WILMINGTON -A, B, C PLAN ID: 2800 - RIGHT HAND - NORTH CAROLINA DATE: **REVISION:** 09/18/2017 **INITIAL RELEASE OF PLANS** CLIENT REVISIONS 10/20/2017 11/01/2017 REMOVED PORCH RAILING FROM ELEVATION 'C' FLATTENED BAR TOP AT KITCHEN REVISED SIZE OF WINDOW AT BASE OF STAIRS REVISED MASTER BEDROOM TO OWNER'S BEDROOM 02/07/2018 06/11/2018 **CLIENT REVISIONS CLIENT REVISIONS** 11/14/2018 01/09/2019 REVISED CODE REFERENCES 07/23/2019 CLIENT REVISIONS 12/13/2019 **CLIENT REVISIONS** 02/28/2020 CLIENT REVISIONS | | INA | |---|--------------------------| | 1 | REVIEWERS STAMP LOCATION | MODEL 'WILMI | NGTON' SQUARE FOC | DTAGES | |--------------|-------------------|----------| | AREA | | ELEV 'C' | | lst FLOOR | | 1225 SF | | 2nd FLOOR | | 1595 SF | | TOTAL LIVING | | 2824 SF | | GARAGE | | 411 SF | | PORCH | · . | 72 SF | WOODGROVE LOT 123 107 WINTERBERRY WAY FUQUAY VARINA, NC 27526 VILMINGTON' COVERSHEE" PLAN REV DATE COPYRIGHT PROPERTY OF DE HORTON NOT TO BE REPRODUCE. SHEET NUMBER CS # N.C ATTIC VENT CALCULATION FOR MODEL 'WILMINGTON': 1:150 RATIO B" TYP EAVE HE NET FREE VENTILATING AREA SHALL NOT DE LESS THAN 150 OF THE AREA OF THE SPACE VISHTILATED, PROVIDED WITH AT LECATE OF PRECISIT AND WITH MADE THAN BO FRECISIT WITH AT LECATE OF THE UPPER PORTION OF THE SPACE OF WITH LATORS LOCATED IN THE UPPER PORTION OF THE SPACE OF WITH LATOR AT LEAST 3 THEFT ADON'T THE EARLY OR CRINICE VISTO SWITH THE BALLANCE OF THE REALE OR ORNICE VISTO SWITH THE BALLANCE OF THE REALE OR REPULLATION FROM THE SPACE OF THE REPULLATION OF THE SPACE OF THE SWITH THE SPACE OF THE SPACE OF THE SWITH THE PRINCIPLE OF THE SWITH THE SWITH THE SWITH THE PRINCIPLE OF THE SWITH THE SWITH THE PRINCIPLE OF THE SWITH THE SWITH THE PRINCIPLE OF THE PRINCIPLE OF THE SWITH THE PRINCIPLE OF O (PER NCRC SECTION R806.2) I SQUARE INCH VENT FOR EVERY ISO SQUARE INCHES OF CEILING *I44 SQ. IN. = I SQ. FT. BLD6. CEILING (SF) X I44 = BLD6 (SQ. IN.) 9LDG, (5Q, IN) / 150 = 5Q, IN, OF VENT REQUIRED 5Q, IN, OF VENT REQUIRED / 2 = 50% AT HIGH & 50% AT LOW. EXCEPTIONS I. EXCLOSED ATTIC/RAFTER SPACES REQUIRING LESS THAN I. SQ FT OF VENTILATION MAY BE VENTED WITH CONTINUOUS SOFFIT VENTILATION ONLY. ROOF AREA Is = 1787 SF 1636 SQ, FT, X 144 = 235584 SQ, IN, 235584 SQ, IN, / ISO = ISTO.56 SQ, IN, OF VENT REQID P. ENGLOSED ATTIC/RAFTER SPACES OVER UNCONDITIONED SPACE MAY BE VENTED WITH CONTINUOUS SOFFIT VENT ON 1570.56 SQ. IN. / 2 = 785.28 SQ. IN 785.28 SQ. IN. 0F VENT AT HIGH & 785.28 SQ. IN. 0F VENT AT LOW REGUIRED. SPACE PAY BE VERIFOR SHALL VERIFY THE NET PREE WHITLAND OF THE VERIT PRODUCT SELECTED BY OWNER WERFIY WHIT MAPACHIERS OF HICH AND LOW VERIFS TO BE USED FOR HIMMAN CALCULATED VERIFS REGUIRED, THE REGUIRED VERIFICATION SHALL BE MAINTAINED, PROVIDE INSULATION STOP SUCH THAT INSULATION DOCUMENT THE AND AND VERY BE ADMITTAINED. ROOF AREA 2: = 12 SF 72 SQ. FT. X 144 = 10368 SQ. IN. 10368 SQ. IN. / 150 = 64.12 SQ. IN. OF VENT REQ'D 69.12 5Q. IN. / 2 = 34.56 5Q. IN 34.56 5Q. IN. OF VENT AT HIGH & 34.56 5Q. IN. OF VENT AT LOW REQUIRED. ZES NOT OBSTRUCT FREE AIR MOVEMENT AS REQUIRED. THE BULLIONS OFFICIAL. L OVERLAP FRAMED ROOF AREAS SHALL HAVE ENOUGH THE ADJACHT ATTICS IN THE ROOF EATHING ENTERS THE ADJACHT ATTICS IN THE ROOF EATHING (AS ALLOWED BY THE STRUCTURAL ENGINEER) ALLOW PASSACE AND ATTIC SYNLIATION ALLOW PASSACE AND ATTIC SYNLIATION THE WIND ON ISOLATED ATTIC SYNLIATION VENTED INDEPENDENTLY TO GE REQUIREMENTS. ER DEVELOPER, AT ALL CANTILEVERED FLOORS, ANTILEVERED ARCHITECTURAL POP-OUTS, AND ANY DOUBLE RAMING PROJECTIONS THAT ARE SEPARATED FROM THE ENTING CALCULATIONS SHOWN ABOVE, PROVIDE A OWTHINGUS 2" CORROSION RESISTANT SOFFIT VENT AT WERSIDE OF FRANKED LEIDHENT. OTFS. AREA I ALL ROOF DRAINAGE SHALL BE PIPED TO STREET OR APPROVED DRAINAGE FACILITY. TRIJSS MANUFACTURER SHALL SUBMIT STRUCTURAL CALCS AND SHOP DR TO THE BUILDIES'S SENERAL CONTRACTOR AND BUILDING DEPARTMENT FOR REVIEW PRIOR TO FABRICATIONS. N.C ATTIC VENT CALCULATION FOR MODEL 'WILMINGTON': 1:300 RATIC AS AN ALTERNATE TO THE I/ISO RATIO LISTED ABOVE, HE NET FREE CROSS-VENTILATION AREA MAY BE REDUCED TO I/300 NEMA CLASS I OF II VAPOR RETARDER IS INSTALLE ON THE WARM - IN - WINTER SIDE OF THE CEILING. (PER NCRC SECTION R806.2) I SQUARE INCH VENT FOR EVERY 300 SQUARE INCHES OF CEILING *144 SQ. IN. = 1 SQ. FT. BLDG. CEILING (SF) X 144 = BLDG (SQ. IN.) SENERAL CONTRACTOR SHALL VERIET THE INT PREE WHITH LATION OF THE VIPOT THE INST PREE WHITH LATION OF THE VIPOT PRODUCT SELECTED BY ONER, WHITH LATION OF THE LATION OF THE LESS PRODUCT SELECTED BY ONER FOR LESS PRODUCT SELECTED THE VIPOT SEGUIFED. THE REQUIRED, VERIFICATION SHALL BE HARMATICALLY DOES INTO OBSTRICT FREE ARE NOVEMENT AS REQUIRED BY THE BUILDING SOFTICAL. ALL OVERLAP FRAMED ROOF AREAS SHALL HAVE PROPINGE SETURED HE ROJACHET ATTOS IN THE ROOF EACH THING IN SECURITY OF THE STRUCTURAL DEVINEED IN COLUMN POSSES AND ATTO. SHATTARDES SHALL WE WHITE DEVERTIBLE OF CORRESPONDED WE WHITE DEVERTIBLE TO GEN REQUIRED WE THE DEVERTIBLE TO GEN REQUIRED WE THE PROPERTY AND ALL CAMILL DEVERTIBLE OF GORS. BLDG. (SQ. IN.) / 300 = SQ. IN. OF VENT REQUIRED SQ. IN. OF VENT REQUIRED / 2 = 50% AT HIGH & 50% AT LOW. ROOF AREA I: = 1636 SF 6:12 SLOPE 1636 Sc. Ft. X 144 = 295564 Sc. IN. 235564 Sc. IN. 300 = 185.26 Sc. IN. OF VENT REQD 185.26 Sc. IN. 2 = 392.64 Sc. IN. OF VENT AT LOW REQUIRED. 342.64 Sc. IN. OF VENT AT HIGH & 342.64 Sc. IN. OF VENT AT LOW REQUIRED. ROOF AREA 2: = 72 SF 72 5Q. FT. X 144 = 10368 5Q. IN. 10368 5Q. IN. / 300 = 34:56 5Q. IN. OF VENT REQTO 34:56 5Q. IN. / 2 = 17:28 5Q. IN SET FORM THE PROPERTY AT ALL CAMILLEVERED FLOORS, CAMILLEVERED ACCHITECTURAL POP-JOIS, AND ANY DOUBLE FROM THE CHAIN PROJECTIONS THAT ARE SEPARATED FROM THE VEHING CALCULATIONS SHOWN ABOVE, PROVIDE A CONTINUOUS 2° CORROSION RESISTANT SOFFIT VEHT AT MORESSIDE OF FRAMED ELEMENT. 17.28 SQ. IN. OF VENT AT HIGH & 17.28 SQ. IN. OF VENT AT LOW REQUIRED. Right Elevation 'C' GRADE CONDITIONS MAY VARY FOR INDIVIDUAL SITE FROM THAT SHOWN. BUILDER SHALL VERIFY AND COORDINATE PER ACTUAL SITE CONDITIONS. WINDOW HEAD HEIGHTS: IST FLOOR = 6-8" U.N.O. ON ELEVATIONS. 2ND FLOOR = 7'-0" U.N.O. ON ELEVATIONS. AT SINGLE FAMILY DETACHED PLANS: PREFINISHED VENTED SOFFIT AT EAVE PER MANUFACTURER. (VERIEY FIRE SEPARATION DISTANCE FOR SOFFIT PROTECTION PER NORC SECTION R302.1.1 AND TABLE R302.1) ROOFING: PITCHED SHINGLES PER DEVELOPER WINDOWS: MANUFACTURER PER DEVELOPER, DIVIDED LITES AS SHOWN ON THE EXTERIOR ELEVATIONS ENTRY DOOR: AS SELECTED BY DEVELOPER. GARAGE DOORS: AS SELECTED BY DEVELOPER, RAISED PANEL AS SHOWN. ALL EXTERIOR MATERIALS TO BE INSTALLED PER MANUFACTURER'S WRITTEN INSTRUCTIONS. PROTECTION AGAINST DECAY: (ALL PORTIONS OF A PORCH, SCREEN PORCH OR DECK FROM THE BOTTOM OF THE HEADER DOWN, INCLIDING POST, RAILS, PICKETS, STEPS AND FLOOR STRUCTURE.) INGULATION: PER TABLE NIO2.1.2. EXTERIOR WALLS: CELING WITH ATTIC ABOVE: FLOOR OVER GARAGE: R-49 BATTS MINIMM. VERIFY R-49 BATTS MINIMM. VERIFY AREA 2 ATTIC KNEEWALL: R-I9 BATTS MINIMUM, VERIFY CRAWL SPACE FLOORING: R-I9 BATTS MINIMUM, VERIFY **KEY NOTES:** SCALE: I/4"=I'-0" AT 22"X34" LAYOUT I/8"=I'-0" AT II"XI7" LAYOUT MASONRY: ADHERED STONE VENEER AS SELECTED BY DEVELOPER, HEIGHT AS NOTED MASONRY FULL BRICK AS SELECTED BY DEVELOPER, HEIGHT AS NOTED. TRUSS MANUFACTURE TO MASONRY FULL STONE AS SELECTED BY DEVELOPER, HEIGHT AS NOTED. VERIFY HEFI S PER COMMUNITY STANDARDS, BUILDER TO VERIFY PRIOR TO CONSTRUCTION 8" SOLDIER COURSE. ROWLOCK COURSE TYPICALS: MDM HD CORROSION RESISTANT SCREEN LOWERED VENTS, SIZE AS NOTED. 6" PEDIMENT CODE APPROVED TERMINATION CHIMNEY CAP. CORROSION RESISTANT ROOF TO WALL FLASHING, CODE COMPLIANT FLASHING PER NCRC R405.2.8.3 16 IX4 O STANDING SEAM METAL ROOF, INSTALL PER MANUFCATURER'S WRITTEN INSTRUCTIONS. DECORATIVE WROUGHT IRON, SEE DETAILS. SIDING: VINYL SHAKE SIDING PER DEVELOPER WITH VINYL CORNER TRIM PER DEVELOPER. 9-/ (AT SPECIFIED LOCATIONS: FIBER CEMENT SHAKE SIDING PER DEVELOPER W/ IX4 CORNER TRIM BOARD.) VINYL LAP SIDING PER DEVELOPER WITH VINYL CORNER TRIM PER DEVELOPER. (AT SPECIFIED LOCATIONS: FIBER CEMENT LAP SIDING PER DEVELOPER W IX4 CORNER TRIM BOARD.) WDW HD VINYL WAYY SIDING PER DEVELOPER WITH VINYL CORNER TRIM PER DEVELOPER. (AT SPECIFIED LOCATIONS: FIBER CEMENT WAVY SIDING PER DEVELOPER W IX4 CORNER TRIM BOARD.) VINYL BOARD AND BATT SIDING PER DEVELOPER WITH VINYL CORNER TRIM PER DEVELOPER. (AT SPECIFIED LOCATIONS; FIBER CEMENT PANEL SIDING W IX3 BATTS AT 12° O.C. PER DEVELOPER W IX4 CORNER TRIM BOARD.) VINYL TRIM SIZE AS NOTED (AT SPECIFIC LOCATIONS: IX FIBER CEMENT TRIM OR EQUAL, UN.O. SIZE AS NOTED PYPON SHUTTERS, TYPE AS SHOWN, SIZE AS NOTED. (AT SPECIFIC LOCATIONS: FALSE VINYL SHUTTERS, TYPE AS SHOWN, SIZE AS NOTED.) Rear Elevation 'C' ALL MINDOMS MHOSE OPENING IS LESS THAN 24" ABOVE HE FINISH FLOOR AND WHOSE OPENING IS GREATER THAN 12" ABOVE THE CUTSIDE WALKING SURFACE MUST HAVE WINDOM OPENING LIMITING DEVICES COMPLYING WITH THE ICRC SECTION R312.21 AND R312.22. Front Elevation <u>Left Elevation 'C'</u> OPTIONAL 2868 - WDW HT SET AT 7'-6' 4XI2 BRACKETS - INTERIOR SOFFITS AT 8'-0" - EXTERIOR SOFFITS AT 8'-0' AVAILABLE WITH OPTIONAL 9'-1" FIRST FLOOR PLATE NOTES AT OPT 9'-1" PLT: . 12:12 PITCH AN PL, IX6 RAKE FASCIA -[13] IX6 16 FRIEZE 16 **–**[12] SHEET NUMBER 'WILMINGTON' FLOOR PLANS PLAN REV DATE .28.20 SHEET NUMBER 4 PROVIDE 2ND -GFI/LIGHT AT OPT BOWL o, bath PH Ø wic ф· \$\d\rangle \rangle \ra owner's bedroom bed 4 PROVIDE 2ND — GFI/LIGHT AT OPT BOWL bath 2 wic wic -Ò-\ bed 2 **₩** loft/opt bedroom 5 PROVIDE ADEQUATE / SUPPORT FOR FUTURE : CLNG FAN bed 3 PROVIDE ADEQUATE SUPPORT FOR FUTURE CLNG FAN PROVIDE ADEQUATE SUPPORT FOR FUTURE CLNG FAN TO SWITCH BELOW PH Ø∂FI kitchen family room Defi BELOW FOR DEFN breakfast PROVIDE ADEQUATE SUPPORT FOR FUTURE CLNG FAN T<u>₽</u>6FI | D ABOVE FOR HOOD/ MICRO pdr 50 **⊕** 220V A/C DISCONNECT, 30" MIN. CLEAR \$\$ & **b** dining area laundry 8'-1" clq garage
