

Kempsville Sanford Component Plant 298 Harvey Faulk Rd Sanford, NC 27332

Phone #:919-775-1450

Builder: DRB HOMES

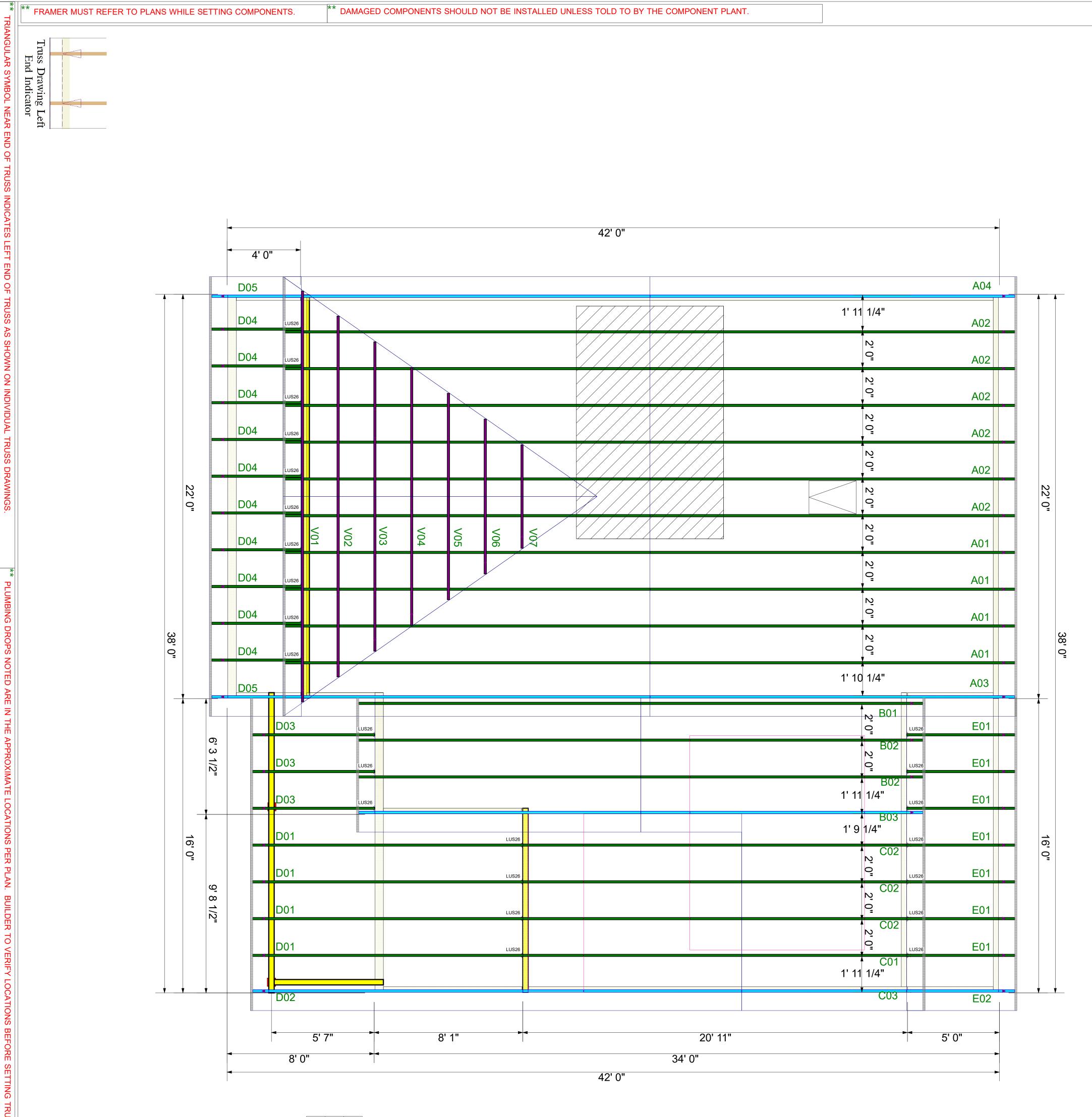
Model: 90 FaNC CAMERON 2

THE PLACEMENT PLAN NOTES:

1. The Placement Plan is a diagram for truss installation. It is not an engineered drawing and has not been reviewed by an engineer. The Owner/Building Designer is responsible for obtaining an engineer's review if one is required by the local jurisdiction.

2. The responsibilities of the Owner, Contractor, Building Designer, Component Designer and Component Manufacturer shall be as set forth in ANSI/TPI 1. Capitalized terms shall be as defined in ANSI/TP 1 unless otherwise indicated.

3. Each Component is designed as an individual component utilizing information provided by others. The Owner/Building Designer is responsible for reviewing all Component Submittal Packages and individual Component Design Drawings for compliance with the Construction Documents and compatibility with the overall Building design.


4. Contractor will not proceed with component installation until the Owner/Building Designer has reviewed the Component Submittal Package. Questions on the suitability of any Component will be resolved by the Building Designer.

5. The Building Designer and Contractor are responsible for all temporary and permanent bracing.

6. The Placement Plan assumes the building is dimensionally correct, structurally sound, and in a suitable condition to support each Component during installation and thereafter, including but not limited to installation of all bearing points. Proper design and construction of all structural components, including foundations, headers, beams, walls and columns are the responsibility of the Owner, Building Designer and Contractor.

7. Do not cut, drill, or modify any Component without first consulting the Component Manufacturer or Building Designer. Damaged Components shall not be installed unless directed by the Building Designer or approved by the Component Manufacturer.

8. Components must be handled and installed following all applicable safety standards and best practices, including but not limited to BCSI, OSHA, TPI and local codes. Failure to properly handle, brace or otherwise install Component can result in serious injury or death.

PLUMBING DROPS NOTED ARE IN THE APPROXIMATE LOCATIONS PER PLAN. BUILDER TO VERIFY LOCATIONS BEFORE SETTING TRUSSES.

FIRST. CUSTOMER TAKES FULL RESPONSIBILITY FOR COMPONENTS IF CUT BEFORE AUTHORIZATION.

General Notes:

** CUTTING OR DRILLING OF COMPONENTS SHOULD NOT BE DONE WITHOUT CONTACTING COMPONENT SUPPLIER

** GIRDERS MUST BE FULLY CONNECTED	D TOGETHER PRIOR TO ADDING ANY LOADS.	** DIMENSIONS ARE READ AS: FOOT-INCH-SIXTEENTH.	RUSS TO TRUSS CONNECTIONS ARE TOE-NAILED, UNLESS NOTED OTHERWISE.	
Scale: Date: Proje 220: Shee	DRB HOMES 90 FaNC		THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual components to be incorporated into the building design at the specification of the building designer. See Individual design sheets for each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor	00/00/00
Interview of the second	CAMERON 2 COMPONENT PLACEMENT PLAI	A Division of the Garter Lumber Company	systems and for the overall structure. The design of the truss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding the bracing, consult "Bracing of Wood Truss" available from the Truss Plate Institute, 583 D'Onifrio Drive: Madison, WI 53179	Name Name

** REFER TO FINAL TRUSS ENGINEERING SHEETS FOR PLY TO PLY CONNECTIONS.

Connector Product LUS26 Total List Simpson Manuf

Qty 24

Truss

00/00/00

Name

00/00/00

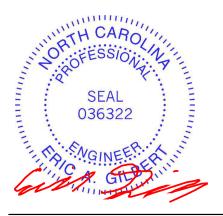
Name

00/00/00

Name

Revisions

Trenco 818 Soundside Rd Edenton, NC 27932


Re: 22090049 DRB GROUP - 90 FaNC

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Sanford, NC)).

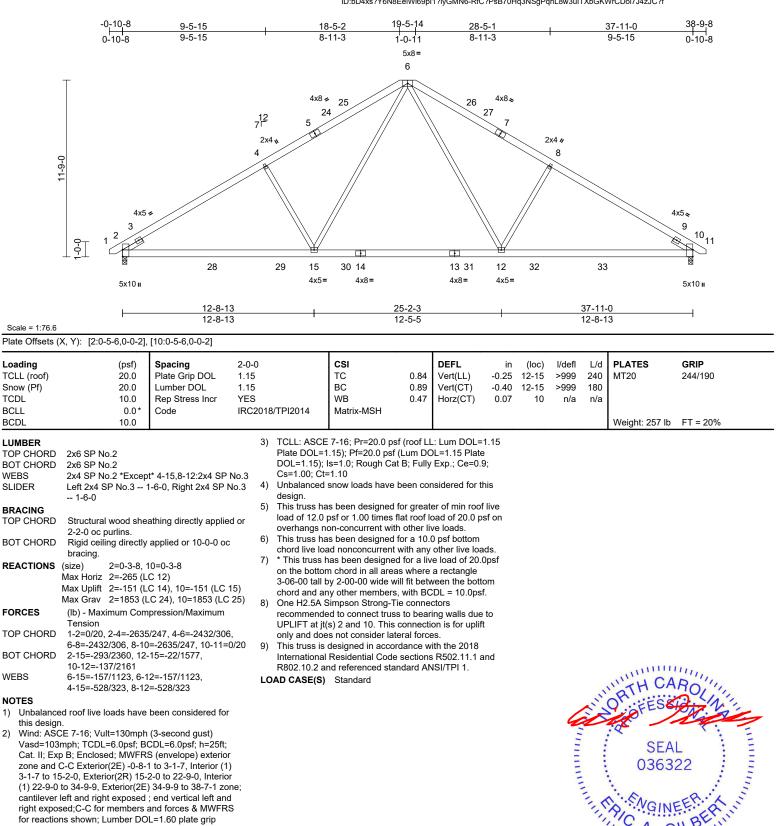
Pages or sheets covered by this seal: I58940380 thru I58940403

My license renewal date for the state of North Carolina is December 31, 2023.

