

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 34369-34369A 59 SERENITY - ROOF

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by 84 Components - #2383.

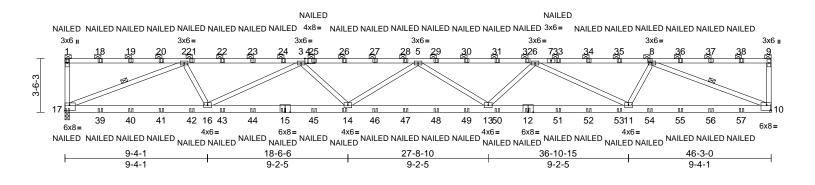
Pages or sheets covered by this seal: I55168869 thru I55168910

My license renewal date for the state of North Carolina is December 31, 2022.

North Carolina COA: C-0844

November 9,2022

Gilbert, Eric


IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	59 SERENITY - ROOF	
34369-34369A	A1	Flat Girder	1	2	Job Reference (optional)	155168869

Run: 8.88 S 8.62 Oct 26 2022 Print: 8.620 S Oct 26 2022 MiTek Industries, Inc. Tue Nov 08 16:35:14 ID:BcYSY9mek5znBnDetGkONDyLCvI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:75.5

Plate Offsets (X, Y): [4:0-2-7,Edge], [10:Edge,0-4-0], [17:Edge,0-4-4]

	(X, Y): [4:0-2-7,Edge],	[10:Edge,0-4-0], [17	r:Edge,0-4	-4]	1		i						
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.76	Vert(LL)		13-14	>717	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.95	Vert(CT)	-0.83	13-14	>664	180		
TCDL	10.0	Rep Stress Incr	NO		WB	0.72	Horz(CT)	0.14	10	n/a	n/a		
BCLL	0.0*	Code	IRC201	5/TPI2014	Matrix-MS								
BCDL	10.0											Weight: 533 lb	FT = 20%
LUMBER			2)		considered equa				1) De	ead + Sr	now (ba	alanced): Lumber	Increase=1.15, Pla
TOP CHORD	2x4 SP DSS *Excep	t* 7-9:2x4 SP No.2			ed as front (F) or			DAD		crease=			
BOT CHORD			2		ction. Ply to ply co				Ui	niform Lo	· ·	,	
NEBS	2x4 SP No.3 *Excep				listribute only load	ds noted	as (F) or (B),					10-17=-20	
	2-17,3-16,6-11,8-10:	:2x4 SP No.2			wise indicated.				Co	oncentra			
BRACING			3)		7-10; Vult=150m								=-23 (B), 12=-23 (B)
TOP CHORD		-9 max.): 1-9, exce	pt		oh; TCDL=6.0psf; 3; Enclosed; MWF							=-39 (B), 18=-39 (
	end verticals.			· ·	C Exterior (2) zon	· ·						=-39 (B), 22=-39	
BOT CHORD	0 0 7	applied or 6-10-12	C		FRS for reactions			iu			· //	5=-39 (B), 26=-39	
WED0	bracing.	0 47 0 40			late grip DOL=1.6	,	Lumber					9=-39 (B), 30=-39 3=-39 (B), 34=-39	
VEBS		2-17, 8-10	4)				e load: Lumb	er					
REACTIONS (size) 10= Mechanical, 17=0-3-8 Max Uplift 10=-1579 (LC 12), 17=-1656 (LC				4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (flat roof snow: 36=-39 (B), 37=-39 (B), 38=-39 (B), 39=-23 (B), 40=-23 (B), 41=-23 (B), 42=-23 (B), 43=-23 (B),									
		(LC 12), 17=-1656 ((LC		=1.15 Plate DOL							5=-23 (B), 46=-23	
	12)	(1.0.4) 47 0040 (1.0		Partially Exp	.; Ct=1.10			-)=-23 (B), 50=-23	
	Max Grav 10=2526		⁽¹⁾ 5)	Unbalanced	snow loads have	been co	nsidered for th	his				8=-23 (B), 54=-23	
ORCES	(lb) - Maximum Com	pression/Maximum		design.						56=-23	(B), 57	/=-23 (B)	
	Tension	00/50 0.0 0040/0	6)		quate drainage to								
TOP CHORD			,		e 3x6 MT20 unles								
	3-5=-8914/5609, 5-6	,	(220		as been designed								
BOT CHORD	6-8=-6007/3767, 8-9 16-17=-3406/5292, 7				ad nonconcurrent								
	13-14=-6039/9366,	,	9)		nas been designe			Opsf				NINTH CA	11111
	10-11=-3402/5285	11-13=-557 1/6542,			n chord in all area							OP. FESS	ROUL
NEBS	2-16=-838/1651, 2-1	75622/3618			oy 1-00-00 wide w		veen the botto	om			1	2	A March
NEBO	3-16=-2609/1790, 3-		4.0		ny other members er(s) for truss to t		- otion o				15.	O'. EESS	1 And In
	5-14=-548/520, 5-13				hanical connectio			-			25		A. Ti
	6-13=-352/865, 6-11		I		e capable of withs							:0	2
	8-11=-833/1646, 8-1				1579 lb uplift at jo					-		054	1 1 3
NOTES					designed in acco		ith the 2015			= =		SEA	L : 3
	s to be connected toget	ther with 10d	14		Residential Code			nd		=		0363	22
	") nails as follows:				nd referenced sta							. 0000	: :
	Top chords connected as follows: 2x4 - 1 row at 0-9-0		0 13) Graphical purlin representation does not depict the size					SEAL 036322				
OC.					ation of the purlin						2	N. ENGINI	Richi
	ords connected as follo	owo: 2x6 2 rowo		bottom chor			· · · · · ·				1.5	A WOINI	EENAN

Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

Web connected as follows: 2x4 - 1 row at 0-9-0 oc.

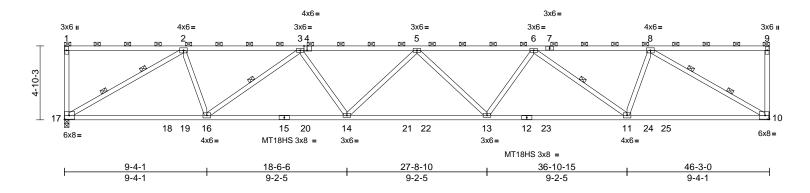
14) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.

LOAD CASE(S) Standard

bottom chord.

AMITER Attiliate B18 Soundside Road Edenton, NC 27932

A. GILD


November 9,2022

Job	Truss	Truss Type	Qty	Ply	59 SERENITY - ROOF	
34369-34369A	A2	Flat	1	1	Job Reference (optional)	155168870

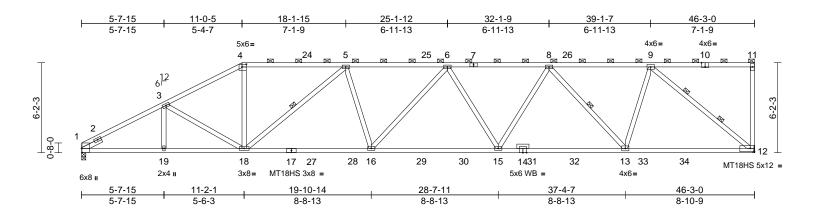
Run: 8.88 S 8.62 Oct 26 2022 Print: 8.620 S Oct 26 2022 MiTek Industries, Inc. Tue Nov 08 16:35:17 ID:i5QMAysitrbDoC7aNUiWJayLCk0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:75.6

Plate Offsets (X, Y): [4:0-2-7,Edge]

	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER TOP CHORD BOT CHORD	(psf) 20.0 20.0 10.0 0.0* 10.0 2x4 SP DSS *Excep 2x4 SP No.1	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code		DOL=1.15 P	CSI TC BC WB Matrix-MS : 7-10; Pr=20.0 p late DOL=1.15); =1.15 Plate DOL	Pf=20.0 p	sf (flat roof s	-0.84 0.24	(loc) 13-14 13-14 10	l/defl >999 >654 n/a	L/d 240 180 n/a	PLATES MT20 MT18HS Weight: 246 lb	GRIP 244/190 244/190 FT = 20%
WEBS	2x4 SP No.3 *Excep			Partially Exp	.; Ct=1.10			•					
	2-17,3-16,5-14,5-13,	6-11,8-10:2x4 SP No	o.2 3) 4)		quate drainage to MT20 plates un								
BRACING TOP CHORD	2-0-0 oc purlins (2-2 end verticals.	-0 max.): 1-9, excep	t 5)	All plates are	e 3x6 MT20 unles as been designed	ss otherwi	se indicated.						
BOT CHORD	Rigid ceiling directly bracing.	applied or 2-2-0 oc	7)		ad nonconcurrent has been designe								
WEBS		3-16, 6-11	,	on the bottor	n chord in all are	as where	a rectangle	•					
WEBS	2 Rows at 1/3 pts				by 1-00-00 wide way other members								
REACTIONS	(size) 10= Mech Max Uplift 10=-631 (anical, 17=0-3-8 LC 12), 17=-631 (LC	12) 8)	Refer to gird	er(s) for truss to	truss conr	ections.						
	Max Grav 10=1838		1) 9)		hanical connection capable of withs								
FORCES	(lb) - Maximum Com	pression/Maximum		joint 17 and	631 [°] lb uplift at joi	nt 10.							
TOP CHORD	Tension 1-17=-200/133, 1-2= 3-5=-4444/1555, 5-6		10 47,	International	designed in acco Residential Code nd referenced sta	e sections	R502.11.1 a	and					
BOT CHORD	6-8=-3007/1047, 8-9 16-17=-970/2651, 14 13-14=-1714/4678, 1	4-16=-1522/4166,	134 11	l) Graphical pu	Irlin representation of the purlin	on does no	t depict the	size					Della
WEBS	10-11=-969/2651 2-16=-244/1115, 2-1 3-16=-1445/592, 3-1 5-14=-330/224, 5-13 6-13=-59/528, 6-11= 8-11=-245/1117, 8-1	4=-60/528, =-327/222, -1448/594,	L	DAD CASE(S)	Standard					4			
NOTES	,											SEA	• •
Vasd=119 Cat. II; Ex zone and forces & M	CE 7-10; Vult=150mph Imph; TCDL=6.0psf; B p B; Enclosed; MWFR? C-C Exterior (2) zone; WFRS for reactions s plate grip DOL=1.60	CDL=6.0psf; h=30ft; S (envelope) exterior C-C for members and								ATTURNA.	A A A A A A A A A A A A A A A A A A A		EEP. H.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

November 9,2022

Job	Truss	Truss Type	Qty	Ply	59 SERENITY - ROOF	
34369-34369A	A3	Flat	1	1	Job Reference (optional)	155168871

Run: 8.88 S 8.62 Oct 26 2022 Print: 8.620 S Oct 26 2022 MiTek Industries, Inc. Tue Nov 08 16:35:17 Page: 1 ID:4IYN1POpf2wZMJcl6uyWlfyLCgl-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:79.2

Loading TCLL (root) (pst) 200 Plate Grp DOL Lumber DOL 1.15 Spacing End End End End End End End End End End	Plate Offsets (X,	Y): [1:0-3-8,Edge],	[4:0-3-8,0-2-4], [10:	0-3-0,Edge	e], [12:Edge,0-	2-12]								
TOP CHORD DCHORD2x4 SP DSS *Except* 10-11:2x4 SP No.2 2x4 SP No.3 *Except* 117:2x4 SP DSSVasd=119mph; TCDL=6.0psf; B:CDL=6.0psf;	TCLL (roof) Snow (Pf) TCDL BCLL BCDL	20.0 20.0 10.0 0.0*	Plate Grip DOL Lumber DOL Rep Stress Incr	1.15 1.15 YES IRC2015		TC BC WB Matrix-MS	0.99 0.97	Vert(LL) Vert(CT) Horz(CT)	-0.39 -0.70	15-16 15-16	>999 >789	240 180	MT20 MT18HS	244/190 244/190
ADT CHORD bracing.Rigid ceiling directly applied or 2-2-0 oc bracing.design.VEBS1 Row at midpt5-18, 8-1340VEBS2 Rows at 1/3 pts9-1250VEBS1 =0-3-8, 12= Mechanical Max Horiz1=285 (LC 16) Max Uplift1=-427 (LC 13), 12=-618 (LC 13) Max Grav1=1972 (LC 34), 12=2458 (LC 34)ORCES(lb) - Maximum Compression/Maximum Tension	OP CHORD 2 OT CHORD 2 VEBS 2 STHERS 2 LIDER 2 INFACING OP CHORD 5 2	2x4 SP No.1 *Excep 2x4 SP No.3 *Excep 5-18,6-16,6-15,8-15, 2x4 SP No.3 Left 2x4 SP No.3 1 Structural wood shea 2-8-13 oc purlins, ea	t* 1-17:2x4 SP DSS t* .8-13,9-12:2x4 SP N 1-6-0 athing directly applie xcept end verticals, i	2 o.2 2) ed or and	Vasd=119m Cat. II; Exp B zone and C- forces & MW DOL=1.60 p TCLL: ASCE DOL=1.15 P Lumber DOL Partially Exp	bh; TCDL=6.0psf 3; Enclosed; MW/ C Exterior (2) zor /FRS for reaction late grip DOL=1.6 ; 7-10; Pr=20.0 pr late DOL=1.15); [=1.15 Plate DOL .; Ct=1.10	; BCDL=6 FRS (env ne;C-C for s shown; 50 sf (roof liv Pf=20.0 p =1.15); C	.0psf; h=30ft elope) exterio members ar Lumber e load: Lumb sf (flat roof si ategory II; Es	or nd oer now: xp B;					
FORCES (lb) - Maximum Compression/Maximum Tension chord and any other members, with BCDL = 10.0psf. TOP CHORD 1-3=-3619/1225, 3-4=-3594/1168, 4-5=-3233/1112, 5-6=-4466/1373, 6-8=-4228/1269, 8-9=-2880/819, 9-11=-30/5, 11-12=-297/119 9) Refer to girder(s) for truss to truss connection. BOT CHORD 1-19=-1301/3163, 18-19=-1301/3163, 16-18=-1393/4406, 15-16=-1411/4494, 16-18=-1400, 16-18=-1400, 16-18=-1400, 16-18=-1400, 16-18=-1400, 16-18=-1400, 16-18=-1400, 16-18=-1400, 16-18=-1400, 16-18=-1400, 16-18=-1400, 16-18=-1400, 16-18=-1400, 16-18=-1400, 16-18=-1400, 16-18=-1400, 16-18=-1400, 16-18=-140	BOT CHORD F WEBS 1 WEBS 2 REACTIONS (si Ma Ma	Rigid ceiling directly bracing. 1 Row at midpt 2 Rows at 1/3 pts ize) 1=0-3-8, 1 lax Horiz 1=285 (LC lax Uplift 1=-427 (L	applied or 2-2-0 oc 5-18, 8-13 9-12 12= Mechanical C 16) C 13), 12=-618 (LC	4) 5) 6) 7) 13)	design. Provide ader All plates are All plates are This truss ha chord live loa * This truss I on the bottor	quate drainage to MT20 plates un 3x6 MT20 unles as been designed ad nonconcurrent nas been designe n chord in all are	prevent less other s otherwi for a 10.0 with any d for a liv as where	water ponding wise indicate se indicated.) psf bottom other live loa e load of 20.0 a rectangle	g. ed. ads. Opsf					
BOT CHORD 1-19=-1301/3163, 18-19=-1301/3163, 16-18=-1393/4406, 15-16=-1411/4494, R802.10.2 and referenced standard ANSI/TPI 1.	FORCES ((T TOP CHORD 1 4 6	(lb) - Maximum Com Tension 1-3=-3619/1225, 3-4 4-5=-3233/1112, 5-6 6-8=-4228/1269, 8-9	pression/Maximum =-3594/1168, ∋=-4466/1373,	9) 10 30/5,	chord and ar Refer to gird Provide meo bearing plate joint 1 and 6	y other members er(s) for truss to t hanical connection capable of withs 18 lb uplift at join	s, with BC rruss conr on (by oth standing 4 t 12.	DL = 10.0ps aections. ers) of truss t 27 lb uplift at	f. to			- III	N'H CA	ROLIN
WEBS 3.19=-47/102, 3-18=-528/254, 4.18=-268/1156, 5-16=0/359, 5-18=-1534/465, 6-16=-141/158, 6-15=-521/277, 8-15=-160/735, 8-13=-1473/555, 9-13=-310/1377, 9-12=-3230/949 T2/ Graphical pulling presentation does not depict the size SEAL	BOT CHORD 1 1	1-19=-1301/3163, 18 16-18=-1393/4406, 1	15-16=-1411/4494,		International R802.10.2 a	Residential Code nd referenced sta	e sections Indard AN	R502.11.1 a ISI/TPI 1.					284	
NOTES	WEBS 3 4 5 6 8 9 9	3-19=-47/102, 3-18 4-18=-268/1156, 5-1 5-18=-1534/465, 6-1 6-15=-521/277, 8-15 8-13=-1473/555, 9-1	528/254, 6=0/359, 6=-141/158, 5=-160/735,		or the orienta bottom chore	ation of the purlin d.			5126		1111111		SEA 0363	ER A LUN

818 Soundside Road Edenton, NC 27932

November 9,2022

Job	Truss	Truss Type	Qty	Ply	59 SERENITY - ROOF	
34369-34369A	A4	Roof Special Structural Gable	1	1	Job Reference (optional)	155168872

Run: 8.62 E Oct 13 2022 Print: 8.620 E Oct 13 2022 MiTek Industries, Inc. Wed Nov 09 14:29:42 ID:D6M7wMM601VrTqeSssIbe7yLCXI-fsfb17vXXZYNPgDGb7WESfN0_Y4N0xdtHcy73MyL3aP

Page: 1

INFEDING

818 Soundside Road Edenton, NC 27932

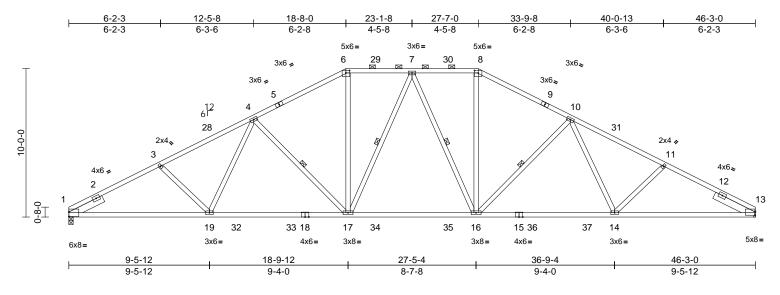
13-0-7 0-6-15 34-1-14 12-5-8 18-8-0 23-1-8 27-7-0 33-2-9 40-0-11 6-2-3 46-3-0 0-11-5 6-2-3 6-3-6 5-7-9 4-5-8 4-5-8 5-7-9 5-10-13 6-2-5 5x6= 3x6= 5x6= 9 10 48 11 1213 14 15 3x6 🞜 8 x 16 6 47⁷ 3x6 ≠ 10-0-01 3-3-7 17 5x6= 5x8= 3x6 II 18₉ 12 6 45 _49 ⊠ 20 <u>5</u>0 ⊠ 21 ¢ 35 32 34 33 3037 46 39 38 40 41 10-0-0 5x8= 3x8= 3x8= 3 3x10 u 6-8-9 6-8-9 6-8-9 3x8= 3x6 🧔 2 0-8-0 Π П 22 29 51 2852 27 53 54 26 25 55 24 56 23 57 6x8= 3x6= 5x8 WB = 3x8= 3x8= 3x10= 4x6= 6x8= 9-5-12 18-9-12 27-5-4 34-3-10 40-0-11 46-3-0 9-5-12 9-4-0 8-7-8 6-10-6 5-9-1 6-2-5

Scale = 1:82.1

Plate Offsets (Plate Offsets (X, Y): [1:Edge,0-3-9], [9:0-3-0,0-2-0], [15:0-4-0,0-2-8], [24:0-3-8,0-1-8], [31:0-3-0,0-2-8]											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MS	0.98 0.97 0.95	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc 27-2 27-2 2	29 >99	9 240 9 180	PLATES MT20 Weight: 355 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD	2x4 SP No.1 *Excep 2x4 SP No.2 *Excep 3-29,5-30,30-31,31- No.3 2x4 SP No.3 *Excep Left 2x4 SP No.3 Structural wood she 2-5-3 oc purlins, ex	ot* 1-28:2x4 SP DSS ot* 32,32-33,33-18:2x4 SI ot* 28-28:2x4 SP No.2	WEBS or	1-29=-1401/3425 28-51=-1157/302 27-52=-1157/302 53-54=-1044/271 25-26=-1026/283 24-55=-1026/283 23-56=-614/1828 22-57=-614/1828 27-30=-60/558, 9 26-33=-83/642, 13 19-26=-455/133, 20-24=-600/1705	8, 28-52= 8, 27-53= 7, 26-54= 4, 25-55= 4, 24-56= , 23-57=- -30=-80/6 5-33=-10 19-24=-1	1157/3028, 1044/2717, 1044/2717, 1026/2834, 614/1828, 614/1828, 615, 5/693, 153/517,		 E L F 5) L 6) F 7) A 8) C 9) T 	DOL=1.1 Lumber I Partially I Jnbaland design. Provide a All plates Gable stu This truss chord live	5 Plate I DOL=1.1: Exp.; Ct= ced snow adequate are 2x4 uds spac s has bee e load no	DDL=1.15); Pf=2(5 Plate DDL=1.1; 1.10 v loads have beer drainage to prev MT20 unless oth ed at 2-0-0 oc. en designed for a nconcurrent with	of live load: Lumber 0.0 psf (flat roof snow: 5); Category II; Exp B; n considered for this ent water ponding. erwise indicated. 10.0 psf bottom any other live loads. a live load of 20.0psf
BOT CHORD WEBS JOINTS REACTIONS	Rigid ceiling directly bracing. 1 Row at midpt 1 Brace at Jt(s): 21, 30, 31, 32, 33, 39, 40 (lb/size) 1=1844/0 Mechanic Max Horiz 1=385 (LI Max Uplift 1=-416 (L	applied or 2-2-0 oc 19-26, 20-22, 4-27 -3-8, 22=1844/ -3al C 16) C 16), 22=-450 (LC 1 [*]	7) NOTES	20-22=-2643/889, 4-29=-89/431, 4-2 27-31=-365/232, 32-36=-266/153, 5-39=-1251/560, 31-37=-1236/558, 32-35=-1171/545, 33-34=-1171/528, 40-41=-1194/534,	, 3-29=-3 27=-415/2 12-31=-3 26-32=-3 38-39=-1 , 30-37=- , 31-35=- , 32-34=- , 33-40=-	26/292, 270, 04/132, 43/167, 251/560, 1233/556, 1174/546, 1171/528, 1194/534,		11) F 12) F 12) T 13) T	on the bo 3-06-00 t chord and Refer to g Provide n bearing p oint 22 a This truss nternatio	ttom cho all by 1-0 d any oth girder(s) nechanic late cap nd 416 ll s is desig nal Resi	ord in all areas wh 00-00 wide will fit her members, with for truss to truss cal connection (by able of withstand o uplift at joint 1. gned in accordand dential Code sec	here a rectangle between the bottom h BCDL = 10.0psf. connections. or others) of truss to ing 450 lb uplift at ce with the 2015 tions R502.11.1 and
Max Grav 1=2147 (LC 41), 22=2230 (LC 40) FORCES (b) - Max. Comp./Max. Ten All forces 250 (b) or less except when shown. TOP CHORD 1-2=-1587/273, 2-3=-3922/1315, 3-46=-3697/1238, 4-46=-3532/1256, 4-5=-2981/1134, 5-6=-1860/626, 6-47=-1824/637, 7-47=-1810/640, 7-8=-1802/664, 8-9=-1783/674, 9-10=-1636/661, 10-48=-1636/661, 11-48=-1636/661, 10-48=-1636/661, 12-13=-1750/652, 13-14=-1750/652, 14-15=-1750/652, 15-16=-1923/660, 16-17=-1931/633, 17-18=-1973/605, 18-19=-2870/1091, 19-49=-2813/1014, 20-49=-2813/1014, 21-22=-252/102			 Unbalance this design Wind: ASC Wind: ASC Vasd=119r Cat. II; Exp zone and C forces & M DOL=1.60 Truss desi only. For s see Standa 	 Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 				R802.10.2 and referenced standard ANSI/TPI 1.				

