

RE: PCK75

MATTAMYHOMES/ALLEGHENY; LOT 75 PROVIDENCE CREEK

Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:

Customer: Project Name: PCK75 Lot/Block: Address: City:

Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014 Wind Code: ASCE 7-10 Roof Load: 40.0 psf

Design Program: MiTek 20/20 8.5 Wind Speed: 115 mph Floor Load: N/A psf

This package includes 38 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	153641773	A01G	8/15/2022	21	153641793	CV05	8/15/2022
2	153641774	A02	8/15/2022	22	153641794	V01	8/15/2022
3	153641775	A02A	8/15/2022	23	153641795	V02	8/15/2022
4	153641776	A03	8/15/2022	24	153641796	V03	8/15/2022
5	153641777	A04	8/15/2022	25	153641797	V04	8/15/2022
6	153641778	A05	8/15/2022	26	153641798	V05	8/15/2022
7	153641779	A07	8/15/2022	27	153641799	V06	8/15/2022
8	153641780	A08	8/15/2022	28	153641800	V07	8/15/2022
9	153641781	A09	8/15/2022	29	153641801	V08	8/15/2022
10	153641782	A10G	8/15/2022	30	153641802	V09	8/15/2022
11	153641783	B01G	8/15/2022	31	153641803	V10	8/15/2022
12	153641784	B02	8/15/2022	32	153641804	V11	8/15/2022
13	153641785	B03GR	8/15/2022	33	153641805	V12	8/15/2022
14	153641786	B04G	8/15/2022	34	153641806	V13	8/15/2022
15	153641787	B05G	8/15/2022	35	153641807	V14	8/15/2022
16	153641788	B06GR	8/15/2022	36	153641808	V15	8/15/2022
17	153641789	CV01	8/15/2022	37	153641809	V16	8/15/2022
18	153641790	CV02	8/15/2022	38	153641810	V17	8/15/2022
19	153641791	CV03	8/15/2022				
20	153641792	CV04GR	8/15/2022				

The truss drawing(s) referenced above have been prepared by

Truss Engineering Co. under my direct supervision

based on the parameters provided by Builders FirstSource-Apex,NC.

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2023

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Gilbert, Eric

- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 9) will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 60, 31, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 44, 43, 42, 41, 39, 38, 37, 36, 35, 34, 33 except (jt=lb) 59=159, 32=167.

GILB 1111111 August 15,2022

818 Soundside Road Edenton, NC 27932

SEAL

036322

CHILDRAW MARKET

10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S)

