

Trenco 818 Soundside Rd Edenton, NC 27932

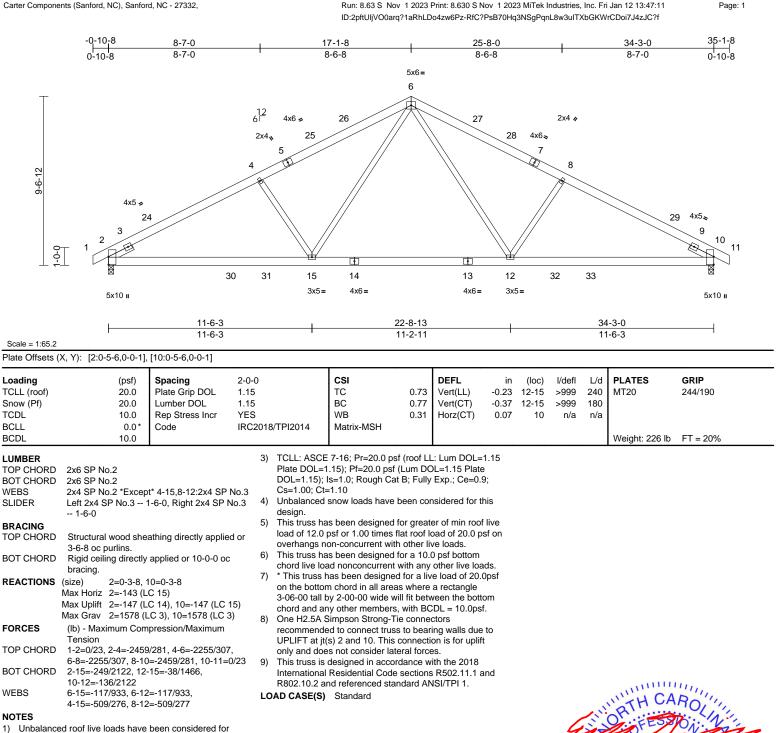

Re: 22090048 DRB GROUP - 89 FaNC

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Sanford, NC)).

Pages or sheets covered by this seal: I63018620 thru I63018666

My license renewal date for the state of North Carolina is December 31, 2024.

North Carolina COA: C-0844


January 15,2024

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

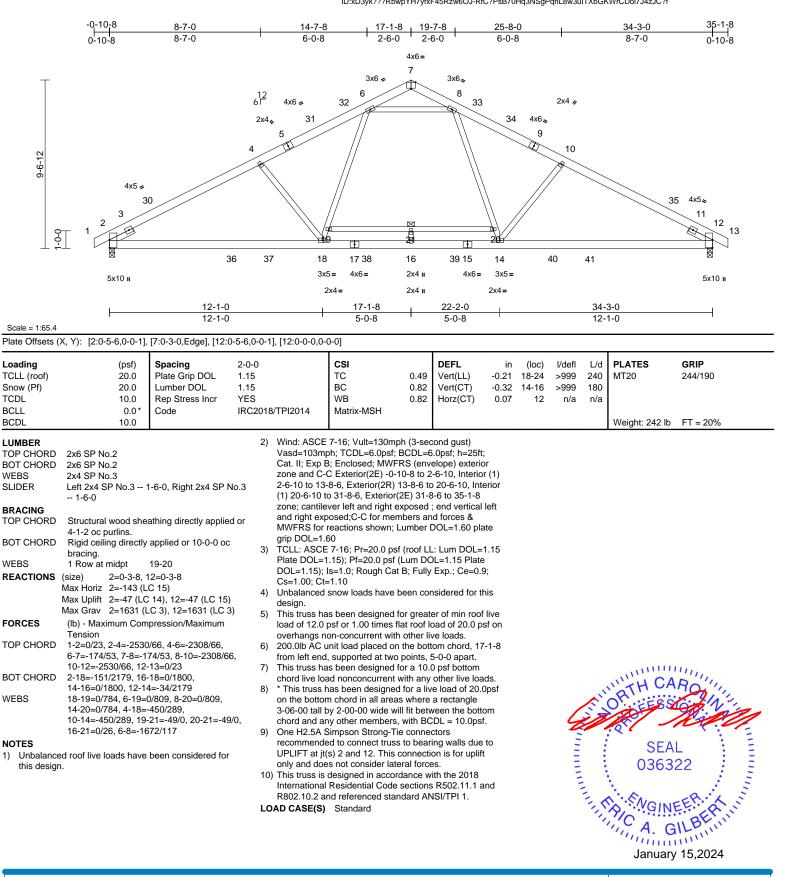
Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 89 FaNC	
22090048	A01	Common	3	1	Job Reference (optional)	163018620

Run: 8.63 S. Nov. 1.2023 Print: 8.630 S.Nov. 1.2023 MiTek Industries. Inc. Fri. Jan 12.13:47:11

1)

this design. 2)

Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-6-10, Interior (1) 2-6-10 to 13-8-6, Exterior(2R) 13-8-6 to 20-6-10, Interior (1) 20-6-10 to 31-8-6, Exterior(2E) 31-8-6 to 35-1-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate arip DOL=1.60


11111111111 036322 GI mmm January 15,2024

SEAL

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

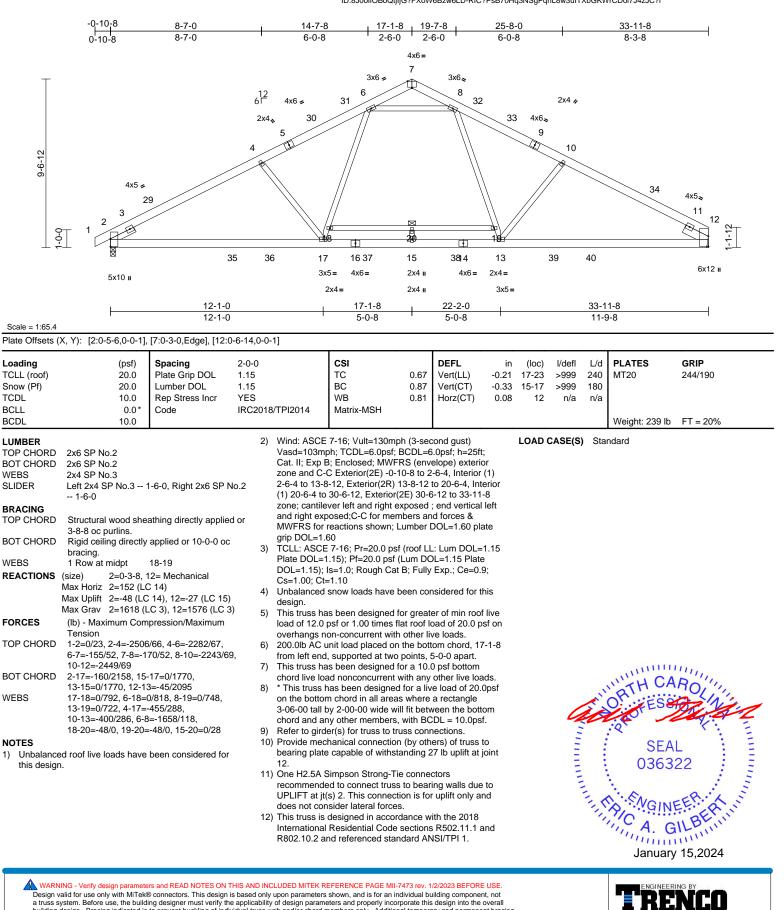
Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 89 FaNC	
22090048	A02	Common	2	1	Job Reference (optional)	163018621

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 13:47:14 ID:xD3yk???RbwpYH7yfxF45Rzw6OJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

818 Soundside Road

Edenton, NC 27932


Page: 1

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 89 FaNC	
22090048	A03	Common	5	1	Job Reference (optional)	163018622

1)

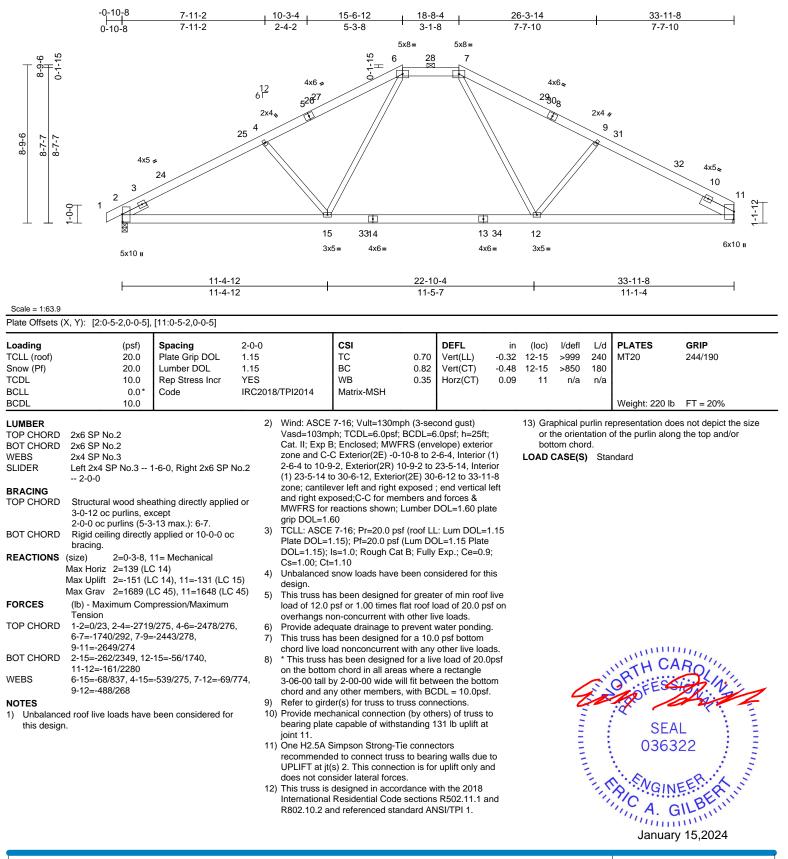
Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 13:47:14 ID:8J0oliOBoQtjljG?FXoW6Bzw6LD-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 89 FaNC	
22090048	A04	Hip	1	1	Job Reference (optional)	163018623

1)


Run: 8.63 S. Nov. 1.2023 Print: 8.630 S.Nov. 1.2023 MiTek Industries. Inc. Fri Jan 12.13:47:15 ID:asVdAgiN3opl5woWNRC3pFzw6IF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