Job	Truss	Truss Type	Qty Ply		59 SERENITY - ROOF	
34369-34369A	A4	Roof Special Structural Gable	1	1	Job Reference (optional)	155168872
84 Components (Dunn), Dunn, N	IC - 28334,	Run: 8.62 E Oct 13 2	Page: 2			

ID:D6M7wMM601VrTqeSssIbe7yLCXI-fsfb17vXXZYNPgDGb7WESfN0_Y4N0xdtHcy73MyL3aP


14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	59 SERENITY - ROOF	
34369-34369A	A5	Common	3	1	Job Reference (optional)	155168873

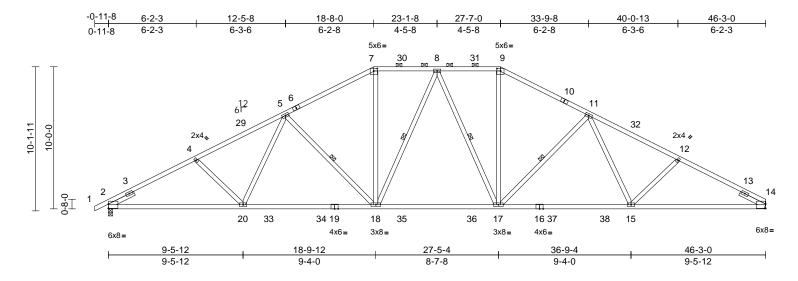
Run: 8.88 S 8.62 Oct 26 2022 Print: 8.620 S Oct 26 2022 MiTek Industries, Inc. Tue Nov 08 16:35:19 Page: 1 ID:cHMr6Hg2D62MOPfUce7i_?yLCN0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale =	1:77.6
---------	--------

Plate Offsets (X, Y):	[1:0-0-1,0-3-9]	, [6:0-3-0,0-2-0],	[8:0-3-0,0-2-0], [1	3:0-0-1,0-2-9]
-----------------------	-----------------	--------------------	---------------------	----------------

	, , , , [1.0 0 1,0 0 0],	, [0.0 0 0,0 2 0], [0.0	0 0,0 2 0	j, [10.0 0 1,0 2	. 5]							-		
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.75 0.96 0.51	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 17-19 17-19 13	l/defl >999 >812 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 277 lb	GRIP 244/190 FT = 20%	
FORCES TOP CHORD BOT CHORD WEBS		S st * 3-19,11-14:2x4 S 2-6-0, Right 2x6 SP athing directly applic cept -7 max.): 6-8. applied or 2-2-0 oc 4-17, 10-16, 7-17, 7 13= Mechanical C 17) C 16), 13=-429 (LC C 38), 13=2246 (LC pression/Maximum 4=-3877/1329, 7=-2573/1110, 10=-3030/1167, 11-13=-4095/1381 7-19=-887/3233, 4-16=-887/3234, 5=-307/966, 3=-79/428, 16=-972/451, 14=-277/268, 3=-327/196	No.2 3) ed or 4, 7-16 6, 7, 17) 38) 8, 9, 11 11 1 1 1	Vasd=119m Cat. II; Exp zone and C- exposed ; er members ar Lumber DOI) TCLL: ASCE DOL=1.15 F Lumber DOI Partially Exp) Unbalanced design.) Provide ade) This truss ha chord live lo) * This truss ha chord and a) Refer to girc) Provide med bearing plat joint 1 and 4 0) This truss is Internationa R802.10.2 a 1) Graphical put	snow loads have quate drainage to as been designed ad nonconcurrent has been designe m chord in all area by 1-00-00 wide w ny other members ler(s) for truss to t chanical connectio e capable of withs 29 Ib uplift at joint designed in acco I Residential Code and referenced sta urlin representatio ation of the purlin d.	BCDL=(FRS (env e; cantile right exp S for ree DOL=1.6 of (roof lik Pf=20.0 p =1.15); C been col prevent for a 10. with any d for a lik as where with for a 10. with any d for a lik as where with BC russ conn n (by oth tanding 4 13. rdance w e sections ndard AN n does n n does n n does n	3.0psf; h=30ff elope) exteriver eload: Lumt sored;C-C fo cctions shown be load: Lumt sf (flat roof s ategory II; E: asidered for t water pondin D psf bottom other live load e load of 20. a rectangle veen the bott CDL = 10.0ps hections. ers) of truss is R502.11.1 a stSi/TPI 1. bt depict the 1	or ight r bor now: xp B; his g. ads. 0psf om f. to t				SEA 0363	ER.K	Manuality

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

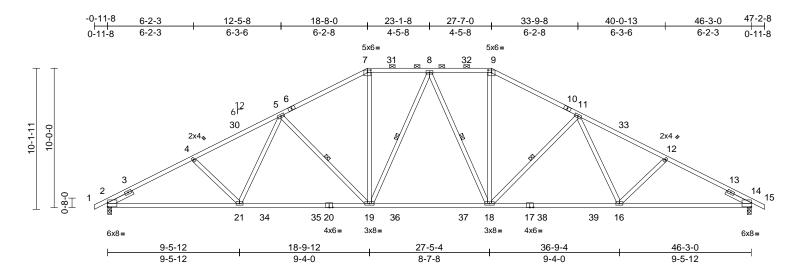


November 9,2022

Job	Truss	Truss Type	Qty	Ply	59 SERENITY - ROOF	
34369-34369A	A6	Common	2	1	Job Reference (optional)	155168874

Run; 8,88 S 8,62 Oct 26 2022 Print: 8,620 S Oct 26 2022 MiTek Industries, Inc. Tue Nov 08 16:35:20 Page: 1 ID:JI4KUxczs4tlIOdTA0W_8SyLCLo-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

818 Soundside Road Edenton, NC 27932


Scale = 1:81.1

oading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.77	Vert(LL)	-0.40	18-20	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.98	Vert(CT)	-0.67	18-20	>826	180		
CDL	10.0	Rep Stress Incr	YES		WB	0.51	Horz(CT)	0.20	14	n/a	n/a	-	
BCLL	0.0*	Code	IRC201	15/TPI2014	Matrix-MS								
SCDL	10.0		5			-						Weight: 271 lb	FT = 20%
UMBER			2		E 7-10; Vult=150m								
OP CHORD	2x4 SP No.1 *Excep				ph; TCDL=6.0psf								
	6-1,10-14:2x4 SP D				B; Enclosed; MW								
OT CHORD	2x4 SP DSS *Excep				 C Exterior (2) zor nd vertical left and 								
/EBS	2x4 SP No.2 *Excep No.3	01 4-20,12-15:2x4 5	F		nd forces & MWFF								
LIDER	Left 2x4 SP No.3 2	2-0-0. Right 2x4 SP	No.3		L=1.60 plate grip			-,					
	2-0-0	_ • •, · · ·g· · · _ · · •	3) TCLL: ASC	E 7-10; Pr=20.0 p	sf (roof liv	e load: Lumb	ber					
RACING					Plate DOL=1.15);								
OP CHORD	Structural wood she	athing directly applie	ed or		L=1.15 Plate DOL	.=1.15); C	ategory II; E	xp B;					
	2-2-0 oc purlins, exc		1	Partially Ex	snow loads have	heen cor	sidered for t	hie					
	2-0-0 oc purlins (3-5		4	design.	SHOW IDaus Have	Deen coi		1113					
OT CHORD	Rigid ceiling directly bracing.	applied or 2-2-0 oc	5		as been designed	for great	er of min root	f live					
VEBS	1 Row at midpt	8-17, 8-18, 11-17, 5	-18		psf or 2.00 times								
		14= Mechanical		0	non-concurrent wit								
	Max Horiz 2=229 (L0		6		quate drainage to								
	Max Uplift 2=-460 (L		17) 7		e 3x6 MT20 unles								
	Max Grav 2=2304 (I	LC 39), 14=2245 (LC	; 39) ⁸		as been designed ad nonconcurrent			de					
ORCES	(lb) - Maximum Com	pression/Maximum	9		has been designe								
	Tension		Ũ		m chord in all are			opo.					111
OP CHORD	1-2=0/43, 2-4=-4106	,	324,	3-06-00 tall	by 1-00-00 wide v	vill fit betw	veen the bott	om				N'LL CA	Dille
	5-7=-3028/1167, 7-8	,			ny other members			f.				"aTH UA	TO I'M
	8-9=-2572/1110, 9-1	,			ler(s) for truss to t						X	O' EESS	6.14.
OT CHORD	11-12=-3870/1326, 2-20=-1108/3582, 1		1		chanical connection						28		NAM
	17-18=-617/2594, 1				e capable of withs 460 lb uplift at joi		29 ID UPIIIT a	l I		<u> </u>	U	.2.	
	14-15=-1112/3589	,	1		designed in acco		ith the 2015					CEA.	n 1 1
VEBS	7-18=-307/966, 9-17	7=-307/966,			I Residential Code			and				SEA	
	4-20=-285/274, 5-20	,			and referenced sta					=		0363	22 :
	12-15=-288/275, 8-1	,	1		urlin representatio			size		-			
	8-18=-327/196, 11-1 11-15=-78/426, 5-18				ation of the purlin	along the	e top and/or				-	·	- A 1 3
IOTES	11-10=10/420, 0-10	5-300/447		bottom cho							21	SEA 0363	ENAS
	d roof live loads have	been considered fo		OAD CASE(S	Standard						1	7/0	SEN.N
this design												A. G	ILD
acoign												1111111	11111
												Novembe	ar 0 2022

NOTES

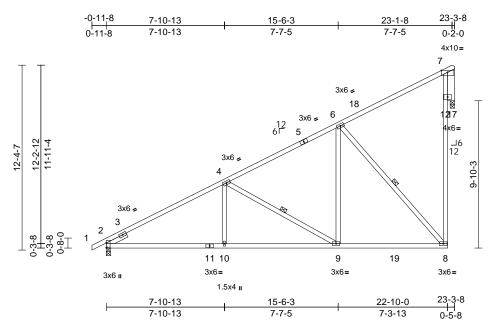
Job	Truss	Truss Type	Qty	Ply	59 SERENITY - ROOF	
34369-34369A	A7	Common	4	1	Job Reference (optional)	155168875

Run: 8.88 S 8.62 Oct 26 2022 Print: 8.620 S Oct 26 2022 MiTek Industries, Inc. Tue Nov 08 16:35:21 Page: 1 ID:kPpJFb3A8RX2h4yarlhg8FyLCLD-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:82.8

Plate Offsets ((X, Y): [2:Edge,0-3-9],	, [7:0-3-0,0-2-0], [9:0	-3-0,0-2-0]	, [14:Edge,0-3	-9]							-	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.77 0.98 0.51	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.40 -0.67 0.21	(loc) 16-18 16-18 14	l/defl >999 >825 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 273 lb	GRIP 244/190 FT = 20%
LUMBER FOP CHORD 30T CHORD WEBS SLIDER BRACING FOP CHORD 30T CHORD WEBS REACTIONS	2x4 SP No.1 *Excep 6-1,10-15:2x4 SP D: 2x4 SP DSS *Excep 2x4 SP No.2 *Excep No.3 Left 2x4 SP No.3 2 2-0-0 Structural wood she 2-2-0 oc purlins, exc 2-0-0 oc purlins, exc 2-2-0 oc purlins, exc 2-2-0-0 (the purlins, exc 2-2-0 (the purlins, exc 2-2-0 (the purlins	SS ** 17-20:2x4 SP No. ** 4-21,12-16:2x4 SP 2-0-0, Right 2x4 SP ** applied or 2-24 SP ** applied or 2-2-0 oc 8-18, 8-19, 11-18, 5 14=0-3-8 C 21) C 16), 14=-460 (LC C 23), 14=2304 (LC Dipression/Maximum 5/1375, 4-5=-3864/13 3=-2570/1108, 11=-3027/1165, 12-14=-4105/1375, 9-21=-858/3226, 6-18=-859/3226, 8=-306/965, 1=-76/425, 18=-327/196, 18=-965/447,	- No.3 3) ed or 4) -19 6) 17) 8) 39) 9) 322, 10 11 12	Vasd=119m Cat. II; Exp B zone and C- exposed ; er members an Lumber DOL TCLL: ASCE DOL=1.15 P Lumber DOL Partially Exp Unbalanced design. This truss ha load of 12.0 overhangs n Provide ader All plates are This truss ha chord live loa * This truss I on the bottor 3-06-00 tall I chord and ar) Provide mec bearing plate joint 14 and I) This truss is International R802.10.2 a 2 Graphical put	snow loads have as been designed psf or 2.00 times on-concurrent wit quate drainage to a 3x6 MT20 unles as been designed ad nonconcurrent nas been designed n chord in all area by 1-00-00 wide w ny other members hanical connection designed in accoo Residential Code nd referenced sta urlin representatio ation of the purlin d.	BCDL=6 FRS (envi- e; cantile frss (envi- e; cantile frss for rea- DOL=1.6(frof liv Pf=20.0 p =1.15); C been cor for great flat roof liv prevent v s otherwi for a 10.1 with any d for a liv as where with any d for a liv as where with any a share a sections indard AN n does not	.0psf; h=30ff elope) exteri- ver left and r ossed;C-C fo ctions shown) e load: Lumt sf (flat roof s ategory II; E usidered for t er of min roo bad of 20.0 p re loads. water pondin se indicated.) psf bottom other live loa e load of 20. a rectangle reen the bott DL = 10.0ps 60 lb uplift a ith the 2015 rs502.11.1 a (SI/TPI 1. bt depict the	or right r n; ber now: xp B; this f live ssf on g. ads. 0psf tom if. to to tan				SEA 0363	ROLL
NOTES 1) Unbalance this design	ed roof live loads have n.	been considered for									11	November	ILBE IIII

NOTES


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

November 9,2022

Job	Truss	Truss Type	Qty	Ply	59 SERENITY - ROOF	
34369-34369A	A8	Common	2	1	Job Reference (optional)	155168876

Run: 8.88 S 8.62 Oct 26 2022 Print: 8.620 S Oct 26 2022 MiTek Industries, Inc. Tue Nov 08 16:35:21 Page: 1 ID:uQynMcuy1L0rl2qZYRtYdbyLCHZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:77

Plate Offsets (X, Y): [2:0-3-13,0-0-1]

		1			1	-							
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.84	Vert(LL)	-0.15	8-9	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.63	Vert(CT)	-0.28	8-9	>999	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.63	Horz(CT)	0.47	17	n/a	n/a		
BCLL	0.0*	Code	IRC201	5/TPI2014	Matrix-MS								
BCDL	10.0											Weight: 144 lb	FT = 20%
	(size) 2=0-3-8, Max Horiz 2=605 (LC Max Uplift 2=-197 (L Max Grav 2=1015 (L (lb) - Maximum Com Tension 1-2=0/43, 2-4=-1475 6-7=-210/48 2-10=-792/1246, 9-1	t* 4-10:2x4 SP No.3 I-6-0 athing directly applie applied or 6-4-5 oc 4-9, 6-8 I7=0-3-8 C 16) C 16), 17=-457 (LC .C 23), 17=-1072 (LC pression/Maximum //268, 4-6=-883/97,	3) 4) ed or 5) 6) 7) 16) 23) 9)	DOL=1.15 F Lumber DOL Partially Exp Unbalanced design. This truss ha load of 12.0 overhangs n All plates an This truss ha chord live lo * This truss ha chord live lo * This truss so on the botto 3-06-00 tall chord and a Bearing at jc using ANSI/ designer sho Provide mec bearing plat joint 2 and 4	snow loads have as been designed psf or 2.00 times ion-concurrent wit e 3x6 MT20 unles as been designed m chord in all area by 1-00-00 wide w ny other members iont(s) 17 consider TPI 1 angle to gra buld verify capacit shanical connectic e capable of withs 57 lb uplift at joint designed in acco	Pf=20.0 p =1.15); C been cor for great flat roof ld th other lin so other with for a 10.0 with any d for a liv as where vill fit betv s, with BC s, with BC s, with BC s, with BC s, with BC s parallel in formula ty of bear n (by oth ttanding 1 t 17. rdance w	sf (flat roof s ategory II; E isidered for t er of min roo bad of 20.0 p re loads. se indicated. 0 psf bottom other live loa e load of 20. a rectangle veen the bott DL = 10.0ps to grain valu a. Building ng surface. ers) of truss 97 lb uplift a	now: xp B; this f live osf on ads. 0psf tom tf. ue to t				TH CA	
WEBS	8-9=-382/710 4-10=0/301, 4-9=-64 8-12=-376/813, 7-12 6-8=-1010/545, 7-17	=-376/813,	,		I Residential Code nd referenced sta Standard			and		4	i	ORIFESS	N.
NOTES												.4. ~	mille.
	CE 7-10; Vult=150mph									Ξ		SEA	L : E
Vasd=119	mph; TCDL=6.0psf; B	CDL=6.0psf; h=30ft;								-		02/1	T. 3 F

Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

818 Soundside Road Edenton, NC 27932

036322

Job	Truss	Truss Type	Qty	Ply	59 SERENITY - ROOF	
34369-34369A	B1	Common Supported Gable	1	1	Job Reference (optional)	155168877

Run: 8.88 S 8.62 Oct 26 2022 Print: 8.620 S Oct 26 2022 MiTek Industries, Inc. Tue Nov 08 16:35:22 ID:fEzDc9Ce80AIFuFMWBqP8tyLCHA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

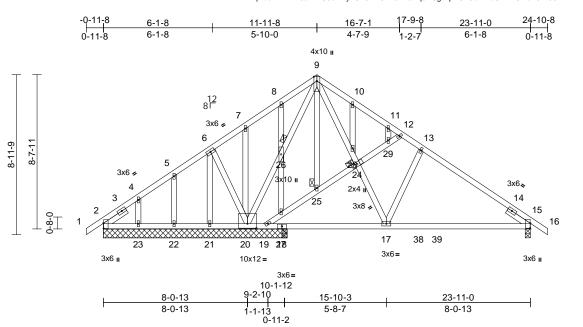
Page: 1

-0-11-8 14-10-8 6-11-8 13-11-0 0-11-8 6-11-8 6-11-8 0-11-8 4x6 = 6 12 8 Г 5 7 þ 5-3-11 4 8 5-7-9 P 3 9 2 10 0-8-0 11 19 18 17 16 15 14 13 3x6 II 3x6 II

