

RE: J1122-5609 Wellco/Lot 121 Hidden Lakes/Harnett Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:

Customer: Project Name: J1122-5609 Lot/Block: Address: City:

Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014 Wind Code: ASCE 7-10 Roof Load: 40.0 psf Design Program: MiTek 20/20 8.4 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 24 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	151460543	A1	4/19/2022	21	151460563	VA4	4/19/2022
2	151460544	A2	4/19/2022	22	151460564	VA5	4/19/2022
3	151460545	A2GE	4/19/2022	23	151460565	VD1	4/19/2022
4	151460546	A3	4/19/2022	24	151460566	VD2	4/19/2022
5	151460547	A4	4/19/2022				
6	151460548	A5	4/19/2022				
7	151460549	B1	4/19/2022				
8	151460550	B1GE	4/19/2022				
9	151460551	B2	4/19/2022				
10	151460552	C1	4/19/2022				
11	151460553	C1A	4/19/2022				
12	151460554	C1GE	4/19/2022				
13	151460555	C2	4/19/2022				
14	151460556	C3	4/19/2022				
15	151460557	D1	4/19/2022				
16	151460558	D1GE	4/19/2022				
17	151460559	D2GDR	4/19/2022				
18	151460560	VA1	4/19/2022				
19	151460561	VA2	4/19/2022				
20	151460562	VA3	4/19/2022				

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision

based on the parameters provided by Comtech, Inc - Fayetteville.

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2022

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Gilbert, Eric

	12-4-14 12-4-14		24-3-2 11-10-4		27-11-0 3-7-14	-	36-8-0 8-9-0	1
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.49	Vert(LL)	-0.25 11-14	>999	360	MT20	244/190
CDL 10.0	Lumber DOL 1.15	BC 0.65	Vert(CT)	-0.34 11-14	>988	240		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.55	Horz(CT)	0.02 10	n/a	n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL)	0.05 2-14	>999	240	Weight: 251 lb	FT = 20%

TOP CHORD

BOT CHORD

WFBS

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1

2x4 SP No.2 WFBS

REACTIONS. (size) 2=0-3-8, 10=0-3-8 Max Horz 2=-267(LC 10)

Max Uplift 2=-91(LC 12), 10=-123(LC 13)

Max Grav 2=1230(LC 19), 10=2118(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1683/189, 3-5=-1489/256, 5-7=-443/195, 7-8=-514/801

BOT CHORD 2-14=-150/1549. 11-14=0/675. 10-11=-419/492. 8-10=-554/540

WEBS 3-14=-612/340, 5-14=-172/1255, 5-11=-795/362, 7-11=-127/1187, 7-10=-1993/594

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-13 to 3-8-0, Interior(1) 3-8-0 to 18-4-0, Exterior(2) 18-4-0 to 22-8-13, Interior(1) 22-8-13 to 37-4-13 zone; cantilever right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 91 lb uplift at joint 2 and 123 lb uplift at joint 10.

6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 5-7-4 oc purlins.

5-11, 7-10

Rigid ceiling directly applied or 6-0-0 oc bracing.

1 Row at midpt

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	<u>12-4-14</u> <u>12-4-14</u>		24-3-2 11-10-4	+ 36 12-	-8-0 4-14	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.41 BC 0.72 WB 0.45 Matrix-S	DEFL. in (lo. Vert(LL) -0.25 8-1 Vert(CT) -0.35 1-1 Horz(CT) 0.06 1-1 Wind(LL) 0.06 1-1	c) l/defl L/d 1 >999 360 1 >999 240 7 n/a n/a 1 >999 240	PLATES GRIP MT20 244/190 Weight: 239 lb FT = 20%	6

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x6 SP No.1BOT CHORD2x6 SP No.1

BOT CHORD2x6 SP No.1WEBS2x4 SP No.2

REACTIONS. (size) 1=Mechanical, 7=0-3-8 Max Horz 1=261(LC 11)

Max Uplift 1=-83(LC 12), 7=-82(LC 13)

Max Grav 1=1699(LC 19), 7=1700(LC 20)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 1-2=-2682/474, 2-4=-2486/540, 4-6=-2477/539, 6-7=-2672/472

BOT CHORD 1-11=-274/2404, 8-11=-31/1551, 7-8=-272/2195

WEBS 2-11=-604/340, 4-11=-169/1219, 4-8=-167/1204, 6-8=-593/337

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-0-12 to 4-5-9, Interior(1) 4-5-9 to 18-4-0, Exterior(2) 18-4-0 to 22-8-13, Interior(1) 22-8-13 to 36-6-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 83 lb uplift at joint 1 and 82 lb uplift at joint 7.

