

Kempsville Sanford Component Plant 298 Harvey Faulk Rd Sanford, NC 27332

Phone #:919-775-1450

Builder: DRB HOMES NC

Model: 89 FaNC - COOPER 7

THE PLACEMENT PLAN NOTES:

1. The Placement Plan is a diagram for truss installation. It is not an engineered drawing and has not been reviewed by an engineer. The Owner/Building Designer is responsible for obtaining an engineer's review if one is required by the local jurisdiction.

2. The responsibilities of the Owner, Contractor, Building Designer, Component Designer and Component Manufacturer shall be as set forth in ANSI/TPI 1. Capitalized terms shall be as defined in ANSI/TP 1 unless otherwise indicated.

3. Each Component is designed as an individual component utilizing information provided by others. The Owner/Building Designer is responsible for reviewing all Component Submittal Packages and individual Component Design Drawings for compliance with the Construction Documents and compatibility with the overall Building design.

4. Contractor will not proceed with component installation until the Owner/Building Designer has reviewed the Component Submittal Package. Questions on the suitability of any Component will be resolved by the Building Designer.

5. The Building Designer and Contractor are responsible for all temporary and permanent bracing.

6. The Placement Plan assumes the building is dimensionally correct, structurally sound, and in a suitable condition to support each Component during installation and thereafter, including but not limited to installation of all bearing points. Proper design and construction of all structural components, including foundations, headers, beams, walls and columns are the responsibility of the Owner, Building Designer and Contractor.

7. Do not cut, drill, or modify any Component without first consulting the Component Manufacturer or Building Designer. Damaged Components shall not be installed unless directed by the Building Designer or approved by the Component Manufacturer.

8. Components must be handled and installed following all applicable safety standards and best practices, including but not limited to BCSI, OSHA, TPI and local codes. Failure to properly handle, brace or otherwise install Component can result in serious injury or death.

**	** FRAMER MUST REFER TO PLANS WHILE SETTING COMPONENTS.	** DAMAGED COMPONENTS SHOULD NOT BE INSTALLED UNLESS TOLD TO BY THE COMPONENT PLANT.	G
RIANG			ne
ULAR	russ En		a
SYME	d Ind		NO
BOLN	ving		les
VEAR	or Left		
END			8
유 TF			
RUSS			
INDIC			
ATES			ING (
TENE			
OF			
IRUS			S SHO
S AS (
SHOW			
NO N/			
VIDU			
JSS [
ORAW			
INGS.			G CON
		56' 0"	
*	₹2'0"	21' 11 1/2"	
PLUN		V1 PB4 Q Q Q Q Q Q Image:	
NBING		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
DRO		PB3 PB3	
PS NO		PB3 B01	
OTED	PB-	P P P P P P P P P P P P P P P P P P P	I R A
ARE	20' 0	PB3	
NTH		PB3	
E APF		B01 B01 B01 B01 B01	
ROX		PB3 B01 0	
MATE			
LOC/			FOR
ATION	Q JO1 A03		COMF
S PEF			
R PLA	J01 A03	PB1	
N. BC	A02	PB1 PB1	
JILDE	No 1003		BEFC
R TO	Q J03 A01		
VERIF	J03		
	J03		
CATIO	J03		
NS BE	J03 A01		
FORE	 		
SET			
TING -		י טע 10' 0"	
TRUS			
SES			

** GIRDERS MUST BE FULLY CONNECT	ED TOGETHER PRIOR TO ADDING ANY LOADS.	ENSIONS ARE READ AS: FOOT-INCH-SIXTEENTH.	S TO TRUSS CONNECTIONS ARE TOE-NAILED, UNLESS NOTED OTHERWISE.				
Date:	DRB HOMES NC		THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual components to be incorporated into the building design at the specification of the building designer. See Individual design sheets for	/00/00/	/00/00	00/00/	
NTS NTS Designet: ND Project Num 220904 Sheet Num	89 FaNC - COOPER 7	Enpsylle Building Materials	each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor systems and for the overall structure. The design of the truss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding the bracing, consult	00			
hber:	COMPONENT PLACEMENT PLAN	A Division of the Carter Lumber Company	"Bracing of Wood Truss" available from the Truss Plate Institute, 583 D'Onifrio Drive: Madison, WI 53179	Vame	Vame	Vame	

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 22090048 DRB HOMES - 89 FaNC

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Sanford, NC)).

Pages or sheets covered by this seal: I54559179 thru I54559207

My license renewal date for the state of North Carolina is December 31, 2022.

North Carolina COA: C-0844

October 5,2022

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 89 FaNC	
22090048	A01	Piggyback Base	6	1	Job Reference (ontional)	154559179

9-4-5

9-4-5

17-6-14

8-2-8

Run: 8.53 S Sep 22 2022 Print: 8.530 S Sep 22 2022 MiTek Industries, Inc. Wed Oct 05 09:11:27 ID:vmWSYKxMeSKeeaoGnh3QrczhvSE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

21-2-5 26-2-5 33-2-12 38-4-2 46-11-13 55-11-0 3-7-7 5-0-0 7-0-7 5-1-6 8-7-11 8-11-3 2x4 // 8x10= 6x8= 2x4 🗤 6x8= 3 4 32335 3485 3687 38 67 8 5x6 👟

Scale = 1:97.2

Loading TCLL (roof) Snow (Pf) TCDL 3CLL 3CDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-MSH	0.75 0.65 0.74	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.22 -0.39 0.04	(loc) 21-22 21-22 12	l/defl >663 >383 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 465 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD	2x6 SP N 2x6 SP N 2x4 SP N 21-2,15-1 22-1:2x6 Right 2x6 Structural 5-0-13 oc	o.2 o.2 *Excep 0.10-13,25 SP No.2 SP No.2	t* -18:2x4 SP No.3, -1-6-0 athing directly applie xcept end verticals, a	ed or fand	WEBS	2-21=-529/343, 3- 19-23=-289/142, 4 5-24=-569/188, 17 5-17=-1043/333, 6 3-15=-166/159, 10 10-13=0/427, 2-22 24-25=-7/13, 18-2 roof live loads hav	21=-113 -23=-27 -24=-58 -15=-15 -15=-95 -15=-15=-95 -15=-15=-95 -15=-95 -15=-95 -15=-1	1/0, 3-19=0/5 3/158,)/174, 1/966, 3/304, 4, 23-25=-7/1 considered fo	57, 3, r	9) One reco UPI upli 10) This Inte R80 11) Gra or ti bott	e H2.5A ommend LIFT at ji ft only as truss is rnationa 02.10.2 a phical p ne orient om chor	Simps led to o t(s) 21 nd doe desig desig l Resid and ref urlin re tation o rd.	on Strong-Tie cc connect truss to l , 17, 22, and 12. ss not consider la ined in accordam dential Code sec ferenced standar epresentation doo of the purlin alon-	innectors bearing walls of This connection teral forces. ce with the 20 tions R502.01 d ANSI/TPI 1. es not depict t g the top and/	due to on is for 18 .1 and he size or
BOT CHORD WEBS	2-0-0 oc purlins (6-0-0 max.): 3-8. Rigid ceiling directly applied or 6-0-0 oc bracing. 1 Row at midpt 3-21, 4-19, 5-17, 6-17, 8-15, 10-15			iax.): 3-8. 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) lied or 6-0-0 oc Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior 1, 4-19, 5-17, 6-17, zone and C-C Exterior(2E) 8-0-0 to 13-11-14, Interior (1) 5, 10-15 13-11-14 to 17-1-9, Exterior(2R) 17-1-9 to 33-10-11, Interior (1) 23.2 14 to 14 to 17-19) Sta	ndard		
REACTIONS	(size) Max Horiz Max Uplift Max Grav	12=0-3-8, 22=0-3-8 22=265 (L 12=-134 (21=-151 (12=1293 (21=1796 (.C 11) LC 15), 17=-111 (LC LC 15), 17=-111 (LC LC 14), 22=-118 (LC (LC 52), 17=1988 (L4 (LC 34), 22=498 (L6	, 2 15), 2 10) C 6), , , 2 43)	Interior (1) 33 54-9-1, Interi to 63-8-4 zor vertical left a forces & MW DOL=1.60 pl 3) TCLL: ASCE	3-10-11 to 37-7-11 or (1) 54-9-1 to 57 ne; cantilever left a nd right exposed; (FRS for reactions ate grip DOL=1.60 (7-16; Pr=20.0 ps	l, Exteric 7-8-6, Ex and right C-C for n shown;) f (roof LL	or(2R) 37-7-1 terior(2E) 57- exposed ; en nembers and Lumber .: Lum DOL= ²	1 to -8-6 d 1.15						
FORCES	(lb) - Max Tension 1-2=-291/ 4-5=-287/ 8-10=-982	(imum Com /151, 2-3=- /261, 5-6=- 2/347, 10-1	pression/Maximum 11/617, 3-4=-203/23 137/205, 6-8=-693/3 2=-1762/371,	1, <u>7</u> 6,	DOL=1.15); I DOL=1.15); I Cs=1.00; Ct= Unbalanced design. 5) 200.0lb AC u	IS); PI=20.0 pSI Is=1.0; Rough Cat =1.10 snow loads have I unit load placed on	B; Fully	E=1.15 Plate Exp.; Ce=0.9 Isidered for th om chord, 23); nis -8-8		4	A. I. I.	ORTH CA	RO	
3OT CHORD	1-22=-46 21-22=-2 18-19=-9 15-17=-4 12-13=-1	76/109, 19- 76/109, 19- 2/351, 17-1 2/467, 13-1 82/1435	21=-77/292, 8=-92/351, 5=-182/1435,	8	from left end Frovide adec This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar	supported at two quate drainage to s been designed f ad nonconcurrent has been designed n chord in all area by 2-00-00 wide wi hy other members,	points, s prevent v for a 10.0 with any I for a liv s where ill fit betw with BC	5-0-0 apart. water ponding) psf bottom other live load e load of 20.0 a rectangle veen the botto DL = 10.0psf	g. ds. Opsf om		THE DAY			L 22 EER.R.K	annun annun

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

GILB A. GILD A.

October 5,2022

Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 89 FaNC	
22090048	A02	Piggyback Base	1	1	Job Reference (optional)	154559180

Run: 8.53 S Sep 22 2022 Print: 8.530 S Sep 22 2022 MiTek Industries, Inc. Wed Oct 05 09:11:30 ID:vmWSYKxMeSKeeaoGnh3QrczhvSE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:98.5

Plate Offsets (X, Y): [2:0-2-5,0-3-4]

Loading TCLL (roof) Snow (Pf) TCDL BCLL	(psf) 20.0 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MSH	0.84 0.69 0.95	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.14 -0.21 0.01	(loc) 17-19 17-19 15	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190	
BCDL	10.0							-				Weight: 441 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER	2x6 SP No.2 2x6 SP 2400F 2.0E ³ No.2 2x4 SP No.2 *Excep No.3, 20-1:2x6 SP N Right 2x6 SP No.2	*Except* 18-16:2x6 S t* 19-1,19-2,13-9:2x4 lo.2 • 1-6-0	1) SP 2) I SP	Unbalanced this design. Wind: ASCE Vasd=103mp Cat. II; Exp E zone and C-0 13-11-14 to 1	roof live loads have 7-16; Vult=130mph h; TCDL=6.0psf; B ; Enclosed; MWFR C Exterior(2E) 8-0-0 (7-1-9, Exterior(2R) 20-12 to 27 7 11	been ((3-sec CDL=6 S (env) to 13- 17-1-9	considered for ond gust) .0psf; h=25ft; elope) exterio 11-14, Interior to 33-9-13, (CD) 27, 7, 14 (r r (1) to	11) This Inte R80 12) Gra or ti bott	s truss is rnationa 2.10.2 a phical p ne orient om chor CASE(S)	desig Resid and ref urlin ref ation d. Sta	ned in accordan dential Code sec erenced standa epresentation do of the purlin alor ndard	ce with the 20 tions R502.1 d ANSI/TPI 1 es not depict g the top and)18 1.1 and the size //or
	Otm	- 41- (54-10-6. Inte	rior (1) 54-10-6 to 5	8-6-14	Exterior(2E)	10						
TOP CHORD	2-2-0 oc purlins, exc 2-0-0 oc purlins (6-0-	athing directly applied cept end verticals, an -0 max.): 3-7.	d or Id	58-6-14 to 64 exposed ; en	d vertical left and ri	ver left ght exp	and right osed;C-C for							
BOT CHORD	Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 13-	applied or 10-0-0 oc -15.	3)	Lumber DOL TCLL: ASCE	=1.60 plate grip DC 7-16; Pr=20.0 psf (DL=1.60 (roof LL) .: Lum DOL=1	, 1.15						
WEBS WEBS	1 Row at midpt 2 Rows at 1/3 pts	5-15, 7-15, 3-19, 3-1 4-15	7	Plate DOL=1 DOL=1.15); I Cs=1.00: Ct=	.15); Pf=20.0 psf (L s=1.0; Rough Cat E :1.10	um DC 3; Fully	L=1.15 Plate Exp.; Ce=0.9);						
REACTIONS	(size) 11=0-3-8,	15=0-3-8, 20=0-3-8	4)	Unbalanced	snow loads have be	een cor	sidered for th	nis						
	Max Uplift 11=-161 (I Max Grav 11=1005 (20=1295 (LC 15), 20=-117 (LC (LC 53), 15=3260 (LC (LC 36)	14) 5) C 3),	design. This truss ha load of 12.0 µ overhangs no	s been designed fo osf or 1.00 times fla on-concurrent with (r great t roof lo other liv	er of min roof oad of 20.0 ps /e loads.	live of on					111.	
FORCES	(lb) - Maximum Com	pression/Maximum	6)	200.0lb AC u	nit load placed on t	he bott	om chord,	_				"TH CA	RO	
TOP CHORD	1-2=-1542/279, 2-3= 3-4=-755/245, 4-5=0 7-9=-920/346, 9-11= 1-20=-1154/264	-1778/496, //626, 5-7=0/626, :-1089/272, 11-12=0/2	7) 26, 8)	23-11-12 fror apart. Provide adec This truss ha	n left end, supporte juate drainage to pr s been designed fo	ed at tw revent v r a 10.0	o points, 5-0-0 water ponding) psf bottom	U J.		4	r'il	OR	Mar	
BOT CHORD	19-20=-236/236, 17- 15-17=-83/557, 13-1 11-13=-104/874	19=-75/889, 5=-61/194,	9)	* This truss h on the botton 3-06-00 tall b	as been designed f n chord in all areas v 2-00-00 wide will	for a liv where fit betv	e load of 20.0 a rectangle /een the botto)psf om		TH LL		SE/ 0363	L 22	
WEBS	1-19=-105/1416, 2-1 5-15=-589/198, 7-15 9-13=-725/353, 7-13 3-19=-323/962, 3-17 4-15=-1620/220	9=-878/418, ;=-1285/291, ;=-213/1214, '=-530/269, 4-17=0/1	10 158,	chord and an) One H2.5A S recommende UPLIFT at jt(only and doe	y other members, v simpson Strong-Tie d to connect truss t s) 20 and 11. This o s not consider later	with BC conne to bear connec al force	DL = 10.0psf. ctors ing walls due tion is for uplites.	to ft				A. C	EER.K	. internet
												11111	11111	