13-11-0

Scale	_ '	1.40	11

Scale = 1:40.1													
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MR	0.14 0.05 0.06	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 12	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 76 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 12=13-11 16=13-11 18=13-11 20=13-11 Max Uplift 12=-56 (L 14=-102 (17=-105 (19=-127 (L 14=181 (L 16=243 (L	cept end verticals. applied or 6-0-0 oc -0, 13=13-11-0, -0, 15=13-11-0, -0, 17=13-11-0, -0, 19=13-11-0, -0 LC 12) C 11), 13=-113 (LC LC 14), 13=-104 (LC LC 14), 20=-104 (LC C 23), 15=217 (LC 2 C 25), 17=219 (LC 2 LC 22), 19=154 (LC 1	 this designed to the set of the set	ed roof live loads ha n. CE 7-10; Vult=150m Pomph; TCDL=6.0psf y B; Enclosed; MWW C-C Exterior (2) zor ; end vertical left and and forces & MWFI OCL=1.60 plate grip signed for wind load studs exposed to w dard Industry Gable ; qualified building di GCE 7-10; Pr=20.0 p 5 Plate DOL=1.15; OL=1.15 Plate DOL Exp.; Ct=1.10 has been designed 2.0 psf or 2.00 times s non-concurrent wi are 1.5x4 MT20 unl juires continuous bo be fully sheathed fro gainst lateral movern dis spaced at 2-0-0	aph (3-see ; BCDL=6 FRS (env) RS for rea DOL=1.6 Is in the p prind (norm End Deta esigner a sf (roof li Pf=20.0 p =1.15); C I for greatt flat roof l th other li ess other wome factors of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state state of the state of the state of the state of the state of the state of t	cond gust) 0.0psf; h=30ft; elope) exterio ver left and riq bosed;C-C for cctions shown;) lane of the tru al to the face) ils as applicat s per ANSI/TP e load: Lumbus sf (flat roof sn tategory II; Exj er of min roof bad of 20.0 ps ve loads. wise indicated d bearing. te or securely	r ght ; ss , ole, er ow: p B; live sf on	Ínte	rnationa 12.10.2 a CASE(S	Il Resic	erenced standar	tions R502.11.1 and	1
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 2-20=-157/81, 1-2=0 3-4=-102/102, 4-5=- 6-7=-156/173, 7-8=- 9-10=-102/89, 10-11 19-20=-84/111, 18-1 17-18=-84/111, 16-1 15-16=-84/111, 16-1 15-16=-84/111, 12-1 6-16=-134/44, 5-17= 4-18=-165/128, 3-19 7-15=-162/127, 8-14 9-13=-160/107	%61, 2-3=-144/130, 89/114, 5-6=-156/17. 89/93, 8-9=-56/62, =0/61, 10-12=-157/7 9=-84/111, 7=-84/111, 5=-84/111, 3=-84/111 162/128, 9=-154/114,	10) This truss chord live 31) * This tru 3-06-00 t 2 chord and 12) Provide r bearing p joint 20, § 101 lb up	has been designed load nonconcurren ss has been designed ttom chord in all are all by 1-00-00 wide v d any other member nechanical connectit late capable of with 6 lb uplift at joint 12 lift at joint 18, 127 lb int 15, 102 lb uplift at	I for a 10. t with any ed for a liv as where will fit betw s, with BC on (by oth standing 2 , 105 lb u o uplift at j	other live load e load of 20.0 a rectangle veen the botto CDL = 10.0psf. ers) of truss to 04 lb uplift at plift at joint 17 point 19, 104 lb	ds. ppsf c j				SEA 0363	EER. ILBERT	


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek Affil A MiTek Affil 818 Soundside Road Edenton, NC 27932

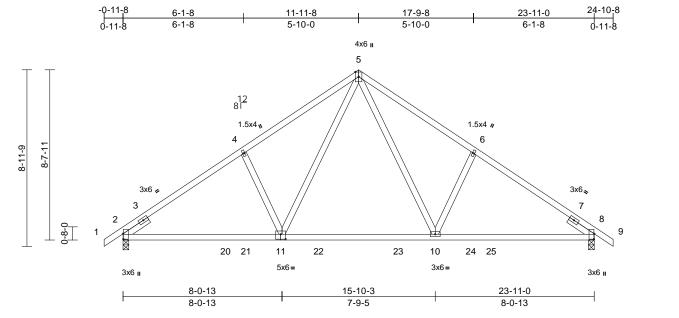
Job	Truss	Truss Type	Qty	Ply	59 SERENITY - ROOF	
34369-34369A	B2	Common Structural Gable	1	1	Job Reference (optional)	155168878

Run: 8.88 S 8.62 Oct 26 2022 Print: 8.620 S Oct 26 2022 MiTek Industries, Inc. Tue Nov 08 16:35:22 ID:rFqNucmBXzYrssBL7U9uPHyLCF8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:64.5

Plate Offsets (X, Y): [2:0-3-9,0-0-3], [15:0-3-5,0-0-3], [20:0-6-0,0-3-0]


Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC	0.34	DEFL Vert(LL)		(loc) 17-36	l/defl >999	L/d 240	PLATES MT20	GRIP 244/190
Snow (Pf) TCDL	20.0 10.0	Lumber DOL Rep Stress Incr	1.15 YES	BC WB	0.51 0.16	Vert(CT) Horz(CT)	-0.16 0.02	17-36 15	>999 n/a	180 n/a		
BCLL	0.0*	Code	IRC2015/TPI		0.16		0.02	15	n/a	n/a		
BCDL	10.0	Code		Mathx-WO							Weight: 183 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD BOT CHORD JOINTS REACTIONS	2x4 SP No.2 2x4 SP No.2 *Excep SP No.3 2x4 SP No.3 Left 2x4 SP No.3 1 1-6-0 Structural wood shea 6-0-0 oc purlins. Rigid ceiling directly bracing. 1 Brace at Jt(s): 24, 25, 26 (size) 2=10-3-8, 23=10-3-6 Max Horiz 2=280 (LC Max Uplift 2=-83 (LC 20=-228 (23=-143 (-6-0, Right 2x4 SP N athing directly applied applied or 10-0-0 oc 15=0-3-8, 19=10-3-8 3, 21=10-3-8, 22=10-3 4, 30=10-3-8 5 (213), 30=280 (LC 13) 10), 15=-227 (LC 15) LC 14), 22=-97 (LC 1 LC 14), 30=-83 (LC 1	b.3 NOTES or 1) Unt this 2) Wir Vas Cat zon exp -8, mer Lun 3) Tru , only t), see) voi to cont to cont	9-28=-289/631, 1 17-24=-194/550, 20-26=-382/0, 9 24-29=-43/22, 11 25-27=-91/63, 2 8-26=-99/90, 26 6-21=-74/14, 5-2 10-28=-105/108, 20 alanced roof live loads h design. 1: ASCE 7-10; Vult=150r d=119mph; TCDL=6.0ps II; Exp B; Enclosed; MW e and C-C Exterior (2) zo sed ; end vertical left an hbers and forces & MWF ber DOL=1.60 plate grip ber DOL=1.60 plate grip ss designed for wind loat. For studs exposed to v Standard Industry Gable onsult qualified building of	13-17=-3 26=-408/(2-29=-32/4 1-25=-109 27=-112/7 2=-164/12 11-29=-3 ave been nph (3-see f; BCDL=6 (FRS (env ne; cantile d right exp, RS for rea DOL=1.6 bs in the p vind (norm End Deta lesigner a	55/277,), 6-20=-76/9; , 19-27=-141 (73, 9-25=-38 4, 7-20=-194 (5, 4-23=-167 1/37 considered for cond gust) 6.0psf; h=30ft elope) exteric ever left and ri cosed; C-C for citions shown) lane of the tru al to the face is as applica s per ANSI/TI	/92, //145, //15,	bea 2, 2 upli join 11) Thi Inte R80	aring plat 228 lb up ff at join t 2. s truss is ernationa 02.10.2 c CASE(S	te capa lift at je t 22, 14 s desig al Resid and ref) Sta	al connection (by able of withstandi oint 20, 227 lb up 43 lb uplift at join ned in accordand dential Code sect erenced standard ndard	others) of truss to ng 83 lb uplift at joint lift at joint 15, 97 lb 23 and 83 lb uplift at with the 2015 ions R502.11.1 and
	21=142 (L	C 27), 15=713 (LC 27) C 5), 20=486 (LC 1), C 5), 22=181 (LC 22) C 26), 30=214 (LC 2	' DO Lun) Par	L: ASCE 7-10; Pr=20.0 p =1.15 Plate DOL=1.15); ber DOL=1.15 Plate DO ially Exp.; Ct=1.10	Pf=20.0 p L=1.15); C	sf (flat roof sr ategory II; E>	now: ‹p B;		6	1111	ORTH CA	ROUN
FORCES	(lb) - Maximum Com Tension	pression/Maximum	load	truss has been designed of 12.0 psf or 2.00 times	flat roof l	oad of 20.0 p					· Q2	
TOP CHORD	8-9=-280/290, 9-10= 10-11=-702/345, 11- 12-13=-731/325, 13- 15-16=0/53 2-23=-96/168, 22-23	163/192, 7-8=-250/24 -737/407, 12=-696/312, 15=-752/278, =-96/168, 1=-95/168, 19-20=0/2	3, 6) All p 7) Gat 8) This cho 9) * Th on t 64 3-00	hangs non-concurrent w lates are 1.5x4 MT20 un le studs spaced at 2-0-0 truss has been designe d live load nonconcurrer is truss has been design he bottom chord in all are -00 tall by 1-00-00 wide d and any other member	less other oc. d for a 10. t with any ed for a liv eas where will fit bety	wise indicated 0 psf bottom other live loa e load of 20.0 a rectangle veen the botto	ds. Opsf om		THE DAY		SEA 0363	EER.K.

Job	Truss	Truss Type	Qty	Ply	59 SERENITY - ROOF	
34369-34369A	B3	Common	7	1	Job Reference (optional)	155168879

Run: 8.88 S 8.62 Oct 26 2022 Print: 8.620 S Oct 26 2022 MiTek Industries, Inc. Tue Nov 08 16:35:23 ID:VM7B69XihKUvvYVSJDofSZyLCE9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:58.5 Plate Offsets (X, Y): [2:0-3-5,0-0-3], [8:0-3-5,0-0-3], [11:0-3-0,0-3-0]

Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B;

3)

Partially Exp.; Ct=1.10

	(X, T). [2.0-3-3,0-0-3],	, [0.0-3-3,0-0-3], [11]	.0-3-0,0-3-	0]									-
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.43 0.61 0.37	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 10-11 10-11 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 127 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD SLIDER BRACING TOP CHORD BOT CHORD FORCES TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.2 *Excep Left 2x4 SP No.3 1-6-0 Structural wood she 4-7-15 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-8, 8 Max Horiz 2=284 (LC Max Uplift 2=-261 (L Max Grav 2=1042 (I (lb) - Maximum Corr Tension 1-2=0/53, 2-4=-1328 5-6=-1292/530, 6-8=	1-6-0, Right 2x4 SP eathing directly applie r applied or 10-0-0 o 8=0-3-8 C 13) C 14), 8=-261 (LC 1 LC 22), 8=1042 (LC apression/Maximum 3/442, 4-5=-1298/53 =-1327/443, 8-9=0/5 10=-226/1048 p=-411/338,	No.3 6 ed or 7 oc 7 15) 23) L	load of 12.0 overhangs n This truss ha chord live loo * This truss l on the bottoo 3-06-00 tall l chord and a Provide mee bearing plate joint 2 and 2 This truss is International	as been designed for psf or 2.00 times fla on-concurrent with as been designed for ad nonconcurrent w has been designed m chord in all areas by 1-00-00 wide wil ny other members, hanical connection e capable of withsta 61 lb uplift at joint 8 designed in accord I Residential Code s ind referenced stand Standard	at roof li other li or a 10.1 vith any for a liv s where I fit betw with BC (by oth anding 2 3. lance w sections	bad of 20.0 p ve loads. D psf bottom other live loa e load of 20.1 a rectangle veen the bott DL = 10.0ps ers) of truss i 261 lb uplift ai ith the 2015 s R502.11.1 a	ads. Opsf com f. to t				mmm	
this design 2) Wind: ASC Vasd=119 Cat. II; Ex zone and exposed ; members											i	SEA 0363	• –

annun E G 11111111 November 9,2022

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	59 SERENITY - ROOF	
34369-34369A	B4	Нір	1	1	Job Reference (optional)	155168880

Run; 8,88 S 8,62 Oct 26 2022 Print: 8,620 S Oct 26 2022 MiTek Industries, Inc. Tue Nov 08 16:35:23 ID:9UR?KhIDsgQzzEpZWyQRWsyLCDA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

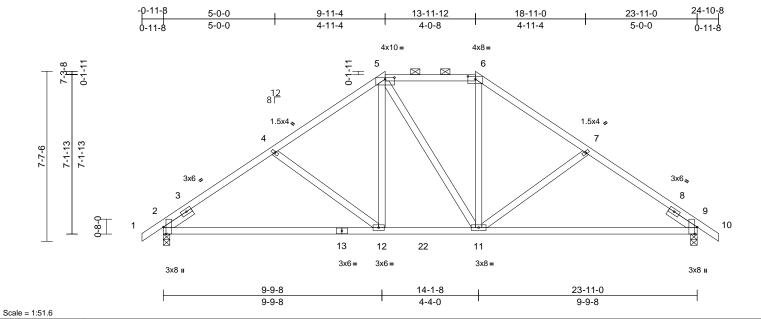
Page: 1

-0-11-8 24-10-8 0-11-8 12-5-12 17-9-8 6-1-8 11-5-4 23-11-0 6-1-8 5-3-12 5-3-12 6-1-8 1-0-8 4x10= 4x10= 0-1-11 H 0-1-11 12 8Г 5 6 8-2-8 1.5x4 💊 23 22 1.5x4 🏿 21 24 4 7 8-1-13 8-1-13 8-7-6 3x6 🖌 3x6、 3 8 9 0-8-0 10 Ŕ 25 26 12 27 28 11 29 30 5x6= 3x6= 4x6 II 4x6 II 8-0-13 15-10-3 23-11-0 8-0-13 7-9-5 8-0-13

Scale = 1:59.7

Plate Offsets	(X, Y): [2:0-3-0,0-0-3],	[5:0-5-0,0-0-14], [6:	:0-5-0,0-0-	14], [9:0-3-5,0-	0-3], [12:0-3-0,0-3	3-0]							
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.63 0.71 0.30	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.20 -0.28 0.05	(loc) 11-12 11-12 9	l/defl >999 >999 n/a	L/d 240 180 n/a		GRIP 244/190 FT = 20%
UMBER TOP CHORD SOT CHORD VEBS SLIDER BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Excep Left 2x4 SP No.3 1-6-0 Structural wood she 3-6-12 oc purlins, ex	1-6-0, Right 2x4 SP athing directly applie	No.2 No.3 4) 5)	DOL=1.15 P Lumber DOL Partially Exp Unbalanced design. This truss ha load of 12.0 overhangs n	L 5 7-10; Pr=20.0 ps late DOL=1.15); F L=1.15 Plate DOL .; Ct=1.10 snow loads have as been designed psf or 2.00 times on-concurrent wit quate drainage to	Pf=20.0 p =1.15); C been cor for great flat roof le h other lir	sf (flat roof s ategory II; E nsidered for t er of min roo bad of 20.0 p ve loads.	mow: ixp B; this of live osf on					11 - 2070
BOT CHORD	bracing.	applied or 10-0-0 or 9=0-3-8 C 14) C 16), 9=-258 (LC 1	c 7) 8) (7)	 This truss has chord live los * This truss I on the bottor 3-06-00 tall I chord and an 	as been designed ad nonconcurrent has been designe m chord in all area by 1-00-00 wide w hy other members	for a 10. with any d for a liv as where vill fit betw s, with BC	0 psf bottom other live los e load of 20. a rectangle veen the bot DL = 10.0ps	ads. .0psf tom					
FORCES	(lb) - Maximum Com Tension	pression/Maximum 3/443, 4-5=-1812/52 1804/523,	, 3,	bearing plate joint 2 and 2) This truss is International	hanical connectio capable of withs 58 lb uplift at joint designed in accor Residential Code	tanding 2 9. rdance w sections	58 lb uplift a ith the 2015 R502.11.1	ıt					
BOT CHORD WEBS		1=-225/1574 2=-235/795,	11	1) Graphical pu	nd referenced sta Irlin representation ation of the purlin d.	n does n	ot depict the	size				WITH CA	ROLI
this desig Wind: AS Vasd=119 Cat. II; Ex zone and exposed ; members	ed roof live loads have n. CE 7-10; Vult=150mph 9mph; TCDL=6.0psf; Br or B; Enclosed; MWFR C-C Exterior (2) zone; ; end vertical left and rig and forces & MWFRS DOL=1.60 plate grip DC	(3-second gust) CDL=6.0psf; h=30ft; S (envelope) exterio cantilever left and ri ght exposed;C-C for for reactions shown	r or ght	OAD CASE(S)	Standard							SEA 0363	• •

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



G١ 11111111 November 9,2022

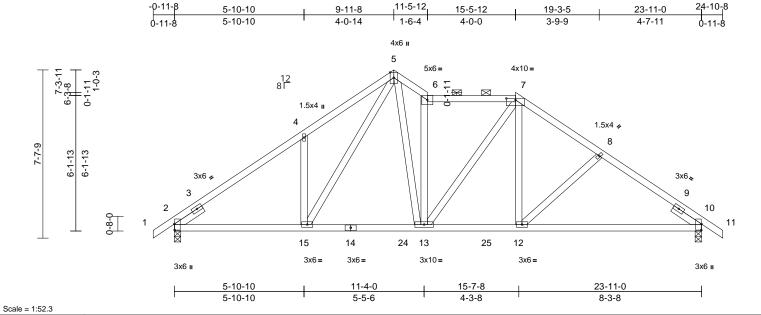
Job	Truss	Truss Type	Qty	Ply	59 SERENITY - ROOF	
34369-34369A	B5	Нір	1	1	Job Reference (optional)	155168881

Run: 8,88 S 8,62 Oct 26 2022 Print: 8,620 S Oct 26 2022 MiTek Industries. Inc. Tue Nov 08 16:35:24 ID:Lt7bCGenGHy?KXyx9qw?emyLCCk-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [2:0-3-13,Edge], [5:0-5-0,0-0-14], [6:0-4-0,0-1-9], [9:0-3-13,Edge]

	(A, T). [2.0-3-13,Euge	j, [3.0-3-0,0-0-14], [0.	0-4-0,0-1	-9], [9.0-0-10,1	lugej								
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.29 0.74 0.25	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.17 -0.35 0.03	(loc) 12-16 12-16 9	l/defl >999 >820 n/a	L/d 240 180 n/a		GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 *Excep Left 2x4 SP No.3 1 1-6-0 Structural wood shea 5-2-6 oc purlins, exc 2-0-0 oc purlins (6-0	I-6-0, Right 2x4 SP N athing directly applied ept -0 max.): 5-6.	No.3 Io.3 4) d or 5) 6)	DOL=1.15 P Lumber DOL Partially Exp This truss ha load of 12.0 overhangs n Provide aded This truss ha chord live loa	5 57-10; Pr=20.0 ps late DOL=1.15); P =1.15 Plate DOL= .; Ct=1.10 us been designed in psf or 2.00 times for on-concurrent with quate drainage to us been designed ad nonconcurrent as been designed	f=20.0 p =1.15); C for great lat roof l n other li prevent for a 10. with any	sf (flat roof s category II; E er of min roo oad of 20.0 p ve loads. water pondin 0 psf bottom other live loa	now: xp B; f live osf on g. ads.					
REACTIONS	bracing.	9=0-3-8 C 13) C 14), 9=-247 (LC 15	5) 8)	on the bottor 3-06-00 tall t chord and ar Provide mec bearing plate	n chord in all area by 1-00-00 wide w by other members, hanical connection capable of withst 47 lb uplift at joint	s where ill fit betv , with BC n (by oth anding 2	a rectangle veen the bott DL = 10.0ps ers) of truss	iom if. to					
FORCES	5-6=-897/423, 6-7=-	/483, 4-5=-1078/433 1078/433,	,	This truss is International R802.10.2 a) Graphical pu	designed in accor Residential Code nd referenced star Irlin representation	dance w sections ndard AN n does n	R502.11.1 a SI/TPI 1. ot depict the						
BOT CHORD WEBS	9-11=-273/1033	·12=-86/822, :-60/346, 4-12=-364/2	273, LC	or the orienta bottom chord DAD CASE(S)		along the	e top and/or				A	ORTH CA	ROUT
this design 2) Wind: ASC Vasd=119 Cat. II; Ex zone and exposed ; members	ed roof live loads have	been considered for (3-second gust) CDL=6.0psf; h=30ft; S (envelope) exterior cantilever left and rig ht exposed;C-C for for reactions shown;								A CHILLING		SEA 0363	22 EER. Kul


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

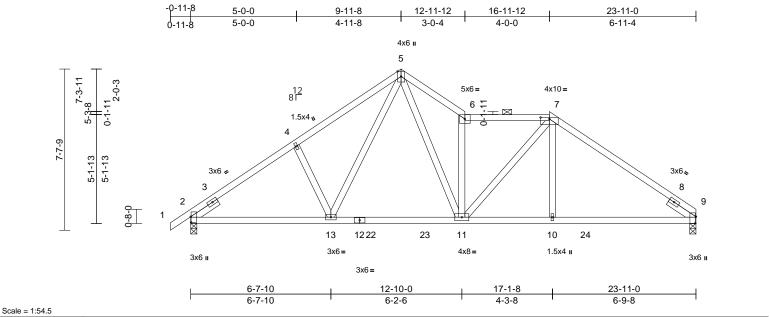
G A. GIL November 9,2022

Job	Truss	Truss Type	Qty	Ply	59 SERENITY - ROOF	
34369-34369A	B6	Roof Special	1	1	Job Reference (optional)	155168882

Run: 8.88 S 8.62 Oct 26 2022 Print: 8.620 S Oct 26 2022 MiTek Industries, Inc. Tue Nov 08 16:35:24 Page: 1 ID:_jv_s?BeQQITrbTnrUloWSyLCC0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Plate Offsets (X, Y): [2:0-3-5,0-0-3], [7:0-5-0,0-0-14], [10:0-3-5,0-0-3]