KEYLESS -KEYLESS O PREWIRE ONLY foyer living/opt office NOTE: SIZE SERVICE PANEL PER BUILDERS SPECIFICATIONS AND LOCAL CODES ф \$ \$\$\$\$ ф - ф **→** COACH LIGHT, CENTERLINE 6'-0" A.F.F. COACH LIGHT TO FLOOD ABOVE 2nd Floor Plan 'A' scale, 1/4'=1'-0' AT 22'X34" LAYOUT 1/6"=1'-0' AT 11"XIT" LAYOUT Ist Floor Plan 'A' porch-8'-1" clg ALL ELEVATIONS ARE SIMILAR - PROVIDE GROUNDING ELECTRICAL ROD PER LOCAL CODES. - PROVIDE AND INSTALL ARC FAULT CIRCUIT-INTERRUPTERS (AFCI) AS REQUIRED BY NATIONAL ELECTRICAL CODE (NEC) AND MEETING THE REQUIREMENTS OF ALL GOVERNING CODES. ALL EXHAUST FANS SHALL HAVE BACKDRAFT DAMPERS. - FAWLIGHTS IN WET/DAMP LOCATIONS SHALL BE LABLED "SUITABLE FOR WET OR DAMP LOCATIONS. - ELECTRICAL SYSTEMS ARE SHOWN FOR INTENT ONLY. THESE SYSTEMS SHALL BE ENGINEERED BY OTHERS. THE CONTRACTOR SHALL BE RESPONSIBLE FOR PROPER INSTALLATION AND PLACEMENT - PROVIDE AND INSTALL LOCALLY CERTIFIED SMOKE DETECTORS AND CO2 DETECTORS AS REQUIRED BY NATIONAL FIRE PROTECTION ASSOCIATION (NFPA) AND MEETING THE REQUIREMENTS OF ALL GOVERNING CODES. - PROVIDE AND INSTALL GROUND FAULT CIRCUIT-INTERRUPTERS (GFI) AS REQUIRED BY NATIONAL ELECTRICAL CODE (NEC) AND MEETING THE REQUIREMENTS OF ALL GOVERNING CODES. - ELECTRICAL CONTRACTOR TO PROVIDE REQUIRED DIRECT HOOK-UPS/CUTOFFS. - HVAC CONTRACTOR TO VERIFY THERMOSTAT LOCATIONS. - ALL ELECTRICAL AND MECHANICAL EQUIPMENT (FURNACES, A/C UNITS, ELECTRICAL PANELS, SANITARY SUMP PITS, DRAIN TILE SUMP, AND WATER HEATERS) ARE SUBJECT TO RELOCATION DUE TO FIELD CONDITIONS. - PROVIDE POWER, LIGHT AND SWITCH AS REQUIRED FOR ATTIC FURNACE PER CODE AND MANUFACTURER'S WRITTEN INSTRUCTIONS. # LEGEND: | | _1112. | | | |---------------|---|--------------------------|---| | ф | DUPLEX OUTLET | \(\rightarrow \) | CEILING MOUNTED INCANDESCENT
LIGHT FIXTURE | | ФиР/6FI | WEATHERPROOF GFI DUPLEX OUTLET | ф | WALL MOUNTED INCANDESCENT | | ∯ <i>G</i> FI | GROUND-FAULT CIRCUIT-INTERRUPTER
DUPLEX OUTLET | <u> </u> | LIGHT FIXTURE RECESSED INCANDESCENT LIGHT FIXTURE | | ф | HALF-SWITCHED DUPLEX OUTLET | Φ- | (VP) = VAPOR PROOF | | Ф 220∨ | 220 VOLT OUTLET | • | CEILING MOUNTED LED
LIGHT FIXTURE (VP) = VAPOR PROOF | | 0 | REINFORCED JUNCTION BOX | • | EXHAUST FAN (VENT TO EXTERIOR) | | \$ | WALL SWITCH | - | EXHAUST FAN/LIGHT COMBINATION
(VENT TO EXTERIOR) | | \$3 | THREE-WAY SWITCH | | FLUORESCENT LIGHT FIXTURE | | \$4 | FOUR-WAY SWITCH | | Caronacount aron in conse | | CH | CHIMES | | TECH HUB SYSTEM | | 9 | PUSHBUTTON SWITCH | X | CEILING FAN
(PROVIDE ADEQUATE SUPPORT) | | 99 | IIOV SMOKE ALARM
W BATTERY BACKUP | | CEILING FAN WITH INCANDESCENT | | 699 | IIOV SMOKE ALARM
CO2 DETECTOR COMBO | 黑 | LIGHT FIXTURE
(PROVIDE ADEQUATE SUPPORT) | | Ŧ | THERMOSTAT | ∞ | GAS SUPPLY WITH VALVE | | PH | TELEPHONE | _ | | | īV | TELEVISION | —₩ | HOSE BIBB | | △ | ELECTRIC METER | −+ сн | I/4" WATER STUB OUT | | | ELECTRIC PANEL | Я | | | | DISCONNECT SWITCH | I K | WALL SCONCE | # DESIGN SPECIFICATIONS: Construction Type: Commerical ☐ Residential ☒ Applicable Building Codes: • 2018 North Carolina Residential Building Code with All Local Amendments • ASCE 7-10: Minimum Design Loads for Buildings and Other Structures | 9,, - | oucio. | | | | |-------|--------|-------------------|------|-----| | ٦. | Roof | Live Loads | | | | | 1.1. | Conventional 2x | 20 | PS | | | 1.2. | Truss | 20 | PS | | | | 12.1. Attic Truss | 60 | P | | 2. | Roof | Dead Loads | | | | | 2.1. | Conventional 2x | 10 F | -91 | | | 22. | Trues | 20 | PS | | 3. | Snow | | 15 F | -SF | | | 3.1. | Importance Factor | IØ | | | 4. | | Live Loads | | | | | 4.1. | Typ. Dwelling | 40 | Pe | | | | Sleeping Areas | | | | | 4.3. | Decks | 40 | P | | | | Passenger Garage | | | | | | | | | 5. Floor Dead Loads 5.1. Conventional 2x . 5.2. I-Joist IØ PSF 5.3. Floor Truss ... Ultimate Design Wind Speed (3 sec. gust) Exposure Importance Factor 130 MPH # 631. VX = 632. Vy = 7. Component and Cladding (in PSF) 63 Wind Base Shear | MEAN ROOF
HT. | UP TO 30° | 30'1"-35' | 35'1"-40' | 40'1"-45' | |------------------|------------|------------------|------------|--------------------| | ZONE I | 16.7,-18.0 | 17.5,-18.9 | 18.2,-19.6 | 18.7,-202 | | ZONE 2 | 16.7,-21.0 | 17.5,-22.1 | 182,-22.9 | 8. 7,-23.5 | | ZONE 3 | 16.7,-21.0 | 17.5,-22.1 | 182,-22.9 | 18 .7,-23.5 | | ZONE 4 | 182,-19.0 | 192,-20 0 | 19.9,-20.7 | 20.4,-21.3 | | ZONE 5 | 182,-24.0 | 19.2,-25.2 | 19.9,-26.1 | 20.4,-26.9 | | Seismi | c | | |--------|--------------------------------|---| | 8.1. | Site Class | ₽ | | 8.2. | Design Category | Ç | | 8.3. | Importance Factor | Ø | | | Seismic Use Group | 1 | | | Spectral Response Acceleration | | | | 8.5.1. Sms = %q | | 8.52.5ml = %g 8.6. Seismic Base Shea 861. Vx = 8.6.2.Vy = 8.1. Basic Structural Sustem (check one) □ Bearing Wall □ Building Frame □ Moment Frame □ Dual w/ Special Moment Frame □ Dual w/ Intermediate R/C or Special Stes ☐ Inverted Pendulum 8.8. Arch/Mech Components Anchored 8.9. Lateral Design Control: Seismic Assumed Soil Bearing Capacity # STRUCTURAL PLANS PREPARED FOR: # WILMINGTON - RH PROJECT ADDRESS: OWNER: DR Horton, Inc. 8001 Arrowridge Blvd. Charlotte, NC 28273 DESIGNER: GMD Design Group 102 Fountain Brook Circle **C**ary, NC 27511 These drawings are to be coordinated with the architectural, mechanical, plumbing, electrical, and civil drawings. This coordination is not the responsibility of the structural engineering of record (SER). Should any discrepancies become apparent, the contractor shall notify SUMMIT Engineering, Laboratory & Testing, P.C. before construction begins. # PLAN ABBREVIATIONS: | AB | ANCHOR BOLT | PT | PRESSURE TREATED | |-----|------------------------|-----|------------------------| | AFF | ABOVE FINISHED FLOOR | RS | ROOF SUPPORT | | CJ | CEILING JOIST | 9C | STUD COLUMN | | CLR | CLEAR | ಕ್ರ | SINGLE JOIST | | DJ | DOUBLE JOIST | 5PF | SPRUCE PINE FIR | | D9P | DOUBLE STUD POCKET | 551 | SIMPSON STRONG-TIE | | EE | EACH END | SYP | SOUTHERN YELLOW PINE | | ΕW | EACH WAY | TJ | TRIPLE JOIST | | NTS | NOT TO SCALE | TSP | TRIPLE STUD POCKET | | ОС | ON CENTER | TYP | TYPICAL | | PSF | POUNDS PER SQUARE FOOT | uno | UNLESS NOTED OTHERWISE | | P9I | POUNDS PER SQUARE INCH | WWF | WELDED WIRE FABRIC | Roof truss and floor joist layouts, and their corresponding loading details, were not provided to SUMMIT Engineering, Laboratory 4 Testing, P.C. (SUMMIT) prior to the Initial design. Therefore, truss and joist directions were assumed based on the information provided by <u>DR Horton</u>, <u>Subsequent plan</u> revisions based on roof truss and floor joist layouts shall be noted in the revision list, indicating the date the layouts were provided. Should any discrepancies become apparent, the contractor shall notify SUMMIT immediately. # SHEET LIST: | Sheet No. | Des c ription | | |-----------|--|--| | CSI | Cover Sheet, Specifications, Revisions | | | S1.Øm | Monolithic Slab Foundation | | | 51.Øs | Stem Wall Foundation | | | 51.Øc | Crawl Space Foundation | | | 51.0b | Basement Foundation | | | S2.Ø | Basement Plan | | | 63.Ø | First Floor Plan | | | 54.0 | Second Floor Plan | | | 55.Ø | Roof Framing Plan | | # DR HORTON PROJECT SIGN-OFF: | Mana g er | Signatur e | |--------------------------------|-------------------| | Operations | | | Operations System | | | Operations Product Development | | # REVISION LIST: | Revision
No. | Date | Project
No. | Descri p tion | |-----------------|----------|----------------|--| | 1 | 5.16.17 | 1261IR | Revised garage slab note. Revised roof
overframing. Verified roof truss layouts provided
by 84 Lumber on 3.28.11. Verified floor Joist layouts
provided by 84 Lumber on 82.15 | | 2 | 6.14.17 | 12611R2 | Added stem wall foundation plan | | 3 | 4.23.18 | 17862 | Added crawl space foundation plan | | 4 | 7.10.18 | 17862R | Revised per new architectural files dated 6.12.18 | | 5 | 8.30.18 | 17862R2 | Added dimensions at taped porch columns | | 6 | 10.5.18 | 17862R3 | Included stick framing option at extended parch | | 1 | 11.30.18 | 17862R4 | Revised NC version only for 2018 NCRC | | 8 | 3.1.21 | TØØ9I | Added OX-16 Structural Insulated Sheating Option | summit over framing. Apply building paper over the sheathing as required by the state Building Code. Wood floor sheathing shall be APA rated sheathing exposure I or 2. Attach sheathing to its supporting framing with (I)-8d CC ringshark nail at 6"or a to panel edges and at 12"or in panel field unless otherwise noted on the plans. Sheathing shall be applied perpendicular to framing, Sheathing shall have a span rating consistent with the framing spacing. We suitable edge support by use of 14G plywood or lumber blocking unless otherwise noted. Panel end joints shall occur over framing. Apply building paper over the sheathing as required by the Sheathing shall have a I/B" gap at panel ends and edges as recommended in accordance with the APA. Apply building paper over the sheathing as required by the Wood wall sheathing shall comply with the requirements of local information. Sheathing shall be applied with the long direction perpendicular to framing, unless noted otherwise. Roof sheathing shall be APA rated sheathing exposure 1 or 2. Roof sheathing shall be continuous over two supports and attached to this supporting roof framing with (1)-8d CC nail at 6"o/c at panel edges and at
