

Trenco 818 Soundside Rd Edenton, NC 27932

Re: J0822-4240 Jamie Fisher/Fisher Residence/Harnett

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville.

Pages or sheets covered by this seal: I55153054 thru I55153079

My license renewal date for the state of North Carolina is December 31, 2022.

North Carolina COA: C-0844

November 9,2022

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Edenton, NC 27932

	1	12-1-12	20	-7-3	28-7-12	2	1	37-7-1	2		46-1-12	54-3-8	
	1	12-1-12	8-	5-7	8-0-9		1	9-0-0)		8-6-0	8-1-12	1
Plate Offse	ts (X,Y)	[4:0-3-0,Edge], [8:0-5-4,	0-3-0]										
	(psf)	SPACING-	2-0-0	CSI.	0.40	C	DEFL.	in 0.24	(loc)	l/defl	L/d 240	PLATES	GRIP 244/190
TCDI	10.0		1.15	BC	0.30	Ň		-0.27	2-20	~524	240	101120	244/130
BCLI	0.0 *	Rep Stress Incr	YES	WB	0.33	, F	lorz(CT)	0.01	13	 n/a	n/a		
BCDL	10.0	Code IRC2015/T	PI2014	Matrix	-S		1012(01)	0.01	10	n/a	n/a	Weight: 514 lb	FT = 20%
LUMBER- TOP CHOF BOT CHOF WEBS	RD 2x6 SF 1-4: 2x RD 2x6 SF 2x4 SF 21 22	P No.1 *Except* 44 SP No.1 P No.2 *Except* 2 22 22 24 24 25 2v6 5	SP No 1	-	I	B T B W	RACING- OP CHOF OT CHOF VEBS	RD RD	Structu 2-0-0 c Rigid c 1 Row	ral wood : c purlins (eiling dire at midpt	sheathing dir (6-0-0 max.): ctly applied o 6	rectly applied or 6-0-0 c 7-8. or 6-0-0 oc bracing. i-16, 8-16, 8-15, 10-13	oc purlins, except
OTHERS	2x4 SF	P No.2											
REACTION	IS. (siz Max H Max U Max G	e) 2=0-3-8, 20=0-3-8, lorz 2=430(LC 11) Jplift 2=-271(LC 8), 20=-{ Grav 2=398(LC 23), 20=1	13=0-3-8 504(LC 12), 13 958(LC 1), 13	3=-389(LC 13) 3=2199(LC 2)									
FORCES.	(lb) - Max.	Comp./Max. Ten All fo	rces 250 (lb)	or less except	when shown.	/227							
TOP CHOP	(D 2-3=)	-269/209, 3-5=-258/400,	5-6=-1232/21	1, 6-7=-1161/3	11, 7-8=-850	/337,							
BOT CHOP	RD 2-20: 11-1;	=-863/247, 10-11=-414/6 =-284/215, 18-20=-364/2 3=-410/441	49 58, 16-18=-18	85/1138, 15-16	=-86/701, 13-	15=-41	0/441,						
WEBS	3-20: 7-16:	=-512/327, 5-20=-1500/5 =-22/291, 8-16=-164/498	10, 5-18=-295 , 8-15=-485/2	5/1527, 6-18=-4 68, 10-15=-208	195/249, 6-16 3/1152, 10-13	i=-429/2 i=-1878	249, 5/728						
NOTES-													
1) Unbalan 2) Wind: AS gable en to 37-7-1 member	ced roof live SCE 7-10; \ d zone and I2, Exterior(s and forces	e loads have been consid /ult=130mph Vasd=103n C-C Exterior(2) -0-10-8 (2) 37-7-12 to 43-0-14, In s & MWFRS for reactions	tered for this of hph; TCDL=6.1 to 4-6-10, Inte terior(1) 43-0- s shown; Luml	design. 0psf; BCDL=6. rior(1) 4-6-10 to 14 to 55-0-8 zo oer DOL=1.60	0psf; h=15ft; o 28-7-12, Ex one; cantileve plate grip DO	Cat. II; (terior(2 er right e L=1.60	Exp C; Er 2) 28-7-12 exposed ;	iclosed; to 34-0 porch le	MWFR -14, Inte eft expo	S (envelo erior(1) 34 sed;C-C f	pe) -0-14 or	HUNNING TH C	AROLIN
3) Truss de Gable E	esigned for v nd Details a	wind loads in the plane o as applicable, or consult o	f the truss only ualified buildi	/. For studs ex ng designer as	posed to win per ANSI/TF	d (norm 91 1.	nal to the f	ace), se	ee Stan	dard Indus	stry	MAR	13 All
4) Provide	adequate d	rainage to prevent water	ponding.	-									
5) All plates	s are 2x4 M	T20 unless otherwise inc	licated.									: : SE/	AL : =
6) Gable st	uds spaced	at 2-0-0 oc.										0.261	222 : =
7) This trus	s has been	designed for a 10.0 psf l	ottom chord I	ive load nonco	ncurrent with	any oth	her live loa	ads.				: 036.	522 : :
8) * This tru	iss has bee	n designed for a live load	t of 30.0psf or	the bottom ch	ord in all are	as whe	re a rectar	ngle 3-6	-0 tall b	y 2-0-0 wi	de		1 5
WIII TIT DE	ween the t	connection (by others) of	f truce to beer	with BCDL = 10	u.upst.	nding 2		t at iain	+ 2 504	lb unlift of		3	air S