NOTES

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

October 5,2022

Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 89 FaNC	
22090048	A03	Piggyback Base	3	1	Job Reference (optional)	154559181

Run: 8.53 S Sep 22 2022 Print: 8.530 S Sep 22 2022 MiTek Industries, Inc. Wed Oct 05 09:11:31 ID:aoRBENz7FOPJS6leKNt1qPzFzyH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale - 1.99.1	cale = 1:99.1
----------------	---------------

Plate Offsets (X, Y): [3:0-3-0,0-0-8],	[7:0-4-0,Edge], [11:	0-11-12,0-	3-15], [12:Edg	e,0-5-9], [19:0-5-8,	0-3-0]								
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MSH	0.86 0.77 0.93	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.34 -0.54 0.05	(loc) 23-25 23-25 12	l/defl >944 >592 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 481 It	GRIP 244/190	%
LUMBER TOP CHORD BOT CHORD WEBS	2x6 SP No.2 2x6 SP No.2 *Excep No.3, 22-20:2x6 SP : 2x4 SP No.3 *Excep 23-4,5-23,23-6,19-6, 21-6:2x4 SP No.1	t* 20-19,15-14:2x4 \$ 2400F 2.0E t* 19-8,4-25:2x4 SP N	Wi SP 0.2,	EBS	2-26=-1414/457, 2 3-25=-649/278, 4-2 5-23=-353/121, 6-2 6-21=-2351/401, 1 6-19=-40/834, 8-19 8-18=-82/900, 10-1 10-16=0/519, 2-27	-25=-19 23=-620, 23=-101, 9-21=-1 9=-1540, 8=-117 =-245/1	6/1314, /160, /1212, 395/486, /313, 7/291, 93, 4-25=-53/4	471,	8) * TI on 3-0 chc 9) On rec UP	nis truss the botto 6-00 tall ord and a e H2.5A ommend LIFT at jt	has be m cho by 2-0 ny oth Simps ed to c (s) 12,	een designed fo rd in all areas w 0-00 wide will fi er members, wi on Strong-Tie c connect truss to 26, and 21. Th	r a live load /here a rect t between t th BCDL = onnectors bearing wa	l of 20.0psf angle he bottom 10.0psf. alls due to on is for
SLIDER	Right 2x6 SP No.2	- 1-5-11			11-14=-402/150				upli	ift only a	nd doe	s not consider l	ateral force	S.
BRACING			NC	DTES					IU) Inte	s truss is ernationa	l Resid	tential Code se	ctions R50	2010 211.1 and
TOP CHORD BOT CHORD WEBS WEBS REACTIONS	Structural wood shea 5-0-8 oc purlins, exc 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. 1 Row at midpt 2 Rows at 1/3 pts (size) 12=0-3-8, Max Horiz 26=262 (L Max Uplift 12=-113 (I 26=-211 (I Max Grav 12=791 (L 26=1374 (athing directly applie cept end verticals, ar -0 max.): 4-8. applied or 6-0-0 oc 4-23, 5-23, 8-19, 10 6-21 21=0-3-8, 26=0-3-8 .C 13) LC 15), 21=-244 (LC LC 14) .C 53), 21=3206 (LC (LC 60)	ed or 1) nd 2) 18 C 15), C 15), C 6), 3)	Unbalanced this design. Wind: ASCE Vasd=103m Cat. II; Exp E zone and C- 13-6-2 to 17- (1) 33-3-0 to Interior (1) 5 64-6-12 zone vertical left a forces & MW DOL=1.60 pi TCLL: ASCE	roof live loads hav 7-16; Vult=130mp ph; TCDL=6.0psf; I 3; Enclosed; MWFI C Exterior(2E) 7-1 -5-3, Exterior(2R) 38-2-8, Exterior(2R) 38-2-8, Exterior(2R) -9-1 to 58-11-10, e; cantilever left an ind right exposed; /FRS for reactions late grip DOL=1.60 57-16; Pr=20.0 psf	e been of h (3-sec 3CDL=6 RS (env I-0 to 13 7-5-3 to R) 38-2- Exterior d right e C-C for n shown; (roof LL	considered for cond gust) .0psf; h=25ft; elope) exterior 3-6-2, Interior r o 33-3-0, Interi 8 to 53-9-1, (2E) 58-11-10 exposed ; end nembers and Lumber .: Lum DOL=1	r (1) ior I to	Inte R8(11) Gra or t bot	Prnationa 202.10.2 a aphical pi he orient tom chor CASE(S)	I Resid ind ref urlin re ation o d. Star	erenced standa presentation do of the purlin alou ndard	A De Constructions RSUZ rd ANSI/TF ess not dep ng the top a	2.11.1 and 11. ict the size ind/or
FORCES	(lb) - Maximum Com Tension	pression/Maximum	- /	Plate DOL=1 DOL=1.15);	1.15); Pf=20.0 psf (ls=1.0; Rough Cat	Lum DC B; Fully	L=1.15 Plate Exp.; Ce=0.9	;			A	ORTEES	si6.2	
BOT CHORD	4-5=-205/257, 5-6=- 8-10=-22/419, 10-11 11-12=-435/202, 12- 26-27=-123/193, 25- 23-25=-251/476, 21- 20-21=-75/14, 19-20 18-19=-371/302, 16- 11-15=0/591, 14-15= 12-14=-153/432	205/257, 6-8=0/870, =-911/140, -13=0/26, 1-27=-82/7 -26=-650/384, -23=-780/330, ==-162/19, -18=0/709, 15-16=0/ =-89/306,	, 4) 71 5) 709, 7)	Unbalanced design. This truss ha load of 12.0 overhangs n Provide aded This truss ha chord live loa	snow loads have t snow loads have t as been designed f psf or 1.00 times fl on-concurrent with quate drainage to p as been designed f ad nonconcurrent v	been cor or great at roof lo other liv orevent v or a 10. vith any	nsidered for th er of min roof i pad of 20.0 ps ve loads. water ponding 0 psf bottom other live load	is live f on ds.		Junine .		SE/ 0363	AL 322 NEER.	Annun ann

October 5,2022

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 89 FaNC	
22090048	A04	Piggyback Base Supported Gable	1	1	Job Reference (optional)	154559182

Run: 8.53 S Sep 22 2022 Print: 8.530 S Sep 22 2022 MiTek Industries, Inc. Wed Oct 05 09:11:33 ID:ACS0SGCfmETEfJzgbpcWMMzhrbl-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:97.2

Plate Offsets (X, Y): [11:0	0-3-0,0-3-1	2], [24:0-4-0,0-3-3],	27:0-2-1,Edge], [43:0	0-5-0,0-4-8]	, [57:0-4-0,0-	-1-4]								
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix	-MR	0.31 0.07 0.22	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a -0.01	(loc) - - 35	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 590 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS	2x6 SP N 2x6 SP N 2x4 SP N 2x4 SP N 52-15,53- 47-19,46-	o.2 o.2 o.3 o.3 *Excep 14,54-13,5 21,45-22,4	t* 5-12,51-16,50-17,49 4-23:2x4 SP No.2	-18,	Max Uplif	t 35=-232 (l 37=-27 (L 39=-48 (L 41=-50 (L 43=-24 (L 46=-30 (L 49=-24 (L 51=-24 (L)	LC 11) C 15), C 15), C 15), C 15), C 15), C 11), C 10), C 10),	, 36=-167 (L(38=-53 (LC 1 40=-49 (LC 1 42=-54 (LC 1 45=-22 (LC 1 47=-25 (LC 1 50=-25 (LC 1 52=-25 (L C 1	C 15), 15), 15), 15), 10), 10), 11), 10),	TOP CH	IORD	1-65= 3-4=-6 6-7=-8 9-10= 11-12 13-14 15-16 17-18	- -71/35, 1-2=-49/5 -71/35, 1-2=-49/5 -75/357, 10-11= -156/357, 10-11= -147/382, 12-13 -147/382, 14-15 -147/382, 16-17 =147/382, 18-19 -147/382, 18-19	.4, 2-3=-59/78, 24, 5-6=-90/14 (207, 8-9=-135 :-160/396, i=-147/382, i=-147/382, i=-147/382,	19, /275,
BRACING TOP CHORD	Structural 6-0-0 oc p 2-0-0 oc p	l wood shea purlins, exc purlins (6-0	athing directly applie cept end verticals, ar -0 max.): 11-24.	d or nd		53=-28 (L) 53=-28 (L) 58=-59 (L) 60=-59 (L)	C 10), C 11), C 14), C 14),	52=-25 (LC 1 54=-26 (LC 1 59=-50 (LC 1 61=-42 (LC 1	10), 14), 14),			19-21 22-23 24-25	=-147/382, 10-13 =-147/382, 21-22 =-147/382, 23-24 =-163/399, 25-26	=-147/382, =-147/382, =-147/382, =-154/348,	
BOT CHORD	Rigid ceili bracing.	ing directly	applied or 10-0-0 oc	:		64=-54 (L)	C 10), C 14),	65=-21 (LC 1	10), 10)			29-30	=-96/231, 30-31=	-100/235,	
WEBS	1 Row at	midpt	15-52, 14-53, 13-54 12-55, 10-56, 9-58, 16-51, 17-50, 18-49 19-47, 21-46, 22-45 23-44, 25-43, 26-42		Max Grav	 35=189 (L 37=155 (L 39=217 (L 41=233 (L 43=229 (L 45=218 (L 	.C 19), .C 40), .C 46), .C 46), .C 46), .C 39)	36=285 (LC 38=166 (LC 40=236 (LC 42=238 (LC 44=181 (LC 46=218 (LC	24), 28), 46), 46), 53), 39)			31-32 33-34	=-118/239, 32-33 =-209/287, 34-35	=-148/237, =-128/171	
REACTIONS	(size)	35=55-11- 37=55-11- 39=55-11- 41=55-11- 43=55-11- 45=55-11- 50=55-11- 52=55-11- 54=55-11-	$\begin{array}{l} \text{-0, } 36 \text{=} 55 \text{-} 11 \text{-} 0, \\ \text{-0, } 38 \text{=} 55 \text{-} 11 \text{-} 0, \\ \text{-0, } 40 \text{=} 55 \text{-} 11 \text{-} 0, \\ \text{-0, } 42 \text{=} 55 \text{-} 11 \text{-} 0, \\ \text{-0, } 46 \text{=} 55 \text{-} 11 \text{-} 0, \\ \text{-0, } 46 \text{=} 55 \text{-} 11 \text{-} 0, \\ \text{-0, } 49 \text{=} 55 \text{-} 11 \text{-} 0, \\ \text{-0, } 53 \text{=} 55 \text{-} 11 \text{-} 0, \\ \text{-0, } 55 \text{=} 55 \text{-} 11 \text{-} 0, \\ \text{-0, } 55 \text{=} 55 \text{-} 11 \text{-} 0, \\ \end{array}$	FORCES	(16)	47=212 (L 50=177 (L 52=209 (L 54=218 (L 56=224 (L 59=238 (L 61=205 (L 63=212 (L 65=87 (L	.C 39), .C 20), .C 39), .C 39), .C 39), .C 42), .C 42), .C 43), .C 43), .C 43)	49=190 (LC 53=218 (LC 53=218 (LC 55=178 (LC 58=238 (LC 60=205 (LC 64=225 (LC 64=225 (LC	20), 21), 39), 53), 42), 42), 43),		4		ORTH CA	ROINT	
	Max Horiz	56=55-11 59=55-11 61=55-11 63=55-11 65=55-11 65=269 (L	0, 03-05-11-0, -0, 60=55-11-0, -0, 62=55-11-0, -0, 62=55-11-0, -0, 64=55-11-0, -0. -0.	FORCES	(Ib) - Ma Tension	iximum Com	pressio	on/Maximum			HILLINN.	A A A A A A A A A A A A A A A A A A A	SEA 0363	L 22 ILBER	NILLININ IN
													(IIIIII)	(1111)	

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

October 5,2022

Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 89 FaNC	
22090048	A04	Piggyback Base Supported Gable	1	1	Job Reference (optional)	154559182
Carter Components (Sanford), S	anford, NC - 27332.	Run: 8.53 S Sep 22	Page: 2			

ID:ACS0SGCfmETEfJzgbpcWMMzhrbl-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Carter Components (Sanford), Sanford, NC - 27332,

64-65=-238/161 63-64=-238/161
62-63-238/161 61-62-238/161
60.61 - 239/161.50.60 - 239/161
50-01-230/101, 59-00-230/101, 59-00-230/101, 50-50-230/100, 50-50-230/100, 50-50-230/100, 50-50-230/100, 50-50-230/100, 50-50-230/100, 50-50-230/100, 50-50-200/100, 50-50-200/100, 50-50-200/100, 50-50-200/100, 50-50-200/100, 50-50-200/100, 50-50-200/100, 50-50-200/100, 50-50-200/100, 50-50-200/100, 50-50-200/100, 50-50-200/100, 50-50-200/100, 50-50-200/100, 50-50-200/100, 50-50-200/100, 50-50-200/100, 50-500/1000/1000/1000/1000/1000/1000/100
56-59=-236/101, 50-56=-236/101,
55-56=-238/161, 54-55=-238/161,
53-54=-238/161, 52-53=-238/161,
51-52=-238/161, 50-51=-238/161,
49-50=-238/161, 47-49=-238/161,
46-47=-238/161, 45-46=-238/161,
44-45=-238/161, 42-44=-238/161,
41-42=-237/161, 40-41=-237/161,
39-40=-237/161, 38-39=-237/161,
37-38=-237/161, 36-37=-237/161,
35-36=-237/161
15-52=-171/58, 14-53=-179/93,
13-54=-179/84, 12-55=-139/6,
10-56=-185/56, 9-58=-200/143,
8-59=-199/111, 7-60=-166/90, 5-61=-166/65,
4-62=-176/56, 3-63=-174/56, 2-64=-184/73,
16-51=-151/48, 17-50=-138/48,
18-49=-152/48, 19-47=-173/67,
21-46=-179/97, 22-45=-179/74,
23-44=-143/10, 25-43=-190/79,
26-42=-199/141 28-41=-195/99
29-40=-197/72 30-39=-179/72
31-38=-123/73 32-37=-117/65
33-36=-178/126

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) 7-11-0 to 13-10-2, Exterior (2N) 13-10-2 to 19-4-3, Corner(3R) 19-4-3 to 31-4-0, Exterior(2N) 31-4-0 to 39-10-2, Corner(3R) 39-10-2 to 51-10-2, Exterior(2N) 51-10-2 to 57-6-10, Corner(3E) 57-6-10 to 63-6-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this 5) desian.
- 6) Provide adequate drainage to prevent water ponding.
- 7) All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing. 8)
- Truss to be fully sheathed from one face or securely 9) braced against lateral movement (i.e. diagonal web). 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. 12) * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

13) N/A

- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Page: 2

Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 89 FaNC	
22090048	B01	Piggyback Base	8	1	Job Reference (optional)	154559183

1)

Run: 8.53 S Sep 22 2022 Print: 8.530 S Sep 22 2022 MiTek Industries, Inc. Wed Oct 05 09:11:34 ID:U0VysG?d9oeHisHgY8i761zFzil-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 89 FaNC	
22090048	B02	Piggyback Base	2	1	Job Reference (optional)	154559184