7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 4-3-10 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek Affili 818 Soundside Road Edenton, NC 27932

	8-8-14	17-2-4	24-3-2	27-11-0	36-8-0		
	8-8-14	8-5-6	7-0-14	3-7-14	8-9-0		
LOADING (psf)	SPACING- 2-0-	CSI.	DEFL. in	(loc) l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.1	5 TC 0.48	Vert(LL) -0.12	14 >999	360	MT20	244/190
TCDL 10.0	Lumber DOL 1.1	5 BC 0.42	Vert(CT) -0.24	13-14 >999	240		
BCLL 0.0 *	Rep Stress Incr YE	S WB 0.96	Horz(CT) 0.14	10 n/a	n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL) 0.10	14 >999	240	Weight: 260 lb	o FT = 20%

BRACING-

WFBS

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x6 SP No.1BOT CHORD2x6 SP No.1WEBS2x4 SP No.2

REACTIONS. (size) 2=0-3-8, 10=

ACTIONS. (size) 2=0-3-8, 10=0-3-8 Max Horz 2=-267(LC 10)

Max Linii

Max Uplift 2=-90(LC 12), 10=-123(LC 13) Max Grav 2=1054(LC 19), 10=1988(LC 1)

Max Clav 2=100+(EC 13), 10=1000(EC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-2815/298, 3-5=-791/160, 5-7=-391/212, 7-8=-517/799

 BOT CHORD
 2-14=-309/2636, 13-14=-307/2626, 11-13=0/599, 10-11=-421/493, 8-10=-553/542

 WEBS
 5-11=-856/337, 3-14=-64/1628, 3-13=-2161/377, 7-11=-144/995, 7-10=-1762/611, 5-13=-70/703

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-13 to 3-8-0, Interior(1) 3-8-0 to 18-4-0, Exterior(2) 18-4-0 to 22-8-13, Interior(1) 22-8-13 to 37-4-13 zone; cantilever right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2 except (jt=lb) 10=123.

7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 4-5-3 oc purlins.

5-11. 3-13

Rigid ceiling directly applied or 6-0-0 oc bracing.

1 Row at midpt

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MISITPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	8-8-14	<u>17-2-4</u>	24-3-2	<u>32-9-4</u>	-+ <u>36-8-0</u>
	8-8-14	8-5-6	7-0-14	8-6-2	3-10-12
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.40 BC 0.54 WB 0.88 Matrix-S	DEFL. in Vert(LL) -0.17 Vert(CT) -0.35 Horz(CT) 0.20 Wind(LL) 0.14	(loc) l/defl L/d 14 >999 360 13-14 >999 240 10 n/a n/a 14 >999 240	PLATES GRIP MT20 244/190 Weight: 264 lb FT = 20%

LUMBER-		BRACING-		
TOP CHORD	2x6 SP No.1	TOP CHORD	Structural wood sheathin	g directly applied or 3-8-0 oc purlins.
BOT CHORD	2x6 SP No.1	BOT CHORD	Rigid ceiling directly appl	ied or 10-0-0 oc bracing, Except:
WEBS	2x4 SP No.2		6-0-0 oc bracing: 8-10.	
		WEBS	1 Row at midpt	7-10
			2 Rows at 1/3 pts	3-13

REACTIONS. (size) 2=0-3-8, 10=0-3-8 Max Horz 2=-267(LC 10) Max Uplift 2=-93(LC 12), 10=-104(LC 13) Max Grav 2=1367(LC 19), 10=1711(LC 20)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

 TOP CHORD
 2-3=-3920/578, 3-5=-1401/365, 5-7=-1516/386, 7-8=-352/537

- BOT CHORD 2-14=-390/3612, 13-14=-387/3600, 11-13=0/1128, 10-11=-84/1160, 8-10=-348/405
- WEBS 5-11=-110/408, 3-14=-110/2168, 3-13=-2645/469, 5-13=-69/678, 7-10=-1980/627

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-13 to 3-8-0, Interior(1) 3-8-0 to 18-4-0, Exterior(2) 18-4-0 to 22-8-13, Interior(1) 22-8-13 to 37-4-13 zone; cantilever right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2 except (jt=lb) 10=104.