le mechanical connection (by others) of truss to bearing plate capable of withstanding 2/1 lb uplift at joint 2, 504 lb uplift at 9) joint 20 and 389 lb uplift at joint 13.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 818 Soundside Road Edenton, NC 27932

Provide adequate drainage to prevent water ponding.

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 85 lb uplift at joint 9 and 44 lb uplift at joint 14.

7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSIVTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 357 lb uplift at joint 9 and 170 lb uplift at joint 14.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

G 11111111 November 9,2022

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Max Grav 2=397(LC 23), 16=2212(LC 2), 10=1660(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-269/128, 3-5=-169/376, 5-6=-119/403, 6-7=-1823/392, 7-9=-1995/493, 9-10=-2111/343

 BOT CHORD
 14-16=-29/1453, 12-14=0/1091, 10-12=-105/1557

 WEBS
 3-16=-507/313, 5-16=-461/195, 7-14=-70/762, 7-12=-228/1147, 9-12=-574/362, 6-14=-301/264, 6-16=-2114/334

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-10-8 to 3-9-1, Interior(1) 3-9-1 to 29-1-12, Exterior(2) 29-1-12 to 33-9-5, Interior(1) 33-9-5 to 47-0-8 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 192 lb uplift at joint 2, 190 lb uplift at joint 16 and 80 lb uplift at joint 10.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 3-9-1, Interior(1) 3-9-1 to 29-1-12, Exterior(2) 29-1-12 to 33-9-5, Interior(1) 33-9-5 to 47-0-8 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.

5) Gable studs spaced at 2-0-0 oc.

- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 261 lb uplift at joint 2, 526 lb uplift at joint 17 and 277 lb uplift at joint 11.