12"o/c in panel field unless otherwise noted on the plans. Sheathing shall be applied with the long direction perpendicular to framing. Sheathing shall have a span rating consistent with the framing spacing, like suitable edge support by use of plywood ellips or lumber blocking unless otherwise noted. Panel end Joints shall occur over framing. Apply building paper over the sheathing as Roof sheathing shall be continuous over two supports and building codes for the appropriate state as indicated on these drawings. Refer to wall bracing notes in plan set for more # TRUCTURAL FIBERBOARD PANELS: state Building Code. - Fabrication and placement of structural fiberboard sheathing shall be in accordance with the applicable AFA standards. All structurally required fiberboard sheathing shall bear the - mark of the AFA. Fiberboard wall sheathing shall comply with the requirements of local building codes for the appropriate state as indicated on these drawings. Refer to wall bracing notes in plan set for more - Sheathing shall have a 1/8" gap at panel ends and edges are recommended in accordance with the AFA. # GENERAL STRUCTURAL NOTES: - The design professional whose seal appears on these drawings is the structural engineer of record (SER) for this project. The SER bears the responsibility of the primary structural elements and the performance of this structure. No other party may revise alter, or delete any structural aspects of these construction documents without written permission of SUPMIT Engineering, Laboratory 4 Testing, P.C. (SUPMIT) or the SER. For the purposes of these construction documents the SER and SUPMIT - shall be considered the same entity. The structure is only stable in its completed form. The contractor shall provide all required temporary bracing during construction to stabilize the structure. - The SER is not responsible for construction sequences, methods or techniques in connection with the construction of this structure. The SER will not be held responsible for the contractor's failure to conform to the contract documents, should any non-conformities occur. Any structural elements or details not fully developed on the - construction drawings shall be completed under the direction of a licensed professional engineer. These shop drawings shall be submitted to SUMMIT for review before any construction begins. The shop drawings will be reviewed for overall compliance as it relates to the structural design of this project. Verification of - the shop drawings for dimensions, or for actual field conditions, is not the responsibility of the SER or SUMMIT. Verification of assumed field conditions is not the responsibility of the SER. The contractor shall verify the field conditions fo of the SEK. The contractor shall verify the field conditions for accuracy and report any discrepancies to SUMMIT before construction begins. The SER is not responsible for any secondary structural elements or non-structural elements, except for the elements specifically - noted on the structural drawings. This structure and all construction shall conform to all - applicable sections of the international residential code. This structure and all construction shall conform to all applicable sections of local building codes. All structural assembles are to meet or exceed to requirements - of the current local building code. # FOUNDATIONS: The structural engineer has not performed a subsurface responsibility of the owner or the contractor. Should any adverse soil condition be encountered the SER must be - The bottom of all footings shall extend below the frost line for The bottom of all footings scale extend below to find the region in which the structure is to be constructed. However, the bottom of all footings shall be a minimum of 12' below grade. Any fill shall be placed under the direction or recommendation - of a licensed professional engineer. The resulting soil shall be compacted to a minimum of 95% maximum dry clereity. Excavations of footings shall be lined temporarily with a 6 mil polyethylene membrane if placement of concrete does not occur - within 24 hours of excavation. No concrete shall be placed against any subgrade containing - STRUCTURAL STEEL: 1. Structural steel shall be fabricated and erected in accordance with the American Institute of Steel Construction "Code of Standard Practice for Steel Buildings and Bridges" and the manual of Steel Construction "Load Resistance Factor Design" latest editions. - Structural steel shall receive one coat of shop applied water, ice, frost, or loose materia - rust-inhibitive paint. All steel shall have a minimum yield stress (F_n) of 36 ksi unless - when the state of for shop and field welding shall be class ETOXX. All welding shall be performed by a certified welder per the above - NUMBELE: Concrete shall have a normal weight aggregate and a minimum compressive strength (Fe) at 28 days of 3000 psi, unless otherwise noted on the plan. Concrete shall be proportioned, mixed, and placed in - accordance with the latest editions of ACI 318: "Building Code Requirements for Reinforced Concrete" and ACI 301: "Specifications for Structural Concrete for Buildings" - Air entrained concrete must be used for all structural elements exposed to freeze/thaw cycles and deicing chemicals. Air entrainment amounts (in percent) shall be within -1% to 42% of target values as follows: 3.1. Footings: 5% 3.2. Exterior **S**labs: 5% No admixtures shall be added to any structural concrete without written permission of the SER. - Concrete slabs-on-grade shall be constructed in accordance with ACI 302.1R-96: "Guide for Concrete Slab and Slab Construction". - The concrete slab-on-grade has been designed using a subgrade modulus of k=250 pci and a design loading of 200 psf. The SER is not responsible for differential settlement, slab cracking or other future defects resulting from unreported - cracking or other future defects resulting from unreported conditions not in accordance with the above assumptions. Control or saw cut joints shall be spaced in interior slabs-on-grade at a maximum of 10°-0° DC, and in exterior slabs-on-grade at a maximum of 10°-0° unless otherwise noted. Control or saw cut joints shall be produced using conventional - process within 4 to 12 hours after the slab has been finished - process within 4 to 12 nours after the shap has been finished Reinforcing steel may not extend through a control Joint. Reinforcing steel may extend through a saw cut Joint. All welded wire fabric (www.) for concrete slabs-on-grade shall be placed at mild-depth of slab. The WWF, shall be securely supported during the concrete pour. - CONCRETE RENFORCEMENT: 1. Fibrous concrete reinforcement, or fibermesh, specified in concrete slabs-on-grade may be used for control of cracking due to shrinkage and themal expansion/contraction, lowered water migration, an increase in impact capacity, increased - abrasion resistance, and residual strength. Fibernesh reinforcing to be 120% virgin polypropylene fibers - Filbermesh reinforcing to be 100% virgin polypropylene liners containing no reprocessed olefin materials and specifically manufactured for use as concrete secondary reinforcement. Application of filbermesh per cubic yard of concrete shall equal a minimum of 0% by volume (15 pounds per cubic yard) Filbermesh shall comply with ASTM CIII6, any local building code requirements, and shall meet or exceed the current industry - Steel reinforcing bars shall be new billet steel conforming to ASTM A615, grade 60. - ASIM A615, grade 60. Detailing, fabrication, and placement of reinforcing steel shall be in accordance with the latest edition of ACI 315: "Manual of Standard Practice for Detailing Concrete Structures* Horizontal footing and wall reinforcement shall be continuous and shall have 90° bends, or comer bars with the same size/spacing as the horizontal reinforcement with a class B - Lap reinforcement as required, a minimum of 40 bar diameters for tension or compression unless otherwise noted. Splices in masonry shall be a minimum of 48 bar diameters. - 9. Where reinfarcing dowels are required, they shall be equivalent in size and spacing to the vertical reinforcement. The dowel shall extend 48 bar diameters vertically and 20 bar diameters - into the footing. Where reinforcing steel is required vertically, dowels shall be provided unless otherwise noted. - WOOD PRAINING: 1. Solid sawn wood framing members shall conform to the specifications listed in the latest edition of the "National Design Specification for Wood Construction" (NDS), Unless otherwise noted, all wood framing members are designed to be Southern-Yellow-Pine (SYP) 2 or Southm-Spruce Pine (SYF) 2. LVL or PSL engineered wood shall have the following minimum - design values: 2.1. E = 1,900,000 psi 22.Fb = 2600 psi 23.Fv = 285 psi 2.4.Fc = 100 psi - Wood in contact with concrete, masonry, or earth shall be pressure treated in accordance with AWPA standard C-15. All other moisture exposed wood shall be treated in accordance with AWPA standard C-2. - wirth AMPA Blandard C-2 Mails shall be common wire nails unless otherwise noted. Lag screws shall conform to ANSI/ASME standard B1821-1981. Lead holes for lag screws shall be in accordance with NDS specifications - All beams shall have full bearing on supporting framing members unless otherwise noted. Exterior and load bearing stud walls are to be 2x4 SYP 2 a 16" - OC unless otherwise noted. Studs shall be continuous from the sole plate to the double top plate. Studs shall only be discontinuous at headers for window/door openings. A minimum of one king stud shall be placed at each end of the header. - King studs shall be continuous. Individual studs forming a column shall be attached with one lod nail 9 6" O.C. staggered. The stud column shall be continuous to the foundation or beam. The column shall be properly blocked at all floor levels to ensure proper load transfer. Multi-ply beams shall have each ply