-0-10-8 35-1-8 7-11-2 15-6-12 18-8-4 26-3-14 34-3-0 0-10-8 7-11-2 7-7-10 3-1-8 7-7-10 7-11-2 0-10-8 5x8= 5x8= 6 29 4x6. 4x6 🥃 6¹² ₅27²⁸ ³⁰318 2x4, 2x4 🅢 4 9 26 32 8-9-6 8-7-7 8-7-7 4x5 🍃 25 33 4x5 10 3 11 Ð 12 T T • 16 3415 1435 13 3x5= 4x6 =4x6 =3x5 =5x10 ı 5x10 " 11-4-12 22-10-4 34-3-0 11-4-12 11-5-7 11-4-12 Scale = 1:64 Plate Offsets (X, Y): [2:0-5-2,0-0-5], [11:0-5-2,0-0-5] Loading 2-0-0 CSI DEFL in l/defl L/d PLATES GRIP (psf) Spacing (loc) TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.70 Vert(LL) -0.31 13-16 >999 240 MT20 244/190 Snow (Pf) 20.0 Lumber DOL 1.15 BC 0.81 Vert(CT) -0.47 13-16 >876 180 TCDL 10.0 Rep Stress Incr WB Horz(CT) YES 0.34 0.08 11 n/a n/a BCLL 0.0 Code IRC2018/TPI2014 Matrix-MSH Weight: 221 lb BCDL 10.0 FT = 20% 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) LUMBER Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; 2x6 SP No.2 TOP CHORD 2x6 SP No.2 Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior BOT CHORD zone and C-C Exterior(2E) -0-10-8 to 2-6-10, Interior (1) WEBS 2x4 SP No.3 2-6-10 to 10-8-10, Exterior(2R) 10-8-10 to 23-6-6, SLIDER Left 2x4 SP No.3 -- 1-6-0, Right 2x4 SP No.3 Interior (1) 23-6-6 to 31-8-6. Exterior(2E) 31-8-6 to -- 1-6-0 35-1-8 zone; cantilever left and right exposed ; end BRACING vertical left and right exposed;C-C for members and TOP CHORD Structural wood sheathing directly applied or forces & MWFRS for reactions shown; Lumber 3-7-4 oc purlins, except DOL=1.60 plate grip DOL=1.60 2-0-0 oc purlins (5-3-11 max.): 6-7. TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) BOT CHORD Rigid ceiling directly applied or 10-0-0 oc Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate bracing. DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; REACTIONS 2=0-3-8, 11=0-3-8 (size) Cs=1.00; Ct=1.10 Max Horiz 2=-129 (LC 15) 4) Unbalanced snow loads have been considered for this Max Uplift 2=-151 (LC 14), 11=-151 (LC 15) desian. Max Grav 2=1703 (LC 45), 11=1703 (LC 45) 5) This truss has been designed for greater of min roof live FORCES (Ib) - Maximum Compression/Maximum load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on Tension overhangs non-concurrent with other live loads. TOP CHORD 1-2=0/23, 2-4=-2747/276, 4-6=-2514/279, Provide adequate drainage to prevent water ponding. 6) 6-7=-1769/292, 7-9=-2504/277, This truss has been designed for a 10.0 psf bottom 7) 9-11=-2744/277, 11-12=0/23 chord live load nonconcurrent with any other live loads. BOT CHORD 2-16=-252/2373, 13-16=-47/1769, * This truss has been designed for a live load of 20.0psf 8) 11-13=-137/2371 on the bottom chord in all areas where a rectangle WEBS 6-16=-74/832, 4-16=-532/275, 7-13=-69/831, 3-06-00 tall by 2-00-00 wide will fit between the bottom \cap 9-13=-536/275 chord and any other members, with BCDL = 10.0psf. NOTES 9) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to Unbalanced roof live loads have been considered for or a state of the VIIIIIIIIII UPLIFT at jt(s) 2 and 11. This connection is for uplift this design. SEAL only and does not consider lateral forces. 036322 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. GI LOAD CASE(S) Standard mmm January 15,2024

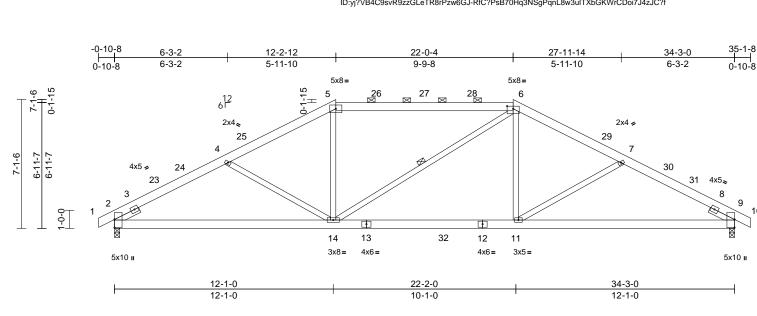
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 89 FaNC	
22090048	A04A	Нір	1	1	Job Reference (optional)	163018624

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 13:47:15 ID:E_pRODSuD9Ip9b6da9rrsXzw6HG-RfC?PsB70Hq3NSqPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

818 Soundside Road


Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 89 FaNC	
22090048	A05	Нір	1	1	Job Reference (optional)	163018625

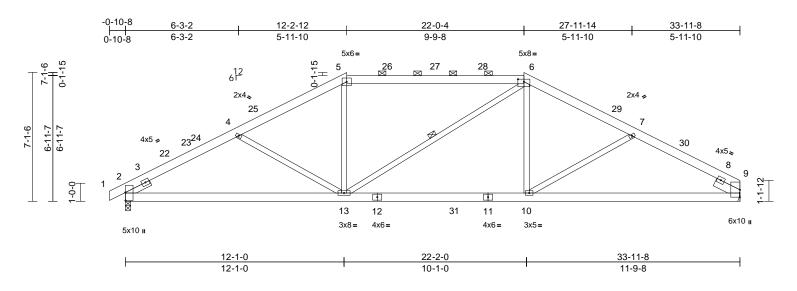
Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 13:47:16 ID:yj?VB4C9svR9zzGLeTR8rPzw6GJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

9

10

Scale = 1:63.6

Plate Offsets (X, Y): [2:0-5-6,0-0-1], [6:0-4-0,0-1-12], [9:0-5-6,0-0-1]


TCLL (roof)	psf) Spacing Plate Grip DOL Lumber DOL Lumber DOL Rep Stress Incr 0.0* Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.47 0.80 0.38	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 11-14 11-14 9	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 232 lb	GRIP 244/190 FT = 20%
2.0E 30T CHORD 2x6 SP No.2 WEBS 2x4 SP No.3 SLIDER Left 2x4 SP I 1-6-0 BRACING TOP CHORD Structural with 3-11-8 oc pu 2-0-0 oc pu BOT CHORD Rigid ceiling bracing. WEBS 1 Row at mit REACTIONS (size) 2= Max Horiz 2= Max Horiz 2= Max Uplift 2= Max Grav 2= FORCES (lb) - Maximu Tension TOP CHORD 1-2=0/23, 2- 5-6=-1914/2 7-9=-2523/3 30T CHORD 1-2=0/23, 2- 5-6=-1914/2 7-9=-2523/3 30T CHORD 2-14=-257/2 9-11=-183/2 WEBS 5-14=0/554,	ns (6-0-0 max.): 5-6. directly applied or 10-0-0 o bt 6-14 -3-8, 9=0-3-8 103 (LC 15) 157 (LC 14), 9=-157 (LC 1 1597 (LC 45), 9=1607 (LC n Compression/Maximum =-2502/320, 4-5=-2199/28 8, 6-7=-2221/284, 0, 9-10=0/23 64, 11-14=-78/1932, 82 -14=-417/186, 6-11=0/591 6, 6-14=-214/217	2 No.3 ed or 3) c 4) 5) 5) 45) 6) 7) 4, 8) 7) 4, 8) 7) r 1(Vasd=103mp Cat. II; Exp E zone and C-1 2-6-10 to 7-4 (1) 26-10-6 t zone; cantile and right exp MWFRS for grip DOL=1.0 TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. This truss ha chord live loa * This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and ar One H2.5A § recommende UPLIFT at jt(and does no)) This truss is International R802.10.2 au	7-16; Pr=20.0 psf .15); Pf=20.0 psf (1s=1.0; Rough Cat =1.10 snow loads have b so been designed fip psf or 1.00 times fl on-concurrent with quate drainage to p is been designed fi ad nonconcurrent with quate drainage to p is been designed find an onconcurrent with quate drainage to p is been designed find ad nonconcurrent with quate drainage to p is been designed find ad nonconcurrent with quate drainage to p is been designed find ad nonconcurrent with ad nonconcurrent with a consider lateral for designed in accord Residential Code and referenced stan r/lin representation at.	SCDL=6 SC (env 0-8 to 2 -4-10 to 22) 31-4 (roof LI Lum DC B; Fully een cor or great at roof lu or great at roof lu or great at roof lu or a 10. vith an with BC e conne to beat onces. lance w sections dard AN does no	.0psf; h=25ft elope) exteric -6-10, Interio 26-10-6, Intu- fe to 35-1-8 end vertical d forces & DOL=1.60 pta : Lum DOL= U=1.15 Plate Exp.; Ce=0.9 asidered for th er of min roof pad of 20.0 pp ve loads. water ponding 0 psf bottom other live load e load of 20.0 pp ve loads. water ponding 0 psf bottom other live load a rectangle veen the botth DL = 10.0psf ctors ng walls due n is for uplift of the the 2018 R502.11.1 a SIJ/TP1 1.	or r (1) erior left ate 1.15 9; his filive sf on g. dds. Opsf om f. to only and		An IIIIII		SEA 0363	22 EERER III

January 15,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 89 FaNC	
22090048	A05A	Нір	1	1	Job Reference (optional)	163018626

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 13:47:16 ID:ngx29ZuvRPc4Jk7IUxyWeQzw6FQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:63.7

Plate Offsets (X, Y): [2:0-5-6.0-0-1], [6:0-4-0.0-1-12], [9:0-4-14.0-0-1]

Loading (ps TCLL (roof) 20. Snow (Pf) 20. TCDL 10. BCLL 0. BCDL 10.	 Plate Grip DOL Lumber DOL Rep Stress Incr Code 	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-MSH	0.62 0.81 0.37	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 10-13 10-13 9	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 229 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2x6 SP No.2 *Ex 2.0E BOT CHORD 2x6 SP No.2 WEBS 2x4 SP No.3 *Ex SLIDER Left 2x4 SP No.3 - 1-6-0 BRACING TOP CHORD Structural wood 3-8-4 oc purlins, 2-0-0 oc purlins BOT CHORD Rigid ceiling dire bracing. WEBS 1 Row at midpt REACTIONS (size) 2=0-3 Max Horiz 2=112 Max Uplift 2=-15 Max Grav 2=158 FORCES (lb) - Maximum (Tension TOP CHORD 1-2=0/23, 2-4=-2 5-6=-1894/297, 7-9=-2431/316 BOT CHORD 2-13=-267/2149 9-10=-205/2082	cept* 5-6:2x6 SP 2400F cept* 6-13:2x4 SP No.2 s 1-6-0, Right 2x6 SP No sheathing directly applied except (6-0-0 max.): 5-6. ctly applied or 10-0-0 oc 6-13 -8, 9= Mechanical - (LC 14) 6 (LC 14), 9=-137 (LC 15) 9 (LC 45), 9=1558 (LC 45 Compression/Maximum 486/319, 4-5=-2178/283, 3-7=-2148/283, 10-13=-105/1887, 3=-409/186, 6-10=0/545, 5-13=-191/230	or 3) 4) 5) 5) 6) 7) 8) 9) 10 11	Vasd=103mp Cat. II; Exp E zone and C-1 2-6-4 to 7-5- 26-9-14 to 3 zone; cantile and right exp MWFRS for 1 grip DOL=1.0 TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced design. This truss ha load of 12.0 1 overhangs n Provide aded This truss ha chord live loa * This truss ha chord and ar Refer to gird D) Provide mec bearing plate joint 9. 1) One H2.5A S recommende UPLIFT at jt(does not com 2) This truss is International	7-16; Pr=20.0 psf .15); Pf=20.0 psf (l s=1.0; Rough Cat	CDL=6 S (env)-8 to 2 2 to 26 3 30-6-1 posed 2 to 26 3 7 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.0psf; h= 25 ft; slope) exterio 6-4, Interior 0 9-14, Interior 2 to 33-11-8 end vertical d forces & DOL=1.60 pla : Lum DOL=' L=1.15 Plate Exp.; Ce=0.9 isidered for th er of min roof pad of 20.0 ps ve loads. vater ponding 0 psf bottom other live load e load of 20.0 ps reen the botto DL = 10.0psf lections. ers) of truss to 37 lb uplift at ctors ng walls due uplift only an th the 2018 R502.11.1 a	r (1) (1) left te 1.15 ; live if on j. ds. psf om to d	or the bott	he orient om chor CASE(S)	tation (d. d.) Star	presentation doe of the purlin along ndard	s not depict the siz the top and/or