Loading TCLL (roof) Snow (Pf) TCDL BCLL	(psf) 20.0 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.30 0.55 0.58	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.09 -0.18 0.03	(loc) 12-22 12-22 10	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
CDL LUMBER TOP CHORD SOT CHORD WEBS SLIDER	10.0 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Excep No.2 Left 2x4 SP No.3 1 1-6-0			Vasd=119mp Cat. II; Exp E zone and C-0 exposed ; en members and Lumber DOL	7-10; Vult=150m, h; TCDL=6.0psf; t; Enclosed; MWF C Exterior (2) zon d vertical left and d forces & MWFR =1.60 plate grip I 7-10; PT=20.0 ps	BCDL=6 RS (env e; cantile right exp S for rea 00L=1.60	.0psf; h=30ft elope) exterio ver left and ri osed;C-C for ctions shown	or ight r ı;				Weight: 148 lb	FT = 20%
BRACING OP CHORD	Structural wood shea 4-8-11 oc purlins, ex 2-0-0 oc purlins (5-6	cept	-)	DOL=1.15 P	ate DOL=1.15); F =1.15 Plate DOL:	f=20.0 p	sf (flat roof sr	now:					
BOT CHORD	Rigid ceiling directly bracing.		4)	load of 12.0	s been designed osf or 2.00 times	lat roof le	ad of 20.0 p						
REACTIONS	(size) 2=0-3-8, 1 Max Horiz 2=240 (LC Max Uplift 2=-246 (L Max Grav 2=1014 (L	C 13) C 14), 10=-291 (LC		Provide adec This truss ha chord live loa	on-concurrent with Juate drainage to s been designed ad nonconcurrent as been designed	prevent for a 10.0 with any	vater ponding) psf bottom other live loa	uds.					
ORCES	(lb) - Maximum Com Tension	pression/Maximum	, ,	on the bottor	n chord in all area y 1-00-00 wide w	s where	a rectangle						
FOP CHORD	1-2=0/53, 2-4=-1308 5-6=-1225/569, 6-7= 7-8=-1143/450, 8-10	-1009/450,	8)	chord and ar Provide mec	y other members nanical connectio capable of withs	, with BC n (by oth	DL = 10.0pst ers) of truss t	f. to					in the
BOT CHORD	2-15=-304/1142, 13- 12-13=-129/900, 10- 4-15=-390/333, 6-13 7-12=-63/309, 7-13= 5-15=-333/601, 8-12	12=-268/1034 =-805/418, -102/214,	9) 10	joint 2 and 29 This truss is International R802.10.2 ar) Graphical pu	91 b uplift at joint designed in accou Residential Code nd referenced sta rlin representation	10. dance w sections ndard AN n does no	ith the 2015 R502.11.1 a ISI/TPI 1. ot depict the s	and		4	and a	OR FESS	ROW
NOTES 1) Unbalance this desigr	5-13=-336/812 ed roof live loads have n.	been considered for	LC	or the orienta bottom chorc PAD CASE(S)		along the	top and/or			11111		SEA 0363	• •


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

G 11111111 November 9,2022

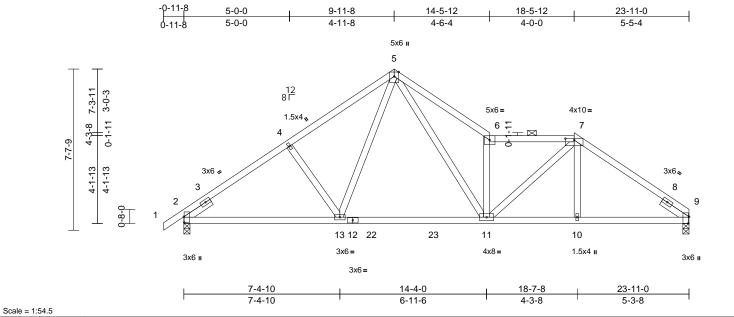
Job	Truss	Truss Type	Qty	Ply	59 SERENITY - ROOF	
34369-34369A	B7	Roof Special	1	1	Job Reference (optional)	155168883

Run: 8.88 S 8.62 Oct 26 2022 Print: 8.620 S Oct 26 2022 MiTek Industries, Inc. Tue Nov 08 16:35:25 ID:A6bZkZXCq0GVCvcAUNFMeMyLCBa-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Plate Offsets (X, Y): [2:0-3-5,0-0-3], [7:0-5-0,0-0-14], [9:0-3-13,Edge]

	A, T). [2.0-3-5,0-0-5],	[1.0-0-0,0-0-14], [9.	.0-3-13,Euį	961									
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.58 0.48 0.49	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 10-16 11-13 9	l/defl >999 >999 n/a	L/d 240 180 n/a	MT20	GRIP 244/190
BCDL	10.0											Weight: 135 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 *Excep No.3 Left 2x4 SP No.3 7 1-6-0		4)	DOL=1.15 P Lumber DOL Partially Exp This truss ha load of 12.0 overhangs n	as been designed f psf or 2.00 times f on-concurrent with	f=20.0 p =1.15); C for great lat roof le n other li	sf (flat roof s ategory II; E er of min roo bad of 20.0 p ve loads.	now: xp B; f live osf on					
BRACING TOP CHORD	Structural wood she 3-11-6 oc purlins, ex 2-0-0 oc purlins (5-2	cept	5) ed or 6) 7)	This truss ha chord live loa * This truss l	quate drainage to as been designed f ad nonconcurrent has been designed	for a 10. with any d for a liv	0 psf bottom other live loa re load of 20.	ads.					
BOT CHORD	Rigid ceiling directly bracing.	,	C		m chord in all area by 1-00-00 wide wi			tom					
	(size) 2=0-3-8, 9 Max Horiz 2=233 (LC Max Uplift 2=-246 (L Max Grav 2=1015 (L	C 11) C 14), 9=-259 (LC 1 .C 1), 9=956 (LC 1)	8) 5) 9)	Provide med bearing plate joint 9 and 2 This truss is	ny other members, shanical connection e capable of withst 46 lb uplift at joint designed in accor	n (by oth anding 2 2. dance w	ers) of truss 259 lb uplift a ith the 2015	to it					
FORCES	(lb) - Maximum Com Tension	pression/Maximum			Residential Code nd referenced star			and					
TOP CHORD	1-2=0/53, 2-4=-1325 5-6=-1441/637, 6-7= 7-9=-1290/444		0, 10)) Graphical pu	urlin representation ation of the purlin a	does no	ot depict the	size				, minin	1999
BOT CHORD	2-13=-308/1161, 11- 10-11=-230/993, 9-1	,	LC	DAD CASE(S)							AN'	RTHCA	ROUNT
WEBS	5-13=-197/471, 6-11 7-11=-87/351, 4-13=	,	,							4	Ìà		A start
 NOTES Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone: cantilever left and right 										V 1111111		SEA 0363	• –

2) Wind: AGCE 7-10, Volie 150mpn (S-second gdst) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent toulease with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

November 9,2022

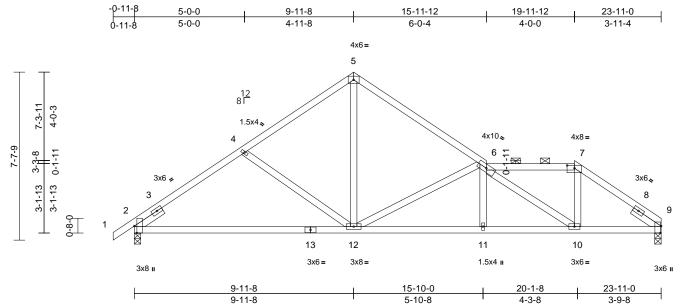
Job	Truss	Truss Type	Qty	Ply	59 SERENITY - ROOF	
34369-34369A	B8	Roof Special	1	1	Job Reference (optional)	155168884

Run; 8,88 S 8,62 Oct 26 2022 Print: 8,620 S Oct 26 2022 MiTek Industries, Inc. Tue Nov 08 16:35:25 Page: 1 ID:cOYz2jdj5A3ySULQ7Csw9ryLC8t-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Plate Offsets (X, Y): [2:0-3-5,0-0-3], [7:0-5-0,0-0-14], [9:0-3-13,Edge]

	(X, T): [2:0 0 0;0 0 0];	[1.0 0 0,0 0 14], [0.	0 0 10,Eu	gej									
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.36 0.54 0.52	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 11-13 11-13 9	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 132 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.3 *Excep Left 2x4 SP No.3 * Excep Left 2x4 SP No.3 - 1 1-6-0 Structural wood shea 4-0-1 oc purlins, exc 2-0-0 oc purlins (4-7 Rigid ceiling directly bracing. (size) 2=0-3-8, 9 Max Horiz 2=233 (LC Max Uplift 2=-246 (LI Max Grav 2=1015 (L (lb) - Maximum Com Tension 1-2=0/53, 2-4=-1320 5-6=-1753/738, 6-7= 7-9=-1328/455	I-6-0, Right 2x4 SP I athing directly applie ept -11 max.): 6-7. applied or 10-0-0 oc 0=0-3-8 C 13) C 14), 9=-259 (LC 1: C 1), 9=956 (LC 1) pression/Maximum /462, 4-5=-1222/493 -1433/546, 13=-111/837, 10=-267/1047	No.2 No.3 4) d or 5) ; 7) 5) 8) 5) 9) 3, 1(DOL=1.15 P Lumber DOL Partially Exp This truss ha load of 12.0 overhangs n Provide ade This truss ha chord live lo. * This truss l on the botton 3-06-00 tall l chord and al Provide mec bearing plate joint 9 and 2 This truss is International R802.10.2 a	as been designed psf or 2.00 times f on-concurrent with quate drainage to as been designed ad nonconcurrent has been designed m chord in all area by 1-00-00 wide w ny other members chanical connection e capable of withst 46 lb uplift at joint designed in accor Residential Code nd referenced stai urlin representation ation of the purlin a	Pf=20.0 p =1.15); C for great flat roof I n other li prevent for a 10. with any d for a li us where ill fit betv , with BC n (by oth tanding 2 2. dance w sections ndard AH	sf (flat roof s ategory II; E: er of min roo bad of 20.0 p ve loads. water pondin 0 psf bottom other live loa e load of 20. a rectangle veen the bott CDL = 10.0ps 259 lb uplift a ith the 2015 s R502.11.1 a xSI/TPI 1. bt depict the s	now: xp B; f live isf on g. ads. Opsf to to t t and				WITH CA	ROLIN
	6-11=-1193/563, 7-1 4-13=-319/271	1=-144/591, 7-10=0	/152,							4	2	april 1	al a
this design 2) Wind: ASC Vasd=119 Cat. II; Ex zone and exposed ; members	ed roof live loads have n. CE 7-10; Vult=150mph mph; TCDL=6.0psf; BK p B; Enclosed; MWFRS C-C Exterior (2) zone; end vertical left and rig and forces & MWFRS OL 4.60 Jotto action	(3-second gust) CDL=6.0psf; h=30ft; S (envelope) exterio cantilever left and rig ht exposed;C-C for for reactions shown;	r ght								A A A A A A A A A A A A A A A A A A A	SEA 0363	• –

- 2) Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


818 Soundside Road Edenton, NC 27932

G 11111111 November 9,2022

Job	Truss	Truss Type	Qty	Ply	59 SERENITY - ROOF	
34369-34369A	В9	Roof Special	1	1	Job Reference (optional)	155168885

Run: 8.88 S 8.62 Oct 26 2022 Print: 8.620 S Oct 26 2022 MiTek Industries, Inc. Tue Nov 08 16:35:26 ID:rxAeeELMzcdRfiwyepx?bVyLC7x-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

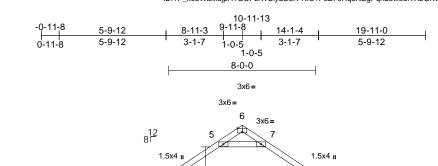
Page: 1

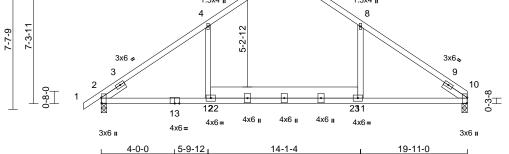
Scale = 1:52.3

Plate Offsets (X, Y): [2:0-3-13,Edge], [7:0-4-0,0-1-9], [9:0-3-13,Edge]

												-	
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.61	Vert(LL)	-0.18	12-20	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.78	Vert(CT)	-0.36	12-20	>798	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.80	Horz(CT)	0.05	9	n/a	n/a		
BCLL	0.0*	Code	IRC20	5/TPI2014	Matrix-MS								
BCDL	10.0											Weight: 127 lb	FT = 20%
LUMBER			3) TCLL: ASCE	7-10; Pr=20.0 ps	sf (roof liv	e load: Lumb	ber					
TOP CHORD	2x4 SP No.2			DOL=1.15 P	late DOL=1.15); I	Pf=20.0 p	sf (flat roof s	now:					
BOT CHORD				Lumber DOI	.=1.15 Plate DOL	.=1.15); Ċ	ategory II; E	xp B;					
WEBS	2x4 SP No.3 *Excep	t* 12-5.12-6:2x4 SP	No.2	Partially Exp	.; Ct=1.10			•					
SLIDER	Left 2x4 SP No.3 1			 This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on 									
	1-6-0	· • •, · · · g·· · = · · • •		load of 12.0	psf or 2.00 times	flat roof l	oad of 20.0 p	sf on					
BRACING				overhangs n	on-concurrent wit	th other li	ve loads.						
TOP CHORD	Structural wood she	athing directly applie	ed or 5	 Provide adequate drainage to prevent water ponding. 									
	4-1-3 oc purlins, exc		6	5) This truss has been designed for a 10.0 psf bottom									
	2-0-0 oc purlins (5-6				ad nonconcurrent								
BOT CHORD	Rigid ceiling directly		7		nas been designe			0psf					
	bracing.				m chord in all area								
REACTIONS	(size) 2=0-3-8, 9	9=0-3-8			oy 1-00-00 wide w		veen the bott	om					
	Max Horiz 2=233 (LC				ny other members								
	Max Uplift 2=-246 (L		5) 8		hanical connection								
	Max Grav 2=1015 (L		,		e capable of withs 46 lb uplift at joint		se in upilit a	l I					
FORCES	(lb) - Maximum Com		٥		designed in acco		ith the 2015						
	Tension		3		Residential Code			and					
TOP CHORD	1-2=0/53, 2-4=-1214	/475. 4-5=-1083/42	5.		nd referenced sta								
	5-6=-1098/409, 6-7=				Irlin representatio			size				OR FESS	
	7-9=-1355/456			, , ,	ation of the purlin								116
BOT CHORD	2-12=-319/1066, 11-	-12=-524/1784,		bottom chore								11111 00	
	10-11=-527/1779, 9-	-10=-297/1086	L	OAD CASE(S)	Standard							TH UA	ROUT
WEBS	5-12=-238/831, 6-12	2=-1063/471, 6-11=0)/171, 🗌	0/12/0/10_(0)	olandara						1	A Stee	in Inter
	6-10=-879/289, 7-10)=-123/545,								/	52	FEUG	AND A'
	4-12=-352/274									4			
NOTES										-		: 4	
	ed roof live loads have	been considered fo	r							=		SEA	L 1 E
this desigr	n.									=			• –
	CE 7-10; Vult=150mph									Ξ	A A A A A A A A A A A A A A A A A A A	0363	22
	mph; TCDL=6.0psf; B										- B	1	1 E
	p B; Enclosed; MWFR										1	· · ·	A 1. 5
	C-C Exterior (2) zone;										20	S. SNOW	Ethick
	end vertical left and rig										1	PL GIN	E. CAN
	and forces & MWFRS		,								1	1,CA C	II BEIN
Lumber D	OL=1.60 plate grip DO	L=1.60										",, A. G	11-111

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601




GI A. GIL November 9,2022

Job	Truss	Truss Type	Qty	Ply	59 SERENITY - ROOF	
34369-34369A	B10	Common	3	1	Job Reference (optional)	155168886

Run: 8.88 S 8.62 Oct 26 2022 Print: 8.620 S Oct 26 2022 MiTek Industries, Inc. Tue Nov 08 16:35:26 Page: 1 ID:1P_xo3WaM6jpATGOFzfWUlyLC6R-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

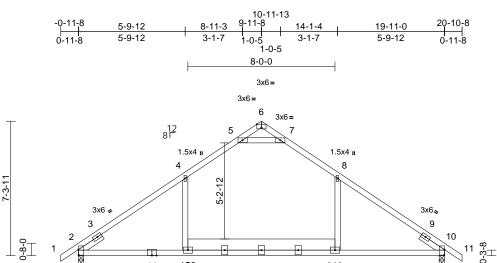
5-9-12

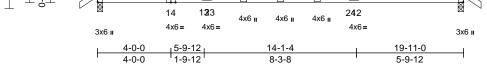
8-3-8

4-0-0

1-9-12

Scale = 1:62.7


Plate Offsets (X, Y): [2:0-3-9,0-0-3], [6:0-3-0,Edge], [10:0-3-9,0-0-3]


	(X, T). [2.0-3-3,0-0-3],	, [0.0-3-0,∟uge], [10.	0-3-3,0-0-3]											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TI	PI2014	CSI TC BC WB Matrix-MS	0.64 0.69 0.36	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.42 -0.48 0.06	(loc) 11-16 11-16 2	l/defl >574 >498 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 112 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 *Excep 2x4 SP No.3 Left 2x4 SP No.3 1-6-0 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing.	1-6-0, Right 2x4 SP athing directly applie applied or 10-0-0 or 10=0-3-8 C 13) C 14), 10=-191 (LC	S or S 5) T No.3 cl of sd or 3- cd c 7) P b b c b b c b b c b c b c b c b c b c b c b c b c c c c c c c c c c c c c	ad of 12.0 verhangs no his truss ha hord live loa This truss ha n the bottor -06-00 tall b hord and ar rovide mec earing plate earing plate earing plate earing plate shis truss is hternational 802.10.2 ar	s been designed f psf or 2.00 times fl on-concurrent with is been designed f ad nonconcurrent v has been designed in chord in all areas by 1-00-00 wide wi hy other members, hanical connection capable of withst 222 lb uplift at joint designed in accorr Residential Code nd referenced star Standard	lat roof I o other li or a 10. with any I for a liv s where Il fit betw with BC o (by oth anding t 2. dance w sections	oad of 20.0 p ve loads. 0 psf bottom other live load ve load of 20. a rectangle ween the bott CDL = 10.0ps lers) of truss 191 lb uplift a with the 2015 s R502.11.1 a	ads. Opsf tom to t						
FORCES	5-6=-316/799, 6-7=-	305, 4-5=-791/361,		0,102(0)	Gandara									
BOT CHORD	10-11=-258/838												Della	
this design 2) Wind: ASC Vasd=119 Cat. II; Exj zone and i exposed ; members : Lumber Di 3) TCLL: ASC DOL=1.15 Lumber Di	4-12=-9/338, 8-11=- ed roof live loads have n. CE 7-10; Vult=150mph imph; TCDL=6.0psf; Bi p B; Enclosed; MWFR C-C Exterior (2) zone; end vertical left and riq and forces & MWFRS OL=1.60 plate grip DC CE 7-10; Pr=20.0 psf (5 Plate DOL=1.15); Pf= OL=1.15 Plate DOL=1 ixp.; Ct=1.10	been considered for (3-second gust) CDL=6.0psf; h=30ft; S (envelope) exterio cantilever left and ri- ght exposed;C-C for for reactions shown DL=1.60 roof live load: Lumbi- 20.0 psf (flat roof sn	r ght er ow:							A CONTRACT		SEA 0363	EEP. A.	

