

Trenco 818 Soundside Rd Edenton, NC 27932

Re: CCP Mattamy - Glades

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Builders FirstSource-Apex,NC.

Pages or sheets covered by this seal: I57322060 thru I57322082

My license renewal date for the state of North Carolina is December 31, 2023.

North Carolina COA: C-0844

March 22,2023

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	Mattamy - Glades	
CCP	A01	Piggyback Base	1	1	Job Reference (optional)	157322060

Run; 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Wed Mar 22 09:57:31 ID:BXXCExml4UWKeCxSeLVy2TzZ3G0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:113

Plate Offsets (X, Y): [2:0-4-9,0-1-6]

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.00		тс	0.69	Vert(LL)	-0.20	21-23	>999	240	MT20	244/190
Snow (Ps/Pf)	15.8/20.0	Lumber DOL	1.15		BC	0.79	Vert(CT)	-0.37	21-23	>999	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.92	Horz(CT)	0.06	18	n/a	n/a		
BCLL	0.0*	Code	IRC201	5/TPI2014	Matrix-MS								
BCDL	10.0		_									Weight: 499 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS	2x6 SP No.2 *Excep 2x6 SP No.2 *Excep 2x4 SP No.3 *Excep	ot* 7-9:2x6 SP DSS ot* 25-22:2x6 SP DSS ot* 18-10:2x4 SP No 1	N 1] 5	OTES Unbalanced this design.	roof live loads hav	/e been	considered for	-	9) Thi cho 10) * Th	s truss h rd live lo nis truss the botto	as bee bad not has be	en designed for a inconcurrent with een designed for rd in all areas wh	10.0 psf bottom any other live loads. a live load of 20.0psf pere a rectangle
SLIDER	Left 2x4 SP No.3 2 2-5-0	lo.3	Vasd=91mpl II; Exp B; En	n; TCDL=6.0psf; E closed; MWFRS (BCDL=6. envelope	0psf; h=30ft; C e) exterior zon	Cat. e	3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.					
BRACING				and C-C Ext	erior (2) zone; car	tilever le	eft and right		11) WA	RNING:	Requi	red bearing size a	at joint(s) 18 greater
TOP CHORD	Structural wood she 4-3-11 oc purlins, ex 2-0-0 oc purlins (5-9	eathing directly applied xcept 9-2 max.): 7-10.	d or	exposed ; en members an Lumber DOL	d vertical left and d forces & MWFR =1.60 plate grip D	right exp S for rea OCL=1.3	oosed;C-C for actions shown; 3		thai 12) Pro bea	n input b vide me iring plat	earing chanic te capa	size. al connection (by able of withstandin	others) of truss to ng 110 lb uplift at joint
BOT CHORD	Rigid ceiling directly bracing.	applied or 6-0-0 oc	3) ** TCLL: AS(DOL=1.15 P	CE 7-10; Pr=20.0 late DOL=1.00); F	psf (roof f=20.0 p	live load: Lum sf (flat roof	nber	2, 5 upli	5 lb upli ft at join	ft at joi t 24.	nt 18, 66 lb uplift	at joint 15 and 13 lb
WEBS	1 Row at midpt	6-23, 7-21, 11-18		snow); Ps= v	aries (min. roof si	10w=15.	8 psf Lumber		13) Thi	s truss is	desig	ned in accordance	e with the 2015
WEBS	2 Rows at 1/3 pts	8-19, 10-18		DOL=1.15 P	late DOL=1.00) se	e load c	ases; Categor	ry II;	DO		II Resi	aronaad atondore	
REACTIONS	(size) 2=0-3-8,	15=0-3-8, 18=0-3-8, (req.	EXP D, Fully surface	Exp., Cl=1.10, OII	IODSITUCI	ed slippery		14) Gra	phical p	urlin re	presentation doe	s not depict the size
	0-3-15), 2	24=0-3-8	4) Roof design	snow load has be	en reduc	ed to account	for	ort	he orien	tation	of the purlin along	the top and/or
	Max Horiz 2=142 (L0	C 16)		slope.					bot	om choi	rd.		,
	Max Uplift 2=-110 (L	LC 16), 15=-66 (LC 17	(), 5) Unbalanced	snow loads have	been cor	nsidered for th	is	LOAD	CASE(S) Sta	ndard	
	Max Gray 2-1449 (I	LC 17), 24=-13 (LC 16	5)	design.					1) De	ead + Sr	now (ba	alanced): Lumber	Increase=1.15, Plate
505050	18=3352	(LC 45), 24=669 (LC	45) 6) This truss ha load of 12.0	s been designed psf or 2.00 times f	for great lat roof le	er of min roof oad of 20.0 ps	live if on	In Ur	crease=	1.00 bads (I	b/ft)	
FORCES	(ID) - Maximum Con Tension	npression/iviaximum	7	overhangs n WARNING:	on-concurrent with This long span tru	n other li Iss requi	ve loads. res extreme c	are					
TOP CHORD	1-2=0/38, 24+247	9/346,4-6=-2365/386	,	and experier	ice for proper and	safe ha	ndling and						
/	10855/203 (0)	mSumaa		erection. For	general handling	and eree	ction guidance	9,					
	ANT ACASE IN	Minar	<u> </u>	see Guide to	Good Practice to	r Handlir	ng, Installing &	L					
BOT CHORD	2-26=-254/2230, 24	-26=-165/1912,	1	("BCSI") ioir	atly produced by S	BCA an	d TPI The						
	-23-24=-165/1912.2	1-23=-57/1580,	=	building own	er or the owner's	authorize	ed agent shall						
	19-21=-1/1490, 18-	19-1286/176,	=	contract with	a qualified registe	ered des	ign profession	al					
WEDO	16-18=-510/128115	867-96/542	=	for the desig	n and inspection o	of the ten	nporary						
WEBS	6-23888/230 7-23	0=-00/333, 383/637	3	installation re	estraint/bracing ar	id the pe	rmanent						
	7-21-451/201.8-21	1=-8/800		individual tru	ss member restra	INT/Dracii	ng. MITEK						
	8-19-1513/222.10	195-100/1801		handling ere	ection or bracing	1033 118	nuiaciure,						
	10-18=-2506/249, 1	1-18=-1142/247,	8) Provide adec	uate drainage to	prevent	water ponding						
	11-16 ±-63/798 , 18	16= 490/109	0		12215 01011030 10								
	in in	un u										March	1 22 2023

Job	Truss	Truss Type		Qty	Ply	Mattamy - Glades	
ССР	A01	Piggyback Base		1	1	Job Reference (optional)	157322060
Builders FirstSource (Apex, NC),	Apex, NC - 27523,		Run: 8.63 S Nov 192	2022 Print: 8.	630 S Nov 1	9 2022 MiTek Industries, Inc. Wed Mar 22 09:57:31	Page: 2

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Wed Mar 22 09:57:31 ID:BXXCExml4UWKeCxSeLVy2TzZ3G0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Vert: 1-7=-52, 7-10=-60, 10-15=-52, 27-31=-20

Job	Truss	Truss Type	Qty	Ply	Mattamy - Glades	
ССР	A01G	Piggyback Base Supported Gable	1	1	Job Reference (optional)	157322061

-1-0-0 1-0-0

Run; 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Wed Mar 22 09:57:34 ID:?oCUXIPsimHMarokW6_TzezZ3Hn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

24-0-0 44-0-0 68-0-0 24-0-0 20-0-0 24-0-0 6x8= 3x6 II 3x6 II 3x6 II 7x10= 6x8= 3x6 II 3x6 u 3x6 II 5¹² 17 15 19 78077 21 23 16 18 22 24 25 3x6 u 3x6 🛛 3x6 II 3x6 II 26 14 27 3x6 II 3x6 II 13 3x6 II 28 3x6 II 12 3x6 II 29 3x6 m 11 5x6≈ 5x6 ≠ 10 30

Scale = 1:113.1 ~ "

Plate Offsets (X, Y): [15:0-4-0,0-3-1	3], [23:0-5-0,0-4-8], [25	:0-4-0,0-3-13], [47]	:0-5-0,0-4-8]	, [55:0-5-0,0-4-8],	[57:0-5-0,0-4	-8], [65:	0-5-0,0-4	1-8]				
Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 15.8/20.0 10.0 0.0* 10.0	Spacing 2 Plate Grip DOL 1 Lumber DOL 1 Rep Stress Incr 1 Code 1	2-0-0 .00 .15 /ES RC2015/TPI2014	CSI TC BC WB Matrix-	0.08 0.04 0.22 MR	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 39	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 664 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x6 SP No.2 2x6 SP No.2 2x6 SP No.2 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins, ex 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. 1 Row at midpt (size) 39=68-0-0 42=68-0-0	athing directly applied of tept end verticals, and -0 max.): 15-25. applied or 6-0-0 oc 25-51, 24-52, 23-53, 22-54, 21-55, 20-56, 19-57, 18-58, 17-59, 16-60, 15-61, 14-62, 13-63, 26-50, 27-49 0, 40=68-0-0, 41=68-0-0	ır),),	Max Uplift Max Grav	$\begin{array}{l} 40 = 80 \ (LC \ 17), \\ 42 = -26 \ (LC \ 17), \\ 44 = -23 \ (LC \ 17), \\ 46 = -24 \ (LC \ 17), \\ 48 = -23 \ (LC \ 17), \\ 50 = -14 \ (LC \ 17), \\ 53 = -15 \ (LC \ 12), \\ 55 = -13 \ (LC \ 12), \\ 57 = -13 \ (LC \ 12), \\ 57 = -13 \ (LC \ 13), \\ 62 = -16 \ (LC \ 16), \\ 64 = -23 \ (LC \ 16), \\ 66 = -24 \ (LC \ 16), \\ 68 = -23 \ (LC \ 16), \\ 70 = -26 \ (LC \ 16), \\ 70 = -26 \ (LC \ 16), \\ 70 = -98 \ (LC \ 16), \\ 70 = -98 \ (LC \ 16), \\ 39 = 94 \ (LC \ 33), \\ 41 = 160 \ (LC \ 2), \\ 43 = 160 \ (LC \ 2), \\ \end{array}$	41=-11 (LC 1 43=-22 (LC 1 45=-23 (LC 1 47=-22 (LC 1 49=-27 (LC 1 52=-5 (LC 13 54=-13 (LC 1 56=-11 (LC 1 63=-26 (LC 1 60=-4 (LC 12 63=-26 (LC 1 63=-22 (LC 1 63=-22 (LC 1 63=-22 (LC 1 71=-8 (LC 16 73=-10 (LC 15 12=160 (LC 55) 12=160 (LC 55)	7), 7), 7), 7), 7), 3), 3), 6), 6), 6), 7) 5), 5),	TOP CH	iord	2-73= 3-4=-1 6-8=-7 10-11: 12-13: 14-15: 16-17: 18-19: 20-21: 22-24: 22-24: 22-24: 22-24: 22-23: 32-34: 36-37:	-175/24, 1-2=0/4 35/60, 4-5=-111 '1/92, 8-9=-65/1 =-58/138, 11-12 =-80/187, 13-14 =-101/245, 15-11 =-91/239, 17-18 =-91/239, 21-22 =-91/239, 21-22 =-91/239, 24-25 =-100/245, 26-2 =-80/187, 28-29 =-58/126, 30-31 =-34/42, 34-35= =-87/30, 37-38=	7, 2-3=-177/§ /68, 5-6=-90/)7, 9-10=-51/ 70/157, 91/239, 91/239, 91/239, 91/239, 91/238, 7=-91/238, 7=-91/218, 69/157, 47/96, 31-3 48/29, 35-36 -123/44, 38-3	55, 76, 123, 2=-42/66, =-63/23, 9=-66/0
	45=68-0-0 48=68-0-0 51=68-0-0 57=68-0-0 60=68-0-0 63=68-0-0 66=68-0-0 69=68-0-0 72=68-0-0 Max Horiz 73=127 (L	0, 46=68-0-0, 47=68-0-(, 49=68-0-0, 50=68-0-(), 52=68-0-0, 53=68-0-(), 55=68-0-0, 59=68-0-(), 58=68-0-0, 62=68-0-(), 64=68-0-0, 62=68-0-(0, 67=68-0-0, 68=68-0-(0, 71=68-0-0, 71=68-0-(0, 73=68-0-0 C 16)),),),),),),), FORCES	(lb) - Max Tension	45=226 (LC 3), 47=223 (LC 39), 49=225 (LC 39), 51=158 (LC 38), 53=243 (LC 38), 57=239 (LC 38), 57=239 (LC 38), 61=157 (LC 38), 63=225 (LC 39), 65=223 (LC 39), 65=223 (LC 39), 65=223 (LC 39), 69=160 (LC 2), 71=167 (LC 2), 73=201 (LC 22) cimum Compressio	46=222 (LC : 48=224 (LC : 50=227 (LC : 54=233 (LC : 54=233 (LC : 56=242 (LC : 58=238 (LC : 60=243 (LC : 64=224 (LC : 64=224 (LC : 66=222 (LC : 68=195 (LC : 72=128 (LC : 50)	2), 39), 39), 39), 38), 38), 38), 38), 38), 38), 39), 39), 39), 39), 39), 4),		Continue	A CONTRACTOR	SEA 4584	L H4 EEP.SO	A State A State A State