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 89 FaNC	
22090048	A06	Hip Girder	1	2	I63 Job Reference (optional)	018627

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 13:47:19 ID:nUWKs?VvQ42rwZX6z9NTDAzw6Ed-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:61

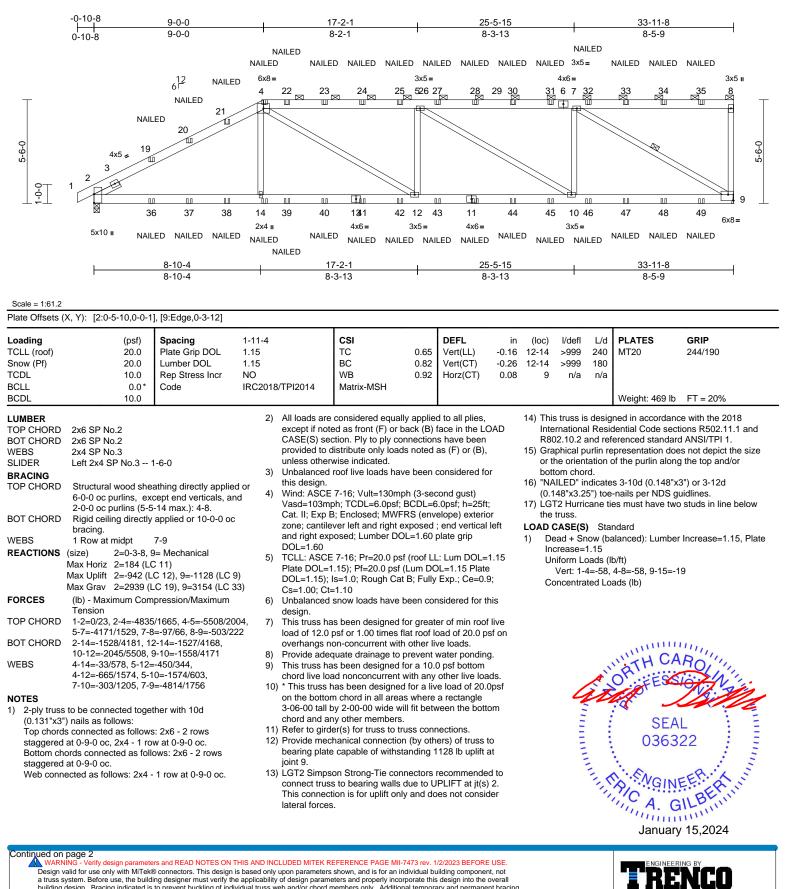
Plate Offsets (X, Y): [2:0-5-10,0-0-1], [9:0-5-10,0-0-1]

							-						
Loading	(psf)	Spacing	1-11-4		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.58	Vert(LL)	-0.16		>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.80	Vert(CT)	-0.26		>999	180		
TCDL	10.0	Rep Stress Incr	NO		WB	0.35		0.08	9	n/a	n/a		
BCLL	0.0*	Code		/TPI2014	Matrix-MSH				-				
BCDL	10.0		1102010	" TT 1201 T								Weight: 446 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES	10.0 2x6 SP No.2 2x6 SP No.2 2x4 SP No.3 Left 2x4 SP No.3 1-6-0 Structural wood she 6-0-0 oc purlins, exc 2-0-0 oc purlins, exc 2-0-0 oc purlins (5-1 Rigid ceiling directly bracing. (size) 2=0-3-8, 9 Max Horiz 2=-76 (LC Max Uplift 2=-877 (L Max Grav 2=2910 (I (lb) - Maximum Com Tension 1-2=0/23, 2-4=-4766 5-7=-5562/1870, 7-5 2-15=-1321/4117, 11 11-13=-1253/4108, 1 4-15=-30/51, 7-11= 5-13=-1429/667, 4-1 7-13=-658/1710	0-12 max.): 4-7. applied or 10-0-0 oc 9=0-3-8 5 59) C 12), 9=-877 (LC 13 LC 37), 9=2913 (LC 3 pression/Maximum 5/1534, 4-5=-5562/18 9=-4769/1536, 9-10=(3-15=-1321/4105, 9-11=-1254/4120 e-32/554, 13=-660/1714,	2) 1 or 4) 1 or 4) 5) 70, 7) 70, 7) 8) 9)	All loads are except if note CASE(S) sec provided to c unless othern Unbalanced this design. Wind: ASCE Vasd=103m Cat. II; Exp E zone; cantile and right exp DOL=1.60 TCLL: ASCE Plate DOL=1. DOL=1.15); Cs=1.00; Ct= Unbalanced design. This truss ha load of 12.0 overhangs nn Provide adec This truss ha chord live loa on the bottor	considered equally ed as front (F) or bi- ction. Ply to ply cor listribute only loads wise indicated. roof live loads have 7-16; Vult=130mp bh; TCDL=6.0psf; E 8; Enclosed; MWFF ver left and right e: posed; Lumber DOI 5000000000000000000000000000000000000	ack (B) nection s noted e been h (3-sec 3CDL=6 RS (env xposed L=1.60 Lum DC B; Fully been cor or great at roof li orter li orevent or a 10. vith any s where	face in the LC s have been as (F) or (B), considered for cond gust) .0.0sf; h=25ft; elope) exterio ; end vertical i plate grip .: Lum DOL=1 DL=1.15 Plate Exp.; Ce=0.9 nsidered for th er of min roof pad of 20.0 ps ve loads. water ponding 0 psf bottom other live load e load of 20.0 a rectangle	r left 1.15); live sf on g. ds.)psf	or t bot 14) "NA (0' 15) LG the LOAD (1) D(1) D(1) D(1) D(1) D(1) C(he orien tom choi AILED" in IALED" in IALED" in IA8"x3.2 CASE(S ead + Sr crease= niform Lo Vert: 1- oncentra Vert: 6= 13=-51 125=-55 29=-155 39=-165 39=-165 47=-105	tation of d. mdicate 5°) toe 5°) toe 5°) toe of 1.15° of 1.15° of 1.15° of 1.15° of 1.15° of (B) , 44° - 55° ((B) , 44° - 159° - 150° ((B) , 44° - 150° - 150° - 150° ((B) , 44° - 150°	presentation doe of the purlin along as 3-10d (0.148'x: -nails per NDS gi es must have two ndard alanced): Lumber b/ft) 4-7=-58, 7-10=-5 ads (lb) 9, 15=-51 (B), 11 159 (B), 37=-9 10=-51 (B), 45=-51 l8=-96 (B)	es not depict the size g the top and/or 3") or 3-12d uidlines. o studs in line below "Increase=1.15, Plate 68, 16-20=-19 1=-51 (B), 5=-159 (B), (B), 24=-119 (B), (B), 24=-119 (B), (B), 28=-159 (B), 159 (B), 34=-5 (B), 6 (B), 38=-103 (B), 1 (B), 42=-51 (B), (B), 46=-167 (B),
 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Web connected as follows: 2x4 - 1 row at 0-9-0 oc. 			,	chord and ar LGT2 Simps connect truss and 9. This c consider late This truss is International	-00 tall by 2-00-00 wide will fit between the bottom d and any other members. 2 Simpson Strong-Tie connectors recommended to ect truss to bearing walls due to UPLIFT at jt(s) 2 9. This connection is for uplift only and does not ider lateral forces. truss is designed in accordance with the 2018 national Residential Code sections R502.11.1 and 2.10.2 and referenced standard ANSI/TPI 1.							SEA 0363	EER. R. III

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

TRENCO AMITEK ATHILATE

> 818 Soundside Road Edenton, NC 27932


January 15,2024

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 89 FaNC	
22090048	A07	Half Hip Girder	1	2	Job Reference (optional)	163018628

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 13:47:22 ID:gLtYzdN3TC6dZd1xBHgM8Mzw6DV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

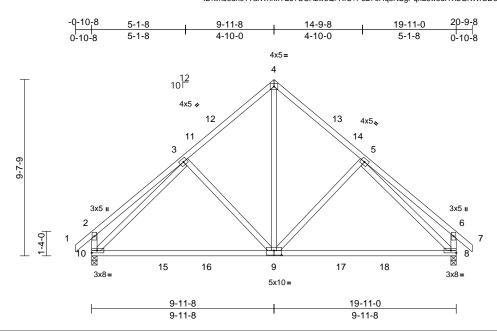
818 Soundside Road

Edenton, NC 27932

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 89 FaNC	
22090048	A07	Half Hip Girder	1	2	Job Reference (optional)	163018628

 $\begin{array}{l} \mbox{Vert: } 14{=}{-}51 \ (F), \, 4{=}{-}159 \ (F), \, 11{=}{-}51 \ (F), \, 19{=}{-}119 \ (F), \\ 20{=}{-}55 \ (F), \, 21{=}{-}5 \ (F), \, 22{=}{-}159 \ (F), \, 23{=}{-}159 \ (F), \\ 24{=}{-}159 \ (F), \, 25{=}{-}159 \ (F), \, 27{=}{-}159 \ (F), \, 28{=}{-}159 \ (F), \\ 30{=}{-}159 \ (F), \, 31{=}{-}159 \ (F), \, 32{=}{-}159 \ (F), \, 33{=}{-}159 \ (F), \\ 34{=}{-}159 \ (F), \, 35{=}{-}159 \ (F), \, 36{=}{-}96 \ (F), \, 37{=}{-}103 \ (F), \\ 38{=}{-}167 \ (F), \, 39{=}{-}51 \ (F), \, 40{=}{-}51 \ (F), \\ 42{=}{-}51 \ (F), \, 43{=}{-}51 \ (F), \, 44{=}{-}51 \ (F), \\ 46{=}{-}51 \ (F), \, 47{=}{-}51 \ (F), \, 49{=}{-}51 \ (F) \end{array}$


Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 13:47:22 ID:gLtYzdN3TC6dZd1xBHgM8Mzw6DV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 89 FaNC	
22090048	B01	Common	1	1	Job Reference (optional)	163018629

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 13:47:23 ID:wnJ6dh91TafWhnxYBJ?COAzw6Qi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:62.9

Plate Offsets (X, Y): [9:0-5-0,0-3-0]

													-
Loading TCLL (roof) Snow (Pf) TCDL	(psf) 20.0 20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.56 0.79 0.70	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.23 -0.39 0.02	(loc) 8-9 8-9 8	l/defl >999 >603 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0* 10.0	Code	IRC2018	3/TPI2014	Matrix-MSH							Weight: 129 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.1 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex	cept end verticals. applied or 10-0-0 oc 10=0-3-8 _C 13) C 15), 10=-72 (LC 14 C 6), 10=956 (LC 5)	5) 6) 7)	Plate DOL= DOL=1.15); Cs=1.00; Ct Unbalanced design. This truss ha load of 12.0 overhangs n This truss ha chord live lo * This truss on the botto 3-06-00 tall	snow loads have to as been designed f psf or 1.00 times fl ion-concurrent with as been designed f ad nonconcurrent v has been designed m chord in all areas by 2-00-00 wide wi	Lum DC B; Fully peen co or great at roof I o other li or a 10. with any I for a liv s where Il fit betw	DL=1.15 Plate PL=1.15 Plate PL=1.15 Plate PL=1.15 Plate PL=1.15 Plate PL=1.15 Plate PL=1.15 Plate PL=1.15 Plate PL=1.15 Plate	e 9; this of live osf on ads. 0psf				-	
TOP CHORD	Tension	131, 3-4=-796/166, 385/134, 6-7=0/39,	8)	One H2.5A recommend UPLIFT at jt	ny other members, Simpson Strong-Ti- ed to connect truss (s) 10 and 8. This of es not consider late	e conne to bear connecti	ctors ing walls due on is for uplif	e to					
BOT CHORD WEBS	8-10=-95/742 4-9=-90/624, 5-9=-2 3-10=-719/47, 5-8=-	,	9) 6,	This truss is International	designed in accord Residential Code and referenced star	dance w sections	rith the 2018 s R502.11.1 a	and				TH CA	9977
NOTES				DAD CASE(S)	Standard							"H CA	ROUL
 Unbalance 	ed roof live loads have	been considered for	r								1	'al'	

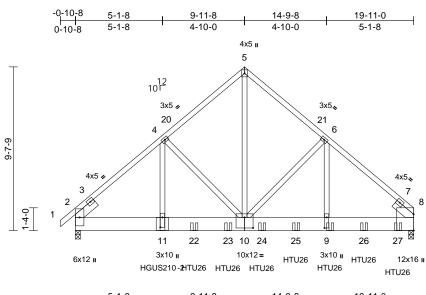
this design.

Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 6-11-8, Exterior(2R) 6-11-8 to 12-11-8, Interior (1) 12-11-8 to 17-9-8, Exterior(2E) 17-9-8 to 20-9-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

G mmm January 15,2024


SEAL

036322

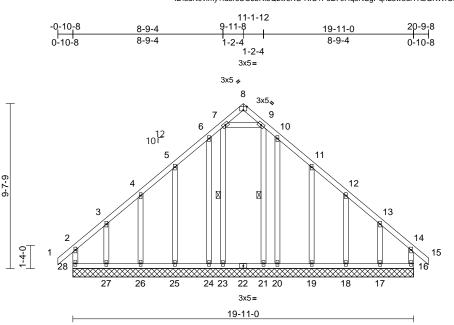
anninninn,

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 89 FaNC	
22090048	B02	Common Girder	1	3	Job Reference (optional)	163018630

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 13:47:24 ID:a?o2ngsDV?cAqXxaucNCdIzw6Ba-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

	5-1-8	9-11-8	14-9-8	19-11-0	
	5-1-8	4-10-0	4-10-0	5-1-8	
Scale = 1:67.8					
Plate Offsets (X, Y): [2:Edge,0-0-0], [9:0-7-8,0-1-8], [10:0-6-0	,0-7-8], [11:0-7-0,0-1-	8]			

TCLL (roof)2Snow (Pf)2TCDL1BCLL1	D.0 Plate Grip DOL 0.0 Lumber DOL 0.0 Rep Stress Incr	I-11-4 I.15 I.15 NO RC2018/TPI2014	CSI TC BC WB Matrix-MSH	0.69 0.25 0.65	DEFL ir Vert(LL) -0.09 Vert(CT) -0.16 Horz(CT) 0.03	9 10-11 5 10-11	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 514 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x10 SP 2400 WEBS 2x4 SP No.3 SLIDER Left 2x6 SP N 1-4-12 BRACING TOP CHORD Structural woo 6-0-0 oc purlin BOT CHORD Rigid ceiling of bracing. REACTIONS (size) 2=C Max Horiz 2=2 Max Horiz 2=2 Max Horiz 2=2 Max Uplift 2=- Max Grav 2=C FORCES (Ib) - Maximur Tension TOP CHORD 1-2=0/33, 2-4: 5-6=-6501/85: BOT CHORD 2-11=-1073/6 8-9=-489/6177 WEBS 5-10=-970/783 4-10=-1711/80 NOTES 1) 3-ply truss to be connected (0.131*x3*) nails as follow: Top chords connected as oc. Bottom chords connected as follow: Except member 6-9 2x4 -	 F 2.0E Except* 10-5:2x4 SP No.2 D.2 1-6-0, Right 2x6 SP No.2 d sheathing directly applied of s. rectly applied or 10-0-0 oc -3-8, 8=0-3-8 00 (LC 9) 1138 (LC 12), 8=-608 (LC 13) 767 (LC 19), 8=8503 (LC 6) n Compression/Maximum -8054/1372, 4-5=-6498/851, 6-8=-8168/720 15, 9-11=-1073/6178, 1, 6-10=-1870/90, 6-9=0/234 3, 4-11=-835/2060 d together with 10d collows: 2x4 - 1 row at 0-9-0 as follows: 2x10 - 2 rows 	 except if no CASE(S) se provided to unless othe 3) Unbalancec 3) Unbalancec 4) Wind: ASCE Vasd=103m Cat. II; Exp zone; cantiliand right ex DOL=1.60 5) TCLL: ASCE Plate DOL= DOL=1.15); Cs=1.00; Ci 6) Unbalancec design. 7) This truss h load of 12.0 overhangs r 4. 8) This truss h chord live lc 9) * This truss on the botto 3-06-00 tall chord and a 10) LGT3-SDS2 recommend UPLIFT at ji and does na 11) This truss is Internationa R802.10.2 at 12.0 Use Simps2. 	e considered equally ed as front (F) or bac ction. Ply to ply cor distribute only loads wise indicated. roof live loads have F7-16; Vult=130mp ph; TCDL=6.0psf; E B; Enclosed; MWFF aver left and right ep posed; Lumber DOI E 7-16; Pr=20.0 psf (1.15); Pf=20.0 psf (1.15	ack (B) f nection noted f contention CDL=6	face in the LOAD is have been as (F) or (B), considered for cond gust) S.Opsf; h=25ft; elope) exterior ; end vertical left plate grip L: Lum DOL=1.15 DL=1.15 Plate Exp.; Ce=0.9; nsidered for this er of min roof live oad of 20.0 psf on ve loads. 0 psf bottom other live loads. re load of 20.0psf a rectangle ween the bottom nectors ing walls due to n is for uplift only with the 2018 s R502.11.1 and NSI/TPI 1. (46-10d Girder, om the left end to	11 sp en bo 14) Fil 15) LG the LOAD 1) C Ir U	-10dx1 1 acced at 2 d to 19-C ttom choi all nail all all all truss. CASE(S cead + Si borcease= niform L Vert: 1- concentra 23=-15 26=-14	/2 Trus 2-0-0 or -0 to c rd. ooles w cane ti) Sta now (bi 5=-58, ated Lo 1439 38 (B), 39 (B),	by the set of the set	20-10d Girder, der) or equivalent 7-0-0 from the left to back face of a contact with lumber. ee studs in line belov r Increase=1.15, Plat -19), 22=-1444 (B),


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

TRENCO A MiTek Affiliate

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 89 FaNC	
22090048	B03	Common Supported Gable	1	1	Job Reference (optional)	163018631

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 13:47:24 ID:sdN0vlmy?ld3rsUOJbRi5Qzw6RC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:67.3

Plate Offsets (X, Y): [8:0-2-8,Edge]

	(X, T). [0.0 2 0,Euge]	-										
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	1-11-4 1.15 1.15 YES IRC2018/TPI2014	BC	0.12 Ver	rt(LL) n/ rt(CT) n/ rz(CT) 0.0	a a	-		L/d 999 999 n/a	PLATES MT20 Weight: 161 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt (size) 16=19-11 20=19-11 23=19-11 23=19-11 23=19-11 23=19-11 23=19-11 23=19-11 23=243 (Max Uplift 16=-118 18=-58 (L 20=-27 (L 25=-86 (L 27=-146 Max Grav 16=213 (18=182 (20=183 (23=209 (25=210 (r applied or 6-0-0 oc 7-23, 9-21 -0, 17=19-11-0, -0, 19=19-11-0, -0, 21=19-11-0, -0, 24=19-11-0, -0, 26=19-11-0, -0, 28=19-11-0 LC 13) (LC 11), 17=-139 (LC 1 LC 15), 24=-28 (LC 14) .C 14), 26=-56 (LC 14) (LC 14), 28=-241 (LC 14) LC 28), 17=258 (LC 25) LC 25), 19=210 (LC 29) LC 22), 21=205 (LC 26) LC 27), 24=183 (LC 21) LC 24), 26=179 (LC 24) LC 24), 28=231 (LC 25) 24=231 (LC 25)	5), NOTES 1) Unbalance this design 2) Wind: ASC 3), Cat. II; Ex 3), Cat. II; Ex 4), Zone and 3), Cat. II; Ex 4), Zone; can 4), (2N) 12-1 7), Zone; can 6) MWFRS fr 6) grip DOL= 3) Truss des 6) only. For 8 see Stand	3-4=-110/147, 4-5=-9 6-7=-151/344, 7-8=-1 9-10=-151/344, 7-8=-1 13-14=-142/142, 14-1 11-12=-91/228, 12-13 13-14=-142/142, 14-1 14-16=-159/107 27-28=-117/119, 26-2 25-26=-117/119, 26-2 23-24=-117/119, 21-2 20-21=-117/119, 19-2 18-19=-117/119, 19-2 18-19=-117/119, 19-2 18-19=-117/119, 19-2 18-19=-117/119, 19-2 18-19=-117/119, 19-2 18-19=-117/119, 19-2 18-19=-117/119, 19-2 18-19=-117/119, 19-2 18-19=-107/117, 12-1 13-17=-154/129, 7-9 ed roof live loads have th the the the the the the the the the the	6/228, 5-6 01/12, 8-9 =-138/316 =-91/149, 5=0/38, 27=-117/11 25=-117/11 25=-117/11 25=-117/11 20=-117/11 20=-117/11 20=-117/11 20=-117/11 20=-117/11 20=-117/11 20=-117/11 20=-115/311 20=0000000000000000000000000000000000	S=-138/316,)=-101/13, 6, 19, 19, 19, 19, 19, 19, 19, 19	5) 6) 7) 8) 9) 10] 11]	Plate D DOL=1 Cs=1.0 Unbala design. This tru load of overha All plate Gable 1 Truss t braced) Gable 3) Gable 3) This tru chord I to this tru chord I to this tru chord f a 3-06-00 chord a	DOL=1 1.15); 1.15); 1.15); 1.15); 1.15); 1.150;	1.15); Is=1.0 Is=1.10 snow as beee psf or oon-coo e 2x4 less coo fully shast late space as beee ad norn has be m choo by 2-0 ny oth	Pf=20.0 psf (Lurr); Rough Cat B; F loads have been en designed for g 1.00 times flat rc ncurrent with oth MT20 unless oth mtinuous bottom eral movement (i d at 2-00 oc. en designed for a nconcurrent with sen designed for a nconcurrent with er members, with	erwise indicated. chord bearing. if ace or securely e. diagonal web). 10.0 psf bottom any other live loads. a live load of 20.0psf ere a rectangle between the bottom BCDL = 10.0psf

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

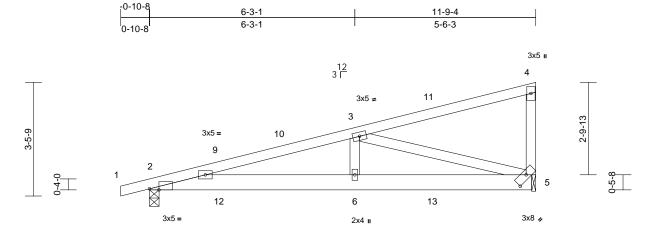
818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 89 FaNC	
22090048	B03	Common Supported Gable	1	1	Job Reference (optional)	163018631

- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 141 lb uplift at joint 28, 118 lb uplift at joint 26, 28 lb uplift at joint 24, 86 lb uplift at joint 25, 56 lb uplift at joint 26, 146 lb uplift at joint 27, 27 lb uplift at joint 20, 86 lb uplift at joint 19, 58 lb uplift at joint 18 and 139 lb uplift at joint 17.
 41) This way is decined in second as with the 2010.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 13:47:24 ID:sdN0vImy?ld3rsUOJbRi5Qzw6RC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

ſ	Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 89 FaNC	
	22090048	C01	Monopitch	18	1	Job Reference (optional)	163018632

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 13:47:25 ID:QxstrrXaatHFfrem_4YWgkzSoeP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

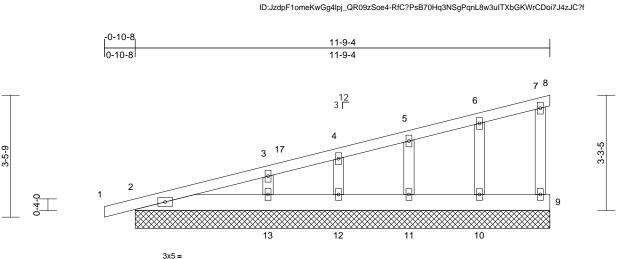
Scale = 1:35.1

Plate Offsets (X, Y): [2:0-3-7,Edge], [5:0-4-7,0-1-7]

Plate	Olisets (X, Y): [2:0-3-7,Edge]	, [5:0-4-7,0-1-7]	_									-	:
Load TCLL Snow TCDI BCLL BCDI	. (roof) / (Pf)	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.46 0.45 0.73	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.08 -0.09 0.01	(loc) 6-8 6-8 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 60 lb	GRIP 244/190 FT = 20%
LUMM TOP BOT BOT BOT REAC TOP BOT TOP BOT WEB NOTI 1) V V V V V C 2 2 2 2 2) T T E C C	BER CHORD CHORD S CING CHORD CHORD CHORD CHORD CHORD CHORD S ES Vind: ASC (asd=103 Cat. II; Ex one and (-1-8 to 8- antilever ight expos late DOL DOL=1.15 Cs=1.00; (2x4 SP No.2 2x6 SP No.2 2x4 SP No.3 Structural wood she 4-11-7 oc purlins, e Rigid ceiling directly bracing. (size) 2=0-3-8, Max Horiz 2=116 (L Max Uplift 2=-206 (I Max Grav 2=585 (L (Ib) - Maximum Con Tension 1-2=0/15, 2-3=-127: 4-5=-195/109 2-6=-1129/1216, 5-4 3-6=-375/268, 3-5=- CE 7-16; Vult=130mpf mph; TCDL=6.0psf; B p B; Enclosed; MWFR C-C Exterior(2E) e-0-10 (7-8, Exterior(2E) e-0-10 (7-8, Exterior(2E) e-0-10 (7-8, Exterior(2E) e-0-10 (7-8, Exterior(2E) e-0-10 (CE 7-16; Pr=20.0 psf (L); Is=1.0; Rough Cat F Ct=1.10	C 11) LC 10), 5=-177 (LC 1 C 21), 5=-584 (LC 21), npression/Maximum 3/1169, 3-4=-103/56, 6=-1129/1216 -1222/1196 n (3-second gust) ICDL=6.0psf; h=25ft; IS (envelope) exterior 0-8 to 2-1-8, Interior (8 to 11-7-8 zone; 1; end vertical left and th exposed; C-C for for reactions shown; DL=1.60 (roof LL: Lum DOL=1 Lum DOL=1.15 Plate 3; Fully Exp.; Ce=0.9	7) 8) 9) 10 11 11 11 11 11 11 11 11 11	load of 12.0 overhangs n This truss ha chord live loa * This truss lo on the bottoo 3-06-00 tall l chord and an Bearings are capacity of 5 Bearing at jo using ANSI/ designer sho Provide meo bearing plate 0) One H2.5A \$ recommendd UPLIFT at jt and does no) This truss is International	int(s) 5 considers p TPI 1 angle to grain puld verify capacity chanical connections at joint(s) 5. Simpson Strong-Tie d to connect truss (s) 2 and 5. This con- t consider lateral for designed in accord Residential Codes and referenced stan	at roof I other Ii or a 10. with any for a Ii's where Il fit betwork or 5 S oarallel of formul of bear of (by oth e conne to bear onces. Jance w sections	oad of 20.0 p ve loads. 0 psf bottom other live loa re load of 20.0 a rectangle ween the bott P No.3 crushi to grain value a. Building ing surface. ing surface. ing walls due n is for uplift ith the 2018 s R502.11.1 a	sf on ads. Opsf om ing to to to				SEA 0363	
	lesign.	ed snow loads have be	een considered for th	15								11	A GIN	BELIN

- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



G mmm January 15,2024

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 89 FaNC	
22090048	C02	Monopitch Supported Gable	2	1	Job Reference (optional)	163018633

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 13:47:25

Page: 1

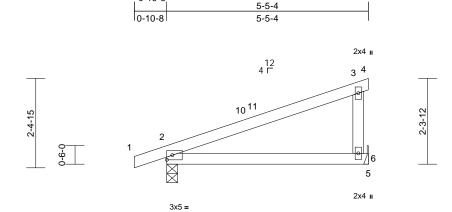
Scale = 1:32.7

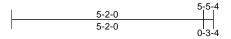
oading	(psf)	Spacing	2-0-0	CSI	0.00	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.30	Vert(LL)	n/a	-	n/a	999	MT20	244/190
ow (Pf)	20.0	Lumber DOL	1.15	BC	0.47	Vert(CT)	n/a	-	n/a	999		
DL	10.0	Rep Stress Incr	YES	WB	0.06	Horz(CT)	-0.04	8	n/a	n/a		
CLL CDL	0.0* 10.0	Code	IRC2018/TPI201	4 Matrix-MSH							Weight: 58 lb	FT = 20%
UMBER OP CHORD OT CHORD EBS THERS RACING OP CHORD OT CHORD EACTIONS	2x4 SP No.2 2x6 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 cc purlins, ex Rigid ceiling directly bracing. (size) 2=11-9-4 10=11-9- 13=11-9- Max Horiz 2=116 (L Max Uplift 2=-19 (Li (LC 11), (LC 10), (LC 10), (LC 21), (LC 21),	x applied or 6-0-0 oc , 8=11-9-4, 9=11-9-4, 4, 11=11-9-4, 12=11-5 4, 16=11-9-4 C 11), 16=116 (LC 11 C 1), 8=-76 (LC 1), 9=- 10=-34 (LC 10), 11=-5 12=-311 (LC 1), 13=-1 16=-19 (LC 1) 10), 8=4 (LC 11), 9=15 10=223 (LC 21), 11=3 12=72 (LC 10), 13=83 16=4 (LC 10)	Vasd= Cat. II; zone a 2-1-8 t end ve for forces DOL=1 2) Truss only. F see Str 0-4, 3) TCLL: Plate D DOL=1 19 Cs=1.0 5 4) Unbala design 51 load of overha 2 6) All plat	SCE 7-16; Vult=130r 03mph; TCDL=6.0ps Exp B; Enclosed; MW d C-C Corner(3E) -0 11-9-4 zone; cantile tical left and right exp & MWFRS for reaction .60 plate grip DOL=1. designed for wind loa or studs exposed to V indard Industry Gable ult qualified building of SCE 7-16; Pr=20.0 pt OL=1.15); Pf=20.0 pt OL=1.15); Pf=20.0 pt 0L=1.15); Pf=20.0 pt 0.5; Is=1.0; Rough C 0; Ct=1.10 inced snow loads hav ss has been designe 12.0 psf or 1.00 times as are 2x4 MT20 unle equires continuous b	f; BCDL=(/FRS (env. 10-8 to 2: ver left an: oosed;C-C ns shown; 60 ds in the p vind (norm End Deta designer a osf (roof Ll df (Lum DC at B; Fully e been cool d for great s flat roof I its other w	6.0psf; h=25ft elope) exterior 1-8, Exterior(d right expose for members Lumber lane of the trr al to the face ils as applica s per ANSI/T .: Lum DOL= DL=1.15 Plate Exp.; Ce=0.1 nsidered for t er of min root oad of 20.0 p ve loads. se indicated.	2N) 2N) ed ; and uss)) ble, PI 1. 1.15 9; his f live sf on				Weight. 30 h	
ORCES	(lb) - Maximum Cor Tension	npression/Maximum	8) Gable	studs spaced at 2-0-0 ss has been designe	oc.	Ū					UNTH CA	ARO
OP CHORD	1-2=0/13, 2-3=-212 4-5=-52/91, 5-6=-44 7-8=-24/3, 7-9=-152	4/80, 6-7=-37/66,	chord I 10) * This t	ve load nonconcurrer russ has been design pottom chord in all are	nt with any ed for a liv	other live loa e load of 20.				-	ORTH CA	De Ni
DT CHORD	2-13=-198/234, 12- 10-11=-46/79, 9-10	13=-46/79, 11-12=-46/ =-46/79	/79, 3-06-0) tall by 2-00-00 wide nd any other membe	will fit betw		om		4			n que
EBS DTES	6-10=-178/111, 5-1 3-13=-255/189	1=-190/129, 4-12=-83	^{60,} 11) Provide bearing	mechanical connect plate capable of with uplift at joint 8, 19 lb	ion (by oth standing ?	9 lb uplift at j	joint				SEA 0363	AL 322
			at joint 168 lb 12) This tru Interna R802.1	10, 55 lb uplift at joint uplift at joint 13 and 1 ss is designed in acc ional Residential Coo 0.2 and referenced st E(S) Standard	11, 311 lk 9 lb uplift a ordance w le sections	o uplift at join at joint 2. ith the 2018 s R502.11.1 a	12,				SEA 0363	EER. K

January 15,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 89 FaNC	
22090048	D01	Monopitch	8	1	Job Reference (optional)	163018634


-0-10-8


Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 13:47:25 ID:nrHLnw8uZak3nGEeTS1Hf9zw6TI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

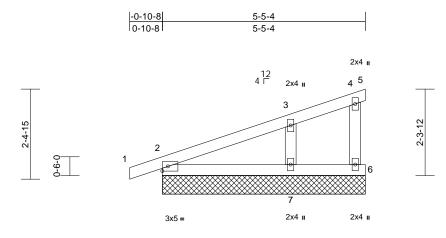
Page: 1

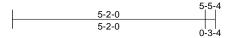
Scale = 1:31.1

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MP	0.58 0.38 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.05 -0.09 0.01	(loc) 6-9 6-9 2	l/defl >999 >701 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 21 lb	GRIP 244/190 FT = 20%
	bracing.	cept end verticals. applied or 10-0-0 oc 6= Mechanical 13) : 10), 6=-41 (LC 14)	d or 4) or 5) chord live 6) * This truston 3-06-00 ta chord and 7) Refer to git 8) Provide mission 6. 9) One H2.5/ recommertion UPLIFT at	has been designed oad nonconcurrent is has been designed om chord in all area l by 2-00-00 wide w any other members rder(s) for truss to tr echanical connection te capable of withst s Simpson Strong-Ti ded to connect truss jt(s) 2. This connect onsider lateral force	with any d for a liv is where ill fit betv russ coni n (by oth tanding 4 ie conne s to bear tion is fo	other live load re load of 20.1 a rectangle veen the bott nections. ers) of truss i 11 lb uplift at j ctors ing walls due	Opsf om to joint e to					
	(lb) - Maximum Com Tension		10) This truss Internation	s designed in accor al Residential Code	dance w	s R502.11.1 a	and					
TOP CHORD BOT CHORD NOTES	1-2=0/25, 2-3=-166/ 3-6=-225/149 2-6=-114/117, 5-6=0		R802.10.2 LOAD CASE(and referenced star 5) Standard	ndard Al	NSI/TPI 1.						
 Wind: ASC Vasd=103i Cat. II; Exy zone and 0 2-1-8 to 2- cantilever I right expos for reaction DOL=1.60 TCLL: ASC Plate DOL DOL=1.15 Cs=1.00; 0 Unbalance design. This truss I load of 12. 	CE 7-16; Pr=20.0 psf (=1.15); Pf=20.0 psf (L); Is=1.0; Rough Cat E	CDL=6.0psf; h=25ft; S (envelope) exterior +8 to 2-1-8, Interior (' t to 5-5-4 zone; ; end vertical left and and forces & MWFR; L=1.60 plate grip roof LL: Lum DOL=1 um DOL=1.15 Plate B; Fully Exp.; Ce=0.9; een considered for thi r greater of min roof I t roof load of 20.0 psi	1) S .15 s ive						Annu the	K.M. M.	SEA 0363	22 EER ALI