Job	Truss	Truss Type	Qty	Ply	59 SERENITY - ROOF	
34369-34369A	B10A	Common	2	1	Job Reference (optional)	155168887

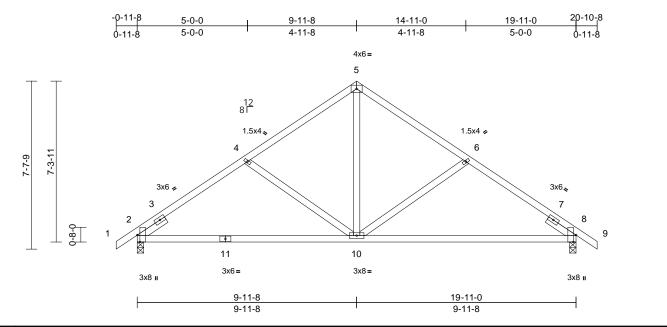
Run: 8.88 S 8.62 Oct 26 2022 Print: 8.620 S Oct 26 2022 MiTek Industries, Inc. Tue Nov 08 16:35:27 Page: 1 ID:_bgzvB9ptOPI1cpasb6x7wyLC5c-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Plate Offsets (X, Y): [2:0-3-9,0-0-3], [6:0-3-0,Edge], [10:0-3-9,0-0-3]

Scale = 1:62.7

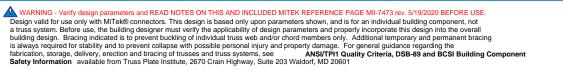
2-7-9

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	[0:0 0 0,Edg0], [10:0	000,000]									
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI20		0.64 0.66 0.35	DEFL Vert(LL) Vert(CT) Horz(CT)	-0.48 0.06	(loc) 13-17 13-17 2	l/defl >583 >502 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 114 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 *Excep 2x4 SP No.3 Left 2x4 SP No.3 1-6-0 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing.	1-6-0, Right 2x4 SP M athing directly applie applied or 10-0-0 oc 10=0-3-8 C 13) C 14), 10=-222 (LC -	load S overt S) This No.3 chore 6) * This on th d or 3-06- chore 7) Provi beari joint 1: 8) This Interr 7, R802	russ has been designed of 12.0 psf or 2.00 times angs non-concurrent w russ has been designed live load nonconcurrer truss has been designed truss has been designed to tall by 1-00-00 wide and any other member de mechanical connecti ng plate capable of with and 222 lb uplift at joir russ is designed in acco ational Residential Coo 10.2 and referenced st SE(S) Standard	s flat roof I rith other Ii d for a 10. nt with any ed for a liv eas where will fit betw rs, with BC ion (by oth isstanding 2 nt 10. ordance w de sections	bad of 20.0 p: ve loads. 0 psf bottom other live loa ve load of 20.0 a rectangle veen the botto CDL = 10.0psf ers) of truss t 222 lb uplift at ith the 2015 s R502.11.1 a	sf on Ids. Dpsf om f. to					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	LOAD CA	(SE(S) Stanuaru								
TOP CHORD	1-2=0/53, 2-4=-981/ 5-6=-310/794, 6-7=- 8-10=-980/302, 10-1	310/794, 7-8=-789/3 1=0/53	59,									10.
WEDO	10-12=-224/847	0/000 5 7 4040/00	4								TH CA	ROUL
WEBS NOTES	4-13=-9/336, 8-12=-	9/330, 5-7=-1846/80	4							AN	R	
 Unbalance this design Wind: ASC Vasd=119 Cat. II; Exp zone and exposed; members : Lumber Du TCLL: ASC DOL=1.15 Lumber Du 	ed roof live loads have n. CE 7-10; Vult=150mph mph; TCDL=6.0psf; Bi p B; Enclosed; MWFR C-C Exterior (2) zone; end vertical left and rig and forces & MWFRS OL=1.60 plate grip DC CE 7-10; Pr=20.0 psf (5 Plate DOL=1.15); Pf= OL=1.15 Plate DOL=1 xp.; Ct=1.10	(3-second gust) CDL=6.0psf; h=30ft; S (envelope) exterior cantilever left and rig ght exposed;C-C for for reactions shown; uL=1.60 roof live load: Lumbe 20.0 psf (flat roof sno	r ght er ow:						1		in a. C	EER A LUI


Job	Truss	Truss Type	Qty	Ply	59 SERENITY - ROOF	
34369-34369A	B11	Common	6	1	Job Reference (optional)	155168888

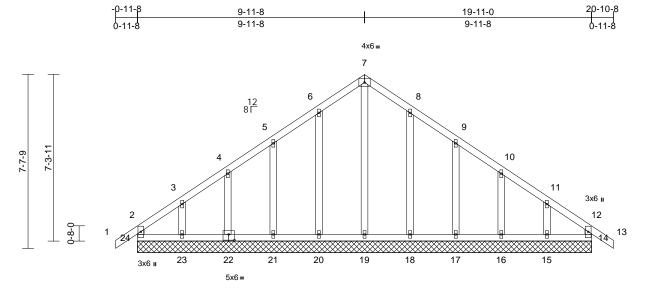
Run: 8.88 S 8.62 Oct 26 2022 Print: 8.620 S Oct 26 2022 MiTek Industries, Inc. Tue Nov 08 16:35:27 ID:DtnExugolbpChDcrt7N0N_yLC4x-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

November 9,2022


818 Soundside Road Edenton, NC 27932

Page: 1

Scale = 1:52.3


	X, Y): [2:0-3-13,Edge], [8.0-3-13,⊵uge] I											
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d		GRIP
TCLL (roof) Snow (Pf)	20.0 20.0	Plate Grip DOL Lumber DOL	1.15 1.15		TC BC	0.31 0.82	Vert(LL) Vert(CT)		10-18 10-18	>999 >883	240 180	MT20	244/190
CDL	10.0	Rep Stress Incr	YES		WB	0.82	Horz(CT)	-0.27	8	>003 n/a	n/a		
BCLL	0.0*	Code		5/TPI2014	Matrix-MS	0.27	11012(01)	0.02	0	n/a	n/a	1	
BCDL	10.0											Weight: 101 lb	FT = 20%
UMBER			4)	This truss ha	s been designed	for great	er of min roof	f live					
TOP CHORD	2x4 SP No.2				psf or 2.00 times f			sf on					
BOT CHORD	2x4 SP No.2				on-concurrent with								
WEBS	2x4 SP No.3 *Excep				s been designed			da					
SLIDER	Left 2x4 SP No.3 1	1-6-0, Right 2x4 SP	No.3 6)		ad nonconcurrent has been designed								
	1-6-0		6)		n chord in all area			opsi					
BRACING	Structural wood abo	athing directly applic	d or		by 1-00-00 wide w			om					
OF CHURD	Structural wood she 5-8-4 oc purlins.	auning unecuy applie	50 UI		y other members								
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 or	7)		hanical connection								
	bracing.		-		capable of withst		222 lb uplift at	t					
REACTIONS	0	8=0-3-8	~		22 lb uplift at joint		ille (h. e. 0045						
	Max Horiz 2=240 (LC		8)		designed in accor Residential Code			and					
	Max Uplift 2=-222 (L	.C 14), 8=-222 (LC 1	5)		nd referenced star			anu					
	Max Grav 2=854 (L0	C 1), 8=854 (LC 1)	10	DAD CASE(S)			0//////						
ORCES	(lb) - Maximum Com	pression/Maximum	L\		Standard								
	Tension												
TOP CHORD	1-2=0/53, 2-4=-993/												
	5-6=-854/327, 6-8=-												
BOT CHORD	2-10=-280/900, 8-10 5-10=-167/632, 4-10												
VEDS	6-10=-374/283	J=-374/203,										minin	unin.
NOTES	0 10- 01-1200											WTH CA	Roill
	ed roof live loads have	been considered for	r								15	AR	the later
this design										6	53	FES	Nin
	 CE 7-10; Vult=150mph	(3-second gust)								Z		in a	2 the second
	mph; TCDL=6.0psf; B									-		.*	N 1 E
	p B; Enclosed; MWFR									=		SEA	L : E
	C-C Exterior (2) zone;									=	:	0363	• •
	end vertical left and rig									1		0303	
	and forces & MWFRS OL=1.60 plate grip DC		,							-		N	1 E
	CE 7-10; Pr=20.0 psf (er							5	1	SEA 0363	Richi
	Plate DOL=1.15); Pf=										1,5	S. GIN	EFIAN
	OL=1.15 Plate DOL=1										11	C .	BEIN
Partially E	xp.; Ct=1.10											Novemb	illuin
												10000	um.
												Novomb	or 0 2022

Job	Truss	Truss Type	Qty	Ply	59 SERENITY - ROOF	
34369-34369A	B12	Common Supported Gable	1	1	Job Reference (optional)	155168889

Run: 8.88 S 8.62 Oct 26 2022 Print: 8.620 S Oct 26 2022 MiTek Industries, Inc. Tue Nov 08 16:35:28 ID:PGTppT0M9CLD2WIEW0tbVuyLC4V-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

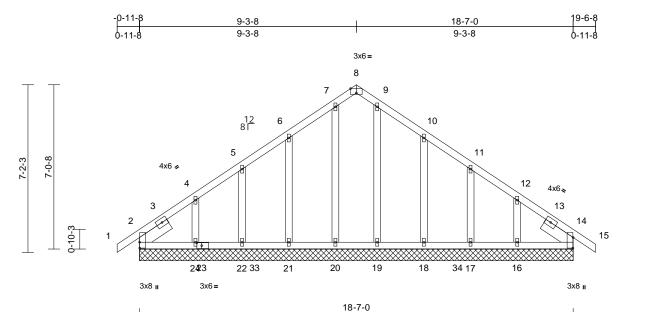
Page: 1

19-11-0

Scale = 1:50.5

Plate Offsets	(X, Y):	[22:0-3-0,0-3-0]
---------------	---------	------------------

Loading(psf)SpacingTCLL (roof)20.0Plate Grip DOLSnow (Pf)20.0Lumber DOLTCDL10.0Rep Stress IncrBCLL0.0*CodeBCDL10.0CodeLUMBER10.0CodeTOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2BOT CHORD2x4 SP No.3TOP CHORD2x4 SP No.3BRACINGTOP CHORDTOP CHORDStructural wood sheathing directly appl 6-0-0 oc purlins, except end verticals.BOT CHORDRigid ceiling directly applied or 6-0-0 oc bracing.REACTIONS(size)14=19-11-0, 15=19-11-0, 16=19-11-0, 17=1-10,	2 WEBS ied or	CHORD :	CSI TC BC WB Matrix-MR 23-24=-104/147, 21 20-21=-104/148, 19 18-19=-104/148, 17 16-17=-104/148, 17 14-15=-104/148, 15 14-15=-104/148 7-19=-197/126, 6-20 5-21=-160/128, 4-22 3-23=-177/147, 8-18	-20=-1 -18=-1 -16=-1	Vert(CT) Horz(CT) 04/148, 04/148, 04/148, 04/148,	in n/a n/a 0.00	on t 3-0	the botto 6-00 tall	m cho by 1-0	rd in all areas wh	a live load of 20.0psf ere a rectangle	
TCLL (roof) 20.0 Plate Grip DOL Snow (Pf) 20.0 Lumber DOL TCDL 10.0 Rep Stress Incr BCLL 0.0* Code BCDL 10.0 Code LUMBER 10.0 Code TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3 BCT CHORD 2x4 SP No.3 *Except* 19-7:2x4 SP No.3 OTHERS 2x4 SP No.3 *Except end verticals. BOT CHORD Structural wood sheathing directly appl 6-0-0 oc purlins, except end verticals. BOT CHORD R Rigid ceiling directly applied or 6-0-0 oc bracing. REACTIONS (size) 14=19-11-0, 15=19-11-0,	1.15 1.15 YES IRC2015/TI BOT (2 wEBS ied or	CHORD :	TC BC WB Matrix-MR 23-24=-104/147, 21 20-21=-104/148, 19 18-19=-104/148, 17 16-17=-104/148, 15 14-15=-104/148 7-19=-197/126, 6-20 5-21=-160/128, 4-22	0.07 0.17 -23=-11 -20=-11 -18=-11 -16=-156	Vert(LL) Vert(CT) Horz(CT) 04/148, 04/148, 04/148, 04/148,	n/a n/a	- 14 11) * Tr on 1 3-0	n/a n/a n/a nis truss the botto 6-00 tall	999 999 n/a has be m cho by 1-0	MT20 Weight: 121 lb een designed for rd in all areas wh	244/190 FT = 20% a live load of 20.0psf ere a rectangle	
Snow (Pf) 20.0 Lumber DOL TCDL 10.0 Rep Stress Incr BCLL 0.0* Code BCDL 10.0 Code LUMBER 10.0 Code TOP CHORD 2x4 SP No.2 Code BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 OTHERS 2x4 SP No.3 *Except* 19-7:2x4 SP No. BRACING TOP CHORD Structural wood sheathing directly appl 6-0-0 oc purlins, except end verticals. BOT CHORD BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc pracing. REACTIONS (size) 14=19-11-0, 15=19-11-0,	YES IRC2015/TI BOT (2 webs ied or	CHORD :	WB Matrix-MR 23-24=-104/147, 21 20-21=-104/148, 19 18-19=-104/148, 17 16-17=-104/148, 15 14-15=-104/148 7-19=-197/126, 6-20 5-21=-160/128, 4-22	0.17 -23=-1 -20=-1 -18=-1 -16=-1 0=-156	Horz(CT) 04/148, 04/148, 04/148, 04/148,		11) * Tr on t 3-0	n/a his truss the botto 6-00 tall	n/a has be m cho by 1-0	een designed for rd in all areas wh	a live load of 20.0psf ere a rectangle	
TCDL 10.0 Rep Stress Incr BCLL 0.0* Code BCDL 10.0 Code LUMBER 10.0 TOP CHORD TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3 OTHERS 2x4 SP No.3 *Except* 19-7:2x4 SP No. BRACING TOP CHORD TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. REACTIONS (size) 14=19-11-0, 15=19-11-0,	BOT 0 BOT 0 2 webs ied or	CHORD :	Matrix-MR 23-24=-104/147, 21 20-21=-104/148, 19 18-19=-104/148, 17 16-17=-104/148, 15 14-15=-104/148 7-19=-197/126, 6-22 5-21=-160/128, 4-22	-23=-1 -20=-1 -18=-1 -16=-1 0=-156	Horz(CT) 04/148, 04/148, 04/148, 04/148,		11) * Tr on t 3-0	n/a his truss the botto 6-00 tall	has be m cho by 1-0	een designed for rd in all areas wh	a live load of 20.0psf ere a rectangle	
BCDL 10.0 LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 OTHERS 2x4 SP No.3 *Except* 19-7:2x4 SP No. BRACING TOP CHORD TOP CHORD Structural wood sheathing directly appl 6-0-0 oc purlins, except end verticals. BOT CHORD BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. REACTIONS (size) 14=19-11-0, 15=19-11-0,	BOT (2 webs ied or	CHORD :	23-24=-104/147, 21 20-21=-104/148, 19 18-19=-104/148, 17 16-17=-104/148, 15 14-15=-104/148 7-19=-104/148 7-19=-197/126, 6-20 5-21=-160/128, 4-22	-20=-1 -18=-1 -16=-1 0=-156	04/148, 04/148, 04/148,		on t 3-0	the botto 6-00 tall	m cho by 1-0	een designed for rd in all areas wh	a live load of 20.0psf ere a rectangle	
BCDL 10.0 LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 OTHERS 2x4 SP No.3 *Except* 19-7:2x4 SP No. BRACING TOP CHORD TOP CHORD Structural wood sheathing directly appl 6-0-0 oc purlins, except end verticals. BOT CHORD BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. REACTIONS (size) 14=19-11-0, 15=19-11-0,	BOT (2 webs ied or	CHORD :	23-24=-104/147, 21 20-21=-104/148, 19 18-19=-104/148, 17 16-17=-104/148, 15 14-15=-104/148 7-19=-104/148 7-19=-197/126, 6-20 5-21=-160/128, 4-22	-20=-1 -18=-1 -16=-1 0=-156	04/148, 04/148, 04/148,		on t 3-0	the botto 6-00 tall	m cho by 1-0	een designed for rd in all areas wh	a live load of 20.0psf ere a rectangle	
TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 OTHERS 2x4 SP No.3 *Except* 19-7:2x4 SP No. BRACING TOP CHORD TOP CHORD Structural wood sheathing directly appl 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. 14=19-11-0, 15=19-11-0,	2 WEBS ied or	S ·	20-21=-104/148, 19 18-19=-104/148, 17 16-17=-104/148, 15 14-15=-104/148 7-19=-197/126, 6-20 5-21=-160/128, 4-22	-20=-1 -18=-1 -16=-1 0=-156	04/148, 04/148, 04/148,		on t 3-0	the botto 6-00 tall	m cho by 1-0	rd in all areas wh	ere a rectangle	
18=19-11-0, 19=19-11-0,	źth	E S Inbalanced nis design.	9-17=-160/128, 10- 11-15=-181/141 roof live loads have	8=-155/ 16=-15 e been (119, 123, 5/121, considered for		 12) Pro bea 24, upli join 18 UI 13) This R80 	vide me iring plat 41 lb up ft at join t 23, 98 plift at jo s truss is rnationa 02.10.2 a	chanic te capa lift at jo t 21, 89 lb uplif bint 16 s desig l Resid and ref	er members, with al connection (by able of withstandi oint 14, 100 lb up 9 lb uplift at joint 1 t at joint 18, 106 and 138 lb uplift ned in accordand dential Code sect erenced standard	e with the 2015 ions R502.11.1 and	
$\begin{array}{c} 20 = 19 \cdot 11 \cdot 0, \ 21 = 19 \cdot 11 \cdot 0, \ 22 = 10 \cdot 10$	V C 2 (15), ex 2 (15), Li 2 (14), C 2 (15), C 2 (15), C 2 (14), C 2 (15), C 2 (15), C 2 (15), C 2 (15), C 2 (14), C 2 (15), C	 Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Cfacegory II; Exp B; Partially Exp.; Ct=1.10 This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. All plates are 1.5x4 MT20 unless otherwise indicated. 				ght ss le, l 1. er o B; ive f on	SEAL					


in mann November 9,2022

Job	Truss	Truss Type	Qty	Ply	59 SERENITY - ROOF	
34369-34369A	C1	Common Supported Gable	1	1	Job Reference (optional)	155168890

Run: 8.88 S 8.62 Oct 26 2022 Print: 8.620 S Oct 26 2022 MiTek Industries, Inc. Tue Nov 08 16:35:28 ID:qwGfjltuR0I93RgtBQfEusyLC3O-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

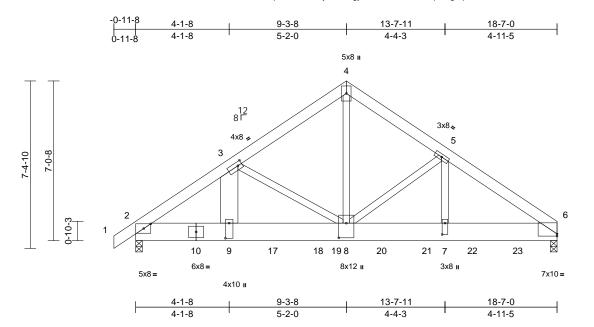
Page: 1

Scale =	1:49.4
---------	--------

Plate Offsets (X, Y): [2:0-3-0,0-0-2], [8:0-3-0,Edge], [14:0-5-7,0-0-2], [23:0-2-8,0-1-8]

Loading (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0	Spacing2-0Plate Grip DOL1.1Lumber DOL1.1Rep Stress IncrYE	5 5	CSI TC BC WB	0.11 0.10 0.08	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 14	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCLL 0.0* BCDL 10.0		C2015/TPI2014	Matrix-MS		- (-)					Weight: 118 lb	FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 OTHERS 2x4 SP No.3 SLIDER Left 2x6 SP No.2 1-6-0 BRACING TOP CHORD Structural wood she 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly bracing. REACTIONS (size) 2=18-7-0, 17=18-7-(20=18-7-(20=18-7-(24=18-7-(Max Horiz 2=-225 (L 16=-182 (18=-132 (24=-192 (L 16=226 (L 18=-257 (L Max Grav 2=197 (LC 16=226 (L 18=257 (L 16=226 (L) 12=0/53, 2-4=-202/ 5-6=-112/95, 6-7=-1 8-9=-140/141, 9-10=	14=18-7-0, 16=18-7-0, 0, 18=18-7-0, 19=18-7-0, 0, 21=18-7-0, 29=18-7-0, 0, 25=18-7-0, 29=18-7-0 C 12), 25=-225 (LC 12) 10), 14=-13 (LC 11), LC 15), 20=-9 (LC 11), LC 15), 20=-9 (LC 11), LC 14), 22=-71 (LC 14), LC 14), 25=-49 (LC 10), C 11) 2 23), 14=173 (LC 1), C 23), 17=178 (LC 23), C 23), 19=185 (LC 23), C 22), 21=252 (LC 26), C 26), 24=237 (LC 22), C 23), 29=173 (LC 1) pression/Maximum	 WEBS NOTES 1) Unbalanced this design. 2) Wind: ASCE Vasd=119m Cat. II; Exp I zone and C-exposed; er members ar Lumber DOI 3) Truss desig only. For stt see Standar or consult qu 4) TCLL: ASCE DOL=1.15 P Lumber DOI Partially Exp 5) This truss ha load of 12.0 overhangs n 6) All plates arr 7) Gable studs 9) This truss ha load strust has a structure of the strust has a structure of the strust has a structure of the structure of the strust has a structure of the st	2-24=-114/196, 22-2 21-22=-114/196, 20 19-20=-114/196, 18 17-18=-114/196, 18 17-18=-114/196, 18 17-18=-114/196, 16 14-16=-114/196 7-20=-117/32, 9-19: 5-22=-141/107, 4-2: 10-18=-185/153, 11 12-16=-206/170 I roof live loads have 5-7-10; Vult=150mph ph; TCDL=6.0psf; B B; Enclosed; MWFR C Exterior (2) zone; nd vertical left and ri nd forces & MWFRS L=1.60 plate grip DC gned for wind loads i uds exposed to winc rd Industry Gable En ualified building desi 5-7-10; Pr=20.0 psf Plate DOL=1.15); Pf L=1.15 Plate DOL=1 0; Ct=1.10 as been designed fo psf or 2.00 times fla on-concurrent with e 1.5x4 MT20 unless res continuous botto spaced at 2-0-0 oc. as been designed fo bad nonconcurrent w	-21=-1 -19=-1 -17=-1 =-93/2, 4=-204, -17=-1 (3-seet CDL=6 (a) (a) (c) (a) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	14/196, 14/196, 14/196, 6-21=-185/14 (176, 41/108, considered for cond gust) .0psf; h=30ft; elope) exteriol ver left and ri- vosed;C-C for ctions shown 0 lane of the tru al to the face) ils as applicat s per ANSI/TF e load: Lumbi sf (flat roof sn ategory II; Ex er of min roof pad of 20.0 ps ve loads. wise indicated d bearing. 0 psf bottom	r ght ss ble, Pl 1. er oow: p B; live sf on l.	on 1 3-0 cho 11) Pro bea 2, 1 upli join 182 upli 12) This Inte R80	the botto 6-00 tall rd and a vide me tring plat 3 lb upli ft at join t 24, 132 lb upliff ft at join s truss is crnationa 02.10.2 a CASE(S)	m cho by 1-0 iny oth chanic ce capa ft at join t 21, 7 2 lb upp t 21 b upp t 14. s desig il Resis and ref) Star	een designed for ord in all areas wh 00-00 wide will fit al connection (by able of withstand int 14, 9 lb uplift at 1 lb uplift at joint 1 lb uplift at joint 18, 73 it 16, 49 lb uplift at uned in accordan- dential Code sec ferenced standar	a live load of 20.0psf here a rectangle between the bottom n BCDL = 10.0psf. others) of truss to ng 49 lb uplift at joint at lb uplift at joint 17, at joint 2 and 13 lb ce with the 2015 tions R502.11.1 and d ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