Loading

TCDL

BCLL

BCDL

WEBS

SI IDER

WEBS

WEBS

FORCES

WEBS

NOTES

Run: 8.53 S Sep 22 2022 Print: 8.530 S Sep 22 2022 MiTek Industries, Inc. Wed Oct 05 09:11:35 ID:U0VysG?d9oeHisHgY8i761zFzil-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 89 FaNC	
22090048	B03	Piggyback Base Supported Gable	1	1	Job Reference (optional)	154559185

11

17-6-14 17-6-14

Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.53 S Sep 22 2022 Print: 8.530 S Sep 22 2022 MiTek Industries, Inc. Wed Oct 05 09:11:35 ID:cwD4SPaRdognucCvbhdmhazFwJ5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

TCDL		10.0	Rep Stress Incr	YES	WB		0.22	Horz(CT	, Г) -(0.01	23	n/a	n/a			
BCLL		0.0*	Code	IRC2018/TPI2014	Matrix-	MR										
BCDL		10.0	-											Weight: 325 lb	FT = 20%	6
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS	2x4 SP N 2x4 SP N 2x4 SP N 2x4 SP N 33-10,34- No.3 Structural 6-0-0 oc p 2-0-0 oc p Rigid ceill bracing. 1 Row at	o.2 o.3 *Excep o.2 *Excep 8,35-7,36-1 I wood she purlins, ex purlins (6-0 ing directly midpt	ot* 22-23:2x4 SP No. t* 6,37-5,38-4,39-3:2x4 eathing directly applie cept end verticals, a I-0 max.): 12-22. applied or 6-0-0 oc 22-23, 21-24, 20-25 19-26, 17-27, 16-28	2 4 SP nd FORCES TOP CHORD	(lb) - Max Tension 2-40=-26 3-4=-286 6-7=-227 10-11=-1	23=82 (l 25=215 27=199 29=216 33=213 35=193 35=193 37=168 39=275 cimum Co 3/114, 1-2 /184, 4-55 /143, 7-8* 89/137, 1	LC 35), <i>i</i> (LC 35), (LC 35), (LC 35), (LC 35), (LC 35), (LC 36), (LC 36), (LC 40), (LC 40), (LC 40), (LC 40), 272/17 =-214/13 1-12=-10	24=223 (L 26=215 (28=211 (30=220 (32=216 (34=218 (36=160 (38=158 (40=367 (on/Maxim 2-3=-381/ 6, 5-6=-2 9, 8-10=- 67/170,	LC 35), (LC 35) (LC 35) (LC 35) (LC 36) (LC 36) (LC 36) (LC 24) (LC 1), (LC 11) (LC 12) (LC 35) (LC 36) (LC 36), 1)), 2)), 2)), ,), ,), 3) (, 3) 6,	Unba this of Wind Vasc Cat. zone 2-0-(Exte 33-1 vertion force DOL Trus only. see	alanced design. d: ASCE d: 103m ll; Exp l e and C- 0 to 14-6 rior(2N) 0-4 zon cal left a es & MW =1.60 p ss desig For stu Standar	roof li 7-16; ph; TC 3; Enc C Cor 5-14, (20-6- e; can ind rig /FRS late gi ned fo uds ex d Indu	ive loads have b ; Vult=130mph (; CDL=6.0psf; BCI closed; MWFRS corner(3R) 14-6 .14 to 30-10-4, C titlever left and ri ht exposed;C-C for reactions sho rip DOL=1.60 or wind loads in t kposed to wind (i ustry Gable End	een conside 3-second gu DL=6.0psf; f (envelope) e to 2-0-0, Ex -14 to 20-6- orner(3E) 3 ght exposed for member wwn; Lumbe he plane of normal to th Details as a	ered for st) n=25ft; exterior terior(2N) 14, 0-10-4 to 1; end r; end r; and r the truss e face), pplicable,
REACTIONS	(size) Max Horiz Max Uplift	23=34-0-(29=34-0-(32=34-0-(38=34-0-(38=34-0-(40=396 (L 23=-20 (L 25=-36 (L 27=-25 (L 29=-24 (L 31=-63 (L 33=-55 (L 33=-50 (L 37=-62 (L 40=-160 (15-29, 14-30, 13-31 11-32, 10-33 0, 24=34-0-0, 25=34 0, 30=34-0-0, 28=34 0, 30=34-0-0, 31=34 0, 33=34-0-0, 31=34 0, 36=34-0-0, 40=34 LC 13) 0, 21, 24=-42 (LC 1 C 11), 26=-30 (LC 1 C 11), 26=-30 (LC 1 C 11), 28=-27 (LC 1 C 11), 28=-27 (LC 1 C 11), 32=-35 (LC 1 C 11), 32=-35 (LC 1 C 14), 34=-47 (LC 1 C 14), 36=-46 (LC 1 C 14), 39=-273 (LC (LC 12)	, -0-0, -0-0, -0-0, -0-0, -0-0 0), 0), 1), 0), 4), 4), 4), 4), 14), NOTES	$\begin{array}{c} 12 - 13 = -1 \\ 14 - 15 = -1 \\ 16 - 17 = -1 \\ 19 - 20 = -1 \\ 21 - 22 = -1 \\ 39 - 40 = -1 \\ 39 - 40 = -1 \\ 35 - 36 = -1 \\ 35 - 36 = -1 \\ 35 - 36 = -1 \\ 35 - 36 = -1 \\ 35 - 36 = -1 \\ 23 - 24 = -1 \\ 23 - 24 = -1 \\ 19 - 26 = -1 \\ 10 - 28 = -1 \\ 10 - 28 = -1 \\ 10 - 28 = -1 \\ 11 - 32 = -1 \\ 8 - 34 = -17 \\ 5 - 37 = -12 \end{array}$	44/163, 1 44/163, 1 43/163, 2 43/163, 2 43/163, 2 43/162, 3 43/162, 3 43/162, 2 43/162, 2 43/162, 2 43/162, 2 43/162, 2 43/162, 2 43/162, 2 43/162, 1 82/121, 2 75/49, 17 72/50, 15 82/57, 13 77/58, 10 9/71, 7-33 5/78, 4-34	3-14=-1 5-16=-1 7-19=-1 (2-23=-1: 8-39=-1 (4-35=-1 1-33=-1 9-30=-1 (6-27=-1 (4-25=-1 (2-25=-1) (2-25=-17) (-27=-16) (-27=-16) (-27=-16) (-27=-17) (-33=-17) (-33=-17) 5=-155/7 8=-119/4	44/163, 44/163, 43/163, 43/163, 30/131 43/162, 43/162, 43/162, 43/162, 43/162, 43/162, 43/162, 43/162, 43/162, 77/63, 2/49, 6/48, 6/48, 5/77, '2, 6-36= 8, 3-39=-	122/71 178/19	4) 5) , 3	or cc TCLI Plate DOL Cs= Unba desig	onsult qu L: ASCE = DOL= = 1.15); 1.00; Ct: alanced gn.	alifiec 27-16 1.15); Is=1.10 snow	d building design ; Pr=20.0 psf (roc Pf=20.0 psf (cur); Rough Cat B; loads have bee OTH CA OTH CA OTH CA OTH CA OTH CA OTH CA	er as per Al of LL: Lum I n DOL=1.15 =ully Exp.; (n considered N O L 22 EEER	NSI/TPI 1. DOL=1.15 5 Plate Ce=0.9; d for this

October 5,2022

Continued on page 2

Loading

Snow (Pf)

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5019/2020 BE-VDKE USE. Design valid for use only with MITEK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of frusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 89 FaNC	
22090048	B03	Piggyback Base Supported Gable	1	1	Job Reference (optional)	154559185

- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 7) Provide adequate drainage to prevent water ponding.
- 8) All plates are 2x4 MT20 unless otherwise indicated.
- 9) Gable requires continuous bottom chord bearing.
- Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 11) Gable studs spaced at 2-0-0 oc.
- 12) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 13) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 160 lb uplift at joint 20, 20 lb uplift at joint 23, 42 lb uplift at joint 24, 36 lb uplift at joint 25, 30 lb uplift at joint 26, 25 lb uplift at joint 27, 27 lb uplift at joint 28, 24 lb uplift at joint 29, 34 lb uplift at joint 30, 63 lb uplift at joint 31, 35 lb uplift at joint 32, 55 lb uplift at joint 33, 47 lb uplift at joint 34, 50 lb uplift at joint 37, and 273 lb uplift at joint 39.
- 15) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 16) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Run: 8.53 S Sep 22 2022 Print: 8.530 S Sep 22 2022 MiTek Industries, Inc. Wed Oct 05 09:11:35 ID:cwD4SPaRdognucCvbhdmhazFwJ5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 89 FaNC	
22090048	E01	Common	5	1	Job Reference (optional)	154559186

Run: 8.53 S Sep 22 2022 Print: 8.530 S Sep 22 2022 MiTek Industries, Inc. Wed Oct 05 09:11:36 ID:_chtVMf3J_GcW_b8at2KjlzFzYt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

5-11-8	11-11-0
5-11-8	5-11-8

Plate Off	fsets (X, Y):	[2:0-3-8,Edge],	[4:0-3-8,Edge]
		L · · · / J J/	L · · · / J J

Scale = 1:42.4

- (. ,											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.91 0.30 0.10	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.05 0.00	(loc) 7-8 7-8 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 69 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 6=0-3-8, 8 Max Horiz 8=145 (LC Max Uplift 6=-56 (LC Max Gray, 6=619 (LC	athing directly applie cept end verticals. applied or 10-0-0 oc 3=0-3-8 C 13) c 15), 8=-56 (LC 14) C 221, 8=619 (LC 21)	4) 5) 6d or 6) 5 7) 8)	 Unbalanced design. This truss ha load of 12.0 overhangs ni This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar One H2.5A S recommende 	snow loads have l s been designed f paf or 1.00 times f on-concurrent with s been designed f has been designed n chord in all area by 2-00-00 wide wi y other members. Simpson Strong-Ti ed to connect truss	been con for great lat roof lin other lin for a 10. with any d for a liv s where ill fit betw e conne s to bear	nsidered for t er of min root oad of 20.0 p ve loads. 0 psf bottom other live loa re load of 20.1 a rectangle veen the bott ctors ing walls due	his f live sf on ads. 0psf om					
FORCES	(lb) - Maximum Com Tension 1-2=0/34, 2-3=-539/	122, 3-4=-539/122,	9]	OPLIFI at jt(and does not This truss is International	s) 8 and 6. This co t consider lateral for designed in accor Residential Code	onnectio orces. dance w sections	n is for uplift ith the 2018 s R502.11.1 a	and					
BOT CHORD WEBS	4-5=0/34, 2-8=-566/ 7-8=-153/263, 6-7=- 3-7=0/208, 2-7=-36/2	164, 4-6=-566/164 85/252 249, 4-7=-39/249	L	R802.10.2 aı OAD CASE(S)	nd referenced star Standard	ndard AN	NSI/TPI 1.						
 Unbalance this design Wind: ASG Vasd=103 Cat. II; Ex zone and 2-1-8 to 2- 8-11-8 to 2- 8-11-8 to 2- 8-11-8 to 2- cantilever right expor for reactio DOL=1.60 TCLL: ASI Plate DOL DOL=1.15 	ed roof live loads have n. CE 7-16; Vult=130mph smph; TCDL=6.0psf; 8/ C-C Exterior(2E) -0-10 -11-8, Exterior(2E) -0-10 -11-8, Exterior(2E) 9-9- left and right exposed sed;C-C for members a ons shown; Lumber DO) CE 7-16; Pr=20.0 psf (L =1.15); Pf=20.0 psf (L 5); Is=1.0; Rough Cat E	been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior -8 to 2-1-8, Interior (1-8 to 8-11-8, Interior -8 to 12-9-8 zone; ; end vertical left and and forces & MWFR L=1.60 plate grip roof LL: Lum DOL=1 um DOL=1.15 Plate B; Fully Exp.; Ce=0.9	r 1) r (1) d S .15							C C C C C C C C C C C C C C C C C C C		SE/ 0363	AD VIA

TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

GILB

October 5,2022

A. GIL

Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 89 FaNC	
22090048	E02	Common Structural Gable	1	1	Job Reference (optional)	154559187

Run: 8.53 S Sep 22 2022 Print: 8.530 S Sep 22 2022 MiTek Industries, Inc. Wed Oct 05 09:11:36 ID:sNxOLkiaNCm2?cvvpi6Gu8zFzYp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

5-11-8	11-11-0
5-11-8	5-11-8

Plate Offsets ((X, Y):	[2:0-3-0,0-1-8],	[8:0-3-0,0-1-8]

Scale = 1:42.4

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MSH	0.69 0.29 0.70	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.05 0.00	(loc) 11-12 11-12 10	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 81 lb	GRIP 244/190 FT = 209	%
LUMBER TOP CHORD BOT CHORD WEBS DTHERS BRACING TOP CHORD BOT CHORD JOINTS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins, exc Rigid ceiling directly bracing. 1 Brace at Jt(s): 13, 15	athing directly appliec cept end verticals. applied or 10-0-0 oc	2) d or 3)	Wind: ASCE Vasd=103mp Cat. II; Exp E zone and C-(1-11-8 to 2-1 (1) 8-11-8 to cantilever lef right exposed for reactions DOL=1.60 Truss design only. For stu see Standard	7-16; Vult=130mph bh; TCDL=6.0psf; B i; Enclosed; MWFR C Exterior(2E) -0-10 1-8, Exterior(2E) 2- 9-9-8, Exterior(2E) and right exposed d;C-C for members shown; Lumber DC ned for wind loads in ds exposed to winc I Industry Gable En	(3-sec CDL=6 S (env) -8 to 1 11-8 to 9-9-8 t ; end v and for bL=1.60 n the pl I (norm d Deta	ond gust) .0psf; h=25ft; elope) exterio -11-8, Interior o 8-11-8, Interior o 12-9-8 zone rertical left an ces & MWFR) plate grip ane of the tru al to the face, ils as applicat	r (1) ior s; d S ss),),	13) This Inte R80 LOAD (s truss is rnationa 12.10.2 a CASE(S)	desig I Resid Ind ref Star	ned in accordanc lential Code sect erenced standard ndard	e with the : ions R502. I ANSI/TPI	2018 .11.1 and ∶1.
FORCES	(size) 10=0-3-8, Max Horiz 12=-145 (I Max Uplift 10=-56 (L Max Grav 10=619 (L (lb) - Maximum Com Tension	12=0-3-8 LC 12) C 15), 12=-56 (LC 14 .C 22), 12=619 (LC 2 pression/Maximum	4) 1) 5)	or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced	alified building desi 7-16; Pr=20.0 psf (.15); Pf=20.0 psf (L s=1.0; Rough Cat E 1.10 snow loads have be	gner as (roof LL um DC 3; Fully een cor	s per ANSI/TF .: Lum DOL=1 DL=1.15 Plate Exp.; Ce=0.9 nsidered for th	91 1. 1.15); iis						
TOP CHORD	1-2=0/34, 2-3=-511/7 4-5=-380/134, 5-6=-3 7-8=-511/79, 8-9=0/3 8-10=-563/162	79, 3-4=-436/98, 380/134, 6-7=-436/98 34, 2-12=-563/162,	3, 6)	design. This truss ha load of 12.0 p overhangs no	s been designed fo osf or 1.00 times fla on-concurrent with o	r greate t roof lo other liv	er of min roof bad of 20.0 ps /e loads.	live sf on					Della	
BOT CHORD WEBS	11-12=-135/232, 10- 5-11=-11/209, 2-14= 11-13=-27/254, 11-1 15-16=-26/250, 8-16 3-14=-23/13, 6-15=-{	.11=-57/206 -22/253, 13-14=-22/2 5=-31/254, =-25/253, 4-13=-82/4 82/43, 7-16=-23/13	7) 250, 8) 43, 9) 10	All plates are Truss to be fibraced again Gable studs	2x4 MT20 unless of ally sheathed from of st lateral movemen spaced at 2-0-0 oc. s been designed fo	otherwi one fac t (i.e. d r a 10.0	se indicated. e or securely iagonal web).) psf bottom			4	in the	ORTESE		
NOTES 1) Unbalanc this desig	ed roof live loads have n.	been considered for	11) 12	chord live loa) * This truss h on the bottom 3-06-00 tall b chord and an) One H2.5A S recommende UPLIFT at jt(only and doe	Id nonconcurrent w as been designed to n chord in all areas y 2-00-00 wide will y other members. Simpson Strong-Tie d to connect truss to s) 12 and 10. This s not consider later	ith any for a liv where fit betw connec connec al force	other live load e load of 20.0 a rectangle veen the botto ctors ng walls due tion is for uplities.	ds.)psf om to ft		THE DAY ST		SEA 0363	L 22 E.E.R.	Annun An

A. GIL GI

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

October 5,2022

³⁻⁰⁶⁻⁰⁰ tall by 2-00-00 wide will fit between the bottom chord and any other members.

Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 89 FaNC	
22090048	G01	Piggyback Base	2	1	Job Reference (optional)	154559188

Run: 8.53 S Sep 22 2022 Print: 8.530 S Sep 22 2022 MiTek Industries, Inc. Wed Oct 05 09:11:37 ID:wN9MV2a7ngO0fSyKmTVeHIzhpg9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:79.5

Plate Offsets (X, Y): [2:0-2-14,0-2-0], [3:0-3-0,0-2-12], [4:0-3-0,0-2-12], [5:0-2-14,0-2-0]

DOL=1.60

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	/TPI2014	CSI TC BC WB Matrix-MSH	0.94 0.44 0.28	DEFL Vert(LL) Vert(CT) Horz(CT) Attic	in 0.12 -0.14 0.00 -0.07	(loc) 10-11 10-11 7 8-10	l/defl >999 >999 n/a >999	L/d 240 180 n/a 360	PLATES MT20 Weight: 181 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x6 SP No.2 2x6 SP No.2 2x4 SP No.2 *Except No.3 Structural wood shea 6-0-0 oc purlins, exc 2-0-0 oc purlins,	* 10-2,7-5,8-5:2x4 SF athing directly applied cept end verticals, and 0 max.): 3-4. applied or 10-0-0 oc 3-10, 4-8 1=0-3-8 _C 12) C 46), 11=1207 (LC 4	3) - 4) - 5) - 6) - 7) - 8) - 4)	TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced: design. This truss ha load of 12.0 p overhangs no Provide adeo; Provide adeo; This truss ha chord live loa * This truss h on the bottom 3-06-00 tall b chord and an	7-16; Pr=20.0 psf (15); Pf=20.0 psf (I s=1.0; Rough Cat I 1.10 snow loads have b s been designed fc on-concurrent with juate drainage to p s been designed fc d nonconcurrent w as been designed n chord in all areas y 2-00-00 wide will y other members.	(roof LL Lum DC B; Fully een cor or greate at roof le other liv revent v or a 10.4 vith any for a liv where l fit betw	:: Lum DOL=: IL=1.15 Plate Exp.; Ce=0.9 asidered for the er of min roof bad of 20.0 ps re loads. water ponding 0 psf bottom other live loa e load of 20.0 a rectangle yeen the bottom	1.15 e); ilive sf on g. ds. Dpsf					
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-2=0/39, 2-3=-859/9 4-5=-859/99, 5-6=0/3 5-7=-1164/17 10-11=-317/295, 8-11 2-10=-9/737, 5-8=-8/ 4-8=-222/188	pression/Maximum 99, 3-4=-541/148, 99, 2-11=-1164/17, 0=-35/598, 7-8=-67/8 737, 3-10=-222/189,	9) 10) 11) 0	Ceiling dead dead load (5. Bottom chord chord dead lo This truss is International R802.10.2 ar	load (5.0 psf) on m Opsf) on member(s live load (40.0 psf) bad (5.0 psf) applie designed in accord Residential Code s ad referenced stance	ember (s).3-10, (f) and a (d only f ance w (sections) dard AN	s). 3-4; Wall 4-8 dditional botto o room. 8-10 ith the 2018 R502.11.1 a ISI/TPI 1.	om Ind				TH CA	Route
NOTES 1) Unbalance this design 2) Wind: ASC Vasd=103x cat. II; Exy zone and 0 2-1-8 to 2- 17-4-5 to 1 cantilever i right expos for reaction	ad roof live loads have CE 7-16; Vult=130mph mph; TCDL=6.0psf; BC p B; Enclosed; MWFRS C-C Exterior(2E) -0-10- 6-11, Exterior(2R) 2-6- 17-9-8, Exterior(2E) 17- left and right exposed ; sed;C-C for members a s shown; Lumber DDI	(3-second gust) DL=6.0psf; h=25ft; 6 (envelope) exterior 8 to 2-1-8, Interior (1) 11 to 17-4-5, Interior 9-8 to 20-9-8 zone; end vertical left and and forces & MWFRS =1.60 plate grip	12) 13) LO) (1)	or the orienta bottom chord Attic room ch AD CASE(S)	inin representation (ition of the purlin al ecked for L/360 de Standard	aces no	top and/or	si∠e		Martin Martin		SEAL 03632	22 ER REALING

GI A. GIL

October 5,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 89 FaNC	
22090048	G02	Piggyback Base	7	1	Job Reference (optional)	154559189

Run; 8.53 S Sep 22 2022 Print; 8.530 S Sep 22 2022 MiTek Industries, Inc. Wed Oct 05 09:11:37 ID:wN9MV2a7ngO0fSyKmTVeHIzhpg9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:76	
Plate Offsets (X, Y):	[2:0-3-0,0-2-12], [3:0-3-0,0-2-12]

				_								
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.86	Vert(LL)	0.12	8-9	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.44	Vert(CT)	-0.13	8-9	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.29	Horz(CT)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH		Attic	-0.07	6-8	>992	360		
BCDL	10.0										Weight: 175 lb	FT = 20%

LUMBER TOP CHORD	2x6 SP No.2
BOT CHORD	2x6 SP No.2
WEBS	2x4 SP No.3 *Except* 8-2,6-3:2x4 SP No.2
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	6-0-0 oc purlins, except end verticals, and
	2-0-0 oc purlins (6-0-0 max.): 2-3.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing.
WEBS	1 Row at midpt 2-8, 3-6
REACTIONS	(size) 5=0-3-8, 9=0-3-8
	Max Horiz 9=-318 (LC 10)
	Max Grav 5=1156 (LC 45), 9=1156 (LC 45)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=-826/73, 2-3=-543/130, 3-4=-826/73,
	1-9=-1113/0, 4-5=-1113/0
BOT CHORD	8-9=-297/288, 6-8=-38/592, 5-6=-69/81
WEBS	2-8=-226/188, 3-6=-226/188, 1-8=-10/726,
	4-6=-11/727

NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-1-12 to 3-1-12, Exterior (2R) 3-1-12 to 16-9-4, Exterior(2E) 16-9-4 to 19-9-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

4) Unbalanced snow loads have been considered for this

- desian.
- Provide adequate drainage to prevent water ponding. 5)
- 6) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 8) Ceiling dead load (5.0 psf) on member(s). 2-3; Wall dead load (5.0psf) on member(s).2-8, 3-6
- Bottom chord live load (40.0 psf) and additional bottom 9) chord dead load (5.0 psf) applied only to room. 6-8
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 12) Attic room checked for L/360 deflection.
- LOAD CASE(S) Standard

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 89 FaNC	
22090048	G03	Piggyback Base Supported Gable	1	1	Job Reference (optional)	154559190

Run: 8.53 S Sep 22 2022 Print: 8.530 S Sep 22 2022 MiTek Industries, Inc. Wed Oct 05 09:11:38 ID:mTC1KUi0mrxofallau1_zozhpVg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

October 5,2022

818 Soundside Road Edenton, NC 27932

20-9-8 6-9-10 13-1-6 19-11-0 6-9-10 6-3-13 0-10-8 6-9-10 3x5 🖌 3x5 💊 6 29 7 9 30 10 8 5 Æ 11 12 10 4 12 3x5 🗸 31 ∖ 13 ^{3x5} ∿ 28 3 27 32 11-6-0 2 14 Ø Σ 15 Ø X R 5-10-0 26 16 19 24 23 22 21 20 18 25 17 3x5= 5x6= 3x5= 19-11-0 |<u>1-11-8</u>| 1-11-8| 17-11-8 1-11-8 16-0-0

Scale = 1:72.2

Plate Offsets (X, Y): [6:0-2-8,0-0-3], [10:0-2-8,0-0-3], [20:0-3-0,0-3-0]

				-											
Loading		(psf)	Spacing	1-11-4		CSI		DEFL	in	(l	oc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.15		TC	0.34	Vert(LL)	n/a		-	n/a	999	MT20	244/190
Snow (Pf)		20.0	Lumber DOL	1.15		BC	0.11	Vert(CT)	n/a		-	n/a	999		
TCDL		10.0	Rep Stress Incr	YES		WB	0.30	Horz(CT)	-0.01		16	n/a	n/a		
BCLL		0.0*	Code	IRC2018	B/TPI2014	Matrix-MSH									
BCDL		10.0												Weight: 228 lb	FT = 20%
LUMBER TOP CHORD	2x4 SP N	o.2		тс	OP CHORD	2-26=-415/376, 1-2= 3-4=-100/158, 4-5=-	=0/38, 1 142/25	2-3=-100/135 53, 5-6=-128/2	, 230,	5)	Unba desig	alanced In.	snow	loads have been	considered for this
BOT CHORD	2x4 SP N	o.2			t	5-7=-115/231, 7-8=-	115/2	31, 8-9=-115/2 2/202	231,	6)	Ihis	truss ha	as bee	in designed for gr	eater of min roof live
WEBS	2x4 SP N	0.3				9-10=-115/231, 10-1	11=-12	8/230,			load	of 12.0	pst or	1.00 times flat ro	of load of 20.0 pst on
OTHERS	2x4 SP N 24-4 25-3	o.2 *Except 18-12 17-1	t* 13:2x4 SP No 3			11-12=-142/253, 12 13-14=-90/135, 14-1	-13=-1 5=0/3	00/158, 8, 14-16=-366	6/327	7)	overh	nangs n ide ade	ion-co quate	ncurrent with othe	er live loads. ent water ponding
PRACING	21 1,20 0	,1012,11	10.2X1 01 110.0	BC	DT CHORD 2	25-26=-308/278, 24	-25=-1	93/171,		8)		ates are	e 2x4	MT20 unless othe	erwise indicated.
	Structural	wood shor	athing directly applied	or		23-24=-193/171, 22	-23=-1	93/171,		9)	Gabl	e reauir	res cor	ntinuous bottom o	chord bearing.
TOF CHORD	6-0-0 oc p	ourlins, exc	cept end verticals, and	1	4	21-22=-193/171, 19 18-19=-193/171, 17	-21=-1 -18=-1	93/171, 93/171		10)	Truss	s to be t	fully sh	neathed from one	face or securely
	2-0-0 oc p	ourlins (6-0-	-0 max.): 6-10.			16-17=-78/87				11)	Cabl	o etude	enace	ad at 2-0-0 oc	e. ulagorial web).
BOT CHORD	Rigid ceili	ng directly	applied or 6-0-0 oc	W	EBS 8	3-21=-191/86, 7-22=	179/2	26. 5-23=-173	/18.	12)	This	truse ha	space as hee	n designed for a	10.0 psf bottom
	bracing.				4	1-24=-198/128. 3-25	5=-173	97. 9-20=-17	9/21.	12)	chore	t live lo	ad nor	aconcurrent with :	any other live loads
WEBS	1 Row at	miapt	8-21, 7-22, 5-23, 4-24	,		11-19=-173/11, 12-1	8=-19	9/128,	,	13)	* Thie	s truce	has he	en designed for	a live load of 20 0psf
			9-20, 11-19, 12-18			13-17=-173/97, 2-25	5=-442	/420,		10)	on th	e hotto	m cho	rd in all areas wh	ere a rectande
REACTIONS	(size)	16=19-11-	-0, 17=19-11-0,			14-17=-401/380					3-06-	00 tall	by 2-0	0-00 wide will fit t	between the bottom
		18=19-11-	-0, 19=19-11-0,	NC	DTES						chord	d and a	nv oth	er members.	
		20=19-11-	-0, 21=19-11-0,	1)	Unhalanced	roof live loads have	heen	considered fo	r				,		
		22=19-11-	-0, 23=19-11-0,	.,	this design.		boom								
		24=19-11-	-0, 25=19-11-0,	2)	Wind: ASCE	7-16. Vult=130mph	(3-sec	cond gust)							
	Marcal Lauria	20=19-11-	-0	-/	Vasd=103mr	ph: TCDL=6.0psf: B	CDL=6	0.0psf: h=25ft							
	Max Horiz	26=-333 (1	LG 12)		Cat. II: Exp E	3: Enclosed: MWFR	S (env	elope) exterio	, or					minin	1111.
	Max Uplift	16=-341 (I	LC 13), 1/=-3/8 (LC 2	10),	zone and C-0	C Exterior(2E) -0-10)-8 to 1	-11-8. Interio	r (1)					W'LL CA	Pall
		18=-96 (L0	C 15), 21=-38 (LC 10)	,	1-11-8 to 2-6	-11, Exterior(2R) 2-	6-11 to	0 17-4-5, Inter	rior				1	altion	Q May
		22=-2 (LC	- 11), 24=-96 (LC 14),	10)	(1) 17-4-5 to	17-9-8, Exterior(2E) 17-9-	8 to 20-9-8 z	one;				1	OVERSS	id A '
	May Cray	25=-416 (1	LC 11), 26=-391 (LC 1	12)	cantilever lef	t and right exposed	; end v	vertical left an	nd [′]				\mathcal{S}	in PLU	Visin
	Max Grav	16=391 (L	.C 12), 17=514 (LC 50)),))	right exposed	d;C-C for members	and fo	rces & MWFF	RS			2			
		10=231 (L	.C 40), 19=212 (LC 40)),))	for reactions	shown; Lumber DC	L=1.6) plate grip				-			
		20=218 (L	.C 39), 21=229 (LC 39	9),))	DOL=1.60							=		SEA	L 1 E
		22-210 (L	C 40) 25-212 (LC 40	^{(),} 3)	Truss desig	ned for wind loads in	n the p	lane of the tru	JSS			-	:	0202	
		24-231 (L	C 40), 23-344 (LC 40	<i>, , ,</i>	only. For stu	ids exposed to wind	l (norm	al to the face),			=	1	0363.	22 : :
		20-442 (L			see Standard	I Industry Gable En	d Deta	ils as applica	ble,				6		· · · · · · · · · · · · · · · · · · ·
FURCES	(ID) - Max	imum Com	pression/Maximum		or consult qu	alified building desi	gner a	s per ANSI/TI	PI 1.			-	2	·	A 1. 3
	rension			4)	TCLL: ASCE	7-16; Pr=20.0 psf (roof Ll	: Lum DOL=	1.15				2.0	N. SNOIM	Enix
				,	Plate DOL=1	.15); Pf=20.0 psf (L	um DC	DL=1.15 Plate	•				1	P/ GIN	1. 13 m
					DOL=1.15);	s=1.0; Rough Cat E	3; Fully	Exp.; Ce=0.9	9;				1	CA C	11 BEIN
					Cs=1.00; Ct=	=1.10	-							11, A. G	in the second seco
															1112