- 3 design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

GI Children and Child January 15,2024


818 Soundside Road Edenton, NC 27932


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 89 FaNC		
22090048	D02	Monopitch Supported Gable	2	1	Job Reference (optional)	163018635	

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 13:47:26 ID:qq?1yMtf2deqIHIfNc9uREzw6Uw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:30.9

		·			•								
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.20	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.38	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES		WB	0.08	Horz(CT)	0.00	2	n/a	n/a		
BCLL	0.0*	Code	IRC2018	8/TPI2014	Matrix-MP								
BCDL	10.0											Weight: 22 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 5-5-4 oc purlins, ex Rigid ceiling directly bracing. (size) 2=5-5-4, i 7=5-5-4, i Max Horiz 2=81 (LC Max Uplift 2=-40 (LC	cept end verticals. applied or 10-0-0 oc 5=5-5-4, 6=5-5-4, 3=5-5-4 13), 8=81 (LC 13)	4) d or 5) (6) 7) 8)	Plate DOL=1 DOL=1.15); Cs=1.00; Cte Unbalanced design. This truss ha load of 12.0 overhangs n Gable requir Gable studs This truss ha chord live loa * This truss h on the bottor	snow loads have so been designed psf or 1.00 times on-concurrent wi es continuous bo spaced at 2-0-0 is been designed an onconcurren nas been designe n chord in all are	f (Lum DC at B; Fully been cor for great flat roof k th other lin to the rin to chor oc. f for a 10.0 t with any ed for a liv as where	DL=1.15 Plate Exp.; Ce=0.5 asidered for the or of min roof pad of 20.0 prove loads. d bearing. D psf bottom other live loa e load of 20.0 a rectangle); live sf on ds. 0psf					
FORCES	Max Grav 2=253 (LC (LC 7), 7= 21) (Ib) - Maximum Com Tension	=376 (LC 21), 8=253	(1 C	chord and ar Provide mec bearing plate 2, 1 lb uplift	by 2-00-00 wide way other member hanical connections capable of with at joint 5, 42 lb up	s. on (by oth standing 4	ers) of truss t 0 lb uplift at j	0					
TOP CHORD BOT CHORD	1-2=0/25, 2-3=-125/ 4-5=-7/12, 4-6=-4/43	3	11	ÍInternational	designed in acco Residential Cod	e sections	R502.11.1 a	nd					un.
WEBS	3-7=-305/271				nd referenced sta	andard AN	ISI/TPI 1.					WHILL CA	Dall
NOTES			LC	DAD CASE(S)	Standard						1	atrior	
 Wind: ASC Vasd=103 Cat. II; Ex zone and 2-1-8 to 5- end vertic forces & N DOL=1.60 Truss der only. For 	CE 7-16; Vult=130mph Bmph; TCDL=6.0psf; B p B; Enclosed; MWFR C-C Corner(3E) -0-10- 5-4 zone; cantilever le al left and right expose dWFRS for reactions s) plate grip DOL=1.60 isigned for wind loads ii studs exposed to wind lard Industry Gable En	CDL=6.0psf; h=25ft; S (envelope) exteriol 8 to 2-1-8, Exterior(2 ft and right exposed d;C-C for members hown; Lumber n the plane of the tru (normal to the face)	N) ; and ss							Walthurs		SEA 0363	• -

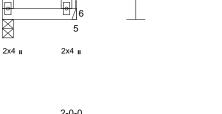
- 2-1-8 to 5-5-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

The Great January 15,2024

GILB


Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 89 FaNC	
22090048	E01	Monopitch	9	1	Job Reference (optional)	163018636

-0-10-8

0-10-8

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 13:47:26 ID:1owaK8MgGzBzfv6bnaEhINzSoc3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

2-0-0

1-8-12 0-3-4 1-8-12

2-0-0

2-0-0

12 6 Г

2x4 u

2

1

P

0

7

2-0-0

1-0-0

2x4 II 3 ⁴

P

Scale = 1:31.1

-												
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.10	Vert(LL)	0.00	6-7	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.04	Vert(CT)	0.00	6-7	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MR								
BCDL	10.0				-						Weight: 11 lb	FT = 20%
LUMBER			6) * This tr	iss has been designe	d for a liv	ve load of 20.0)psf					
TOP CHORD	2x4 SP No.2			ottom chord in all are								
BOT CHORD	2x4 SP No.2			tall by 2-00-00 wide v		ween the botto	om					
WEBS	2x4 SP No.3			d any other members								
BRACING			O Dreside	girder(s) for truss to t mechanical connection			•					
TOP CHORD	Structural wood she			plate capable of with								
	2-0-0 oc purlins, ex		_ ~ ~		nunuing i		onne					
BOT CHORD	Rigid ceiling directly bracing.	applied or 6-0-0 oc		5A Simpson Strong-T	Tie conne	ctors						
REACTIONS	0	anical, 7=0-3-8		ended to connect true								
REACTIONS	Max Horiz 7=67 (LC	,		at jt(s) 7. This connec		r uplift only an	nd					
	Max Uplift 5=-24 (LC			consider lateral force								
	Max Grav 5=75 (LC		10) 1115 (10)	s is designed in acco onal Residential Code			nd					
FORCES	(lb) - Maximum Com	pression/Maximum		.2 and referenced sta			nu					
	Tension			E(S) Standard	andara / a							
TOP CHORD	1-2=0/40, 2-3=-46/2	4, 3-4=-11/0, 3-6=-6	8/27,									
DOTOUDDD	2-7=-183/115											
BOT CHORD	6-7=-28/44, 5-6=0/0											
NOTES		(*)										
	CE 7-16; Vult=130mph mph; TCDL=6.0psf; B											
	p B; Enclosed; MWFR											
	C-C Exterior(2E) zone										, uninnin	1111
	end vertical left and ri										WTH CA	Rollin
members	and forces & MWFRS	for reactions shown	;							X	R	SIN SIN'L
	OL=1.60 plate grip DC								/	53	·······································	Of the a
,	CE 7-16; Pr=20.0 psf (L	A		M
	=1.15); Pf=20.0 psf (L									6 8	:4	
DOL=1.15 Cs=1.00; (i); Is=1.0; Rough Cat E Ct−1 10	s; Fully Exp.; Ce=0.9	σ,						-		SEA	AL : E
,	ed snow loads have be	en considered for th	nis						=	:	0363	• -
design.									1		0303	
	has been designed fo	r greater of min roof	live						-		1	1 3
	.0 psf or 1.00 times fla		sf on							2.	N.En.	Rich
	non-concurrent with									25	S. GIN	EFRAN
	has been designed fo									11	C	BEIN
chord live	load nonconcurrent w	ith any other live load	as.								A. C	allinn
											Januar	v 15.2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

January 15,2024

Jo	b	Truss	Truss Type	Qty	Ply	DRB GROUP - 89 FaNC	
22	2090048	E02	Monopitch Supported Gable	1	1	Job Reference (optional)	163018637

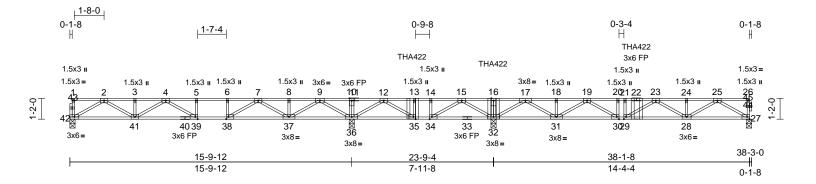

0-10-8

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 13:47:26 ID:SNbizAOZYuZYWMrASjoON?zSoc0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:35

Scale = 1:35													
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2018/	TPI2014	CSI TC BC WB Matrix-MR	0.19 0.04 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 11 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=103 Cat. II; Ext zone and C exposed ; members a Lumber DC 2) Truss des only. For see Stand 0 or consult 3) TCLL: ASC Plate DOL	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 2-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 4=2-0-0, § Max Horiz 6=66 (LC Max Uplift 4=-11 (LC 6=-21 (LC Max Grav 4=5 (LC 7 (LC 21) (lb) - Maximum Com Tension 2-6=-174/206, 1-2=0 3-4=-20/3, 3-5=-65/5 5-6=-26/50 CE 7-16; Vult=130mph mph; TCDL=6.0psf; Bi p B; Enclosed; MWFR OL=1.60 plate grip DC C-C Corner(3E) zone; end vertical left and rig and forces & MWFRS OL=1.60 plate grip DC Signed for wind loads in studs exposed to wind ard Industry Gable En qualified building desi CE 7-16; Pr=20.0 psf (L =1.15); Pf=20.0 psf (L	cept end verticals. applied or 6-0-0 oc 5=2-0-0, 6=2-0-0 11) 14), 5=-27 (LC 11) 14), 5=-27 (LC 11) 14), 5=75 (LC 21), 6= pression/Maximum 0/39, 2-3=-40/33, 55 (3-second gust) CDL=6.0psf; h=25ft S (envelope) exterior cantilever left and ri ght exposed;C-C for for reactions shown L=1.60 n the plane of the tru (normal to the face d Details as applica gner as per ANSI/TI roof LL: Lum DOL= um DOL=1.15 Plate	6) 7) ed or 8) 9) 10) , 195 11) 12) LOA ; or ight ; ; ss), ble, PI 1. 1.15	load of 12.0 overhangs n Gable requir Truss to be f braced agair Gable studs This truss ha chord live loa * This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and ar Provide mec bearing plate 6, 11 lb uplift This truss is International	s been designed osf or 1.00 times f on-concurrent with es continuous bot ully sheathed from st lateral moveme spaced at 2-0-0 o s been designed d nonconcurrent nas been designed n chord in all area y 2-00-00 wide w y other members nanical connectio capable of withs at joint 4 and 27 designed in accor Residential Code d referenced star Standard	flat roof le h other lin tom chor n one fac ent (i.e. c cc. for a 10. with any d for a 10. with any d for a liv as where i. n (by oth tanding 2 lb uplift a rdance w e sections	bad of 20.0 p: ve loads. d bearing. e or securely liagonal web) 0 psf bottom other live loa re load of 20.0. a rectangle veen the botto ers) of truss t 21 lb uplift at j it joint 5. ith the 2018 s R502.11.1 a	sf on /). ads. 0psf om to joint			S.	SEA 0363	
,	ed snow loads have be	en considered for th	nis									201111	ALBERTIN'