November 9,2022

Job	Truss	Truss Type	Qty	Ply	59 SERENITY - ROOF	
34369-34369A	C2	Common Girder	1	3	Job Reference (optional)	155168891

Run: 8.88 S 8.62 Oct 26 2022 Print: 8.620 S Oct 26 2022 MiTek Industries, Inc. Tue Nov 08 16:35:29 ID:BheqTuY0FDLCn1yeSBfN9gyLC2W-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

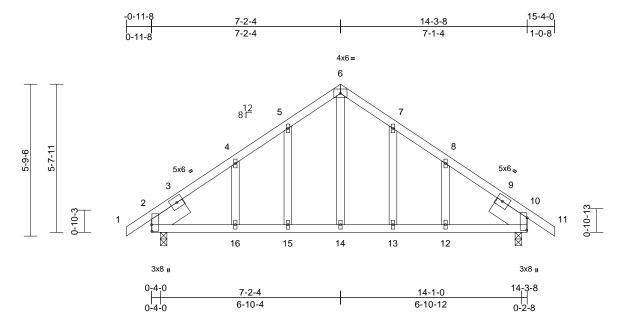
Page: 1

Scale = 1:50.8	50.8
----------------	------

Plate Offsets (X, Y): [2:0-3-12,Edge], [3:0-2-4,0-2-0], [6:Edge,0-1-2], [7:0-6-0,0-1-8], [8:0-7-12,0-4-0], [9:0-8-0,0-2-0]

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP				
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.30	Vert(LL)	-0.09	8-9	>999	240	MT20	244/190				
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.42	Vert(CT)	-0.16	8-9	>999	180						
TCDL	10.0	Rep Stress Incr	NO		WB	0.95	Horz(CT)	0.03	6	n/a	n/a						
BCLL	0.0*	Code	IRC201	5/TPI2014	Matrix-MS		- (-)										
BCDL	10.0			0,11,12011								Weight: 502 lb	FT = 20%				
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x10 SP DSS 2x4 SP No.3 *Excep 8-4:2x4 SP No.2 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing.	athing directly applie applied or 10-0-0 or 5=0-3-8, (req. 0-3-9) C 11) LC 14), 6=-2552 (LC	3) ed or 4) c	except if not CASE(S) see provided to c unless other Unbalanced this design. Wind: ASCE Vasd=119mp Cat. II; Exp E zone and C- exposed ; er members an Lumber DOL	considered equal ed as front (F) or l titon. Ply to ply co listribute only load wise indicated. roof live loads har 7-10; Vult=150m oh; TCDL=6.0psf; 3; Enclosed; MWF C Exterior (2) zon d vertical left and d forces & MWF 7-10; Pr=20.0 ps	back (B) ponnection ds noted ve been ph (3-sec BCDL=6 RS (env e; cantile right exp 2S for rea DOL=1.60	face in the LC s have been as (F) or (B), considered for cond gust) 0.0psf; h=30ft elope) exterio ever left and r ososed;C-C for cotions showr	or ; or ight ;;	pro lb c lb u 221 anc at anc chc (s) LOAD (1) Do In	vided su down and up at 6-0 10 lb dow d 441 lb 12-10-5, d 2225 lb ord. The is the re CASE(S ead + Sr crease= niform L	ufficient d 1591)-12, 2 wn and up at 2 o down d design sponsi sponsi) Sta now (ba 1.15 oads (l	Ib up at 4-1-8, 1 438 lb down and 462 lb up at 8-1 10-10-5, 2226 lb 226 lb down and and 441 lb up at n/selection of suc bility of others. ndard alanced): Lumber	entrated load(s) 2506 818 lb down and 643 630 lb up at 8-0-12, 0-5, 2226 lb down down and 441 lb up 441 lb up at 14-10-5, 16-10-5 on bottom h connection device				
FORCES	(lb) - Maximum Com Tension	pression/Maximum	0)	DOL=1.15 P	late DOL=1.15); F .=1.15 Plate DOL:	Pf=20.0 p	sf (flat roof si	now:		oncentra	ated Lo	ads (lb)					
TOP CHORD	,	,		Partially Exp	.; Ct=1.10			•				(F), 17=-1818 (F 20=-2226 (F), 21), 18=-2438 (F), =-2226 (F), 22=-2226				
	3-4=-10931/3092, 4- 5-6=-14257/3611	-5=-10928/3107,	6)	6) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on						(F), 23=-2225 (F)							
BOT CHORD				overhangs n	on-concurrent wit	h other li	ve loads.										
WEBS	7-8=-2896/11781, 6- 3-9=-1642/3042, 3-8		7)		is been designed							WITH CA	1111				
WEDS	4-8=-3200/11573, 5-		0)		ad nonconcurrent						0	WAH CA	ROY				
	5-7=-611/3893	-0	8)		nas been designe n chord in all area			opsi				A	. YOU				
NOTES	0 /= 011/0000							om			- and	O. FESS	Oit Provent				
 3-ply truss (0.131"x3 Top chord staggered Bottom ch staggered Web conr 	s to be connected toge ") nails as follows: ds connected as follows d at 0-9-0 oc. nords connected as foll d at 0-5-0 oc. nected as follows: 2x10	10	bearing plate capable of withstanding 2552 lb uplift at joint 6 and 2928 lb uplift at joint 2. 11) This truss is designed in accordance with the 2015							SEA 0363	22						
Web conr			at 11) This truss is	s R502.11.1 a	ind	E WONEER A										

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


G A. GIL November 9,2022

C

Job	Truss	Truss Type	Qty	Ply	59 SERENITY - ROOF	
34369-34369A	СЗ	Common Structural Gable	1	1	Job Reference (optional)	155168892

Run: 8.88 S 8.62 Oct 26 2022 Print: 8.620 S Oct 26 2022 MiTek Industries, Inc. Tue Nov 08 16:35:29 ID:6Ql9guQ1VeK0ZnC0QBliRGyLE8y-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

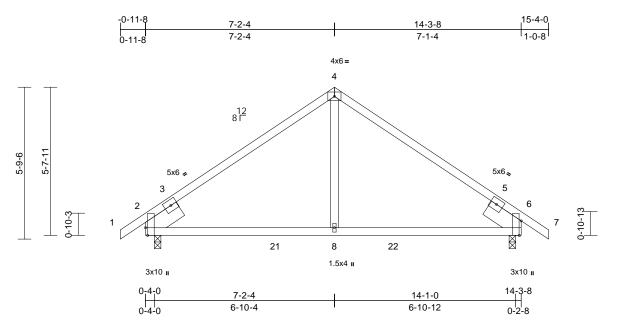
Scale = 1:43.8	Scale	=	1:43.8
----------------	-------	---	--------

Plate Offsets (X, Y): [2:0-3-0,0-0-3], [10:0-5-10,0-0-3]

	, , , , , . [≟ .e e e,e e e],	[1010 0 10,0 0 0]											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	/TPI2014	CSI TC BC WB Matrix-MP	0.34 0.70 0.36	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.16 0.13 0.04	(loc) 15-16 15-16 10	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 86 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Left 2x8 SP DSS 1 1-6-0 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-0, 1 Max Horiz 2=-179 (L Max Uplift 2=-168 (L Max Grav 2=629 (LC (lb) - Maximum Com Tension 1-2=0/53, 2-4=-558/ 5-6=-553/688, 6-7=- 8-10=-562/590, 10-1 2-16=-341/406, 15-1 4-15=-341/406, 13- 12-13=-341/406, 10-	10=0-3-0 C 12) C 14), 10=-170 (LC 1 C 1), 10=635 (LC 1) pression/Maximum 586, 4-5=-498/583, 554/690, 7-8=-498/58 1=0/58 16=-341/406, -14=-341/406, -12=-341/406 5=-201/166, 4-16=-63	l or 5) 6) 7) 8) 5) 9) 10) 14, 11)	only. For stu see Standarr, or consult qu TCLL: ASCE DOL=1.15 P Lumber DOL Partially Exp This truss ha load of 12.0 overhangs n All plates are Gable studs This truss ha chord live loa * This truss ha chord live loa * This truss ha on the bottor chord and ar Provide mec bearing plate joint 2 and 1 This truss is International	is been designed f psf or 2.00 times fl on-concurrent with a 1.5x4 MT20 unles spaced at 2-0-0 or us been designed f ad nonconcurrent v has been designed in chord in all areas by 1-00-00 wide wi y other members, hanical connection a capable of withsta 70 lb uplift at joint designed in accord Residential Code nd referenced stam	Id (norm nd Deta signer a (roof liv f=20.0 p (1.15); C or great at roof l other li ss other c. or a 10. with any for a liv s where Il fit betv with BC (by oth anding 10. dance w sections	al to the face ils as applica is per ANSI/TI e load: Lumb sf (flat roof si category II; E: er of min roof pad of 20.0 p ve loads. wise indicate 0 psf bottom other live loa e load of 20.1 a rectangle veen the botti DL = 10.0psi ers) of truss 1 68 lb uplift at ith the 2015 s R502.11.1 a	e), hble, PI 1. oper now: xp B; f live sf on d. d. d. d. d. d. d. d. opsf f. to t		4	T.M.	ORTH CA	ROJA
this design 2) Wind: ASC Vasd=119 Cat. II; Exp	ed roof live loads have a. CE 7-10; Vult=150mph mph; TCDL=6.0psf; B· p B; Enclosed; MWFR C-C Exterior (2) zone:	(3-second gust) CDL=6.0psf; h=30ft; S (envelope) exterior	ht									SEA 0363	• –

Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


A. GILD

November 9,2022

C

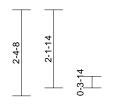
Job	Truss	Truss Type	Qty	Ply	59 SERENITY - ROOF	
34369-34369A	C4	Common Structural Gable	4	1	Job Reference (optional)	155168893

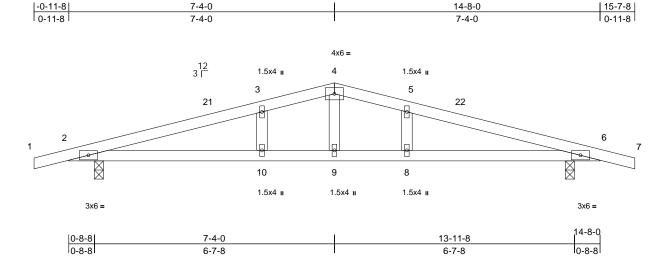
Run: 8.88 S 8.62 Oct 26 2022 Print: 8.620 S Oct 26 2022 MiTek Industries, Inc. Tue Nov 08 16:35:30 Page: 1 ID:Ew24PKaBRezAdnhWhQ1IT?yLE8I-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale =	1:43.8
---------	--------

Plate Offsets (X, Y): [2:0-3-8,Edge], [6:0-6-10,Edge]

). [2.0-3-0,Euge],	[6.0-6-10,Euge]											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MP	0.65 0.49 0.25	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.13 0.11 0.05	(loc) 8-13 8-13 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 68 lb	GRIP 244/190 FT = 20%
BOT CHORD 2x WEBS 2x SLIDER Le BRACING TOP CHORD St BOT CHORD St BOT CHORD St BOT CHORD St Max Max FORCES (bb TOP CHORD 1 6 BOT CHORD 2 WEBS 4 NOTES (bb TOP CHORD 2 WEBS 4 NOTES (bb TOP CHORD 2 WEBS 4 NOTES (bb TCP CHORD 2 WEBS 4 NOTES (bb TCP CHORD 2 WEBS 4 NOTES (bb Cat. II; Exp B; zone and C-C exposed ; end and right expo MWFRS for re grip DOL=1.60 3) TCLL: ASCE 7 DOL=1.15 Plai	1-6-0 ructural wood she 9-9 oc purlins. gid ceiling directly acing. e) 2=0-3-0, 6 × Horiz 2=-179 (L × Uplift 2=-188 (L × Grav 2=629 (LC b) - Maximum Com- nsion 2=0/53, 2-4=-579/ 7=0/58 8=-322/410, 6-8=- 8=-457/293 bof live loads have -10; Vult=150mph t; TCDL=6.0psf; B Enclosed; MWFR Exterior (2) zone; vertical left and rig sed;C-C for membra actions shown; Lu) 7-10; Pr=20.0 psf (te DOL=1.15); Pf=	C 12) C 14), 6=-170 (LC 1 C 1), 6=635 (LC 1) pression/Maximum 611, 4-6=-580/613, 322/410 been considered for (3-second gust) CDL=6.0psf; h=30ft; S (envelope) exterio cantilever left and right ght exposed; porch 1	6) ed or 7) 8) 5) LO r ght eft te er ow:	load of 12.0 j overhangs n This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Provide mec bearing plate joint 2 and 1 This truss is International	Is been designed f psf or 2.00 times fl on-concurrent with the been designed f ad nonconcurrent in as been designed in chord in all area by 1-00-00 wide wi ty other members, hanical connectior e capable of withst 70 lb uplift at joint designed in accorr Residential Code ind referenced star Standard	lat roof lin o other lin for a 10.1 with any d for a liv s where ill fit betw , with BC h (by oth anding 1 6. dance w sections	bad of 20.0 ps ve loads.) ps bottom other live load e load of 20.0 a rectangle veen the botto DL = 10.0psf ers) of truss t 68 lb uplift at ith the 2015 i R502.11.1 a	sf on ds. Opsf om t		6		ORTH CA ORTHESE SEA 0363	• –


- Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 3) DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10


G١ 11111111 November 9,2022 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	59 SERENITY - ROOF	
34369-34369A	D1	Common Structural Gable	1	1	Job Reference (optional)	155168894

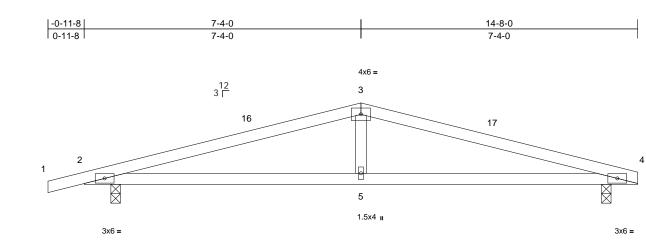
Run: 8,88 S 8,62 Oct 26 2022 Print: 8,620 S Oct 26 2022 MiTek Industries, Inc. Tue Nov 08 16:35:30 ID:OcTOcns6t04JazrDNbUSj3yLEAz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:31.8

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER TOP CHORD		Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201 4)	DOL=1.15 P	CSI TC BC WB Matrix-MP	Pf=20.0 p	sf (flat roof s	now:	(loc) 8-20 10-15 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 53 lb	GRIP 244/190 FT = 20%
BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.3 2x4 SP No.3 Structural wood she 5-3-13 oc purlins.			Partially Exp Unbalanced design. This truss ha load of 12.0 overhangs n Gable studs	snow loads have as been designed psf or 2.00 times on-concurrent wit spaced at 2-0-0 o	been cor for great flat roof lo th other liv oc.	asidered for the form of min roo bad of 20.0 p ve loads.	this of live osf on					
REACTIONS FORCES	 (size) 2=0-3-0, (Max Horiz 2=-46 (LC Max Uplift 2=-407 (L Max Grav 2=644 (LC (lb) - Maximum Com Tension 	21) C 12), 6=-407 (LC 1 C 1), 6=644 (LC 1) pression/Maximum	1(chord live loa * This truss h on the bottor 3-06-00 tall h chord and ar 0) Provide mec	is been designed ad nonconcurrent has been designe in chord in all are by 1-00-00 wide w hy other members hanical connection capable of withs	t with any ed for a liv as where will fit betv s. on (by oth	other live loa e load of 20. a rectangle veen the bot ers) of truss	ads. .0psf tom to					
BOT CHORD WEBS	4-5=-1045/1387, 5-6	6=-1076/1358, 6-7=0 -10=-1243/1006, 3=-1243/1006)/23 [°] 1 [·] /116	joint 2 and 4 1) This truss is International R802.10.2 a	07 lb uplift at join designed in acco Residential Code nd referenced sta	t 6. ordance w e sections	ith the 2015 R502.11.1						
 this desig 2) Wind: AS Vasd=11 Cat. II; E: zone and exposed and right MWFRS grip DOL 3) Truss de only. For see Stand 	SCE 7-10; Vult=150mph 9mph; TCDL=6.0psf; Bi xp B; Enclosed; MWFR I C-C Exterior (2) zone; ; end vertical left and rig exposed;C-C for memt for reactions shown; Lu	(3-second gust) CDL=6.0psf; h=30ft; S (envelope) exterio cantilever left and ri ght exposed; porch I bers and forces & mber DOL=1.60 pla n the plane of the tru (normal to the face) d Details as applicat	r ght eft ite), oble,	OAD CASE(S)	Standard					A CONTRACT	N. C.	SEA 0363	L

- and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss 3)
- only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



GI 11111111 November 9,2022

Job	Truss	Truss Type	Qty	Ply	59 SERENITY - ROOF	
34369-34369A	D2	Common	1	1	Job Reference (optional)	155168895

Run: 8.88 S 8.62 Oct 26 2022 Print: 8.620 S Oct 26 2022 MiTek Industries, Inc. Tue Nov 08 16:35:30 ID:D1L5Re8XS4_2rV5eDwOr8vyLEAc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

818 Soundside Road Edenton, NC 27932

Scale = 1:30.5

2-1-14

)-3-14

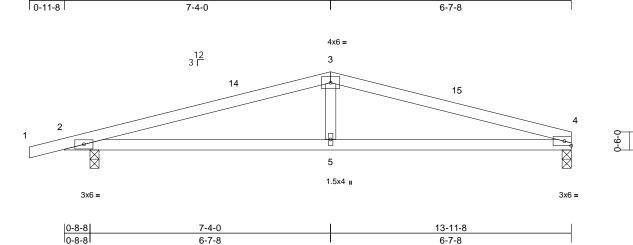
2-4-8

Scale = 1:30.5												
Loading TCLL (roof) Snow (Pf) TCDL BCLL	(psf) 20.0 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MP	0.72 0.51 0.11	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.13 -0.12 -0.02	(loc) 5-15 5-15 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0										Weight: 48 lb	FT = 20%
 this design 2) Wind: ASQ Vasd=119 Cat. II; Ex zone and exposed; reactions : DOL=1.60 3) TCLL: ASI DOL=1.15 Lumber D Partially E 4) Unbalance design. 5) This truss load of 12 	2x4 SP No.2 2x4 SP No.3 Structural wood she 3-11-2 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-0, 4 Max Horiz 2=51 (LC Max Uplift 2=-408 (L Max Grav 2=649 (LC (lb) - Maximum Com Tension 1-2=0/23, 2-3=-1060 2-5=-1252/976, 4-5= 3-5=-403/277 ed roof live loads have n. CE 7-10; Vult=150mph mph; TCDL=6.0psf; B p B; Enclosed; MWFR C-C Exterior (2) zone; end vertical left expos 2-C for members and f shown; Lumber DOL=	applied or 4-10-15 of 4=0-3-0 16) C 12), 4=-347 (LC 1 C 1), 4=582 (LC 1) upression/Maximum 0/1369, 3-4=-1059/13 -1252/976 been considered for (3-second gust) CDL=6.0psf; h=30ft; S (envelope) exterio cantilever left and rig orcces & MWFRS for 1.60 plate grip roof live load: Lumbe :20.0 psf (flat roof sn .15); Category II; Ex een considered for th r greater of min roof t roof load of 20.0 ps	chord live I 7) * This truss on the botty 3-06-00 tal chord and a bearing pla joint 2 and 9) This truss i Internations R802.10.2 LOAD CASE(S 368 r r r ght ght ght live	has been designed bad nonconcurrent has been designed or chord in all area by 1-00-00 wide w any other members ichanical connectio te capable of withs 347 lb uplift at joint is designed in accord and referenced sta b) Standard	with any d for a liv as where vill fit betw as n (by oth tanding 4 4. rdance w a sections	other live load re load of 20. a rectangle veen the bott ers) of truss 108 lb uplift a ith the 2015 \$ R502.11.1 a	Opsf om to t				in a. C	EER ER III

Job	Truss	Truss Type	Qty	Ply	59 SERENITY - ROOF	
34369-34369A	D3	Common	2	1	Job Reference (optional)	155168896

7-4-0

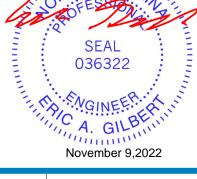

84 Components (Dunn), Dunn, NC - 28334,


-0-11-8

Run: 8.88 S 8.62 Oct 26 2022 Print: 8.620 S Oct 26 2022 MiTek Industries, Inc. Tue Nov 08 16:35:31 ID:S1wwuXSrL3FMyV4ekOsxCOyLEAC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