(IIIIIIII) March 22,2023

				-	_				
	Job	Truss	Truss Type	Qty	Ply	Mattamy - Glades			
	ССР	A01G	Piggyback Base Supported Gable	1	1	Job Reference (optional)	157322061		
	Builders FirstSource (Apex, NC),	Apex, NC - 27523,	Run: 8.63 S Nov 19 2 ID:?oCUXIPsimHMar	2022 Print: 8. okW6_TzezZ	630 S Nov 1 3Hn-RfC?Ps	9 2022 MiTek Industries, Inc. Wed Mar 22 09:57:34 sB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f	Page: 2		
BOT CHORD 72-73=-38/108, 71-72=-38/108, 13) This truss has been designed for a 10.0 psf bottom									

chord live load nonconcurrent with any other live loads. 14) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom

15) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 10 lb uplift at joint 73, 5 lb uplift at joint 52, 15 lb uplift at joint 53, 13 lb uplift at joint 54, 13 lb uplift at joint 55, 11 lb uplift at joint 56, 13 lb uplift at joint 57, 14 lb uplift at joint 58, 15 lb uplift at joint 59, 4 lb uplift at joint 60, 16 lb uplift at joint

	70-71=-38/108, 69-70=-38/108,
	68-69=-38/108, 67-68=-38/108,
	66-67=-38/108, 64-66=-38/108,
	63-64=-37/107, 62-63=-37/107,
	61-62=-37/107, 60-61=-37/107,
	59-60=-37/107, 58-59=-37/107,
	56-58=-37/107, 54-56=-37/107,
	53-54=-37/107, 52-53=-38/108,
	51-52=-38/108, 50-51=-38/108,
	49-50=-38/108, 48-49=-38/108,
	46-48=-38/108, 45-46=-38/108,
	44-45=-38/108, 43-44=-38/108,
	42-43=-38/108, 41-42=-38/108,
	40-41=-38/108, 39-40=-38/108
WEBS	25-51=-118/0, 24-52=-209/29,
	23-53=-203/41, 22-54=-195/38,
	21-55=-199/38, 20-56=-200/38,
	19-57=-199/38, 18-58=-199/38,
	17-59=-203/41, 16-60=-203/28,
	15-61=-117/0, 14-62=-187/43,
	13-63=-186/59, 12-64=-183/55,
	11-65=-183/54, 10-66=-183/55,
	9-67=-186/54, 8-68=-155/54, 6-69=-120/
	5-70=-119/55, 4-71=-125/53, 3-72=-94/8
	26-50=-187/43, 27-49=-186/59,
	28-48=-183/55, 29-47=-183/54,
	30-46=-183/55, 31-45=-186/54,
	32-44=-155/54, 34-43=-120/54,
	35-42=-120/55, 36-41=-120/51,

NOTES

1) Unbalanced roof live loads have been considered for this design.

37-40=-121/78

- Wind: ASCE 7-10; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- ** TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 4) DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps= varies (min. roof snow=15.8 psf Lumber DOL=1.15 Plate DOL=1.00) see load cases; Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface
- 5) Roof design snow load has been reduced to account for slope.
- 6) Unbalanced snow loads have been considered for this design.
- 7) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- WARNING: This long span truss requires extreme care 8) and experience for proper and safe handling and erection. For general handling and erection guidance, see Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses ("BCSI"), jointly produced by SBCA and TPI. The building owner or the owner's authorized agent shall contract with a qualified registered design professional for the design and inspection of the temporary installation restraint/bracing and the permanent individual truss member restraint/bracing. MiTek assumes no responsibility for truss manufacture, handling, erection, or bracing.
- Provide adequate drainage to prevent water ponding.
- 10) Gable requires continuous bottom chord bearing. 11) Truss to be fully sheathed from one face or securely
- braced against lateral movement (i.e. diagonal web). 12) Gable studs spaced at 2-0-0 oc.

62, 26 lb uplift at joint 63, 23 lb uplift at joint 64, 22 lb uplift at joint 65, 24 lb uplift at joint 66, 23 lb uplift at joint 67, 23 lb uplift at joint 68, 22 lb uplift at joint 69, 26 lb uplift at joint 70, 8 lb uplift at joint 71, 98 lb uplift at joint 72, 14 lb uplift at joint 50, 27 lb uplift at joint 49, 23 lb uplift at joint 48, 22 lb uplift at joint 47, 24 lb uplift at joint 46, 23 lb uplift at joint 45, 23 lb uplift at joint 44, 22 lb uplift at joint 43, 26 lb uplift at joint 42, 11 lb uplift at joint 41 and 80 lb uplift at joint 40. 16) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and /54, R802.10.2 and referenced standard ANSI/TPI 1. 6 17) Graphical purlin representation does not depict the size

chord and any other members.

- or the orientation of the purlin along the top and/or bottom chord.
- LOAD CASE(S) Standard
- Dead + Snow (balanced): Lumber Increase=1.15, Plate 1) Increase=1.00
 - Uniform Loads (lb/ft)
 - Vert: 1-2=-52, 2-15=-52, 15-25=-60, 25-38=-52, 39-73 = -20

Job	Truss	Truss Type	Qty	Ply	Mattamy - Glades	
CCP	A01H	Piggyback Base	7	1	Job Reference (optional)	157322062

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Wed Mar 22 09:57:38 ID:bAO3Dj9pqi7z3qc1rN?rjozZ3AM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

8-2-5 24-0-0 34-0-0 44-0-0 68-0-0 16-1-3 52-1-5 59-9-11 7-10-13 7-10-13 10-0-0 10-0-0 8-1-5 8-2-5 7-8-5 8-2-5 6x8= 5x6= 5x8= 7x10= 41842 9 10 5x6 🚅 5x6👟 6 11 5x6≠ 5¹² 3x6 " 5x6**≈** 11-0-0 3x6 43442 13 **§**9⁴⁰ 4 T 5x6 🚅 5x6**≈** 3 14 15 1-0-V Ś 30 (F) H 28 4526 25 298 27 46 24 47 23 48 22 49 2150 20 19 51 17 52 16 5x6= 5x6= 5x6= 5x6= 5x6= 5x6= 10x12 =5x6= 5x6= 5x8 II 5x6= 3x6= 5x6 II 3x4= 5x6= <u>19-4-9</u> 3-10-13 9-7-10 38-7-7 43-1-1 47-6-12 57-6-0 68-0-0 15-5-12 29-1-8 H + 9-7-10 5-10-2 9-8-15 9-5-14 4-5-10 4-5-11 9-11-4 10-6-0

Scale = 1:113

Plate Offsets (X, Y): [2:0-4-9,0-1-6], [10:0-5-0,0-3-7], [30:0-6-0,0-3-8]

		. , ,,,												
Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL	(psf) 20.0 15.8/20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.70 1.00 0.94	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.22 -0.40 0.07	(loc) 22-24 22-24 18) I/defl I >999 I >960 3 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190	
BCDL	10.0											Weight: 520 I	b FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD	2x6 SP No.2 *Excep 2x6 SP No.2 2x4 SP No.3 *Excep 18-10:2x6 SP No.2 Left 2x4 SP No.3 - 2 - 2-5-0 Structural wood sheat 4-1-8 oc purlins, exc 2-0-0 oc purlins, exc 2-0-0 oc purlins (5-9 Rigid ceiling directly bracing. 1 Row at midpt 2 Rows at 1/3 pts (size) 2=0-3-8, 1 0-3-14), 2 Max Horiz 2=142 (LC Max Uplift 2=-113 (L 18=-50 (L) Max Grav 2=1479 (L) 18=-302 (L) 14=-50 (L) Max Grav 2=1479 (L) 15-16=165/486	t* 7-9:2x6 SP DSS t* 20-10:2x4 SP No.2 2-5-0, Right 2x4 SP No.2 2-24, 7-22, 11-18, 226 8-20, 10-18 5=0-3-8, 18=0-3-8, (5=0-3-8, 18=	WI 2, 10.3 10.3 1) 2) 3-29 req. 3) 5), 4) 5), 4) 5), 6)	EBS 4 FEBS 4 FEBS 4 FEBS 7 Unbalanced 1 Unbalanced 1 this design. Wind: ASCE Vasd=91mph II; Exp B; End and C-C Exte exposed ; en members and Lumber DOL ** TCLL: ASC DOL=1.15 PI snow); Ps= v DOL=1.15 PI Sum B; Fully 1 Surface Roof design : slope. Unbalanced : design. This truss ha load of 12.0 p overhangs no	4-27=-379/184, 6-2 5-24=-899/240, 7-2 7-22=-507/144, 8-2 3-20=-1540/225, 21 10-28=-108/1791, 1 8-29=-2601/263, 1 11-16=-59/794, 13: 8-30=-148/10, 29: roof live loads hav 7-10; Vult=115mp 1; TCDL=6.0psf; B: Closed; MWFRS (e erior (2) zone; cant d vertical left and 1 d forces & MWFRS =1.60 plate grip D CE 7-10; Pr=20.0 p aries (min. roof sn ate DOL=1.00); P aries (min. roof sn ate DOL=1.00) se Exp.; Ct=1.10; Unc snow load has been snow load has been snow loads have the s been designed for the state of the sta	27=-58/3 24=-93/7 12=-12/8 0-28=-10 10-29=-2 11-18= 16=-48 30=-148 e been of h (3-sec CDL=6.0 envelope ilever le ight exp S for rea OL=1.33 osf (roof =20.0 p ow=15.8 e load c obstructor en reduc en reduc or greate at roof lo other liv	49, 15, 71, 2575/263, 1147/247, 1/195, 3/10, 19-30=- considered for cond gust) Dpsf; h=30ft; i exterior zor ft and right iosed;C-C for ctions shown live load: Lur sf (flat roof B psf Lumber ases; Catego ed slippery ed to accoun asidered for the prof min roof pad of 20.0 p; // loads.	-11/8 or Cat. ne r; mber ory II; t for his f live sf on	 7) W ar ere see B ("(") bu ccc foo for in in as here see the sec the sec	ARNING: and experie ecetion. Fo ee Guide t racing of N BCSI"), joi uilding own ontract with r the desig stallation n dividual tri ssumes no andling, er rovide ade nis truss h hord live lo This truss n the botto 06-00 tall hord and a /ARNING: an input b	This I ance foor generation of a constraint of the second of a constraint of the second second second second generation of the second second second second second second second second s	long span truss r proper and sa ral handling ar d Practice for H Plate Connecter oduced by SBC the owner's auralified registerer inspection of t nt/bracing and i ember restraint onsibility for trus , or bracing. drainage to pro- nconcurrent will een designed for nconcurrent will een designed so 0-00 wide will 1 er members, w red bearing siz size.	requires extreme c afe handling and d erection guidance landling, Installing & d Wood Trusses CA and TPI. The thorized agent shall d design profession he temporary the permanent /bracing. MiTek ss manufacture, event water ponding a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle it between the bottc ith BCDL = 10.0psf e at joint(s) 18 great	are a, k anal ds. psf ter
	- ann	innu.										Mar	ch 22,2023	

Job	Truss	Truss Type	Qty	Ply	Mattamy - Glades				
CCP	A01H	Piggyback Base	7	1	Job Reference (optional)	157322062			

- 12) Provide mechanical connection (by others) of truss to uplift at joint 25.
- or the orientation of the purlin along the top and/or bottom chord.