nued on page

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

August 15,2022

Job	Truss	Truss Type	Qty	Ply	MATTAMYHOMES/ALLEGHENY; LOT 75 PROVIDENCE CREEK
PCK75	A02	COMMON	9	1	153641774
Builders FirstSource, Apex, NC					Job Reference (optional) 8.530 s May 26 2022 MiTek Industries, Inc. Fri Aug 12 12:56:28 2022 Page 2
		ID:_	P7X_GPFn	kXXgca6l	LM05wyocTp-WDIdQFUijRCsLBute?JTZCburj1NjTnHmXc5plyoaqn
LOAD CASE(S) 1) Dead + Roof Live (balan Uniform Loads (plf) Vert: 1-7=-60, 7 2) Dead + 0.75 Poof Live (b	ced): Lumber Increase=1.15, -12=-60, 24-28=-20	Plate Increase=1.15	ase-1 15		
Uniform Loads (plf)			:456=1.15		
Vert: 1-7=-50, 7 3) Dead + Uninhabitable At Uniform Loads (plf)	-12=-50, 18-24=-20, 18-38=-3 tic Without Storage: Lumber	50, 28-38=-20, 21-22=-30(F) Increase=1.25, Plate Increase=1.25			
Vert: 1-7=-20, 7 4) Dead + 0.6 C-C Wind (P Uniform Loads (plf)	-12=-20, 24-28=-40, 21-22=-4 os. Internal) Case 1: Lumber	40(F) Increase=1.60, Plate Increase=1.60			
Vert: 1-2=42, 2- Horz: 1-2=-54, 2	32=22, 7-32=12, 7-35=22, 12 2-32=-34, 7-32=-24, 7-35=34,	-35=12, 24-28=-12 12-35=24			
5) Dead + 0.6 C-C Wind (P Uniform Loads (plf)	os. Internal) Case 2: Lumber	Increase=1.60, Plate Increase=1.60			
Vert: 1-2=8, 2-3 Horz: 1-2=-20, 2	4=12, 7-34=22, 7-37=12, 12- 2-34=-24, 7-34=-34, 7-37=24,	37=22, 24-28=-12 12-37=34			
6) Dead + 0.6 C-C Wind (N Uniform Loads (plf) Vert: 1-2=-13. 2	eg. Internal) Case 1: Lumber	Increase=1.60, Plate Increase=1.60			
Horz: 1-2=-7, 2-	7=12, 7-12=-12	Increase-1.60 Plate Increase-1.60			
Uniform Loads (plf) Vert: 1-2=-27, 2	-7=-32, 7-12=-32, 24-28=-20				
8) Dead + 0.6 MWFRS Win	/=12, /-12=-12 nd (Pos. Internal) Left: Lumbe	r Increase=1.60, Plate Increase=1.60			
Vert: 1-2=20, 2-	7=10, 7-12=8, 24-28=-12				
Horz: 1-2=-32, 2 9) Dead + 0.6 MWFRS Win	2-7=-22, 7-12=20 nd (Pos. Internal) Right: Lumb	er Increase=1.60, Plate Increase=1.60			
Uniform Loads (plf) Vert: 1-2=4, 2-7	=8, 7-12=10, 24-28=-12				
Horz: 1-2=-16, 2 10) Dead + 0.6 MWFRS W	2-7=-20, 7-12=22 ind (Neg. Internal) Left: Lumb	per Increase=1.60, Plate Increase=1.60			
Uniform Loads (plf) Vert: 1-2=-2, 2	-7=-7, 7-12=-8, 24-28=-20				
Horz: 1-2=-18, 11) Dead + 0.6 MWFRS W	2-7=-13, 7-12=12 ind (Neg. Internal) Right: Lun	nber Increase=1.60, Plate Increase=1.60			
Uniform Loads (plf)	-7=-8 7-12=-7 24-28=-20				
Horz: 1-2=-16, 12) Dead + 0.6 MWERS W	2-7=-12, 7-12=13 ind (Pos. Internal) 1st Paralle	l: Lumber Increase=1.60. Plate Increase=1.60			
Uniform Loads (plf)		2812			
Horz: 1-2=-26,	2-33=-31, 7-33=-21, 7-12=2, 24 ind (Dec. Internel) and Decel	4 al: Lumbar Increase 1.60 Plata Increase 1.60	`		
Uniform Loads (plf))		
Vert: 1-2=-3, 2 Horz: 1-2=-9, 2	-7=2, 7-36=9, 12-36=19, 24-2 2-7=-14, 7-36=21, 12-36=31	28=-12			
14) Dead + 0.6 MWFRS W Uniform Loads (plf)	ind (Pos. Internal) 3rd Paralle	el: Lumber Increase=1.60, Plate Increase=1.60			
Vert: 1-2=5, 2- Horz: 1-2=-17,	7=9, 7-12=2, 24-28=-12 2-7=-21, 7-12=14				
15) Dead + 0.6 MWFRS W Uniform Loads (plf)	ind (Pos. Internal) 4th Paralle	I: Lumber Increase=1.60, Plate Increase=1.60			
Vert: 1-2=-3, 2 Horz: 1-2=-9, 2	-7=2, 7-12=9, 24-28=-12 2-7=-14, 7-12=21				
16) Dead + 0.6 MWFRS W Uniform Loads (plf)	ind (Neg. Internal) 1st Paralle	el: Lumber Increase=1.60, Plate Increase=1.60			
Horz: 1-2=-26, 2- Horz: 1-2=-26, 47	2-33=-22, 7-33=-13, 7-12=-13, 24- 2-33=-22, 7-33=-13, 7-12=5	20=-20			
Uniform Loads (plf) Vert: 1-2=-11.	2-7=-15, 7-36=-7, 12-36=2, 2	4-28=-20	J		
Horz: 1-2=-9, 2	2-7=-5, 7-36=13, 12-36=22	e-1 25 Plate Increase-1 25			
Uniform Loads (plf)	7-12-20 18-24-20 19 29	-60 28-3820 21-2240(E)			
19) Dead + 0.75 Roof Live	(bal.) + 0.75 Uninhab. Attic S	torage + $0.75(0.6 \text{ MWFRS Wind (Neg. Int) Lef}$	t): Lumber	ncrease=	=1.60, Plate
Uniform Loads (plf)	27-40742-4440.04				
ven: 1-2=-37, Horz: 1-2=-13, 20) Deed : 0.75 Deet	2-7=-40, 7-12=-41, 18-24=-2 2-7=-10, 7-12=9	U, 10-30=-3U, 28-38=-2U, 21-22=-3U(F)	h+), I I-	r Inc	a 1.60 Plata
THE LOOP IN TO DOOL INC.	(DOLLIN / LININGOD Attic C	TOTADO I U JAULA MUNEDS Mund (New Jot) Die	DTV: LUMPODO	r inorococ	

