

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 3465255 KEVIN MCCUE

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Builders FirstSource (Albermarle,NC).

Pages or sheets covered by this seal: I57779369 thru I57779397

My license renewal date for the state of North Carolina is December 31, 2023.

North Carolina COA: C-0844

April 14,2023

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	KEVIN MCCUE	
3465255	A1	Piggyback Base	4	1	Job Reference (optional)	157779369

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Apr 14 07:42:22

NOTES

1) Unbalanced roof live loads have been considered for this design.

4-17=0/1229

818 Soundside Road Edenton, NC 27932

G mm April 14,2023

Job	Truss	Truss Type	Qty	Ply	KEVIN MCCUE	
3465255	A1A	Piggyback Base	9	1	Job Reference (optional)	157779370

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Apr 14 07:42:25 ID:eZgXa1caAR66yVRq1MUhT7zVkfH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

-0-10-8 10-2-4 11-2-7 41-5-8 41-9-8 6-1-7 16-3-9 21-5-2 27-9-13 34-2-7 1-0-3 5-1-10 0-10-8 6-1-7 4-0-13 5-1-2 6-4-10 6-4-10 7-3-1 0-4-0 3x4= 5x6= 5x6 =7 27 8 28 9 12 10 29 4 4x5 🖌 6-0-9 မှ 26 6 4x5、 30 10 11-10-2 5x6 = 25 24 12 3 5-9-5 12 3x5 = 2 2 5 4 3x4 = 23 3 3 - 3 - 100-2-6 3-1-3 22 ų́∏ **11** ø K 17¹⁶ 18 31 15 32 14 33 13 34 12 35 3x4、 2x4 II 4x8= 4x8= 4x8= 4x8= 4x5= 4x5= $4 \times 10 =$ 11-0-11 41-9-8 6-1-7 10-2-4 21-6-14 34-0-11 41-3-12 6-1-7 4-0-13 10-6-4 12-5-13 7-3-1 0-5-12 0-10-7 Scale = 1:80.3 Plate Offsets (X, Y): [2:0-3-7,0-0-1], [7:0-4-4,0-2-0], [9:0-4-4,0-2-0], [10:0-1-12,0-1-8], [11:0-2-0,0-1-4] Loading Spacing 2-0-0 CSI DEFL in (loc) l/defl L/d PLATES GRIP (psf) TCLL (roof) 20.0 Plate Grip DOL 1.15 тс 0.89 Vert(LL) -0.25 12-14 >999 240 MT20 244/190 Snow (Pf) 15.0 Lumber DOL 1.15 BC 0.72 Vert(CT) -0.39 12-14 >962 180 10.0 Rep Stress Incr WB Horz(CT) YES 0.51 0.02 11 n/a n/a 0.0 Code IRC2015/TPI2014 Matrix-MS Weight: 305 lb 10.0 FT = 20% LUMBER 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. TOP CHORD 2x4 SP No 1 II; Exp B; Enclosed; MWFRS (envelope) exterior zone; BOT CHORD 2x6 SP No.2 cantilever left and right exposed ; Lumber DOL=1.60 2x4 SP No.3 *Except* 11-10:2x4 SP No.2 plate grip DOL=1.60 BRACING TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 3) TOP CHORD Structural wood sheathing directly applied, DOL=1.15 Plate DOL=1.15); Pf=10.0 psf (flat roof snow: except end verticals, and 2-0-0 oc purlins Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; (6-0-0 max.): 7-9. Partially Exp.; Ct=1.10 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc 4) Unbalanced snow loads have been considered for this bracing, Except: design. 6-0-0 oc bracing: 16-17. 5) This truss has been designed for greater of min roof live 1 Row at midpt 6-16, 6-14, 8-14, 8-12 load of 12.0 psf or 2.00 times flat roof load of 10.0 psf on REACTIONS 2=0-3-8, 11=0-3-8, 17=0-3-8 (size) overhangs non-concurrent with other live loads. Max Horiz 2=246 (LC 12) Provide adequate drainage to prevent water ponding. 6) Max Uplift 2=-61 (LC 8), 17=-55 (LC 12) This truss has been designed for a 10.0 psf bottom 7) Max Grav 2=397 (LC 54), 11=1293 (LC 3), chord live load nonconcurrent with any other live loads. 17=1744 (LC 3) 8) * This truss has been designed for a live load of 20.0psf FORCES (lb) - Maximum Compression/Maximum on the bottom chord in all areas where a rectangle Tension 3-06-00 tall by 1-00-00 wide will fit between the bottom

TOP CHORD 1-2=0/13, 2-3=-511/85, 3-4=-110/194, 4-5=-321/0, 5-6=-431/30, 6-7=-1200/56, 7-8=-855/86, 8-9=-670/90, 9-10=-982/29, 10-11=-1222/0 BOT CHORD 2-18=-153/463, 17-18=-153/463, 16-17=-156/75, 14-16=-87/876, 12-14=-53/879, 11-12=-16/34 WEBS 3-18=0/198, 3-17=-671/87, 5-16=-292/51, 6-16=-994/45, 6-14=-150/194, 7-14=0/456,

TCDL

BCLL

BCDL

WEBS

WEBS

- 9-12=0/299, 10-12=0/815, 8-14=-190/213, 8-12=-484/137, 4-17=-1441/0, 4-16=0/1242 NOTES
- 1) Unbalanced roof live loads have been considered for this design.
- bearing plate capable of withstanding 61 lb uplift at joint 2 and 55 lb uplift at joint 17. 10) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and

chord and any other members, with BCDL = 10.0psf.

Provide mechanical connection (by others) of truss to

- R802.10.2 and referenced standard ANSI/TPI 1. 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord
- LOAD CASE(S) Standard

Page: 1

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

9)

Job	Truss	Truss Type	Qty	Ply	KEVIN MCCUE	
3465255	A1B	Piggyback Base	4	1	Job Reference (optional)	157779371

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Apr 14 07:42:26 ID:be3ZgshTgHnibwbu6UZ0ROzVkcb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

- NOTES
- 1) Unbalanced roof live loads have been considered for this design.

8-13=-485/125, 4-20=-1473/0, 4-19=0/1239

- correct for the intended use of this truss. 14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 15) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

April 14,2023

G mm

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	KEVIN MCCUE	
3465255	A1E	Piggyback Base	1	1	Job Reference (optional)	157779372

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Apr 14 07:42:28 ID:ISX_OSmxVUBmK5mj3C12ZTzVWdI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

April 14,2023

ENGINEERING BY EREENCO A MITEK AMILIA 818 Soundside Road Edenton. NC 27932

Job	Truss	Truss Type	Qty	Ply	KEVIN MCCUE	
3465255	A1G	Piggyback Base Girder	1	1	Job Reference (optional)	157779373

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Apr 14 07:42:30 ID:5OOLsqJkbEM6gtt0KPkoL4zVX4I-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

	200
Plate Offsets (X, Y):	[2:0-3-7,0-0-1], [10:0-4-4,0-2-0], [13:0-5-0,0-2-4], [16:0-4-4,0-2-0], [29:0-3-4,0-1-4], [32:0-4-0,0-3-12], [35:0-5-0,0-2-8]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(ps 20 15 10 0 10	sf) .0 .0 .0 .0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2015/TP	12014	CSI TC BC WB Matrix-MS	0.75 0.69 0.83	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.07 -0.13 0.03	(loc) 26-27 26-27 24	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 466 lb	GRIP 244/190 FT = 20%	5
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS JOINTS	BER TOP CHORD CHORD 2x4 SP No.1 CHORD 2x6 SP No.2 S 2x4 SP No.3 *Except* 22-20:2x4 SP No.2 ERS 2x4 SP No.3 CING CHORD Structural wood sheathing directly applied or 5-3-2 oc purlins, except end verticals, and 2-0-0 oc purlins, (5-9-6 max.): 10-16. CHORD Rigid ceiling directly applied or 10-0-0 oc bracing, Except: 6-0-0 oc bracing: 37-38,24-25,23-24,22-23. I Row at midpt 7-50, 17-42 ITS 1 Brace at Jt(s): 40, 41, 42, 43, 44, 45,			1-2=0/13, 2-3=-82 4-5=-151/331, 5-6 7-8=-1358/168, 8- 9-10=-1287/230, - 11-12=-1003/200, 13-14=-987/197, - 15-16=-987/197, - 15-16=-987/197, - 17-18=-1357/189, 19-20=-1307/190, 20-22=-1569/188 2-39=-148/771, 38 37-38=-371/106, - 34-36=-127/429, - 32-33=-123/406, - 30-31=-205/1315,	8/105, 3- =-157/42 9=-1354, 10-11=-11 12-13=- 14-15=-9; 16-17=-1; 18-19=- 20-21=0 3-39=-14; 36-37=-1; 33-34=-1; 31-32=-20; 28-30=-;	4=-166/430, 1, 6-7=-113/ 194, 103/200, 1003/200, 37/197, 270/221, 1296/188, /44, 3/771, 27/429, 23/406, 05/1315, 205/1315,	ʻ518,	WEBS		5-37= 16-25: 47-48: 32-46: 13-45: 40-41: 3-39=1 4-37=1 42-43: 20-44: 50-51: 7-49= 14-40: 26-41: 18-43:	-45/198, 10-32=- =-95/607, 7-48=- =-130/1018, 32-4 =-698/153, 45-46 =-704/154, 13-44 =-703/140, 25-41 0/415, 4-38=-407 0/415, 4-38=-407 0/415, 4-38=-407 0/415, 4-38=-407 0/415, 438=-407 0/415, 438=-407 =-1186/116, 49-5 =-0/83, 27-40=-16 =-111/54, 17-42= =-262/114, 24-45	114/584, 126/971, 17=-135/10 ⁻ 16-694/151, 1-716/143, 1=-712/142, 173, 3-38=- 1/73, 3-38=- 1/74, 15-41=- 2/73, 3-78=- 1/73, 3-78=- 1/74, 15-41=- 1/73, 3-78=- 1/73, 3-78=- 1/74, 15-41=- 1/73, 3-773, 3-78=- 1/74, 15-41=- 1/73, 3-773, 3-78=- 1/74, 15-41=- 1/73, 3-773, 3-78=- 1/74, 15-41=- 1/74, 15-	16, 1226/148, 72, 54, 29, 124/53,		
REACTIONS	46, 47, 48, 50 (size) 24=6 37=6 Max Horiz 2=23 Max Uplift 2=-64 23=-6 35=-7 Max Grav 2=45 23=4 35=1 37=9	3-8, 22 5-1-8, 3 5-1-8, 3 30 (LC 4 (LC 67 (LC 255 (L 199 (L 54 (LC 964 (L 964 (L) 76 (LC	2=6-1-8, 23=6-1-8, 35=6-1-8, 36=6-1-8, 38=6-1-8 60) 8), 22=-192 (LC 9), 13), 24=-200 (LC C 12), 36=-44 (LC C 12), 38=-193 (LC 54), 22=1702 (LC 55), 24=1080 (LC C 2), 36=451 (LC C 2), 38=1821 (LC	, 8), 28) 2), 52), 55), 54)		25-26=-205/1315, 22-23=-3/1	24-25=-	3/1, 23-24=-{	3/1,	NOTES	G	30-45: 31-46: 8-48=- 35-49: 6-51=-	10/82, 11-46=- 10/82, 11-46=- 121/51, 9-47=- -104/35, 34-48=- 1187/142, 36-5 -113/61	128/53, 74/89, 33-4 153/39, 50=-14/50,	7=-62/80,
FORCES	(lb) - Maximum Tension	Comp	ression/Maximum								E		0363	L 22	1 E