North Carolina COA: C-0844

June 14,2023

Gilbert, Eric


IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 90 FaNC	
22090049	A01	Common	4	1	Job Reference (optional)	158940380

Run: 8,63 S Apr 6 2023 Print: 8,630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 14 09:59:30 ID:bD4xs?Y6N8EeiWi69pI1?iyGMN6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

38-9-8

(1) 22-9-0 to 34-9-9, Exterior(2E) 34-9-9 to 38-7-1 zone; cantilever left and right exposed : end vertical left and right exposed:C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

1)

2)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Edenton, NC 27932

G

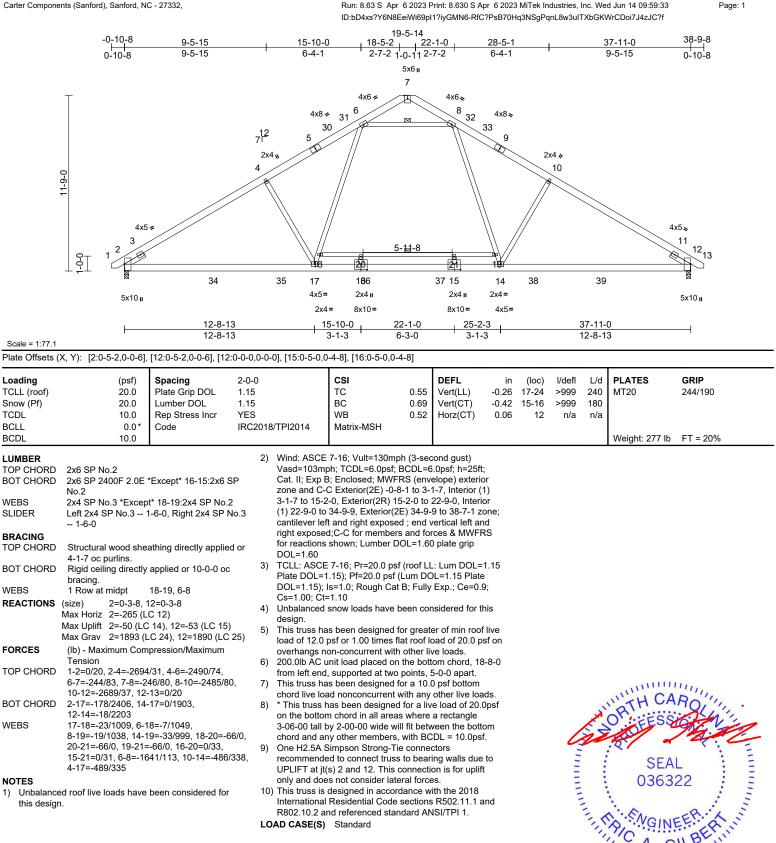
minim June 14,2023

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 90 FaNC	
22090049	A02	Common	6	1	Job Reference (optional)	158940381

TCDL

BCLL

BCDL


WEBS

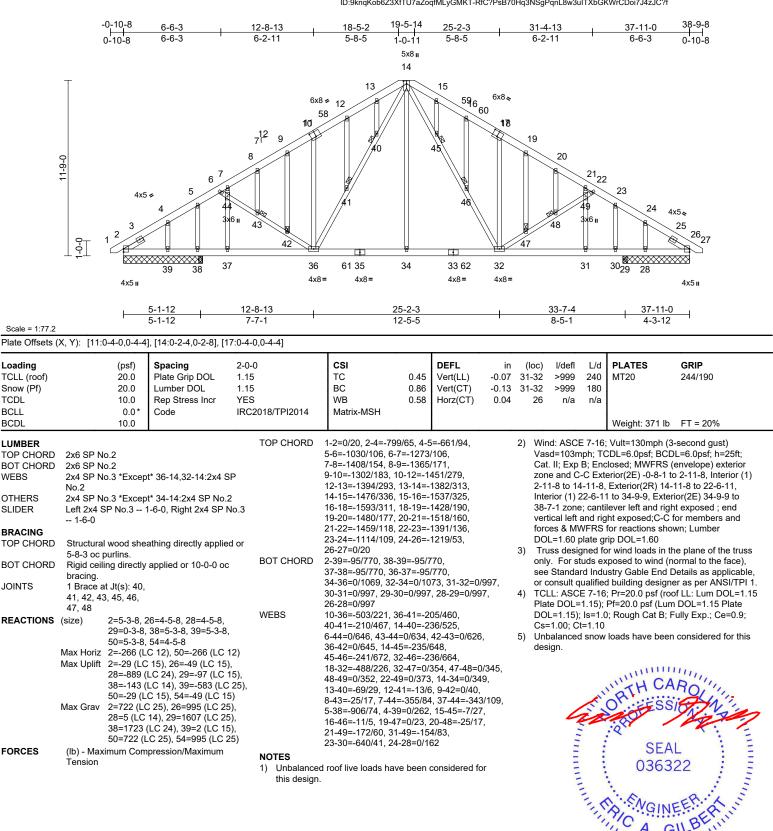
WEBS

WEBS

1)

Run: 8,63 S Apr 6 2023 Print: 8,630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 14 09:59:33

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



GI munn June 14,2023

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 90 FaNC	
22090049	A03	Common Structural Gable	1	1	Job Reference (optional)	158940382

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 14 09:59:34 ID:9knqKob6Z3XfTU7aZoqfMLyGMKT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

minim June 14,2023

GI

Continued on page 2

TCDL

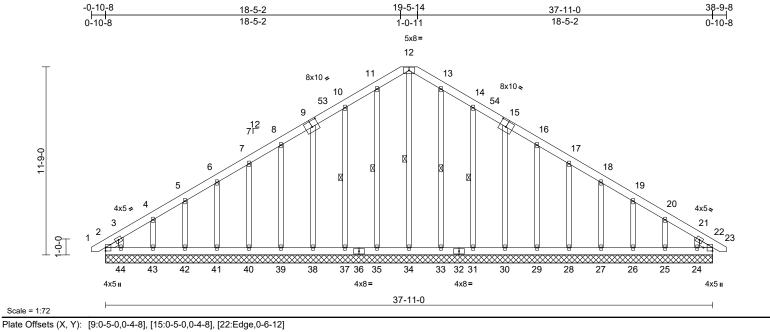
BCLL

BCDL

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE WARNIN(Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual russ web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual russ web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual russ web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 90 FaNC	
22090049	A03	Common Structural Gable	1	1	Job Reference (optional)	158940382

- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 7) All plates are 2x4 MT20 unless otherwise indicated.
- 8) Gable studs spaced at 2-0-0 oc.
- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 889 lb uplift at joint 28.


Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 14 09:59:34 ID:9knqKob6Z3XfTU7aZoqfMLyGMKT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 90 FaNC	
22090049	A04	Common Supported Gable	1	1	Job Reference (optional)	158940383

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 14 09:59:35 ID:husayWcpnt6IYOYkURLMI2yGMJ9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Loading TCLL (roof) Snow (Pf) TCDL BCLL		(psf) 20.0 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-M	0.05 0.03 0.15 1SH	Vert(CT)	in n/a n/a 0.01	(loc 22	- n/a - n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL		10.0										Weight: 358 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS SLIDER BRACING TOP CHORD BOT CHORD	Left 2x4 S No.3 0- Structural 6-0-0 oc p Rigid ceili	o.2 o.3 *Excep SP No.3 (11-6 I wood she purlins.	t* 34-12:2x4 SP No.2 D-11-6, Right 2x4 SP athing directly applied applied or 10-0-0 oc	2		2=233 (LC 14) 24=154 (LC 25 26=161 (LC 25 28=162 (LC 25 33=232 (LC 22 33=232 (LC 21 35=232 (LC 21 38=164 (LC 21 40=162 (LC 24 42=161 (LC 24 44=186 (LC 24), 25=165 (L), 27=161 (L), 29=154 (L), 31=228 (L), 34=191 (L), 37=228 (L), 39=154 (L), 41=161 (L), 43=165 (L	C 25), C 25), C 25), C 22), C 22), C 27), C 21), C 24), C 24), C 24), C 24),	NOTE	S	10-37 7-40= 4-43= 13-33 15-30 17-28 19-26 21-24	-123/73, 6-41=-1 -128/78, 3-44=-1 =-193/39, 14-31= =-125/74, 16-29= =-123/73, 18-27= =-122/71, 20-25= =-92/109	125/73, 8-39=-115/6 23/72, 5-42=-122/71 14/129, 189/86, 115/66, 123/72,
WEBS		midpt	12-34, 11-35, 10-37,	FORCES		49=172 (LC 15 mum Compres)		, th	is design			
	Max Horiz	13-33, 14-3		TOP CHORD BOT CHORD 3), 5), 5), 3), 4), 4), 4),	Tension 1-2=0/20, 4-5=-187/' 7-8=-136/' 10-11=-13 12-13=-14 14-16=-10 17-18=-72 20-21=-15 2-44=-88/' 42-43=-88 40-41=-88 38-39=-88 33-34=-88 30-31=-88 30-31=-88 28-29=-86 26-27=-86	2-3=-182/142, 167, 5-6=-163/ 140, 8-10=-122 5/225, 11-12=- 9/245, 13-14=- 5/165, 16-17=- /49, 18-19=-82 8/91, 21-22=-1 183, 43-44=-88 /183, 37-48=-88 /183, 37-48=-88 /183, 37-38=-8 /184, 31-33=-8 /184, 29-30=-8 /182, 27-28=-8 /182, 22-24=-8	3-4=-222/186 50, 6-7=-149 (193, 149/245, 135/216, 62/78, (55, 19-20=- 38/77, 22-23 (183, 8/183, 8/183, 8/184, 8/184, 8/184, 6/182, 6/182, 6/182,	6, 9/139, 108/72,	V C 2- E 31 Ve fo	asd=103r at. II; Exp one and C :11-8 to 1 xterior(2N 8-7-1 zon ertical left rcces & M OL=1.60	nph; T(B; Enc C-C Cor 4-11-8, I) 22-1 ² e; canti and rig WFRS plate g	closed; MWFRS (mer(3E) -0-8-1 to Corner(3R) 14-1 1-8 to 34-9-9, Cor ilever left and righ the exposed;C-C t for reactions sho rip DQL=1180 CALESS	DL=6.0psf; h=25ft; envelope) exterior 2-11-8, Exterior(2N) 1-8 to 22-11-8, mer(3E) 34-9-9 to at exposed; end for members and wn; Lumber

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Page: 1

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 90 FaNC	
22090049	A04	Common Supported Gable	1	1	Job Reference (optional)	158940383

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15)
 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 7) All plates are 2x4 MT20 unless otherwise indicated.
- 8) Gable requires continuous bottom chord bearing.
- 9) Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 149 lb uplift at joint 2, 58 lb uplift at joint 22, 24 lb uplift at joint 35, 60 lb uplift at joint 37, 50 lb uplift at joint 38, 43 lb uplift at joint 39, 49 lb uplift at joint 40, 49 lb uplift at joint 41, 49 lb uplift at joint 42, 50 lb uplift at joint 43, 161 lb uplift at joint 44, 15 lb uplift at joint 33, 63 lb uplift at joint 31, 50 lb uplift at joint 30, 43 lb uplift at joint 29, 49 lb uplift at joint 26, 50 lb uplift at joint 27, 49 lb uplift at joint 26, 50 lb uplift at joint 25, 132 lb uplift at joint 24, 149 lb uplift at joint 2 Joint 28, 100 lb uplift at joint 26, 50 lb uplift at joint 25, 132 lb uplift at joint 24, 149 lb uplift at joint 2 Joint 28 lb uplift at joint 28, 100 lb uplift at joint 24, 149 lb uplift at joint 28 lb uplift at joint 28, 100 lb uplift at joint 22, 132 lb uplift at joint 24, 149 lb uplift at joint 28 lb uplift at joint 28, 100 lb uplift at joint 28 lb uplift at joint 28, 100 lb uplift at joint 28, 100 lb uplift at joint 28 lb uplift at joint 28, 100 lb uplift at joint 28 lb uplift at joint 28, 100 lb uplift at joint 28 lb uplift at joint 28, 100 lb uplift at joint 28 lb uplift a
- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 14 09:59:35 ID:husayWcpnt6IYOYkURLMI2yGMJ9-RtC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