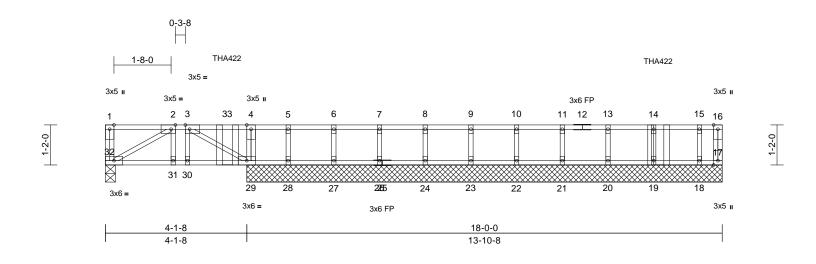

January 15,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 89 FaNC	
22090048	F01	Floor Girder	1	1	Job Reference (optional)	163018638

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 13:47:27 ID:xKNl6qcdxn7dKC_lapw9IDzw7GL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:64.6


Plate Offsets (X, Y):	[29:0-1-8,Edge], [30:0-1-8,Edge], [34:0	-1-8,Ed	ge], [35:0-1-8	,Edge], [38:0-1-8,	Edge], [3	9:0-1-8,Edge]				
Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Plate Grip DOL1Lumber DOL1Rep Stress IncrY	-7-3 .00 .00 ′ES RC2018	/TPI2014	CSI TC BC WB Matrix-MSH	0.75 0.78 0.58	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.16 -0.22 0.04	l/defl >999 >861 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 193 lb	GRIP 244/190 FT = 20%F, 11%E
BOT CHORD 2x4 WEBS 2x4 OTHERS 2x4 BRACING 5-7- BOT CHORD Rigin brac REACTIONS (size)	10 oc purlins, e d ceiling directly ing. 27=0-3-8, 42=0-3-8 Grav 27=665 (L	athing directly applied o xcept end verticals. applied or 6-0-0 oc 32=0-3-8, 36=0-3-8, _C 13), 32=2427 (LC 11 (LC 3), 42=585 (LC 5)	r	TES	10-36=-160/0, 16 2-42=-1032/0, 9-3 8-37=-152/0, 3-4' 4-41=-377/0, 7-38 5-39=-89/27, 6-33 12-36=-928/0, 15 13-35=-315/0, 14 25-27=-1162/0, 1 18-31=-148/0, 24 23-28=-569/0, 19 20-30=-200/0, 21 floor live loads ha	37=0/1096 1=-120/0, 3=0/701, 4 3=-254/0, -34=0/724 -34=-276/ 7-31=0/12 -28=-105/ -30=0/780 -29=-174/	5, 2-41=0/69 7-37=-788/0 4-39=-185/21 15-32=-913/ 4, 12-35=0/6 0, 17-32=-1£ 226, 25-28=C 5, 19-31=-9 ² 0, 23-29=-16 0	7, , 3, 0, 37, 517/0, //843, 1/0, 7/190,	Vert: 16	=-972	(F), 13=-209 (B),	22=-209 (B)
TOP CHORD 1-42 2-3= 5-6= 8-9= 12-1 14-1 16-1 19-2 21-2 24-2 BOT CHORD 41-4 37-3 34-3 31-3	Maximum Com sion =-56/0, 26-27=-: -1493/0, 3-4=-1 1825/0, 6-7=-1. 654/36, 9-10=0 3=-287/841, 15 -5=-287/841, 15 -7=0/1593, 17-18 0=-2224/0, 20-2 3=-2224/0, 23-2 -2=-1717/0, 25-2 -2=0/896, 39-41: 8=0/1315, 36-3 5=-841/287, 32-	pression/Maximum 55/0, 1-2=-3/0, 493/0, 4-5=-1825/0, 825/0, 7-8=-654/36, 0/1583, 10-12=0/1583, -14=-287/841, -16=0/1593, 8=-869/0, 18-19=-869/0, 24=-1717/0, 26=0/0 =0/1816, 38-39=0/1825, 7=-423/0, 35-36=-1110/- 34=-1122/0, =0/1633, 29-30=0/2224	6) 7) 0, ^{1,} 8) 9)	This truss is International R802.10.2 a Recommend CAUTION, E Use Simpsoi or equivalen (es) to front f Use Simpsoi or equivalen (es) to front f Use Simpsoi or equivalen (es) to front f Use Simpsoi or equivalen fill all nail hd In the LOAD of the truss a AD CASE(5) Dead + Flo Plate Increa Uniform Lo Vert: 27-	or Live (balanced ase=1.00	rdance w e sections indard AN s, on edge ach truss cks to be ed by othe backward 422 (Sing ne left enn 422 (Sing 0 oc max. 1-9-12 to r is in corn h, loads ap (F) or ba	ith the 2018 R502.11.1 a ISI/TPI 1. s, spaced at with 3-10d attached to v er means. Is. Jle Chord Gir d to connect frus: starting at connect trus: tact with lum opplied to the ck (B).	valls der) truss der) s(es) ber. face	Contraction of the second s		2011111	22 EPERTUUM

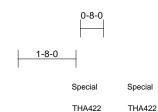
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 89 FaNC	
22090048	F02	Floor Girder	1	1	Job Reference (optional)	163018639

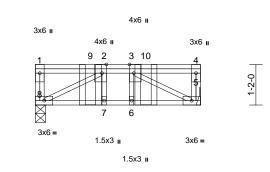
Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 13:47:27 ID:hKpSfxHJ3osJCC?I3MS2hkzw7GI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

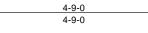
Scale = 1:33.6

Plate Offsets (X, Y): [2:0-1-8,Edge], [3:0-1-8,Edge]


Loading TCLL TCDL	(psf) 40.0 10.0	Spacing Plate Grip DOL Lumber DOL	1-7-3 1.00 1.00		CSI TC BC	0.76 0.27	DEFL Vert(LL) Vert(CT)	in -0.01 -0.01		l/defl >999 >999	L/d 480 360	PLATES MT20	GRIP 244/190
BCLL	0.0	Rep Stress Incr	YES		WB	0.27	Horz(CT)	0.00	29-30 17	>999 n/a	n/a		
BCDL	5.0	Code	IRC201	8/TPI2014	Matrix-MSH							Weight: 84 lb	FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood she 6-0-0 oc purlins, ex		N dor 1)	OTES) Unbalanced this design.	4-29=-510/0, 5-28= 7-26=-100/0, 8-24= 10-22=-107/0, 11-2 14-19=-516/0, 15-1 3-29=-347/0, 3-30= floor live loads hav	-109/0, 1=-106, 8=-92/0 -159/0, re been	9-23=-106/0, (0, 13-20=-10), 2-32=-347/0 2-31=0/165 considered fo	8/0,), or					
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 oc	2) 3)		e 1.5x3 MT20 unles ully sheathed from								
REACTIONS	19=13-10 21=13-10 23=13-10 26=13-10 28=13-10 28=13-10 Max Uplift 28=-47 (L Max Grav 17=4 (LC 19=527 (l 21=117 (l 23=117 (l 26=110 (l 28=-14 (L 32=222 (l	1), 18=101 (LC 4), _C 3), 20=119 (LC 4), _C 1), 22=118 (LC 4), _C 3), 24=120 (LC 4), _C 3), 27=151 (LC 4), _C 3), 29=719 (LC 5), _C 5)	6) [7]) Gable studs) N/A) This truss is International R802.10.2 a) Recommence 10-00-00 oc (0.131" X 3") at their outer) CAUTION, E 	designed in accord Residential Code s nd referenced stan 1 2x6 strongbacks, and fastened to ea n ails. Strongback ends or restrained bo not erect truss b n Strong-Tie THA4.	lance w sections dard AN on edge ch truss s to be l by othe ackward	ith the 2018 R502.11.1 a ISI/TPI 1. , spaced at with 3-10d attached to w er means. ds.	nd ralls				WITH CA	NRO (11)
FORCES TOP CHORD	,	npression/Maximum 4/0, 1-2=0/0, 2-3=-30 6=0/0, 6-7=0/0, 7-8=0	-, 13/0, 1/0	or equivalen 3-6-12 from to front face	t spaced at 12-7-0 the left end to 16-1 of top chord.	oc max. -12 to c	starting at onnect truss(es)		4	in,	ORIEESE	W.
BOT CHORD	8-9=0/0, 9-10=0/0, 1 13-14=0/0, 14-15=0 31-32=0/303, 30-31 28-29=0/0, 27-28=0	10-11=0/0, 11-13=0/0 /0, 15-16=0/0 =0/303, 29-30=0/303 /0, 26-27=0/0, 24-26= /0, 21-22=0/0, 20-21=	' 1 ∶ =0/0, L	 In the LOAD of the truss a OAD CASE(S) Dead + Flo Plate Increa Uniform Lo Vert: 17- Concentrat 	or Live (balanced): ase=1.00	loads a F) or ba Lumbe	oplied to the f ck (B).	ace				SEA 0363	22 EER A

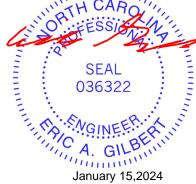
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 89 FaNC			
22090048	F03	Floor Girder	1	1	Job Reference (optional)	163018640		


Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 13:47:28 ID:MIpsGTu_ny?yYGAokvwhxzzw7MR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

1-2-0



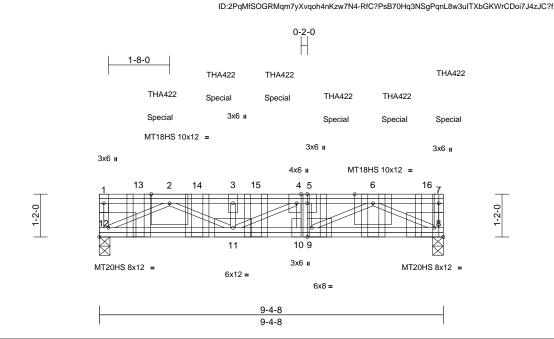
Scale = 1:33.2

_		, .). [[, -5-]											
	ding	(psf)	Spacing	1-7-3		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCI		40.0	Plate Grip DOL	1.00		TC	0.43	. ,	-0.02	6-7	>999	480	MT20	244/190
TCI		10.0	Lumber DOL	1.00		BC	0.47	Vert(CT)	-0.03	6-7	>999	360		
BCI	_L	0.0	Rep Stress Incr	YES		WB	0.42	Horz(CT)	0.01	5	n/a	n/a		
BCI	DL	5.0	Code	IRC2018	/TPI2014	Matrix-MSH							Weight: 34 lb	FT = 20%F, 11%E
	MBER P CHORD	2x4 SP No.2(flat)		1)	Dead + Flo Plate Increa	or Live (balanced)): Lumbe	r Increase=1.	00,					
	T CHORD	2x4 SP No.2(flat) 2x4 SP No.2(flat)			Uniform Lo									
WE		2x4 SP No.3(flat)				=-8, 1-4=-80								
	ACING	2,4 01 10.0(1101)				ed Loads (lb)								
	P CHORD	Structural wood she	athing directly applie	ad or		757 (F=-553, B=-2	204). 10=	-757 (F=-553	3.					
101	ONORD	4-9-0 oc purlins, ex			B=-204)	- (,	- // -	- (,					
BO	T CHORD	Rigid ceiling directly bracing.		C										
RE/	ACTIONS	0	anical, 8=0-3-8											
		Max Grav 5=1036 (L)										
FO	RCES	(lb) - Maximum Com	<i>,</i>	,										
	.010	Tension	procolori/maximum											
TO	P CHORD	1-8=-202/0, 4-5=-20	8/0, 1-2=0/0,											
		2-3=-1541/0, 3-4=0/	0											
BO	T CHORD	7-8=0/1541, 6-7=0/1	541, 5-6=0/1541											
WE	BS	3-5=-1742/0, 2-8=-1	742/0, 2-7=-4/22,											
		3-6=-6/22												
NO	TES													
	Unbalance this design	d floor live loads have	e been considered fo	or										
2)	Refer to gi	rder(s) for truss to trus	ss connections.										IIIII	1111.
		is designed in accorda											White CA	Dall
		al Residential Code se		nd									"aTH OF	
		and referenced stand										15	OR FESS	Nº1
4)		nd 2x6 strongbacks, o										2		N. T.
		oc and fastened to eac		- 11 -							4	-	:0	2
		3") nails. Strongbacks		alis							-			
E)		er ends or restrained son Strong-Tie THA42		64								:	SEA	L : =
5)		equivalent spaced at 1									Ξ		0363	• -