SEAL 036322 November 9,2022

> Engineering by AMITEK Atfiliate 818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSIVTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-4-4 to 4-9-1, Interior(1) 4-9-1 to 12-2-4, Exterior(2) 12-2-4 to 16-7-1, Interior(1) 16-7-1 to 30-1-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 11, 6.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Jamie Fisher/Fisher R	esidence/Harnett	155452064
J0822-4240	C2GE	GABLE	1	1			155153064
Comtech, Inc, Fayette	ville, NC - 28314,			3.430 s Ja	Job Reference (optiona n 6 2022 MiTek Industr	al) ies, Inc. Tue Nov 8 09:44:02 20	022 Page 1
	3-8-15	12-2-4	ID:093MurA5 20-7-9	IZpjVaNZ>	Kpxgt3ymLxk-amDNUm 29-4-0	krQDzNICjK6vNUt?S6i6jrCFiXC 30-2 ₁ 8	llrpf_yLHQx
	3-8-15	8-5-5	8-5-5	1	8-8-7	0-10-8	
		5x8 =					Scale = 1:83.9
	9.0 9.0 7 7 7 7 7 7 7 7 7 7 7 8		9 10	1x6 × 11 12	13		
	4-6-6-10 1-10 1-10 1-10 1-10 1-10 1-10 1-					16 17 0 1800 1400 14	
	34 33	32 31 30 29 28 27 ₂	25 24	23 2	2 21 20 19	3x4 =	
	3x4	- 4x	6 =				
	6-	6-12 17-9-12			29-4-0		
Plate Offsets (X,Y) [11		6-12 11-3-1	I		11-6-4	1	
LOADING (psf)	SPACING- 2-0-0	CSI. DE	FL. in	(loc)	l/defl L/d	PLATES GRIP	
TCLL 20.0	Plate Grip DOL 1.15	TC 0.08 Ver	rt(LL) -0.00	17	n/r 120	MT20 244/19	90
BCLL 0.0 *	Rep Stress Incr YES	WB 0.36 Hol	rz(CT) 0.01	17	n/a n/a		200/
BCDL 10.0		Matrix-S					: 20%
LUMBER- TOP CHORD 2x6 SP No BOT CHORD 2x6 SP No WEBS 2x6 SP No OTHERS 2x4 SP No	0.1 0.1 0.2	BR. TOI BO WE	ACING- P CHORD T CHORD BS	Structur except e Rigid ce T-Brace Fasten ((0.131"x Brace m	al wood sheathing dire end verticals. illing directly applied of : 2x 8- (2X) T and I braces to (3") nails, 6in o.c.,with ust cover 90% of web	ectly applied or 6-0-0 oc purlin r 10-0-0 oc bracing. 4 SPF No.2 - 7-28, 6-29, 5-30 27, 9-25, 10-24 narrow edge of web with 10d 3in minimum end distance. length.	s,), 4-31,
REACTIONS. All beari (Ib) - Max Horz Max Uplif Max Grav	ngs 29-4-0. 34=-391(LC 13) t All uplift 100 lb or less at jc except 17=-269(LC 11), 30- 25=-115(LC 13), 20=-106(L All reactions 250 lb or less 24, 23, 22, 21, 20, 19 excep	int(s) 34, 28, 29, 32, 27, 24, 23, 22, 21 -124(LC 12), 31=-103(LC 12), 33=-151(LC C 13), 19=-172(LC 13) at joint(s) 34, 29, 30, 31, 32, 33, 27, 25, t 17=352(LC 8), 28=411(LC 12)	12),			-	
FORCES. (Ib) - Max. Co TOP CHORD 4-5=-24 9-10=-24 15-162	mp./Max. Ten All forces 25 3/289, 5-6=-324/391, 6-7=-35 45/384, 10-12=-267/332, 12-1 407/380, 16-17501/449	0 (lb) or less except when shown. 0/427, 7-8=-350/445, 8-9=-324/446, 3=-294/310, 13-14=-316/317, 14-15=-354/	343,				
BOT CHORD 33-34=	326/388, 32-33=-326/388, 31 326/388, 27-28=-326/388, 25	32=-326/388, 30-31=-326/388, 29-30=-326 27=-326/388, 24-25=-326/388, 23-24326	6/388, 6/388.				
22-23=-3	326/388, 21-22=-326/388, 20	21=-326/388, 19-20=-326/388, 17-19=-326	6/388				1.
 WEBS 7-28=-34 NOTES- 1) Unbalanced roof live lo. 2) Wind: ASCE 7-10; Vult: gable end zone and C-t zone;C-C for members 3) Truss designed for wind Gable End Details as a 4) All plates are 2x4 MT20 5) Gable requires continue 6) Gable studs spaced at 7) This truss has been det 8) * This truss has been det 8) * This truss has been det 9) Provide mechanical con 24, 23, 22, 21 except (j) 10) Warning: Additional p WARNING - Verify desi 	ads have been considered fo =130mph Vasd=103mph; TC C Corner(3) 0-4-4 to 4-9-1, E: and forces & MWFRS for read d loads in the plane of the true pplicable, or consult qualified bulless otherwise indicated. bus bottom chord bearing. 2-0-0 oc. signed for a 10.0 psf bottom of esigned for a 10.0 psf bottom of esigned for a live load of 30.0 om chord and any other mem nection (by others) of truss t =b) 17=269, 30=124, 31=10 ermanent and stability bracing an parameters and READ NOTES ON	this design. DL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exterior(2) 4-9-1 to 12-2-4, Corner(3) 12-2-4 ctions shown; Lumber DOL=1.60 plate grip ss only. For studs exposed to wind (normal building designer as per ANSI/TPI 1. hord live load nonconcurrent with any othe psf on the bottom chord in all areas where bers. bearing plate capable of withstanding 100 3, 33=151, 25=115, 20=106, 19=172. for truss system (not part of this compone THIS AND INCLUDED MITEK REFERENCE PAGE MII-	<pre>cp C; Enclosed to 16-7-1, Exter DOL=1.60 I to the face), s r live loads. a rectangle 3-6 0 lb uplift at joir nt design) is al 7473 rev. 5/19/2020</pre>	; MWFRS rior(2) 16 ee Standa 5-0 tall by t(s) 34, 2 ways req beFORE L	S (envelope) -7-1 to 30-1-0 ard Industry 2-0-0 wide 8, 29, 32, 27, uired.	SEAL 036322 November 9,	
Design valid for use only of a truss system. Before use building design. Bracing i is always required for stata fabrication, storage, delive Safety Information avail	vith MiTek® connectors. This design , the building designer must verify th ndicated is to prevent buckling of indi ility and to prevent collapse with pos- iry, erection and bracing of trusses an able from Truss Plate Institute, 2670	s based only upon parameters shown, and is for an inc e applicability of design parameters and properly incorp vidual truss web and/or chord members only. Addition ible personal injury and property damage. For genera d truss systems, see ANS/TPI1 Quality Crit Crain Highway, Suite 203 Waldorf, MD 20601	dividual building co porate this design i al temporary and p I guidance regardir teria, DSB-89 and	mponent, no nto the over ermanent br ng the BCSI Build	ot rall racing ling Component	AMITe 818 Soundside Road Edenton, NC 27932	C O Affiliate