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 89 FaNC
22090048	G03	Piggyback Base Supported Gable	1	1	Job Reference (optional)

- 14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 391 lb uplift at joint 26, 341 lb uplift at joint 16, 38 lb uplift at joint 21, 2 lb uplift at joint 22, 96 lb uplift at joint 24, 96 lb uplift at joint 18, 416 lb uplift at joint 25 and 378 lb uplift at joint 17.
- 15) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 16) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 17) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

Run: 8.53 S Sep 22 2022 Print: 8.530 S Sep 22 2022 MiTek Industries, Inc. Wed Oct 05 09:11:38 ID:mTC1KUi0mrxofallau1_zozhpVg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 89 FaNC	
22090048	J01	Monopitch	3	1	Job Reference (optional)	154559191

Run: 8.53 S Sep 22 2022 Print: 8.530 S Sep 22 2022 MiTek Industries, Inc. Wed Oct 05 09:11:38 ID:UxC8s1x5IH5xuuOcBwY_cFzFn_8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:44.8														
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2017	8/TPI2014 This truss ha	CSI TC BC WB Matrix-MSH	0.66 0.42 0.73	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.10 0.08 0.01	(loc) 7-8 7-8 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 72 lb	GRIP 244/190 FT = 20%	
TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 5-11-2 oc purlins, e Rigid ceiling directly bracing. (size) 7=0-3-8, S Max Horiz 9=203 (LC Max Uplift 7=-209 (L	athing directly applie xcept end verticals. applied or 6-7-1 oc 9=0-3-8 C 11) C 10), 9=-212 (LC 1	6) ed or 7) 8) 0)	chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar One H2.5A S recommende UPLIFT at jt(and does no This truss is International 8802 10 2 at	ad nonconcurrent to has been designed in chord in all area by 2-00-00 wide wi by other members. Simpson Strong-Ti ed to connect truss (s) 9 and 7. This co t consider lateral for designed in accorr Residential Code nd referenced star	with any I for a liv s where Ill fit betw e connectio orces. dance w sections	other live loa e load of 20.0 a rectangle veen the botto ctors ing walls due n is for uplift of ith the 2018 s R502.11.1 a uSI/TPI 1	ds. Dpsf om to only und						
FORCES TOP CHORD BOT CHORD WEBS	Max Grav 7=670 (LC (lb) - Maximum Com Tension 1-2=0/19, 2-3=-867/ 4-5=-8/0, 4-7=-266/ 8-9=-320/242, 7-8=- 3-8=-336/246, 3-7=-	C 21), 9=614 (LC 21 pression/Maximum 750, 3-4=-134/75, 109, 2-9=-553/473 687/772, 6-7=0/0 810/811, 2-8=-369/5) LC	DAD CASE(S)	Standard									
NOTES 1) Wind: AS0 Vasd=103 Cat. II; Ex zone and	CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B p B; Enclosed; MWFR C-C Exterior(2E) -0-10	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterio -8 to 2-1-8, Interior (or (1)									TH CA	POLICI	

- Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 10-0-12, Exterior(2E) 10-0-12 to 13-0-12 zone; cantilever left and right exposed; end vertical left and right exposed; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

SEAL 036322 October 5,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 89 FaNC	
22090048	J02	Monopitch Supported Gable	1	1	Job Reference (optional)	154559192

Run: 8.53 S Sep 22 2022 Print: 8.530 S Sep 22 2022 MiTek Industries, Inc. Wed Oct 05 09:11:39 ID:Y58EZzK9l67Ojpql3e6Uv_zFmze-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

гay

October 5,2022

818 Soundside Road Edenton, NC 27932

Scale = 1:36.5

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MR	0.25 0.11 0.05	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a -0.01	(loc) - - 8	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 50 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No. 2x4 SP No. 2x4 SP No. 2x4 SP No. Structural v 6-0-0 oc pu Rigid ceilin bracing. (size) 8 Max Horiz 1 Max Uplift 8 Max Grav 8 1 1 1	2 2 3 3 vood shea rlfins, exc g directly 3=9-9-4, 9 11=9-9-4, 14=159 (L 3=-32 (LC 10=-28 (L 12=-24 (L 3=-32 (L 12=-24 (L 12=-24 (L 12=-216 (L 12=216 (L 12=216 (L 12=216 (L))))	athing directly applie sept end verticals. applied or 10-0-0 oc 12=9-9-4, 10=9-9-4, 12=9-9-4, 13=9-9-4 C 11) 10), 9=-33 (LC 11), C 10), 11=-35 (LC 1- C 10), 13=-80 (LC 1- 13), 9=102 (LC 21), C 21), 11=203 (LC 2 C 21), 13=149 (LC 2 C 25)	d or 2) 4), 4) 4), 4) 21), 5) 21), 6)	Wind: ASCE Vasd=103mp Cat. II; Exp B zone and C-(2-0-6 to 9-9-4 end vertical li forces & MW DOL=1.60 pl Truss design only. For stu see Standarc or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced design. This truss ha load of 12.0 p overhangs no All plates are	7-16; Vult=130mp h; TCDL=6.0psf; E ; Enclosed; MWFF C Corner(3E) -0-10 4 zone; cantilever I eft and right exposs FRS for reactions ate grip DOL=1.60 ned for wind loads ds exposed to wind I ndustry Gable Ei alified building des 7-16; Pr=20.0 psf (15); Pf=20.0 psf (1 s=1.0; Rough Cat 1.10 snow loads have b s been designed for bas for 1.00 times fit on-concurrent with 2x4 MT20 unless	h (3-sec 3CDL=6 RS (env -8 to 2- eft and ed;C-C shown; in the p d (norm nd Deta igner as (roof LL Lum DC B; Fully een cor or great at roof k other lin otherwi	ond gust) .0psf; h=25ft elope) exterior 0-6, Exterior(right exposed for members Lumber lane of the trr al to the face ils as applica s per ANSI/TI .: Lum DOL= DL=1.15 Plate Exp.; Ce=0.9 nsidered for tl er of min roof bad of 20.0 p ve loads. se indicated.	; or 2N) d; and uss), ble, PI 1. 1.15 e 9; his	13) This Inter R80 LOAD C	truss is nationa 2.10.2 a ASE(S)	desig I Residend ref I nd ref	ned in accordanc Jential Code sect erenced standarc ndard	e with the 2018 ons R502.11.1 ANSI/TPI 1.	and
TOP CHORD BOT CHORD WEBS NOTES	(ID) - MaXIM Tension 2-14=-124/ 3-4=-90/25, 6-7=-64/62 13-14=-59/ 10-11=-59/ 4-12=-175/ 5-11=-166/	58, 1-2=0 , 4-5=-83/ , 7-8=-23/ 73, 12-13 73, 9-10= 127, 3-13 134, 6-10	pression/Maximum /19, 2-3=-145/22, /26, 5-6=-72/23, /14, 7-9=-88/32 =-59/73, 11-12=-59/ -59/73 =-109/181, =-163/104	7) 8) 9) 1(73, 1 ⁻ 12	Gable require Truss to be ft braced again Gable studs s)) This truss ha chord live loa 1) * This truss h on the botton 3-06-00 tall b chord and an 2) Provide mech bearing plate 8, 33 lb uplift at joint 13, 35 10.	es continuous bott ully sheathed from st lateral movemen spaced at 2-0-0 oc s been designed for d nonconcurrent w as been designed n chord in all areas y 2-00-00 wide will y 2-00-00 wide will y 2-00-00 wide will y other members. nanical connection capable of withste at joint 9, 24 lb up 5 lb uplift at joint 11	om chor one fac nt (i.e. d or a 10.0 vith any for a liv s where I fit betv (by oth anding 3 lift at joi and 28	d bearing. e or securely iagonal web)) psf bottom other live loa e load of 20.0 a rectangle veen the botti ers) of truss i si2 lb uplift at j ht 12, 80 lb u b lb uplift at jc	ds. Dpsf om to oint plift int		Contraction of the second seco	The second secon	SEA ORTH CA OSEA O363	ER. AL	Manunna

Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 89 FaNC	
22090048	J03	Monopitch	7	1	Job Reference (optional)	154559193

Run: 8.53 S Sep 22 2022 Print: 8.530 S Sep 22 2022 MITek Industries, Inc. Wed Oct 05 09:11:39 ID:4A6HwRWC_187eG3q??PEYMzFmzO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:36.4

Plate Offsets (X, Y): [2:0-2-8,0-1-12]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	B/TPI2014	CSI TC BC WB Matrix-MSH	0.76 0.62 0.15 for great	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.28 0.22 0.00	(loc) 7-8 7-8 7	l/defl >328 >416 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 38 lb	GRIP 244/190 FT = 20%
TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood sheat 6-0-0 oc purlins, exc Rigid ceiling directly a bracing. (size) 7=0-3-8, 8: Max Horiz 8=136 (LC Max Grav 7=439 (LC 	thing directly applie ept end verticals. applied or 7-4-7 oc =0-3-8 11) C 10), 8=-142 (LC 10 21), 8=445 (LC 21)	5) d or 6) 7) 0)	load of 12.0 overhangs n This truss ha chord live loa * This truss h on the bottor 3-06-00 tall h chord and ar One H2.5A S recommende UPLIFT at jt(and does no This truss h	psf or 1.00 times i on-concurrent with as been designed ad nonconcurrent has been designed m chord in all area by 2-00-00 wide w hy other members Simpson Strong-T ed to connect trus; (s) 8 and 7. This c t consider lateral f	flat roof la h other lin for a 10.0 with any d for a liv as where rill fit betw ie connectio forces. forces.	and of 20.0 p ve loads. D psf bottom other live loa e load of 20.0 a rectangle veen the botto ctors ing walls due n is for uplift	ids. Opsf om to only					
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Comp Tension 1-2=0/19, 2-3=-451/3 4-5=-8/0, 4-7=-193/79 0 7-8=-330/375, 6-7=0/	oression/Maximum 37, 3-4=-97/118, 9, 2-8=-362/275 0	LC	International R802.10.2 a	Residential Code nd referenced star Standard	e sections ndard AN	SR502.11.1 a	ind					
WEBS	3-7=-379/331												
 Wind: AS Vasd=10: Cat. II; Ez zone and 2-1-8 to 5 cantilever right exporemembers Lumber ID TCLL: AS Plate DO 	SCE 7-16; Vult=130mph (3mph; TCDL=6.0psf; BC xp B; Enclosed; MWFRS I C-C Exterior(2E) -0-10- 5-0-12, Exterior(2E) 5-0- 1 eft and right exposed ; osed; porch left and right and forces & MWFRS fi OCL=1.60 plate grip DOL CC=1.60 plate grip DOL CC=1.61; Pf=20.0 psf (fu	(3-second gust) DL=6.0psf; h=25ft; (envelope) exterior 8 to 2-1-8, Interior (12 to 8-0-12 zone; end vertical left and t exposed;C-C for or reactions shown; =1.60 oof LL: Lum DOL=1 m DOL=1.15 Plate	r 1) 1							C. Hanne	N	SEA 0363	ROUL 22

Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

SEAL 036322 A. GILBERN October 5,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 89 FaNC	
22090048	J04	Monopitch Supported Gable	1	1	Job Reference (optional)	154559194

Run: 8.53 S Sep 22 2022 Print: 8.530 S Sep 22 2022 MiTek Industries, Inc. Wed Oct 05 09:11:39 ID:R8vAz9aKpZnPl2xonY_PFQzFmzJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale	=	1.3	0.9
ooulo		1.0	0.0

8-0-12

Loading TCLL (roof) Snow (Pf) TCDL BCLL		(psf) 20.0 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.30 0.12 0.06	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a n/a	(loc) - - -	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190	
BCDL		10.0											Weight: 39 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP N 2x4 SP N 2x4 SP N 2x4 SP N Structura 6-0-0 oc Rigid ceil	o.2 o.2 o.3 o.3 I wood she purlins, ex ing directly	athing directly applied cept end verticals. applied or 10-0-0 oc	3) 4) d or 5)	 a) Truss designed for wind loads in the prate of the truss of truss of the trust of the truss of the trust of trust of										
REACTIONS	(size) Max Horiz Max Uplift Max Grav	7=8-0-12, 10=8-0-12 11=97 (LC 7=-12 (LC 9=-20 (LC 7=79 (LC 9=212 (LC 11=136 (L	8=8-0-12, 9=8-0-12, 2, 11=8-0-12 C 10) C 10), 8=-38 (LC 14), C 10), 10=-86 (LC 14), C 1), 8=228 (LC 21), C 21), 10=190 (LC 21), C 1)	6) 7) 8) 9)	 acesign. 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 7) All plates are 2x4 MT20 unless otherwise indicated. 8) Gable requires continuous bottom chord bearing. 9) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 10) Gable studs spaced at 2-0-0 oc. 11) This truss has been designed for a 10 0 psf bottom 										
FORCES	(lb) - Max	timum Com	pression/Maximum	11	 I his truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 										
TOP CHORD	2-11=-12 3-4=-132	0/37, 1-2=0 /41, 4-5=-8)/19, 2-3=-204/64, 3/28, 5-6=-31/15	12	!) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3.06.00.00 wide will fit between the bottom										
BOT CHORD WEBS	10-11=0/ 4-9=-174 6-7=-64/5	0, 9-10=0/0 /130, 3-10= 54), 8-9=0/0, 7-8=0/0 151/211, 5-8=-186/ [,]	163, 13	chord and ar) Provide mec bearing plate	ny other members hanical connection capable of withst	n (by oth tanding 1	ers) of truss to 2 lb uplift at jo	o bint			5	RTHCA	ROLIN	
NOTES					7, 20 lb uplift	at joint 9, 86 lb u	plift at joi	nt 10 and 38 I	b			11		Pit	
1) Unbalance	ed roof live	loads have	been considered for		uplift at joint	8.					1		12 10	vary /	
this design 2) Wind: ASC Vasd=103 Cat. II; Ex zone and 2-0-6 to 4- cantilever right expo for reaction	n. CE 7-16; Vu Bmph; TCDL p B; Enclos C-C Corner -11-0, Corner left and righ sed;C-C for ons shown; I	IIt=130mph =6.0psf; B ed; MWFR (3E) -0-10- er(3E) 4-11 nt exposed members _umber DO	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior 8 to 2-0-6, Exterior(2 -0 to 7-11-0 zone; ; end vertical left and and forces & MWFRS IL=1.60 plate grip	14 LC N)) Inis truss is International R802.10.2 a DAD CASE(S)	designed in accor Residential Code nd referenced star Standard	dance w sections ndard AN	itn the 2018 R502.11.1 ar ISI/TPI 1.	nd			A A A A A A A A A A A A A A A A A A A	SEA 0363	EER.X	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