20) Dead + 0.75 Roof Live (bal.) + 0.75 Uninhab. Attic Storage + 0.75(0.6 MWFRS Wind (Neg. Int) Right): Lumber Increase=1.60, Plate Increase=1.60

Job	Truss	Truss Type	Qty	Ply	MATTAMYHOMES/ALLEGHENY; LOT 75 PROVIDENCE CREEK	
PCK75	402	COMMON	q	1		153641774
	102		5		Job Reference (optional)	

Builders FirstSource, Apex, NC

8.530 s May 26 2022 MiTek Industries, Inc. Fri Aug 12 12:56:28 2022 Page 3 ID:_P7X_GPFnckXXgca6LM05wyocTp-WDIdQFUijRCsLBute?JTZCburj1NjTnHmXc5pIyoaqn

LOAD CASE(S)

Uniform Loads (plf)

Vert: 1-2=-38, 2-7=-41, 7-12=-40, 18-24=-20, 18-38=-50, 28-38=-20, 21-22=-30(F)

Horz: 1-2=-12, 2-7=-9, 7-12=10

21) Dead + 0.75 Roof Live (bal.) + 0.75 Uninhab. Attic Storage + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)

Vert: 1-2=-30, 2-33=-34, 7-33=-41, 7-12=-46, 18-24=-20, 18-38=-50, 28-38=-20, 21-22=-30(F)

Horz: 1-2=-20, 2-33=-16, 7-33=-9, 7-12=4 22) Dead + 0.75 Roof Live (bal.) + 0.75 Uninhab. Attic Storage + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf)

Vert: 1-2=-43, 2-7=-46, 7-36=-41, 12-36=-34, 18-24=-20, 18-38=-50, 28-38=-20, 21-22=-30(F)

- Horz: 1-2=-7, 2-7=-4, 7-36=9, 12-36=16
- 23) 1st Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)
- - Vert: 1-7=-60, 7-12=-20, 24-28=-20

24) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-7=-20, 7-12=-60, 24-28=-20

- 25) 3rd Dead + 0.75 Roof Live (unbalanced) + 0.75 Uninhab. Attic Storage: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)
 - Vert: 1-7=-50, 7-12=-20, 18-24=-20, 18-38=-50, 28-38=-20, 21-22=-30(F)

26) 4th Dead + 0.75 Roof Live (unbalanced) + 0.75 Uninhab. Attic Storage: Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-7=-20, 7-12=-50, 18-24=-20, 18-38=-50, 28-38=-20, 21-22=-30(F)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-9-10 to 4-2-1, Interior(1) 4-2-1 to 25-0-0, Exterior(2) 25-0-0 to 32-0-7, Interior(1) 32-0-7 to 49-9-0 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) All plates are 5x8 MT20 unless otherwise indicated.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 12.

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek Affilik 818 Soundside Road Edenton, NC 27932

Edenton, NC 27932

August 15,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 ENGINEERING BY **REENCO** A MITek Attiliate 818 Soundside Road

Edenton, NC 27932

August 15,2022

will fit between the bottom chord and any other members, with BCDL = 10.0psf. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1.

				50	-0-0						
LOADING TCLL TCDL BCLL BCDL	(psf) 20.0 10.0 0.0 * 10.0	SPACING- 2 Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TPI2C	-0-0 CSI. 1.15 TC 1.15 BC NO WB 014 Matrix	0.14 0.09 0.14 x-R	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.00 -0.01 0.01	(loc) 30 30 31	l/defl n/r n/r n/a	L/d 120 120 n/a	PLATES MT20 Weight: 369 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHOF BOT CHOF WEBS OTHERS	RD 2x4 SP RD 2x4 SP 2x4 SP 2x4 SP 2x4 SP	No.2 No.2 No.3 No.3			BRACING- TOP CHOR BOT CHOR WEBS	2D 2D	Structur except e Rigid ce 1 Row a	al wood s and vertic iling direc t midpt	heathing d als. ctly applied	irectly applied or 6-0-0 o or 6-0-0 oc bracing. 15-46, 14-47, 13-48, 12- 18-42	c purlins, 49, 16-44, 17-43,

REACTIONS. All bearings 50-0-0.