13-11-8

Page: 1

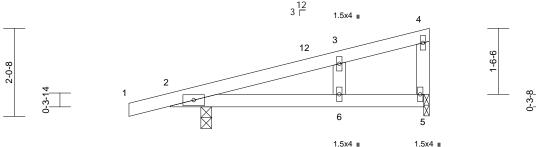


00010 - 1.01.7											-		
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MP	0.74 0.53 0.11	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.14 -0.12 0.01	(loc) 5-8 5-8 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 46 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalance this design	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 3-9-12 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-0, 4 Max Horiz 2=56 (LC Max Uplift 2=-408 (L Max Grav 2=651 (LC (lb) - Maximum Com Tension 1-2=0/23, 2-3=-1067 2-5=-1284/983, 4-5= 3-5=-408/279	16) .C 12), 4=-310 (LC 13 C 1), 4=523 (LC 1) hpression/Maximum 7/1391, 3-4=-1065/138 =-1284/983 been considered for	chord live 7) * This trus on the bot 3-06-00 ta chord and 8) Provide m bearing pli joint 4 and 9) This truss Internation R802.10.2 LOAD CASE(has been designed load nonconcurrent s has been designe om chord in all are: I by 1-00-00 wide v any other members echanical connection the capable of withs 408 lb uplift at join is designed in acco al Residential Code and referenced sta 5) Standard	t with any ed for a liv as where will fit betv s. on (by oth standing 3 t 2. ordance w e sections	other live loa e load of 20.0 a rectangle veen the both ers) of truss t \$10 lb uplift at ith the 2015 \$ R502.11.1 a	Opsf om to t						
Vasd=119r Cat. II; Exp zone and C end vertica C for mem shown; Lur 3) TCLL: ASC DOL=1.15 Lumber DC	mph; TCDL=6.0psf; B b B; Enclosed; MWFR C-C Exterior (2) zone; al left exposed; porch I bers and forces & MW mber DOL=1.60 plate CE 7-10; Pr=20.0 psf (Plate DOL=1.15); Pf= DL=1.15 Plate DOL=1	CDL=6.0psf; h=30ft; S (envelope) exterior cantilever left expose left and right exposed /FRS for reactions grip DOL=1.60 roof live load: Lumbel =20.0 psf (flat roof sno	ed ; ;C- r pw:							E.	SEA 0363	L	Carrier

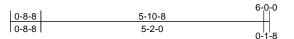
- Partially Exp.; Ct=1.10 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932


Job	Truss	Truss Type	Qty	Ply	59 SERENITY - ROOF	
34369-34369A	D4	Monopitch Structural Gable	1	1	Job Reference (optional)	155168897

Run: 8.88 S 8.62 Oct 26 2022 Print: 8.620 S Oct 26 2022 MiTek Industries, Inc. Tue Nov 08 16:35:31 ID:eQcVm6oPIgnOJoD1NGMVKIyLE9m-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f



Page: 1

3x6 =

Scale = 1:26.7

		1											
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.32	Vert(LL)	0.10	6-11	>707	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		вс	0.34	Vert(CT)	0.08	6-11	>906	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.02	Horz(CT)	0.00	2	n/a	n/a		
BCLL	0.0*	Code	IRC201	5/TPI2014	Matrix-MP		- (-)						
BCDL	10.0											Weight: 22 lb	FT = 20%
LUMBER			5	This truss ha	is been designed	for areat	er of min roof	live		-		_	
TOP CHORD	2x4 SP No.2		0,		psf or 2.00 times f								
BOT CHORD	2x4 SP No.2				on-concurrent with								
OTHERS	2x4 SP No.3		6		spaced at 2-0-0 o								
BRACING			7	This truss ha	s been designed	for a 10.	0 psf bottom						
TOP CHORD	Structural wood she	athing directly appli	ed or	chord live loa	ad nonconcurrent	with any	other live loa	ds.					
	6-0-0 oc purlins.	annig anoon) appn	8		nas been designe			Opsf					
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 o	C		n chord in all area								
	bracing.				oy 1-00-00 wide w		veen the botte	om					
REACTIONS	(size) 2=0-3-0, 5	5=0-1-8	0		y other members								
	Max Horiz 2=92 (LC	12)	9		int(s) 5 considers [PI 1 angle to grai								
	Max Uplift 2=-229 (L	.C 12), 5=-129 (LC 1	12)		uld verify capacity								
	Max Grav 2=343 (LC	C 23), 5=206 (LC 23	B) 1(hanical connectio			'n					
FORCES	(lb) - Maximum Com	pression/Maximum		bearing plate									
	Tension		1		hanical connectio	n (by oth	ers) of truss t	0					
TOP CHORD	1-2=0/23, 2-3=-218/2	249, 3-4=-44/26,			capable of withs								
	4-5=-118/157			joint 2 and 12	29 lb uplift at joint	5.	-						
BOT CHORD	2-6=-244/240, 5-6=0	0/0	1:		designed in accor								
WEBS	3-6=-63/73				Residential Code			ind					
NOTES					nd referenced sta	ndard AN	ISI/TPI 1.						
,	E 7-10; Vult=150mph	· · · · · ·	L	OAD CASE(S)	Standard								

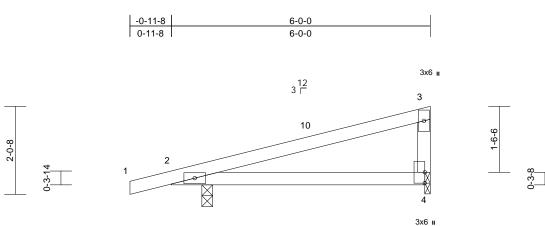
Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left exposed; end vertical left exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
 - WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

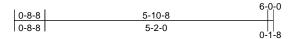
11111

SEAL

036322


November 9,2022

818 Soundside Road Edenton, NC 27932


VIIIIIIIIIIIIII

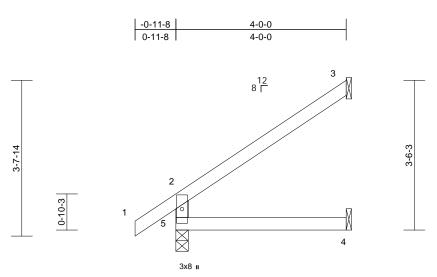
Job	Truss	Truss Type	Qty	Ply	59 SERENITY - ROOF	
34369-34369A	D5	Monopitch	4	1	Job Reference (optional)	155168898

Run; 8,88 S 8,62 Oct 26 2022 Print: 8,620 S Oct 26 2022 MiTek Industries, Inc. Tue Nov 08 16:35:32 Page: 1 ID:_fxpNd3CZQYGyAvFgulfDxyLE9Q-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3x6 =

Scale = 1:26.7

		i										
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.53	Vert(LL)	0.04	4-9	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.25	Vert(CT)	0.03	4-9	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2015/TPI2014	Matrix-MR								
BCDL	10.0		-								Weight: 21 lb	FT = 20%
 Vasd=119 Cat. II; Exp zone and 1 end vertica C for merr shown; Lu TCLL: AS DOL=1.15 Lumber D Partially E Unbalance design. This truss load of 12 overhange This truss 	2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-0,4 Max Horiz 2=95 (LC Max Uplift 2=-233 (LC Max Grav 2=343 (LC (lb) - Maximum Com Tension	13) C 12), 4=-125 (LC 12) C 23), 4=206 (LC 23) pression/Maximum 249, 3-4=-138/148 (3-second gust) CDL=6.0psf; h=30ft; S (envelope) exterior cantilever left exposed; /FRS for reactions grip DOL=1.60 roof live load: Lumber 20.0 psf (flat roof sno .15); Category II; Exp then considered for this r greater of min roof live t roof load of 20.0 psf ther live loads. r a 10.0 psf bottom	d ; CC- w: B; S ve on	s has been designed iom chord in all area Il by 1-00-00 wide w any other members joint(s) 4 considers i/TPI 1 angle to grai hould verify capacity echanical connectio ate at joint(s) 4. ecchanical connectio ate capable of withs: 125 lb uplift at joint is designed in accor al Residential Code and referenced star 5) Standard	is where ill fit betw. parallel in formul y of bear n (by oth an (by oth tanding 2 4. dance w sections	a rectangle veen the botto to grain value a. Building ing surface. ers) of truss to 233 lb uplift at ith the 2015 5 R502.11.1 ar	m 5		Million .		SEA 0363	• –


GI //////// November 9,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	59 SERENITY - ROOF	
34369-34369A	J1	Jack-Open	23	1	Job Reference (optional)	155168899

Run: 8.88 S 8.62 Oct 26 2022 Print: 8.620 S Oct 26 2022 MiTek Industries, Inc. Tue Nov 08 16:35:32 Page: 1 ID:EBZVz8nrRs6l9OUnBUqkfbyLE8U-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-0-0

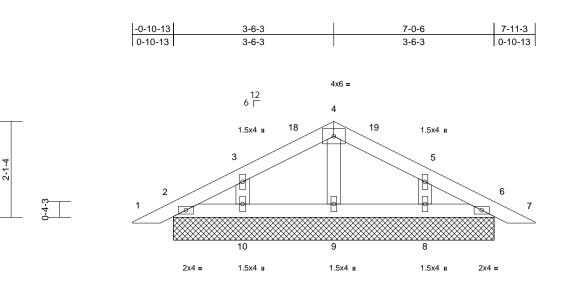
Scale = 1:27.1

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.32	Vert(LL)	0.02	4-5	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.21	Vert(CT)	-0.02	4-5	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.02	3	n/a	n/a		
BCLL	0.0*	Code	IRC2015/TPI2014	Matrix-MR								
BCDL	10.0										Weight: 16 lb	FT = 20%
LUMBER				uss has been design			0psf					
TOP CHORD				ottom chord in all are								
BOT CHORD	2x4 SP No.2 2x4 SP No.3			tall by 1-00-00 wide nd any other membe		ween the boll	om					
	2X4 SP N0.3			girder(s) for truss to		nections						
BRACING	Structurel wood of	eathing directly appl		mechanical connect			to					
		eaching directly approximation a	bearing	plate capable of with	nstanding 2	27 lb uplift at j	joint					
BOT CHORD		ly applied or 10-0-0 c		o uplift at joint 3 and								
	bracing.	, ,,,	8) This tru	ss is designed in acc								
REACTIONS	(size) 3= Mec	nanical, 4= Mechanic		ional Residential Coo 0.2 and referenced st			and					
	5=0-3-8			E(S) Standard	lanuaru Ai	NGI/TETT.						
	Max Horiz 5=151 (E(3) Stanuaru								
	Max Uplift 3=-110 5=-27 (I	(LC 14), 4=-3 (LC 14),									
		LC 22), 4=72 (LC 5),	5=228									
	(LC 1)	10 22), 1172 (20 0),	0-220									
FORCES	(lb) - Maximum Co	mpression/Maximum	1									
	Tension											
TOP CHORD	2-5=-194/126, 1-2	=0/61, 2-3=-97/81										
BOT CHORD	4-5=0/0											
NOTES												
	CE 7-10; Vult=150mp										OP. FESS	1111.
		BCDL=6.0psf; h=30f RS (envelope) exteri								-	WHY C	ADOUL
	C-C Exterior (2) zon		01							1	R	. Alle
		forces & MWFRS fo	r							15	O'. FESS	SIGN VY
	shown; Lumber DOL	=1.60 plate grip							4	ès		A. T
DOL=1.60										÷.,	2	
		(roof live load: Lum							-	:	SEA	1 : =
		f=20.0 psf (flat roof s 1.15); Category II; E							Ξ		000	• –
	xp.; Ct=1.10	, Oalegory II, E	λp Β,								0363	522 : =
		or greater of min roo	f live						-	2		1 - E
load of 12.	.0 psf or 2.00 times f	at roof load of 20.0 p								5	·	air E
	s non-concurrent with									25	S. GIN	IEF. AN
		or a 10.0 psf bottom	da							11	10	BEIN
chora live	ioau nonconcurrent	with any other live loa	aus.								Novemb	allenni
											10000	IIIII.
											Novemb	or 9 2022

818 Soundside Road Edenton, NC 27932

November 9,2022

Job	Truss	Truss Type	Qty	Ply	59 SERENITY - ROOF	
34369-34369A	P1	Piggyback	1	1	Job Reference (optional)	155168900


2-2-12

Run: 8.88 S 8.62 Oct 26 2022 Print: 8.620 S Oct 26 2022 MiTek Industries, Inc. Tue Nov 08 16:35:32 ID:PBP_YaHrrH6Sd_WQ?3ZGyFyLCQ6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

GRIP 244/190

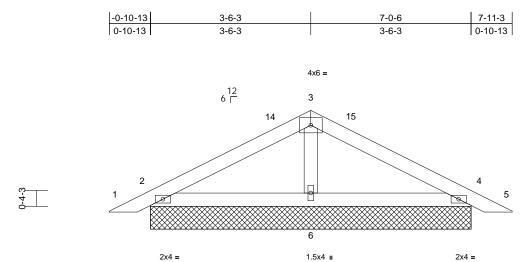
FT = 20%

7-0-6

Scol	<u> </u>	1:25.3	

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC2	015/TPI2014	CSI TC BC WB Matrix-MP	0.06 0.03 0.05	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 15	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 29 lb	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP N 2x4 SP N Structura 6-0-0 oc	lo.2 lo.3 Il wood she purlins.	athing directly applied of applied or 10-0-0 oc	or	 only. For sti see Standar or consult qi TCLL: ASCE DOL=1.15 F Lumber DOI Partially Exp Unbalanced 	ned for wind loa uds exposed to d Industry Gabl aalified building 5 7-10; Pr=20.0 late DOL=1.15) =1.15 Plate DC .; Ct=1.10 snow loads have	wind (norm e End Deta designer as psf (roof liv ; Pf=20.0 p DL=1.15); C	al to the face ils as applica s per ANSI/T ve load: Lumb osf (flat roof s Category II; E	e), able, PI 1. per now: xp B;					
REACTIONS	Max Horiz Max Uplift	9=7-0-6, 15=7-0-6 2=-46 (LC 2=-20 (LC 8=-87 (LC 11=-20 (L 2=97 (LC (LC 24), 9	S=7-0-6, 8=7-0-6, 10=7-0-6, 11=7-0-6, 2 17), 11=-46 (LC 17) 2 16), 6=-29 (LC 17), 2 17), 10=-88 (LC 16), C 16), 15=-29 (LC 17) 22), 6=97 (LC 22), 8=1 9=128 (LC 1), 10=163 (7 (LC 22), 15=97 (LC 2)	163 LC	 load of 12.0 overhangs n Gable requi Gable studs This truss ha chord live lo * This truss on the botto 	m chord in all a	es flat roof le with other li bottom chor 0 oc. ed for a 10.1 nt with any ned for a liv reas where	oad of 20.0 p ve loads. rd bearing. 0 psf bottom other live loa ve load of 20. a rectangle	ads. Opsf					
FORCES	Tension		pression/Maximum 2, 3-4=-44/84,		chord and a 11) Provide med		ers. tion (by oth	ers) of truss	to					
BOT CHORD	4-5=-44/8	34, 5-6=-18 /53, 9-10=-	/17, 6-7=0/27 12/53, 8-9=-12/53,		2, 29 lb uplif	e capable of wit t at joint 6, 88 lb lb uplift at joint designed in acc	o uplift at joi 2 and 29 lb	int 10, 87 lb u o uplift at join	uplift				OP. FESS	1
WEBS NOTES		*	27/163, 5-8=-127/163 been considered for		International R802.10.2 a	Residential Co nd referenced s	de sections standard AN	s R502.11.1 a NSI/TPI 1.			4		OTESS	ic
this design		ioaus nave	been considered for		 See Standar Detail for Co 	nnection to bas						έ	.4	

- this design.
 Wind: ASCE 7-10; Vult=150mph (3-second gust) Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft;
- Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.
- LOAD CASE(S) Standard


ENGINEERING BY EREPACED A MITek Attiliate 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	59 SERENITY - ROOF	
34369-34369A	P2	Piggyback	9	1	Job Reference (optional)	155168901

2-2-12

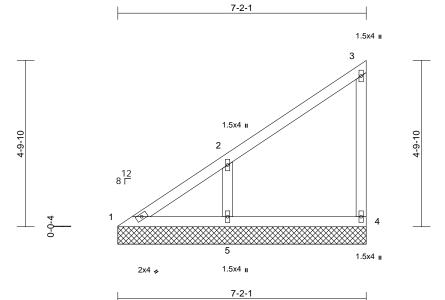
2-1-4

Run; 8,88 S 8,62 Oct 26 2022 Print; 8,620 S Oct 26 2022 MiTek Industries, Inc. Tue Nov 08 16:35:33 Page: 1 ID:DLmFpdLcR7scMv_aMJggCWyLCQ0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

7-0-6

Scolo 1.25.2

Scale = 1:25.3													
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MP	0.15 0.16 0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 27 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2x4 S BOT CHORD 2x4 S OTHERS 2x4 S BRACING TOP CHORD Struct 6-0-0 BOT CHORD Rigid OT CHORD Rigid Max Ho Max Up Max Gr FORCES (Ib) - 1 Tensii TOP CHORD 1-2=0 BOT CHORD 1-2=0 BOT CHORD 2-6=-2 WEBS 3-6=-7 NOTES 1) Unbalanced roof II this design. 2) Wind: ASCE 7-10; Vasd=119mph; TC Cat. II; Exp B; Enc zone and C-C Ext exposed ; end ver members and forc Lumber DOL=1.6(3) Truss designed fo only. For studs ex	P No.2 P No.2 P No.3 tural wood she oc purlins. ceiling directly 19. 2=7-0-6, 4 7=7-0-6, 1 Driz 2=-46 (LC 6=-37 (LC 6=-37 (LC 11=-82 (L rav 2=184 (LC (LC 1), 7= 1) Maximum Com on /27, 2-3=-90/9 23/51, 4-6=-20, 125/80 ive loads have ; Vult=150mph CDL=6.0psf; Bi closed; MWFRS o plate grip DO or wind loads ir qoosed to wind	 17), 7=-46 (LC 17) 16), 4=-82 (LC 17), 16), 7=-73 (LC 16), C 17), C 1), 4=184 (LC 1), 6 e184 (LC 1), 11=184 apression/Maximum 9, 3-4=-90/99, 4-5=0 /51 been considered for (3-second gust) CDL=6.0psf; h=30ft; S (envelope) exterio cantilever left and right exposed;C-C for for reactions show; 	5) d or 6) 7) 8 9) 11 5=266 (LC 1) /27 1; 13 /27 1; 14 r pht ss	DOL=1.15 P Lumber DOL Partially Exp) Unbalanced design.) This truss ha load of 12.0) overhangs n) Gable studs) This truss ha chord live loa 0) * This truss ha chord live loa 0) * This truss th on the bottor 3-06-00 tall t chord and ar 1) Provide mec 2, 82 lb uplift at joint 2 anc 2) This truss is International R802.10.2 ai 3) See Standar Detail for Co	snow loads have l s been designed to psf or 2.00 times f on-concurrent with es continuous bott spaced at 2-0-0 o is been designed that been designed n chord in all area by 1-00-00 wide w y other members, hanical connection capable of withst at joint 4, 37 lb up 82 lb uplift at joind designed in accor Residential Code nd referenced stard d Industry Piggyba nnection to base t fied building desig	Yf=20.0 p =1.15); C been cor for great lat roof la n other lin tom chor c. for a 10.1 with any d for a 10.1 with any d for a 10.1 wi	sf (flat roof sr ategory II; Ex isidered for the er of min roof pad of 20.0 pr ve loads. d bearing. 0 psf bottom other live loa e load of 20.0 p sf bottom other live load e load of 20.0 p sf bottom sf bottom	now: kp B; his f live sf on dds. Opsf om to joint hift and				ORTH CA ORTEES SEA 0363	



GI A. GIL November 9,2022

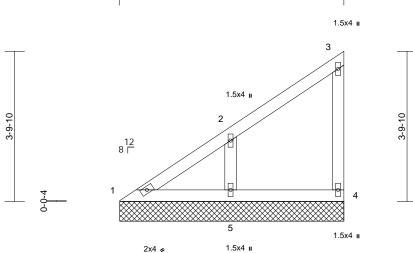
Job	Truss	Truss Type	Qty	Ply	59 SERENITY - ROOF	
34369-34369A	V1	Valley	1	1	Job Reference (optional)	155168902

Run: 8.88 S 8.62 Oct 26 2022 Print: 8.620 S Oct 26 2022 MiTek Industries, Inc. Tue Nov 08 16:35:33 ID:PqkJ3fCfgyGslC?VSlxhoWyLCz3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:33.3

Scale = 1:33.3												
	(psf) 20.0 20.0 10.0 0.0* 10.0 44 SP No.2 44 SP No.2	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	chord live	CSI TC BC WB Matrix-MP has been designed load nonconcurren s has been designed	it with any	other live load		(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 31 lb	GRIP 244/190 FT = 20%
WEBS 2x. OTHERS 2x. BRACING TOP CHORD St 6-1 BOT CHORD Rig	4 SP No.3 4 SP No.3 tructural wood she 0-0 oc purlins, ex igid ceiling directly	athing directly applie cept end verticals. applied or 10-0-0 or	3-06-00 ta chord and ed or 8) Provide m bearing pl c 4 and 206	tom chord in all are Il by 1-00-00 wide any other member echanical connecti ate capable of with Ib uplift at joint 5. is designed in acco	will fit betw rs. on (by oth standing 7	veen the botto ers) of truss to 79 lb uplift at jo	0					
REACTIONS (size Max Max Max	x Horiz 1=233 (LC x Uplift 4=-79 (LC x Grav 1=111 (LC 5=393 (LC	C 14), 5=-206 (LC 14 C 23), 4=138 (LC 21) C 21)	Internation R802.10.2 LOAD CASE(al Residential Cod	le sections	s R502.11.1 a	nd					
TOP CHORD 1-2 BOT CHORD 1-4 WEBS 2-4	ension	pression/Maximum 99/67, 3-4=-128/105 0	5									
Cat. II; Exp B; zone and C-C exposed;C-C f	n; TCDL=6.0psf; B Enclosed; MWFR Exterior (2) zone;	CDL=6.0psf; h=30ft; S (envelope) exterio end vertical left orces & MWFRS for	r						C	THE REAL	ORTH CA	AROUNING SUCCESSION
 Truss designe only. For stude see Standard I 	ls exposed to wind Industry Gable En	n the plane of the tru l (normal to the face) d Details as applicat gner as per ANSI/TF), ble,								SEA 0363	
3) TCLL: ASCE 7 DOL=1.15 Plat Lumber DOL= Partially Exp.;	7-10; Pr=20.0 psf (te DOL=1.15); Pf= 1.15 Plate DOL=1 Ct=1.10	roof live load: Lumb 20.0 psf (flat roof sn .15); Category II; Ex	er IOW:							and the second s	SEA 0363	EEREALI
 Gable requires Gable studs sp 	s continuous botto paced at 4-0-0 oc.	m chord bearing.										per 9,2022