818 Soundside Road Edenton, NC 27932

Page: 1

Continued on page 2

Job	Truss	Truss Type	Qty	Ply	KEVIN MCCUE	
3465255	A1G	Piggyback Base Girder	1	1	Job Reference (optional)	157779373

- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pf=10.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 10.0 psf on overhangs non-concurrent with other live loads.
- 7) Provide adequate drainage to prevent water ponding.
- 8) All plates are 1.5x4 MT20 unless otherwise indicated.
- 9) Gable studs spaced at 2-0-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 1-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 199 lb uplift at joint 37, 192 lb uplift at joint 22, 64 lb uplift at joint 2, 193 lb uplift at joint 38, 200 lb uplift at joint 24, 67 lb uplift at joint 23, 255 lb uplift at joint 35 and 44 lb uplift at joint 36.
- 13) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 15) Use Simpson Strong-Tie MUS26 (6-10d Girder, 4-10d Truss, Single Ply Girder) or equivalent spaced at 2-0-0 oc max. starting at 7-4-12 from the left end to 40-5-4 to connect truss(es) to front face of bottom chord.
- 16) WARNING: The following hangers are manually applied but fail due to geometric considerations: MUS26 on front face at 7-4-12 from the left end, MUS26 on front face at 9-4-12 from the left end, MUS26 on front face at 11-4-12 from the left end, MUS26 on front face at 12-5-4 from the left end, MUS26 on front face at 14-5-4 from the left end, MUS26 on front face at 16-5-4 from the left end, MUS26 on front face at 18-5-4 from the left end, MUS26 on front face at 20-5-4 from the left end, MUS26 on front face at 22-5-4 from the left end, MUS26 on front face at 24-5-4 from the left end, MUS26 on front face at 26-5-4 from the left end, MUS26 on front face at 28-5-4 from the left end, MUS26 on front face at 30-5-4 from the left end, MUS26 on front face at 32-5-4 from the left end, MUS26 on front face at 34-5-4 from the left end, MUS26 on front face at 36-5-4 from the left end, MUS26 on front face at 38-5-4 from the left end, MUS26 on front face at 40-5-4 from the left end.
- 17) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

Vert: 1-5=-40, 5-10=-40, 10-16=-50, 16-20=-40, 20-21=-40, 22-52=-20

Concentrated Loads (lb)

- Vert: 29=-167 (F), 65=-353 (F), 66=-375 (F), 67=-346 (F), 68=-346 (F), 70=-346 (F), 71=-167 (F), 72=-167 (F), 73=-167 (F), 74=-167 (F), 75=-167 (F), 76=-167
- (F), 77=-167 (F), 78=-167 (F), 79=-167 (F), 80=-346 (F), 81=-375 (F), 82=-353 (F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Apr 14 07:42:30 ID:5OOLsqJkbEM6qtt0KPkoL4zVX4I-RfC?PsB70Hq3NSqPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

Job	Truss	Truss Type	Qty	Ply	KEVIN MCCUE	
3465255	B1E	Piggyback Base	5	1	Job Reference (optional)	157779374

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Apr 14 07:42:33

Page: 1

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	KEVIN MCCUE	
3465255	CJ1	Jack-Open	2	1	Job Reference (optional)	157779375

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Apr 14 07:42:34 ID:EOhM2zLXAYhFDexOMXGEL3zVkIO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

3x4 =

4-7-1	

Scale -	1.22 5
Scale -	· I.ZZ.J

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 10.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MP	0.21 0.15 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.03 0.01	(loc) 4-7 4-7 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 16 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD 2x4 SP No BOT CHORD 2x4 SP No BRACING TOP CHORD Structural 4-7-1 oc p BOT CHORD Rigid ceilir bracing. REACTIONS (size) Max Horiz Max Uplift Max Grav FORCES (lb) - Maxin Tension TOP CHORD 1-2=0/13, : BOT CHORD 2-4=-36/25 NOTES 1) Wind: ASCE 7-10; Vult Vasd=91mph; TCDL=6 II; Exp B; Enclosed; MM cantilever left and right plate grip DOL=1.60 2) TCLL: ASCE 7-10; Pr= DOL=1.15 Plate DOL= Lumber DOL=1.15 Plate DOL= Lumber DOL=1.15 Plate DOL= DOL=1.15 Plate DOL= Lumber DOL=1.00 3) Unbalanced snow load design. 4) This truss has been de load of 12.0 psf or 2.00 Overhangs non-concur 5) This truss has been de chord live load noncon	1 1 wood shee urlins. g directly 2=0-4-9, 3 Mechanic 2=33 (LC 2=265 (LC 2=265 (LC 2=265 (LC 2=265 (LC 2=265 (LC 2=265 (S 4 2-3=-53/5 =115mph .0psf; BC VFRS (er exposed 20.0 psf (1.15); Pf= te DOL=1 s have be signed foo times flat ent with c signed foo current with	athing directly applie applied or 10-0-0 or 3= Mechanical, 4= al 8) 8), 3=-31 (LC 12) 2), 3=116 (LC 2), 4 pression/Maximum 1 (3-second gust) DL=6.0psf; h=30ft; C ivelope) exterior zon ; Lumber DOL=1.60 roof live load: Lumber 10.0 psf (flat roof sn .15); Category II; Ex en considered for th r greater of min roof roof load of 10.0 ps ther live loads. = a 10.0 psf bottom th any other live loads	6) ed or 7) 8) 9) LO L=82 Cat. e; er ow: p B; is live f on ds.	* This truss h on the botton 3-06-00 tall b chord and ar Refer to girdd Provide mecl bearing plate 3 and 50 lb u This truss is International R802.10.2 ar	as been designed in chord in all areas y 1-00-00 wide will y other members. er(s) for truss to tru- nanical connection capable of withsta plift at joint 2. designed in accord Residential Code s da referenced stand Standard	for a liv where fit betw uss con (by oth nding 3 ance w sections dard AN	e load of 20.0 a rectangle veen the botto nections. ers) of truss ti 1 lb uplift at jo ith the 2015 R502.11.1 a ISI/TPI 1.	opsf om obint nd				SEA 0363	ROLL 22 EER.K	Manunnan

April 14,2023

GI A. GIL

Job	Truss	Truss Type	Qty	Ply	KEVIN MCCUE	
3465255	E1	Common	1	1	Job Reference (optional)	157779376

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Apr 14 07:42:34 ID:qKv6tkvTmuy_Shu0NuBvSqzVX98-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:57.6

Plate Offsets (X, Y):	[2:0-2-0,0-2-12],	[4:0-2-0,0-2-8]
-----------------------	-------------------	-----------------

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 10.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	j/TPI2014	CSI TC BC WB Matrix-MS	0.52 0.32 0.10	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.05 -0.10 0.00	(loc) 7-8 7-8 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 94 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD 2x4 SI 30T CHORD 2x4 SI WEBS 2x4 SI BRACING TOP CHORD Struct 6-0-0 30T CHORD Rigid bracin REACTIONS (size) Max HC Max Up Max G Max Up Max G (Ib) - N Tensic TOP CHORD 1-2=0, 4-5=0, 30T CHORD 7-8=-2 WEBS 3-7=0, NOTES 1) Unbalanced roof li this design. 2) Wind: ASCE 7-10; Vasd=91mph; TCI I; Exp B; Enclosed cantilever left and plate grip DOL=1.15 Partially Exp.; Ct= 4) Unbalanced snow design. 5) This truss has bee load of 12.0 psf or overhangs non-co	No.1 No.1 No.1 No.3 *Excep ural wood she ce purlins, excepting directly g. 6=0-3-8, riz 8=-157 (L faximum Conn 43, 2-3=-514/ 43, 2-8=-562/ 07/290, 6-7=- 263, 2-7=-70/ ve loads have Vult=115mph DL=6.0psf; BC t; MWFRS (eight exposed 00 Pr=20.0 psf (D L15); Pf= Plate DOL=1 1.10 loads have be n designed for 2.00 times flat hourrent with our part of the power of the po	t* 8-2,6-4:2x4 SP No athing directly applie cept end verticals. applied or 10-0-0 oc 3=0-3-8 C 10) C 2), 8=-10 (LC 13) C 2), 8=-10 (LC 13) C 2), 8=626 (LC 2) apression/Maximum 90, 3-4=-509/90, 46, 4-6=-564/46 83/145 242, 4-7=-50/226 been considered for (3-second gust) DL=6.0psf; h=30ft; C avelope) exterior zone ; Lumber DOL=1.60 roof live load: Lumbe 10.0 psf (flat roof snc .15); Category II; Exp een considered for thi r greater of min roof I t roof load of 10.0 pst ther live loads.	6) 7) .2 d or 8) 9) LO LO S S S S S S S S S	This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and arn Provide mecl bearing plate 8 and 12 lb u This truss is International R802.10.2 ar AD CASE(S)	s been designed for a nonconcurrent w has been designed in chord in all areas y 1-00-00 wide will by other members. hanical connection in capable of withsta plift at joint 6. designed in accord Residential Code s dor referenced stand Standard	or a 10.0 ith any for a liv where fit betw (by oth nding 1 ance w sections dard AN) psf bottom other live load e load of 20.0 a rectangle veen the botto ers) of truss to 0 lb uplift at jo th the 2015 R502.11.1 a SI/TPI 1.	ds.)psf o point nd		N. C.		SEA 0363	ROJUL ICAL 22	

818 Soundside Road Edenton, NC 27932

April 14,2023

Job	Truss	Truss Type	Qty	Ply	KEVIN MCCUE	
3465255	E1E	Common Supported Gable	1	1	Job Reference (optional)	157779377

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Apr 14 07:42:35 ID:TXfyYuNURvcc1AG3L9vgUqzVkyx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4