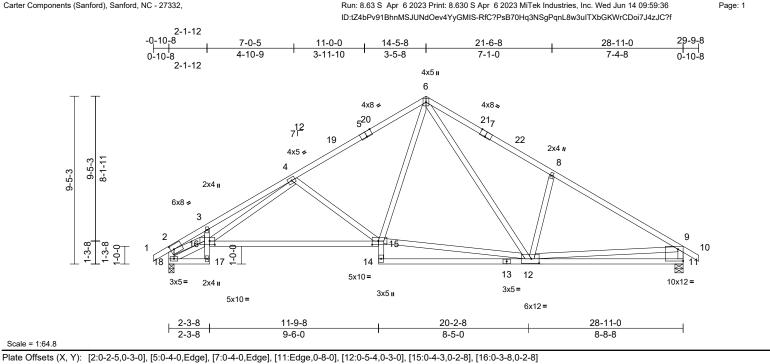
Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 90 FaNC	
22090049	B01	Common	1	1	Job Reference (optional)	158940384

1)

2)

Run: 8,63 S Apr 6 2023 Print: 8,630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 14 09:59:35

Page: 1


818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria. DSB-89 and BCSI Building Component
Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601
Galery mornation available non muss mate motivate, 2010 Granninghway, Suite 203 Waldon, MD 2000 h

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 90 FaNC	
22090049	B02	Roof Special	2	1	Job Reference (optional)	158940385

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 14 09:59:36

Carter Components (Sanford), Sanford, NC - 27332,

Loading TCLL (roof) Snow (Pf) TCDL	(psf) 20.0 20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI TC BC WB	0.99 0.77 0.79	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.30 -0.64 0.11	(loc) 15-16 15-16 11	l/defl >999 >540 n/a		GRIP 244/190
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH							
BCDL	10.0				-					Weight: 185 lb	FT = 20%

LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 *Except* 17-3,15-14:2x4 SP No.3, 16-15:2x4 SP No.1 2x4 SP No.3 *Except* 12-6:2x4 SP No.2 Structural wood sheathing directly applied, except end verticals.	v Z 2 (c ri f c	Vind: ASCE 7-16; Vult=130mph (3-second gust) /asd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior one and C-C Exterior(2E) -0-10-8 to 2-0-14, Interior (1) -0-14 to 11-5-8, Exterior(2R) 11-5-8 to 17-5-8, Interior 1) 17-5-8 to 26-9-8, Exterior(2E) 26-9-8 to 29-9-8 zone; antilever left and right exposed ; end vertical left and ight exposed; C-C for members and forces & MWFRS or reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 'CLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15	
REACTIONS	5	C 4) L	Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Ds=1.00; Ct=1.10 Jnbalanced snow loads have been considered for this lesign.	
FORCES	(lb) - Maximum Compression/Maximum	5) T	his truss has been designed for greater of min roof live	
TOP CHORD	4-6=-1499/196, 6-8=-1577/273, 8-9=-1668/170, 9-10=0/31, 2-18=-1202/172, 9-11=-1139/167 17-18=-52/103, 16-17=0/28, 3-16=-135/69, 15-16=-238/1667, 14-15=0/143, 12-14=-76/0,	6) T c 7) * 3	bad of 12.0 psf or 1.00 times flat roof load of 20.0 psf on werhangs non-concurrent with other live loads. This truss has been designed for a 10.0 psf bottom shord live load nonconcurrent with any other live loads. This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle I-06-00 tall by 2-00-00 wide will fit between the bottom	TH CARO
WEBS	11-12=-95/364 4-15=-637/277, 12-15=0/1012, 6-15=-66/702, 6-12=-191/528, 8-12=-490/263, 2-16=-219/1910, 9-12=0/1042, 16-18=-184/268, 4-16=-93/917	8) C re L	hord and any other members. Ine H2.5A Simpson Strong-Tie connectors ecommended to connect truss to bearing walls due to JPLIFT at jt(s) 11 and 18. This connection is for uplift inly and does not consider lateral forces.	A A A A A A A A A A A A A A A A A A A
NOTES 1) Unbalance this design	ed roof live loads have been considered for n.	9) T li F	his truss is designed in accordance with the 2018 nternational Residential Code sections R502.11.1 and 802.10.2 and referenced standard ANSI/TPI 1. D CASE(S) Standard	SEAL 036322

G mmm June 14,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 90 FaNC	
22090049	B03	Roof Special Structural Gable	1	1	Job Reference (optional)	158940386

Loading

Snow (Pf)

LUMBER

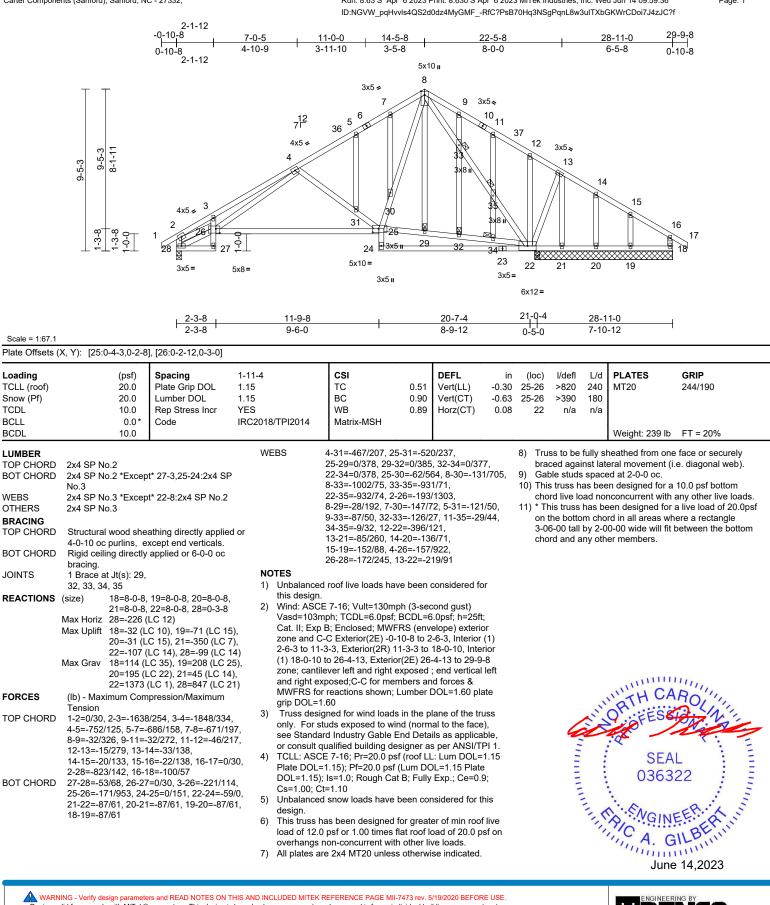
WEBS

OTHERS

JOINTS

FORCES

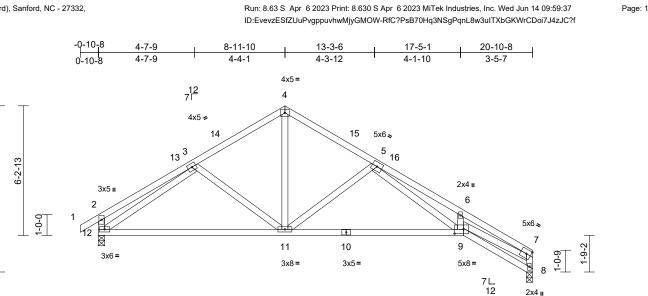
TCDL


BCLL

BCDL

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 14 09:59:36

Page: 1


818 Soundside Road Edenton, NC 27932

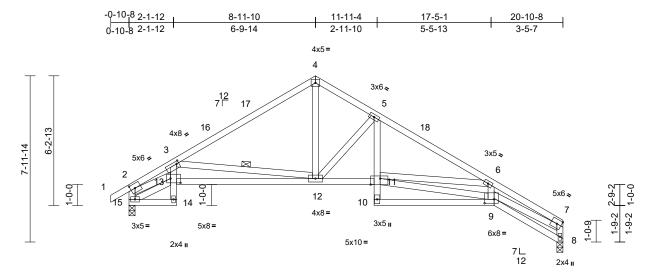
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 90 FaNC	
22090049	C01	Roof Special	1	1	Job Reference (optional)	158940387

7-11-14

	L 8-11-10	17-6-13	20-7-0 20-10-8
	8-11-10	8-7-3	3-0-3 0-3-8
Scale = 1:55.4			
Plate Offsets (X, Y): [9:0-5-4,0-2-8]			

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MSH	0.48 0.86 0.64	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.17 -0.41 0.17	(loc) 9-11 9-11 8	I/defl >999 >607 n/a	L/d 240 180 n/a		GRIP 244/190 FT = 20%
this design 2) Wind: ASS Vasd=103 Cat. II; Ex zone and 2-1-8 to 5- Interior (1) 20-8-12 zo vertical lef forces & M	2-11-9 oc purlins, e Rigid ceiling directly bracing. (size) 8=0-3-8, 7 Max Horiz 12=182 (L Max Uplift 8=-87 (LC Max Grav 8=873 (LC (lb) - Maximum Com Tension 1-2=0/31, 2-3=-284// 4-5=-1006/131, 5-6 6-7=-2956/242, 7-8= 11-12=-76/913, 9-11 3-11=-250/164, 4-11 5-9=-203/1543, 6-9= 7-9=-154/2454, 3-12 ed roof live loads have	athing directly applied xcept end verticals. applied or 10-0-0 oc 12=0-3-8 .C 13) 2 15), 12=-83 (LC 14) 2 22), 12=923 (LC 21) pression/Maximum 67, 3-4=-945/131, 2911/355, -902/112, 2-12=-303/ =-39/1298, 8-9=-36/1 =-36/624, 5-11=-673/ 155/142, =-941/113 been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior -8 to 2-1-8, Interior (1) 11-10 to 11-11-10, Exterior(2E) 17-8-12 tr right exposed ; end C for members and	4) lor 5) 6) 7) 8) 96 9) 199, 10 LC	Plate DOL=1 DOL=1.15); Cs=1.00; Ct: Unbalanced design. This truss ha load of 12.0 overhangs n This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and ar Bearing at jou using ANSI/1 designer sho One H2.5A S recommended UPLIFT at jtt only and doe) This truss is International	snow loads have l s been designed f on-concurrent with s been designed f ad nonconcurrent t has been designed n chord in all area by 2-00-00 wide wi hy other members. int(s) 8 considers IFI 1 angle to grai uld verify capacity Simpson Strong-Ti ed to connect truss s) 8 and 12. This is s not consider late designed in accor Residential Code nd referenced star	(Lum DQ B; Fully been col for great lat roof I n other li for a 10. with any d for a 10. with any d for a 10. with any d for a 10. parallel n formul v of bear e connect eral forc dance w sections	DL=1.15 Plate Exp.; Ce=0. nsidered for t er of min roo oad of 20.0 p ve loads. 0 psf bottom other live loa e load of 20. a rectangle veen the bott to grain value a. Building ing surface. ctors ing walls due on is for uplif es. it the 2018 s R502.11.1 a	e 9; his f live sef on ads. Opsf com e to				SEA 0363	22 EPRA


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

GI minim June 14,2023

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 90 FaNC	
22090049	C02	Roof Special	3	1	Job Reference (optional)	158940388

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 14 09:59:37 ID:EvevzESfZUuPvgppuvhwMjyGMOW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2-3-8	8-11-10	11-9-8	17-6-13	20-7-0 20-10-8
2-3-8	6-8-2	2-9-14	5-9-5	3-0-3 0-3-8