will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 10.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-9-0 to 3-7-13, Exterior(2) 3-7-13 to 11-10-0, Corner(3) 11-10-0 to 16-2-13, Exterior(2) 16-2-13 to 24-5-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) All plates are 2x4 MT20 unless otherwise indicated.

5) Gable studs spaced at 2-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=197, 6=197.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) l/defl L/d PLATES GRIP Vert(LL) 0.01 5 n/r 120 MT20 244/190 Vert(CT) 0.01 5 n/r 120 MT20 244/190
TCLL 20.0	Plate Grip DOL 1.15	TC 0.20	
TCDL 10.0	Lumber DOL 1.15	BC 0.11	
BCLL 0.0 *	Pen Stress Incr. VES	WB 0.03	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P	Horz(CT) 0.00 4 n/a n/a Weight: 32 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1

OTHERS 2x4 SP No.2

REACTIONS. 2=7-7-5, 4=7-7-5, 6=7-7-5 (size) Max Horz 2=-77(LC 10) Max Uplift 2=-34(LC 12), 4=-41(LC 13) Max Grav 2=200(LC 1), 4=200(LC 1), 6=264(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.
- 7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

REACTIONS. All bearings 7-7-5. (lb) - Max Horz 2=96(LC 11)

Max Uplift All uplift 100 lb or less at joint(s) 2, 6 except 10=-118(LC 12), 8=-117(LC 13) Max Grav All reactions 250 lb or less at joint(s) 2, 6, 9, 10, 8

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 2-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6 except (jt=lb) 10=118, 8=117.

 See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek Affili 818 Soundside Road Edenton, NC 27932

Plate Offsets (X,Y)	[7:0-0-0,0-0-0], [8:0-0-0,0-0-0], [9:0-0-0	,0-0-0], [10:0-0-0,0-0-0], [1	5:0-2-8,0-3-0]					
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.05 BC 0.03 WB 0.20 Matrix-S	DEFL. Vert(LL) n Vert(CT) n Horz(CT) 0.0	in (loc) 'a - 'a - 1 11	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 122 lb	GRIP 244/190 FT = 20%
LUMBER-		1	BRACING-				1	

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 OTHERS 2x4 SP No.2 TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 20-0-14.