October 5,2022

A. GIL A. GIL

Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 89 FaNC	
22090048	PB1	Piggyback	10	1	Job Reference (optional)	154559195

Run: 8.53 S Sep 22 2022 Print: 8.530 S Sep 22 2022 MiTek Industries, Inc. Wed Oct 05 09:11:39 ID:UWNIgCZass9xdfRGAgascczFn54-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scol	0	-	1	· / /	6
Judi	⊂.	_			.0

Loading		(psf)	Spacing	2-0-0		CSI	0.20	DEFL	in n/a	(loc)	l/defl	L/d		GRIP	
TCLL (root)		20.0	Plate Grip DOL	1.15			0.30	Vert(LL)	n/a	-	n/a	999	MI ZU	244/190	
Snow (Pf)		20.0	Lumber DOL	1.15		BC	0.17	Vert(CT)	n/a	-	n/a	999			
		10.0	Rep Stress Incr	YES		WB	0.13	Horz(CT)	0.00	19	n/a	n/a			
BCLL		0.0 ^	Code	IRC201	8/1912014	Matrix-MSH									
BCDL		10.0											Weight: 83 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING	2x4 SP N 2x4 SP N 2x4 SP N Structura	0.2 0.2 0.3	athing directly applied	2) d or	Wind: ASCE Vasd=103mp Cat. II; Exp E zone and C-0 3-3-11 to 7-4 (1) 13-4-10 to	7-16; Vult=130mp bh; TCDL=6.0psf; E b; Enclosed; MWFF C Exterior(2E) 0-3- -10, Exterior(2R) 7 o 17-5-10, Exterior	h (3-seo 3CDL=6 RS (env 11 to 3- 7-4-10 to (2E) 17	cond gust) .0psf; h=25ft; elope) exterior 3-11, Interior 0 13-4-10, Inte -5-10 to 20-5-	r (1) rior 10	14) See Det con LOAD (Standa ail for Co sult qua CASE(S)	rd Indu onnecti lified b Star	ustry Piggyback T ion to base truss uilding designer. ndard	russ Connection as applicable, or	
	6-0-0 ocu	purlins	at my anoony applies		zone; cantile	one; cantilever left and right exposed ; end vertical left									
BOT CHORD	Rigid ceil bracing.	ing directly	applied or 10-0-0 oc		and right exp MWFRS for i	nd right exposed;C-C for members and forces & /WFRS for reactions shown; Lumber DOL=1.60 plate									
REACTIONS	(size) Max Horiz Max Uplift Max Grav	2=19-0-15 11=19-0-1 14=19-0-1 2=138 (LC 2=-36 (LC 10=-79 (L 14=-116 (16=-36 (L 2=89 (LC 10=310 (L 13=374 (L 15=311 (L 19=75 (LC	5, 8=19-0-15, 10=19- 15, 13=19-0-15, 15, 15; 15=10-0.15, 15; 15=10-0.15, 15; 15=10-0.15, 10; 8=-9 (LC 13), 16=138 (LC 13, 10), 8=-9 (LC 11), 15=80 (LC 14), 15=-80 (LC 14), 15=-80 (LC 12), 19=-9 (LC 11), 25), 8=75 (LC 22), C 25), 11=479 (LC 6, C 24), 14=479 (LC 5, C 24), 16=89 (LC 25); 22)	Truss design only. For stu see Standarc or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced design. This truss ha load of 12.0 µ overhangs n	russ designed for wind loads in the plane of the truss Ily. For studs exposed to wind (normal to the face), ie Standard Industry Gable End Details as applicable, consult qualified building designer as per ANSI/TPI 1. 2LL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 ate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate OL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; s=1.00; Ct=1.10 nbalanced snow loads have been considered for this esign. his truss has been designed for greater of min roof live ad of 12.0 psf or 1.00 times flat roof load of 20.0 psf on verhangs non-concurrent with other live loads.							1111.			
FORCES	(lb) - Max Tension	timum Com	pression/Maximum	7) 8)	Gable require	es continuous botto	om chor	d bearing.					"TH CA	RO	
TOP CHORD	1-2=0/16, 4-5=-147, 7-8=-91/5	, 2-3=-127/ /128, 5-6=- 55, 8-9=0/10	108, 3-4=-130/87, 147/111, 6-7=-90/52, 6	9) 10)) This truss ha chord live loa	spaced at 4-0-0 oc s been designed fo ad nonconcurrent v	;. or a 10. vith any) psf bottom other live load	ls.		4	in	TOFES	No the	-
BOT CHORD	2-15=-39/ 11-13=-3	/90, 14-15= 9/90, 10-11	-39/90, 13-14=-39/90 =-39/90, 8-10=-39/90	D, '' D	on the botton	n chord in all areas	where	a rectangle	psi m				SEA	L	1111
WEBS	5-13=-20 6-11=-39	3/0, 4-14=- 5/164, 7-10	395/165, 3-15=-206/ =-206/128	chord and an N/A	y other members,	with BC	DL = 10.0psf.	111		THU		0363	22	li li li	
NOTES 1) Unbalance this design	ed roof live l n.	loads have	been considered for	13	8) This truss is International R802.10.2 ar	designed in accord Residential Code s nd referenced stan	lance w sections dard AN	ith the 2018 R502.11.1 ar ISI/TPI 1.	nd				ALC A. G	ILBERTING	11 ₁₁

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

October 5,2022

Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 89 FaNC	
22090048	PB2	Piggyback	1	1	Job Reference (optional)	154559196

6-0-11

Scale = 1:44.6 Loading

TCLL (roof)

Snow (Pf)

TCDL

Run: 8.53 S Sep 22 2022 Print: 8.530 S Sep 22 2022 MiTek Industries, Inc. Wed Oct 05 09:11:40 Page: 1 ID:_yGnhJ2Aar_rjAcghDlxQrzFn1t-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -0-9-12 0-9-12 19-10-11 9-6-8 19-0-15 0-9-12 9-6-8 9-6-8 4x5= 7 6 8 12 7 33 34 5 9 32 35 5-11-1 4 10 31 36 3 11 12 13 2 0-4-5 23 22 21 20 19 1817 16 15 14 3x5 = 3x5 = 3x5 = 19-0-15 (psf) Spacing 1-11-4 CSI DEFL in (loc) l/defl L/d PLATES GRIP 20.0 Plate Grip DOL 1.15 тс 0.08 Vert(LL) n/a n/a 999 MT20 244/190 вс 20.0 0.03 999 Lumber DOL 1.15 Vert(CT) n/a n/a -10.0 Rep Stress Incr YES WB 80.0 Horz(CT) 0.00 12 n/a n/a

BCLL BCDL	0.0 10.0	* Code	IRC2018/TPI2014	Matrix-MSH			Weight: 101 lb FT = 20%		
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc		BOT CHORD WEBS ed or	2-23=-42/92, 22-23=-42/92 20-21=-42/92, 19-20=-42/9 16-18=-42/92, 15-16=-42/9 12-14=-42/92 7-19=-110/5, 6-20=-206/74 4-22=-126/74, 3-23=-110/6 9-16=-180/72, 10-15=-126	2, 21-22=-42/92, 32, 18-19=-42/92, 32, 14-15=-42/92, 4, 5-21=-180/72, 34, 8-18=-206/73, /74, 11-14=-110/63	 11) * This truss has been designed for a live load of 20. on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bott chord and any other members. 12) N/A 			
REACTIONS	DT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. EACTIONS (size) 2=19-0-15, 12=19-0-15.		1) Unbalanc this desig	ed roof live loads have been n.	considered for	13) This truss is designed in accordance with the 2018			
	REACTIONS (size) 2=19-0-15, 1 14=19-0-15, 1 14=19-0-15, 1 19=19-0-15, 2 21=19-0-15, 2 23=19-0-15, 2 23=19-0-15, 2 27=19-0-15 Max Horiz 2=-134 (LC 1 Max Uplift 2=-24 (LC 1 15=-49 (LC 2 21=-49 (LC 2 23=-49 (LC 2 14=151 (LC 16=219 (LC 2 19=149 (LC 19=149 (LC 2)))		 9-0-15, 15=19-0-15, 9-0-15, 22=19-0-15, 9-0-15, 22=10, 20-3-11 tc 3-3-11 to 7-4-10, Exterior(2E) 2-3-11 tc 3-3-11 to 7-4-10, Exterior(2E) 2-0-15, 20-10, Exterior(2E) 9-00-1=1.60 31 32 34 34		cond gust) 3.0psf; h=25ft; elope) exterior 3-11, Interior (1) 5.13.4-10, Interior -5-10 to 20-5-10 ; end vertical left 1d forces & DOL=1.60 plate lane of the truss nal to the face), uils as applicable, s per ANSI/TPI 1. L: Lum DOL=1.15 DL=1.15 Plate (Exp.; Ce=0.9;	14) See Standard Ind Detail for Connec consult qualified b LOAD CASE(S) Sta	ferenced standard ANSI/TPI 1. ustry Piggyback Truss Connection tion to base truss as applicable, or building designer. indard		
	23=153 27=91	(LC 24), 24=102 (LC (LC 22)	5) Unbalanc	ed snow loads have been cor	nsidered for this		CEAL CEAL		
FORCES	(lb) - Maximum Co Tension 1-2=0/16, 2-3=-11 4-5=-87/74, 5-6=- 7-8=-82/116, 8-9= 10-11=-57/34, 11-	ompression/Maximum 4/100, 3-4=-96/86, 76/99, 6-7=-82/124, -64/68, 9-10=-49/36, 12=-79/48, 12-13=0/1	6) This truss load of 12 overhange 7) All plates 8) Gable req 9) Gable stu 10) This truss chord live	has been designed for great .0 psf or 1.00 times flat roof lis s non-concurrent with other lin are 2x4 MT20 unless otherwin uires continuous bottom chor ds spaced at 2-0-0 oc. has been designed for a 10. load nonconcurrent with any	er of min roof live oad of 20.0 psf on ve loads. ise indicated. rd bearing. 0 psf bottom other live loads.	111111111111111	036322		

A. GILD October 5,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 89 FaNC	
22090048	PB3	Piggyback	10	1	Job Reference (optional)	154559197

BCDL

1)

Run: 8.53 S Sep 22 2022 Print: 8.530 S Sep 22 2022 MiTek Industries, Inc. Wed Oct 05 09:11:40 ID:zEX2ENsjKrTOyaiTe97UfiyWWL8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual russ web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual russ web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual russ web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

G minin October 5,2022

Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 89 FaNC	
22090048	PB4	Piggyback	1	1	Job Reference (optional)	54559198

Run: 8.53 S Sep 22 2022 Print: 8.530 S Sep 22 2022 MiTek Industries, Inc. Wed Oct 05 09:11:41 ID:MRf35rOp62pkXiBdNYMVdnyWWHt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

DEFI

Scale	=	1.43.8
Scale	_	1.43.0

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2018	/TPI2014	CSI TC BC WB Matrix-MSH	0.09 0.03 0.08	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 11	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 88 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 2=15-7-0, 13=15-7-(19=15-7-(19=15-7-(19=15-7-(19=15-7-(12=-58 (LC 14=-26 (L 14=-20 (L 18=-49 (L 18=-29 (L 14=159 (I 16=220 (L 18=156 (L 18=156 (L 18=156 (L 18=156 (L 18=156 (L 18=156 (L 18=156 (L)))	athing directly applied of cept end verticals. applied or 10-0-0 oc 11=15-7-0, 12=15-7-0 0, 14=15-7-0, 15=15-7-0 1, 17=15-7-0, 18=15-7-0 1, 15=15-7-0, 18=15-7-0 2, 14=15-7-0, 18=15-7-0 1, 15=15-7-0, 18=15-7-0, 18=15-7-0 1, 15=15-7-0, 18=15-7-0, 18=15-7-0, 18=15-7-00, 18=15-7-0, 1	1) 2) or , , , , , , , , , , , , ,	Unbalanced this design. Wind: ASCE Vasd=103mp Cat. II; Exp E zone and C-1 (2E) 13-3-6 t exposed ; en members an Lumber DOL Truss design only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. This truss ha load of 12.0 µ overhangs n All plates are	roof live loads have 7-16; Vult=130n ph; TCDL=6.0psi 3; Enclosed; MW C Exterior(2E) 0- 1-10, Exterior(2E) 0 1-10, Exterior(2R) o 16-3-6 zone; c id vertical left and d forces & MWF =1.60 plate grip ned for wind load dis exposed to w d Industry Gable alified building d 7-16; Pr=20.0 p sls=1.0; Rough C =1.10 snow loads have ps for 1.00 times on-concurrent wi 2 x4 MT20 unles	ave been of nph (3-sec f; BCDL=6 (FRS (envi- 3-11 to 3-) 7-4-10 to antilever I d right exp RS for rea DOL=1.6(ds in the pl ind (norm End Deta lesigner as lesigner as sef (roof LL f (Lum DC at B; Fully e been cor d for greate f fat roof Ik f at roof Ik f at roof Ik f at roof Ik	considered for cond gust) .0psf; h=25ft; elope) exteriou 3-11, Interior 1 of 13-3-6, Exter eft and right posed;C-C for ctions shown; alare of the tru: alare of the tru: alare of the tru: alare of the tru: alare of the face) ils as applicab s per ANSI/TP .: Lum DOL=1 DL=1.15 Plate Exp.; Ce=0.9 usidered for th er of min roof 1 pad of 20.0 ps re loads. se indicated.	r (1) rior ss , ole, 11. .15 ; is live f on	13) This Inte R8(14) See Det con LOAD (s truss is rnationa 02.10.2 a Standa ail for C sult qua CASE(S	s desig al Resia and rel ard Ind onnect ilified b) Sta	gned in accordand dential Code sec ferenced standar ustry Piggyback i tion to base truss juilding designer. Indard	ce with the 2018 tions R502.11.1 and d ANSI/TPI 1. Truss Connection as applicable, or
FORCES	(lb) - Maximum Com Tension 1-2=0/16, 2-3=-148/ 4-5=-124/114, 5-6=- 7-8=-115/150, 8-9=- 10_11=-62/43	npression/Maximum 131, 3-4=-138/118, 111/111, 6-7=-115/150 86/104, 9-10=-57/61,	9) 9) 10)	Gable studs Gable studs This truss ha chord live loa * This truss h on the bottor	es continuous bo spaced at 2-0-0 is been designed ad nonconcurren nas been designed n chord in all are	onom cnor oc. d for a 10.0 t with any ed for a liv eas where	o pearing.) psf bottom other live load e load of 20.0 a rectangle	ds. psf		G	i i	O' FESC	L
BOT CHORD	10-11=-02/43 2-18=-31/37, 17-18= 15-16=-31/37, 14-15 12-13=-31/37, 11-12 9-12=-183/79, 8-13= 6-15=-204/73, 5-16=	31/37, 16-17=-31/37, 5=-31/37, 13-14=-31/37 2=-31/37 209/73, 7-14=-121/39 181/72, 4-17=-125/73	, , ,	3-06-00 tall b chord and ar N/A	by 2-00-00 wide by other member	will fit betw 's.	veen the botto	m				0363	EEP R LIN
NOTES	3-18=-112/64		,									A. C	ILBERT