1) Increase=1.00

Uniform Loads (lb/ft)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Wed Mar 22 09:57:38 ID:bAO3Dj9pqi7z3qc1rN?rjozZ3AM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

- bearing plate capable of withstanding 113 lb uplift at joint 2, 50 lb uplift at joint 18, 69 lb uplift at joint 15 and 7 lb
- 13) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 14) Graphical purlin representation does not depict the size

LOAD CASE(S) Standard

Dead + Snow (balanced): Lumber Increase=1.15, Plate

Vert: 1-7=-52, 7-10=-60, 10-15=-52, 31-35=-20

Job	Truss	Truss Type	Qty	Ply	Mattamy - Glades	
CCP	A02	Piggyback Base	2	1	Job Reference (optional)	157322063

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Wed Mar 22 09:57:39 ID:UmDsmXpJtc299HJbZQUISPzZ39V-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:97.4

Plate Offsets (X, Y): [11:Edge,0-3-9]

Loading	(psf)	Spacing	2-0-0		CSI	0.06	DEFL	in 0.29	(loc)	l/defl	L/d	PLATES	GRIP	
Spow (Pc/Pf)	15 9/20.0		1.00		RC RC	0.90	Vert(LL)	-0.20	15 17	>9999	190	101120	244/190	
	10.0/20.0	Bon Stroop Inor	VEC			0.09		-0.52	10-17	>000	100			
	10.0		TEO IDOOO45			0.95		0.11		n/a	n/a			
BOLL	0.0	Code	IRC2015	/TPI2014	Matrix-MS								FT 000/	
BCDL	10.0											weight: 437 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SUDER	2x6 SP No.2 *Excep 2x6 SP DSS 2x4 SP No.3 Right 2x4 SP No.3	t* 3-5:2x6 SP DSS	2)	Wind: ASCE Vasd=91mpt II; Exp B; End and C-C Exte exposed ; en	7-10; Vult=115mp i; TCDL=6.0psf; B0 closed; MWFRS (e erior (2) zone; cant d vertical left and r	h (3-seo CDL=6.0 Invelope ilever le ight exp	ond gust) Opsf; h=30ft; e) exterior zo ft and right osed;C-C fo	Cat. one or						
BRACING	rugin ziri or ruoio	200		members an	d forces & MWFRS	S for rea	ctions show	n;						
	Structural wood she	athing directly applied	lor	Lumber DOL	=1.60 plate grip D	OL=1.33	3							
	2-10-0 oc purlins e	xcept end verticals a	nd 3)	** TCLL: ASC	CE 7-10; Pr=20.0 p	osf (roof	live load: Lu	ımber						
	2-0-0 oc purlins (2-2	-0 max.): 3-6.		DOL=1.15 PI	ate DOL=1.00); Pf	=20.0 p	sf (flat roof							
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 oc		snow); Ps= v DOL=1.15 Pl	aries (min. roof sn ate DOL=1.00) see	ow=15.8 e load c	ases; Catego	r ory II;						
WEBS	1 Row at midpt	3-19, 3-17, 4-17, 6-1 7-15	5,	surface										
WEBS	2 Rows at 1/3 pts	2-20	4)	Roof design	snow load has bee	en reduc	ed to accour	nt for						
REACTIONS	(size) 11=0-3-8,	14=0-3-8, 20=0-3-8	5)	Siope.	snow loads have h		cidorod for t	thic						
	Max Horiz 20=-138 (LC 21)	5)	design	Show loads have b	een cor		uns						
	Max Uplift 11=-122 (LC 17), 20=-71 (LC 1	6) 6)	Provide adec	uate drainage to n	revent	vater pondin	na						
	Max Grav 11=1916 (20=2304 ((LC 38), 14=833 (LC (LC 44)	44), 7)	This truss ha	s been designed for	or a 10.0) psf bottom	ads						
FORCES	(lb) - Maximum Com Tension	pression/Maximum	8)	* This truss h	as been designed	for a liv	e load of 20.	.0psf						
TOP CHORD	1-2=-125/110, 2-3=-2	2447/371,		3-06-00 tall b	v 2-00-00 wide wil	l fit betv	een the bott	tom				1111 04	- Ilin	
	3-4=-3042/473, 4-6=	-3042/473,		chord and an	y other members,	with BC	DL = 10.0ps	sf.		_		THUA	ROIL	
	6-7=-2699/465, 7-9=	-3453/498,	9)	Provide mecl	nanical connection	(by oth	ers) of truss	to			5	A	: /A.	1
	9-11=-3688/521, 1-2	0=-210/85		bearing plate	capable of withsta	anding 7	1 lb uplift at	joint			52	OFEYS	Ni v	12
BOT CHORD	19-20=-88/1654, 17-	19=-65/2290,		20 and 122 ll	o uplift at joint 11.							No. of		un .
	15-17=-128/2452, 14	4-15=-295/2974,	10)) This truss is	designed in accord	lance w	th the 2015				1	· ×	1 N 1	
	12-14=-295/2974, 11	1-12=-400/3330		International	Residential Code	sections	R502.11.1	and				SEA		
WEB5	2-20=-2007/337, 3-1	9=-524/128,		R802.10.2 ar	nd referenced stan	dard AN	ISI/TPL1.			-		4504	7. ÷	-
	4-17-1167/213 6-1	765/860	11,	Graphical pu	riin representation	does no	top opd/or	size		=		4584	4 :	-
	6-15=-138/305. 7-15	=-1011/225. 7-12=0/3	392.	bottom chord		iong ine	top anu/or			1	3 3			-
	9-12=-347/183		··,		Standard						- 7	·	2	5
NOTES				Dead + Sno	(balanced): Lur	ber lee	0000-1 15	Plate			24	NGINI	ET	5
 Unbalanced roof live loads have been considered for 				Increase-1	nn (balanceu). Lun		case=1.13,	i iale			11	DA	INS.	
this design	n.			Uniform Los	ads (lb/ft)						100	1, EW 10	DHILL	
				Vert: 1-3:	=-52, 3-6=-60, 6-11	1=-52, 2	0-21=-20					- minu	11111	
					,	- / -								

March 22,2023

Job	Truss	Truss Type	Qty	Ply	Mattamy - Glades	
CCP	A03	Piggyback Base	1	1	Job Reference (optional)	157322064

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Wed Mar 22 09:57:40 ID:rXc0WgVRhp6DtubMrBUtjDzZ38d-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

34-0-0 41-10-13 14-0-0 24-0-0 49-9-11 57-9-0 6-1-3 6-1-3 7-10-13 10-0-0 10-0-0 7-10-13 7-10-13 7-11-5 6x8= 2x4 II 5x8= 6x12= 3 425 6 <u>2</u>4 5¹² 5 4x6 ≠ 4x6 7 2 2x4 🥠 3x4 II 26 5x6. 11-0-0 ₁23 278 9 Ð 5-2-0 4x8≈ 10 Þ 18 TŦ TŦT 28 29 1730 16 31 15 14 32 13 33 34 12 4x8= 5x6= 5x8= 7x10= 7x10= 4x6= 8x10 **I** 5x6= 11-8-14 24-0-0 34-0-0 46-6-3 57-9-0 _ 11-2-13 11-8-14 12-3-2 10-0-0 12-6-3

Scale = 1:97

Plate Offsets (X, Y): [12:0-5-0,0-4-8], [13:0-5-0,0-4-8]

					-							
Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 15.8/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015/TPI201	CSI TC BC WB 4 Matrix-MS	0.71 0.87 0.87	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.41 -0.74 0.18	(loc) 12-13 12-13 11	l/defl >999 >939 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 438 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD WEBS WEBS REACTIONS FORCES TOP CHORD BOT CHORD WEBS	2x6 SP DSS *Excep 2x6 SP DSS *Excep 2x4 SP No.3 *Excep Right 2x6 SP No.2 Structural wood she 2-5-6 oc purlins, exi 2-0-0 oc purlins (4-0 Rigid ceiling directly bracing. 1 Row at midpt 2 Rows at 1/3 pts (size) 11=8-6-8, Max Horiz 18=-137 (Max Uplift 11=-102 (Max Grav 11=2373 d (lb) - Maximum Com Tension 1-2=-120/109, 2-3=- 3-4=-3627/482, 4-6= 6-7=-3741/483, 7-9 9-11=-4720/532, 1-1 17-18=-94/1869, 15- 11-15=-409/4231 2-18=-2928/343, 3-1	t* 1-3,6-8:2x6 SP No. t* 16-14:2x6 SP No.2 t* 18-2:2x4 SP No.2 - 2-5-0 athing directly appliec cept end verticals, and -0 max.): 3-6. applied or 10-0-0 oc 3-17, 3-15, 4-15, 6-19 7-13 2-18 18=0-3-8 LC 14) LC 17), 18=-46 (LC 1 (LC 38), 18=2589 (LC pression/Maximum 2813/375, 3627/482, 4586/513, 8=-198/81 -17=-74/2651, 7=-619/132,	2) Wind: 2 Vasd= 11; Exp and C- expose member 1 or 1 or 1 or 1 or 2 Unber 1 or 3) ** TCL DOL=1 5, Surfact 4) Roof d slope. 5) Unber 6) 6) Provide 44) 7) This tra- chord I 8) * This tra- chord I 9) Provide bearing 18 and 10) This tra-	ASCE 7-10; Vult=115m ASCE 7-10; Vult=115m ASCE 7-10; Vult=115m B; Enclosed; MWFRS C Exterior (2) zone; ca d; end vertical left and ers and forces & MWFI r DOL=1.60 plate grip .: ASCE 7-10; Pr=20.0 .15 Plate DOL=1.00); Ps= varies (min. roof s .15 Plate DOL=1.00); Ps= varies (min. roof s .15 Plate DOL=1.00); Ps= varies (min. roof s .15 Plate DOL=1.00); sign snow load has be nced snow loads have a adequate drainage to us has been designed ve load nonconcurrent russ has been designed ve load nonconcurrent russ has been designed to all by 2-00-00 wide v and any other members a mechanical connectifi g plate capable of withs 102 lb uplift at joint 11 uss is designed in acco	heph (3-sec BCDL=6.1 (envelope Intilever le d right exp RS for rea DOL=1.3: 0 psf (roof Pf=20.0 p snow=15.1 see load c inobstruct een reduc e been cor o prevent 0 for a 10.1 t with any d for a 10.1 t with any ed for a liv as where will fit betw s, with BC on (by oth standing 4 1.	orond gust) Oppsf; h=30ft; i,) exterior zor ft and right osed;C-C for ctions shown live load: Lur sf (flat roof 8 psf Lumber ases; Catego ed to account usidered for that water ponding 0 psf bottom other live load e load of 20.0. DL = 10.0psf ers) of truss t 6 lb uplift at j ith the 2015	Cat. ne ; mber yry II; t for his g. ds. Opsf com ; o o		0	Junio Contraction of the second	WITH CA	ROLINI
NOTES 1) Unbalance this design	2-17=0/1218, 3-15= 4-15=-1165/212, 6-1 6-13=-19/1124, 7-13 9-12=-178/191 ed roof live loads have h.	123/1457, 5=-289/422, ≒-1098/224, 7-12=0/4 been considered for	463, 11) Graphi or the o bottom LOAD CAS 1) Dead Increa Unifo	tional Residential Cod 0.2 and referenced sta cal purlin representatic rrientation of the purlin chord. SE(S) Standard + Snow (balanced): Lt ise=1.00 m Loads (lb/ft) t 1.3=-52 3-6=-60 6-	e sections andard AN on does no a along the umber Inc	R502.11.1 a ISI/TPI 1. of depict the s top and/or rease=1.15, l 8-19=-20	ind size Plate			T	SEA 4584 Sevent	L 4 DHNS DHNS DHNS