1	4	-5-	-0

 \vdash

Scale = 1:54.8

Plate Offsets (X, Y): [20:0-1-12,Edge]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 10.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	/TPI2014	CSI TC BC WB Matrix-MR	0.14 0.09 0.13	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 12	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 115 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BBACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.1 2x4 SP No.1 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt (size) 12=14-5-(15=14-5-(1	athing directly applied cept end verticals. applied or 6-0-0 oc 6-16), 13=14-5-0, 14=14-5), 16=14-5-0, 17=14-5), 19=14-5-0, 20=14-5 LC 10) LC 9), 13=-181 (LC 1 C 13), 15=-66 (LC 13 C 12), 18=-66 (LC 13 C 12), 20=-192 (LC .C 26), 13=250 (LC 1 .C 27), 15=246 (LC 2 .C 26), 19=257 (LC 1). .C 27) (LC 1).	1) 2) d or 3) 5-0, 4) 5-0, 3), 5)), 6) 8) 1), 7), 8) 1), 7), 8) 1), 7), 8) 1), 7), 8) 1), 7), 8) 1), 7), 7) 1), 7), 7), 7), 8) 1), 7), 7), 7), 8) 7), 7), 8), 7), 7), 8), 8), 7), 8), 7), 8), 7), 8), 7), 8), 7), 8), 7), 8), 7), 8), 8), 7), 7), 8), 7), 8), 7), 8), 7), 8), 7), 8), 7), 7), 8), 7), 8), 7), 8), 7), 8), 7), 8), 7), 8), 8), 7), 8), 8), 7), 8), 7), 8), 8), 7), 8), 8), 7), 7), 8), 7), 7), 7), 7), 7), 7), 7), 7	Unbalanced a this design. Wind: ASCE Vasd=91mph II; Exp B; End cantilever left plate grip DO Truss desigr only. For stu see Standard or consult qu TCLL: ASCE DOL=1.15 PI Lumber DOL Partially Exp. Unbalanced s design. This truss ha load of 12.0 p overhangs no All plates are Gable require Truss to be fu	roof live loads have 7-10; Vult=115mph ; TCDL=6.0psf; BC closed; MWFRS (er and right exposed L=1.60 red for wind loads in ds exposed to wind Industry Gable En alified building desi; 7-10; Pr=20.0 psf (ate DOL=1.15); Pf= =1.15 Plate DOL=1 ; Ct=1.10 snow loads have be s been designed for psf or 2.00 times fla on-concurrent with of 1.5x4 MT20 unless ss continuous botto ully sheathed from of st lateral movemen	been of (3-sect DL=6.1 vvelope ; Lumb n the pin (norm d Deta gner as roof liv f10.0 p .1.5); C seen cor r greate t roof lo there in chorm or nor fact t (i.e. d	considered fo cond gust) opps; h=30ft; (e) exterior zor ber DOL=1.60 ane of the tru al to the face ils as applical s per ANSI/TF e load: Lumb sf (flat roof sr ategory II; Ex asidered for th er of min roof bad of 10.0 ps re loads. wise indicated d bearing. e or securely iagonal web)	r Cat. he;) Jss J, ble, PI 1. er how: tp B; his live sf on d.	14) This Inte R80 LOAD C	e truss is rnationa (2.10.2 a CASE(S)	desig I Resic I Resic Star	ned in accordance dential Code sect erenced standard ndard	e with the 2015 ons R502.11.1 and ANSI/TPI 1.
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Com Tension 2-20=-176/133, 1-2= 3-4=-87/131, 4-5=-7 6-7=-45/212, 7-8=-5 9-10=-132/144, 10-1 19-20=-70/70, 18-19 16-17=-70/70, 15-16 13-14=-70/70, 12-13	pression/Maximum :0/43, 2-3=-155/163, 4/187, 5-6=-57/226, 8/172, 8-9=-68/118, 1=0/43, 10-12=-162/- i=-70/70, 17-18=-70/7 :=-70/70, 14-15=-70/7	10) 11) 12) 122 70, 13) 70,	This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and an Provide mect bearing plate ioint 20, 185	s been designed for d nonconcurrent wi as been designed for chord in all areas y 1-00-00 wide will y other members, v hanical connection capable of withstar	r a 10.0 th any or a liv where fit betw vith BC (by oth nding 1) psf bottom other live loa e load of 20.0 a rectangle veen the botto DL = 10.0psf ers) of truss t 92 lb uplift at juift at joint 17	ds.)psf om o		Winnin	No.	SEA 0363	L 22
WEBS NOTES	6-16=-266/0, 5-17=- 3-19=-149/136, 7-15 8-14=-134/103, 9-13	142/89, 4-18=-132/10 =-140/87, =-140/128	00,	lb uplift at joir joint 15, 70 lb 13.	nt 18, 188 lb uplift a uplift at joint 14 an	t joint 1 d 181	9, 66 lb uplift b uplift at joir	, so t at ht				A. G	ILBERTIN'

April 14,2023

Page: 1

🗼 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component
Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	KEVIN MCCUE	
3465255	G1	Piggyback Base	9	1	Job Reference (optional)	157779378

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Apr 14 07:42:35 ID:549d_Ujph99l?asej4wFtUzR2UJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:77.7

Plate Offsets (X, Y): [4:0-4-4,0-1-12], [5:0-4-4,0-1-12], [10:0-4-0,0-3-0]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 15.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.44 0.80 0.35	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.40 -0.66 0.02	(loc) 11-12 11-12 9	l/defl >745 >454 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 177 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD WEBS REACTIONS FORCES TOP CHORD	2x4 SP No.1 2x4 SP No.1 2x4 SP No.3 *Except Structural wood shea 6-0-0 oc purlins, exc 2-0-0 oc purlins, exc 2-0-0 oc purlins (6-0- Rigid ceiling directly bracing. 1 Row at midpt (size) 9=0-3-8, 1 Max Horiz 12=-212 (I Max Grav 9=1128 (L (Ib) - Maximum Com Tension 1-2=0/43, 2-3=-342/1 4-5=-594/116, 5-6=-5	t* 12-2,9-7:2x4 SP N athing directly applie pept end verticals, ar -0 max.): 4-5. applied or 10-0-0 oc 3-11, 6-10, 3-12, 6-5 2=0-3-8 LC 10) C 41), 12=1128 (LC pression/Maximum 144, 3-4=-972/120, 976/120, 6-7=-338/12	5) No.2 6) 7) Nd or 8) 5 9 9) (3 9 9 9) 10 10 10 10 10 10 10 10 10 10 10 10 10	This truss ha load of 12.0 p overhangs n Provide adec This truss ha chord live loa * This truss h on the bottom 3-06-00 tall b chord and an This truss is International R802.10.2 ar 9) Graphical pu or the orienta bottom chord DAD CASE(S)	s been designed for optimized an advectigation of the pro- part of the pro- side of the pro	or great at roof k other hy- prevent v or a 10.0 with any for a hiv s where I fit betw with BC dance w sections dard AN does no long the	er of min rool oad of 10.0 p <i>re</i> loads. water pondin. 0 psf bottom other live loa e load of 20.1 a rectangle ween the bott DL = 10.0ps ith the 2015 R502.11.1 a ISI/TPI 1. ot depict the s e top and/or	f live sf on g. ds. Opsf om f. and size					
BOT CHORD WEBS 1) Unbalance this design 2) Wind: ASC Vasd=91m II; Exp B; E cantilever plate grip I 3) TCLL: ASC DOL=1.15 Lumber DC Partially E: 4) Unbalance design.	7-8=0/43, 2-12=-372 11-12=-80/771, 9-11 3-11=-219/227, 4-11 6-10=-218/228, 3-12 ed roof live loads have n. CE 7-10; Vult=115mph nph; TCDL=6.0psf; BCI Enclosed; MWFRS (en left and right exposed ; DOL=1.60 CE 7-10; Pr=20.0 psf (r Plate DOL=1.15); Pf= OL=1.15 Plate DOL=1. xp.; Ct=1.10 ed snow loads have be	/136, 7-9=-370/137 =0/669 =-34/402, 5-10=-36/ =-916/21, 6-9=-922/ been considered for (3-second gust) DL=6.0psf; h=30ft; C velope) exterior zon ; Lumber DOL=1.60 roof live load: Lumber 10.0 psf (flat roof sn 15); Category II; Exp en considered for thi	403, 19 Cat. e; er ow: p B; is							M. HIIIII		SEA 0363	ROLL 22 E.F.R. KINNIN

April 14,2023

Job	Truss	Truss Type	Qty	Ply	KEVIN MCCUE	
3465255	G1A	Piggyback Base	5	1	Job Reference (optional)	157779379

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Apr 14 07:42:36 ID:0DYFDNRBbp_MEgAo?ItYKizVX0i-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:77.7

Plate Offsets (X, Y): [4:0-4-4,0-1-12], [5:0-4-4,0-1-12], [9:0-4-0,0-3-0]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 15.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	5/TPI2014	CSI TC BC WB Matrix-MS	0.44 0.80 0.35	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.40 -0.66 0.02	(loc) 10-11 10-11 8	l/defl >744 >454 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 175 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD WEBS REACTIONS (M FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalanced this design. 2) Wind: ASCE Vasd=91mp II; Exp B; Er cantilever le plate grip D DOL=1.15 F Lumber DO Partially Exp 4) Unbalanced design.	2x4 SP No.1 2x4 SP No.1 2x4 SP No.3 *Except Structural wood shea 6-0-0 oc purlins, exc 2-0-0 oc purlins, exc 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. 1 Row at midpt size) 8=0-3-8, 1 Max Horiz 11=206 (L Max Grav 8=1092 (L (lb) - Maximum Comp Tension 1-2=0/43, 2-3=-341/1 4-5=-595/115, 5-6=-5 2-11=-372/136, 7-8= 10-11=-88/762, 8-10 3-10=-219/228, 4-10 6-9=-222/227, 3-11= 4 roof live loads have 5 7-10; Vult=115mph bh; TCDL=6.0psf; BCI nolosed; MWFRS (en oft and right exposed ; OL=1.60 E 7-10; Pr=20.0 psf (r Plate DOL=1.15); Pf= L=1.15 Plate DOL=1. b; Ct=1.10 I snow loads have be	* 11-2,8-7:2x4 SP N athing directly applied rept end verticals, an -0 max.): 4-5. applied or 10-0-0 oc 3-10, 6-9, 3-11, 6-8 1=0-3-8 C 9) C 41), 11=1129 (LC pression/Maximum 144, 3-4=-973/119, 078/119, 6-7=-310/10 -288/91 =-33/403, 5-9=-35/40 -916/19, 6-8=-939/41 been considered for (3-second gust) DL=6.0psf; h=30ft; C velope) exterior zone ; Lumber DOL=1.60 toof live load: Lumbe 10.0 psf (flat roof sno 15); Category II; Exp en considered for this	5) o.2 6) 7) d or 8) 9) 41) 10 41) 10 55, 10 10 10 10 10 10 10 10 10 10	This truss ha load of 12.0 p overhangs no Provide adec This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and an This truss is of International R802.10.2 ar 0) Graphical pu or the orienta bottom chord DAD CASE(S)	s been designed fo sef or 2.00 times fla on-concurrent with juate drainage to p is been designed fo d nonconcurrent with as been designed in n chord in all areas y 1-00-00 wide will y other members, y designed in accord Residential Code s d referenced stand rlin representation of tion of the purlin al Standard	r greate t roof lo other liv revent v r a 10.0 ith any for a liv where fit betw with BC ance with cections dard AN does no ong the	er of min roof vad of 10.0 p re loads. vater pondin. 0 psf bottom other live load e load of 20.1 a rectangle reen the bott DL = 10.0ps th the 2015 R502.11.1 a SI/TPI 1. t depict the s top and/or	f live ssf on g. ads. Opsf om f. and size				SEAL OR H CA SEAL O3632	ROCIAL PROVIDENCE PROVIDENCE PROVIDENCE PROVIDENCE PROV