CSI

minin October 5,2022

Thurning the

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 89 FaNC	
22090048	PB5	Piggyback	10	1	Job Reference (optional)	154559199

Run: 8.53 S Sep 22 2022 Print: 8.530 S Sep 22 2022 MiTek Industries, Inc. Wed Oct 05 09:11:41 ID:FdqRVfn0ZNVmMDACD34oHRzTR4m-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:39.8

Plate Offsets	(X, Y): [2:0-2-1,0-1-0],	[4:0-2-1,0-1-0]												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2018/	TPI2014	CSI TC BC WB Matrix-MP	0.11 0.12 0.01	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 22 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD WEBS NOTES 1) Unbalanc this desig 2) Wind: AS Vasd=10: Cat. II; Ex zone and exposed ; members Lumber D	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=5-0-6, 4 7=5-0-6, 1 Max Horiz 2=-55 (LC Max Uplift 2=-24 (LC 7=-24 (LC Max Grav 2=199 (LC 6=163 (LC 10=199 (L 0=199 (L 0=199 (L 0=103 (LC 10=199 (L 10=199 (L 10=	athing directly applied applied or 10-0-0 oc 4=5-0-6, 6=5-0-6, 10=5-0-6 2 (2), 7=-55 (LC 12) 2 (14), 4=-31 (LC 15), 2 (14), 10=-31 (LC 15) 2 (2), 4=199 (LC 22) 2 (2), 7=199 (LC 21) -C 22) apression/Maximum 104, 3-4=-117/104, 55 been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior cantilever left and rig ght exposed;C-C for for reactions shown; VL=1.60	3) d or 5) 6) 7) 8) 9) 10) 11) 12) 13) wht LOA	Truss design only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. This truss ha load of 12.0 overhangs n- Gable requirs Gable requirs Gable requirs Gable requirs this truss ha chord live loa * This truss ha chord and ar N/A This truss is International R802.10.2 at See Standar Detail for Co consult qualit AD CASE(S)	hed for wind loads i dis exposed to wind d Industry Gable Er ialified building des 7-16; Pr=20.0 psf (I Is=1.0; Rough Cat I =1.10 snow loads have b is been designed for psf or 1.00 times fla on-concurrent with es continuous botto spaced at 2-0-0 oc is been designed for ad nonconcurrent with es continuous botto spaced at 2-0-0 wide will ny other members. designed in accord Residential Code s nd referenced stand d Industry Piggybaa nnection to base tri fied building design Standard	in the pi d (norm ad Deta igner as (roof LL Lum DC B; Fully een cor or greatu at roof k other liv orn a 10.0 <i>i</i> th any for a liv s where I fit betw lance w sections dard AN ck Trus: uss as a ner.	ane of the tru al to the face) Is as applicat per ANSI/TF : Lum DOL=1 L=1.15 Plate Exp.; Ce=0.9 isidered for the er of min roof bad of 20.0 ps re loads. d bearing. 0 psf bottom other live load e load of 20.0 a rectangle veen the bottoc th the 2018 R502.11.1 a ISI/TPI 1. s Connection pplicable, or	uss), ble, PI 1. 1.15 ; d; ilive sf on ds. Dpsf om			2	SEA 0363	L 22 ILBERT	Manunun,

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

TRENCO A MITOR ATTILIATO

818 Soundside Road Edenton, NC 27932

October 5,2022

Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 89 FaNC	
22090048	V1	Valley	1	1	Job Reference (optional)	154559200

Run: 8.53 S Sep 22 2022 Print: 8.530 S Sep 22 2022 MiTek Industries, Inc. Wed Oct 05 09:11:41 ID:obl8CR79AVIhJxhIYr2zsHzhpM4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1.50

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER TOP CHORD	(psf) 20.0 20.0 10.0 0.0* 10.0 2x4 SP No.2	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2018/TPI2014 1) Wind: ASC Vasd=103r	CSI TC BC WB Matrix-MSH E 7-16; Vult=130m nph; TCDL=6.0psf	0.67 0.20 0.17 aph (3-sec ; BCDL=6	DEFL Vert(LL) Vert(TL) Horiz(TL) cond gust) copsf; h=25ft;	in n/a n/a 0.00	(loc) - - 8	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 85 lb	GRIP 244/190 FT = 20%
BOT CHORD WEBS OTHERS BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex	eathing directly applie kcept end verticals.	Cat. II; Exp zone and C 3-0-7 to 10 cantilever le right expos for reaction	B; Enclosed; MWI -C Corner(3E) 0-0 -8-13, Corner(3E) eft and right expos ed;C-C for membe s shown; Lumber I	FRS (env I-7 to 3-0- 10-8-13 to ed ; end v ers and fo DOL=1.60	elope) exterio 7, Exterior(2N 5 13-8-13 zon vertical left an rces & MWFR 0 plate grip	or I) e; d S					
BOT CHORD	Rigid ceiling directly	y applied or 10-0-0 oc	2) Truss desi	gned for wind load	s in the p	lane of the tru	ISS					
WEBS	1 Row at midpt	7-8	only. For s	tuds exposed to w	ind (norm	al to the face), ble					
REACTIONS	(size) 1=13-10- 10=13-10 12=13-10 12=13-10 Max Horiz 1=270 (L Max Uplift 1=-11 (L' 9=-54 (L' 11=-52 (I 13=-72 (I Max Grav 1=164 (L 9=243 (L 11=179 (13=308 (.2, 8=13-10-2, 9=13-1)-2, 11=13-10-2,)-2, 13=13-10-2 C 11) C 10), 8=-40 (LC 13), C 14), 10=-46 (LC 14), LC 14), 12=-40 (LC 14), LC 14), 12=-40 (LC 14), C 24), 8=87 (LC 20), C 20), 10=220 (LC 20), LC 20), 12=101 (LC 2), LC 23)	0-2, or consult of 3) TCLL: ASC Plate DOL= DOL=1.15) Cs=1.00; C 4), 4) Unbalanced design. 5) All plates a 6) Gable stud 23), 7) Gable stud 8) This truss f chord live live	ualified building de E 7-16; Pr=20.0 ps :1.15); Pf=20.0 ps ; Is=1.0; Rough Ca t=1.10 d snow loads have re 2x4 MT20 unles ires continuous bo s spaced at 2-0-0 d has been designed bad nonconcurrent	esigner as sf (roof LL f (Lum DC at B; Fully been cor s otherwi ttom chor oc. for a 10. with any	s per ANSI/TF .: Lum DOL=')L=1.15 Plate Exp.; Ce=0.9 nsidered for th se indicated. d bearing. D psf bottom other live loar	PI 1. 1.15 D; nis ds.				10000	
FORCES	(lb) - Maximum Cor Tension 1-2=-263/158, 2-3= 4-5=-152/97, 5-6=-	npression/Maximum -190/116, 3-4=-164/1 143/97, 6-7=-104/107	9) * This truss on the botto 08, 3-06-00 tall	has been designe om chord in all are by 2-00-00 wide v	ed for a liv as where vill fit betv	e load of 20.0 a rectangle veen the botto)psf om		4	in	ORTHO	ROUT
BOT CHORD	7-8=-72/30 1-13=-114/184, 12- 11-12=-114/142, 10 9-10=-114/142, 8-9 6-9=-201/63, 5-10= 3-12=-92/80, 2-13=	13=-114/142,)-11=-114/142, =-114/142 -184/114, 4-11=-132/ -201/142	10) Provide me bearing pla 8, 11 lb upl joint 10, 52 96, 72 lb uplift 11) This truss i laterration	ichanical connection te capable of withs ift at joint 1, 54 lb u lb uplift at joint 11, at joint 13. s designed in accoo	on (by oth standing 4 uplift at joi , 40 lb up ordance w	ers) of truss to 0 lb uplift at jo nt 9, 46 lb upl ift at joint 12 a ith the 2018	o oint lift at and		CONTRACTOR OF		SE/ 0363	AL 322
NULES			R802.10.2 LOAD CASE(S	and referenced sta) Standard	andard AN	ISI/TPI 1.				in the	ALC A. (EEF. ALUTION

October 5,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 89 FaNC	
22090048	V2	Valley	1	1	Job Reference (optional)	154559201

Run: 8.53 S Sep 22 2022 Print: 8.530 S Sep 22 2022 MiTek Industries, Inc. Wed Oct 05 09:11:41 ID:dZR1oJ6SMNhWOks6TOXq3xzTR1m-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

11-9-14 2x4 II 4 2x4 II 3 10 6-11-0 6-11-0 2x4 II 2 12 7 0-0-7 5 7 6 2x4 🛛 3x5 🛩 2x4 II 2x4 II 11-9-14 Spacing 2-0-0 CSI DEFL l/defl L/d PLATES GRIP in (loc) Plate Grip DOL 1.15 тс 0.46 Vert(LL) n/a n/a 999 MT20 244/190 BC Lumber DOL 1 15 0.16 999 Vert(TL) n/a n/a _ Rep Stress Incr YES WB 0.15 Horiz(TL) 0.00 5 n/a n/a Code IRC2018/TPI2014 Matrix-MSH Weight: 55 lb FT = 20% TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 4) Unbalanced snow loads have been considered for this desian. Gable requires continuous bottom chord bearing. 5) 6) Gable studs spaced at 4-0-0 oc. 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 8) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. Provide mechanical connection (by others) of truss to 9) bearing plate capable of withstanding 35 lb uplift at joint 5, 4 lb uplift at joint 1, 109 lb uplift at joint 6 and 94 lb uplift at joint 7. 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard ORT Manan Manan VIIIIIIIIIII SEAL 036322 G minin October 5,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 818 Soundside Road Edenton, NC 27932

BCLL		0.0*	Code	IR
BCDL		10.0		
LUMBER				
TOP CHORD	2x4 SP N	o.2		
BOT CHORD	2x4 SP N	o.2		
WEBS	2x4 SP N	o.3		
OTHERS	2x4 SP N	o.3		
BRACING				
TOP CHORD	Structural	wood shea	athing directly a	pplied or
	6-0-0 oc p	ourlins, exc	cept end vertica	ls.
BOT CHORD	Rigid ceili bracing.	ing directly	applied or 10-0	-0 oc
REACTIONS	(size)	1=11-9-14	, 5=11-9-14, 6=	=11-9-14,
		7=11-9-14		
	Max Horiz	1=236 (LC	; 11)	
	Max Uplift	1=-4 (LC 1	10), 5=-35 (LC	11),
		6=-109 (L	C 14), 7=-94 (L	C 14)
	Max Grav	1=167 (LC	24), 5=211 (L	C 5),
		6=491 (LC	5), 7=413 (LC	23)
FORCES	(lb) - Max Tension	imum Com	pression/Maxim	າum
TOP CHORD	1-2=-268/	139. 2-3=- ⁻	160/110. 3-4=-1	36/89.
	4-5=-159/	45	, -	- ,
BOT CHORD	1-7=-99/1	96, 6-7=-99	9/110, 5-6=-99/	110
WEBS	3-6=-387/	152. 2-7=-2	254/148	

(psf)

20.0

20.0

10.0

NOTES

Scale = 1:45 Loading

TCLL (roof)

Snow (Pf)

TCDL

Wind: ASCE 7-16; Vult=130mph (3-second gust) 1) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-7 to 3-0-7, Interior (1) 3-0-7 to 8-8-9, Exterior(2E) 8-8-9 to 11-8-9 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face). see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.

Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 89 FaNC	
22090048	V3	Valley	1	1	Job Reference (optional)	154559202

6-5-13

Run: 8.53 S Sep 22 2022 Print: 8.530 S Sep 22 2022 MiTek Industries, Inc. Wed Oct 05 09:11:42 ID:dlfQSUCwlL2q1s9Sv59O5YzhpM_-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

11-0-15 2x4 II 4 2x4 🛛 11 ³ 10 P 6-5-13 2x4 II 2 _12 7 Г 0-0-4 5 X 7 6 2x4 II 2x4 II 2x4 II 3x5 🛩

11-0-15

Scale = 1:43.1

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC 0.4 BC 0.1 WB 0.1 Matrix-MSH 0.1	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 51 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORE BOT CHORE WEBS OTHERS BRACING TOP CHORE BOT CHORE REACTIONS	 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 1=11-0-1 7=11-0-1 Max Horiz 1=221 (LC 6=-61 (LC Max Grav 1=137 (LC 6=501 (LC 	athing directly applied cept end verticals. applied or 10-0-0 oc 5, 5=11-0-15, 6=11-0- 5 2 11) 2 10), 5=-33 (LC 11), 2 14), 7=-86 (LC 14) 2 24), 5=209 (LC 5), 2 5), 7=364 (LC 23)	 3) TCLL: ASCE Plate DOL=: DOL=1.15); Cs=1.00; Ct 4) Unbalanced design. 5) Gable requir 6) Gable studs 7) This truss ha chord live lo 8) * This truss lo no the botton 3-06-00 tall 8) Provide mee bearing plate 5, 11 lb uplif 	E 7-16; Pr=20.0 psf (roof 1.15); Pf=20.0 psf (Lum Is=1.0; Rough Cat B; Fu =1.10 snow loads have been of res continuous bottom cf spaced at 4-0-0 oc. as been designed for a 1 ad nonconcurrent with a has been designed for a a m chord in all areas whe by 2-00-00 wide will fit b hy other members, with hanical connection (by of e capable of withstanding t at joint 1, 61 lb uplift at 7	L: Lum DOL=1 IOL=1.15 Plate Iy Exp.; Ce=0.9 considered for th ord bearing.).0 psf bottom iy other live load ive load of 20.0 e a rectangle tween the botto CGL = 10.0psf. thers) of truss tr i 33 lb uplift at jc oint 6 and 86 lb	.15 ; is ds. psf m o					
FORCES	(lb) - Maximum Com Tension 0 1-2=-213/130, 2-3=- 4-5=-158/44	pression/Maximum 153/110, 3-4=-133/82	10) This truss is International 2, R802.10.2 a LOAD CASE(S)	designed in accordance I Residential Code section nd referenced standard Standard	with the 2018 าs R502.11.1 ar \NSI/TPI 1.	nd					
BOT CHORE WEBS) 1-7=-93/142, 6-7=-9 3-6=-392/141, 2-7=-	3/103, 5-6=-93/103 229/129	()							munn	11111
NOTES 1) Wind: AS Vasd=10 Cat. II; E zone and 3-1-6 to (cantilever right exp for reacting DOL=1.6 2) Truss de only. Fo see Stan or consu	SCE 7-16; Vult=130mph i3mph; TCDL=6.0psf; B xp B; Enclosed; MWFR d C-C Exterior(2E) 0-0-7 6-8-11, Exterior(2R) 6-8 osed;C-C for members ons shown; Lumber DC 00 esigned for wind loads in r studs exposed to wind idard Industry Gable En It qualified building desi	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior to 3-1-6, Interior (1) -11 to 10-11-10 zone ; end vertical left and and forces & MWFRS L=1.60 plate grip n the plane of the trus (normal to the face), d Details as applicabl gner as per ANSI/TPI	; 5 ss le, 1.						KAN AND AND AND AND AND AND AND AND AND A	SEA 0363	ROUTER L