March 22,2023

Job	Truss	Truss Type	Qty	Ply	Mattamy - Glades	
CCP	A04	Piggyback Base	2	1	Job Reference (optional)	157322065

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Wed Mar 22 09:57:41 ID:cugKurCSoxYrSycio42jcfzZ37i-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:97

Plate Offsets (X, Y): [10:0-4-12,0-2-12], [12:0-5-0,0-4-8], [13:0-5-0,0-4-8]

				-										
Loading		(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.00		тс	0.58	Vert(LL)	-0.39	12-13	>999	240	MT20	244/190
Snow (Ps/Pf)	1	5.8/20.0	Lumber DOL	1.15		BC	0.80	Vert(CT)	-0.72	12-13	>819	180		
TCDL		10.0	Rep Stress Incr	YES		WB	1.00	Horz(CT)	0.14	10	n/a	n/a		
BCLL		0.0*	Code	IRC201	5/TPI2014	Matrix-MS								
BCDL		10.0											Weight: 453 lb	FT = 20%
				2	Wind: ASCE	7-10: Vult=115mg	oh (3-seo	ond aust)			Vert: 1-3	3=-52.	3-6=-60, 6-10=-5	2. 18-19=-20
TOP CHORD	2x6 SP D	SS *Excen	t* 1-3 6-8·2x6 SP No 3	2 -	Vasd=91mpl	n: TCDL=6.0psf: B	CDL=6.	psf: h=30ft:	Cat.			,		_,
BOT CHORD	2x6 SP D	SS *Excep	t* 16-14·2x6 SP No 2	-	II; Exp B; En	closed; MWFRS (envelope) exterior zo	ne					
WEBS	2x4 SP N	03			and C-C Ext	erior (2) zone; can	tilever le	ft and right						
SLIDER	Right 2x6	SP No.2	8-8-3		exposed ; en	d vertical left and	right exp	osed;C-C fo	r					
BRACING	j				members an	d forces & MWFR	S for rea	ctions showr	n;					
TOP CHORD	Structural	wood she	athing directly applied	or	Lumber DOL	.=1.60 plate grip D	OL=1.33	3						
	3-4-10 00	purlins e	xcept end verticals ar	nd 3)	** TCLL: AS	ן CE 7-10; Pr=20.0	psf (roof	live load: Lui	mber					
	2-0-0 oc r	ourlins (4-1	-10 max.): 3-6.		DOL=1.15 P	late DOL=1.00); P	f=20.0 p	sf (flat roof						
BOT CHORD	Rigid ceil	ing directly	applied or 10-0-0 oc		snow); Ps= v	aries (min. roof sr	10w=15.8	3 psf Lumber						
	bracing.	• •			DOL=1.15 P	late DOL=1.00) se	e load c	ases; Catego	ory II;					
WEBS	1 Row at	midpt	3-17, 4-15, 6-15, 7-13	3,	EXP B; Fully	exp.; Cl=1.10; On	obstruct	ed slippery						
			7-12	4)	Roof design	snow load has he	on roduc	ed to accour	t for					
WEBS	2 Rows a	t 1/3 pts	2-18		slone	Show load has bee	enteuuc	eu lo accour						
REACTIONS	(size)	10= Mech	anical, 11=0-3-8,	5)	Unbalanced	snow loads have b	been cor	sidered for t	his					
		18=0-3-8		-,	design.									
	Max Horiz	18=-137 (LC 14)	6)	Provide adeo	quate drainage to	prevent	water pondin	g.					
	Max Uplift	10=-90 (L 18=-52 (L	C 17), 11=-14 (LC 17) C 16)), 7)	This truss ha	is been designed f	or a 10.0) psf bottom	de					
	Max Grav	10=1861	(LC 44), 11=654 (LC 3	38), 8)	* This truss h	has been designed	for a liv	e load of 20.	opsf					
FORCES	(lb) - Max	imum Com			on the bottor	n chord in all area	s where	a rectangle					minin	1111
TOROLO	Tension				3-06-00 tall t	by 2-00-00 wide wi	II fit betv	/een the bott	om ۴			C	"TH CA	Rollin
TOP CHORD	1-2=-120/	108. 2-3=-	2707/364.	0)	Pofor to gird	or(c) for truce to tr		DL = 10.0ps	ı.		\sim	N	R	Alle Internet
	3-4=-3440	0/464, 4-6=	-3440/464,	9))) Provide mec	hanical connection	uss com hv oth	ere) of truce	to		- I.	1	O'FESS	di Vi
	6-7=-3453	3/453, 7-9=	-3772/435,		bearing plate	canable of withst	anding 5	2 lh unlift at i	ioint				which	BUNN
	9-10=-86	5/146, 1-18	=-199/81		18 90 lb upli	ft at joint 10 and 1	4 lb upli	t at joint 11	onn				:2	K : 3
BOT CHORD	17-18=-8	7/1797, 15-	17=-63/2543,	1.) This truss is	designed in accord	dance w	ith the 2015			-		CEAL	
	11-15=-33	31/3466, 10	0-11=-331/3466		International	Residential Code	sections	R502.11.1 a	and		-	1	SEA	- 1 -
WEBS	2-18=-28	14/333, 3-1	7=-574/129,		R802.10.2 a	nd referenced star	ndard AN	ISI/TPI 1.			1	. :	4584	4 : :
	2-17=0/1	167, 3-15=-	·112/1336,	12	2) Graphical pu	rlin representation	does no	ot depict the	size		-			1 - Z -
	4-15=-110	54/211, 6-1	5=-194/518, 6-13=0/9	917,	or the orienta	ation of the purlin a	along the	top and/or				1		1
	7-13=-71	//190, 7-12	=-326/88, 9-12=-194/	173	bottom chore	1.						- 7	1. SNOW	ER: AS
NOTES				L	DAD CASE(S)	Standard						1	GIN	F. GUN
1) Unbalance	ed roof live l	oads have	been considered for	1)	Dead + Sno	ow (balanced): Lur	mber Inc	rease=1.15,	Plate			1	REIAL	HN
this desigi	1.				Increase=1	.00							TILL V JU	
					Uniform Loa	ads (lb/ft)							<u> </u>	Tree

Uniform Loads (lb/ft)

March 22,2023

Page: 1

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Mattamy - Glades	
CCP	A05	Piggyback Base	6	1	Job Reference (optional)	157322066

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Wed Mar 22 09:57:42 ID:opQmv2yLC_L2uULdR59F7kzZ36k-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:98.9

Plate Offsets	(X, Y): [13:0-5-0,0-4-8]	, [14:0-5-0,0-4-8], [1	16:0-5-0,0-4	4-8]										
Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 15.8/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.87 0.68 0.85	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.41 -0.74 0.13	(loc) 13-14 13-14 11	l/defl >897 >499 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 440 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalanci this desig	2x6 SP No.2 *Except 2x6 SP DSS 2x4 SP No.3 Right 2x4 SP No.3 Structural wood shea 3-1-7 oc purlins, exc 2-0-0 oc purlins, (2-6- Rigid ceiling directly bracing. 1 Row at midpt 2 Rows at 1/3 pts (size) 11=0-3-8, Max Horiz 19=-149 (I Max Uplift 11=-110 (I 19=-57 (Lf Max Grav 11=2073 (19=2168 ((lb) - Maximum Com 1-2=-116/114, 2-3=-2 3-4=-2594/383, 4-6= 6-7=-2768/389, 7-9= 9-11=-4028/462, 11- 18-19=-36/1537, 15- 11-15=-324/3625 2-19=-2407/295, 3-1 3-16=-92/810, 4-16= 6-16==-448/230, 6-14 7-13=0/613, 9-13=-2 ed roof live loads have n.	** 3-5,8-12:2x6 SP E 2-5-0 athing directly applie cept end verticals, ai -7 max.): 3-6. applied or 10-0-0 oc 3-18, 4-16, 6-16, 7- 2-19 15=0-3-8, 19=0-3-8 LC 21) LC 21) LC 21) LC 21) LC 21) LC 3), 15=-17 (LC C 16) LC 3), 15=-829 (LC LC 45) pression/Maximum 2262/323, -2594/383, -3851/439, 12=0/38, 1-19=-195 18=-37/2515, 8=-342/186, 2-18=0 -1171/213, =0/899, 7-14=-1199 85/186 been considered for	2) ed or nd 3) 14 (17), 5) (14) (17), 6) (17), 6) (17), 6) (17), 7) (18) (17), 7) (17), 7) (1	Wind: ASCE Vasd=91mph II; Exp B; End and C-C Exte exposed ; en members and Lumber DOL ** TCLL: ASC DOL=1.15 Pl snow); Ps= v DOL=1.15 Pl Exp B; Fully I surface Roof design : slope. Unbalanced : design. This truss ha load of 12.0 p overhangs no Provide aded This truss ha chord live loa * This truss ha on the bottom 3-06-00 tall b chord and an) Provide mech bearing plate 19, 110 lb up) This truss is of International R802.10.2 ar) Graphical pu or the orienta bottom chord	7-10; Vult=115mp ;; TCDL=6.0psf; B: closed; MWFRS (e errior (2) zone; cant d vertical left and 1 d forces & MWFRS =1.60 plate grip D CE 7-10; Pr=20.0 p ate DOL=1.00); PI aries (min. roof sn ate DOL=1.00) se Exp.; Ct=1.10; Und snow load has been snow loads have b s been designed front portion all areas y 2-00-00 wide willy y other members, hanical connection capable of withstal lift at joint 11 and designed in accorre Residential Code at representation tion of the purlin al. Standard	h (3-sec CDL=6.0 CDL=6.0 Invelope ight exg S for rea OL=1.3 osf (roof =20.0 p ow=15.0 e load c obstruct a reduc or great at roof k other libor or a 10.0 vith any for a live s where I fit betw with BC (by oth androg 5 17 lb up dance w sections dard AN does not long the	and gust) Dpsf; h=30ft;) exterior zoo ff and right nosed;C-C fo ctions showr live load: Lun sf (flat roof psf Lumber asses; Catego ed slippery ed to accour asidered for tt er of min rool bad of 20.0 p re loads. water pondin. D psf bottom other live load e load of 20.0 p re loads. water pondin. D psf bottom other live load e load of 20.1 p re loads. state pondin. D psf bottom other live load e load of 20.2 p reso of truss i 7 lb uplift at j lift at joint 15 s R502.11.1 a ISJ/TPI 1. ot depict the se e top and/or	Cat. ne r, mber ory II; at for his f live sf on g. ds. Opsf om f. to joint and size	1) De Ina Ur	ead + Sn Crease= ilform Lc Vert: 1-:	iow (ba 1.00 pads (ll 33=-52,	alanced): Lumbe b/ft) 3-6=-60, 6-12=-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	L 14 122,2023	.15, Plate

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Mattamy - Glades	
ССР	A05G	Piggyback Base Supported Gable	1	1	Job Reference (optional)	157322067

Run; 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Wed Mar 22 09:57:43 ID:Kiz5zymMQaoXRnzVsgszLszZ35h-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:98.9 ~ "