Plate Offsets (X, Y):	: [2:0-2-9,0-2-8], [3:0-1-4,0-1-8], [9:0-5-8,0-2-4], [11:0-5-8,Edge], [13:0-5-12,0-2-8]
-----------------------	---

Loading TCLL (roof) Snow (Pf)	(psf) 20.0 20.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15		CSI TC BC	0.93 0.68	DEFL Vert(LL) Vert(CT)	in -0.13 -0.28	(loc) 9-10 9-10	l/defl >999 >883	L/d 240 180		GRIP 244/190
TCDL	10.0	Rep Stress Incr	YES		WB	0.97	Horz(CT)	0.23	8	n/a	n/a		
BCLL	0.0*	Code	IRC201	8/TPI2014	Matrix-MSH							Waisht 121 lb	FT - 200/
BCDL	10.0				I							Weight: 131 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	 2x4 SP No.2 *Excep 2x4 SP No.3 *Excep Structural wood she except end verticals 	ot* 9-7:2x4 SP No.2 athing directly applied	2) I,	Vasd=103m Cat. II; Exp I zone and C- 2-1-12 to 5- Interior (1) 1 20-8-12 zon	i 7-16; Vult=130mp ph; TCDL=6.0psf; 3; Enclosed; MWF C Exterior(2E) -0- 11-10, Exterior(2R 1-11-4 to 17-8-12, e; cantilever left a; and right exposed;	BCDL=6 RS (env 10-8 to 2) 5-11-10 Exterior nd right 6	6.0psf; h=25ft elope) exterio -1-12, Interio) to 11-11-4, (2E) 17-8-12 exposed ; end	or or (1) to d					
BOT CHORD		applied or 10-0-0 oc			/FRS for reactions								
WEBS	bracing. 1 Row at midpt	3-12		DOL=1.60 p	late grip DOL=1.6	0							
REACTIONS		_C 13) C 15), 15=-83 (LC 14)	3)) 4)	Plate DOL= DOL=1.15); Cs=1.00; Ct	E 7-16; Pr=20.0 ps 1.15); Pf=20.0 psf Is=1.0; Rough Cat =1.10 snow loads have	(Lum DC t B; Fully	DL=1.15 Plate Exp.; Ce=0.	e 9;					
FORCES	(lb) - Maximum Corr		4)	design.	Show loads have	Deen co		1115					
TOP CHORD	4-5=-1148/134, 5-6=	I/170, 3-4=-1145/111, 1724/134, 876/108, 2-15=-823/		This truss ha load of 12.0 overhangs n	as been designed psf or 1.00 times f on-concurrent with as been designed	flat roof l n other li	oad of 20.0 p ve loads.						
BOT CHORD	14-15=-47/168, 13-1 12-13=-270/1988, 1	4=0/34, 3-13=0/266,	7)	chord live lo * This truss l on the botto	ad nonconcurrent has been designed m chord in all area by 2-00-00 wide w	with any d for a liv is where	other live loa e load of 20. a rectangle	0psf				TH CA	RO
WEBS	9-11=-253/2348, 6-1 7-9=-220/2577, 2-13 13-15=-207/154, 3-1	2=-1140/320,	438, 8)	chord and a Bearing at jo using ANSI/	ny other members bint(s) 8 considers TPI 1 angle to grai	parallel in formul	to grain value a. Building			4	i	OR	Mill.
	4-12=-38/837, 5-12=	784/159	0		ould verify capacity							:2`	<u> </u>
NOTES 1) Unbalanc this desig	ced roof live loads have gn.	been considered for	9) 10	recommende UPLIFT at jt only and doe	Simpson Strong-Ti ed to connect truss (s) 8 and 15. This es not consider late designed in accor	s to bear connecti eral forc	ing walls due on is for uplif es.			1111W		SEA 0363	• •

Scale = 1:55.4

This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

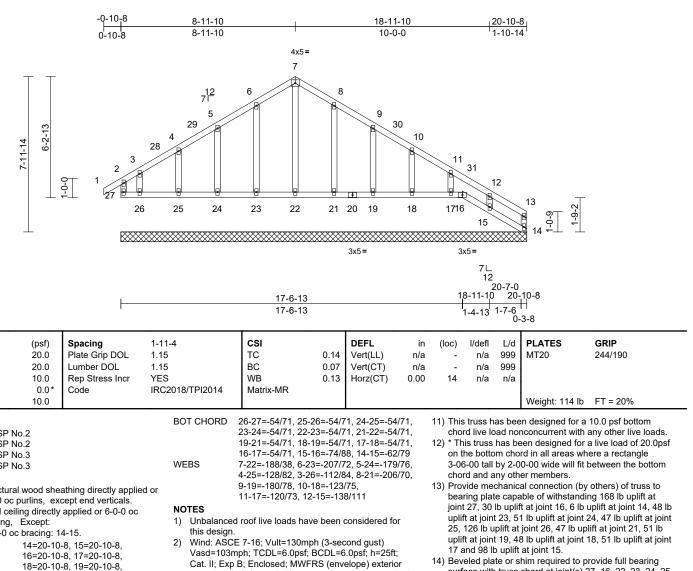
Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 90 FaNC	
22090049	C03	Roof Special Supported Gable	1	1	Job Reference (ontional)	158940389

Scale = 1:59.2


TCLL (roof)

Snow (Pf)

TCDL

BCU

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 14 09:59:38 ID:sph12DtEfKafPe1af4A8ZVyGMDe-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

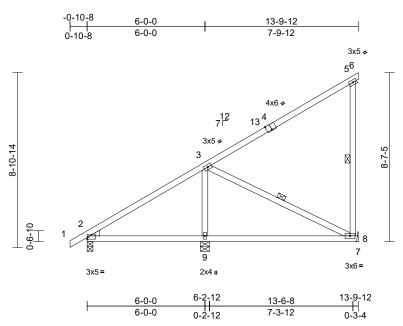
14) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 27, 16, 22, 23, 24, 25, 26, 21, 19, 18, 17, 15.

Page: 1

15) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

BCLL BCDL	0.0° 10.0	Code	IRC2018/	FPI2014	Matrix-MR	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood sl 6-0-0 oc purlins, of Rigid ceiling direc bracing, Except: 10-0-0 oc bracing; (size) 14=20- 16=20- 21=20- 23=20- 23=20- 25=20- 27=20- Max Horiz 27=176 Max Uplift 14=-6 (i 16=-30 18=-47	0-8, 15=20-10-8, 0-8, 19=20-10-8, 0-8, 22=20-10-8, 0-8, 22=20-10-8, 0-8, 24=20-10-8, 0-8, 26=20-10-8, 0-8, (LC 13), LC 14), 15=-98 (LC 14), (LC 15), 19=-51 (LC) (LC 15), 23=-48 (LC)	WEE ied or 1) 2) 5), 15), 15), 14),	TES Unbalanced this design. Wind: ASCE Vasd=103m Cat. II; Exp i Zone and C- 2-1-8 to 5-1 ⁻¹ Exterior(2N) 20-8-12 zon vertical left a forces & MW DOL=1.60 p Truss desig ponly. For str	26-27=-54/71, 25-26=-54/ 23-24=-54/71, 22-23=-54/ 19-21=-54/71, 18-19=-54/ 16-17=-54/71, 18-19=-54/ 16-17=-54/71, 15-16=-74/ 7-22=-188/38, 6-23=-207/ 4-25=-128/82, 3-26=-112/ 9-19=-180/78, 10-18=-123 11-17=-120/73, 12-15=-13 roof live loads have been E 7-16; Vult=130mph (3-se ph; TCDL=6.0psf; BCDL=1 B; Enclosed; MWFRS (env C Corner(3E) -0-10-8 to 2 1-10, Corner(3E	71, 21-22=-54/71, 71, 17-18=-54/71, 88, 14-15=-62/79 72, 5-24=-179/76, 84, 8-21=-206/70, 3/75, 38/111 considered for cond gust) 6.0psf; h=25ft; /elope) exterior 1-8, Exterior(2N) to 11-11-10, ner(3E) 17-8-12 to exposed ; end members and . Lumber blane of the truss nal to the face),
FORCES	26=-120 Max Grav 14=61 (16=49 (18=163 21=245 23=246 25=169 27=213 (lb) - Maximum Co Tension	(LC 14), 25=-47 (LC (LC 11), 27=-168 (L LC 27), 15=191 (LC LC 10), 17=153 (LC (LC 22), 19=219 (LC (LC 22), 22=190 (LC (LC 21), 24=217 (LC (LC 21), 26=193 (LC (LC 25) mpression/Maximum 2=0/30, 2-3=-156/158	$\begin{array}{c} (1,7), (2$	or consult qu TCLL: ASCE Plate DOL=: DOL=1.15); Cs=1.00; Ct Unbalanced design. This truss ha load of 12.0 overhangs n All plates and	ualified building designer a E 7-16; Pr=20.0 psf (roof L 1.15); Pf=20.0 psf (Lum DC Is=1.0; Rough Cat B; Fully =1.10 snow loads have been co as been designed for great psf or 1.00 times flat roof 1 ion-concurrent with other I e 2x4 MT20 unless otherw	as per ANSI/TPI 1. L: Lum DOL=1.15 DL=1.15 Plate y Exp.; Ce=0.9; nsidered for this ter of min roof live load of 20.0 psf on ive loads. rise indicated.
IOF CHORD	3-4=-117/124, 4-5 6-7=-118/246, 7-8	2=0/30, 2-3=-150/15 =-108/148, 5-6=-94/1 =-118/246, 8-9=-91/1 11=-39/99, 11-12=-4	99, 8) 99, 9) 7/50	Truss to be	res continuous bottom cho fully sheathed from one fa nst lateral movement (i.e. o spaced at 2-0-0 oc.	ce or securely


12-13=-67/51, 13-14=-56/14

10) Gable studs spaced at 2-0-0 oc.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 90 FaNC	
22090049	D01	Monopitch	4	1	Job Reference (optional)	158940390

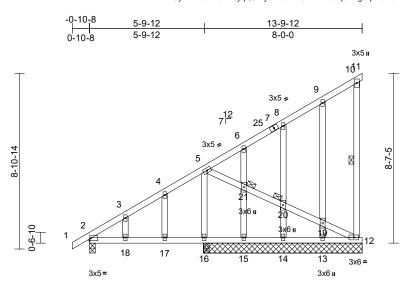
Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 14 09:59:38 ID:duDvsaOamEtiR5Ee7uw_GLyGMD_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:58.7