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

October 5,2022

A. GIL GI

Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 89 FaNC	
22090048	V4	Valley	1	1	Job Reference (optional)	154559203

5-3-0

Run: 8.53 S Sep 22 2022 Print: 8.530 S Sep 22 2022 MiTek Industries, Inc. Wed Oct 05 09:11:42 ID:WLgYeg9zPbBytL9tiEbmDnzTR1i-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

8-11-9 2x4 II 3 2x4 II 11 2 10 5-3-0 9 8 12 7 Г 0-0-4 4 5 2x4 II 2x4 II 3x5 ≉

8-11-9

Scale = 1:35.2

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MP	0.38 0.23 0.10	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 38 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No 2x4 SP No 2x4 SP No 2x4 SP No Structural 6-0-0 oc p Rigid ceilir bracing. (size) Max Horiz Max Uplift Max Grav	.2 .2 .3 .3 wood shea urlins, exa urlins, exa g directly 1=8-11-9, 1=177 (LC 4=-27 (LC 1=167 (LC 5=575 (LC	athing directly applie cept end verticals. applied or 10-0-0 oc 4=8-11-9, 5=8-11-9 11) 11), 5=-112 (LC 14) 24), 4=165 (LC 20) 20)	4) 5) 6) 7) d or 8) 9)	Unbalanced design. Gable require Gable studs This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and an Provide meci bearing plate 4 and 112 lb	snow loads have b es continuous botto spaced at 4-0-0 oc s been designed fo d nonconcurrent w as been designed n chord in all areas y 2-00-00 wide wil y other members. nanical connection capable of withsta uplift at joint 5. designed in accord Residential Code s	eeen cor om chor or a 10.0 vith any for a liv s where I fit betw (by oth anding 2 lance w sections	nsidered for the d bearing. D psf bottom other live load e load of 20.1 a rectangle ween the botth ers) of truss the rs) of t	his Opsf om to joint					
FORCES TOP CHORD BOT CHORD	(lb) - Maxir Tension 1-2=-265/1 1-5=-79/22	num Com 28, 2-3=- ?7, 4-5=-7	pression/Maximum 124/65, 3-4=-144/45 9/86	L	R802.10.2 ar DAD CASE(S)	nd referenced stan Standard	dard AN	ISI/TPI 1.						
 TOP CHORD 1-2=-265/128, 2-3=-124/65, 3-4=-144/45 BOT CHORD 1-5=-79/227, 4-5=-79/86 WEBS 2-5=-442/189 NOTES 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; IMWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-7 to 3-0-7, Interior (1) 3-0-7 to 4-7-5, Exterior(2R) 4-7-5 to 8-10-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) TCLL: ASCE 7-16; Pr=20.0 psf (cord LL: Lum DOL=1.15 Plate DOL=1.15); Is=1-0; Rough Cat B; Fully Exp; Ce=0.9; 														

818 Soundside Road Edenton, NC 27932

October 5,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 89 FaNC	
22090048	V5	Valley	1	1	Job Reference (optional)	154559204

Run: 8.53 S Sep 22 2022 Print: 8.530 S Sep 22 2022 MiTek Industries, Inc. Wed Oct 05 09:11:42

Page: 1

8-2-10

Scale = 1:33.4

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014 Unbalanced	CSI TC BC WB Matrix-MP	0.34 0.15 0.09	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 35 lb	GRIP 244/190 FT = 20%	
TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins, exc Rigid ceiling directly bracing. (size) 1=8-2-10, Max Horiz 1=161 (LC Max Uplift 4=-26 (LC	athing directly applie cept end verticals. applied or 10-0-0 oc 4=8-2-10, 5=8-2-10 C 11) C 11), 5=-107 (LC 14	5) 6) 7) ed or 8) 5 9)	design. Gable requir Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Provide mec bearing plate 4 and 107 lb) This truss is	es continuous bott spaced at 4-0-0 or s been designed n d nonconcurrent has been designed n chord in all area by 2-00-00 wide wi y other members. hanical connectior capable of withst uplift at joint 5. designed in accor	iom chor c. ior a 10.0 with any I for a liv s where Il fit betw n (by oth anding 2 dance w	d bearing.) psf bottom other live loa e load of 20.0 a rectangle veen the botto ers) of truss t 6 lb uplift at ju- th the 2018	ds. Dpsf om oint						
FORCES TOP CHORD BOT CHORD WEBS	Max Grav 1=142 (LC 5=535 (LC (lb) - Maximum Com Tension 1-2=-220/116, 2-3=- 1-5=-72/181, 4-5=-7 2-5=-419/186	C 24), 4=175 (LC 20) C 20) pression/Maximum 117/58, 3-4=-150/44 2/79), LC	Ínternational R802.10.2 ar DAD CASE(S)	Residential Code nd referenced star Standard	sections ndard AN	R502.11.1 a ISI/TPI 1.	Ind						
NOTES 1) Wind: AS(Vasd=103 Cat. II; Ex zone and 3-0-7 to 3. cantilever right expo for reaction DOL=1.6(2) Truss der only For	CE 7-16; Vult=130mph Bmph; TCDL=6.0psf; B(p B; Enclosed; MWFR; C-C Exterior(2E) 0-0-7 -10-7, Exterior(2R) 3-11 left and right exposed sed;C-C for members a shown; Lumber DO) signed for wind loads in stude exposed to wind	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterio to 3-0-7, Interior (1) 0-7 to 8-1-5 zone; ; end vertical left ann and forces & MWFR L=1.60 plate grip	r d S ss							Contraction of the second s	The second se	SEA 0363	RO(1)	Mannun

- see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3)
- Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

ANGIN A. A. GI A. GIL October 5,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 89 FaNC	
22090048	V6	Valley	1	1	Job Reference (optional)	154559205

Run: 8.53 S Sep 22 2022 Print: 8.530 S Sep 22 2022 MiTek Industries, Inc. Wed Oct 05 09:11:42 ID:9eP49nIUaHiFJB4BPIpajJzTR1W-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

6-1-5

Scale = 1:28.3

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.31	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.12	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES		WB	0.08	Horiz(TL)	0.00	4	n/a	n/a		
BCLL	0.0	Code	IRC2018	/TPI2014	Matrix-MP								
BCDL	10.0											Weight: 24 lb	FT = 20%
LUMBER			4)	Unbalanced	snow loads have b	been cor	nsidered for th	nis					
TOP CHORD	2x4 SP No.2			design.									
BOT CHORD	2x4 SP No.2		5)	Gable require	es continuous botte	om chor	d bearing.						
WEBS	2x4 SP No.3		6)	Gable studs	spaced at 4-0-0 oc) .							
OTHERS	2x4 SP No.3		This truss ha	s been designed fo	or a 10.0	0 psf bottom							
BRACING			chord live loa	ad nonconcurrent v	vith any	other live loa	ds.						
TOP CHORD	Structural wood sh	eathing directly applie	as been designed	for a liv	e load of 20.0)psf							
BOT CHORD	Rigid ceiling direct	ly applied or 10-0-0 or	c	on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.									
REACTIONS	(size) 1=6-1-5	, 4=6-1-5, 5=6-1-5	9)	Provide mec	hanical connection	i (by oth	ers) of truss t	0					
	Max Horiz 1=117 (LC 11)		bearing plate	capable of withsta	anding ∠	4 ib upliπ at j	SINT					
	Max Uplift 1=-12 (_C 10), 4=-24 (LC 14),	40)		at joint 1 and 90 it	o upliπ a							
	5=-90 (_C 14)	10)	I his truss is	designed in accord	ance w	Ith the 2018	nd					
	Max Grav 1=55 (L 5=462 (C 24), 4=186 (LC 20), LC 20)		R802.10.2 ar	nd referenced stan	dard AN	ISI/TPI 1.	nu					
FORCES	(lb) - Maximum Co Tension	mpression/Maximum	LO	AD CASE(S)	Standard								
TOP CHORD	1-2=-106/99, 2-3=	-114/58, 3-4=-153/42											
BOT CHORD	1-5=-54/59, 4-5=-	54/59											
WEBS	2-5=-415/211												
NOTES												THUR .	UII.
 Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOI =1 60. Inter a final force 										4	zin	WITH CA	ROUT
 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Control 0.0; Che 140. 								L 22 I.BERTIN					

- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

818 Soundside Road Edenton, NC 27932

A.

GILB

A. GIL October 5,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 89 FaNC	
22090048	V7	Valley	1	1	Job Reference (optional)	154559206

4-4-1

4-4-1

Carter Components (Sanford), Sanford, NC - 27332,

2-10-15

(psf)

20.0

20.0

10.0

10.0

0.0

2-7-4

Spacing

Code

Plate Grip DOL

Rep Stress Incr

Lumber DOL

-0-0

Run: 8.53 S Sep 22 2022 Print: 8.530 S Sep 22 2022 MiTek Industries, Inc. Wed Oct 05 09:11:42 ID:BJweuyr2dKwhU0kO5sRv9pzG Fp-RfC?PsB70Hq3NSqPqnL8w3ulTXbGKWrCDoi7J4zJC?f

8-2-15

3-10-14

GRIP

244/190

FT = 20%

4x5 = 2 12 8 □ 3 3x5 🖌 2x4 II 3x5 💊 8-8-2 2-0-0 CSI DEFL l/defl L/d PLATES in (loc) 1.15 TC 0.38 Vert(LL) n/a n/a 999 MT20 BC 1 15 0.37 999 Vert(TL) n/a n/a YES WB 0.11 Horiz(TL) 0.00 4 n/a n/a IRC2018/TPI2014 Matrix-MP Weight: 30 lb TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this 5) desian. pplied or Gable requires continuous bottom chord bearing. 6) 7) Gable studs spaced at 4-0-0 oc. ос 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 9) on the bottom chord in all areas where a rectangle 20), 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. C 21),

- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 40 lb uplift at joint 1, 40 lb uplift at joint 3 and 76 lb uplift at joint 4.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Scale = 1:28.7

Loading

TCLL (roof)

Snow (Pf)

LUMBER

TCDL

BCLL

BCDL

TOP CHORD	2x4 SP N	o.2
BOT CHORD	2x4 SP N	o.2
OTHERS	2x4 SP N	o.3
BRACING		
TOP CHORD	Structural 8-8-2 oc p	wood sheathing directly appli- purlins.
BOT CHORD	Rigid ceili bracing.	ng directly applied or 6-0-0 oc
REACTIONS	(size)	1=8-8-2, 3=8-8-2, 4=8-8-2
	Max Horiz	1=-64 (LC 10)
	Max Uplift	1=-40 (LC 21), 3=-40 (LC 20) 4=-76 (LC 14)
	Max Grav	1=104 (LC 20), 3=104 (LC 21 4=676 (LC 21)
FORCES	(lb) - Max Tension	imum Compression/Maximum
TOP CHORD	1-2=-109/	336, 2-3=-109/336
BOT CHORD	1-4=-228/	161, 3-4=-228/161
WEBS	2-4=-501/	208

NOTES

 Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-6 to 3-0-6, Exterior(2R) 3-0-6 to 5-8-8, Exterior(2E) 5-8-8 to 8-8-8 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

> 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 89 FaNC	
22090048	V8	Valley	1	1	Job Reference (optional)	154559207

2-7-1

Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.53 S Sep 22 2022 Print: 8.530 S Sep 22 2022 MiTek Industries, Inc. Wed Oct 05 09:11:43 ID:BJweuyr2dKwhU0kO5sRv9pzG_Fp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-2-2

4-8-15

5-2-2

1 40

Scale = 1:23.9

				· · · · · · · · · · · · · · · · · · ·								
Loading	(psf) 20.0	Spacing Plate Grip DOI	2-0-0 1 15	CSI	0.09	DEFL Vert(LL)	in n/a	(loc)	l/defl	L/d 999	PLATES	GRIP 244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.12	Vert(TL)	n/a	-	n/a	999	11120	210100
TCDL	10.0	Rep Stress Incr	YES	WB	0.04	Horiz(TL)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 17 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 5-2-2 oc purlins. Rigid ceiling directly bracing. (size) 1=5-2-2, 3 Max Horiz 1=-37 (LC Max Uplift 1=-5 (LC (LC 14) Max Grav 1=90 (LC (LC 20)	athing directly applied applied or 6-0-0 oc 3=5-2-2, 4=5-2-2 2 10) 14), 3=-11 (LC 15), 4= 20), 3=90 (LC 21), 4=	5) Unbalanced design. 6) Gable requir 7) Gable studs 8) This truss h chord live lo 9) * This truss l on the botto 3-06-00 tall 1 chord and at 10) Provide mec bearing plate 1, 11 lb uplif 11) This truss is International	snow loads have t es continuous bott spaced at 4-0-0 oc as been designed f ad nonconcurrent v has been designed m chord in all areas by 2-00-00 wide wi hy other members. hanical connectior e capable of withsta t at joint 3 and 28 II designed in accord Residential Code	peen cor om chor c. or a 10.0 with any for a liv s where Il fit betv n (by oth anding 5 b uplift a dance w sections	nsidered for the d bearing. D psf bottom other live load e load of 20.0 a rectangle veen the botto ers) of truss t is lb uplift at jo the joint 4. ith the 2018 s R502.11.1 a	nis ds.)psf om o int nd					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	LOAD CASE(S)	Standard	idard Ar	151/1711.						
TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this desig 2) Wind: ASI Vasd=100 Cat. II; Ex zone and exposed ; members Lumber D	1-2=-88/120, 2-3=-8 1-4=-91/83, 3-4=-91 2-4=-196/100 ed roof live loads have n. CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B cp B; Enclosed; MWFR C-C Exterior(2E) zone end vertical left and rig and forces & MWFRS JOL=1.60 plate grip DC	8/120 /83 been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior ; cantilever left and rig ght exposed;C-C for for reactions shown; L=1.60	yht						W , 1111		OR FESS	ROLU

 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

ENGINEERING BY TREENCO A MiTek Affiliate 818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Symbols

PLATE LOCATION AND ORIENTATION

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

PRODUCT CODE APPROVALS

ICC-ES Reports:

ESR-1311, ESR-1352, ESR1988 ER-3907, ESR-2362, ESR-1397, ESR-3282

Trusses are designed for wind loads in the plane of the truss unless otherwise shown.

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

© 2012 MiTek® All Rights Reserved

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- 1. Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.
- 2. Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- 3. Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- 4. Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- 5. Cut members to bear tightly against each other.
- 6. Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- 7. Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- 8. Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- 9. Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- 10. Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- 11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- 12. Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- 13. Top chords must be sheathed or purlins provided at spacing indicated on design.
- 14. Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
- 16. Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- 18. Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- 19. Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- 20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.

21. The design does not take into account any dynamic or other loads other than those expressly stated.

ANSI/TPI1:	National Design Specification for Metal
	Plate Connected Wood Truss Construction.
DSB-89:	Design Standard for Bracing.
BCSI:	Building Component Safety Information,
	Guide to Good Practice for Handling,
	Installing & Bracing of Metal Plate
	Connected Wood Trusses.

MiTek Engineering Reference Sheet: MII-7473 rev. 5/19/2020