-15, 19=0-3-8 Jplift 19=-138(LC 3) Grav 32=991(LC 10), 22=1840(LC 1), 19 Comp./Max. Ten All forces 250 (lb) or s-1822/0, 3-4=-3042/0, 4-5=-3042/0, 5-6= -2378/0, 9-11=-2378/0, 11-12=-786/0, 1: 5=-356/583, 15-16=-356/583, 16-17=-35 	less except when shown -3616/0, 6-7=-3700/0, 7- 2-13=0/1644, 13-14=0/16 66/583	8=-3318/0, 44,				
24-2 19-2 WEBS 2-32	\$2=0/1075, 30-31=0/2538, 29-30=0/3473 26=0/2971, 23-24=0/1683, 22-23=-376/0 20=-189/288 =-1429/0, 2-31=0/1038, 3-31=-996/0, 3- 3=-400/216, 12-22=-1687/0, 12-23=0/132	, 21-22=-1119/0, 20-21=- 30=0/685, 5-30=-586/0, 5	583/356, -29=-18/347,				
	4=-825/0, 8-26=0/562, 7-26=-710/0, 7-27 21=-486/0, 17-19=-380/250, 17-20=-536/		, 14-21=0/957,				
 2) All plates are MT20 3) All plates are 1.5x3 4) Plates checked for 3 5) Provide mechanica 6) Recommend 2x6 st 	ve loads have been considered for this de plates unless otherwise indicated. MT20 unless otherwise indicated. a plus or minus 1 degree rotation about i l connection (by others) of truss to bearin trongbacks, on edge, spaced at 10-0-0 c attached to walls at their outer ends or re	ts center. Ig plate capable of withstate and fastened to each to			4		


7) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters shown, and is for an individual building component, not building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ocliapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rection and bracing of trusses sand truss systems, see **ANSUTP1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

H	<u>12-5-12</u> 12-5-12		<u>30-11-0</u> 18-5-4
Plate Offsets (X,Y)	[25:0-1-8,Edge], [33:0-1-8,Edge], [34:0	1-8,Edge]	
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCodeIRC2015/TPI2014	CSI. TC 0.91 BC 0.96 WB 0.58 Matrix-S	DEFL. in (loc) l/defl L/d Vert(LL) -0.28 24-25 >786 480 MT20 244/190 Vert(CT) -0.38 24-25 >585 360 M18AHS 186/179 Horz(CT) 0.05 22 n/a n/a Weight: 161 lb FT = 20%F, 114
BOT CHORD 2x4 SP	P No.1 (flat) P No.1 (flat) P No.3(flat)		BRACING- TOP CHORD Structural wood sheathing directly applied or 2-2-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 2-2-0 oc bracing.
(e) 30=0-3-8, 36=0-3-8, 22=0-3-8 Grav 30=1987(LC 1), 36=594(LC 3), 22=	=900(LC 4)	
TOP CHORD 2-3=- 9-10=	Comp./Max. Ten All forces 250 (lb) o -971/0, 3-4=-1303/292, 4-5=-1303/292, =0/1877, 10-11=-543/186, 11-12=-2004 5=-3010/0, 16-17=-3010/0, 17-18=-267/	5-6=-1303/292, 6-8=-485/ /0, 12-13=-2004/0, 13-15=	/899, 8-9=0/1877, =-3010/0,
BOT CHORD 35-36 29-30	6=0/628, 34-35=-70/1264, 33-34=-292/ D=-766/0, 28-29=0/1368, 26-28=0/2506 3=0/972	303, 31-33=-627/966, 30)-31=-1158/0,
WEBS 2-36= 6-33= 19-24	=834/0, 2-35=-18/476, 3-35=-408/111, =0/818, 3-34=-346/53, 5-33=-389/0, 20- 4=0/573, 10-30=-1616/0, 10-29=0/1225 i6=0/905, 17-24=-370/0, 17-25=-216/35	22=-1292/0, 20-23=0/906 , 11-29=-1181/0, 11-28=0	o, 19-23=-877/0,
NOTES-			