Plate Offsets (X, Y): [4:0-3-0,Edge]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Rep Stress Incr	2-0-0 1.15 1.15 YES IRC2018/	TPI2014	CSI TC BC WB Matrix-MSH	1.00 0.47 0.14	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.08 -0.16 -0.01	(loc) 9-12 8-9 2	l/defl >947 >565 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 76 lb	GRIP 244/190 FT = 20%	
Vasd=1(Cat. II; E zone an. 2-1-8 to cantileve right exp forces & DOL=1.(2) TCLL: A Plate DO DOL=1.	 D 2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 D Structural wood she except end verticals D Rigid ceiling directly bracing. 1 Row at midpt S (size) 2=0-3-8, 1 Max Horiz 2=299 (LC Max Grav 2=322 (LC 9=528 (L1 (lb) - Maximum Con Tension D 1-2=0/26, 2-3=-299/ 5-6=-13/0, 5-8=-330 	r applied or 10-0-0 oc 5-8, 3-8 8= Mechanical, 9=0-5- C 13) C 10), 8=-113 (LC 14), C 1), 8=460 (LC 21), C 21) npression/Maximum 234, 3-5=-228/168, /93 -185/265, 7-8=0/0 -162/295 a (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior D-8 to 2-1-8, Interior (1) D-9-12 to 13-9-12 zone ; end vertical left and d;C-C for members an shown; Lumber (roof LL: Lum DOL=1.1 um DOL=1.15 Plate	4) 5) 6) 8 7) 8 8) 9) 10) 11) LOA	design. This truss ha load of 12.0 µ overhangs ni This truss ha chord live loa * This truss h on the bottor and ar Refer to girde Provide mec bearing plate 8. H10A Simps connect truss This connect lateral forces One H2.5A S recommende UPLIFT at jt(does not com This truss is International	Simpson Strong-Tie ed to connect truss (s) 9. This connecti usider lateral forces designed in accord Residential Code nd referenced stan	or great at roof I other li or a 10. with any for a livis s where Il fit betw uss conne (by oth anding 2 nectors due to U / and do e conne to bear ion is fo 3. dance w sections	er of min roo pad of 20.0 p (e loads.) psf bottom other live loa e load of 20. a rectangle veen the bott nections. ers) of truss 13 lb uplift a recommende PLIFT at jt(s es not consist ctors ing walls due uplift only at ith the 2018 s R502.11.1 at	f live lasf on ads. Opsf com to t joint d to) 2. der e to nd				SEA 0363	EER RATIN	Manual Company

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



June 14,2023

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 90 FaNC	
22090049	D02	Monopitch Structural Gable	1	1	Job Reference (optional)	158940391

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 14 09:59:39 ID:HCyRNhX5xwO?tx9yqQ8oltyGMCo-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:58.4								0-3-	-			
Loading	(psf)	Spacing	1-11-4	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	тс	0.68	Vert(LL)	0.06	17-18	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.31	Vert(CT)	-0.07	17-18	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.15	Horz(CT)	0.01	2	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 105 lb	FT = 20%

LUMBER		
TOP CHORD	2x4 SP No.2	
BOT CHORD	2x4 SP No.2	
WEBS	2x4 SP No.3	
OTHERS	2x4 SP No.3	
BRACING		
TOP CHORD	Structural wood sheathing directly applied or	
	6-0-0 oc purlins, except end verticals.	
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc	
	bracing.	
WEBS	1 Row at midpt 10-12	
JOINTS	1 Brace at Jt(s): 20,	
	21	
REACTIONS	(size) 2=0-3-8, 12=8-0-8, 13=8-0-8,	
	14=8-0-8, 15=8-0-8, 16=8-0-8	
	Max Horiz 2=290 (LC 13)	
	Max Uplift 2=-27 (LC 14), 12=-91 (LC 11),	
	13=-38 (LC 14), 14=-62 (LC 14),	
	15=-7 (LC 7), 16=-26 (LC 11)	
	Max Grav 2=345 (LC 21), 12=194 (LC 21),	
	13=214 (LC 21), 14=261 (LC 21),	
	15=54 (LC 11), 16=287 (LC 2)	
FORCES	(lb) - Maximum Compression/Maximum	
TOP CHORD	1-2=0/26, 2-3=-308/179, 3-4=-273/190, 4-5=-241/200, 5-6=-176/199, 6-8=-161/199,	
	8-9=-153/168, 9-10=-105/111, 10-11=-13/0,	
	10-12=-95/34	
BOT CHORD	2-18=-223/307, 17-18=-159/277,	
Ber energy	16-17=-159/277, 15-16=-159/277,	
	14-15=-159/277, 13-14=-159/277,	
	12-13=-159/277	
WEBS	5-21=-196/256, 20-21=-195/254,	
	19-20=-195/255, 12-19=-199/259,	
	9-19=-188/70, 13-19=-182/65,	
	8-20=-201/101, 14-20=-198/98, 6-21=-56/41,	
	15-21=-58/42, 5-16=-81/0, 4-17=-62/49,	
	3-18=-55/47	

NOTES 1) Win

Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 10-9-12, Exterior(2E) 10-9-12 to 13-9-12 zone; cantilever left and right exposed; end vertical left and right exposed; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15
- Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

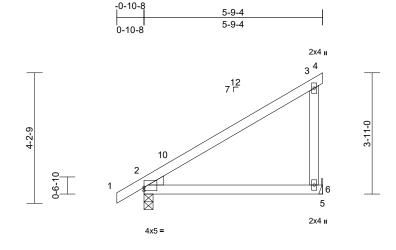
Unbalanced snow loads have been considered for this design.

- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 6) All plates are 2x4 MT20 unless otherwise indicated.
- Gable studs spaced at 2-0-0 oc.

chord and any other members.

8) This truss has been designed for a 10.0 psf bottom

chord live load nonconcurrent with any other live loads.
* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom


Engineering By EREENCO A MiTek Atfiliate 818 Soundside Road Edenton, NC 27932


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 90 FaNC	
22090049	D03	Monopitch	3	1	I58 Job Reference (optional)	8940392

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 14 09:59:39 ID:a5wx_i1pHWYAIEoqkXNQwXyGMC9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:37.2

Plate Offsets (X, Y): [2:Edge,0-1-5]

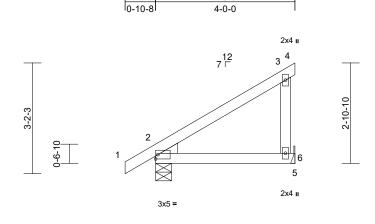
	(,,,,): [<u>_:_ug</u> e,e : e]												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/7		CSI TC BC WB Matrix-MP	0.76 0.50 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.15 -0.12 0.02	(loc) 6-9 6-9 2	l/defl >440 >541 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 26 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Structural wood she 5-9-4 oc purlins, ex Rigid ceiling directly bracing.	cept end verticals. applied or 10-0-0 oc 6= Mechanical C 13) C 14), 6=-77 (LC 11)	d or (100 - 100 -	load of 12.0 overhangs no chord live loa * This truss ha chord struss ha on the bottor 3-06-00 tall b chord and ar Refer to gird, Provide mec bearing plate 6. H10A Simps	is been designed f psf or 1.00 times f on-concurrent with is been designed ad nonconcurrent has been designed in chord in all area by 2-00-00 wide wi y other members. er(s) for truss to tr hanical connection e capable of withst on Strong-Tie con	lat roof I n other Ii for a 10. with any d for a liv s where ill fit betv uss coni n (by oth anding 7 nectors	oad of 20.0 p ve loads. 0 psf bottom other live load re load of 20. a rectangle veen the bott nections. ers) of truss 77 lb uplift at recommende	ads. Opsf com to joint ed to					
FORCES	(lb) - Maximum Com Tension 1-2=0/26, 2-3=-154/	pression/Maximum	-	This connect lateral forces	s to bearing walls ion is for uplift onl s. designed in accor	y and do	es not consi						
BOT CHORD NOTES			I		Residential Code nd referenced star Standard			and					
Vasd=103 Cat. II; Ex zone and 2-1-8 to 2- cantilever right expo members Lumber D 2) TCLL: AS Plate DOL DOL=1.15 Cs=1.00; f	CE 7-16; Vult=130mph Smph; TCDL=6.0psf; B p; B; Enclosed; MWFR C-C Exterior(2E) -0-10 -9-4, Exterior(2E) 2-9-4 left and right exposed used; porch left and right and forces & MWFRS IOL=1.60 plate grip DC CE 7-16; Pr=20.0 psf (L =1.15); Is=1.0; Rough Cat E Ct=1.10 ed snow loads have be	CDL=6.0psf; h=25ft; S (envelope) exterio -8 to 2-1-8, Interior (4 to 5-9-4 zone; ; end vertical left and t exposed;C-C for for reactions shown; λ =1.60 iroof LL: Lum DOL=1 um DOL=1.15 Plate 3; Fully Exp.; Ce=0.9	1) 1 .15							A statement	A MARTINE AND A	SEA 0363	EEP. Auto

- Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

June 14,2023

A. GIL GI


Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 90 FaNC	
22090049	D04	Monopitch	10	1	Job Reference (optional)	58940393

4-0-0

-0-10-8

Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MITek Industries, Inc. Wed Jun 14 09:59:39 ID:ppzLtn8T9Hhvtd_Zlw1XnQyGMC0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

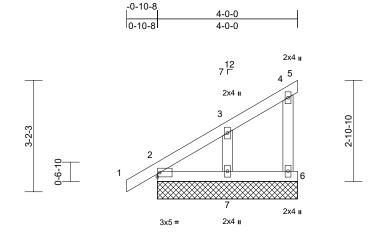
Scale = 1:33.1

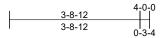
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-MP	0.31 0.18 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.02 0.01	(loc) 6-9 6-9 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 19 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD NOTES	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Structural wood shea 4-0-0 oc purlins, exc Rigid ceiling directly bracing. (size) 2=0-5-8, 6 Max Horiz 2=94 (LC Max Uplift 2=-25 (LC Max Grav 2=315 (LC (lb) - Maximum Com Tension 1-2=0/43, 2-3=-139/7 3-6=-184/72 2-6=-118/167, 5-6=0	cept end verticals. applied or 10-0-0 or 3= Mechanical 13) : 14), 6=-41 (LC 14) C 21), 6=243 (LC 21 pression/Maximum 123, 3-4=-13/0,	c 9 1	 on the botto 3-06-00 tall chord and a Refer to gird Provide med bearing plate 6. H10A Simps connect trus This connect lateral force: This truss is International 	designed in acco Residential Code nd referenced sta	as where vill fit betw russ conr n (by oth tanding 4 nnectors due to U ly and do rdance w e sections	a rectangle veen the bott nections. ers) of truss 11 lb uplift at PLIFT at jt(s ies not consist ith the 2018 5 R502.11.1 a	to joint ed to) 2. der					
1) Wind: ASC Vasd=103 Cat. II; Exp zone and 0	CE 7-16; Vult=130mph Bmph; TCDL=6.0psf; B0 p B; Enclosed; MWFRS C-C Exterior(2E) zone; end vertical left and ric	CDL=6.0psf; h=25ft; S (envelope) exterio ; cantilever left and i	or right									TH CA	ROLIN

exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

SEAL 036322 MGINEER June 14,2023


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 90 FaNC	
22090049	D05	Monopitch Supported Gable	2	1	Job Reference (optional)	940394

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 14 09:59:40 ID:IC56HT9jhuxc7w7ytL4?sryGMC_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:32.9