April 14,2023

Job	Truss	Truss Type	Qty	Ply	KEVIN MCCUE	
3465255	G1E	Piggyback Base Structural Gable	1	1	Job Reference (optional)	157779380

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Apr 14 07:42:37 ID:bhAsMPveEPYXFT2065_w4bzVkk3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:77 Plate Offsets (X, Y): [7:0-4-4,0-1-12], [11:0-4-4,0-1-12]

Loading TCLL (roof) Snow (Pf) TCDL BCLL	(psf) 20.0 15.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MS	0.38 0.72 0.29	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.29 -0.54 0.02	(loc) 16-17 16-17 16	l/defl >596 >322 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190	
3CDL	10.0										Weight: 280 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	2x4 SP No.1 2x4 SP No.1 2x4 SP No.2 2x4 SP No.3 Structural wood shee 6-0-0 oc purlins, ext 2-0-0 oc purlins (6-0 Rigid ceiling directly bracina.	athing directly applied cept end verticals, and 0 max.): 7-11. applied or 10-0-0 oc	BOT CHORD WEBS	26-27=-13/526, 25-2 24-25=-13/526, 23-2 22-23=-13/526, 21-2 18-20=0/621, 17-18= 4-30=-65/351, 29-30 22-29=-67/368, 7-22 17-33=-215/212, 13- 27-28=-806/41, 28-3 31-32=-801/49, 4-31 13-16=-920/0, 3-28= 8-21=-75/161, 6-29=	6=-13/ 4=-13/ 2=0/621 =-67/3 =-104/ 33=-16 2=-766 =-1194 -128/1 -120/9	526, 526, 21, 20-21=0/6 75, 449, 11-17=0 52/190, 5/61, 4/66, 14, 9-20=-15 4, 23-29=-11	21, 3)/463, 2/18, 3/97,	9) Trus brac 10) Gab 11) This cho 12) * Tr on t 3-00 cho 13) Pro bea	ss to be ced again ble studs s truss ha rd live lo his truss he botto 6-00 tall rd and a vide med ring plate	fully sh nst late space as bee ad nor has be m choi by 1-0 ny oth chanica e capa	neathed from one eral movement (i. ed at 2-0-0 oc. n designed for a neoncurrent with eran designed for r rd in all areas wh 0-00 wide will fit I er members, with al connection (by bble of withstandii	face or securely e. diagonal web). 10.0 psf bottom any other live loads. a live load of 20.0ps ere a rectangle between the bottom BCDL = 10.0psf. others) of truss to ng 1023 lb uplift at	sf
WEBS JOINTS	1 Row at midpt 1 Brace at Jt(s): 29, 30, 32, 33	13-16, 9-20, 8-21, 10-	18	5-30=-125/35, 24-30 25-31=-455/21, 26-3 10-18=-113/102, 12-	=-146/ 2=-71/ 33=-68	'18, '46, 3/28		join Ib u at jo	t 22, 60 I plift at jo pint 26.	lb uplif int 21,	t at joint 27, 42 lb 74 lb uplift at joir	uplift at joint 16, 12 at 23 and 23 lb uplift	:4 t
REACTIONS	(size) 16=0-3-8, 23=10-11. 25=10-11. 27=10-11. 27=10-11. Max Horiz 27=-212 (I Max Uplift 16=-42 (Ll 22=-1023) 26=-23 (LL) Max Grav 16=1206 (22=199 (Ll 24=205 (Ll 24=205 (Ll))	21=10-11-8, 22=10-1 8, 24=10-11-8, 8, 26=10-11-8, 8 LC 10) C 13), 21=-124 (LC 8) (LC 44), 23=-74 (LC 1 C 12), 27=-60 (LC 13) C 45), 21=602 (LC 3 C 8), 23=152 (LC 43) C 41), 25=564 (LC 45)	 1-8, NOTES Unbalanced this design. Wind: ASCE Vasd=91mp II; Exp B; Er cantilever le plate grip D0 Truss desig only. For st b, se Standar 	roof live loads have 7-10; Vult=115mph h; TCDL=6.0psf; BCI closed; MWFRS (en ft and right exposed; DL=1.60 ned for wind loads in uds exposed to wind d Industry Gable Enc alified building desic	been of (3-sec DL=6.(velope ; Lumb the pl (norm d Detai	considered fo ond gust) Opsf; h=30ft; () exterior zor er DOL=1.60 ane of the tru al to the face ils as applical s per ANS/TE	r Cat. ne;) uss), ole, 21 1	14) This Inte R80 15) Gra or ti bott	s truss is rnationa)2.10.2 a phical pu ne orient om chor	I Resigned to the second secon	And in accordance lential Code sect erenced standard presentation doe of the purlin along	e with the 2015 ions R502.11.1 and ANSI/TPI 1. s not depict the size the top and/or	•
F ORCES TOP CHORD	26=121 (L (Ib) - Maximum Com Tension 1-2=0/43, 2-3=-92/48 4-5=-1024/146, 5-6= 6-7=-963/214, 7-8=-(9-10=-669/165, 10-1 11-12=-916/169, 12- 13-14=-327/146, 14- 14-16=-365/142	C 26), 27=766 (LC 27) pression/Maximum 3, 3-4=-156/163, -1024/178, 569/165, 8-9=-669/165 1=-669/165, 13=-1037/133, 15=0/43, 2-27=-154/5	 TCLL: ASCE DOL=1.15 F Lumber DOI Partially Exp Unbalanced design. This truss ha load of 12.0 overhangs n Provide ade 8) All plates and 	F 7-10; Pr=20.0 psf (r Plate DOL=1.15); Pf= ==1.15 Plate DOL=1. .; Ct=1.10 snow loads have be as been designed for psf or 2.00 times flat ion-concurrent with o quate drainage to pre e 1.5x4 MT20 unless	greate roof liv 10.0 p 15); C en cor greate roof lo ther liv event v otherv	e load: Lumb sf (flat roof sr ategory II; Ex sidered for th er of min roof bad of 10.0 ps re loads. water ponding wise indicated	er now: p B; nis live sf on g. d.		Winner		SEA 0363	ERER IL	

April 14,2023

Job	Truss	Truss Type	Qty	Ply	KEVIN MCCUE	
3465255	G1E	Piggyback Base Structural Gable	1	1	Job Reference (optional)	157779380
Builders FirstSource (Albermarle), Albemarle, NC - 28001,	Run: 8.63 S Nov 19 2	2022 Print: 8.	.630 S Nov 1	9 2022 MiTek Industries, Inc. Fri Apr 14 07:42:37	Page: 2

ID:bhAsMPveEPYXFT2065_w4bzVkk3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Builders FirstSource (Albermarle), Albemarle, NC - 28001,

16) This truss has large uplift reaction(s) from gravity load case(s). Proper connection is required to secure truss against upward movement at the bearings. Building designer must provide for uplift reactions indicated.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Page: 2

Job	Truss	Truss Type	Qty	Ply	KEVIN MCCUE	
3465255	G1G-3	Piggyback Base	1	3	Job Reference (optional)	157779381

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Apr 14 07:42:38 ID:Pcz5IYIdE_ve2KXzFY4jEzzVWkE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:77.7

Plate Offsets (X, Y): [3:0-5-8,0-3-0], [4:0-5-8,0-3-0], [9:0-4-8,0-2-8]

Loading	(psf)	Spacing	6-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.34	Vert(LL)	-0.12	10-11	>999	240	MT20	244/190	
Snow (Pf)	15.0	Lumber DOL	1.15		BC	0.50	Vert(CT)	-0.21	10-11	>999	180			
TCDL	10.0	Rep Stress Incr	YES		WB	0.27	Horz(CT)	0.02	8	n/a	n/a			
BCLL	0.0*	Code	IRC201	5/TPI2014	Matrix-MS									
BCDL	10.0											Weight: 670 lb	FT = 20%	
LUMBER			3)	Unbalanced	roof live loads have	e been (considered fo	or						
TOP CHOR	D 2x6 SP No.2		,	this design.										
BOT CHOR	D 2x6 SP No.2		4)	Wind: ASCE	7-10; Vult=115mpl	h (3-seo	ond gust)							
WEBS	2x4 SP No.3 *Excep	ot* 11-1,8-6:2x4 SP I	No.2	Vasd=91mpl	n; TCDL=6.0psf; BC	CDL=6.	Opsf; h=30ft;	Cat.						
BRACING				II; Exp B; En	closed; MWFRS (e	nvelope	e) exterior zo	ne;						
TOP CHOR	D 2-0-0 oc purlins (6-0	-0 max.). except en	nd	cantilever lef	t and right exposed	d ; Lumb	per DOL=1.60	0						
	verticals	, <i>,,</i>		plate grip DC	DL=1.60									
	(Switched from shee	eted: Spacing > 2-0-	0). 5)	TCLL: ASCE	7-10; Pr=20.0 psf	(roof liv	e load: Lumb	ber						
BOT CHOR	D Rigid ceiling directly	applied or 10-0-0 o	с	DOL=1.15 P	late DOL=1.15); Pf:	=10.0 p	st (flat roof si	now:						
	bracing.			Lumber DOL	=1.15 Plate DOL=	1.15); C	alegory II; E	хр в;						
REACTION	S (size) 8=0-3-8, 1	11=0-3-8	6)		., CIET.TU snow loads have h	oon cor	sidered for t	hie						
	Max Horiz 11=-619 (LC 8)	0)	design		Ceri Cui		1113						
	Max Grav 8=3354 (L	_C 41), 11=3240 (LC	C 41) 7)	This truss ha	s been designed fo	or great	er of min root	f live						
FORCES	(lb) - Maximum Com	pression/Maximum	• • • •	load of 12.0	osf or 2.00 times fla	at roof le	ad of 10.0 p	sfon						
	Tension			overhangs n	on-concurrent with	other liv	/e loads.							
TOP CHOR	D 1-2=-948/276, 2-3=-	2939/348,	8)	Provide adeo	quate drainage to p	revent	water pondin	g.						
	3-4=-1795/341, 4-5=	-2948/347,	9)	This truss ha	s been designed fo	or a 10.0) psf bottom	-						
	5-6=-1007/375, 6-7=	=0/130, 1-11=-881/2	40,	chord live loa	ad nonconcurrent w	vith any	other live loa	ads.						
	6-8=-1107/357		10)) * This truss h	has been designed	for a liv	e load of 20.	0psf						
BOICHOR	D 10-11=-236/2355, 8-	-10=0/2036		on the bottor	n chord in all areas	where	a rectangle							
WEBS	2-10=-683/675, 3-10)=-87/1211,		3-06-00 tall t	by 1-00-00 wide will	I fit betv	veen the bott	om				minin	1111.	
	4-9=-95/1207, 5-9=-	666/684,		chord and ar	y other members,	with BC	DL = 10.0ps	f.				I'L H CA	ROUL	
	2-11=-2747/110, 5-0	5=-2703/37	11) I his truss is	designed in accord	lance w	ith the 2015	ام مد م				A	SUM.	•
NOTES				Peop 10.2 or	Residential Code s		5 KOUZ. I I. I 8 IGI/TDI 1	and			1	O`FESS	ON:	1
 3-ply tru 424" 	iss to be connected toget	ther with 10d			Chanderd	uaru Ar	131/TFTT.			/	25		14.I	
(0.131) Top ch	(3) halls as follows:	2 2 YE 2 TOWE	L	JAD CASE(S)	Standard					\mathcal{U}		. T. / ~	4.5	-
stander	ad at $0.9.0$ oc $2x4 = 1$ ro	w at 0-9-0 oc												3
Bottom	chords connected as foll	ows: 2x6 - 2 rows										SEA		- 2
stagger	ed at 0-9-0 oc.									1		0363	22 :	-
Web co	nnected as follows: 2x4 -	1 row at 0-9-0 oc.								-			- :	1
2) All load	s are considered equally	applied to all plies,									-			-
except	f noted as front (F) or ba	ck (B) face in the LC	DAD								2.1	N. ENO	ERIA	-
CASE(S	S) section. Ply to ply conr	nections have been									1	S, GINE	A.V	
provide	d to distribute only loads	noted as (F) or (B),									1	CA C	BEIN	
unless	otherwise indicated											1. A G	1	