Plate Offsets (X, Y): [8:0-4-0,0-3	-13], [16:0-5-0,0-4-8], [1	18:0-4-0,0-3-13], [41:0	0-5-0,0-4-8],	[49:0-5-0,0-4-8], [54:0-5-0,0-4	-8]							
Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 15.8/20.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr * Code	2-0-0 1.00 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-	0.16 0.06 0.22 MR	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 33	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 601	GRIP 244/1 lb FT =) 190 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS	2x6 SP No.2 2x6 SP No.2 2x4 SP No.3 *Exi 2x4 SP No.3 Structural wood s 6-0-0 oc purlins (Rigid ceiling direc bracing. 1 Row at midpt	cept* 33-31:2x6 SP No. sheathing directly applie except end verticals, a 6-0-0 max.): 8-18. ctly applied or 6-0-0 oc 18-45, 17-46, 16-47 15-48, 14-49, 13-50 12-51, 11-52, 10-53 9-54, 8-55, 7-56, 6-1 19-44, 20-43	2 ed or nd , , , 57,	Max Uplift Max Grav	$\begin{array}{c} 34 = -102 \ (LC \ 17) \\ 36 = -26 \ (LC \ 17) \\ 38 = -23 \ (LC \ 17) \\ 40 = -25 \ (LC \ 17) \\ 40 = -25 \ (LC \ 17) \\ 44 = -17 \ (LC \ 17) \\ 44 = -17 \ (LC \ 13) \\ 51 = -13 \ (LC \ 13) \\ 51 = -13 \ (LC \ 13) \\ 55 = -16 \ (LC \ 16) \\ 58 = -23 \ (LC \ 16) \\ 60 = -26 \ (LC \ 16) \\ 60 = -26 \ (LC \ 16) \\ 62 = -14 \ (LC \ 17) \\ 33 = 202 \ (LC \ 22) \\ 35 = 166 \ (LC \ 2) \\ 37 = 160 \ (LC \ 2) \\ \end{array}$, 35=-7 (LC 37=-22 (LC 39=-22 (LC 41=-22 (LC 43=-26 (LC 448=-13 (LC 50=-12 (LC 52=-13 (LC 54=-8 (LC 1 57=-26 (LC 59=-22 (LC 34=132 (LC 34=132 (LC 38=195 (LC	17), 17), 17), 17), 17), 17), 12), 12), 12), 12), 13), 2), 16), 16), 16), 16), 255), 39),	TOP CH	iORD	1-62= 3-4=-{ 6-7=-' 9-10= 11-12 13-14 15-17 18-19 20-21 22-23 24-25 28-29 30-31	-73/59, 1-2=-6 77/138, 4-5=-5 119/229, 7-8= -117/249, 10- =-117/249, 12 =-117/249, 17 =-128/255, 19 =-107/198, 21 =-85/137, 23- =-69/77, 25-2 =-121/73, 29- =-187/99, 31-	i9/83, 2-3= 17/168, 5-6 -128/256, i 11=-117/2 -13=-117/ -15=-117/ -15=-117/ -22=-97/1 24=-75/10 7=-84/52, i 30=-143/8 32=0/47, 3	76/107, 76/107, 108/19 8-9=-117/ 49, 249, 249, 248, 229, 67, 7, 27-28=-11 2, № № № № № № № № № № № № №	¹⁸ , ¹ 249, 03/62, ¹ 5/30
REACTIONS	(SL2E) 33–358 36–58 42–58 45=58 48–58 51=58 51=58 60=58 Max Horiz 62=-14	0-0, 33–538-0-0, 38–58 -0-0, 37–58-0-0, 41=58 -0-0, 43=58-0-0, 41=58 -0-0, 46=58-0-0, 47–58 -0-0, 52=58-0-0, 50–58 -0-0, 52=58-0-0, 53=58 -0-0, 55=58-0-0, 56=58 -0-0, 61=58-0-0, 62=58 19 (LC 12)	-0-0, -0-0, -0-0, -0-0, -0-0, -0-0, -0-0, -0-0, -0-0, -0-0, -0-0	(lb) - May Tension	39=226 (LC 39), 41=223 (LC 39), 43=225 (LC 39), 45=161 (LC 38), 47=243 (LC 38), 51=239 (LC 38), 53=244 (LC 38), 55=159 (LC 38), 55=159 (LC 39), 57=225 (LC 39), 61=230 (LC 39), imum Compressio	40=222 (LC 42=224 (LC 44=228 (LC 46=249 (LC 50=241 (LC 52=239 (LC 54=244 (LC 56=228 (LC 58=222 (LC 60=225 (LC 62=87 (LC con/Maximum	2 39), 2 39), 2 39), 2 38), 2 38), 2 38), 2 38), 2 38), 2 38), 2 38), 2 39), 2 39), 2 39), 3 39), 1		Comme		SE 45	ARO BIO AL 844 JOH	Solution of the second second	Summun

818 Soundside Road Edenton, NC 27932

W JON March 22,2023

Continued on page 2

Jo	b		Truss	Truss Type	Qty	Ply	Mattamy - Glades	
c	СР		A05G	Piggyback Base Supported Gable	1	1	Ich Reference (optional)	157322067
Bu	ilders FirstSou	Irce (Apex, NC),	Apex, NC - 27523,	Run: 8.63 S Nov	19 2022 Print: 8	.630 S Nov 1	9 2022 MiTek Industries, Inc. Wed Mar 22 09:57:43	Page: 2
BU	ilders FirstSou	rrce (Apex, NC), 61-62=-99/1 59-60=-99/1 57-58=-99/1 52-53=-98/1 50-51=-98/1 47-48=-99/1 43-44=-99/1 43-44=-99/1 43-44=-100/ 38-39=-100/ 38-39=-100/ 38-39=-100/ 38-39=-100/ 18-45=-121/ 16-47=-203/ 14-49=-199/ 10-53=-203/ 4-59=-182/5 19-44=-187/	Apex, NC - 27523, 96, 60-61=-99/196, 96, 58-59=-99/196, 96, 56-57=-99/196, 96, 53-55=-99/196, 95, 51-52=-98/195, 95, 48-50=-99/196, 96, 46-47=-99/196, 96, 42-43=-99/196, 197, 39-40=-100/197, 197, 35-36=-100/197, 197, 35-36=-100/197, 197, 33-34=-100/197, 197, 33-34=-100/197, 197, 33-34=-100/197, 0, 17-46=-209/33, 41, 15-48=-195/38, 38, 11-52=-199/38, 38, 11-52=-199/38, 41, 9-54=-204/32, 8-55=-121/7, 6-57=-185/56, 5-58=-182/5 4, 3-60=-185/56, 2-61=-187/6 47, 20-43=-185/59,	Run: 8.63 S Nov ID:Kiz5zymMQao 15) This truss is designed in accord International Residential Code s R802.10.2 and referenced stam 16) Graphical purlin representation or the orientation of the purlin a bottom chord. LOAD CASE(S) Standard 1) Dead + Snow (balanced): Lum Increase=1.00 Uniform Loads (lb/ft) Vert: 1-8=-52, 8-18=-60, 18 33-62=-20	19 2022 Print: 8 (RnzVsgszLszz ance with the ections R502 Jard ANSI/TP does not depi ong the top a ber Increase= 31=-52, 31-3	2630 S Nov 1 235h-RfC?Ps 2015 2.11.1 and I 1. ct the size nd/or =1.15, Plate 2=-52,	9 2022 MiTek Industries, Inc. Wed Mar 22 09:57:43 B70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f	Page: 2
		21-42=-183/ 23-40=-183/	55, 22-41=-183/54, 55, 24-39=-186/54,					
		25-38=-155/ 28-36=-119/	54, 27-37=-120/54, 55, 29-35=-125/53, 30-34=-9	6/97				
NC	TES							
1)	Unbalance this design	d roof live loa	ds have been considered for					
2)	Wind: ASC Vasd=91m	E 7-10; Vult= ph; TCDL=6.0	115mph (3-second gust))psf; BCDL=6.0psf; h=30ft; Ca	at.				
	II; Exp B; E	Enclosed; MW	FRS (envelope) exterior zone					
	exposed;	end vertical le	ft and right exposed;C-C for					
	members a	and forces & N	IWFRS for reactions shown;					
3)	Truss desi	igned for wind	l loads in the plane of the trus	S				
	only. For s see Standa	studs exposed ard Industry G	I to wind (normal to the face), able End Details as applicable	e.				
•	or consult of	qualified build	ing designer as per ANSI/TPI	1.				
4)	DOL=1.15	Plate DOL=1.	=20.0 psf (roof live load: Lumi .00); Pf=20.0 psf (flat roof	Der				
	snow); Ps=	= varies (min. I Plate DOI –1	roof snow=15.8 psf Lumber	, 11:				
	Exp B; Full	ly Exp.; Ct=1.	10; Unobstructed slippery	· 11,				
5)	surface Roof desig	In snow load h	has been reduced to account f	for				
6)	slope. Unbalance	d snow loads	have been considered for this	5				
7)	design. This truss I	has been desi	aned for greater of min roof li	ve				
.,	load of 12.	0 psf or 2.00 t	imes flat roof load of 20.0 psf	on				
8)	overnangs Provide ad	non-concurre lequate draina	int with other live loads.					
9)	Gable requ	uires continuo	us bottom chord bearing.					
10	braced aga	e fully sheathe ainst lateral m	ovement (i.e. diagonal web).					
11) Gable stud	ls spaced at 2	-0-0 oc.					
12	chord live l	load nonconcu	urrent with any other live loads	S.				
13) * This truss	s has been de	signed for a live load of 20.0p	sf				
	3-06-00 tal	ll by 2-00-00 w	vide will fit between the botton	n				
	chord and	any other mer	mbers.					
14	bearing pla	ecnanical coni ate capable of	withstanding 14 lb uplift at joi	nt				
	62, 9 lb upl	lift at joint 46,	15 lb uplift at joint 47, 13 lb	int				
	50, 13 lb u	plift at joint 51	, 13 lb uplift at joint 52, 14 lb	un la				
	uplift at joir	nt 53, 8 lb upli	ft at joint 54, 16 lb uplift at join	ht				
	uplift at joir	pint at joint 57 nt 59, 26 lb up	lift at joint 60, 22 lb uplift at jo	int				
	61, 17 lb u	plift at joint 44	, 26 lb uplift at joint 43, 23 lb	int				
	40, 22 lb u	plift at joint 39	, 23 lb uplift at joint 38, 22 lb	ин 1				
	uplift at joir	nt 37, 26 lb up	lift at joint 36. 7 lb uplift at joir	nt				

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

35 and 102 lb uplift at joint 34.

Job	Truss	Truss Type	Qty	Ply	Mattamy - Glades	
CCP	B01	Roof Special Girder	1	2	Job Reference (optional)	157322068

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Wed Mar 22 09:57:46 ID:tbWQ1taOe9E1z4bNHEZgZ_zZ34e-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f **D**-

Page: 1

March 22,2023

818 Soundside Road Edenton, NC 27932

Scale = 1:33.6

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 13.2/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 NO IRC2015	5/TPI2014	CSI TC BC WB Matrix-MP	0.37 0.92 0.02	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.13 -0.25 0.00	(loc) 3-4 3-4 3	l/defl >509 >267 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 82 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS NOTES 1) 2-ply truss tr (0.131*x3*) 1 Top chords oc. Bottom chor staggered a Web connec (2) All loads are except if not CASE(S) se provided to - unless other 3) Wind: ASCE Vasd=91mp II; Exp B; Er cantilever le right expose	2x4 SP No.2 2x6 SP DSS 2x4 SP No.3 Structural wood shea 5-11-0 oc purlins, ex Rigid ceiling directly bracing. size) 3=0-3-8, 4 Max Horiz 4=-141 (LC Max Uplift 3=-105 (LC Max Grav 3=2160 (L (lb) - Maximum Com Tension 1-4=-179/59, 1-2=-1: 3-4=-16/12 2-4=-72/102 to be connected toget nails as follows: connected as follows: rds connected as follows rds connected as follows rds connected as follows: rds connected. E 7-10; Vult=115mph bh; TCDL=6.0ps; BCI nclosed; MWFRS (en aft and right exposed : ed; Lumber DOL=1.60	athing directly applied (cept end verticals. applied or 10-0-0 oc =0-3-8 C 8) C 13), 4=-136 (LC 8) C 6), 4=1869 (LC 6) pression/Maximum 13/87, 2-3=-169/28 her with 10d : 2x4 - 1 row at 0-9-0 cous: 2x6 - 2 rows 1 row at 0-9-0 oc. applied to all plies, (k (B) face in the LO) ections have been noted as (F) or (B), (3-second gust) DL=6.0psf; h=30ft; C velope) exterior zone end vertical left and 0 plate grip DOL=1.3	4) d or 5) 6) 7) 8) 9) 10 11) AD 1) at. 2; 3	TCLL: ASCE DOL=1.15 PI snow); Ps=13 DOL=1.00); (Unobstructed Roof design : slope. Unbalanced : design. This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and an Provide mecl bearing plate joint 3 and 13) This truss is of International R802.10.2 ar Provided suff Ib down and 102 lb up at selection of s responsibility DAD CASE(S) Dead + Snot Increase=1. Uniform Loa Vert: 1-2= Concentrate Vert: 6=-1	7-10; Pr=20.0 psf ate DOL=1.00); Pf 3.2 psf (roof snow: Category II; Exp B; 4 slippery surface snow loads have b s been designed for d nonconcurrent w as been designed for d nonconcurrent w as been designed for d nonconcurrent w as been designed for d particular and the sy 2-00-00 wide will y other members. nanical connection capable of withsta do lb uplift at joint 4 designed in accord Residential Code st d referenced stan other connection of 102 lb up at 2-2-4 4-2-4 on bottom cf uch connection de of others. Standard w (balanced): Lurr 00 ads (lb/ft) =-46, 3-4=-20 ad Loads (lb) 1793 (B), 7=-1793	(roof liv =20.0 p Lumbe Fully E een cor or a 10.0 vith any for a liv swhere I fit betw (by oth anding 1 L lance w sections dard AN device(s) oncentra , and 18 hord. Ti vice(s)	e load: Lumb sf (flat roof r DOL=1.15 F xp.; Ct=1.10; ed to accourn hsidered for th D psf bottom other live loa e load of 20.1 a rectangle veen the bott ers) of truss the 05 lb uplift at ith the 2015 s R502.11.1 a USI/TPI 1. :) shall be ated load(s) 1 B41 lb down a he design/ is the rease=1.15, 1	Plate Plate his his dds. Opsf om to t and 841 and Plate				SEA 4584	ROLINE ROLINE L L L EER.SOLINE	Summun