Job	Truss	Truss Type	Qty	Ply	59 SERENITY - ROOF	
34369-34369A	V2	Valley	1	1	Job Reference (optional)	155168903

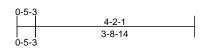
5-8-1

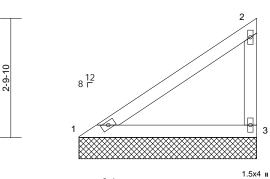
84 Components (Dunn), Dunn, NC - 28334,

Run: 8.88 S 8.62 Oct 26 2022 Print: 8.620 S Oct 26 2022 MiTek Industries, Inc. Tue Nov 08 16:35:33 Page: 1 ID:DFd?tXU4F19b0kGwl4r4DMyLCyi-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

5-8-1

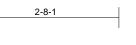
Scale 1.20 1


Scale = 1:29.1		ľ									
Loading (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Plate Grip DOL1.Lumber DOL1.Rep Stress IncrY	0-0 15 15 ES RC2015/TPI2014	CSI TC BC WB Matrix-MP	0.12 0.07 0.06	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 24 lb	GRIP 244/190 FT = 20%
BOT CHORD 5-8-1 oc purlins, exe Rigid ceiling directly bracing. REACTIONS (size) 1=5-8-1,4 Max Horiz 1=182 (LC Max Uplift 4=-54 (LC	applied or 10-0-0 oc 4=5-8-1, 5=5-8-1 C 14)	 chord live loa 7) * This truss h on the bottor 3-06-00 tall b chord and ar 8) Provide mec bearing plate 4 and 157 lb 9) This truss is International R802.10.2 ar 	ad nonconcurrent v nas been designed n chord in all areas by 1-00-00 wide wil y other members. hanical connection e capable of withsta uplift at joint 5. designed in accorc Residential Code and referenced stan	with any for a liv s where Il fit betv a (by oth anding 5 dance w sections	other live loa e load of 20.0 a rectangle veen the botto ers) of truss t 4 lb uplift at j ith the 2015 5 R502.11.1 a)psf om o oint					
FORCES (lb) - Maximum Com Tension TOP CHORD 1-2=-185/164, 2-3=- BOT CHORD 1-5=-76/118, 4-5=0/0 WEBS 2-5=-260/205	, 70/47, 3-4=-90/76										
 NOTES Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; B0 Cat. II; Exp B; Enclosed; MWFR zone and C-C Exterior (2) zone; exposed;C-C for members and for reactions shown; Lumber DOL=1 DOL=1.60 Truss designed for wind loads in only. For studs exposed to wind see Standard Industry Gable End or consult qualified building desig TCLL: ASCE 7-10; Pr=20.0 psf (DOL=1.15 Plate DOL=1.15); Pf= Lumber DOL=1.15 Plate DOL=1. Partially Exp.; Ct=1.10 Gable requires continuous bottor Gable studs spaced at 4-0-0 oc. 	CDL=6.0psf; h=30ft; S (envelope) exterior end vertical left orces & MWFRS for 1.60 plate grip h the plane of the truss I (normal to the face), d Details as applicable, gner as per ANSI/TPI 1. roof live load: Lumber :20.0 psf (flat roof snow: .15); Category II; Exp B;							/		SEA 0363	L 22 EER A

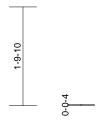

Job	Truss	Truss Type	Qty	Ply	59 SERENITY - ROOF	
34369-34369A	V3	Valley	1	1	I5 Job Reference (optional)	55168904

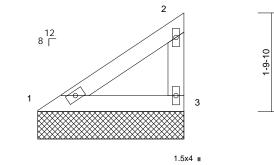
 Run: 8.88 S 8.62 Oct 26 2022 Print: 8.620 S Oct 26 2022 MiTek Industries, Inc. Tue Nov 08 16:35:33
 Page: 1

 ID:e6qZ4MjdYAhmQpomTHCm1ayLCyO-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f
 File


Sca	_	1	.27	

Loading (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MP	0.21 0.22 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 16 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 BRACING TOP CHORD Structural wood shear 4-2-1 oc purlins, exc BOT CHORD Rigid ceiling directly bracing. REACTIONS (size) 1=4-2-1, 3 Max Horiz 1=130 (LC Max Uplift 1=-14 (LC Max Grav 1=161 (LC FORCES (lb) - Maximum Com	cept end verticals. applied or 10-0-0 oc 3=4-2-1 C 14) C 14), 3=-96 (LC 14) C 1), 3=180 (LC 21)	on the botto 3-06-00 tall chord and a 8) Provide mer bearing plat 3 and 14 lb 9) This truss is Internationa	has been designed m chord in all area by 1-00-00 wide wi ny other members. chanical connection e capable of withst uplift at joint 1. designed in accor Residential Code nd referenced star Standard	is where ill fit betw n (by oth anding s dance w sections	a rectangle veen the botto ers) of truss t 6 lb uplift at j ith the 2015 5 R502.11.1 a	om o oint					
 Tension TOP CHORD 1-2=-222/73, 2-3=-1: BOT CHORD 1-3=-136/239 NOTES 1) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BC Cat. II; Exp B; Enclosed; MWFR3 zone and C-C Exterior (2) zone; exposed;C-C for members and for reactions shown; Lumber DOL=1 DOL=1.60 2) Truss designed for wind loads ir only. For studs exposed to wind see Standard Industry Gable Enc or consult qualified building desig 3) TCLL: ASCE 7-10; Pr=20.0 psf (1) DOL=1.15 Plate DOL=1.15); Pf= Lumber DOL=1.15 Plate DOL=1.15); Pf= Lumber DOL=1.15 Plate DOL=1.15); Gable requires continuous bottor 5) Gable studs spaced at 4-0-0 oc. 6) This truss has been designed for chord live load nonconcurrent with 	(3-second gust) CDL=6.0psf; h=30ft; S (envelope) exterior end vertical left prces & MWFRS for 1.60 plate grip n the plane of the trus (normal to the face), d Details as applicab gner as per ANSI/TP roof live load: Lumbe 20.0 psf (flat roof sm .15); Category II; Exp n chord bearing.	ss le, l 1. r sw: b B;						M. contraction		11111	EER AL



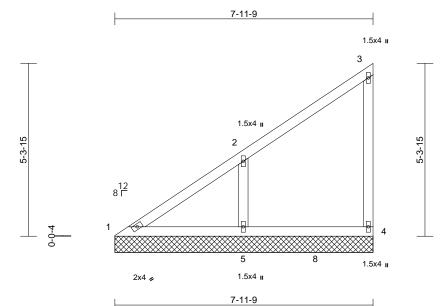

Job	Truss	Truss Type	Qty	Ply	59 SERENITY - ROOF	
34369-34369A	V4	Valley	1	1	Job Reference (optional)	155168905

 Run:
 8.88 S
 8.62 Oct 26 2022 Print:
 8.62 Oct

2x4 🍫

2-8-1

Scale = 1:21

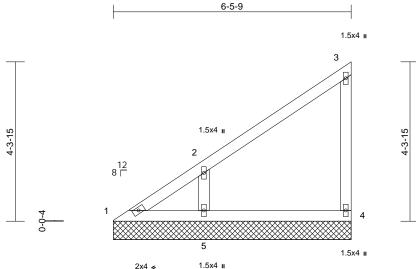

Scale = 1:21											
Loading (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MP	0.07 0.09 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 10 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 BRACING	applied or 10-0-0 oc 3=2-8-1 14) 14), 3=-58 (LC 14) C 1), 3=112 (LC 21) pression/Maximum 0/58 (3-second gust) CDL=6.0psf; h=30ft; S (envelope) exterior end vertical left prces & MWFRS for 1.60 plate grip the plane of the truss (normal to the face), d Details as applicable gner as per ANSI/TPI toof live load: Lumber 20.0 psf (flat roof snov. 15); Category II; Exp m chord bearing. a 10.0 psf bottom	on the botto 3-06-00 tall chord and a 8) Provide mee bearing plat 3 and 11 lb 9) This truss is Internationa R802.10.2 a LOAD CASE(S) 4 5 6, 1. W: B;	has been designed m chord in all area by 1-00-00 wide w ny other members shanical connection e capable of withst uplift at joint 1. designed in accor I Residential Code nd referenced star Standard	is where ill fit betv n (by oth tanding 5 rdance w sections	a rectangle veen the botto ers) of truss t i8 lb uplift at j ith the 2015 i R502.11.1 a	om o oint				SEA 0363	EER-HALL

Job	Truss	Truss Type	Qty	Ply	59 SERENITY - ROOF	
34369-34369A	V5	Valley	1	1	Job Reference (optional)	155168906

Run: 8.88 S 8.62 Oct 26 2022 Print: 8.620 S Oct 26 2022 MiTek Industries, Inc. Tue Nov 08 16:35:34 ID:iGmfoJ6i??jDFkEvL?nGKKyLCxu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:35.5


Scale = 1.55.5												
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	тс	0.24	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.15	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.08	Horiz(TL)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2015/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 35 lb	FT = 20%
LUMBER TOP CHORD 2 BOT CHORD 2 WEBS 2 OTHERS 2 BRACING TOP CHORD 5 BOT CHORD 5 E REACTIONS (si Mi	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. ize) 1=7-11-9, ax Horiz 1=260 (LU ax Uplift 4=-75 (LC ax Grav 1=132 (LC	applied or 10-0-0 o , 4=7-11-9, 5=7-11-9 C 14) C 14), 5=-230 (LC 14 C 23), 4=166 (LC 21	chord live 7) * This trus on the bot 3-06-00 ta chord and 8) Provide m bearing pl 4 and 230 9) This truss Internation R802.10.2 1) LOAD CASE(has been designed load nonconcurren s has been designe tom chord in all are Il by 1-00-00 wide v any other member echanical connection ate capable of withs Ib uplift at joint 5. is designed in acco- nal Residential Cod and referenced sta S) Standard	t with any ed for a liv eas where will fit betw s, with BC on (by oth standing 7 ordance w e sections	other live load re load of 20.0 a rectangle veen the botto CDL = 10.0psf ers) of truss to 75 lb uplift at jo ith the 2015 \$ R502.11.1 a	0psf om o oint					
ORCES (5=450 (L0) Ib) - Maximum Com)	C 21) pression/Maximum										
	Tension											
TOP CHORD 1	1-2=-258/230, 2-3=-	99/64, 3-4=-124/101	1									
	1-5=-106/178, 4-5=0	0/0										
NEBS 2	2-5=-369/285											
NOTES												
Vasd=119mp Cat. II; Exp B zone and C-C exposed;C-C	B; Enclosed; MWFR C Exterior (2) zone;	CDL=6.0psf; h=30ft; S (envelope) exterio end vertical left orces & MWFRS for	r						4		ORTH CA	AROLINE
 Truss design only. For stu see Standard 	ids exposed to wind d Industry Gable En	n the plane of the tru I (normal to the face d Details as applicat gner as per ANSI/TF), ble,								SEA 0363	
 TCLL: ASCE DOL=1.15 PI Lumber DOL Partially Exp. 	: 7-10; Pr=20.0 psf (late DOL=1.15); Pf= .=1.15 Plate DOL=1 .; Ct=1.10	roof live load: Lumb 20.0 psf (flat roof sr .15); Category II; Ex	er now:						N. COLUMN	in the second	SIC A	EER
	es continuous botto spaced at 4-0-0 oc.	m chord dearing.									2000 D	ber 9,2022

Job	Truss	Truss Type	Qty	Ply	59 SERENITY - ROOF	
34369-34369A	V6	Valley	1	1	Job Reference (optional)	155168907

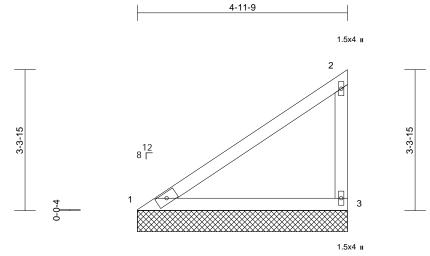
Run: 8.88 S 8.62 Oct 26 2022 Print: 8.620 S Oct 26 2022 MiTek Industries, Inc. Tue Nov 08 16:35:34 ID:iXI5M7JM?DspoL1Ar3aFWvyLCxd-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

6-5-9

Scale = 1:31.3

Scale = 1:31.3												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MP	0.22 0.12 0.08	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 28 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 1=6-5-9, 4 Max Horiz 1=209 (LC Max Uplift 1=-3 (LC 5=-189 (L Max Grav 1=96 (LC 5=365 (LC (lb) - Maximum Com Tension 1-2=-248/217, 2-3=- 1-5=-49/65, 4-5=0/0	cept end verticals. applied or 10-0-0 or 4=6-5-9, 5=6-5-9 C 14) 12), 4=-80 (LC 14), C 14) 14), 4=141 (LC 21), C 21) apression/Maximum 98/68, 3-4=-130/107	6) This truss chord live 7) * This trus on the bo 3-06-00 tr chord and 8) Provide n bearing p 4, 3 lb up 9) This truss Internatio R802.10.3 LOAD CASE	ds spaced at 4-0-0 has been designed load nonconcurren is has been designed tom chord in all are all by 1-00-00 wide v any other member lechanical connecti ate capable of withs if at joint 1 and 189 is designed in acco nal Residential Cod 2 and referenced sta S) Standard	d for a 10.0 t with any ed for a liv eas where will fit betw rs. on (by oth standing 8 9 lb uplift a ordance w le sections	other live load e load of 20.0 a rectangle veen the botto ers) of truss to 00 lb uplift at jo tt joint 5. ith the 2015 a R502.11.1 a)psf om o oint					
Vasd=119 Cat. II; Exµ zone and exposed;C reactions s DOL=1.60 2) Truss des only. For see Stand or consult 3) TCLL: AS(DOL=1.15 Lumber DI Partially E	2-5=-338/276 CE 7-10; Vult=150mph Imph; TCDL=6.0psf; B p B; Enclosed; MWFR C-C Exterior (2) zone; C-C for members and f shown; Lumber DOL=') isgined for wind loads in studs exposed to wind lard Industry Gable En qualified building desi cE 7-10; Pr=20.0 psf (i Plate DOL=1.15); Pf= OL=1.15 Plate DOL=1 xp.; Ct=1.10 uires continuous botto	CDL=6.0psf; h=30ft; S (envelope) exterio end vertical left orcces & MWFRS for 1.60 plate grip n the plane of the tru (normal to the face) d Details as applicat gner as per ANSI/TF roof live load: Lumb :20.0 psf (flat roof sn .15); Category II; Ex	or r Jss), ble, Pl 1. er now:						U TITUT	E)	SEA 0363	L 22 EEERER


November 9,2022


Job	Truss	Truss Type	Qty	Ply	59 SERENITY - ROOF	
34369-34369A	V7	Valley	1	1	Job Reference (optional)	155168908

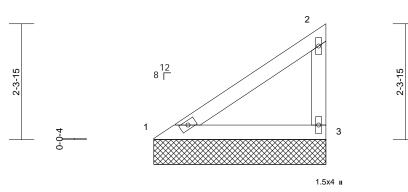
 Run: 8.88 S 8.62 Oct 26 2022 Print: 8.620 S Oct 26 2022 MiTek Industries, Inc. Tue Nov 08 16:35:34
 Page: 1

 ID:bZ31mIZX3gVqpZ8Da_SBtLyLCxI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f
 Page: 1

3x6 🍫

				4-11-3							
Scale = 1:27.2						I					
Loading (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MP	0.32 0.32 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 19 lb	GRIP 244/190 FT = 20%
BOT CHORD 4-11-9 oc purlins, Rigid ceiling direct bracing. REACTIONS (size) 1=4-11 Max Horiz 1=157 Max Uplift 1=-16 (Max Grav	LC 14), 3=-116 (LC 14 LC 1), 3=215 (LC 21) impression/Maximum -167/126 bh (3-second gust) BCDL=6.0psf; h=30ft; RS (envelope) exterio e; end vertical left forces & MWFRS for =1.60 plate grip the the plane of the true ind Details as applicat signer as per ANSI/TF f(roof live load: Lumber f=20.0 psf (flat roof sn =1.15); Category II; Ex tom chord bearing. c. for a 10.0 psf bottom	r sss bee, periode r sss bee, periode source sss beer sss periode source sss periode source s	a has been designe om chord in all are l by 1-00-00 wide v any other member ichanical connection te capable of withs uplift at joint 1. s designed in acco al Residential Cod and referenced sta b) Standard	eas where will fit betw s. on (by oth standing 1 ordance w le sections	a rectangle veen the botto ers) of truss t 16 lb uplift at ith the 2015 \$ R502.11.1 a	om to t joint				SEA 0363	EEP ER LIN

A WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component
Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

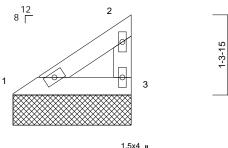

Job	Truss	Truss Type	Qty	Ply	59 SERENITY - ROOF	
34369-34369A	V8	Valley	1	1	Job Reference (optional)	155168909

Run: 8.88 S 8.62 Oct 26 2022 Print: 8.620 S Oct 26 2022 MiTek Industries, Inc. Tue Nov 08 16:35:35 ID:EtnZIPj3EM07FP3WHVg?MtyLCx6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

2x4 🍬

			3-5-9							
Scale = 1:23.2				· · · ·						
Loading (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Plate Grip DOL1.Lumber DOL1.Rep Stress IncrYI	-0-0 .15 .15 ES RC2015/TPI2014	CSI TC 0.13 BC 0.15 WB 0.00 Matrix-MP	Vert(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 13 lb	GRIP 244/190 FT = 20%
3-5-9 oc purlins, exe	applied or 10-0-0 oc 3=3-5-9 C 14) 14), 3=-78 (LC 14) C 1), 3=148 (LC 21) pression/Maximum 10/81 (3-second gust) CDL=6.0psf; h=30ft; S (envelope) exterior end vertical left prces & MWFRS for 1.60 plate grip the plane of the truss (normal to the face), d Details as applicable, gner as per ANSI/TPI 1. cof live load: Lumber 20.0 psf (flat roof snow: .15); Category II; Exp B; m chord bearing. a 10.0 psf bottom	on the bottom 3-06-00 tall b chord and an 8) Provide mect bearing plate 3 and 13 lb u 9) This truss is of International R802.10.2 an LOAD CASE(S)	designed in accordance Residential Code section nd referenced standard A	e a rectangle ween the botto hers) of truss to 78 lb uplift at jo with the 2015 is R502.11.1 at	om D Dint				SEA 0363	22 EER HUIL


Job	Truss	Truss Type	Qty	Ply	59 SERENITY - ROOF	
34369-34369A	V9	Valley	1	1	Job Reference (optional)	155168910

Run: 8.88 S 8.62 Oct 26 2022 Print: 8.620 S Oct 26 2022 MiTek Industries, Inc. Tue Nov 08 16:35:35 Page: 1 ID:Q?yjbArzelOZ46PdQJNalByLCwx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2x4 🥔

1.5x4 🛚

1-11-9

Scale = 1:19.1

Scale = 1:19.1												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MP	0.03 0.04 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 7 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BOT CHORD BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=1199 Cat. II; Exp zone and C exposed;C reactions s DOL=1.60 2) Truss desi only. For s see Stands or consult () TCLL: ASC DOL=1.15 Lumber DC Partially E) 4) Gable requ 5) Gable requ 5) Gable requ 5) Gable stud 6) This truss of	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 1-11-15 oc purlins, Rigid ceiling directly bracing.	except end verticals applied or 10-0-0 or 3=1-11-9 14) 14), 3=-41 (LC 14) 1), 3=-80 (LC 21) apression/Maximum /36 (3-second gust) CDL=6.0psf; h=30ft; S (envelope) exterio end vertical left orces & MWFRS for 1.60 plate grip in the plane of the tru (normal to the face) d Details as applicat gner as per ANSI/TF roof live load: Lumb :20.0 psf (flat roof si .15); Category II; Ex in chord bearing. r a 10.0 psf bottom	on the bo 3-06-00 t chord and Provide n bearing p and 41 lb c 9) This truss Internatio R802.10. LOAD CASE iss), ble, P1 1. er now: tp B;	ss has been design ttom chord in all are all by 1-00-00 wide d any other member hechanical connecti late capable of with uplift at joint 3. is designed in acco nal Residential Cod 2 and referenced st (S) Standard	eas where will fit betw rs. ion (by oth istanding 9 ordance w le sections	a rectangle veen the botto ers) of truss t d lb uplift at joi ith the 2015 \$ R502.11.1 a	om o int 1				ORTH CA	ARO AL B22
												per 9,2022