All loads are considered equally applied to all plies except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

GI 11111111 April 14,2023

Job	Truss	Truss Type	Qty	Ply	KEVIN MCCUE	
3465255	J2	Jack-Closed	10	1	Job Reference (optional)	157779382

5-6-4

5-6-4

Builders FirstSource (Albermarle), Albernarle, NC - 28001,

3-4-6

-0-10-8

0-10-8

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Apr 14 07:42:38 ID:akKihp9h0IS04k1IAf0UwczVkJv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

11-4-8

5-10-4

Page: 1

2x4 II 12 3 Г 4 10 3x4 = 3 3-4-2 2 0-9-0 5 \bigotimes 6 4x5 = 1.5x4 🛚 3x4 = 5-4-8 11-4-8 5-4-8 5-10-4 0-1-12 Spacing 2-0-0 CSI DEFL in l/defl L/d PLATES GRIP (psf) (loc) 20.0 Plate Grip DOL 1.15 тс 0.31 Vert(LL) -0.02 5-6 >999 240 MT20 244/190 BC 0.22 10.0 Lumber DOL 1 15 Vert(CT) -0.04 5-6 >999 180 10.0 Rep Stress Incr YES WB 0.09 Horz(CT) 0.00 2 n/a n/a 0.0 Code IRC2015/TPI2014 Matrix-MS 10.0 Weight: 50 lb FT = 20%* This truss has been designed for a live load of 20.0psf 6) on the bottom chord in all areas where a rectangle 3-06-00 tall by 1-00-00 wide will fit between the bottom chord and any other members. Refer to girder(s) for truss to truss connections. 7) Provide mechanical connection (by others) of truss to 8) Structural wood sheathing directly applied or bearing plate capable of withstanding 29 lb uplift at joint 6-0-0 oc purlins, except end verticals. 5, 30 lb uplift at joint 2 and 37 lb uplift at joint 6. Rigid ceiling directly applied or 10-0-0 oc This truss is designed in accordance with the 2015 9) International Residential Code sections R502.11.1 and 2=0-3-8, 5= Mechanical, 6=0-3-8 R802.10.2 and referenced standard ANSI/TPI 1. Max Horiz 2=94 (LC 8) LOAD CASE(S) Standard Max Uplift 2=-30 (LC 8), 5=-29 (LC 12), 6=-37

(| C 8)Max Grav 2=268 (LC 2), 5=220 (LC 2), 6=463 (LC 2) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/13, 2-3=-182/7, 3-4=-73/10, 4-5=-139/48 BOT CHORD 2-6=-60/148. 5-6=-41/148 WFBS 3-6=-320/107, 3-5=-128/40

2x4 SP No.1

2x4 SP No.1 2x4 SP No.3

bracing.

(size)

NOTES

Scale = 1:33.9 Loading

TCLL (roof)

Snow (Pf)

LUMBER

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

REACTIONS

BRACING

TCDL

BCLL

BCDL

WFBS

- 1) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 2) DOL=1.15 Plate DOL=1.15); Pf=10.0 psf (flat roof snow Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 10.0 psf on overhangs non-concurrent with other live loads.
- This truss has been designed for a 10.0 psf bottom 5) chord live load nonconcurrent with any other live loads.

C Variation 1111111111 SEAL 036322 G mm April 14,2023

Job	Truss	Truss Type	Qty	Ply	KEVIN MCCUE	
3465255	J2A	Jack-Closed	4	1	Job Reference (optional)	157779383

Run: 8.63 S. Nov 19 2022 Print: 8.630 S. Nov 19 2022 MiTek Industries. Inc. Fri Apr 14 07:42:38

Page: 1

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	KEVIN MCCUE	
3465255	J2B	Half Hip	1	1	Job Reference (optional)	157779384

Run: 8.63 S. Nov 19 2022 Print: 8.630 S. Nov 19 2022 MiTek Industries. Inc. Fri Apr 14 07:42:39 ID:ka5JWcibaHh9WRHoqLYxAOzVka?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3) DOL=1.15 Plate DOL=1.15); Pf=10.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10

1)

2)

- 4) Unbalanced snow loads have been considered for this desian.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 10.0 psf on overhangs non-concurrent with other live loads.
- 6) Provide adequate drainage to prevent water ponding.

(1111111111111111 1111111111 SEAL 036322 G mm April 14,2023

Job	Truss	Truss Type	Qty	Ply	KEVIN MCCUE	
3465255	J2G	Half Hip Girder	2	1	Job Reference (optional)	157779385

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Apr 14 07:42:39 ID:9?GaR8HT3d6OQZjeD_hKFfzVX4n-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-2-3 3-3-9 3-10-12	

Scale = 1:29

Plate Offsets (X, Y): [2:0-3-7,0-0-3], [4:0-5-0,0-2-6]

														_
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 15.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.23 0.27 0.23	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.04 0.01	(loc) 7-8 7-8 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 61 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORI BOT CHORI WEBS BRACING TOP CHORI BOT CHORI REACTIONS	 2x4 SP No.1 *Except 2x6 SP No.2 2x4 SP No.3 Structural wood sheat 6-0-0 oc purlins, exc 2-0-0 oc purlins (6-0-0) Rigid ceiling directly bracing. (size) 2=0-3-8, 6 	t* 4-5:2x4 SP No.2 athing directly applie xept end verticals, ar 0 max.): 4-5. applied or 10-0-0 oc = Mechanical	5) 6) 7) d or 8) 5; 9)	This truss ha load of 12.0 overhangs n Provide adec This truss ha chord live loa * This truss h on the bottor 3-06-00 tall t chord and ar Refer to gird	is been designed fo psf or 2.00 times fla on-concurrent with quate drainage to p is been designed fo ad nonconcurrent w has been designed in chord in all areas by 1-00-00 wide will by other members. er(s) for truss to trus	r greate t roof k other liv revent r a 10.0 ith any for a liv where fit betv ss conr	er of min roof pad of 10.0 p ve loads. water ponding 0 psf bottom other live loa e load of 20.1 a rectangle veen the bott nections.	f live sf on g. ads. 0psf om						_
FORCES TOP CHORI BOT CHORI WEBS	Max Horiz 2=64 (LC 8 Max Uplift 2=-56 (LC Max Grav 2=504 (LC (lb) - Maximum Comp Tension 1-2=0/13, 2-3=-1041/ 4-5=-31/6, 5-6=-122/ 2-8=-97/889, 7-8=-97 3-8=0/119, 3-7=-455/ 4-6=-642/50	8) 8), 6=-39 (LC 8) 2), 6=447 (LC 2) pression/Maximum /68, 3-4=-629/46, 35 7/989, 6-7=-50/605 /59, 4-7=0/266,	10, 11) 12) LO	bearing plate 2 and 39 lb u This truss is International R802.10.2 ar Graphical pu or the orient bottom chore CAD CASE(S)	e capable of withsta uplift at joint 6. designed in accord: Residential Code s nd referenced stand rin representation of tation of the purlin al standard	ance w ections lard AN does no ong the	ith the 2015 R502.11.1 a ISI/TPI 1. ot depict the s	io joint and size						
NOTES 1) Unbalan this desi 2) Wind: As	ced roof live loads have l gn. SCE 7-10; Vult=115mph	been considered for (3-second gust)	`at							4		ORTH CA	ROLL	

- Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; Lumber DOL=1.60 plate grip DOL=1.60
- plate grip DOL=1.60
 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pf=10.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MITEK A filiate B18 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	KEVIN MCCUE	
3465255	J3	Jack-Partial	4	1	Job Reference (optional)	157779386

2-4-4

(psf)

2x4 SP No.1

2x4 SP No.1

bracing.

Max Grav

Tension

2-4=-68/103

6-0-0 oc purlins.