attached with (3) 10d nails @ - Four and five ply beams shall be boilted together with (2) rows of 1/2" diameter through boilts staggered @ 16" O.C. unless # WOOD TRUSSES: - The wood trues manufacturer/fabricator is responsible for the design of the wood trusses. Submit sealed shop drawings and supporting calculations to the SER for review prior to fabrication. The SER shall have a minimum of five (5) days for review. The review by the SER shall review for overall compliance with the design documents. The SER shall assume no responsibility for the correctness for the structural design for - the wood trusses. The wood trusses shall be designed for all required loadings. as specified in the local building code, the ASCE Standard "Minimum Design Loads for Buildings and Other Structures." (ASCE 7-10), and the loading requirements shown on these specifications. The truss drawings shall be coordinated with all other construction documents and provisions provided for loads shown on these drawings including but not limited to HVAC equipment, piping, and architectural fixtures attached to - the trusses. The trusses shall be designed, fabricated, and erected in accordance with the latest edition of the "National Design Specification for Wood Construction." (NDS) and "Design Specification for Metal Plate Connected Wood Trusses." - The truss manufacturer shall provide adequate bracing nformation in accordance with "Commentary and Recommendations for Handling, Installing, and Bracing Metal Plate Connected Wood Trusses" (HIB-91). This bracing, both temporary and permanent, shall be shown on the shop drawings. Also, the shop drawings shall show the required attachments for the trusses. - Any chords or truss webs shown on these drawings have been shown as a reference only. The final design of the trusses shall be not the trusses shall be per the manufacturer. # EXTERIOR WOOD FRAMED DECKS: Decks are to be framed in accordance with local building codes and as referenced on the structural plans, either through code references or construction details. - UCOD STRUCTURAL PANELS. I. Fabrication and placement of structural wood sheathing shall be in accordance with the APA Design/Construction Guide "Residential and Commercial," and all other applicable APA - standards. All structurally required wood sheathing shall bear the mark of SCALE 2564 147-1-67 DOMEN BY JOSE CHECKED BY: BCP > CREATE PARTY DATE REFER TO COVER SHEET FOR A CONFLETE LIST OF REVISIONS # FOUNDATION NOTES: - FOUNDATIONS TO BE CONSTRUCTED IN ACCORDANCE WITH CHAPTER 4 OF THE 2018 NORTH CAROLINA RESIDENTIAL BUILDING CODE WITH ALL LOCAL AMENDMENTS - AMENDMENTS. STRUCTURAL CONCRETE TO BE F. = 3000 PSI, PREPARED AND PLACED IN ACCORDANCE WITH ACI STANDARD 318. FOOTINGS TO BE PLACED ON UNDISTURBED EARTH, BEARING A MINIMUM OF 12" BELOW ADJACENT FINISHED GRADE, OR AS OTHERWISE DIRECTED BY THE CODE ENFORCEMENT OFFICIAL. FOOTING SIZES BASED ON A PRESUMPTIVE SOIL BEARING CAPACITY OF - 2000 PSF. CONTRACTOR IS SOLELY RESPONSIBLE FOR VERIFYING THE SUITABILITY OF THE SITE SOIL CONDITIONS AT THE TIME OF CONSTRUCTION. - 5. FOOTINGS AND PIERS SHALL BE CENTERED UNDER THEIR RESPECTIVE ELEMENTS. PROVIDE 2" MINIMUM FOOTING PROJECTION FROM THE FACE OF - 6. MAXIMUM DEPTH OF UNBALANCED FILL AGAINST MASONRY WALLS TO BE AS SPECIFIED IN SECTION R404.1 OF THE 2018 NORTH CAROLINA RESIDENTIAL - BUILDING CODE. PILASTERS TO BE BONDED TO PERIMETER FOUNDATION WALL. - PROVIDE FOUNDATION WATERPROOFING, AND DRAIN WITH POSITIVE SLOPE TO OUTLET AS REQUIRED BY SITE CONDITIONS. PROVIDED PERMETER INSULATION FOR ALL FOUNDATIONS PER 2018 NORTH - CAROLINA RESIDENTIAL BUILDING CODE. 10. CORBEL FOUNDATION WALL AS REQUIRED TO ACCOMMODATE BRICK - VENEERS. CRAWL SPACE TO BE GRADED LEVEL, AND CLEARED OF ALL DEBRIS. - CRAIL SPALE TO BE GRAVED LEVEL, AND CLEARED OF ALL DEBRIS. FOUNDATION ANCHORAGE SHALL BE CONSTRUCTED PER THE 2018 NORTH CAROLINA RESIDENTIAL CODE SECTION RASJAG. MINIMUM [2] DIA BOLTS SPACED AT 6'-0" ON CENTER WITH A "I" MINIMUM EMBEDMENT INTO MASONRY. OR CONCRETE, ANCHOR BOLTS SHALL BE IN THE BND OF EACH PLATE SECTION MINIMUM (2) ANCHOR BOLTS FER PLATE SECTION ANCHOR BOLTS SHALL BE LOCATED IN THE CENTER THIRD OF THE PLATE. - - DJ = DOUBLE JOIST SJ = SINGLE JOIST GT = GIRDER TRUSS SC = STUD COLUMN FT = FLOOR TRUSS DR = DOUBLE RAFTER EE = EACH END TR = TRIPLE RAFTER TJ = TRIPLE JOIST CL = CENTER LINE OC = ON CENTER PL = POINT LOAD - 10. ALL PIERS TO BE 16 "x16" MASONRY AND ALL PILASTERS TO BE 8 "x16" - MASONRY, TYPICAL (UNO) WALL FOOTINGS TO BE CONTINUOUS CONCRETE, SIZES PER STRUCTURAL PLAN. - 12. A FOUNDATION EXCAYATION OBSERVATION SHOULD BE CONDUCTED BY A PROFESSIONAL GEOTECHNICAL ENGINEER OR HIS QUALIFIED REPRESENTATIVE. IF ISOLATED AREAS OF YIELDING MATERIALS AND/OR POTENTIALLY EXPANSIVE SOILS ARE OBSERVED IN THE FOOTING EXCAVATIONS AT THE TIME OF CONSTRUCTION, SUMMIT ENGINEERING, LABORATORY & TESTING, P.C. MUST BE PROVIDED THE OPPORTUNITY TO REVIEW THE FOOTING DESIGN PRIOR TO CONCRETE PLACEMENT. - ALL FOOTINGS & SLABS ARE TO BEAR ON UNDISTURBED SOIL OR 95% COMPACTED FILL, VERIFIED BY ENGINEER OR CODE OFFICIAL. REFER TO BRACED WALL PLAN FOR PANEL LOCATIONS AND ANY REQUIRED HOLDOWNS, ADDITIONAL INFORMATION PER SECTION R602.108 AND FIGURES R602.1065, R602.10.1 R602.10.8(1) AND R602.10.8(2) OF THE 2015 IRC NOTE: ALL EXTERIOR FOUNDATION DIMENSIONS ARE TO FRAMING AND NOT BRICK VENEER UNO NOTE: A 4" CRUSHED STONE BASE COURSE IS NOT REQUIRED WHEN SLAB IS INSTALLED ON WELL-DRAINED OR SAND-GRAVEL MIXTURE SOILS CLASSIFIED AS GROUP I PER TABLE R405. THESE PLANS ARE DESIGNED IN ACCORDANCE WITH ARCHITECTURAL PLANS PROVIDED BY <u>DR HORTON</u> COMPLETED/REVISED ON 02/28/2020, IT IS THE RESPONSIBILITY OF THE CLIENT TO NOTIFY SUMMIT ENGINEERING, LABORATORY 4 TESTING, P.C. IF ANY CHANGES ARE MADE TO THE ARCHITECTURAL PLANS PRIOR TO CONSTRUCTION. SUMMIT ENGINEERING, LABORATORY & TESTING, P.C. CANNOT GUARANTEE THE ADEQUACY OF THESE STRUCTURAL PLANS WHEN USED WITH ARCHITECTURAL PLANS DATED DIFFERENTLY THAN THE DATE LISTED ABOVE. # STRUCTURAL MEMBERS ONLY ENGINEERING SEAL APPLIES ONLY TO STRUCTURAL COMPONENTS ON THIS DOCUMENT, SEAL DOES NOT INCLUDE CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES. PROCEDURES OR SAFETY PRECAUTIONS ANY DEVIATIONS OR DISCREPANCIES ON PLANS ARE TO BE BROUGHT TO THE IMMEDIATE ATTENTION OF SUMMIT ENGINEERING, LABORATORY & TESTING, P.C. FAILURE TO DO SO WILL VOID SUMMIT LIABILITY. STRUCTURAL ANALYSIS BASED ON 2018 NCRC. MONOLITHIC SLAB FOUNDATION PLAN MONOLITHIC SLAB FOUNDATION - ALL ELEVATIONS Foundation Slab PROJECT: Winington - RH Monolithic SCALE 2564 MATER COMMINISTRACES REFER TO COVER SHEET FOR A S1.0m | | REQUIRED | BRACED W | ALL PANEL CONNEC | CTI O NS | |-----------------|--------------------------|----------------|--------------------------------|---------------------------------------| | | | | REQUIRED | CONNECTION | | METHOD | MATERIAL | MIN. THICKNESS | PANEL EDGES | INTERMEDIATE SUPPORTS | | C 3- WSP | WOOD STRUCTURAL
PANEL | 3/8" | 6d COMMON NAILS
6 ° O.C. | 6d COMMON NAIL S
12" O.C. | | GΒ | GYPSUM BOARD | 1/2" | 5d COOLER NAILS**
© 7" O.C. | 5d COOLER NAILS**
@ 1" O.C. | | WSP | WOOD STRUCTURAL
PANEL | 3/8" | 6d COMMON NAILS
⊕ 6" O.C. | 6d COMMON NAILS
9 12" O.C. | | PF | WOOD STRUCTURAL
PANEL | 7/16" | PER FIGURE R602.10.6.4 | PER FIGURE R602.10.6.4 | # GENERAL STRUCTURAL NOTES: - CONSTRUCTION SHALL CONFORM TO 2018 NORTH CAROLINA RESIDENTIAL BUILDING - CODE WITH ALL LOCAL AMENOMENTS. CONTRACTOR SHALL VERRY ALL DIMENSIONS. CONTRACTOR SHALL COMPLY WITH THE CONTRINTS OF THE DRAWNE FOR THIS SPECIFIC PROJECT, ENGINEER IS NOT RESPONSIBLE FOR ANY DEVIATIONS FROM THIS PLAN. - RESPONSIBLE FOR ANY DEVIATIONS FROM THIS PLAN. CONTRACTOR IS RESPONSIBLE FOR PROVIDING TEMPORARY BRACING REQUIRED TO RESIST ALL FORCES ENCOUNTERED DURING ERECTION. PROPERTIES USED IN THE DESIGN ARE AS FOLLOUS: MICROLLAM (LVL). F_B = 2600 PS), F_V = 285 PS), E = 125 L0° PS) PARALLAM (PSL). F_B = 2900 PS), F_V = 290 PS), E = 125 L0° PS) ALL WOOD MEMBERS SHALL BE "2 SYP" SPF (UNLESS NOTED ON PLAN. ALL STUD COLUMNS AND JOINTS AHALL BE "3 SYP" SPF (UNLESS NOTED ON PLAN. ALL STUD COLUMNS AND JOINTS AHALL BE SUPPORTED WITH A (2) 2X4 "2 SYP" SPF (UNLESS NOTED COLUMN AT - ALL BEAM'S SHALL BE SUPPORTED UITH A 127 724 * "2 STP/"2 SPF STUD COLUMN AT EACH END UNLESS NOTED OTHERWISE. ALL REINFORCING STEEL SHALL BE GRADE 60 BARS CONFORMING TO ASTM A615 AND SHALL HAVE A MINIMUM COVER OF 3". FOUNDATION ANCHORAGE SHALL BE CONSTRUCTED PER THE 2018 NORTH CAROLINA RESIDENTIAL CODE SECTION RAFGLIS, MINIMUM 10" DIA BOLTS SPACED AT 6"-0" ON CENTER UITH A 1" MINIMUM PRIBEDIDMENT INTO MASORY OR CONCRETE. ANCHOR BOLTS SHALL BE 12" FROM THE END OF EACH PLATE. SECTION, MINIMUM (2) ANCHOR BOLTS PER PLATE SECTION, ANCHOR BOLTS SHALL - BE LOCATED IN THE CENTER THIRD OF THE PLATE. CONTRACTOR TO PROVIDED LOCKOUTS WHEN CEILING JOISTS SPAN PERPENDICULAR TO RAFTERS. - ID. FLITCH BEAMS, 4-PLY LVLS AND 3-PLY SIDE LOADED LVLS SHALL BE BOLTED TOGETHER WITH IV? DIA THRU BOLTS SPACED AT 24" OC. (MAX) STAGGERED OR EQUIVALENT CONNECTIONS PER DETAIL I/D3", MIN. EDGE DISTANCE SHALL BE 2" AND (2) BOLTS SHALL BE LOCATED MINIMIM 6" FROM EACH END OF THE BEAM. - ALL NON-LOAD BEARING HEADERS SHALL BE (1) FLAT 2'x4 STP "2'SPF" 2', DROPPED, FOR NON-LOAD BEARING HEADERS EXCEEDING 8'-0" IN WIDTH AND/OR WITH MORE THAN 2'-0" OF CRIPPLE WALL ABOVE, SHALL BE (2) FLAT 2'x4 SYP 12/SPF 12, DROPPED. (UNLESS NOTED OTHERWISE) DJ = DOUBLE JOIST SJ = SINGLE JOIST FT = FLOOR TRUSS GT = GIRDER TRUSS SC = STUD COLUMN EE = EACH END DR = DOUBLE RAFTER TR = TRIPLE RAFTER TJ = TRIPLE JOIST OC = ON CENTER CL = CENTER LINE PI - POINT LOAD DESIGNATES JOIST SUPPORTED LOAD BEARING WALL ABOVE. PROVIDE BLOCKING UNDER JOIST SUPPORTED LOAD BEARING WALL DIST & REAM SIZES SHOUN ARE MINIMUMS BUILDER MAY INSTALL ANY REQUIRED HOLDOWNS PER SECTION R602.108 AND FIGURES R602.1065, R602.10.1, R602.108(1) AND R602.108(2) OF THE 2015 IRC THESE PLANS ARE