Job	Truss	Truss Type	Qty	Ply	Mattamy - Glades	
ССР	B01G	Common Supported Gable	1	1	Job Reference (optional)	157322069

Run; 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Wed Mar 22 09:57:46 ID:_0hdU3wubGlqtduoZB4nqOzZ35V-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:36.2

-

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.00		тс	0.33	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Ps/Pf)	13.2/20.0	Lumber DOL	1.15		BC	0.21	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES		WB	0.05	Horz(CT)	0.00	9	n/a	n/a		
BCLL	0.0*	Code	IRC20	15/TPI2014	Matrix-MR		. ,						
BCDL	10.0											Weight: 44 lb	FT = 20%
			4) TCLL: ASCE	7-10: Pr=20.0 psf	(roof liv	e load: Lumb	ber					
TOP CHORD	2x4 SP No 2			DOL=1.15 P	late DOL=1.00); Pf	=20.0 p	sf (flat roof						
BOT CHORD	2x4 SP No 2			snow): Ps=1	3.2 psf (roof snow:	Lumbe	r DOL=1.15 I	Plate					
WEBS	2x4 SP No 3			DOL=1.00);	Category II; Exp B;	Fully E	xp.; Ct=1.10;						
OTHERS	2x4 SP No 3			Unobstructe	d slippery surface		• •						
BRACING	2		5) Roof design	snow load has bee	en reduc	ed to accour	nt for					
	Structural wood cho	athing directly applic	dor	slope.									
TOF CHORD		cent and verticals	6) Unbalanced	snow loads have b	een cor	nsidered for t	his					
	Pigid ceiling directly	applied or 6-0-0 oc		design.									
BOT ONORD	bracing		7) This truss ha	is been designed for	or great	er of min root	live					
REACTIONS	(size) 9-7-8-0 1	10-7-8-0 11-7-8-0		load of 12.0	psf or 2.00 times fla	at roof lo	oad of 20.0 p	sf on					
REACTIONS	(3126) $3=7-0-0, 1Max Hariz 11-96/1$	C(14)		overhangs n	on-concurrent with	other liv	ve loads.						
		0 14) 17) 11_ 66 (I C 16	、 8) Truss to be f	ully sheathed from	one fac	e or securely	/					
		(10, 17), 11 = -00 (10, 10))	braced agair	st lateral moveme	nt (i.e. d	liagonal web)						
	11-365 (LC	(LC 2)	, g) Gable studs	spaced at 2-0-0 oc								
FORCES	(lb) Movimum Com	D 04)	1	0) This truss ha	is been designed fo	or a 10.0	0 psf bottom						
FURCES	(ID) - Maximum Com	pression/maximum		chord live loa	ad nonconcurrent v	vith any	other live loa	ids.					
	2-12-35/36 1-2-0/	58 2-328/100	1	1) " This truss r	has been designed	for a liv	e load of 20.	upsr					
	3-41/164 4-52/1	164 5-628/190			n chord in all areas	s where	a rectangle	~ m					
	6-7=0/58 6-8=-35/3	6		s-00-00 tall t	by 2-00-00 wide will	i iii beiv	veen the bott	om					
BOT CHORD	11-12=-143/76 10-1	1=-143/76	1	2) Provide med	hanical connection	(by oth	ore) of truce	to					
201 01.01.2	9-10=-143/76. 8-9=-	143/76		bearing plate	canable of withst	andina 6	6 lb unlift at	ioint					
WEBS	4-10=-199/0, 3-11=-2	218/99, 5-9=-218/99	I	11 and 66 lb	uplift at joint 9.	anding c		onn				mun	1111
NOTES			1	3) Non Standar	d bearing condition	n. Revie	ew required.					WAH CA	Rolly
1) Unbalance	ed roof live loads have	been considered for	· 1	4) This truss is	designed in accord	dance w	ith the 2015				1	R	Little
this desig	in.			International	Residential Code	sections	R502.11.1 a	and			X	O'.FESS	OA: Vie
2) Wind: AS	, CE 7-10; Vult=115mph	(3-second gust)		R802.10.2 a	nd referenced stan	dard AN	ISI/TPI 1.				15		A Si T -
Vasd=91	mph; TCDL=6.0psf; BC	DL=6.0psf; h=30ft; C	Cat. L	OAD CASE(S)	Standard								
II; Exp B;	Enclosed; MWFRS (en	velope) exterior zon	е	. ,						-		054	
and C-C	Exterior (2) zone; cantil	ever left and right								-		SEA	L <u>1</u> 2
exposed	; end vertical left and rig	ght exposed;C-C for								-		4584	14 : =
members	and forces & MWFRS	for reactions shown;											1 S S
Lumber D	DOL=1.60 plate grip DO	L=1.33									3		1. 1. 2
3) Truss de	signed for wind loads ir	n the plane of the tru	SS								:7	· . En.	Aiti
only. For	studs exposed to wind	(normal to the face)	,								11	GIN	EFICON
see Stand	dard Industry Gable End	d Details as applicat	ole,								11	AF	UNS, IN
or consult	t qualified building desig	oner as per ANSI/TP	ין 1								10.00	1. 511	

- 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

JO mm March 22,2023

Job	Truss	Truss Type	Qty	Ply	Mattamy - Glades	
CCP	PB01	Piggyback	19	1	Job Reference (optional)	157322070

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Wed Mar 22 09:57:46 ID:nyr4cvksoZ8InkCtyDyFQqzZ3G3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

LUMBER		
TOP CHORD	2x4 SP N	0.2
BOT CHORD	2x4 SP N	0.2
OTHERS	2x4 SP N	0.3
BRACING		
TOP CHORD	Structural 6-0-0 oc p	l wood sheathing directly applied or purlins.
BOT CHORD	Rigid ceili bracing.	ing directly applied or 10-0-0 oc
REACTIONS	(size)	2=17-9-6, 6=17-9-6, 8=17-9-6,
		9=17-9-6, 10=17-9-6, 12=17-9-6,
		15=17-9-6
	Max Horiz	2=52 (LC 20), 12=52 (LC 20)
	Max Uplift	2=-8 (LC 16), 6=-17 (LC 17), 8=-65
	-	(LC 17), 10=-66 (LC 16), 12=-8 (LC 16), 15=-17 (LC 17)
	Max Grav	2=214 (LC 2), 6=214 (LC 2), 8=432
		(LC 35), 9=215 (LC 2), 10=432 (LC
		34), 12=214 (LC 2), 15=214 (LC 2)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	·
TOP CHORD	1-2=0/25,	2-3=-74/46, 3-4=-94/89,
	4-5=-94/8	9, 5-6=-74/33, 6-7=0/25
BOT CHORD	2-10=-9/6	3, 9-10=0/52, 8-9=0/52, 6-8=0/62
WEBS	4-9=-163/	(14, 3-10=-306/126, 5-8=-306/126

10.0

NOTES

BCDL

- Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
 TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber
- DOL=1.15 Plate DOL=1.00); Pf=20.0 ps (100 live load. Luliloef DOL=1.15 Plate DOL=1.00); Pf=20.0 ps (flat roof snow); Ps=15.8 ps (roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface
- Roof design snow load has been reduced to account for slope.
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
 Bable requires continuous bottom chord bearing.
- 9) Gable studs spaced at 4-0-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 8 lb uplift at joint 2, 17 lb uplift at joint 6, 66 lb uplift at joint 10, 65 lb uplift at joint 8, 8 lb uplift at joint 2 and 17 lb uplift at joint 6.
- 13) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 14) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

LOAD CASE(S) Standard

Weight: 69 lb

FT = 20%

Page: 1

Job	Truss	Truss Type	Qty	Ply	Mattamy - Glades	
CCP	PB01G	Piggyback	2	1	Job Reference (optional)	157322071

Run: 8.63 S. Nov 19 2022 Print: 8.630 S.Nov 19 2022 MiTek Industries. Inc. Wed Mar 22 09:57:47 ID:eqObTbLjtEe3U3wnjZOHGazZ3Hs-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

- BOT CHORD 2-19=-9/46, 17-19=-9/46, 16-17=-9/46, 15-16=-9/46, 14-15=-9/46, 13-14=-9/46, 12-13=-9/46, 10-12=-9/46 WEBS 6-15=-98/0, 5-16=-151/56, 4-17=-107/52 3-19=-156/63, 7-14=-151/56, 8-13=-107/52, 9-12=-156/63
- NOTES

.104 minim March 22,2023

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

chord and any other members.

at joint 2 and 8 lb uplift at joint 10.

12) Provide mechanical connection (by others) of truss to

bearing plate capable of withstanding 5 lb uplift at joint

uplift at joint 19, 26 lb uplift at joint 14, 20 lb uplift at joint

13, 33 lb uplift at joint 12, 8 lb uplift at joint 10, 5 lb uplift

2, 26 lb uplift at joint 16, 19 lb uplift at joint 17, 33 lb

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Mattamy - Glades	
CCP	SP01	Monopitch	11	1	Job Reference (optional)	157322072

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Wed Mar 22 09:57:47 ID:_HD33t7ZbUSQQEh33Gum0zzZ35E-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

?f

Scale = 1:41.9

Loading TCLL (roof) Snow (Ps/Pf)	(psf) 20.0 15.8/20.0	Spacing Plate Grip DOL Lumber DOL Pep Stress Incr	2-0-0 1.00 1.15 VES		CSI TC BC WB	0.35 0.25 0.29	DEFL Vert(LL) Vert(CT)	in -0.02 -0.04 0.01	(loc) 6-7 6-7	l/defl >999 >999	L/d 240 180	PLATES MT20 MT20HS	GRIP 244/190 187/143
BCLL	0.0*	Code	IRC2015	5/TPI2014	Matrix-MS	0.23	11012(01)	0.01	0	n/a	n/a		
BCDL	10.0											Weight: 58 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left 2x6 SP No.2 2 Structural wood shea 6-0-0 oc purlins, exc Rigid ceiling directly bracing.	2-5-0 athing directly applied xept end verticals. applied or 10-0-0 oc	5) 6) 7) d or 8) 9)	This truss ha load of 12.0 j overhangs no All plates are This truss ha chord live loa * This truss h on the bottor 3-06-00 tall th chord and ar Provide med	s been designed for post or 2.00 times fla on-concurrent with MT20 plates unlet s been designed for ad nonconcurrent w has been designed n chord in all areas by 2-00-00 wide will by other members. hanical connection	or greate at roof lo other liv ss other or a 10.0 for a liv where l fit betw (by oth	er of min roof pad of 20.0 ps ve loads. wise indicate) psf bottom other live loa e load of 20.0 a rectangle veen the botto ers) of truss t	live sf on d. ds.)psf om					
REACTIONS	(size) 2=0-3-0, 6 Max Horiz 2=158 (LC Max Uplift 2=-28 (LC Max Grav 2=469 (LC	5=0-3-8 2 15) 16), 6=-49 (LC 16) 2 2), 6=423 (LC 23)	10)	bearing plate 2 and 49 lb u) This truss is	capable of withsta plift at joint 6. designed in accord	ance w	8 lb uplift at junction 18 lb uplift at junction 19 lb uplift at juncti	oint nd					

 FORCES
 (Ib) - Maximum Compression/Maximum Tension

 TOP CHORD
 1-2=0/38, 2-4=-408/95, 4-5=-112/69, 5-6=-157/81

 BOT CHORD
 2-7=-259/412, 6-7=-193/412

 WEBS
 4-7=0/211, 4-6=-459/169

NOTES

- Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof snow); Ps=15.8 psf (roof snow: Lumber DOL=1.15 Plate DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; Unobstructed slippery surface
- Roof design snow load has been reduced to account for slope.
- Unbalanced snow loads have been considered for this design.

10) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

SEAL 45844 March 22,2023

Page: 1

Job	Truss	Truss Type	Qty	Ply	Mattamy - Glades	
ССР	SP01G	Monopitch Supported Gable	1	1	Job Reference (optional)	157322073

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Wed Mar 22 09:57:48 ID:hTLGj6SUEnrb9OFG8Rt5cgzZ34p-RtC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:39.5

and C-C Exterior (2) zone; cantilever left and right

Lumber DOL=1.60 plate grip DOL=1.33

exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown;

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 15.8/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MR	0.26 0.13 0.06	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 8	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 57 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 8=10-0-8, 11=10-0-8 (size) 8=10-0-8, 11=10-0-8 (Max Uplift 8=-17 (LC 10=-27 (L 12=-74 (L Max Grav 8=70 (LC 10=163 (L 12=159 (L)	athing directly applie cept end verticals. applied or 10-0-0 or 3, 12=10-0-8, 10=10-0- 3, 12=10-0-8, 13=10 C 13), 9=-20 (LC 16), C 16), 11=-9 (LC 16 C 16) 23), 9=196 (LC 23), C 23), 11=160 (LC 2 C 2), 13=188 (LC 2)	2) 3) d or 5 4) 8, 5) 6) 0-8 5) 6)), 7) 2), 8) 2) 9)	Truss desig only. For stu see Standari or consult qu TCLL: ASCE DOL=1.15 P snow); Ps=1 DOL=1.00); Unobstructed Roof design Unbalanced design. This truss ha load of 12.0 overhangs n Truss to be f braced again Gable studs	ned for wind load dids exposed to w d Industry Gable jalified building d 7-10; Pr=20.0 p late DOL=1.00; 5.8 psf (roof sno Category II; Exp d slippery surfac snow load has b snow loads have as been designed psf or 2.00 times on-concurrent wi fully sheathed fro the lateral moven spaced at 2-0-0	Is in the p ind (norm End Deta esigner a sf (roof lin Pf=20.0 p w: Lumbe B; Fully E e een reduc e been could for great flat roof l th other li th other li th other i th other i flat roof l th other i flat roof l th other i flat roof l th other i flat roof l	Jane of the tr alate the face als to the face ills as applice s per ANSI/T ve load: Lumi osf (flat roof r DOL=1.15 ixp.; Ct=1.10 ced to accour nsidered for t er of min roo oad of 20.0 p ve loads. ce or securely diagonal web	uss ble, PI 1. Prate rat for his f live sf on /					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	9) 10	chord live loa) * This truss ł	ad nonconcurren	t with any ed for a liv	other live load of 20.	ads. Opsf					
TOP CHORD	2-13=-162/28, 1-2=0 3-4=-163/98, 4-5=-1 6-7=-67/59, 7-8=-54)/44, 2-3=-227/126, 35/90, 5-6=-99/78, /34		on the bottor 3-06-00 tall to chord and ar	m chord in all are by 2-00-00 wide	as where will fit bety	a rectangle ween the both	om				WH CA	Rout
BOT CHORD	12-13=-64/69, 11-12	2=-64/69, 10-11=-64/ 4/69	69, 1 1	1) Provide mec	hanical connecti	on (by oth	ers) of truss	to		1	2.2	RIA	
WEBS	6-9=-154/80, 5-10=- 3-12=-116/140	123/74, 4-11=-121/5	9,	8, 20 lb uplifi at joint 11 ar	e capable of with t at joint 9, 27 lb nd 74 lb uplift at j	standing f uplift at jo oint 12.	int 10, 9 lb up	joint olift		U	bir	i salf	with
NOTES 1) Wind: AS0 Vasd=91n II; Exp B;	CE 7-10; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er	(3-second gust) DL=6.0psf; h=30ft; (avelope) exterior zon	12 13 Cat. e	 Non Standar This truss is International R802.10.2 a 	d bearing condit designed in acco Residential Cod nd referenced sta	ion. Revie ordance w e sections andard AN	ew required. /ith the 2015 s R502.11.1 ; NSI/TPI 1.	and		11111		SEA 4584	NL 44

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek Affiliate 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Mattamy - Glades	
ССР	V01	Valley	1	1	Job Reference (optional)	157322074

Run: 8,63 S Nov 19 2022 Print: 8,630 S Nov 19 2022 MiTek Industries, Inc. Wed Mar 22 09:57:48 ID:61y_hxMMeXmw5DVzHHvWpozZ3Hr-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:57

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 13.2/20.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Inc Code	2-0-0 - 1.00 1.15 r YES IRC20 ⁻	15/TPI2014	CSI TC BC WB Matrix-MS	0.14 0.14 0.15	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 11	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 127 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood s 6-0-0 oc purlins, Rigid ceiling direct bracing. (size) 1=20-0 14=20 16=20 19=20 Max Horiz 1=192 Max Uplift 1=-19 12=-40 14=-10 16=-34 12=19 14=16 16=15 19=10	sheathing directly ap except end vertical tty applied or 10-0- 0-14, 11=20-0-14, -0-14, 13=20-0-14, -0-14, 15=20-0-14, -0-14, 17=20-0-14, -0-14, 20=20-0-14 (LC 13) (LC 12), 11=-15 (LC 0 (LC 15), 15=-32 (L (LC 15), 15=-32 (L 0 (LC 16), 20=-34 (L 0 (LC 30), 11=94 (LC 3 (LC 30), 13=199 (9 (LC 29), 15=172 (7 (LC 29), 20=300 (1 (LC 29), 20=300 (N 1 2 2 2 2 2 2 2 2 3 3 3 4 2 16), C 16), C 16), C 16), C 16), C 16), C 16), C 2 3 3 4 2 2 3 4 2 2 3 4 2 2 3 4 2 2 3 4 2 2 2 2 2 2 2 2 2 2 2 2 2	OTES) Unbalanced this design.) Wind: ASCE Vasd=91mpf II; Exp B; End and C-C Exte exposed ; en members and Lumber DOL) Truss design only. For stu see Standarc or consult que) TCLL: ASCE DOL=1.15 Pl snow); Ps=1: DOL=1.00); (Unobstructed) Roof design slope.) Unbalanced design.) Gable requird) Gable studs :) This truss ha	roof live loads hav 7-10; Vult=115m; ;; TCDL=6.0psf; E closed; MWFRS (erior (2) zone; car d vertical left and d forces & MWFR =1.60 plate grip I ed for wind loads ds exposed to wii l Industry Gable E alified building de alified building de alified building de pr-10; Pr=20.0 ps ate DOL=1.00); P 3.2 psf (roof snow Category II; Exp E slippery surface snow load has be snow loads have es continuous bot spaced at 2-0-0 o s been designed	ve been of CDL = 6. CDL = 6. envelope titlever le right exp S for rea OOL = 1.32 in the p nd (norm in dh Deta signer a: f (roof liv of =20.0 p : Lumbe c. Fully E en reduce been con toom choir c. for a 10.	considered for cond gust) (ppsf; h=30ft; a) exterior zon fit and right sosed;C-C for ctions shown alane of the tru al to the face ils as applica s per ANSI/TI r DOL=1.15 F xp.; Ct=1.10; ed to account sidered for the d bearing. D psf bottom	or Cat. ne r s; J, ble, Pl 1. ber Plate at for his	13) This Inte R80 LOAD C	s truss is rnationa i2.10.2 a :ASE(S)	s desig Il Resi and ref) Sta	ned in accordance dential Code sect ferenced standard ndard	e with the 20' ions R502.11. J ANSI/TPI 1.	15 .1 and
FORCES TOP CHORD BOT CHORD WEBS	(b) - Maximum C Tension 1-2=-249/157, 2- 4-5=-134/122, 5- 7-8=-150/166, 8- 10-11=-85/63 1-20=-66/175, 19 16-17=-47/53, 12 7-14=-129/54, 6- 4-17=-128/58, 3- 8-13=-161/53, 9-	2012 (2012) 2010 (compression/Maxim) 3=-161/125, 3-4=-14 6=-123/130, 6-7=-15 9=-120/130, 9-10=-16 -20=-47/53, 17-19= -16=-47/53, 17-19= -13=-47/53, 14-15= -13=-47/53, 14-15= -13=-47/53, 11-12= 15=-131/57, 5-16=-1 19=-96/53, 2-20=-15 12=-139/73	1 1 1 1 1 1 1 1 1 1 1 1 1 1	 chord live loa (0) * This truss h on the botton 3-06-00 tall b chord and ar (1) Provide mech bearing plate (11, 19 lb upli at joint 15, 3/ 29 lb uplift at at joint 13 an (2) Beveled plate surface with 	d nonconcurrent as been designed in chord in all area y 2-00-00 wide w y other members nanical connection capable of withst ft at joint 1, 10 lb lb uplift at joint 1 joint 19, 46 lb upl d 40 lb uplift at join e or shim requirec truss chord at join	with any d for a liv is where ill fit betv n (by oth anding 1 uplift at ju 6, 34 lb lift at join int 12. I to provi t(s) 1.	other live loa e load of 20.0. a rectangle veen the botto ers) of truss t 5 lb uplift at joint 1 5 Jb uplift at joint 1 t 20, 32 lb up de full bearing	ids. Dpsf to joint uplift 17, vlift g				SEA 4584 SEA 4584 SEA 4584 March	L H4 OHNSON 22,2023	Summing

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Mattamy - Glades	
ССР	V02	Valley	1	1	Job Reference (optional)	157322075

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Wed Mar 22 09:57:49 ID:?y98nVzgpGYRUOKw?tAIRIzYQks-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Job	Truss	Truss Type	Qty	Ply	Mattamy - Glades	
ССР	V03	Valley	1	1	Job Reference (optional)	157322076

Loading

TCDL

BCLL

BCDL

OTHERS

WEBS

NOTES

1)

2)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Wed Mar 22 09:57:49 ID:q5WP1Y1RP6lbCJn3L8HAh0zYQkm-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

818 Soundside Road Edenton, NC 27932

a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Mattamy - Glades		
CCP	V04	Valley	1	1	Job Reference (optional)	157322077	

Run: 8.63 S. Nov 19 2022 Print: 8.630 S.Nov 19 2022 MiTek Industries. Inc. Wed Mar 22 09:57:49

Page: 1

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Mattamy - Glades		
CCP	V05	Valley	1	1	Job Reference (optional)	157322078	

TCDL

BCLL

BCDL

2)

Run: 8.63 S. Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries. Inc. Wed Mar 22 09:57:50 ID:X17B8z9j2BZAPsY_xETW57zYQkc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Mattamy - Glades	
ССР	V06	Valley	1	1	Job Reference (optional)	157322079

TCDL

BCLL

BCDL

1)

2)

3)

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Wed Mar 22 09:57:50 ID:QoMizKCD6P3btTrmA4XSFzzYQkY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