Scale = 1:24.8 Loading

TCLL (roof)

Snow (Pf)

LUMBER

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

FORCES

NOTES

1)

TOP CHORD

BOT CHORD

REACTIONS (size)

BRACING

TCDL

BCLL

BCDL

Run: 8.63 S. Nov 19 2022 Print: 8.630 S. Nov 19 2022 MiTek Industries. Inc. Fri Apr 14 07:42:40 ID:uAM2RS3kLovNaFGA3vs3SQzVklk-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

-0-10-8 7-4-0 0-10-8 7-4-0 12 3 Г 8 2-4-0 2 -9-0 6 4 3x4 =7-4-0 Spacing 2-0-0 CSI DEFL l/defl L/d PLATES GRIP in (loc) 20.0 Plate Grip DOL 1.15 тс 0.64 Vert(LL) -0.10 4-7 >886 240 MT20 244/190 BC >358 10.0 Lumber DOL 1 15 Vert(CT) 180 0.45 -0.24 4-7 10.0 Rep Stress Incr YES WB 0.00 Horz(CT) 0.03 2 n/a n/a 0.0 Code IRC2015/TPI2014 Matrix-MP 10.0 Weight: 24 lb FT = 20%* This truss has been designed for a live load of 20.0psf 6) on the bottom chord in all areas where a rectangle 3-06-00 tall by 1-00-00 wide will fit between the bottom chord and any other members. Refer to girder(s) for truss to truss connections. 7) Structural wood sheathing directly applied or Provide mechanical connection (by others) of truss to 8) bearing plate capable of withstanding 57 lb uplift at joint Rigid ceiling directly applied or 10-0-0 oc 3 and 40 lb uplift at joint 2. This truss is designed in accordance with the 2015 9) 2=0-3-8, 3= Mechanical, 4= International Residential Code sections R502.11.1 and Mechanical R802.10.2 and referenced standard ANSI/TPI 1. Max Horiz 2=64 (LC 8) LOAD CASE(S) Standard Max Uplift 2=-40 (LC 8), 3=-57 (LC 12) 2=346 (LC 2), 3=195 (LC 2), 4=135 (lb) - Maximum Compression/Maximum 1-2=0/13, 2-3=-98/52 Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; Lumber DOL=1.60

(LC 7)

- 3) Unbalanced snow loads have been considered for this desian.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 10.0 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

Job	Truss	Truss Type	Qty	Ply	KEVIN MCCUE	
3465255	J3A	Half Hip	2	1	Job Reference (optional)	157779387

5-4-0

5-4-0

-0-10-8

0-10-8

Builders FirstSource (Albermarle), Albemarle, NC - 28001,

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Apr 14 07:42:40 ID:aHNYqRa0?CIB9ydHAodSImzVkJN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

7-4-0

2-0-0

Page: 1

1-10-0

Scale = 1:25.1

Plate Offsets (X, Y): [3:0-5-0,0-2-6]

 LUMBER TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.3 BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins; except end verticals, and 2-0-0 oc purlins; 3-4. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (size) 2=0-38, 5= Mechanical Max Horiz 2=49 (LC 8) Max Grav 2=343 (LC 2), 5=284 (LC 2) FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/13, 2-3=-347/9, 3-4=0/0, 4-5=-57/17 BOT CHORD 2-6=-43/297, 5-6=-16/311 Webs 3-6=0/211, 3-5=-405/20 Additional content on the state of the purplication of the purplica	Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 15.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/	TPI2014	CSI TC BC WB Matrix-MP	0.29 0.22 0.09	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.04 0.01	(loc) 6-9 6-9 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 30 lb	GRIP 244/190 FT = 20%	
 Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; B=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15); Pf=10.0 psf (flat roof snow: Lumber DOL=1.15); Pf=10.0 psf (flat roof snow: Lumber DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10 Unbalanced snow loads have been considered for this design. This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 10.0 psf on overhangs non-concurrent with other live loads. Provide adequate drainage to prevent water ponding. 	LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalanc I; Exp B; cantilever plate grip 3) TCLL: AS DOL=1.1f Lumber D Partially E 4) Unbalanc C BOT CHORD DOL=1.1f Lumber D Partially E 4) Unbalanc C BOD CHORD BOT	2x4 SP No.1 2x4 SP No.1 2x4 SP No.3 Structural wood she 6-0-0 oc purlins; ex 2-0-0 oc purlins; 3-4 Rigid ceiling directly bracing. (size) 2=0-3-8, Max Horiz 2=49 (LC Max Grav 2=343 (L (lb) - Maximum Con Tension 1-2=0/13, 2-3=-347, 2-6=-43/297, 5-6=-1 3-6=0/211, 3-5=-40; ed roof live loads have n. CE 7-10; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed DOL=1.60 CE 7-10; Pr=20.0 psf 5 Plate DOL=1.15); Pf= 0Cl=1.15 Plate DOL=1 Exp.; Ct=1.10 ed snow loads have but that been designed fo 2.0 psf or 2.00 times fla s non-concurrent with dequate drainage to p	athing directly applied cept end verticals, and applied or 10-0-0 oc 5= Mechanical 8) 2 8), 5=-26 (LC 8) C 2), 5=284 (LC 2) appression/Maximum (9, 3-4=0/0, 4-5=-57/1 6/311 5/20 been considered for a (3-second gust) DL=6.0psf; h=30ft; C avelope) exterior zone ; Lumber DOL=1.60 (roof live load: Lumber =10.0 psf (flat roof snd .15); Category II; Exp een considered for thi r greater of min roof I t roof load of 10.0 psf other live loads. revent water ponding.	7) 8) d or 9) 10) 11) 12) 12) 7 LOA cat. e; er o B; is ive f on	This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and an Refer to girdæ 2 and 26 lb u This truss is d International R802.10.2 ar Graphical pu or the orienta bottom chord AD CASE(S)	s been designed fo d nonconcurrent w as been designed n chord in all areas y 1-00-00 wide will y other members. er(s) for truss to tru nanical connection nanical connection capable of withsta plift at joint 5. Jesigned in accord Residential Code s d referenced stam- rlin representation tion of the purlin al Standard	or a 10.0 vith any for a liv swhere I fit betw lass conr (by oth unding 4 lance w sections dard AN does no long the) psf bottom other live loz e load of 20. a rectangle veen the bott nections. ers) of truss 4 lb uplift at ith the 2015 r.R502.11.1 a ISI/TPI 1. ot depict the top and/or	ads. .0psf tom to joint and size				SEA 0363	RO L 22 EER. A L BER. III	Vananning,

Job	Truss	Truss Type	Qty	Ply	KEVIN MCCUE	
3465255	J3B	Half Hip	1	1	Job Reference (optional)	157779388

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Apr 14 07:42:41 ID:ka5JWcibaHh9WRHoqLYxAOzVka?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:30.3

Load TCLL Snow TCDL BCLL BCDI	l ing . (roof) / (Pf) -		(psf) 20.0 15.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.25 0.51 0.30	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.12 -0.25 0.01	(loc) 7-10 7-10 6	l/defl >999 >532 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 54 lb	GRIP 244/190 FT = 20%	
LUMII TOP BOT WEB BRAG TOP BOT REAC FOR TOP BOT TOP BOT TOP BOT 1) Lt tf tf 2) V V V V V V V V V V V V V V V V V V V	BER CHORD CHORD S CHORD CHORD CHORD CTIONS CES CHORD CHORD S ES Inbalance is design Vind: ASC (asd=91n antilever late grip p cLL: ASC OL=1.15 Unbelance	2x4 SP No 2x4 SP No 2x4 SP No 2x4 SP No 2x4 SP No 2x0 Structural 6-0-0 oc p Rigid ceili bracing. (size) Max Horiz Max Horiz Max Uplift Max Grav (lb) - Maxi Tension 1-2=0/13, 4-5=-310/ 2-7=-144/ 3-7=-631/ ed roof live lo n. CE 7-10; Vul nph; TCDL=1 Enclosed; M left and righ DOL=1.60 CE 7-10; Pre- 5 Plate DOL= 0L=1.15 Pla ixp.; Ct=1.10 ed snow load	2.3 wood she purlins, ex- purlins (6-0- ng directly 2=0-3-8, (2=80 (LC 2=52 (L	athing directly applie cept end verticals, ar -0 max.): 4-5. applied or 6-0-0 oc 3= Mechanical 8) (2 32), 6=-43 (LC 8) (2 32), 6=-447 (LC 2) pression/Maximum 105, 3-4=-370/0, 5/0 6/0 133/78, 5-7=0/566 been considered for (3-second gust) DL=6.0psf; h=30ft; (2) velope) exterior zon ; Lumber DOL=1.60 roof live load: Lumber 10.0 psf (flat roof sn .15); Category II; Ex een considered for the	7) 8) 10 11 12 LC	This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Refer to gird) Provide mec bearing plate 6 and 52 lb u) This truss is International R802.10.2 ar) Graphical pu or the orienta bottom chorc DAD CASE(S)	s been designed ad nonconcurrent has been designen n chord in all area y 1-00-00 wide w ay other members er(s) for truss to tr hanical connectio capable of withs plift at joint 2. designed in accor Residential Code nd referenced sta rlin representation ation of the purlin t. Standard	for a 10.0 with any d for a liv as where iill fit betw s. russ conr in (by oth tanding 4 rdance w e sections ndard AN n does no along the	D psf bottom other live loa e load of 20.0 a rectangle veen the bott nections. ers) of truss t 3 lb uplift at j ith the 2015 r R502.11.1 <i>a</i> ISI/TPI 1. bt depict the s top and/or	ids. Opsf om ioint and size				NHTH CA ORTEES SEA 0363	ROLU.	and an
d	esign.												1 1	· · ·	12:1	~

- This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 10.0 psf on overhangs non-concurrent with other live loads.
- 6) Provide adequate drainage to prevent water ponding.

April 14,2023

Job	Truss	Truss Type	Qty	Ply	KEVIN MCCUE	
3465255	J3G	Half Hip Girder	2	1	Job Reference (optional)	157779389

Run: 8.63 E Dec 29 2022 Print: 8.630 E Dec 29 2022 MiTek Industries, Inc. Fri Apr 14 08:04:42 ID:ntFHrwa1GILP0uRXStfG2wzVX7_-6C?jgPR8dbXm2a4RjzZtoQWa9QVGpK301R8_9kzQsYJ Page: 1

Job	Truss	Truss Type	Qty	Ply	KEVIN MCCUE	
3465255	J4	Jack-Open	4	1	Job Reference (optional)	157779390

-0-10-8

0-10-8

Builders FirstSource (Albermarle), Albemarle, NC - 28001,

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Apr 14 07:42:41 ID:?gez9uEtHnYXeFlgK8b7U9zVkIX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3-4-0