(lb) -Max Horz 1=-241(LC 8)

1-2=-281/193

Max Uplift All uplift 100 lb or less at joint(s) 1, 11 except 17=-110(LC 12), 18=-113(LC 12), 19=-110(LC 12), 20=-112(LC 12), 15=-108(LC 13), 14=-114(LC 13), 13=-110(LC 13), 12=-112(LC 13) Max Grav All reactions 250 lb or less at joint(s) 1, 11, 16, 17, 18, 19, 20, 15, 14, 13, 12

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

TOP CHORD

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-4-13 to 4-9-10, Interior(1) 4-9-10 to 10-0-7, Exterior(2) 10-0-7 to 14-5-4, Interior(1) 14-5-4 to 19-8-1 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) All plates are 2x4 MT20 unless otherwise indicated.

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 6) will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 11 except (jt=lb) 17=110, 18=113, 19=110, 20=112, 15=108, 14=114, 13=110, 12=112.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

- FORCES. (Ib) Max. Comp./Max. Ten. All forces 250 (Ib) or less except when shown.
- WEBS 2-8=-313/240, 4-6=-313/239

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-4-13 to 4-9-10, Interior(1) 4-9-10 to 6-5-4, Exterior(2) 6-5-4 to 10-10-1, Interior(1) 10-10-1 to 12-5-11 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=124, 6=124.

6) Non Standard bearing condition. Review required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss system. See **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

REACTIONS. (size) 1=9-2-6, 3=9-2-6, 4=9-2-6 Max Horz 1=-85(LC 8) Max Uplift 1=-20(LC 13), 3=-28(LC 13) Max Grav 1=181(LC 1), 3=181(LC 1), 4=316(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
 6) Non Standard bearing condition. Review required.

b) Non Standard bearing condition. Review required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

LUMBER-

TOP CHORD2x4 SP No.1BOT CHORD2x4 SP No.1OTHERS2x4 SP No.2

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 5-8-1 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 1=5-7-3, 3=5-7-3, 4=5-7-3 Max Horz 1=-49(LC 8) Max Uplift 1=-17(LC 13), 3=-21(LC 13) Max Grav 1=113(LC 1), 3=113(LC 1), 4=164(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss system. See **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Plata Offects (X V)	[2:0.2.0.Edge]		2-0-7 2-0-7			<u>2-0-</u> 14 0-0-7		
Flate Offsets (A, I)	[2.0-2-0,Euge]							
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.01 BC 0.01 WB 0.00	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc n/a n/a 0.00	c) l/defl - n/a - n/a 3 n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P					Weight: 6 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1

REACTIONS. 1=2-0-0, 3=2-0-0 (size) Max Horz 1=-13(LC 8) Max Uplift 1=-2(LC 12), 3=-2(LC 13) Max Grav 1=51(LC 1), 3=51(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 2-0-14 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 4.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

REACTIONS. (size) 1=6-2-9, 3=6-2-9, 4=6-2-9 Max Horz 1=-49(LC 8) Max Uplift 1=-19(LC 12), 3=-23(LC 13) Max Grav 1=122(LC 1), 3=122(LC 1), 4=190(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.6) Non Standard bearing condition. Review required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss system. See **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

3x4 🥢

3x4 📎

TOP CHORD

BOT CHORD

	0 ₁ 0 ₁ 8 0-0-8			2-3-9					4	
Plate Offsets (X,Y)	[2:0-2-0,Edge]			201						
OADING (psf)	SPACING- 2-0	-0 CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL 20.0	Plate Grip DOL 1.	15 TC	0.01	Vert(LL)	n/a	-	n/a	999	MT20	244/190
CDL 10.0	Lumber DOL 1.	15 BC	0.02	Vert(CT)	n/a	-	n/a	999		
3CLL 0.0 *	Rep Stress Incr YE	S WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
3CDL 10.0	Code IRC2015/TPI201	4 Matr	ix-P						Weight: 6 lb	FT = 20%

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1

REACTIONS. (size) 1=2-2-9, 3=2-2-9 Max Horz 1=-13(LC 8) Max Uplift 1=-3(LC 12), 3=-3(LC 13) Max Grav 1=57(LC 1), 3=57(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3. 6) Non Standard bearing condition. Review required.

Structural wood sheathing directly applied or 2-3-9 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