DESIGNED IN ACCORDANCE WITH ARCHITECTURAL PLANS PROVIDED BY <u>DR HORTON</u> COMPLETED/REVISED ON <u>02/28/020</u>, IT IS THE RESPONSIBILITY OF THE CLIENT TO NOTIFY SUMMIT ENGINEERING, LABORATORY 4 TESTING, P.C. IF ANY CHANGES ARE MADE TO THE ARCHITECTURAL PLANS PRIOR TO CONSTRUCTION. SUMMIT ENGINEERING, LABORATORY & TESTING, P.C. CANNOT GUARANTEE THE ADEQUACY OF THESE STRUCTURAL PLANS WHEN USED WITH ARCHITECTURAL PLANS DATED DIFFERENTLY THAN THE DATE LISTED ABOVE. NOTE: MEMBER NOTED AS PRESSURE TREATED MAY BE FRAMED WITH NON-PRESSURE TREATED LUMBER PROVIDED THE ENTIRETY OF THE MEMBER IS WRAPPED TO PREVENT MOISTURE INTRUSION NOTE: REDUCE JOIST SPACING UNDER TILE FLOORS. GRANITE COUNTERTOPS AND/OR ISLANDS # STRUCTURAL MEMBERS ONLY ENGINEERING SEAL APPLIES ONLY TO STRUCTURAL COMPONENTS ON THIS DOCUMENT, SEAL DOES NOT INCLUDE CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES, PROCEDURES OR SAFETY PRECAUTIONS. ANY DEVIATIONS OR DISCREPANCIES ON PLANS ARE TO BE BROUGHT TO THE IMMEDIATE ATTENTION OF SUMMIT ENGINEERING, LABORATORY & TESTING, P.C. FAILURE TO DO SO WILL VOID SUMMIT LIABILITY. STRUCTURAL ANALYSIS BASED ON 2018 NORC # FIRST FLOOR FRAMING PLAN | FIRST FLOOR BRACING (FT) | | | | | | | |--------------------------|-----------------------------|----------|--|--|--|--| | CONTI | CONTINUOUS SHEATHING METHOD | | | | | | | | REQUIRED | PROVIDED | | | | | | BWL 1-1 | 4.8 | 26.5 | | | | | | BWL 1-2 | 4.8 | 13.5 | | | | | | BWL 1-3 | 4.3 | 13.1 | | | | | | BWL 1-A | 11.5 | 41.0 | | | | | | 211 112 | 115 | 36.0 | | | | | | HE, | HEADER SCHEDULE | | | | |------|--------------------|------------------|--|--| | TAG: | SIZE | JACKS (EACH END) | | | | A | (2) 2x6 | (1) | | | | 8 | (2) 2×8 | (2) | | | | С | (2) 2xlØ | (2) | | | | D | (2) 2x12 | (2) | | | | E | (2) 9-1/4" L5L/LVL | (3) | | | | F | (3) 2x6 | (1) | | | | G | (3) 2x8 | (2) | | | | H | (3) 2xlØ | (2) | | | | | (3) 2×12 | (2) | | | HEADER SIZES SHOWN ON PLANS ARE MINIMUMS. GREATER HEADER SIZES MAY BE USED FOR EASE OF CONSTRUCTION. ALL HEADERS TO BE DROPPED UNLESS NOTED OTHERWISE SC NOTED ON PLAN OVERRIDE SC LISTED ABOVE | LINTEL SCHEDULE | | | |-----------------|-------------------------------------|--------------------------| | TAG | SIZE | OPPENING SIZE | | 0 | L3x3x1/4" | LES 6 THAN 6'-0" | | 2 | L5x3x1/4" | 6'- 0 " TO 10'-0" | | 3 | L5x3-1/2"x5/16" | GREATER THAN
10'-0" | | 4 | L5x3-1/2"x5/16"
ROLLED OR EQUIV. | ALL ARCHED
OPENINGS | SECURE LINTEL TO HEADER w/ (2) 1/2" DIAMETER LAG SCREWS STAGGERED . 16" O.C. (TYP FOR 3). ALL HEADERS WHERE BRICK IS USED, TO BE: () (UNO) # WALL STUD SCHEDULE 16T & 2ND FLOOR LOAD BEARING STUDS: 2x4 STUDS @ 16" O.C. OR 2x6 STUDS ● 24" O.C. IST FLOOR LOAD BEARING STUDS W/WALK-UP ATTIC: 2x4 STUDS @ 12" OC. OR 2x6 STUDS @ 16" OC. 2x4 STUDS @ 12" OC. OR 2x6 STUDS @ 16" OC. 2x4 STUDS @ 12" OC. OR 2x6 STUDS @ 16" OC. NON-LOAD BEARING STUDS (ALL FLOORS): 2x4 STUDS * 24" O.C. TWO STORY WALLS: 2x4 STUDS ● 16" O.C. BALLOON FRAMED W/ CROSS BRACING @ 6'-0" O.C. VERTICALLY | KING STUD REQUIREMENTS | | | |---|-------------------|--| | OPENING WIDTH | KING\$ (EACH END) | | | LESS THAN 3'-0" | (1) | | | 3'-Ø TO 4'-Ø" | (2) | | | 4'-0" TO 8'-0" | (3) | | | 8'-0" TO 12'-0" | (5) | | | 12'-0" TO 16'-0" | (6) | | | KING STUD REQUIREMENTS ABOVE DO NO
APPLY TO PORTAL FRAMED OPENINGS | | | # BRACED WALL NOTES: - WALLS SHALL BE DESIGNED IN ACCORDANCE WITH SECTION R602.10 FROM THE 2015 INTERNATIONAL RESIDENTIAL CODE AS ALLOWED PER SECTION R60210 OF THE 2018 NC RESIDENTIAL CODE. - WALLS ARE DESIGNED FOR SEISMIC ZONES A-C AND ULTIMATE WIND SPEEDS UP TO 130 MPH. REFER TO ARCHITECTURAL PLAN FOR DOORWINDOW OPENING - 3. BRACING MATERIALS, METHODS AND FASTENERS SHALL BE IN ACCORDANCE WITH IRC TABLE R602/04. 4. ALL BRACED WALL PANELS SHALL BE FULL WALL HEIGHT AND - SHALL NOT EXCEED IN FEET FOR ISOLATED PANEL METHOD AND IZ FEET FOR CONTINUOUS SHEATHING METHOD WITHOUT ADDITIONAL ENGINEERING CALCULATION. MINIMUM PANEL LENGTH SHALL BE PER TABLE R602,005. - FINITION FANEL LENGTH SHALL BE FYER TABLE 1862/105. THE INTERIOR SIDE OF EXTERIOR WALLS AND BOTH SIDES OF INTERIOR WALLS SHALL BE SHEATHED CONTINUOUSLY WITH MINIMUM 121" GYPEND MODARD (MO). FOR CONTINUOUS SHEATHING METHOD, EXTERIOR WALLS SHALL BE SHEATHED ON ALL SHEATHABLE SURFACES INCLUDING INFILL AREAS BETWEEN BRACED WALL PANELS, ARDOY AND BELOW WALL OFFINICS, AND ON GABLE END WALLS. - 8. FLOORS SHALL NOT BE CANTILEVERED MORE THAN 24" BEYOND THE FOUNDATION OR BEARING WALL BELOW WITHOUT ADDITIONAL ENGINEERING CALCULATIONS. 9. A BRACED WALL PANEL SHALL BE LOCATED WITHIN 10 FEET OF - EACH END OF A BRACED WALL LINE. - II. THE MAXIMUM EDGE DISTANCE BETWEEN BRACED WALL PANELS SHALL NOT EXCEED 20 FEET. II. MASONRY OR CONCRETE STEM WALLS WITH A LENGTH OF 48" OR - LESS SUPPORTING A BRACED WALL PANEL SHALL BE DESGNED IN ACCORDANCE WITH FIGURE REQUIPS OF THE 2015 IRC. 12. BRACED WALL PANEL CONNECTIONS TO FLOOR SCELLING SHALL BE CONSTRUCTED IN ACCORDANCE WITH SECTION REQUIPS. - BRACED WALL PANEL CONNECTIONS TO ROOF SHALL BE CONSTRUCTED IN ACCORDANCE WITH SECTION R602.10.82 AND FIGURES R602.10.8(1)4(2)4(3). - 14. CRIPPLE WALLS AND WALK OUT BASEMENT WALLS SHALL BE - DESIGNED IN ACCORDANCE WITH SECTION R602.10.11 PORTAL WALLS SHALL BE DESIGNED IN ACCORDANCE WITH FIGURE R602.106.4 (UNO) - 16 ON SCHEMATIC SHADED WALLS INDICATE BRACED WALL PANELS GB = GYPSUM BOARD WSP = WOOD STRUCTURAL PANEL $\overline{\Omega}$ aming 芷 ö 正 SCALE 2564 MF-F-8F DRAIN BY, JOSE HECKED BY: BCP PROJECT OF DATE 1041 SYMPOSIS REFER TO COVER SHEET FOR A CONFLETE LIST OF FREVERIOR S3.Ø | REQUIRED BRACED WALL PANEL CONNECTI O NS | | | | | | |---|--------------------------|----------------|--------------------------------|-------------------------------|--| | | 1.1.1 mmm 1.1. | | REQUIRED CONNECTION | | | | METHOD | MATERIAL | MIN. THICKNES6 | # PANEL EDGES | # INTERMEDIATE SUPPORTS | | | C 5-W5P | WOOD STRUCTURAL
PANEL | 3/8" | 6d COMMON NAILS | 6d COMMON NAILS
9 12" O.C. | | | GB | GYPSUM BOARD | 1/2" | 5d COOLER NAILS ** | 5d COOLER NAIL 6
a T" O.C. | | | WSP | WOOD STRUCTURAL
PANEL | 3/8" | 6d COMMON NAILS | 6d COMMON NAILS
© 12" O.C. | | | PF | WOOD STRUCTURAL
PANEL | 7/16" | PER FIGURE R 602.10.6.4 | PER FIGURE R602.106.4 | | | "OR EQUIVALENT PER TABLE RT0235 | | | | | | # GENERAL STRUCTURAL NOTES: - CONSTRUCTION SHALL CONFORM TO 2018 NORTH CAROLINA RESIDENTIAL BUILDING - CODE WITH ALL LOCAL AMENDMENTS. CONTRACTOR SHALL VERIFY ALL DIMENSIONS, CONTRACTOR SHALL COMPLY WITH THE CONTENTS OF THE DRAWING FOR THIS SPECIFIC PROJECT, ENGINEER IS NOT RESPONSIBLE FOR ANY DEVIATIONS FROM THIS PLAN. 3. CONTRACTOR IS RESPONSIBLE FOR PROVIDING TEMPORARY BRACING REQUIRED - CONTRACTOR IS RESPONSIBLE FOR PROVINGE TENTIFICARY BRACING REGULTED TO RESIST ALL PORCES ENCOUNTERED DURING ERECTION. PROPERTIES USED IN THE DESIGN ARE AS FOLLOUS: MICROLLAM (I.V.L.): F₆ = 2600 PS); F₇ = 285 PS), E = 19x10° PS| PARALLAM (PSL.): F₇ = 29200 PS); F₇ = 290 PS], E = 125x10° PS| ALL BUOOD MEMBERS SHALL BE "\$ 51PP" SPF (INLESS NOTED ON PLAN. ALL STUD COLUMNS AND JOISTS SHALL BE "\$ 19PP" SPF (INLESS NOTED ON PLAN. ALL STUD COLUMNS SHALL BE SUPPORTED WITH A (2) 2x4 "2 5YP" SPF STUD COLUMN AT EACH END UNLESS NOTED OTHERWISE. - ALL REINFORCING STEEL SHALL BE GRADE 60 BARS CONFORMING TO ASTM A615 AND SHALL HAVE A MINIMUM COVER OF 3". - 8. FOUNDATION ANCHORAGE SHALL BE CONSTRUCTED PER THE 2018 NORTH CAROLINA RESIDENTIAL CODE SECTION RADIALE MINIMIM 12" DIA BOLTS SPACED AT 6"-0" ON CENTER WITH A T" MINIMIM EMBEDMENT INTO MASONRY OR CONCRETE, ANCHOR BOLTS SHALL BE 12" FROM THE END OF EACH PLATE SECTION, MINIMUM (2) ANCHOR BOLTS PER PLATE SECTION, ANCHOR BOLTS SHALL DELICATED IN THE CENTER THIRD OF THE PLATE. CONTRACTOR TO PROVIDED LOOKOUTS WHEN CEILING JOISTS SPAN PERPENDICULAR TO RAFTERS. - 10. FLITCH BEAMS, 4-PLY LYLS AND 3-PLY SIDE LOADED LYLS SHALL BE BOLTED TOSETHER WITH 1/2" DIA. THRU BOLTS SPACED AT 24" O.C. (MAX) STAGGERED OR EQUIVALENT CONNECTIONS PER DETAIL 1/D3f. MIN. EDGE DISTANCE SHALL BE 2" AND (2) BOLTS SHALL BE LOCATED MINIMUM 6" FROM EACH END OF THE BEAM. - ALL NON-LOAD BEARING HEADERS SHALL BE (1)FLAT 2x4 SYP "2,6FF" 2, DROPPED, FOR NON-LOAD BEARING HEADERS EXCEEDING 8'-0" IN WIDTH AND/OR WITH MORE THAN 2'-0" OF CRIPPLE WALL, ABOVE, SHALL BE (2) FLAT 2x4 SYP 1/SPF 1, DROPPED. (UNLESS NOTED OTHERWISE) - ABBREVIATIONS: - DJ = DOUBLE JOIST SJ = SINGLE JOIST FT = FLOOR TRUSS GT = GIRDER TRUSS SC = STUD COLUMN EE = EACH END DR = DOUBLE RAFTER TR = TRIPLE RAFTER TJ = TRIPLE JOIST OC = ON CENTER CL = CENTER LINE PL = POINT LOAD NOTE: DESIGNATES JOIST SUPPORTED LOAD BEARING WALL ABOVE, PROVIDE BLOCKING UNDER JOIST SUPPORTED LOAD BEARING WALL. JOIST 4 BEAM SIZES SHOWN ARE MINIMUMS, BUILDER MAY INCREASE DEPTH FOR EASE OF CONSTRUCTION. INSTALL ANY REQUIRED HOLDOWNS PER SECTION R602.10.8 AND FIGURES R602.106.5, R602.10.1, 18602.10.8(1) AND R602.10.8(2) OF THE 2015 IRC NOTE: MEMBER NOTED AS PRESSURE TREATED MAY BE FRAMED WITH NON-PRESSURE TREATED LUMBER PROVIDED THE ENTIRETY OF THE MEMBER IS WRAPPED TO PREVENT MOISTURE INTRUSION. THESE PLANS ARE DESIGNED IN ACCORDANCE WITH ARCHITECTURAL PLANS PROVIDED BY DR HORTON COMPLETED/REVISED ON 2012/2012/11 IS THE RESPONSIBILITY OF THE CLIENT TO NOTIFY SUMMIT ENGINEERING, LABORATORY & TESTING, P.C. IF ANY CHANCES ARE MADE TO THE ARCHITECTURAL BY MARE POOR TO CONSTRUCTION. PLANS PRIOR TO CONSTRUCTION, SUMMIT ENGINEERING. LABORATORY & TESTING P.C. CANNOT GUARANTEE THE ADEQUACY OF THESE STRUCTURAL PLANS WHEN USED WITH ARCHITECTURAL PLANS DATED DIFFERENTLY THAN THE DATE LISTED ABOVE. # STRUCTURAL MEMBERS ONLY ENGINEERING SEAL APPLIES ONLY TO STRUCTURAL COMPONENTS ON THIS DOCUMENT, SEAL DOES NOT INCLUDE CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES, PROCEDURES OR SAFETY PRECAUTIONS. ANY DEVIATIONS OR DISCREPANCIES ON PLANS ARE TO BE BROUGHT TO THE IMMEDIATE ATTENTION OF
SUMMIT ENGINEERING, LABORATORY & TESTING, P.C. FAILURE TO DO SO WILL VOID SUMMIT LIABILITY. STRUCTURAL ANALYSIS BASED ON 2018 NCRC. FIRST FLOOR FRAMING PLAN SCALE: 1/4"=1'-0" ON 22"x34" OR 1/8"=1'-0" ON 11"x1"1" | | ROOF TRUSSES FER MANUF. | |---------|---| | | | | | | | | | | BWL 2-2 | BUL 2-2 | |
 | BUL 2-B | | | SECOND FLOOR FRAMING PLAN - ELEVATION C | | SECOND FLOOR BRACING (FT) | | | | | |-----------------------------|-------------------|------|--|--| | CONTINUOUS SHEATHING METHOD | | | | | | | REQUIRED PROVIDED | | | | | BWL 2-1 | 6.8 | 3Ø.1 | | | | BWL 2-2 | 6.8 | 21.1 | | | | BWL 2-A | 5.9 | 41.0 | | | | BWL 2-B | 5.9 | 37.1 | | | | HEADER SCHEDULE | | | | |-----------------|--------------------|------------------|--| | TAG SIZE | | JACKS (EACH END) | | | А | (2) 2x6 | (1) | | | В | (2) 2x8 | (2) | | | С | (2) 2xlØ | (2) | | | D | (2) 2x12 | (2) | | | E | (2) 3-1/4" LSL/LVL | (3) | | | F | (3) 2x6 | (1) | | | G | (3) 2x8 | (2) | | | Н | (3) 2xlØ | (2) | | | | (3) 2×12 | (2) | | HEADER SITES SHOUN ON PLANS ARE MINIMUMS GREATER HEADER SIZES MAY BE USED FOR EASE OF CONSTRUCTION. ALL HEADERS TO BE DROPPED UNLESS NOTED OTHERWISE. SC NOTED ON PLAN OVERRIDE SC LISTED ABOVE. | | LINTEL SCHEDULE | | | | |-----|-----------------|--|---------------------------------|--| | TAG | | SIZE | OPENING SIZE | | | | | L3x3x1/4" | | | | | @ | L5x3x1/4" | 6'-0" TO 10'-0" | | | | 3 | L 5 x3-1/2"x5/16" | GREATER THAN