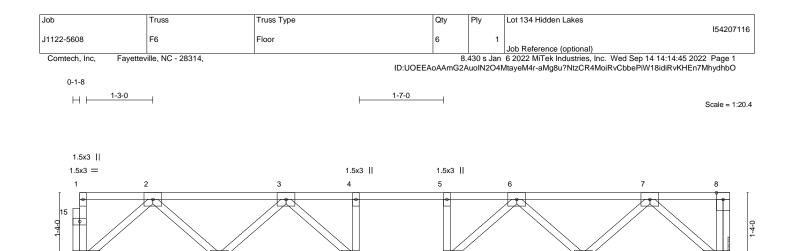
1) Unbalanced floor live loads have been considered for this design.

2) All plates are MT20 plates unless otherwise indicated.

3) All plates are 3x4 MT20 unless otherwise indicated.

4) Plates checked for a plus or minus 1 degree rotation about its center.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.


6) CAUTION, Do not erect truss backwards.

September 14,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters shown, and is for an individual building component, not building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ocliapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rection and bracing of trusses sand truss systems, see **ANSUTP1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

12

			12-4-0			
			12-4-0			
Plate Offsets (X,Y)	[11:0-1-8,Edge], [12:0-1-8,Edge]					
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.27 BC 0.36 WB 0.27 Matrix-S	Vert(LL) -0.0	n (loc) l/defl L/d 6 10-11 >999 480 8 10-11 >999 360 2 9 n/a n/a	PLATES MT20 Weight: 66 lb	GRIP 244/190 FT = 20%F. 11%E
BCDL 5.0	Code IRC2013/1F12014	Watrix-3			weight. oo ib	FT = 20 %F, TT %E
LUMBER-TOP CHORD2x4 SP No.1(flat)BOT CHORD2x4 SP No.1(flat)WEBS2x4 SP No.3(flat)			BRACING- TOP CHORD BOT CHORD	Structural wood sheathing di except end verticals. Rigid ceiling directly applied	<i>y</i>	l oc purlins,

11

10

9 3x6 =

REACTIONS. (size) 14=0-3-8, 9=Mechanical Max Grav 14=658(LC 1), 9=665(LC 1)

____

 $\label{eq:FORCES.} {\ \ \ } (lb) \ - \ Max. \ Comp./Max. \ Ten. \ - \ All \ forces \ 250 \ (lb) \ or \ less \ except \ when \ shown.$

13

TOP CHORD 2-3=-1102/0, 3-4=-1638/0, 4-5=-1638/0, 5-6=-1638/0, 6-7=-1102/0 BOT CHORD 13-14=0/700, 12-13=0/1474, 11-12=0/1638, 10-11=0/1473, 9-10=0/70

HORD 13-14=0/700, 12-13=0/1474, 11-12=0/1638, 10-11=0/1473, 9-10=0/701 2-14=-930/0, 2-13=0/559, 3-13=-517/0, 7-9=-933/0, 7-10=0/559, 6-10=-516/0,

6-11=0/398, 3-12=0/398

NOTES-

WEBS

1) Unbalanced floor live loads have been considered for this design.

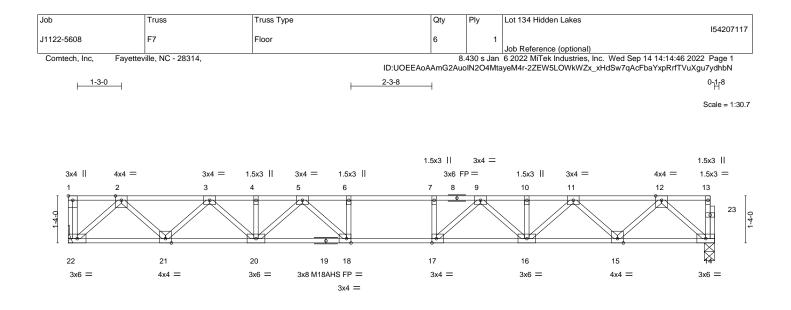
2) All plates are 3x4 MT20 unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Refer to girder(s) for truss to truss connections.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.


6) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss event and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUFTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Edenton, NC 27932

H			18-3-8 18-3-8			
Plate Offsets (X,	Y) [1:Edge,0-1-8], [17:0-1-8,Edge], [18:0-1		18-3-8			
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.66 BC 0.81 WB 0.49 Matrix-S	Vert(LL) -0.24	(loc) l/defl L/d 18-20 >885 480 18-20 >658 360 14 n/a n/a	PLATES GRIP MT20 244/190 M18AHS 186/179 Weight: 96 lb FT = 20%F, 11%E	
BOT CHORD	2x4 SP No.1(flat) 2x4 SP No.1(flat) 2x4 SP No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing d except end verticals. Rigid ceiling directly applied	directly applied or 6-0-0 oc purlins, I or 10-0-0 oc bracing.	
REACTIONS.	(size) 22=Mechanical, 14=0-3-8 Max Grav 22=992(LC 1), 14=986(LC 1)					
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-1812/0, 3-4=-3034/0, 4-5=-3034/0, 5-6=-3661/0, 6-7=-3661/0, 7-9=-3661/0, 9-10=-3034/0, 10-11=-3034/0, 11-12=-1811/0 BOT CHORD 21-22=0/1071, 20-21=0/2523, 18-20=0/3407, 17-18=0/3661, 16-17=0/3407, 15-16=0/2523, 14-15=0/1071 WEBS 2-22=-1426/0, 2-21=0/1030, 3-21=-989/0, 3-20=0/696, 12-14=-1423/0, 12-15=0/1030, 11-15=-988/0, 11-16=0/695, 9-16=-507/0, 9-17=-40/665, 5-20=-507/0, 5-18=-40/665,						
NOTES-	6-18=-338/0, 7-17=-338/0					

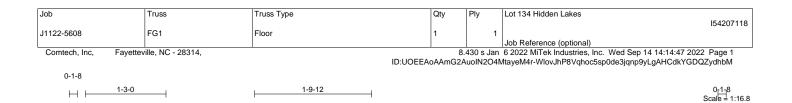
1) Unbalanced floor live loads have been considered for this design.

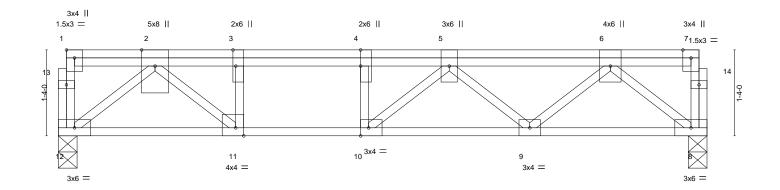
2) All plates are MT20 plates unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Refer to girder(s) for truss to truss connections.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.


Strongbacks to be attached to walls at their outer ends or restrained by other means.


6) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouckling of individual truss evaluations, see **EXPERTING ADDITENT ADDITENT ADDITENT Content ADDITENT**

ŀ	2-9-0 2-9-0			10-0-12 7-3-12			
Plate Offsets (X,Y)	[1:Edge,0-1-8], [3:0-3-0,Edge], [4:0-3-0	,Edge], [10:0-1-8,Edge], [11:	0-1-8,Edge]				
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr NO	CSI. TC 0.48 BC 0.58 WB 0.54	DEFL. Vert(LL) -0.0 Vert(CT) -0.1 Horz(CT) 0.0	07 9-10 > 0 9-10 >	/defl L/d 999 480 999 360 n/a n/a	PLATES MT20	GRIP 244/190
BCDL 5.0	Code IRC2015/TPI2014	Matrix-S	1012(01) 010	2 0	nija nija	Weight: 67 lb	FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat) WEBS 2x4 SP No.3(flat)		BRACING- TOP CHORD BOT CHORD	except en	wood sheathing dire d verticals. ng directly applied o	ectly applied or 6-0-0 r 10-0-0 oc bracing.) oc purlins,	
REACTIONS. (size Max G	e) 12=0-3-8, 8=0-3-8 irav 12=691(LC 1), 8=775(LC 1)						
()	Comp./Max. Ten All forces 250 (lb) of 1549/0, 3-4=-1549/0, 4-5=-1549/0, 5-6=						