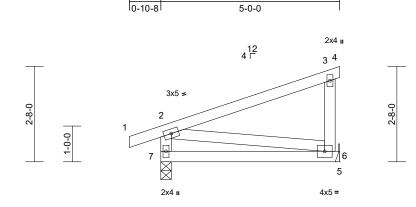
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MP	0.12 0.05 0.05	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 20 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	4-0-0 oc purlins, e Rigid ceiling direct bracing. (size) 2=4-0-0, 7=4-0-0, 0 Max Horiz 2=94 (LC Max Uplift 5=-17 (L 7=-61 (L Max Grav 2=203 (L (LC 21), 21)	y applied or 10-0-0 oc 5=4-0-0, 6=4-0-0, 8=4-0-0 C 13), 8=94 (LC 13) C 21), 6=-23 (LC 14), C 14) C 21), 5=8 (LC 14), 6= 7=240 (LC 21), 8=203	Plate DOL= DOL=1.15); Cs=1.00; Ct 4) Unbalanced design. 5) This truss hi load of 12.0 0 overhangs r 6) Gable requi 7) Gable studs 8) This truss hi chord live lo 9) * This truss on the botto 3-06-00 tall chord and a 10) Provide mec bearing plat	snow loads have as been designed psf or 1.00 times on-concurrent wit es continuous boi spaced at 2-0-0 as been designe m chord in all area by 2-00-00 wide w ny other member shanical connectio e capable of withs	(Lum DC t B; Fully been cor for great flat roof k h other lim tom chor oc. for a 10.0 with any d for a liv as where vill fit betv s, n (by oth tanding 1	DL=1.15 Plate Exp.; Ce=0.9 asidered for t er of min roof pad of 20.0 p ve loads. d bearing. D psf bottom other live loa e load of 20.1 a rectangle veen the bott ers) of truss i 7 lb uplift at j	e - his flive sf on ds. Dpsf om					
FORCES TOP CHORD BOT CHORD WEBS	Tension 1-2=0/43, 2-3=-110 4-5=-22/9, 4-6=-11	5/57	11) Beveled pla surface with 12) This truss is Internationa	t at joint 6 and 61 e or shim required truss chord at join designed in acco Residential Code nd referenced sta	d to provi nt(s) 2, 8. rdance w sections	de full bearin ith the 2018 s R502.11.1 a	•				OP. FESS	RO
	CE 7-16; Vult=130mp mph; TCDL=6.0psf; E		LOAD CASE(S)	Standard						A.L.	OFFESS	North Star

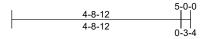
- Viada 103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 2-0-0, Exterior(2N) 2-0-0 to 4-0-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 90 FaNC	
22090049	E01	Monopitch	7	1	I589 Job Reference (optional)	940395


5-0-0


-0-10-8

Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MITek Industries, Inc. Wed Jun 14 09:59:40 ID:qGkrDsmpfSgHoNYqdMq4sJzpoC_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:32.2

											-	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MP	0.54 0.26 0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.05 0.00	(loc) 6-7 6-7 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 27 lb	GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD WEBS	5-0-0 oc purlins, ex Rigid ceiling directly bracing.	applied or 10-0-0 oc anical, 7=0-3-8 11) 2 14), 7=-61 (LC 10) 2 21), 7=350 (LC 21) apression/Maximum 5, 3-4=-8/0, 304/227	d or bearing pl 6. 9) One H2.5, recommer UPLIFT at 10) This truss 100 This truss	s has been designed om chord in all area Il by 2-00-00 wide w any other members rder(s) for truss to tr echanical connectio ate capable of withsi A Simpson Strong-T ded to connect trus: jt(s) 7. This connec onsider lateral force is designed in accor al Residential Code and referenced star 5) Standard	as where vill fit betw russ conr n (by oth tanding 3 ie conne s to bear tion is for es. rdance w e sections	a rectangle veen the bott nections. ers) of truss i 9 lb uplift at j ctors ing walls due r uplift only an ith the 2018 s R502.11.1 a	to joint e to nd					
Vasd=103r Cat. II; Exp zone and C exposed ; e members a Lumber DC	E 7-16; Vult=130mph ph; TCDL=6.0psf; B b B; Enclosed; MWFR 2-C Exterior(2E) zone end vertical left and rig and forces & MWFRS DL=1.60 plate grip DC DL=7.46; D=20.0 cod	CDL=6.0psf; h=25ft; S (envelope) exterior ; cantilever left and ri ght exposed;C-C for for reactions shown; DL=1.60	ight						4	T.	ORTH CA	ROUT

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

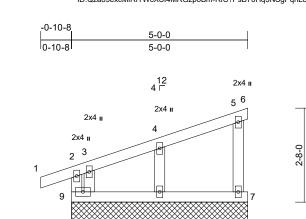
SEAL 036322 June 14,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 90 FaNC	
22090049	E02	Monopitch Supported Gable	1	1	Job Reference (optional)	8940396

2-8-0

1-0-0


Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 14 09:59:40 ID:Qza89excMIRITWcXSI4MRGzpoBm-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2x4 II

5-0-0

0-3-4

Page: 1

8

4-8-12

4-8-12

2x4 II

Scale = 1:32.7

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-MR	0.16 0.07 0.07	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 6	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 23 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	Max Horiz 9=93 (LC Max Uplift 6=-21 (LC (LC 14), 9 Max Grav 6=6 (LC 1	cept end verticals. applied or 10-0-0 oc 7=5-0-0, 8=5-0-0, 9=4 11) 14), 7=-5 (LC 11), 8 =-36 (LC 10)	4) d or 5) 5-0-0 7) =-52 8) 9)	Plate DOL=1 DOL=1.15); Cs=1.00; Ct: Unbalanced design. This truss ha load of 12.0 overhangs n Gable requir Truss to be f braced agair Gable studs This truss ha chord live loa	E 7-16; Pr=20.0 g E 7-16; Pr=20.0 g I.15); Pf=20.0 gs Is=1.0; Rough C =1.10 snow loads have as been designed psf or 1.00 times on-concurrent w es continuous bu tully sheathed from the lateral mover spaced at 2-0-0 as been designed ad nonconcurrent has been designed an chord in all are	of (Lum DC at B; Fully be been cor d for greate flat roof It ith other lin ottom chor ottom chor on one fac nent (i.e. d oc. d for a 10.0 t with any ed for a liv	DL=1.15 Plate Exp.; Ce=0.9 nsidered for the er of min roof oad of 20.0 p ve loads. d bearing. the or securely liagonal web) 0 psf bottom other live load re load of 20.1	e 9; f live sf on /).					
FORCES	(lb) - Maximum Com Tension	pression/Maximum		3-06-00 tall b	by 2-00-00 wide by other member	will fit betw	0	om					
TOP CHORD	2-9=-127/193, 1-2=0 3-4=-57/76, 4-5=-48/ 5-7=-128/45		11	Provide mec bearing plate	hanical connecti capable of with t at joint 6, 5 lb u	on (by oth standing 3	36 lb uplift at j						
BOT CHORD	8-9=-28/52, 7-8=-28/	/52		uplift at joint									
WEBS	4-8=-199/224, 3-9=-	77/65	12		designed in acc	ordance w	ith the 2018					, united and the second	in the
NOTES	CE 7 16: \/ult=120	(2 accord quat)			Residential Cod nd referenced st			and				OR FESS	RO
	CE 7-16; Vult=130mph mph; TCDL=6.0psf; B0		10	AD CASE(S)							E.	OTEES	TA: N
			20		otanadia						7 5	10	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

3x5 =

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 2-1-8, Exterior(2N) 2-1-8 to 5-0-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

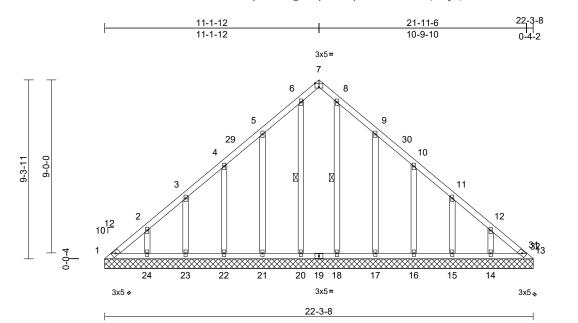
 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

ENGINEERING BY EREPACED A MITEK Affiliate 818 Soundside Road Edenton, NC 27932

A. GILP.... June 14,2023

SEAL


036322

Contraction of the

Manununa,

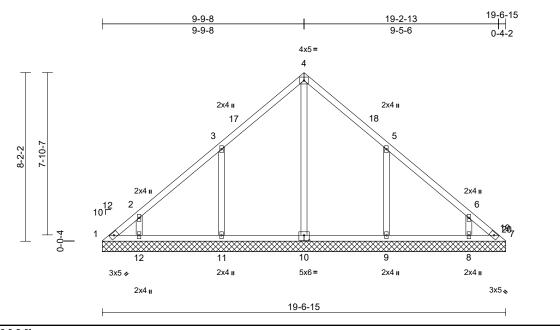
Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 90 FaNC	
22090049	V01	Valley	1	1	Job Reference (optional)	158940397

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 14 09:59:41 ID:fryBRKWsrW_wSCYj2OGZwHyGMN8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:59.9

Plate Offsets (X, Y): [7:0-2-8,Edge]

Loading	(psf)	Spacing	1-11-4	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.08	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.06	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.17	Horiz(TL)	0.01	13	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0	-			-						Weight: 144 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD			BOT CHORI	D 1-24=-105/214, 2 22-23=-105/214, 20-21=-105/214,	21-22=-1	05/214,		on 3-0	the botto 6-00 tall	om cho by 2-0	ord in all areas wh 00-00 wide will fit	a live load of 20.0psf here a rectangle between the bottom
OTHERS	2x4 SP No.3			17-18=-105/214,	16-17=-1	05/214,					er members.	
BRACING				15-16=-105/214,	14-15=-1	05/214,						others) of truss to
TOP CHORD	Structural wood she 6-0-0 oc purlins.	• • • •	WEBS	13-14=-105/214 6-20=-172/25, 8-				1, 2	20 lb upli	ift at joi	int 13, 2 lb uplift a	ing 47 lb uplift at joint at joint 20, 92 lb uplift
BOT CHORD	Rigid ceiling directly bracing.		;	4-22=-129/93, 3- 9-17=-209/119, 1 11-15=-129/104,	0-16=-12	9/92,	5/78,	48	lb uplift a	at joint	24, 96 lb uplift at	1 lb uplift at joint 23, joint 17, 68 lb uplift d 37 lb uplift at joint
WEBS		6-20, 8-18	NOTES	11-10-125/104,	· E- (4)	20,10		14.		55 ib u		
REACTIONS	15=22-3-4 18=22-3-4 22=22-3-4 22=22-3-4 22=22-3-7 1=-207 (LC Max Uplift 1=-47 (LC 14=-37 (L 16=-68 (L 20=-2 (LC 22=-69 (L 24=-48 (L 14=187 (I 16=170 (I 16=170 (I 16=209 (I 21=247 (I 23=160 (I	2 12), 13=-20 (LC 13 .C 15), 15=-85 (LC 1 .C 15), 17=-96 (LC 1 2 11), 21=-92 (LC 14 .C 14), 23=-81 (LC 1 .C 14), 13=126 (LC 12 .C 21), 15=164 (LC 22 .C 21), 17=247 (LC 22 .C 21), 20=209 (LC 22 .C 23), 24=198 (LC 22) .C 24] .C 2	-7-0, 3-8, 1) Unbalan -3-8, this desi -3-8, 2) Wind: A: -3-8, 20, Solor -5), 20-5 to - -1, 14-1-5 tr - -4), cantileve right exp. -5), for react DOL=1.0 20), only. For - 20), see Star - 23) or const. -	SCE 7-16; Vult=130n)3mph; TCDL=6.0psl (xp B; Enclosed; MW d C-C Exterior(2E) 0- 8-2-1, Exterior(2R) 8 b 18-11-4, Exterior(2I) r left and right exposions losed;C-C for membe ions shown; Lumber	nph (3-sea ; BCDL=(FRS (env 0-5 to 3-C -2-1 to 14) 18-11 ers and fo DOL=1.60 Is in the p ind (norm End Deta esigner a	cond gust) 0.0psf; h=25ft; elope) exterio -5, Interior (1 -1-5, In	or) one; d 2S iss), ple, Pl 1.	Inte R8(LOAD	ernationa 02.10.2 a CASE(S	al Resid and ref) Sta	ferenced standar ndard	tions R502.11.1 and d ANSI/TPI 1.
FORCES	(lb) - Maximum Corr Tension	pression/Maximum	Plate DC	DL=1.15); Pf=20.0 ps	f (Lum DC	DL=1.15 Plate					SEA	LiE
TOP CHORD	1-2=-272/163, 2-3=- 4-5=-94/78, 5-6=-87 7-8=-66/77, 8-9=-88 10-11=-103/64, 11-1 12-13=-241/131	/107, 6-7=-66/81, /76, 9-10=-63/46,	5) Cs=1.00 5) Unbalan design. 6) All plate 7) Gable re 8) Gable st 9) This trus	(15); Is=1.0; Rough C; (Ct=1.10) ced snow loads have s are 2x4 MT20 unles quires continuous bo uds spaced at 2-0-0 s has been designed e load nonconcurren	e been col ss otherwi ottom chol oc. I for a 10.	nsidered for th se indicated. d bearing. 0 psf bottom	nis			A A A A A A A A A A A A A A A A A A A	SEA 0363	FERIX