10'-0" | | | 4 | | L 5 x3-1/2"x5/16"
ROLLED OR EQUIV. | ALL AR C HED
OPENINGS | | SECURE LINTEL TO HEADER W/ (2) 1/2" DIAMETER LAG SCREWS STAGGERED & 16" O.C. (TYP FOR 3) ALL HEADERS WHERE BRICK IS USED, TO BE: (UNO) # WALL STUD SCHEDULE 1ST & 2ND FLOOR LOAD BEARING STUDS: 2x4 STUDS @ 16" O.C. OR 2x6 STUDS @ 24" O.C. ST FLOOR LOAD BEARING STUDS W/WALK-UP ATTIC: 2x4 STUDS = 12* OC. OR 2x6 STUDS = 16* OC. BASPIENT LOAD BEARING STUDS: 2x4 STUDS = 12* OC. OR 2x6 STUDS = 16* OC. NON-LOAD BEARING STUDS (ALL FLOORS): 2x4 STUDS # 24" O.C. TWO \$TORY WALLS: 2x4 STUDS @ 12" O.C. OR 2x6 STUDS @ 16" O.C. BALLOON FRAMED W/ CROSS BRACING & 6'-0" O.C. VERTICALLY | OPENING WIDTH | KINGS (EACH END. | |---------------------------|------------------| | LE \$ 6 THAN 3'-Ø" | (1) | | 3'-Ø TO 4'- Ø " | (2) | | 4'-0" TO 8'-0" | (3) | | 8'-0" TO 12'-0" | (5) | | 12'-0" TO 16'-0" | (6) | # BRACED WALL NOTES: - WALLS SHALL BE DESIGNED IN ACCORDANCE WITH SECTION R602.10 FROM THE 2015 INTERNATIONAL RESIDENTIAL CODE AS ALLOWED PER SECTION R602/20 OF THE 2018 NC RESIDENTIAL CODE. WALLS ARE DESIGNED FOR SEISMIC ZONES A-C AND ULTIMATE WIND - SPEEDS UP TO 130 MPH. - REFER TO ARCHITECTURAL PLAN FOR DOOR/WINDOW OPENING - BRACING MATERIALS, METHODS AND FASTENERS SHALL BE IN ACCORDANCE WITH IRC TABLE R602 IO.4. - ALL BRACED WALL PANELS SHALL BE FULL WALL HEIGHT AND SHALL NOT EXCEED 10 FEET FOR ISOLATED PANEL METHOD AND 12 FEET FOR CONTINUOUS SHEATHING METHOD WITHOUT ADDITIONAL ENGINEERING CALCULATIONS. MINIMUM PANEL LENGTH SHALL BE PER TABLE R6/02/10/5. THE INTERIOR SIDE OF EXTERIOR WALLS AND BOTH SIDES OF INTERIOR WALLS SHALL BE SHEATHED CONTINUOUSLY WITH MINIMUM - NIENCK WALLS SHALL DE SHEATHED SONTHINGS SHALL BE SHALL BE SHEATHED ON ALL SHEATHANG METHOD, EXTERIOR WALLS SHALL BE SHEATHED ON ALL SHEATHABLE SURFACES INCLUDING INFILL AREAS BETWEEN BRACED WALL PAINELS, ABOVE AND BELOW WALL - OPENINGS, AND ON GABLE END WALLS. FLOORS SHALL NOT BE CANTILEVERED MORE THAN 24" BEYOND - THE FOUNDATION OR BEARING WALL BELOW WITHOUT ADDITIONAL ENGINEERING CALCULATIONS - A BRACED WALL PANEL SHALL BE LOCATED WITHIN 10 FEET OF EACH END OF A BRACED WALL LINE. THE MAXIMUM EDGE DISTANCE BETWEEN BRACED WALL PANELS EACH WAS EXCEED. 20 EEET - SHALL NOT EXCEED 20 FEET MASONRY OR CONCRETE STEM WALLS WITH A LENGTH OF 48" OR LESS SUPPORTING A BRACED WALL PANEL SHALL BE DESIGNED IN ACCORDANCE WITH FIGURE R602 10.9 OF THE 2015 IRC. - BRACED WALL PANEL CONNECTIONS TO FLOOR/CEILING SHALL BE CONSTRUCTED IN ACCORDANCE WITH SECTION R6021/03 BRACED WALL PANEL CONNECTIONS TO ROOF SHALL BE - CONSTRUCTED IN ACCORDANCE WITH SECTION R602.10.82 AND - FIGURES R602:108(1)4(2)4(3). CRIPPLE WALLS AND WALK OUT BASEMENT WALLS SHALL BE - DESIGNED IN ACCORDANCE WITH SECTION R602.10.11 PORTAL WALLS SHALL BE DESIGNED IN ACCORDANCE WITH FIGURE - R602,0664 (UNO) ON SCHEMATIC, SHADED WALLS INDICATE BRACED WALL PANELS. - ABBREVIATIONS: GB = GYPSUM BOARD | WSP = WOOD STRUCTURAL PANEL C5-XXX = CONT. SHEATHED | ENG = ENGINEERED SOLUTION | FF = PORTAL FRAME | FF-ENG = ENG. PORTAL FRAME aming 芷 ö 正 PROJECT: Winington First F SCALE 2564 MATER COMMUNICATION CHECKED BY: BCP PROJECT OF DATE 1041 SYMPOSIS REFER TO COVER SHEET FOR A CONFLETE LIST OF FREVERIOR S4.1 THESE PLANS ARE DESIGNED IN ACCORDANCE WITH ARCHITECTURAL PLANS PROVIDED BY DR HORION COMPLETED/REVISED ON 02/08/02/0. IT IS THE RESPONSIBILITY OF THE CLIENT TO NOTIFY SUMMIT BY SINKERING, LABORATORY 4 TESTING, PC. IF ANY CHANGES ARE MADE TO THE ARCHITECTURAL PLANS PRIOR TO CONSTRUCTION. SUMMIT ENGINEERING, LABORATORY 4 TESTING, PC. CANNOT GLARANTEE THE ADEQUACY OF THESE STRUCTURAL PLANS WHEN USED WITH ARCHITECTURAL PLANS DATED DIFFERENTLY THAN THE DATE LISTED ABOVE. NOTE: 19T PLY OF ALL SHOWN GIRDER TRUSSES TO ALIGN WITH INSIDE FACE OF WALL (TYP, UNO) NOTE: ROOF TRUSSES SHALL BE SPACE TO SUPPORT FALSE FRAMED DORMER WALLS (TYP, UNO) STRUCTURAL MEMBERS ONLY ENGINEERING SEAL APPLIES ONLY TO STRUCTURAL COMPONENTS ON THIS DOCUMENT, SEAL DOES NOT INCLUDE CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES, PROCEDURES OR SAFETY PRECAUTIONS. ANY DEVIATIONS OR DISCREPANCIES ON PLANS ARE TO BE BROUGHT TO THE IMMEDIATE ATTENTION OF SUMMIT ENGINEERING, LABORATORY & TESTING, P.C. FAILURE TO DO SO WILL VOID SUMMIT LIABILITY. STRUCTURAL ANALYSIS BASED ON 2018 NCRC. ROOF FRAMING PLAN 9CALE: 1/4"=1"-6" ON 22"×34" OR 1/8"=1"-6" ON 11"×17" ROOF FRAMING PLAN - ELEVATION C DR Horton, Inc. 8001 Arroundge Blvd. Charlotte, NC 28213 Project. Wingen - Fat First Floor Framing Plan DRAINS DATE SCARN CALL 2004 MANAGE FRANCI A 200-666 MINISTRA DRAIN BY JOSE CARONED BY SCP PROJECT * DATE OF STATE STA REFER TO COVER SHEET FOR A CONFLETE LIST OF PRIVISIONS 5.2 Applicable Building Codes: • 2018 North Carolina Residential Building Code with All Local Amendments • ASCE 7-10: Minimum Design Loads for Buildings and Other Structures | 9" - | ougos. | | | |------|--------|-------------------|--------| | ٦. | Roof | Live Loads | | | | 1.1. | Conventional 2x | 2Ø PSF | | | 1.2. | Trus s | 2Ø PSF | | | | 12.1. Attic Truss | 60 PSF | | 2. | Roof | Dead Loads | | | | 2.1. | Conventional 2x | 10 PSF | | | 2.2. | Truse | 2Ø PSF | | 3. | Snow | | 15 PSF | | | 3.1. | Importance Factor | lø | | 4. | Floor | Live Loads | | | | 4.1. | Typ. Dwelling | 40 PSF | | | | Sleeping Areas | | | | | Decks | | | | 4.4. | Passenger Garage | 50 PSF | | | | | | 5. Floor Dead Loads 5.I. Conventional 2x ... 52 I-Joist 6.l. Exposure 62. Importance Factor... 63. Wind Base Shear 6.3.l. Vx = 632. Vy = T. Component and Cladding (in PSF) | MEAN ROOF
HT. | UP T Ø 3Ø' | 3 Ø'I"-35' | 35'1"-40' | 40'1"-45' | |------------------|-------------------|-------------------|---------------------|------------| | ZONE 1 | 16.7,-18.0 | 17.5,-18.9 | 18.2,-19.6 | 18.7,-20.2 | | ZONE 2 | 16.7,-21.0 | 17.5,-22.1 | 18.2,-22.9 | 18.7,-23.5 | | ZONE 3 | 16.7,-21.0 | 17.5,-22.1 | 18.2,-22.9 | 18.7,-23.5 | | ZONE 4 | 18.2,-19.0 | 19.2,-20.0 | 19.9,-2 Ø .7 | 20.4,-21.3 | | ZONE 5 | 18.2,-24.0 | 19.2,-25.2 | 19.9,-26.1 | 20.4,-26.9 | Seismic Use Group ... 8.5. Spectral Response Acceleration 85.1. Sms = %g 85.2. Sml = %g 8.6. Seismic Base Shear 861.Vx = 862.Vy = 8.1. Basic Structural System (check one) ⊠ Bearing Wall ☐ Building Frame ☐ Moment Frame □ Dual w/ Special Moment Frame □ Dual w/ Intermediate R/C or Special Steel □ Inverted Pendulum 8.8. Arch/Mech Components Anchored 8.9. Lateral Design Control: Seismic 🗆 llind 🖂 9. Assumed Soil Bearing Capacity ... # STRUCTURAL PLANS PREPARED FOR # STANDARD DETAILS PROJECT ADDRESS: OUNER: DR Horton Carolinas Division ARCHITECT/DESIGNER These drawings are to be coordinated with the architectural, mechanical, plumbing, electrical, and civil drawings. This coordination is not the responsibility of the structural engineering of recoord (SER, Should any cliarcepancies become apparent, the contractor shall notify SUMMIT Engineering, Laboratory 4 Testing, P.C. before construction begins. # PLAN ABBREVIATIONS: | AB | ANCHOR BOLT | PT | PRESSURE TREATED | |--------------|------------------------|-----|------------------------| | AFF | ABOVE FINISHED FLOOR | RS | ROOF SUPPORT | | u | CEILING JOIST | 5C | STUD COLUMN | | CLR | CLEAR | SJ | SINGLE JOIST | | DJ | DOUBLE JOIST | SPF | SPRUCE PINE FIR | | DSP | DOUBLE STUD POCKET | SST | SIMPSON STRONG-TIE | | EE | EACH END | SYP | SOUTHERN YELLOW PINE | | EW | EACH WAY | TJ | TRIPLE JOIST | | NTS | NOT TO SCALE | TSP | TRIPLE STUD POCKET | | ОC | ON CENTER | TYP | TYPICAL | | P S F | POUNDS PER SQUARE FOOT | UNO | UNLESS NOTED OTHERWISE | | ₽91 | POUNDS PER SQUARE INCH | WWF | WELDED WIRE FABRIC | Roof truss and floor joist layouts, and their corresponding loading details, were not provided to SUMMIT Engineering, Laboratory 4 Testing, P.C. (SUMMIT) prior to the initial design. Therefore, truss and joist directions were assumed based on the information provided by <u>DR Horton. Inc.</u> Subsequent plan revisions based on roof truss and floor joist layouts shall be noted in the revision list, indicating the date the layouts were provided. Should any discrepancies become apparent, the contractor shall notify **5U**1111 immediately. # SHEET LIST: REVISION LIST: Date FIII T |2 |T 3 2.15.18 4 228.18 5 12.19.18 6 2.19.19 8 3.6.19 9 3220 Project No. Revision | ôheet Nø. | Description | | | | |-----------|--
--|--|--| | CSI | Cover Sheet, Specifications, Revisions | | | | | D1m | Monolithic Slab Foundation Details
Stem Wall Foundation Details