3-4-0

3-4-0

Page: 1

3x4 =

Scale = 1:22.5													
Loading TCLL (roof) Snow (Pf)	(psf) 20.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15		CSI TC BC	0.10	DEFL Vert(LL) Vert(CT)	in 0.00 -0.01	(loc) 4-7 4-7	l/defl >999 >999	L/d 240 180	PLATES MT20	GRIP 244/190
BCLL	10.0 0.0*	Rep Stress Incr Code	YES IRC2015/TP	12014	WB Matrix-MP	0.00	Horz(CT)	0.00	2	n/a	n/a		
BCDL	10.0											Weight: 12 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.1 2x4 SP No.1 Structural wood she 3-4-0 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-8, 3 Mechanic Max Horiz 2=34 (LC Max Uplift 2=-33 (LC Max Grav 2=190 (LC (LC 7)	athing directly applie applied or 10-0-0 or 3= Mechanical, 4= al 8) 2 8), 3=-24 (LC 12) 2 2), 3=-24 (LC 2), 4=	6) * T on 3-0 ch ed or 7) Re 8) Prr 8) Prr 8 3 a 9) Th Int R8 LOAD	This truss h the botton 06-00 tall b ord and an efer to girdd ovide mecl aring plate and 33 lb u sis truss is ernational 302.10.2 ar CASE(S)	as been designe n chord in all area y 1-00-00 wide w y other members er(s) for truss to 1 hanical connectio capable of withs plift at joint 2. designed in accoo Residential Code d referenced sta Standard	d for a liv as where vill fit betw truss conin truss conin (by oth- tanding 2 rdance wi e sections indard AN	e load of 20. a rectangle veen the bott nections. ers) of truss : 4 lb uplift at j ith the 2015 i R502.11.1 a ISI/TPI 1.	Opsf om to joint and					
TOP CHORD	(ID) - Maximum Com Tension 1-2=0/13, 2-3=-33/2	ipression/iviaximum											
BOT CHORD	2-4=-18/16												
NOTES 1) Wind: AS Vasd=91r II; Exp B; cantilever plate grip 2) TCLL: AS DOL=1.15 Lumber D Partially E 3) Unbalanc design. 4) This truss load of 12 overhang; 5) This truss	CE 7-10; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed DOL=1.60 3CE 7-10; Pr=20.0 psf (5 Plate DOL=1.15); Pf= JOL=1.15 Plate DOL=1 Exp.; Ct=1.10 ed snow loads have be a has been designed for 2.0 psf or 2.00 times flat s non-concurrent with of b has been designed for	(3-second gust) DL=6.0psf; h=30ft; (nvelope) exterior zor ; Lumber DOL=1.60 roof live load: Lumb 10.0 psf (flat roof sr .15); Category II; Ex even considered for th r greater of min roof t roof load of 10.0 ps other live loads. r a 10.0 psf bottom	Cat. le; low: p B; live f on								Le la	ORTH CA ORTHESE SEA 0363	

5) chord live load nonconcurrent with any other live loads.

818 Soundside Road Edenton, NC 27932

GILB A. GILUN April 14,2023

Job	Truss	Truss Type	Qty	Ply	KEVIN MCCUE	
3465255	M1	Roof Special	5	1	Job Reference (optional)	157779391

4-10-8

4-10-8

Builders FirstSource (Albermarle), Albemarle, NC - 28001,

-0-10-8

0-10-8

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Apr 14 07:42:42 ID:mSoZ0nyHpBosXcmysfCsCozR2Q8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

9-4-9

4-6-1

12-2-0 2-9-7

Scale	=	1:39.6
Scale	=	1.39.0

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 10.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/	TPI2014	CSI TC BC WB Matrix-MS	0.22 0.47 0.26	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.12 -0.24 0.01	(loc) 7-10 7-10 6	l/defl >999 >612 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 61 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORE BOT CHORE WEBS BRACING TOP CHORE BOT CHORE REACTIONS FORCES	 2x4 SP No.1 2x4 SP No.1 2x4 SP No.1 2x4 SP No.3 Structural wood sheat 5-11-7 oc purlins, e) Rigid ceiling directly bracing. (size) 2=0-3-8, 6 Max Horiz 2=142 (LC Max Uplift 2=-47 (LC Max Grav 2=535 (LC (Ib) - Maximum Com Tension 1-2=0/13, 2-3=-1070 	athing directly applie xcept end verticals. applied or 10-0-0 oc 3=0-3-8 2 12) 8), 6=-65 (LC 12) 2 2), 6=479 (LC 2) pression/Maximum /88, 3-4=-511/0.	6) 7) 5 8) LOA	* This truss h on the botton 3-06-00 tall b chord and an Provide mecl bearing plate 2 and 65 lb u This truss is International R802.10.2 ar AD CASE(S)	as been designed in chord in all areas y 1-00-00 wide wil y other members. nanical connection capable of withsta plift at joint 6. designed in accord Residential Code s id referenced stan Standard	for a liv s where I fit betw (by oth anding 4 dance w sections dard AN	e load of 20.0 a rectangle veen the bott 7 lb uplift at j ith the 2015 R502.11.1 a ISI/TPI 1.	Dpsf om oint und						
BOT CHORE WEBS	4-5=-69/38, 5-6=-74/ 2-7=-155/1012, 6-7= 3-7=-575/149, 4-7=0	/42 -15/441 /402, 4-6=-613/18												
NOTES														
 Wind: AS Vasd=91 II; Exp B; cantileve plate grip plate grip 2) TCLL: AS DOL=1.1 Lumber I Partially Unbaland design. This trust 	SCE 7-10; Vult=115mph mph; TCDL=6.0psf; BCI Enclosed; MWFRS (en r left and right exposed o DOL=1.60 SCE 7-10; Pr=20.0 psf (r 5 Plate DOL=1.15); Pf= DOL=1.15 Plate DOL=1. Exp.; Ct=1.10 ced snow loads have be s has been designed for	(3-second gust) DL=6.0psf; h=30ft; C velope) exterior zon ; Lumber DOL=1.60 roof live load: Lumber 10.0 psf (flat roof sn .15); Category II; Exp en considered for th greater of min roof l	Cat. e; ow: p B; is live							A. Martine	A MARINE	ORTH CA ORTEESS SEA 0363	RO(1) L 22	7
load of 1	2.0 psf or 2.00 times flat	roof load of 10.0 ps	fon							-				

5) This truss has been designed for a 10.0 psf bottom
 cherd live load paperparent with any other live loads

chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A. GILD

Job	Truss	Truss Type	Qty	Ply	KEVIN MCCUE	
3465255	M2	Monopitch	18	1	Job Reference (optional)	157779392

6-0-0

Builders FirstSource (Albermarle), Albemarle, NC - 28001,

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Apr 14 07:42:42 ID:YKdbFPsOPsnvpgs?xHaCcHzVX7w-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:27.4

Loading (psf) TCLL (roof) 20.0 Snow (Pf) 10.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MP	0.39 0.28 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.04 -0.10 0.01	(loc) 4-7 4-7 2	l/defl >999 >693 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 21 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.3 BRACING TOP CHORD Structural wood she: 6-0-0 oc purlins, exi BOT CHORD Rigid ceiling directly bracing. REACTIONS (size) 2=0-3-8, 4 Max Horiz 2=53 (LC Max Uplift 2=-38 (LC Max Grav 2=291 (LC FORCES (Ib) - Maximum Com Tension TOP CHORD 1-2=0/13, 2-3=-69/3! BOT CHORD 2-4=-48/69 NOTES 1) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BC II; Exp B; Enclosed; MWFRS (en cantilever left and right exposed plate grip DOL=1.60 2) TCLL: ASCE 7-10; Pr=20.0 psf (I DOL=1.15 Plate DOL=1.15); Pf= Lumber DOL=1.15 Plate DOL=1.15); Pf= Lumber DOL=1.15 Plate DOL=1.15); Pf= Lumber DOL=1.15 Plate DOL=1.15); Pf= Lumber DOL=1.15 Plate DOL=1.15; Pf= Lumber DOL=1.15;	athing directly applied cept end verticals. applied or 10-0-0 oc 4=0-1-8 8) 8), 4=-25 (LC 12) 2), 4=230 (LC 2) pression/Maximum 5, 3-4=-156/46 (3-second gust) DL=6.0psf; h=30ft; Ca velope) exterior zone ; Lumber DOL=1.60 roof live load: Lumber 10.0 psf (flat roof sno 15); Category II; Exp en considered for this r greater of min roof lin roof load of 10.0 psf ther live loads. a 10.0 psf bottom th any other live loads or a live load of 20.0p where a rectangle fit between the bottom	 at. c; r w: B; s ve on at. c; n at. c; n at. c; c; d; <lid;< li=""> <lid;< li=""> <lid;< li=""> d; d; d; <lid;< li=""> d; <lid;< li=""> d; d; d; d; <lid;< li=""> <lid;< li=""> <lid;< li=""> d; <lid;< li=""> d; <lid;< li=""> <lid;< li=""> d; <lid;< li=""> d; <lid;< li=""> <lid;< li=""></lid;<></lid;<></lid;<></lid;<></lid;<></lid;<></lid;<></lid;<></lid;<></lid;<></lid;<></lid;<></lid;<></lid;<></lid;<></lid;<></lid;<></lid;<></lid;<></lid;<></lid;<></lid;<></lid;<></lid;<></lid;<></lid;<></lid;<></lid;<></lid;<></lid;<></lid;<></lid;<></lid;<></lid;<></lid;<>	pint(s) 4 considers p TPI 1 angle to grain ould verify capacity of chanical connection e at joint(s) 4. chanical connection e capable of withsta uplift at joint 4. designed in accorda I Residential Code s ind referenced stand Standard	arallel t formula of beari (by oth- nding 3 ance wi sections Jard AN	o grain value a. Building ng surface. ers) of truss t ers) of truss t 8 lb uplift at ju ith the 2015 R502.11.1 a ISI/TPI 1.	o bint nd		(Netronau)		SEA 0363 SEA 0363 SEA 0363 SEA 0363 SEA 0363	ROL 22 E.F.P. F.F. 14,2023

Job	Truss	Truss Type	Qty	Ply	KEVIN MCCUE	
3465255	PB1	Piggyback	5	1	Job Reference (optional)	157779393

0-7-2

Builders FirstSource (Albermarle), Albemarle, NC - 28001,

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Apr 14 07:42:42 ID:8uSbsM4ZAtTG8RJS7STqEJzR2V8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

7-4-0 6-8-14

5

Scale = 1:29.7

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 10.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MP	0.15 0.06 0.02	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 29 lb	GRIP 244/190 FT = 20%	
LUMBER 10.0 TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 OTHERS 2x4 SP No.3 BRACING TOP CHORD TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (size) 1=8-0-0, 2=8-0-0, 4=8-0-0, 5=8-0-0, 6=8-0-0, 7=8-0-0, 10=8-0-0 Max Horiz 1=-60 (LC 8) Max Uplift 1=-249 (LC 26), 2=-137 (LC 12), 4=-121 (LC 13), 5=-214 (LC 27), 7=-137 (LC 12), 10=-121 (LC 13), 6=176 (LC 2), 7=453 (LC 26), 10=418 (LC 27) FORCES (lb) - Maximum Compression/Maximum					 4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pf=10.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10 5) Unbalanced snow loads have been considered for this design. 6) Gable requires continuous bottom chord bearing. 7) Gable studs spaced at 4-0-0 oc. 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 1-00-00 wide will fit between the bottom chord and any other members. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 137 lb uplift at joint 1, 214 lb uplift at joint 4, 249 lb uplift at joint 1, 214 lb uplift at joint 5, 137 lb uplift at joint 2 and 121 lb uplift at joint 4. 11) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and 						WHITH CARO				
TOP CHORD	Tension 1-2=-107/2 4-5=-58/15	213, 2-3=- ⁻ 56	118/100, 3-4=-118/8	9, ¹²	12) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult quelified building designer							RO			
 WEBS 3-6=-86/0 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 				L(Cat. e; ss , le, 11.	OAD CASE(S)	Standard					Manutan.	A MARINE AND A MAR	SEA 0363	L 22 L L B H H H H H H H H H H H H H H H H H	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