BOT CHORD

11-12=0/713, 10-11=0/1549, 9-10=0/1949, 8-9=0/866 WEBS 2-12=-922/0, 2-11=0/1124, 3-11=-659/0, 6-8=-1124/0, 6-9=0/771, 5-9=-698/0,

5-10=-612/29, 4-10=-12/362

NOTES-

1) Unbalanced floor live loads have been considered for this design.

- 2) Plates checked for a plus or minus 1 degree rotation about its center.
- 3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

4) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 400 lb down at 6-4-0 on top

chord. The design/selection of such connection device(s) is the responsibility of others.

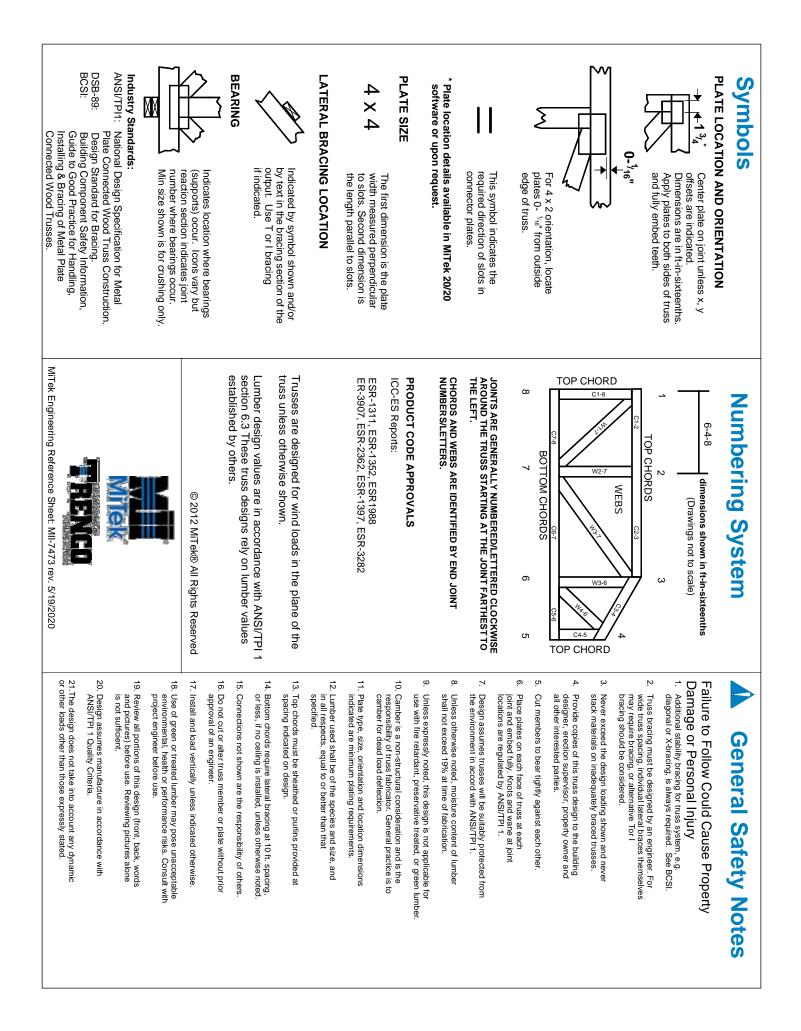
5) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf)

Vert: 8-12=-10, 1-7=-100 Concentrated Loads (lb)


Vert: 5=-400(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