7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss system. See **MSIVTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	8-8-14	17-2-4	24-3-2	36-8-0	
	8-8-14	8-5-6	7-0-14	12-4-14	
Plate Offsets (X,Y)-	[11:0-2-4,0-3-4], [12:0-5-3,0-2-8]				
LOADING (psf) TCLL 20.0	SPACING- 2-0-0 Plate Grip DOL 1.15	CSI. TC 0.45	DEFL. in (low Vert(LL) -0.21 8- Vert(CT) 0.43 8	c) l/defl L/d l -9 >999 360 l	PLATES GRIP MT20 244/190
BCLL 0.0 * BCDL 10.0	Rep Stress Incr YES Code IRC2015/TPI2014	WB 0.96 Matrix-S	Horz(CT) 0.24 Wind(LL) 0.16 1	8 n/a n/a 12 >999 240	Weight: 250 lb FT = 20%

LUMBER-		BRACING-	
TOP CHORD	2x6 SP No.1	TOP CHORD	Structural wood sheathing directly applied or 3-3-15 oc purlins.
BOT CHORD	2x6 SP No.1	BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.
WEBS	2x4 SP No.2	WEBS	2 Rows at 1/3 pts 3-11

REACTIONS. (size) 2=0-3-8, 8=0-3-8 Max Horz 2=265(LC 9) Max Uplift 2=-94(LC 12), 8=-82(LC 13) Max Grav 2=1538(LC 19), 8=1596(LC 20)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-4523/717, 3-5=-1746/438, 5-7=-2254/540, 7-8=-2449/473

BOT CHORD 2-12=-536/4142, 11-12=-532/4130, 9-11=-25/1413, 8-9=-271/2006

WEBS 5-9=-181/1099, 3-12=-188/2465, 3-11=-2914/549, 7-9=-586/334, 5-11=-72/623

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-13 to 3-8-0, Interior(1) 3-8-0 to 18-4-0, Exterior(2) 18-4-0 to 22-8-13, Interior(1) 22-8-13 to 36-6-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
5) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify

5) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8.
7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and

referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek Affili 818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **MSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Wellco/Lot 121 Hidden	Lakes/Harnett	
J1122-5609	B2	ATTIC	10	1			151460551
					Job Reference (option	al)	
Comtech, Inc, Fayette	ville, NC - 28314,	ID	8 U7klNeoAHq6:	.430 s Aug ItPRpGyu\	g 16 2021 MiTek Industr /ILzP9VI-c4m BigURs6	ies, Inc. Tue Apr 19 13:2 G15WU?8DMkz07iUhpg	24:46 2022 Page 1 loclEvm0rGzP8OF
	—	<u>5-0-12</u> <u>8-11-4</u> <u>10-11-8</u> <u>12-7</u> <u>5-0-12</u> <u>2-10-8</u> <u>2-0.4</u> <u>2</u>	11-12 16-10	-4	21-11-0		
		5-0-12 5-10-0 2-0-4 2-	0-4 3-10-	0	5-0-12		
		6x8 =	=				Scale = 1:71.1
	I	5					
		3x6 =	3x6 =	=			
			6				
		11.00 12					
		2×6 11 14		15			
		200 11		$\langle \rangle$	2x6 7		
	-1-0				16		
	4x6 //		4-	The second secon	4x6 🕅		
	4x6 //		x		8 4x6	*	
	1				9		
	T K	11-4-0			Ľ (b)	T	
	0-7					2-0-2	
		Ľ,	·	ľ		Ŕ	
	⊠ 5x12	12	11	10	5x12		
		3x10	6x8 =	3x10	II		
	 	5-0-12 16-10-4 5-0-12 11-9-8			21-11-0		
Plate Offsets (X,Y) [5:0)-4-0,Edge], [10:0-7-4,0-1-8],	[12:0-7-4,0-1-8]			3-0-12		
LOADING (psf)	SPACING- 2-0-0	CSI DE	FI ir) (loc)	l/defl L/d	PI ATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.51 Ve	rt(LL) -0.14	10-12	>999 360	MT20	244/190
TCDL 10.0 BCU 0.0 *	Lumber DOL 1.15 Rep Stress Incr YES	BC 0.61 Ve	rt(CT) -0.22 rz(CT) 0.01	2 10-12 9	>999 240 n/a n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S Wi	nd(LL) 0.04	12	>999 240	Weight: 259 lb	FT = 20%
LUMBER-		BR	ACING-				
TOP CHORD 2x10 SP N	lo.1	то	P CHORD	Structur	al wood sheathing dire	ectly applied or 6-0-0 oc	e purlins.
WEBS 2x6 SP No	l0.1 0.1	BO	I CHORD	Rigid ce	eiling directly applied of	r 10-0-0 oc bracing.	
SLIDER Left 2x6 S	P No.1 3-4-13, Right 2x6 SP	No.1 3-4-13					
REACTIONS. (size)	1=0-3-8, 9=0-3-8						
Max Horz	1=-268(LC 8)						
Max Grav	1=1438(LC 21), 9=1438(LC	20)					
FORCES. (lb) - Max. Con	mp./Max. Ten All forces 25	0 (lb) or less except when shown.					
BOT CHORD 1-3=-194 BOT CHORD 1-12=0/1	125, 10-12=0/1129, 9-10=0/	88, 5-6=-3/389, 6-7=-1098/150, 7-9=-1945 124	0/0				
WEBS 4-6=-152	21/202, 3-12=0/1034, 7-10=0/	1034					
NOTES-							
1) Unbalanced roof live loa	ads have been considered for	this design.			2 ()		
and C-C Exterior(2) 0-0	-130mpn Vasd=103mpn; 1CL -8 to 4-5-5, Interior(1) 4-5-5 to	o 11-0-0, Exterior(2) 11-0-0 to 15-4-13, Interior	erior(1) 15-4-1	3; MVFR3 3 to 21-11	-8 zone;C-C		
for members and forces	& MWFRS for reactions sho	wn; Lumber DOL=1.60 plate grip DOL=1.6	0				
 4) * This truss has been des 	esigned for a 10.0 psr bottom c	psf on the bottom chord in all areas where	a rectangle 3-	6-0 tall by	2-0-0 wide		
will fit between the botto	om chord and any other mem	bers.		,		mun	1111
b) Ceiling dead load (10.06) Bottom chord live load (40.0 psf) and additional botto	4-o; vvali dead load (5.0pst) on member(s im chord dead load (10.0 psf) applied only).3-12, 7-10 to room. 10-12	2		TH CA	Ro
7) This truss is designed in	accordance with the 2015 Ir	ternational Residential Code sections R50	2.11.1 and R8	02.10.2 a	ind	T'OR SECK	in Inste
referenced standard AN8) Attic room checked for I	J360 deflection.				4	A Province	And I
					Č,	:0	-K

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

NOTES-

 Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-13 to 3-8-0, Interior(1) 3-8-0 to 17-4-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 8=174.

5) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek Affili 818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **MSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job		Truss	Truss Type	Qty	Ply	Wellco/Lot 121 Hidden Lakes/Harnett	
							I51460553
J1122-5609		C1A	MONOPITCH	1	2		
					_	Job Reference (optional)	
Comtech, Inc, Fa	yettev	ille, NC - 28314,		8	.430 s Aug	g 16 2021 MiTek Industries, Inc. Tue Apr 19 13:24:48 2022	2 Page 2
			ID:U7k	dNeoAHq6	ltPRpGyu	VILzP9VI-YStkbPskzUM_GPgt7ZFqpO5YZIQr8eAbhDF7w	/9zP8OD

LOAD CASE(S) Standard Concentrated Loads (lb) Vert: 13=-654(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

				17-4-0		
LOADIN TCLL TCDL	G (psf) 20.0 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15	CSI. TC 0.04 BC 0.01	DEFL. in (loc) Vert(LL) 0.00 1 Vert(CT) -0.00 1	l/defl L/d n/r 120 n/r 120	PLATES GRIP MT20 244/190
BCLL BCDL	0.0 * 10.0	Rep Stress Incr YES Code IRC2015/TPI2014	WB 0.15 Matrix-S	Horz(CT) -0.01 13	n/a n/a	Weight: 168 lb FT = 20%

WFBS

17-/-0

TOP CHORD	2x6 SP No.1
BOT CHORD	2x6 SP No.1
WEBS	2x6 SP No.1
OTHERS	2x4 SP No.2

BRACING-TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. T-Brace: 2x4 SPF No.2 - 12-14, 11-15 Fasten (2X) T and I braces to narrow edge of web with 10d (0.131"x3") nails, 6in o.c., with 3in minimum end distance.