Crawl Space Foundation Details | | | | | Dis | | | | | | Dlc | | | | | | Dlb | Basement Foundation Details | | | | | DIf | Framing Details | | | | # DR HORTON PROJECT SIGN-OFF: | Manager | Signature | | | |--------------------------------|-----------|--|--| | Operations | | | | | Operations System | | | | | Operations Product Development | | | | # SÜMMIT # GENERAL STRUCTURAL NOTES: - NERAL STRUCTURAL NOTES: The design professional whose seal appears on these drawings is the structural engineer of record (SER) for this project. The SER bears the responsibility of the primary structural elements and the performance of this structure. No other party may revise, after, or delete any structural aspects of these construction documents without written permission of SUMMIT Engineering, Laboratory & Testing, P.C. (SUMMIT) or the SER. For the surposes of these construction documents the SER and SUMMIT. purposes of these construction documents the SER and SUMMIT - shall be considered the same entity. The structure is only stable in its completed form. The contractor shall provide all required temporary bracing during construction - to stabilize the structure. The SER is not responsible for construction sequences, methods, or techniques in connection with the construction of this structure. The SER will not be held responsible for the contractor's failure to conform to the contract documents - should any non-conformities occur. Any structural elements or details not fully developed on the construction drawings shall be completed under the direction of a licensed professional engineer. These shop drawings shall be submitted to SUMMIT for review before any construction begins. The shop drawings will be reviewed for overall compliance as it relates to the structural design of this project. Verification of the shop drawings for dimensions, or for actual field conditions, - the shop drawings for dimensions, or for actual field conditions, is not the responsibility of the SER or 9UMMIT. Verification of assumed field conditions is not the responsibility of the SER. The contractor shall verify the field conditions for accuracy and report any discrepancies to 9UMMIT before construction begins. The SER is not responsible for any secondary structural elements or non-structural elements, except for the elements specifically noted to the structural drawings. - noted on the structural drawings. This structure and all construction shall conform to all - applicable sections of the international residential code. This structure and all construction shall conform to all applicable sections of local building codes. All structural assemblies are to meet or exceed to requirements. - of the current local building code. # FOUNDATIONS: The structural engineer has not performed a subsurface investigation. Verification of this assumed value is the responsibility of the owner or the contractor. Should any adverse soil condition be encountered the SER must be - 2. The bottom of all footings shall extend below the frost line for the region in which the structure is to be constructed. However, the bottom of all footings shall be a minimum of 12" below grade. - maximum dry density. 5. Excavations of footings shall be lined temporarily with a 6 mill polyetylene memorane if placement of concrete does not occur within 24 hours of excavation. - with the American Institute of Steel Construction "Code of Standard Practice for Steel Buildings and Bridges" and the manual of Steel Construction "Load Resistance Factor Design latest editions. Structural steel shall receive one coat of shop applied - rust-inhibitive paint. 3. All steel shall have a minimum yield stress (F_u) of 36 kg unless - otherwise noted - Number IE. Concrete shall have a normal weight aggregate and a minimum compressive strength (fe/ at 28 days of 3000 ps), unless otherwise noted on the plan. Concrete shall be proportioned, mixed, and placed in - Requirements for Reinforced Concrete" and ACI 301: "Specifications for Structural Concrete for Buildings". - Air entrained concrete must be used for all structural elements exposed to freeze/thaw cycles and deicing chemicals. Air entrainment amounts (in percent) shall be within -1% to +2% of target values as follows: - 3.1. Footings: 5% 3.2. Exterior Slabs: 5% - 4. No admixtures shall be added to any structural concrete without written permission of the SER. - Construction" Any fill shall be placed under the direction or recomme - of a licensed professional engineer. The resulting earl shall be compacted to a minimum of 95% - No concrete shall be placed against any subgrade containing water, ice, frost, or loose material. - STRUCTURAL STEEL: 1. Structural steel shall be fabricated and erected in accordance - Welding shall conform to the latest edition of the American weraing shall common to the latest edition of the American Welding Society's Structural Welding Code AUS DIJ. Electrodes for shop and field welding shall be class ETØXX. All welding shall be performed by a certified welder per the above - accordance with the latest editions of ACI 318: "Building Code - Concrete slabs-on-grade shall be constructed in accordance with ACI 302.IR-96: "Guide for Concrete Slab and Slab - The concrete slab-on-grade has been designed using a subgrade modulus of k=250 pci and a design loading of 200 psf. The SER is not responsible for differential settlement, slab cracking or other future defects resulting from urreported conditions not in accordance with the above assumptions. Control or solu cut joints shall be spaced in interior slabs-on-grade at a maximum of 15-01 O.C. and in exterior - slabs-on-grade at a maximum of $|\mathcal{O}|$ unless otherwise noted. Control or saw cut joints shall be produced using conventional process within 4 to 12 hours after the slab has been finished - process within 4 to 12 hours after the state has been has been intered. 9. Reinforcing steel may extend through a control joint. Reinforcing steel may extend through a saw cut joint. 10. All welded wire fabric (www.) for concrete slabs-on-grade shall be placed at mid-depth of slab. The WWW. shall be securely supported during the concrete pour. - CONCRETE REINFORCEMENT: I. Fibrous concrete reinforcement, or fibermesh, specified in concrete slabs-on-grade may be used for control of cracking due to shrinkage and thermal expansion/contraction lowered water migration, an increase in impact capacity, increased abrasion resistance, and residual strength. - Fibermesh reinforcing to be 100% virgin polypropylene fibers containing no reprocessed olefin materials and specifically manufactured for use as concrete secondary reinforcement. - Application of fibermesh per cubic yard of concrete shall equal a minimum of 0.1% by volume (15 pounds per cubic yard) Fibermesh shall comply with ASTM CIII6, any local building code requirements, and shall meet or exceed the current industry - standard. Steel reinforcing bars shall be new billet steel conforming to - of the inferior of the state size/spacing as the horizontal reinforcement with a class B - Lap reinforcement as required, a minimum of 40 bar diameters for tension or compression unless otherwise noted. Splices in masonry shall be a minimum of 48 bar diameters. - 9. Where reinforcing dowels are required, they shall be equivalent in size and spacing to the vertical reinforcement. The dowel shall extend 48 bar diameters vertically and 20 bar diameters - into the Footing. 10. Where reinforcing steel is required vertically, dowels shall be provided unless otherwise nated. WOOD FRAMING: Solid sawn wood framing members shall conform to the specifications listed in the latest edition of the "National - otherwise noted, all wood framing members are designed to be Spruce-Yellow-Pise (SYP) 12. LVL or PSL engineered wood shall have the following minimum Design Specification for Wood Construction" (NDS), Unless - sign values: 2.1. E = 1,900,000 psi - 2.2. F_b = 2600 psi 2.3. F_v = 285 psi - 2.4.Fc = 100 psi 1.4.1°C incorption blood in contract, masonry, or earth shall be pressure treated in accordance with AWPA standard C-15. All other moisture exposed wood shall be treated in accordance with AWPA standard C-2 - Nails shall be common wire nails unless otherwise noted. Lag screws shall confrom to ANSI/ASME standard Bi82.1-1981. Lead holes for lag screws shall be in accordance with NDS specification. - specifications All beams shall have full bearing on supporting framing members - unless otherwise noted. Exterior and load bearing stud walls are to be 2x4 SYP $^{\circ}$ 2 = 16" O.C. unless otherwise noted. Studs shall be continuous from the sole plate to the double top plate. Studs shall only be discontinuous at headers for window/door openings. A minimum of one king stud shall be placed at each end of the header. - of one king stud shall be placed at each end of the header. King stude shall be continuous, individual stude forming a column shall be attached with one lod nail e 6" O.C. staggered. The stud column shall be continuous to the foundation or beam. The column shall be properly blocked at all floor levels to ensure proper load transfer. Multi-ply beams shall have each ply attached with (3) lod nails e - 10. Flitch beams, 4-ply beams and 3-ply side loaded beams shall be - bolted together with (2) rous of 1/2" diameter through boilts staggered # 16" O.C. unless noted otherwise. Min. edge distance shall be 2" and (2) bolts shall be located a min. 6" from each # WOOD TRUSSES: The wood truss manufacturer/fabricator is responsible for the design of the wood trusses. Submit sealed shop drawings and supporting calculations to the SER for review prior to fabrication. The SER shall have a minimum of five (5) days for review. The review by the SER shall review for overall compliance with the design documents. The SER