818 Soundside Road Edenton, NC 27932

13-0-7 6-6-3 12-6-8 6-6-3 6-0-4 0-5-15 4x6 =3 13 14 2x4 u 2x4 u 3-6-3 3-9-14 2 4 12 7 Г Ø 5 8 6 7 2x4 ı 2x4 🛛 2x4 II 3x4 🦼 3x4 13-0-7 Scale = 1:33.9 Loading Spacing 2-0-0 CSI DEFL l/defl L/d PLATES GRIP (psf) in (loc) TCLL (roof) 20.0 Plate Grip DOL 1.00 TC 0.19 Vert(LL) n/a 999 MT20 244/190 n/a Snow (Ps/Pf) BC 13 2/20 0 Lumber DOL 1 15 0.12 Vert(TL) n/a n/a 999 10.0 Rep Stress Incr YES WB 0.06 Horiz(TL) 0.00 5 n/a n/a 0.0 Code IRC2015/TPI2014 Matrix-MS 10.0 Weight: 48 lb FT = 20%LUMBER 4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.00); Pf=20.0 psf (flat roof TOP CHORD 2x4 SP No.2 snow); Ps=13.2 psf (roof snow: Lumber DOL=1.15 Plate BOT CHORD 2x4 SP No.2 2x4 SP No.3 DOL=1.00); Category II; Exp B; Fully Exp.; Ct=1.10; OTHERS Unobstructed slippery surface BRACING Roof design snow load has been reduced to account for 5) TOP CHORD Structural wood sheathing directly applied or slope. 6-0-0 oc purlins. 6) Unbalanced snow loads have been considered for this BOT CHORD Rigid ceiling directly applied or 10-0-0 oc design. bracing. 7) Gable requires continuous bottom chord bearing. REACTIONS (size) 1=13-0-7, 5=13-0-7, 6=13-0-7, 8) Gable studs spaced at 4-0-0 oc. 7=13-0-7, 8=13-0-7 This truss has been designed for a 10.0 psf bottom 9) Max Horiz 1=-71 (LC 12) chord live load nonconcurrent with any other live loads. 1=-5 (LC 17), 6=-65 (LC 17), 8=-66 Max Uplift 10) * This truss has been designed for a live load of 20.0psf (LC 16) on the bottom chord in all areas where a rectangle 1=75 (LC 30), 5=70 (LC 2), 6=314 Max Grav 3-06-00 tall by 2-00-00 wide will fit between the bottom (LC 34), 7=287 (LC 2), 8=314 (LC chord and any other members. 33) 11) Provide mechanical connection (by others) of truss to FORCES (Ib) - Maximum Compression/Maximum bearing plate capable of withstanding 5 lb uplift at joint Tension 1, 66 lb uplift at joint 8 and 65 lb uplift at joint 6. TOP CHORD 1-2=-100/69, 2-3=-91/72, 3-4=-86/67, 12) This truss is designed in accordance with the 2015 4-5=-83/47 International Residential Code sections R502.11.1 and BOT CHORD 1-8=-20/79, 7-8=-20/38, 6-7=-20/38, R802.10.2 and referenced standard ANSI/TPI 1. 5-6=-20/65 LOAD CASE(S) Standard WEBS 3-7=-203/11. 2-8=-245/112. 4-6=-245/111 NOTES \cap Unbalanced roof live loads have been considered for this design. Common Common annun nin Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. mm March 22,2023 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Mattamy - Glades	
ССР	V07	Valley	1	1	Job Reference (optional)	157322080

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Wed Mar 22 09:57:51 ID:mlAb02GMwyhu_Ekizd7dy0zYQkT-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

27 f

10-2-2

Scale = 1:30.2

Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 13.2/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.30 0.27 0.13	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 34 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood sheat 10-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=10-2-2, Max Horiz 1=-55 (LC Max Uplift 1=-25 (LC Max Grav 1=-77 (LC (LC 2)	athing directly applie applied or 6-0-0 oc 3=10-2-2, 4=10-2-2 12) 34), 3=-25 (LC 33), 16) 33), 3=77 (LC 34), 4	4) d or 5) 6) 7) 8) 9) =745	TCLL: ASCE DOL=1.15 P snow); Ps=1 DOL=1.00); Unobstructe Roof design slope. Unbalanced design. Gable requir Gable studs This truss ha chord live lo)) * This truss lo on the botto 3-06-00 tall	7-10; Pr=20.0 p Plate DOL=1.00); 3.2 psf (roof sno Category II; Exp d slippery surfac snow load has b snow loads have res continuous bo spaced at 4-0-0 as been designer ad nonconcurren has been designer ad nonconcurren has been design w 2-00-00 wide	sf (roof liv Pf=20.0 p Pf=20.0 p w: Lumbe B; Fully E e een reduc e been cor oc. d for a 10.1 t with any ed for a live as where will fit hetw	e load: Lumb sf (flat roof r DOL=1.15 F xp.; Ct=1.10; ed to accoun nsidered for th d bearing. D psf bottom other live loa e load of 20.0 a rectangle	er Plate t for nis ds. Dpsf					
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance	(lb) - Maximum Com Tension 1-2=-69/364, 2-3=-6 1-4=-256/82, 3-4=-2 2-4=-570/113	pression/Maximum 9/364 56/82	11	 chord and ai Provide mec bearing plate t, 25 lb uplif This truss is International R802 10 2 a 	ny other member shanical connecti e capable of with t at joint 3 and 2' designed in acco Residential Cod nd referenced st	s. on (by oth standing 2 I lb uplift a ordance w e sections andard AN	ers) of truss t 25 lb uplift at j it joint 4. ith the 2015 5 R502.11.1 a JSI/TPI 1	o oint ind					

 Unbalanced root live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	Mattamy - Glades	
CCP	V08	Valley	1	1	Job Reference (optional)	157322081

1-10-3

2-1-14

Run; 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Wed Mar 22 09:57:51 ID:7jzU4lKVIUJB4?chlBjof4zYQkO-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

7-3-14

.

Scale = 1:25.6														
Loading TCLL (roof) Snow (Ps/Pf) TCDL BCLL BCDL	(psf) 20.0 13.2/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MP	0.16 0.16 0.07	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 24 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 7-3-14 oc purlins. Rigid ceiling directly bracing. (size) 1=7-3-14, Max Horiz 1=-38 (LC Max Uplift 1=-2 (LC - (LC 16) Max Grav 1=73 (LC (LC 2)	athing directly applied applied or 6-0-0 oc 3=7-3-14, 4=7-3-14 ; 12) 16), 3=-8 (LC 17), 4=- 33), 3=73 (LC 34), 4=	4) or 5) 6) 7) 8) 12 9) .488	TCLL: ASCE DOL=1.15 Pl snow); Ps=1: DOL=1.00); (Unobstructed Roof design slope. Unbalanced design. Gable requir Gable studs This truss ha chord live loa)) * This truss the on the bottor 3-06-00 tall h	7-10; Pr=20.0 ps iate DOL=1.00); F 3.2 psf (roof snow Category II; Exp E d slippery surface snow load has be snow loads have es continuous bol spaced at 4-0-0 c is been designed ad nonconcurrent nas been designed n chord in all area y 2-00-00 wide w	of (roof liv) Pf=20.0 p : Lumbe 3; Fully E een reduc been con tom chon c. for a 10. with any d for a liva as where ill fit bety	e load: Lumb sf (flat roof r DOL=1.15 F xp.; Ct=1.10; ed to accoun insidered for th d bearing. D psf bottom other live load e load of 20.0 a rectangle ween the bott	er Plate t for his ds. Dpsf						
FORCES	(lb) - Maximum Com Tension	pression/Maximum	11	chord and ar	y other members	in (by oth	ers) of truss to	0						
TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance	OP CHORD 1-2=-73/214, 2-3=-73/214 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 2 lb uplift at joint OT CHORD 1-4=-162/61, 3-4=-162/61 1, 8 lb uplift at joint 3 and 12 lb uplift at joint 4. VEBS 2-4=-338/68 12) This truss is designed in accordance with the 2015 IOTES International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.							int nd						
this design				LOAD CASE(S) Standard										

- Wind: ASCE 7-10; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Mattamy - Glades		
CCP	V09	Valley	1	1	Job Reference (optional)	157322082	

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Wed Mar 22 09:57:51 ID:?UD?v7N?pjqcZdwS_0nkpwzYQkK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3-11-10

1-8-14

March 22,2023

818 Soundside Road Edenton, NC 27932

3x4 = 2

4-5-9

0-5-15

4-5-9

3x4 👟

3x4 🍬

2-2-13

2-2-13

Scale = 1:23.3

Plate Offsets (X, Y): [2:0-2-0,Edge]

			-			-						
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.00	TC	0.15	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Ps/Pf)	13.2/20.0	Lumber DOL	1.15	BC	0.13	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC2015/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 13 lb	FT = 20%
LUMBER			6) Unbalanced	snow loads have be	een cor	sidered for th	nis					
TOP CHORD	2x4 SP No.2		design.									
BOT CHORD 2x4 SP No.2 7) Gable requires continuous bottom chord bearing.												
BRACING	RACING 8) Gable studs spaced at 4-0-0 oc.											
TOP CHORD	OP CHORD Structural wood sheathing directly applied or 4-5-9 oc purlins. 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.											
BOT CHORD	TCHORD Rigid ceiling directly applied or 10-0-0 oc hereing											
REACTIONS	(size) 1=4-5-9 3	3=4-5-9	3-06-00 tall	by 2-00-00 wide will	fit betv	veen the botto	om					
	Max Horiz 1=22 (LC	13)	chord and a	ny other members.								
	Max Uplift 1=-5 (LC	16), 3=-5 (LC 17)	11) Provide med	chanical connection	(by oth	ers) of truss to	0					
	Max Grav 1=179 (LC	C 2), 3=179 (LC 2)	bearing plat	e capable of withsta	naing t	ib uplift at joi	int 1					
FORCES	(lb) - Maximum Com	pression/Maximum	12) This truss is	designed in accord	ance w	ith the 2015						
	Tension		Internationa	Residential Code s	sections	R502.11.1 a	nd					
TOP CHORD	1-2=-291/35, 2-3=-29	91/35	R802.10.2 a	nd referenced stand	dard AN	ISI/TPI 1.						
BOT CHORD	1-3=-22/244		LOAD CASE(S)	Standard								
NOTES			()									
1) Unbalance	ed roof live loads have	been considered for										
this desigr	n.											
2) Wind: ASC	CE 7-10; Vult=115mph	(3-second gust)										• 30 TO 1
Vasd=91n	nph; TCDL=6.0psf; BC	DL=6.0psf; h=30ft; C	at.								, mining	11111
II; Exp B; I	Enclosed; MWFRS (en	ivelope) exterior zone)						_	. 9	"TH CA	ROUL
and C-C E	and vortical loft and ric	abt expected C C for								1	R	1
members	and forces & MWFRS	for reactions shown							- I - (U FESP	Qi
Lumber D	OL=1.60 plate grip DO	L=1.33								v ×		Nury . Groce.
 Truss des 	signed for wind loads in	the plane of the trus	S						-		Q	
only. For	studs exposed to wind	(normal to the face),							=	:	SEA	1 1 E
see Stand	lard Industry Gable End	d Details as applicabl	e,						=		150	
or consult	qualified building desig	gner as per ANSI/TPI	1.								4584	44 <u>:</u> E
4) TCLL: AS	CE 7-10; Pr=20.0 psf (I	roof live load: Lumbe	r									1 2
DOL=1.15	5 Plate DOL=1.00); Pf=	20.0 psf (flat roof								- 7	· .	0123
snow); Ps	=13.2 pst (root snow: L	Lumber DOL=1.15 Pla	ate							2.1	VGIN	FERION
DOL=1.00	n, Calegory II; EXP B; F	-uily $exp.; Cl=1.10;$								11	Op	NS.IN
5) Roof desig	an snow load has been	reduced to account t	for							2.9	1, EW .1	OHIT
slope.											"Innin	innin,
											March	1 22 2023