Brace must cover 90% of web length.

REACTIONS. All bearings 17-4-0.

(lb) - Max Horz 2=492(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 13, 14, 2, 15, 17, 18, 19, 20, 21, 22 except 23=-121(LC 12) Max Grav All reactions 250 lb or less at joint(s) 13, 14, 15, 17, 18, 19, 20, 21, 22, 23 except 2=289(LC 12)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-564/452. 3-4=-482/384. 4-5=-416/331. 5-6=-353/282. 6-7=-290/232

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-8-13 to 3-8-0, Exterior(2) 3-8-0 to 17-4-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) All plates are 2x4 MT20 unless otherwise indicated.
- 4) Gable requires continuous bottom chord bearing.
- Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

- 8) Bearing at joint(s) 13 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 13, 14, 2, 15, 17, 18, 19, 20, 21, 22 except (jt=lb) 23=121.
- 10) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign valid to less only with with the contractors. This besign is based only upon parameters and properly incorporate this design into the overall a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

REACTIONS. (size) 8=0-3-8, 2=0-3-8 Max Horz 2=271(LC 12) Max Uplift 8=-138(LC 12) Max Grav 8=586(LC 19), 2=581(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-679/0

BOT CHORD 2-9=-196/582, 8-9=-196/582

WEBS 3-9=0/307, 3-8=-673/225

NOTES-

 Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-13 to 3-8-0, Interior(1) 3-8-0 to 13-8-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 8=138.

5) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOADING (psi TCLL 20.1 TCDL 10.1 BCLL 0.1 BCDL 10.1	f) 0 0 0 * 0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TF	2-0-0 1.15 1.15 YES Pl2014	CSI. TC BC WB Matrix	0.18 0.15 0.60 <-S	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.01 -0.03 0.01 0.01	(loc) 2-9 2-9 8 2-9	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 103 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.2 *Except* 5-8: 2x6 SP No.1						BRACING- TOP CHOR BOT CHOR WEBS	D D	Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing. 1 Row at midpt 5-8				
REACTIONS. (size) 8=Mechanical, 2=0-3-8 Max Horz 2=265(LC 12) Max Uplift 8=-135(LC 12) Max Grav 8=573(LC 19), 2=569(LC 1)												
TOP CHORD 2-3=-655/0												

BOT CHORD 2-9=-189/558, 8-9=-189/558

WEBS 3-9=0/301, 3-8=-656/221

NOTES-

 Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-13 to 3-8-0, Interior(1) 3-8-0 to 13-4-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 8=135.

6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Edenton, NC 27932

April 19,2022

REACTIONS. All bearings 12-8-0.

(lb) - Max Horz 2=-126(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 2, 8, 13, 11 except 14=-102(LC 12), 10=-100(LC 13) Max Grav All reactions 250 lb or less at joint(s) 2, 8, 12, 13, 14, 11, 10

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-10-8 to 3-6-5, Exterior(2) 3-6-5 to 6-4-0, Corner(3) 6-4-0 to 10-8-13, Exterior(2) 10-8-13 to 13-6-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8, 13, 11 except (jt=lb) 14=102, 10=100.
- 10) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 8.
- 11) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss system. See **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **MSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Wellco/Lot 121 Hidden Lakes/Harnett	
						151460559
J1122-5609	D2GDR	COMMON	1	2		
				_	Job Reference (optional)	
Comtech, Inc, Fayette	/ille, NC - 28314,		8	.430 s Aug	16 2021 MiTek Industries, Inc. Tue Apr 19 13:24:53 2022	Page 2
		ID:U7kINeoAHq6ltPRpGyuVILzP9VI-vQhdf7vto0_HMAYqv6r?WRpN5J3DptvKrVzubMz				