(lb) - Max Horz 60=-131(LC 13)

 Max Uplift
 All uplift
 100 lb or less at joint(s)
 60, 31, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 44, 43, 42, 41, 39, 38, 37, 36, 35, 34, 33 except 59=-157(LC 12), 32=-121(LC 13)

 Max Grav
 All reactions 250 lb or less at joint(s)
 60, 31, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 44, 43, 42, 41, 39, 38, 37, 36, 35, 34, 33, 32

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 12-13=-94/279, 13-14=-105/311, 14-15=-115/337, 15-16=-115/329, 16-17=-105/303, 17-18=-94/271

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) 0-1-12 to 5-0-0, Exterior(2) 5-0-0 to 25-0-0, Corner(3) 25-0-0 to 30-0-0, Exterior(2) 30-0-0 to 51-0-0 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

7) Gable studs spaced at 2-0-0 oc.

- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 60, 31, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 44, 43, 42, 41, 39, 38, 37, 36, 35, 34, 33 except (jt=lb) 59=157, 32=121.

TREENCO AMTek Affiliate 818 Soundside Road

Edenton, NC 27932

			2000					ATES GRIP
			20-8-0				I	
LOADING (psf) TCLL 20.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15	CSI. TC 0.12 BC 0.07	DEFL. in Vert(LL) -0.00 Vert(CT) -0.00	(loc) 13 13	l/defl n/r n/r	L/d 120 120	PLATES MT20	GRIP 244/190
BCDL 10.0	Rep Stress Incr NO Code IRC2015/TPI2014	Matrix-R	Horz(CT) 0.00	14	n/a	n/a	Weight: 127 lb	FT = 20%
LUMBER-			BRACING-					

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD WEBS 2x4 SP No.3 OTHERS 2x4 SP No.3 TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. All bearings 20-8-0.

Max Horz 25=157(LC 11) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 25, 14, 20, 21, 23, 24, 18, 17, 16, 15

Max Grav All reactions 250 lb or less at joint(s) 25, 14, 19, 20, 21, 23, 24, 18, 17, 16, 15

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-11-15 to 3-9-10, Exterior(2) 3-9-10 to 10-4-0, Corner(3) 10-4-0 to 15-1-10, Exterior(2) 15-1-10 to 21-7-15 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

Gable studs spaced at 2-0-0 oc.

8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 9) will fit between the bottom chord and any other members.

10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 25, 14, 20, 21, 23, 24, 18, 17, 16, 15.

818 Soundside Road Edenton, NC 27932

BRACING-

TOP CHORD

BOT CHORD

LUMBER-	
---------	--

- TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 *Except*
- 9-11: 2x4 SP No.1 WEBS 2x4 SP No.3
- REACTIONS. (size) 11=0-3-8, 8=0-3-8 Max Horz 11=-157(LC 10) Max Uplift 11=-21(LC 12), 8=-21(LC 13)
 - Max Grav 11=884(LC 1), 8=884(LC 1)
- FORCES. (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown.
- TOP CHORD 3-4=-848/82, 4-5=-848/82
- BOT CHORD 10-11=-96/822, 8-10=-29/806
- WEBS 4-10=0/485, 5-8=-902/114, 3-11=-903/113

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-11-15 to 4-0-7, Interior(1) 4-0-7 to 10-4-0, Exterior(2) 10-4-0 to 17-1-7, Interior(1) 17-1-7 to 21-7-15 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 11, 8.

Structural wood sheathing directly applied or 5-3-13 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

818 Soundside Road Edenton, NC 27932

building design. Bracing indicated is to prevent buckling of individual truss were band/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ucliapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

 TOP CHORD
 2x4 SP No.2

 BOT CHORD
 2x4 SP No.2

 WEBS
 2x4 SP No.3

 OTHERS
 2x4 SP No.3

BRACING-TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 2-4-0 except (jt=length) 10=1-3-8, 9=0-3-8.

(lb) - Max Horz 10=-184(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 10, 6

Max Grav All reactions 250 lb or less at joint(s) 7, 7, 9 except 10=332(LC 1), 6=356(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-10=-339/147, 4-6=-338/149

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-11-15 to 3-9-10, Interior(1) 3-9-10 to 4-3-14, Exterior(2) 4-3-14 to 9-1-8, Interior(1) 9-1-8 to 9-7-11 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) All plates are 2x4 MT20 unless otherwise indicated.