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

June 14,2023

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 90 FaNC	
22090049	V02	Valley	1	1	Job Reference (optional)	158940398

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 14 09:59:41 ID:fryBRKWsrW_wSCYj2OGZwHyGMN8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

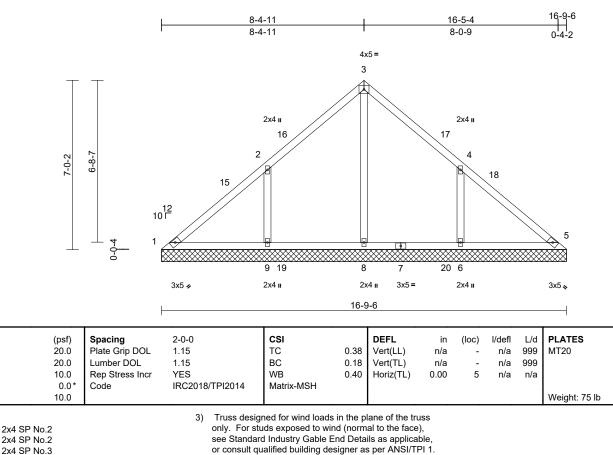
Scale = 1:55.9 Plate Offsets (X, Y): [10:0-3-0,0-3-0]

	(X, 1). [10.0-3-0,0-3-0]										-	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.31 0.17 0.22	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 92 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=19-6-15 9=19-6-15 11=9-6-1- 11=9-6-1- 11=9-6-1- 11=9-6-1- 11=9-6-1- 11=10-6-1- 11=10-1- 11=10-1- 11=10-1- 11=10-1- 11=10-1- 11=10-1- 11=10-1-	applied or 10-0-0 oc 5, 7=19-6-15, 8=19-6 5, 10=19-6-15, 15, 12=19-6-15 C 11) 2 12), 7=-31 (LC 13), C 14), 7=-31 (LC 15), C 14), 7=90 (LC 15), C 24), 9=480 (LC 6), C 26), 11=480 (LC 6), C 23) Ipression/Maximum 182/118, 3-4=-207/11 140/65, 6-7=-177/96	d or -15, 3)), 4) 14) 5), 5) 64, 9) 120	Vasd=103m Cat. II; Exp I zone and C- 3-0-5 to 6-9- (1) 12-9-12 t zone; cantile and right exy MWFRS for grip DOL=1. Truss desig only. For stu see Standar or consult qu TCLL: ASCE Plate DOL= DOL=1.15); Cs=1.00; Ct Unbalanced design. All plates art Gable requir Gable requir Gable requir Chord live lo	ned for wind loads uds exposed to wir d Industry Gable E ualified building de E 7-16; Pr=20.0 ps 1.15); Pf=20.0 ps Is=1.0; Rough Cat	BCDL=6 RS (env -5 to 3-C -5 to 3-C -9-12 to r(2E) 16 exposed hbers ar -umber 1 in the p nd (norm ind Deta signer a f (roof LL (Lum DC B; Fully been col c. for a 10. with any	6.0psf; h=25ft; elope) exterio I-5, Interior (1) I2-9-12, Inter -2-11 to 19-2- ; end vertical dd forces & DOL=1.60 pla lane of the tru ial to the face jils as applicat s per ANSI/TF L: Lum DOL= ² DL=1.15 Plate Exp.; Ce=0.9 nsidered for th se indicated. d bearing. 0 psf bottom other live loa	r) ior 11 left te sss), ole, 1.15); is				WYEIGHT 92 ID	ROUNT
WEBS NOTES 1) Unbaland this desig	8-9=-60/136, 7-8=-6 4-10=-183/5, 3-11=- 5-9=-379/222, 6-8=- ced roof live loads have gn.	378/222, 2-12=-223/ 219/161	164, 1 ⁻ 12	on the botton 3-06-00 tall I chord and an I) Provide mee bearing plate 1, 31 lb uplif at joint 12, 1 8. 2) This truss is International	m chord in all area by 2-00-00 wide winy other members, shanical connection e capable of withst t at joint 7, 175 lb of 75 lb uplift at joint designed in accorr Residential Code nd referenced star	s where ill fit betw with BC (by oth anding 6 uplift at j 9 and 9 dance w sections	a rectangle veen the botto CDL = 10.0psf ers) of truss to oint 11, 99 lb I lb uplift at jo ith the 2018 \$ R502.11.1 a	om o pint uplift int		N. CLIMAN		SEA 0363	22

818 Soundside Road Edenton, NC 27932

June 14,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 90 FaNC	
22090049	V03	Valley	1	1	Job Reference (optional)	158940399

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 14 09:59:41 ID:71WZefXUcq6n4M7vc5noTUyGMN7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

GRIP

244/190

FT = 20%

- OTHERS BRACING TOP CHORD Structural wood sheathing directly applied or 10-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. REACTIONS (size) 1=16-9-6, 5=16-9-6, 6=16-9-6, 8=16-9-6, 9=16-9-6, 14=16-9-6 Max Horiz 1=160 (LC 11) 1=-58 (LC 10), 6=-182 (LC 15), Max Uplift
- 9=-188 (LC 14) 1=82 (LC 33), 5=1 (LC 24), 6=508 Max Grav (LC 6), 8=653 (LC 23), 9=509 (LC 5), 14=1 (LC 24) FORCES (Ib) - Maximum Compression/Maximum
- Tension 1-2=-105/368, 2-3=-26/318, 3-4=-3/297, TOP CHORD 4-5=-137/288 BOT CHORD 1-9=-179/76, 8-9=-179/73, 6-8=-179/73, 5-6=-179/73
- WEBS 3-8=-469/0. 2-9=-392/220. 4-6=-392/218 NOTES

Scale = 1:47.7 Loading

TCLL (roof)

Snow (Pf)

LUMBER

TOP CHORD

BOT CHORD

TCDL

BCLL

BCDL

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Interior (1) 3-0-5 to 5-5-0, Exterior(2R) 5-5-0 to 11-5-0, Interior (1) 11-5-0 to 13-5-2, Exterior(2E) 13-5-2 to 16-5-2 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this 5) desian.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 8)
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 9)
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 10) Provide mechanical connection (by others) of truss to
- bearing plate capable of withstanding 58 lb uplift at joint 1, 188 lb uplift at joint 9 and 182 lb uplift at joint 6.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 90 FaNC	
22090049	V04	Valley	1	1	Job Reference (optional)	158940400

Scale = 1:42.6 Loading

TCLL (roof)

Snow (Pf)

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

FORCES

TOP CHORD

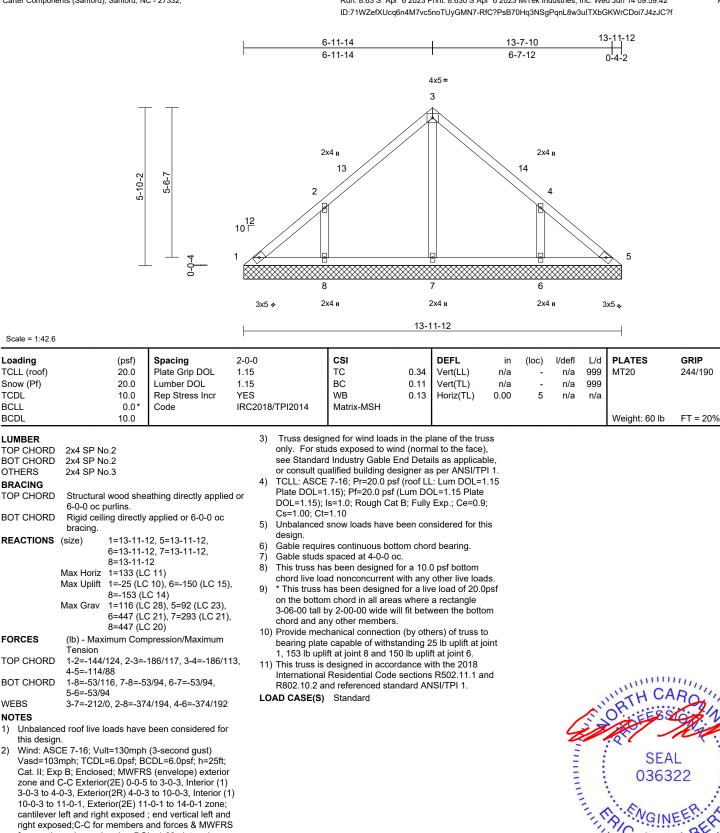
BOT CHORD

this design

WEBS

NOTES

2)


TCDL

BCLL

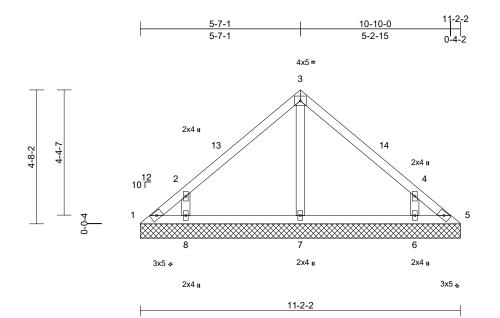
BCDL

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries. Inc. Wed Jun 14 09:59:42

Page: 1

- Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-3, Interior (1) 3-0-3 to 4-0-3, Exterior(2R) 4-0-3 to 10-0-3, Interior (1) 10-0-3 to 11-0-1, Exterior(2E) 11-0-1 to 14-0-1 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 - WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