LOAD CASE(S) Standard Concentrated Loads (Ib)

Vert: 6=-1438(F) 7=-1438(F) 8=-1438(F) 9=-1438(F) 10=-1438(F) 11=-1438(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/ITPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Horz(CT)

BRACING-

TOP CHORD

BOT CHORD

0.00

9

n/a

n/a

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

FORCES.	(lh) - Max	Comp /Ma	k Ten	- All forces	250 (lb) or le	ess exce	ot when shown
	(ID	/ IVIGA.	oomp./wa	.	/11/01/000	200 (10	, 01 1	555 CAUC	

NOTES-

BCLL

BCDL

LUMBER-

OTHERS

TOP CHORD

BOT CHORD

REACTIONS.

Rep Stress Incr

13), 10=-114(LC 13)

Code IRC2015/TPI2014

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-5-5 to 4-10-1, Interior(1) 4-10-1 to 8-6-4, Exterior(2) 8-6-4 to 12-11-1, Interior(1) 12-11-1 to 16-7-3 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WB

Max Uplift All uplift 100 lb or less at joint(s) 1, 9, 16, 11 except 15=-102(LC 12), 17=-114(LC 12), 13=-100(LC

Matrix-S

0.08

3) All plates are 2x4 MT20 unless otherwise indicated.

*

2x4 SP No.1

2x4 SP No.1

2x4 SP No.2

All bearings 17-0-8.

Max Horz 1=-182(LC 8)

0.0

10.0

(lb) -

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

Max Grav All reactions 250 lb or less at joint(s) 1, 9, 14, 15, 16, 17, 13, 11, 10

YES

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 9, 16, 11 except (it=lb) 15=102, 17=114, 13=100, 10=114.

 This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Weight: 89 lb

FT = 20%

April 19,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

¹⁾ Unbalanced roof live loads have been considered for this design.

Unbalanced roof live loads have been considered for fills design.
 Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-5-5 to 4-10-1, Interior(1) 4-10-1 to 6-11-9, Exterior(2) 6-11-9 to 11-4-6, Interior(1) 11-4-6 to 13-5-13 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 8=112, 6=111.

7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

NOTES-

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-5-5 to 4-10-1, Interior(1) 4-10-1 to 5-4-15, Exterior(2) 5-4-15 to 9-9-11, Interior(1) 9-9-11 to 10-4-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=118, 6=118.

7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

¹⁾ Unbalanced roof live loads have been considered for this design.

Max Horz 1=-61(LC 10)

Max Uplift 1=-24(LC 12), 3=-30(LC 13) Max Grav 1=153(LC 1), 3=153(LC 1), 4=240(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

6) Non Standard bearing condition. Review required.

7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss system. See **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

				4-0-10	0-0-0			
LOADIN TCLL TCDL	G (psf) 20.0 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15	CSI. TC 0.04 BC 0.03	DEFL. in Vert(LL) n/a Vert(CT) n/a	(loc) - -	l/defl L/d n/a 999 n/a 999	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0 * 10.0	Rep Stress Incr YES Code IRC2015/TPI2014	WB 0.01 Matrix-P	Horz(CT) 0.00	3	n/a n/a	Weight: 15 lb	FT = 20%
LUMBE	र-			BRACING-				

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 2x4 SP No.2 OTHERS

REACTIONS. (size) 1=4-6-2, 3=4-6-2, 4=4-6-2

Max Horz 1=-33(LC 8)

Max Uplift 1=-13(LC 12), 3=-16(LC 13)

Max Grav 1=83(LC 1), 3=83(LC 1), 4=130(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

- and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 4-7-2 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Max Grav 1=166(LC 1), 3=32(LC 13)Max Grav 1=166(LC 1), 3=166(LC 1), 4=299(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

- and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BOT CHORD 2x4 SP No.1 2x4 SP No.2 OTHERS

REACTIONS. (size) 1=4-11-0, 3=4-11-0, 4=4-11-0

Max Horz 1=28(LC 11)

Max Uplift 1=-13(LC 12), 3=-16(LC 13)

Max Grav 1=82(LC 1), 3=82(LC 1), 4=148(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

- and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