Gable studs spaced at 2-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 10, 6.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-11-15 to 3-9-10, Exterior(2) 3-9-10 to 6-2-0, Corner(3) 6-2-0 to 10-11-10, Exterior(2) 10-11-10 to 13-3-15 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 16, 10, 14, 15, 12, 11.

August 15,2022

ENGINEERING BY A MITEK Affiliate 818 Soundside Road Edenton, NC 27932

		0-2-4 0-2-4	2-0-0 1-9-12				3-1 ⁻ 1-1 ⁻	1-12 1-12		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TPI2	2-0-0 1.15 1.15 NO 2014	CSI. TC 0.16 BC 0.20 WB 0.01 Matrix-MP	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.01 -0.02 0.02 0.01	(loc) 6 6 4 6	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 16 lb	GRIP 244/190 FT = 20%

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.3

BRACING-

BOT CHORD

Structural wood sheathing directly applied or 3-11-12 oc purlins, except end verticals, and 2-0-0 oc purlins: 3-4. Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. (size) 7=0-3-0, 4=Mechanical, 5=Mechanical Max Horz 7=38(LC 5) Max Uplift 7=-23(LC 8), 4=-20(LC 5) Max Grav 7=239(LC 1), 4=88(LC 1), 5=67(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope)
- gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 4.
- 8) Girder carries hip end with 0-0-0 right side setback, 0-0-0 left side setback, and 2-6-0 end setback.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15
- Uniform Loads (plf)

Vert: 1-2=-60, 2-3=-64(F=-4), 3-4=-64(F=-4), 5-7=-21(F=-1)

		0-2-4	3-9-8		
LOADING (psf) TCLL 20.0	SPACING- 2-0-0 Plate Grip DOL 1.15	CSI. TC 0.21	DEFL. in (loc) Vert(LL) -0.01 4-5	l/defl L/d >999 360	PLATES GRIP MT20 244/190
BCLL 0.0 * BCDL 10.0	Rep Stress Incr YES Code IRC2015/TPI2014	WB 0.00 Matrix-MR	Vert(CT) -0.02 4-5 Horz(CT) -0.01 3 Wind(LL) 0.01 4-5	>999 240 n/a n/a >999 240	Weight: 15 lb FT = 20%

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS

2x4 SP No.3

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 3-11-12 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. 5=0-3-0, 3=Mechanical, 4=Mechanical (size)

Max Horz 5=53(LC 12)

Max Uplift 5=-11(LC 12), 3=-43(LC 12) Max Grav 5=230(LC 1), 3=99(LC 1), 4=71(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3.

	6 (psf)	SPACING- 2-0-0	CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
	20.0	Plate Grip DOL 1.15	TC 0.10	Vert(LL)	-0.00	5	>999	360	MT20	244/190
BCLL BCDL	0.0 * 10.0	Rep Stress Incr NO Code IRC2015/TPI2014	WB 0.00 Matrix-MR	Horz(CT) Wind(LL)	-0.00 -0.00 0.00	4-5 3 5	>999 n/a >999	n/a 240	Weight: 9 lb	FT = 20%

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.3

o.2

BRACING-TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 2-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 3=Mechanical, 4=Mechanical, 5=0-3-8

Max Horz 5=36(LC 5)

Max Uplift 3=-22(LC 8), 5=-16(LC 4) Max Grav 3=38(LC 1), 4=33(LC 3), 5=164(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 5.

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-2=-60, 2-3=-86(F=-26), 3-4=-86(F=-26), 4-5=-86(F=-26), 5-6=-60, 7-10=-29(F=-9)

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.60 BC 0.30 WB 0.08 Matrix-MR	DEFL. in Vert(LL) -0.03 Vert(CT) -0.08 Horz(CT) 0.07 Wind(LL) 0.07	n (loc) 3 6-7 3 6-7 1 6 1 7-8	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 48 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 S BOT CHORD 2x4 S WEBS 2x6 S	P No.2 P No.2 P No.2 *Except*		BRACING- TOP CHORD BOT CHORD	Structu except Rigid c	ural wood s end vertic ceiling direct	heathing dir als. ctly applied o	rectly applied or 6-0-0 or 10-0-0 oc bracing.	oc purlins,

3-7: 2x4 SP No.3 REACTIONS. (size) 8=0-3-8, 6=0-3-8 Max Horz 8=-27(LC 17)

Max Uplift 8=-32(LC 12), 6=-32(LC 13) Max Grav 8=535(LC 1), 6=535(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-8=-464/156, 2-3=-538/95, 3-4=-538/95, 4-6=-464/156 TOP CHORD

BOT CHORD 7-8=-17/421, 6-7=-17/421

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -1-0-0 to 3-9-10, Interior(1) 3-9-10 to 6-0-0, Exterior(2) 6-0-0 to 13-0-0 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 6.