April 14,2023

Job	Truss	Truss Type	Qty	Ply	KEVIN MCCUE	
3465255	PB2	Piggyback	15	1	Job Reference (optional)	157779394

-0-6-5

0-6-5

2

2x4 =

1

1-11-5

1-11-5

12 12 ∟

Builders FirstSource (Albermarle), Albemarle, NC - 28001,

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Apr 14 07:42:43

3-10-10

1-11-5

4x5 =

3

Ľ

6 1.5x4 🛚

3-10-10

4

2x4 =

5

4-4-15

0-6-5

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	-	
Plate Offse	ts (X Y).	[2.0-2-6.0-1-0] [4.0-2-6.0-1-0]

Scale = 1:27.5

2-5-14

2-4-8

Q-5-3

'late Offsets (X, Y): [2:0-2-6,0-1-0], [4:0-2-6,0-1-0]															
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 10.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MP	0.03 0.03 0.01	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 19 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalanc this desig 2) Wind: AS vasd=911 II; Exp B; cantilever plate grip 3) Truss de: only. For see Stanc or consult	2x4 SP N 2x4 SP N 2x4 SP N 2x4 SP N Structura 5-0-0 oc Rigid ceil bracing. (size) Max Horiz Max Uplift Max Grav (lb) - Max Tension 1-2=0/14, 3-6=-40/0 ed roof live I n. CE 7-10; Vu nph; TCDL= Enclosed; M left and righ DOL=1.60 signed for w studs expos	o.1 o.1 o.3	athing directly applie applied or 10-0-0 oc), 4=3-10-10, 6=3-10), 10=3-10-10 10), 7=-44 (LC 10) 13), 4=-12 (LC 13), 7 0=-12 (LC 13) 2), 4=116 (LC 2), 6 116 (LC 2), 10=116 pression/Maximum 3, 3-4=-75/27, 4-5=0 1 been considered for (3-second gust) DL=6.0psf; h=30ft; C velope) exterior zon ; Lumber DOL=1.60 n the plane of the tru (normal to the face) d Details as applicat gner as per ANSI/TF	4) 5) d or 6) -10, 7) 8) 9) 7=-8 10 =118 (LC 11 /14 12 - 13 Cat. LC e; Ss , le, 11.	TCLL: ASCE DOL=1.15 P Lumber DOL Partially Exp Unbalanced design. This truss ha load of 12.0 overhangs n Gable requir Gable studs This truss ha chord live load) * This truss ha on the bottor 3-06-00 tall h chord and ar Provide mec bearing plate 2, 12 lb uplift uplift at joint) This truss is International R802.10.2 a) See Standar Detail for Co consult quali	7-10; Pr=20.0 ps late DOL=1.15); I =1.15 Plate DOL ;; Ct=1.10 snow loads have s been designed dosf or 2.00 times on-concurrent wit es continuous bo spaced at 2-0-0 d s been designed at nonconcurrent nais been designed n chord in all are by 1-00-00 wide v y other members capable of withs at joint 4, 8 lb up 4. designed in accoo Residential Code nd referenced sta d Industry Piggyt nnection to base fied building desi Standard	sf (roof liv Pf=10.0 p =1.15); C been cor for great flat roof k th other liv ttom chor oc. for a 10.0 s with any d for a liv d for a liv d for a liv d for a liv d for a liv as where vill fit betw s. on (by oth tstanding & blift at join rdance w e sections andard AN back Truss as a gner.	e load: Lumb sf (flat roof sr ategory II; Ex- asidered for th er of min roof pad of 10.0 pr e loads. d bearing.) psf bottom other live load e load of 20.0 a rectangle veen the botto ers) of truss t Ib uplift at jo t 2 and 12 lb th the 2015 R502.11.1 a ISI/TPI 1. s Connection pplicable, or	ver now: xp B; his f live sf on dds. Opsf om to int				SEA 0363	L 22 L 14,2023	A MANAGER AND

ID:cubFm8jBwr1uNQHSANP0KHzR2UK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Job	Truss	Truss Type	Qty	Ply	KEVIN MCCUE		
3465255	PB2A	Piggyback	1	3	Job Reference (optional)	157779395	

-0-6-5

1-11-5

Builders FirstSource (Albermarle), Albemarle, NC - 28001,

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Apr 14 07:42:43 ID:Ra0NApBGW83DAaL8Wn7OyjzR2Ti-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3-10-10

4-4-15

J42JC ?I

Scale = 1:27.5

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 10.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	6-0-0 1.15 1.15 YES RC2015	/TPI2014	CSI TC BC WB Matrix-MP	0.03 0.03 0.01	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 56 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.1 2x4 SP No.1 2x4 SP No.3 2-0-0 oc purlins (Switched from shee Rigid ceiling directly bracing. (size) 2=3-10-10 7=3-10-10 Max Horiz 2=132 (LC Max Uplift 2=-28 (LC 7=-28 (LC Max Grav 2=347 (LC (LC 2), 7= 2)	eted: Spacing > 2-0-0). applied or 10-0-0 oc 0, 4=3-10-10, 6=3-10-10 0, 10=3-10-10 11), 7=132 (LC 11) 13), 4=-40 (LC 13), 13), 10=-40 (LC 13) 2 2), 4=347 (LC 2), 6=3 347 (LC 2), 10=347 (LC	4) 5) 0, 6) 7) 57 8)	Wind: ASCE Vasd=91mph II; Exp B; Enc cantilever left plate grip DC Truss desigr only. For stu see Standarc or consult qu TCLL: ASCE DCL=1.15 Pl Lumber DOL Partially Exp. Unbalanced a design. This truss ha load of 12.0 p	7-10; Vult=115mp n; TCDL=6.0psf; Bi closed; MWFRS (e t and right exposed bL=1.60 need for wind loads ds exposed to wind l Industry Gable E alified building des 7-10; Pr=20.0 psf ate DOL=1.15); PI =1.15 Plate DOL= ; Ct=1.10 snow loads have b s been designed fo psf or 2.00 times fil	h (3-sec CDL=6. enveloped d; Lumb in the p d (norm nd Deta signer as (roof liv f=10.0 p 1.15); C been cor or great at roof lo	ond gust) opsf; h=30ft;) exterior zor ier DOL=1.6(ane of the tru al to the face Is as applica s per ANSI/TI e load: Lumb sf (flat roof sr ategory II; Es- isidered for the er of min roof pad of 10.0 p:	Cat. ne;) uss), ble, PI 1. er now: cp B; nis live sf on					
2) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/42, 2-3=-221/103, 3-4=-219/85, 4-5=0/42 BOT CHORD 2-6=-56/137, 4-6=-26/119 WEBS 3-6=-130/0				 overhangs non-concurrent with other live loads. 9) Gable requires continuous bottom chord bearing. 10) Gable studs spaced at 2-0-0 oc. 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 							Roin		
 NOTES 3-ply truss to be connected together as follows: Top chords connected with 10d (0.131"x3") nails as follows: 2x4 - 1 row at 0-9-0 oc. Bottom chords connected with 10d (0.131"x3") nails as follows: 2x4 - 1 row at 0-9-0 oc. All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. Unbalanced roof live loads have been considered for this design. 				 3-06-00 tall by 1-00-00 wide will fit between the bottom chord and any other members. 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 28 lb uplift at joint 2, 40 lb uplift at joint 4, 28 lb uplift at joint 2 and 40 lb uplift at joint 4. 14) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 15) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer. LOAD CASE(S) Standard 					SEA 0363	L 22 L L BER L BER L I L BER L I L BER L I I L I L I I I I I I I I I I I I I			

Job	Truss	Truss Type	Qty	Ply	KEVIN MCCUE	
3465255	PB3	Piggyback	17	1	Job Reference (optional)	157779396

Run: 8.63 S. Nov 19 2022 Print: 8.630 S. Nov 19 2022 MiTek Industries. Inc. Fri Apr 14 07:42:44 ID:691DJMyrAy2JgASmXMMNn8zVl3y-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

GRIP

244/190

FT = 20%

BOT CHORD 2x4 SP No.1 2x4 SP No.3 OTHERS BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (size) 1=12-9-5, 2=12-9-5, 6=12-9-5, 7=12-9-5, 8=12-9-5, 9=12-9-5, 10=12-9-5, 11=12-9-5, 14=12-9-5 Max Horiz 1=-99 (LC 10) Max Uplift 1=-54 (LC 8), 6=-26 (LC 11), 7=-13 (LC 13), 8=-114 (LC 13), 10=-114 (LC 12), 14=-26 (LC 11)

2x4 SP No.1

Max Grav 1=87 (LC 27), 2=58 (LC 13), 6=69 (LC 13), 7=52 (LC 27), 8=319 (LC 27), 9=295 (LC 26), 10=319 (LC 26), 11=58 (LC 13), 14=69 (LC 13) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-127/117, 2-3=-102/82, 3-4=-141/81, 4-5=-139/63. 5-6=-84/54. 6-7=-31/15

BOT CHORD 2-10=-26/75, 9-10=-26/75, 8-9=-26/75, 6-8=-26/75WEBS 4-9=-152/0, 3-10=-252/158, 5-8=-252/158

NOTES

Scale = 1:39.7 Loading

TCLL (roof)

Snow (Pf)

LUMBER

TOP CHORD

TCDL

BCLL

BCDL

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-10; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; Lumber DOL=1.60 plate grip DOL=1.60

- or consult qualified building designer as per ANSI/TPI 1. 4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber
 - DOL=1.15 Plate DOL=1.15); Pf=10.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- Unbalanced snow loads have been considered for this 5) desian.
- 6) Gable requires continuous bottom chord bearing. 7)
 - Gable studs spaced at 4-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle
- 3-06-00 tall by 1-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 10) Provide mechanical connection (by others) of truss to
- bearing plate capable of withstanding 26 lb uplift at joint 6, 54 lb uplift at joint 1, 13 lb uplift at joint 7, 114 lb uplift at joint 10, 114 lb uplift at joint 8 and 26 lb uplift at joint 6
- 11) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

LOAD CASE(S) Standard

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	KEVIN MCCUE	
3465255	PB3E	Piggyback	2	1	Job Reference (optional)	157779397

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Fri Apr 14 07:42:45 ID:mTllqS5NLeYc60M3EtZCHgzVI3m-RfC?PsB70Hq3NSqPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