G


mm June 14,2023 111111111

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 90 FaNC	
22090049	V05	Valley	1	1	Job Reference (optional)	158940401

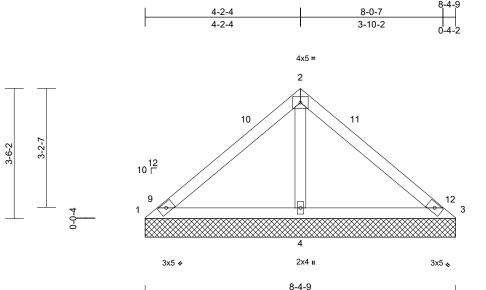
Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 14 09:59:42 ID:71WZefXUcq6n4M7vc5noTUyGMN7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:40.2

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.15		тс	0.32	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)		20.0	Lumber DOL	1.15		BC	0.12	Vert(TL)	n/a	-	n/a	999		
TCDL		10.0	Rep Stress Incr	YES		WB	0.09	Horiz(TL)	0.00	5	n/a	n/a		
BCLL		0.0*	Code	IRC20	18/TPI2014	Matrix-MSH								
BCDL		10.0											Weight: 45 lb	FT = 20%
LUMBER				3) Truss desig	ned for wind load	s in the p	lane of the tr	uss					
TOP CHORD	2x4 SP N	lo.2			only. For stu	ids exposed to wi	nd (norm	al to the face	e),					
BOT CHORD	2x4 SP N	lo.2			see Standar	d Industry Gable I	End Deta	ils as applica	ble,					
OTHERS	2x4 SP N	lo.3				alified building de								
BRACING				4		7-16; Pr=20.0 ps								
TOP CHORD	Structura 6-0-0 oc		athing directly applie	ed or	DOL=1.15);	l.15); Pf=20.0 psf ls=1.0; Rough Ca								
BOT CHORD			applied or 10-0-0 oc	5	Cs=1.00; Ct) Unbalanced	=1.10 snow loads have	been cor	nsidered for t	his					
REACTIONS	(size)		5=11-2-2, 6=11-2-2	, 6	design.	es continuous bot	tom chor	d bearing						
		7=11-2-2,		7		spaced at 4-0-0 c		a bearing.						
		1=-105 (L	,	8	,	is been designed		0 psf bottom						
	Max Uplift		: 12), 5=-16 (LC 13), C 15), 8=-138 (LC 1	4)	chord live loa	ad nonconcurrent	with any	other live loa						
	Max Grav	· ·	11), 5=53 (LC 26), 6	, y	,	nas been designe			0psf					
	max orar		'=250 (LC 20), 8=44			n chord in all area								
		20)		- (-		by 2-00-00 wide w		veen the bott	om					
FORCES	(lb) - Max	kimum Com	pression/Maximum	1		ny other members hanical connectio		ora) of truca	10					
	Tension			1		e capable of withs								
TOP CHORD	1-2=-127	/102, 2-3=-	225/111, 3-4=-225/1	11,		t at joint 5, 138 lb								
	4-5=-104	/68			uplift at joint		upint at j							
BOT CHORD	1-8=-34/7	74, 7-8=-24	/74, 6-7=-24/74,	1		designed in acco	rdance w	ith the 2018						
	5-6=-39/7					Residential Code			and				minin	11111
WEBS	3-7=-162	/0, 2-8=-44	7/252, 4-6=-447/252	2	R802.10.2 a	nd referenced sta	ndard AN	ISI/TPI 1.					"TH CA	Rollin
NOTES					OAD CASE(S)	Standard						1	OR EESS	11/1
1) Unbalance	ed roof live	loads have	been considered for	r	. ,							1.	U.EESS	1000V

- Unbalanced roof live loads have been considered for 1) this design. 2)
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Exterior(2R) 3-0-5 to 8-2-7, Exterior(2E) 8-2-7 to 11-2-7 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 90 FaNC	
22090049	V06	Valley	1	1	Job Reference (optional)	158940402

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 14 09:59:42 ID:71WZefXUcq6n4M7vc5noTUyGMN7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:31.1

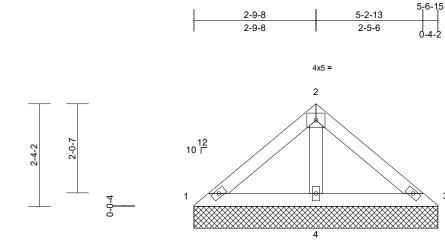
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MP	0.38 0.36 0.13	. ,	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 32 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES	8-4-9 oc p Rigid ceilli bracing. (size) Max Horiz Max Uplift Max Grav (lb) - Maxi Tension 1-2=-121/	0.2 0.2 0.3 wood shear ourlins. ng directly 1=8-4-9, 3 1=78 (LC 1=-42 (LC 4=-99 (LC 1=90 (LC (LC 20) imum Com 305, 2-3= 182, 3-4=-2	: 21), 3=-42 (LC 20), : 14) 20), 3=90 (LC 21), 4 pression/Maximum 121/305	5) d or 6) 7) 8) 9) =667 10 11	Plate DOL=1 DOL=1.15); Cs=1.00; Ct+ Unbalanced design. Gable requir Gable studs This truss ha chord live loa * This truss ha chord live loa * This truss ha on the bottor 3-06-00 tall t chord and ar) Provide mec bearing plate 1, 42 lb upliff) This truss is International	snow loads have es continuous bo spaced at 4-0-0 is been designed ad nonconcurrent has been designed n chord in all are by 2-00-00 wide v y other member hanical connection capable of withs t at joint 3 and 99 designed in accor Residential Cod- nd referenced sta	f (Lum DC at B; Fully been cor ottom chor oc. I for a 10.0 t with any ed for a liv as where will fit bety shon (by oth standing 4 0 bu plift a ordance we e sections	DL=1.15 Plate Exp.; Ce=0.9 asidered for the d bearing. D psf bottom other live loa e load of 20.0 a rectangle veen the botto ers) of truss t 2 lb uplift at j t joint 4. ith the 2018 i R502.11.1 a	ds. Dpsf om oint				weight. 52 ib	11-2070
		oads have	been considered for										mm	1111.

- this design. 2) Wind: ASCE 7-16; Vult=130mph (3-second gust)
- Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Exterior(2R) 3-0-5 to 5-4-14, Exterior(2E) 5-4-14 to 8-4-14 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Vannoon anninnan ann SEAL 036322 G minim June 14,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 90 FaNC			
22090049	V07	Valley	1	1	Job Reference (optional)	158940403		


Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jun 14 09:59:42 ID:6iyrTodBVts4IwcRf1G8x4yGMBN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3

2x4 💊

Page: 1

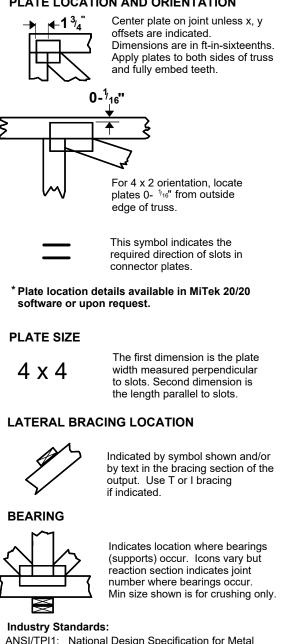
5-6-15

2x4 II

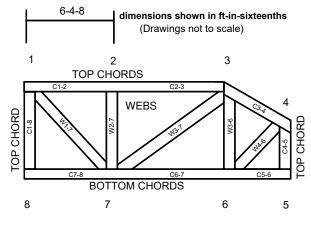
Scale = 1:26.3

		i	:	· · · · ·		i					1	
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	тс	0.13	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.15	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.05	Horiz(TL)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP		. ,						
BCDL	10.0										Weight: 20 lb	FT = 20%
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=103r Cat. II; Exp zone and C exposed ; 6 members a Lumber DC 3) Truss desi only. For s see Standa or consult d 4) TCLL: ASC Plate DOL:	5-6-15 oc purlins. Rigid ceiling directly bracing. (size) 1=5-6-15, Max Horiz 1=-51 (LC Max Uplift 3=-5 (LC Max Grav 1=96 (LC (LC 20) (Ib) - Maximum Com Tension 1-2=-86/136, 2-3=-8 1-4=-103/109, 3-4=- 2-4=-236/128 ed roof live loads have LE 7-16; Vult=130mph mph; TCDL=6.0psf; BK DB; Enclosed; MWFRS DL=1.60 plate grip DO igned for wind loads in studs exposed to wind ard Industry Gable Enc qualified building desig CE 7-16; Pf=20.0 psf (L); Is=1.0; Rough Cat B	3=5-6-15, 4=5-6-15 ; 10) 15), 4=-44 (LC 14) 20), 3=96 (LC 21), 4= pression/Maximum 6/136 103/109 been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior ; cantilever left and ric ght exposed;C-C for for reactions shown; L=1.60 the plane of the trus (normal to the face), d Details as applicable gner as per ANSI/TPI gner as per ANSI/TPI gner as per ANSI/TPI tum DOL=1.15 Plate	design. 6) Gable requir 7) Gable studs 8) This truss ha chord live lo: 9) * This truss I on the botton 3-06-00 tall 1 chord and an 10) Provide mec bearing plate and 44 lb up 11) This truss is International R802.10.2 a LOAD CASE(S) 9) 9) 9) 9) 10) 11) This truss is 11) This truss is 12) This truss is 12) This truss is 13) This truss is 14) This truss is 14) This truss is 14) This truss is 15) This truss is 14) This truss is 15) This truss is 16) This truss is 17) This truss is 17) This truss is 18) This truss is 18) This truss is 18) This truss is 18) This truss is 19) This tr	designed in accord Residential Code s nd referenced stan	om chor c or a 10.0 vith any for a liv s where I fit betv (by oth anding 5 lance w sections	d bearing. D psf bottom other live loa e load of 20.0 a rectangle veen the botto ers) of truss t b uplift at jou ith the 2018 c R502.11.1 a	ds. Dpsf om o 1		Manute.		SEA 0363	22 EER.K.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



June 14,2023


A. GI A. GIL

Symbols

PLATE LOCATION AND ORIENTATION

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

PRODUCT CODE APPROVALS

ICC-ES Reports:

ESR-1311, ESR-1352, ESR1988 ER-3907, ESR-2362, ESR-1397, ESR-3282

Trusses are designed for wind loads in the plane of the truss unless otherwise shown.

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

© 2012 MiTek® All Rights Reserved

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- 1. Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.
- 2. Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- 3. Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- 4. Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- 5. Cut members to bear tightly against each other.
- 6. Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- 7. Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- 8. Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- 9. Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- 10. Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- 11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- 12. Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- 13. Top chords must be sheathed or purlins provided at spacing indicated on design.
- 14. Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
- 16. Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- 18. Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- 19. Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- 20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.

21. The design does not take into account any dynamic or other loads other than those expressly stated.

ANSI/TPI1:	National Design Specification for Metal
	Plate Connected Wood Truss Construction.
DSB-89:	Design Standard for Bracing.
BCSI:	Building Component Safety Information,
	Guide to Good Practice for Handling,
	Installing & Bracing of Metal Plate
	Connected Wood Trusses.

MiTek Engineering Reference Sheet: MII-7473 rev. 5/19/2020