shall assume no responsibility for the correctness for the structural design for the wood trusses. The wood trusses shall be designed for all required loadings. dded box bay detail (2/D2f). Added deck stem wall and crawl space foundations Revised garage door detail, NC only Added high-wind foundation details Revised per Mecklenburg County Comments Revised stem wall deck attachment and roo Corrected dimensions at perimeter footings Revised stem wall insulation note Revised per 2018 NCRC sheathing on wall sections. Added tall turndown detail options with basement. Revised deck options with - In a wood trusses shall be designed for all required loadings as specified in the local building code, the ACCE Standard "Minimum Design Loads for Buildings and Other Structures." (ASCE 1-05), and the loading requirements shown on these specifications. The truss drawings shall be coordinated with all other construction documents and provisions provided for loads shown on these drawings including but not limited to HVAC equipment, piping, and architectural fixtures attached to - the trusses shall be designed, fabricated, and erected in accordance with the latest edition of the "National Design Specification for Wood Construction" (NDS) and "Design Specification for Metal Plate Connected Wood Trusses." - The truss manufacturer shall provide adequate bracing information in accordance with "Commentary and Recommendations for Handling, Installing, and Bracing Metal Plate Connected Wood Trusses" (HIB-91). This bracing, both temporary and permanent, shall be shown on the shop drawings. Also, the shop drawings shall show the required attachments for - the trusses. Any chords or truss webs shown on these drawings have been shown as a reference only. The final design of the trusses shall be per the manufacturer # EXTERIOR WOOD FRAMED DECKS: Decks are to be framed in accordance with local building codes and as referenced on the structural plans, either through code references or construction details. - WOOD STRUCTURAL PANELS: I. Fabrication and placement of structural wood sheathing shall be in accordance with the APA Design/Construction Guide "Residential and Commercial," and all other applicable APA - All structurally required wood sheathing shall bear the mark of - 3. Wood wall sheathing shall comply with the requirements of local building codes for the appropriate state as indicated on these drawings. Refer to wall bracing notes in plan set for more information. Sheathing shall be applied with the long direction perpendicular to framing, unless noted otherwise. Roof sheathing shall be APA rated sheathing exposure I or 2. - Roof sheathing shall be continuous over two supports and attached to its supporting roof framing with (1)-8d CC nail at 6"o/c at panel edges and at 12"o/c in panel field unless otherwise noted on the plans. Sheathing shall be applied with the long direction perpendicular to framing. Sheathing shall have a span rating consistent with the framing spacing. Use - have a span rating consistent with the framing spacing, Use suitable edge support by use of plywood clips or limber blocking unless otherwise noted. Panel end joints shall occur over framing. Apply building paper over the sheathing as required by the state Building Code. Wood floor sheathing shall be APA rated sheathing exposure I or 2. Attach sheathing to its supporting framing with (I)-Bd CC ringshark nail at 6°0'c at panel edges and at 12°0'c in panel field unless otherwise noted on the plans. Sheathing shall be applied perpendicular to framing, Sheathing shall have a span rating consistent with the framing spacing. Use suitable edge support by use of 14G plywood or lumber blocking unless otherwise noted. Panel end joints shall occur over framing. Apply building paper over the sheathing as required by the state Building Code. - state Building Code. Sheathing shall have a 1/8" gap at panel ends and edges as recommended in accordance with the APA. - STRUCTURAL FIBERBOARD PANELS: 1. Fabrication and placement of structural fiberboard sheathing shall be in accordance with the applicable AFA standards - All structurally required fiberboard sheathing shall bear the mark of the AFA. 3. Fiberboard wall sheathing shall comply with the requirements of local building codes for the appropriate state as indicated on these drawings. Refer to wall bracing notes in plan set for more - Sheathing shall have a 1/8" gap at panel ends and edges are PROJECT: Standard Details Coversheet TH CARO USBA1 4/2 STRUCTURAL MEMBERS ONLY DATE: 3/2/2 8CALE: 22x34 V4"+1"-8" lbt1 V8"+1"-8" PROJECT 1 P-19Ø1-1Ø DRAWN BY: LAG CHECKED BY: WAJ REFER TO COVER SHEET FOR A COMPLETE LIST OF REVISIONS CSI AS REQUIRED PER THE NCRC <u>STANDARD - BRICK</u> SEE MONOSLAB FTG. WIDTH CHARTS PATIO SLAB DETAIL UNDISTURBED SOIL - PATIO SLAB⁴ SEE MONOSI AF FTG WIDTH CHARTS STANDARD - SIDING - PERIMETER SLAB THE NCRC I**n**sulati**o**n inst**a**lled AS REQUIRED PER OR MESH PER PLAN COMPACTED FILL/- UNDISTURBED SOIL 6A COVERED PATIO DETAIL - COMPACTED FILL/ UNDISTURBED SOIL OR CONTINUOUS LUG FOOTING PER PLAN | _ | WALL ANGHON SCHEDOLL | | | | | | |---|--------------------------------------|--------------------|-----------|-------------------|----------|--| | | TYPE OF ANCHOR | MIN. CONC. | SPACING | INTERI O R | EXTERIOR | | | I | | EMBED M ENT | EMBEDMENT | WALL | WALL | | | I | 1/2"ø A3 0 7 BOLT S w/ | 7" | 6'-0" | YES | YES | | | | STD. 90° BEND | | | | | | | ı | S\$T - MAS | 4" | 5'-0" | NO | YES | | | ı | HILTI KWIK BOLT KBI 1/2-2-3/4 | 2-1/4" | 6'-0" | YES | NO | | | ı | 1/2"ø HILTI THREADED ROD | 7" | 6'-0" | YES | YES | | | | w/ HIT HY150 ADHESIVE | | | | | | NOTE: INSTALL ALL ANCHORS 12" MAX. FROM ALL BOTTOM PLATE ENDS AND JOINTS. - NOTES: 1. REFER TO GENERAL NOTES & SPECIFICATIONS ON COVERSHEET FOR ADDITIONAL INFORMATION. - PROVIDE 6 MIL VAPOR BARRIER UNDER ALL SLABS-ON-GRADE. SEE ARCH. DWGS. FOR ALL TOP OF THE SLAB ELEVATIONS, SLOPES AND DEPRESSIONS. - 4. REFER TO STRUCTURAL PLANS AND FRAMING DETAILS FOR BRACED WALL PANEL LAYOUT, DIMENSIONS, ATTACHMENT AND CONNECTIONS - REFER TO LOCAL AND STATEWIDE CODES FOR ADDITIONAL AMENDMENTS AND REQUIREMENTS NOT SHOWN - 6. PERIMETER INSULATION SHOWN AS REQUIRED BY LOCAL CLIMATE ZONE. INSTALL PER TABLE N1102.1.2 OF THE 2018 NCRC Details Foundation Slab PROJECT: Standard Details Monolithic \$ DATE: 3/2/2 8CALE: 27x34 1/4"+1"-**8"** 18x1 1/8":1"-**8"** PROJECT & P-19Ø1-1ØR DRAWN BY: LAG CHECKED BY: WAJ REFER TO COVER SHEET FOR A COMPLETE LIST OF REVISIONS Dlm - NOTES: 1. REFER TO GENERAL NOTES & SPECIFICATIONS ON COVERSHEET FOR ADDITIONAL INFORMATION. - PROVIDE 6 MIL VAPOR BARRIER UNDER ALL SLABS-ON-GRADE. SEE ARCH. DWGS. FOR ALL TOP OF THE SLAB ELEVATIONS, SLOPES AND DEPRESSIONS. - 4. REFER TO STRUCTURAL PLANS AND FRAMING DETAILS FOR BRACED WALL PANEL LAYOUT, DIMENSIONS, ATTACHMENT AND CONNECTIONS - 5. REFER TO LOCAL AND STATEWIDE CODES FOR ADDITIONAL AMENDMENTS AND REQUIREMENTS NOT SHOWN - 6. PERIMETER INSULATION SHOWN AS REQUIRED BY LOCAL CLIMATE ZONE. INSTALL PER TABLE N1102.1.2 OF THE 2018 NCRC Details Foundation Slab PROJECT: Standard Details Monolithic (DATE: 3/2/28 8CALE: 22x34 1/4"+1-**6"** lbt1 1/8"+1-**6"** PROJECT 4 P-19Ø1-1Ø CHECKED BY: WAJ DRAWN BY: LAG REFER TO GOVER SHEET FOR A COMPLETE LIST OF REVISIONS D2m SÜMMIT SUMMIT Engineering, Laboratory & Testing, P.C. CLIENT: DR Horton Carolina Divi 8001 Arrowridge Blvd. Charlotte, NC 20213 DATE: 3/2/2 8CALE: 22x34 1/4"∗1"-**8"** |bgT 1/8"∗1"-**8"** PROJECT 4 P-19Ø1-1Ø DRAIN BY: LAG CHECKED BY: WAJ REFER TO GOVER SHEET FOR A COMPLETE LIST OF REVISIONS D1f METHOD PF: PORTAL FRAME DETAIL SUMMIT Detaí PROJECT: Standard Details Framing STRUCTURAL MEMBERS ONLY DATE: 3/2/2 8CALE: 22x34 1/4"∗1"-**8"** |bgT 1/8"∗1"-**8"** PROJECT & P-19Ø1-1ØR DRAWN BY: LAG CHECKED BY: WAJ REFER TO GOVER SHEET FOR A COMPLETE LIST OF REVISIONS D2f ELEVATION VIEW - I.All fasteners must meet the minimum requirements in the table above. Side-loaded multiple-ply members must meet the minimum fastening and side-loading capacity - requirements given on page 48. 2. Minimum fastening requirements for depths less than 7½" require special consideration. Please contact your technical representative. L3x3x1/4"x8-1/2" LONG - STEEL BEAM - PER PLAN COPE END OF STEEL AS REQ'D TO CLEAR WEB OF STEEL BEAM LINTEL BOTH SIDES OF WEB w/ 13/16" # HOLES @ GAGE side are to be staggered up to one-hall the o.c. spacing, but maintaining the fastene-clearances above and (3) if "ES" is referenced, then the fastener schedule must be repeated on each side, with the fasteners on the back side offset up to one-half the o.c. spacing of the front side (whether or not it is staggered). SECTION VIEW STEEL BEAM PER PLAN - STEEL BEAM PER PLAN (2) 3/4"ø BOLTS ÈACH ANGLE LEG NOTES: 3. Three general rules for staggering or offsetting for a certain fastener schedule: (1) if staggering or offsetting is not referenced, then none is required; (2) if staggering is referenced, ther fasteners installed in adjacent rows on the front. MULTI-PLY BEAM CONNECTION DETAIL — 10d COMMON NAIL @ 12" O.C. - SIMPSON C\$16 COIL STRAP OR EQUIV. PER MANUF. SPECIFICATIONS EACH PLY OR PER CODE @ 1/3 HEIGHT LOCATIONS MULTI-PLY STUD CONNECTION DETAIL ELEVATION VIEW **ELEVATION VIEW** GABLE ROOF RETURN SÜMMIT SUMMIT LEDGE OF THE T PROJECT: Standard Details Framing Details DATE: 3/2/2 8CALE: 22x34 1/4"∗1"-**6"** lbt1 1/8"∗1"-**6"** PROJECT 4 P-1907-10R DRAIIN BY: LAG CHECKED BY: WAJ REFER TO COVER SHEET FOR A COMPLETE LIST OF REVISIONS **D**3f Revisions: BY: Boise Cascade Boi EVILLE OF What Me Know About Engineered Lumber 6000 Rozzelle's Ferry Road Charlotte, NC 28214 (704) 393-1456 Fax (704) 392-1331 DR Horton The Wilmington C 123 Woodgrove 84 Lumber Company Charlotte. North Carolina BC FRAMER II Scale: NTS Arch Date: 2/28/2020 Struc Date: 11/30/2018 Designer: GAT DWG:The Wilmington # THIS LAYOUT IS INTENDED FOR THE PURPOSE OF TRUSS LOCATION AND PLACEMENT ONLY. REFER TO THE
BUILDING PLANS FOR ACTUAL BUILDING CONSTRUCTION. 37-11-00 DEDICATED TO QUALITY AND EXCELLENCE 200 EMMETT ROAD DUNN, NORTH CAROLINA 28334 PHONE: 910-892-8400 A2E 2-00-00 **A2** N.T.S 1X 2-00-00 **A2** 055 Vault Master 2-00-00 **A2** 2-00-00 **A2** - RAL 2-00-00 **A2** Wilmington 2-00-00 **A2** HORTON \circ 2-00-00 **A2** 1X 9/1/2021 Wilmington 2-00-00 **A2 A1** 1-09-08 О Ж. **A1** 2-00-00 лоте #: 28245 **A1** 2-00-00 **A1** 2-00-00 **A1** TOP LIVE LOAD: 20.0 lb/ft² 2-00-00 **A1** 2-00-00 TOP DEAD LOAD: 10.0 lb/ft² Α BOTTOM DEAD LOAD: 10.0 lb/ft² 2-00-00 2-00-00 WIND SPEED: 130 mph - DO NOT CUT OR MODIFY TRUSSES - TRUSSES ARE SPACED 24" ON CENTER UNLESS OTHERWISE NOTED - REFER TO THE INDIVIDUAL TRUSS DESIGN DRAWINGS FOR THE LOCATION OF LATERAL BRACING AND MULTI-PLY CONNECTION REQUIREMENTS. - PER ANSI TPU 1-2002 THE TRUSS ENGINEER IS RESPONSIBILE FOR TRUSS. - PER ANSI TRUSS CONNECTIONS AND TRUSS PLY TO PLY CONNECTIONS. THIS TRUSS PLACEMENT PLAN RECOMMENDS TRUSS TO BRAMING CONNECTIONS AND TRUSS TO BEAM CONNECTIONS WHICH SHALL BE REVIEWED BY THE BUILDING DESIGNER. IT IS THE RESPONSIBILITY OF THE BUILDING DESIGNER. TO RESOLVE ALL ROOF FORCES ADEQUATELY TO THE FOUNDATION. 2-00-00 Α 2-00-00 Α 2-00-00 A 2-00-00 ΑE 2-00-00 ۵ ۵ ۵ Ω ۵ Ω Ω Ф GDH BE 1-11-08 18-00-00 16-00-00 37-11-00 (56) H2.5 1st Level Roof Area 2nd Level Roof Area