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-8-12 to 5-6-6, Interior(1) 5-6-6 to 6-0-0, Exterior(2) 6-0-0 to 10-9-10, Interior(1) 10-9-10 to 11-3-4 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 6, 7.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss system. See **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek Affiliate 818 Soundside Road Edenton, NC 27932

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

2x4 ⋍

2x4 🗢

Rigid ceiling directly applied or 10-0-0 oc bracing.

			4-0-0 4-0-0	
Plate Olisets (X, Y)	[2:0-3-0,Edge]			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2015/TPI2014	CSI. TC 0.04 BC 0.13 WB 0.00 Matrix-P	DEFL. in (loc) l/defl L/d Vert(LL) n/a - n/a 999 Vert(CT) n/a - n/a 999 Horz(CT) 0.00 3 n/a n/a	PLATES GRIP MT20 244/190 Weight: 10 lb FT = 20%
LUMBER- TOP CHORD 2x4 SP	No.3		BRACING- TOP CHORD Structural wood sheathing dir	rectly applied or 4-0-0 oc purlins.

BOT CHORD

TOP CHORD 2x4 SP No.3 BOT CHORD 2x4 SP No.3

REACTIONS. 1=4-0-0, 3=4-0-0 (size) Max Horz 1=-7(LC 13) Max Uplift 1=-4(LC 12), 3=-4(LC 13) Max Grav 1=102(LC 1), 3=102(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

gable end zone and C-C Exterior(2) 0-6-8 to 5-4-1, Interior(1) 5-4-1 to 16-2-11, Exterior(2) 16-2-11 to 21-0-5, Interior(1) 21-0-5 28-10-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) All plates are 2x4 MT20 unless otherwise indicated.

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 11, 1, 16, 17, 18, 13, 12.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 11, 1, 16, 17, 18, 13, 12.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss system. See **MSIVTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek A 818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

August 15,2022

818 Soundside Road Edenton, NC 27932

August 15,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A. GILP.... August 15,2022

11-10-15 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 8.

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 7.

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

2x4 💋

2x4 📎

Structural wood sheathing directly applied or 3-10-9 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

	<u> </u>			3-10-9						
Plate Offsets (X,Y)	[2:0-3-0,Edge]			3-10-3						
LOADING (psf)	SPACING- 2-	0-0 CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1	.15 TC	0.05	Vert(LL)	n/a	-	n/a	999	MT20	244/190
CDL 10.0	Lumber DOL 1	.15 BC	0.16	Vert(CT)	n/a	-	n/a	999		
BCLL 0.0 *	Rep Stress Incr Y	YES WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL 10.0	Code IRC2015/TPI201	14 Matrix	k-P						Weight: 11 lb	FT = 20%
				BBACING-					_	

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.3 BOT CHORD 2x4 SP No.3

REACTIONS. 1=3-10-9, 3=3-10-9 (size) Max Horz 1=-16(LC 8) Max Uplift 1=-3(LC 12), 3=-3(LC 13) Max Grav 1=112(LC 1), 3=112(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 5)

will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 7.

¹⁾ Unbalanced roof live loads have been considered for this design.

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

2x4 💋

2x4 🔍

Structural wood sheathing directly applied or 4-4-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

H					<u>4-4-0</u> 4-4-0							
Plate Off	sets (X,Y)	[2:0-3-0,Edge]				1						
LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.07	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.22	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL 10.0 Code IRC2		Code IRC2015/TI	/TPI2014 Matrix		x-P						Weight: 12 lb	FT = 20%
LUMBER	۶-					BRACING-						

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.3 BOT CHORD 2x4 SP No.3

REACTIONS. 1=4-4-0, 3=4-4-0 (size) Max Horz 1=-19(LC 8) Max Uplift 1=-4(LC 12), 3=-4(LC 13) Max Grav 1=130(LC 1), 3=130(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 5)

will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