- Use Simpson Strong-Tie THA422 (6-16d Girder, 6-10d Truss) or equivalent spaced at 1-7-3 oc max. starting at 1-7-0 from the left end to 3-2-3 to connect truss(es) to front face of top chord.
- 6) Fill all nail holes where hanger is in contact with lumber.
- 7) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)



Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 89 FaNC		
22090048	F04	Floor Girder	1	1	Job Reference (optional)	163018641	

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 13:47:28

Page: 1

Carter Components (Sanford, NC), Sanford, NC - 27332,

Scale = 1:31.4

Plate Offsets (X, Y):	[4:0-3-0,Edge], [5:0-3-0,Edge],	[8:Edge,0-3-0], [9:0-1-8,Edg	e], [12:Edge,0-3-0]
-----------------------	---------------------------------	------------------------------	---------------------

	(;;; ;): [::::::::::::::::::::::::::::::	[0:0 0 0,2 0g0], [0:1		· · · · · · · · · · · · · · · · · · ·								
Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-7-3 1.00 1.00 YES IRC2018/TF	CSI TC BC WB I2014 Matrix-MSH	0.79 0.87 0.82	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.14 -0.18 0.03	(loc) 10-11 10-11 8	l/defl >799 >615 n/a	L/d 480 360 n/a	PLATES MT20HS MT20 MT18HS Weight: 76 lb	GRIP 187/143 244/190 244/190 FT = 20%F, 11%E
				•								
	0.4 0D N= 0/(-1)			the LOAD CASE(S) sectio the truss are noted as fron			face					
TOP CHORD BOT CHORD				CASE(S) Standard	(F) 01 Da	ск (В).						
WEBS	2x4 SP No.3(flat) *E	vcent*		Dead + Floor Live (balance	d). Lumbo	r Incroaco-1	00					
WEBS	8-6,12-2,9-6,11-2:2x			Plate Increase=1.00	u). Lumbe	i iliciease= i	.00,					
BRACING	0 0,12 2,0 0,11 2124			Jniform Loads (lb/ft)								
TOP CHORD	Structural wood she	athing directly appli		Vert: 8-12=-8, 1-7=-80								
	4-8-11 oc purlins, e			Concentrated Loads (lb)								
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 o	C	Vert: 6=-819 (F=-205, B=			,					
	bracing.			B=-614), 13=-819 (F=-20								
REACTIONS	()			(F=-205, B=-614), 15=-8	· ·	5, B=-614),						
	Max Grav 8=3278 (L	_C 4), 12=2919 (LC	3)	16=-858 (F=-225, B=-633	3)							
FORCES	(lb) - Maximum Com	pression/Maximum										
	Tension											
TOP CHORD												
	2-3=-7136/0, 3-4=-7 5-6=-7061/0, 6-7=0/		,									
BOT CHORD			061									
bor onlone	8-9=0/4753	1-0/1001, 0 10-0/1	001,									
WEBS	6-8=-5339/0, 2-12=-	5496/0, 6-9=0/2689),									
	2-11=0/2539, 5-9=-7	/90/0, 3-11=-1179/0),									
	4-11=-140/100, 4-10)=-503/0										11
NOTES											"" CI	Dille
,	ed floor live loads have	been considered for	or								"ATH UP	NO III
this desig										K	OFFESS	AN AN
	are MT20 plates unles		ed.							in	10	Nos
	s is designed in accorda anal Residential Code so		nd						1		:0	1. I.
	2 and referenced stand		anu						-		0.54	1 I I I
	end 2x6 strongbacks, o								= =		SEA	NL E
	oc and fastened to eac								1		0363	22 : =
	3") nails. Strongbacks		alls						-			- ; :
	uter ends or restrained									-	1. Sec. 1. Sec	1 5
	oson Strong-Tie THA42									20	N. ENG	-ERIX S
	equivalent spaced at 1									1	SC A	F.F. CR N
	om the left end to 8-11-4	+ to connect truss(e	5)10							1	CA C	BEIN

at their outer ends or restrained by other means. 5) Use Simpson Strong-Tie THA422 (6-16d Girder, 6-10d Truss) or equivalent spaced at 1-7-3 oc max. starting at 1-0-14 from the left end to 8-11-4 to connect truss(es) to back face of top chord.

6) Fill all nail holes where hanger is in contact with lumber.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

G minim

January 15,2024

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 89 FaNC		
22090048	F05	Floor	1	1	Job Reference (optional)	163018642	

23-9-4

7-11-8

Carter Components (Sanford, NC), Sanford, NC - 27332,

<u>15-9-12</u>

15-9-12

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 13:47:28 ID:IoOHcF5D5_oAFGilQmFSpGzw7NS-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

0-1-8 ∦

1.5x3 =

1.5x3 **I**

26 41

27

38-3-0

╢

0-1-8

1-2-0

25

1.5x3 **I**

24

28

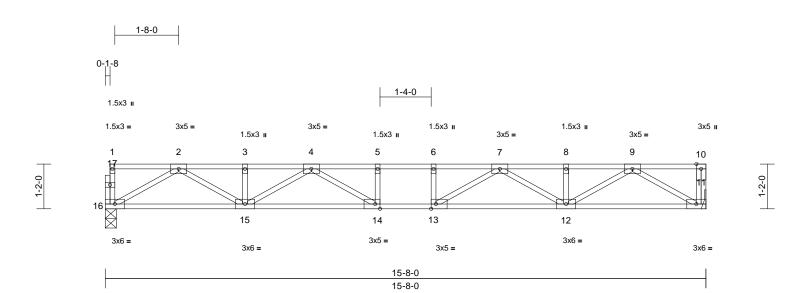
38-1-8

14-4-4

1-8-0 0-1-8 0-9-8 0-3-4 1-7-4 H Н 3x6 FF 1.5x3 🛚 1.5x3 II 1.5x3 🛛 1.5x3= 1.5x3 µ 1.5x3 µ 1.5x3 u 3x6= 1.5x3 **I** 1.5x3 **I** 1.5x3 u 3x6 FP 1.5x3 u 3 6 7 8 9 1101 12 13 14 15 16 18 19 202122 23 5 17 4 1-2-0 -42 41 4039 38 37 35 34 33 31 3029 36 [⊠]32 3x6= 3x6 FP 3x6 FP 3x8= 3x6= 3x8= 3x6=

Scale = 1:64.6

Plate Offsets (X, Y): [29:0-1-8,Edge], [30:0-1-8,Edge], [34	1:0-1-8,	Edge], [35:0-1-8	,Edge], [38:0-1-8,	Edge], [3	9:0-1-8,Edge	9]					
Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-7-3 1.00 1.00 YES IRC20)18/TPI2014	CSI TC BC WB Matrix-MSH	0.59 0.77 0.51	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.16 -0.22 0.04	(loc) 39-41 39-41 27	l/defl >999 >859 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 193 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 27=0-3-8, 42=0-3-8 Max Grav 27=541 (L	applied or 6-0-0 oc 32=0-3-8, 36=0-3-8, _C 5), 32=1175 (LC 4) (LC 3), 42=598 (LC 5)	1 or),	NOTES 1) Unbalanced this design. 2) All plates ar	10-36=-166/0, 16 2-42=-1057/0, 9-3 8-37=-151/0, 3-41 4-41=-402/0, 7-38 5-39=-102/15, 6-3 12-36=-735/0, 15 12-35=-27/506, 11 17-32=-1254/0, 23 25-28=0/614, 18-3 19-31=-648/0, 23 23-29=-191/165, 23 floor live loads have	37=0/1070 1=-121/0, 3=0/662, - 38=-242/(6, 2-41=0/72 7-37=-762/0 4-39=-147/20 0, 15-32=-710 74, 1/0, 14-34=- 8/0, 17-31=0 0, 24-28=-12 /0, 19-30=0/4 46/0, 21-29= considered f se indicated.	2, 50, 50, 0/0, 188/1, /960, 9/0, ¥59, -48/31 or					
TOP CHORD	12-13=-163/1063, 13 14-15=-163/1063, 13 16-17=0/1300, 17-11 19-20=-1569/0, 20-2 21-23=-1569/0, 23-2 24-25=-1312/0, 25-2 41-42=0/917, 39-41 37-38=0/1443, 36-3 34-35=-1063/163, 33	536/0, 4-5=-1921/0, 921/0, 7-8=-805/0, 1394, 10-12=0/1394, 3-14=-163/1063, 5-16=0/1300, 8=-719/0, 18-19=-719 21=-1569/0, 24=-1312/0, 26=0/0 =0/1880, 38-39=0/192 7=-253/0, 35-36=-115 2-34=-1093/0, =0/1256, 29-30=0/15	/0, 1 21, 9/0,	 Internationa R802.10.2 a Recommendation 10-00-00 oc (0.131" X 3" at their oute 	designed in acco Residential Code nd referenced sta J 2x6 strongbacks and fastened to e) nails. Strongbac r ends or restraine Do not erect truss Standard	e sections indard AN , on edge each truss cks to be ed by othe	R502.11.1 a NSI/TPI 1. a, spaced at s with 3-10d attached to v er means.					SEA 0363	


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

January 15,2024

Job	Truss Type Qty Ply DRE		DRB GROUP - 89 FaNC			
22090048	F06	Floor	6	1	Job Reference (optional)	163018643

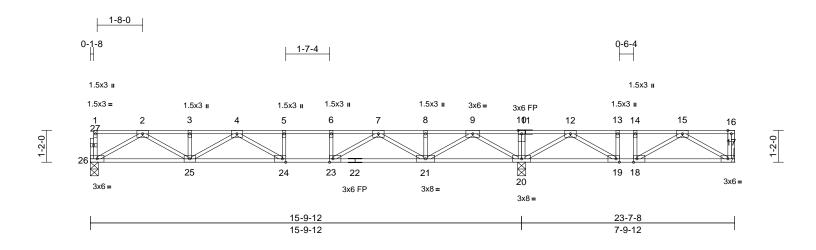
Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 13:47:29 ID:xe00MB1SV821XLF84V82Z?zw7NY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:30

Plate Offsets (X, Y): [13:0-1-8,Edge], [14:0-1-8,Edge]

	(X, 1): [10:0 1 0,Edge	, [11:0 1 0,⊑dg0]									
Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-7-3 1.00 1.00 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MSH	0.36 0.67 0.41	DEFL Vert(LL) Vert(CT) Horz(CT)	(loc) 13-14 13-14 11	l/defl >999 >851 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 80 lb	GRIP 244/190 FT = 20%F, 11%E
BCDL	5.0	Code	IRC2018/1PI2014	Matrix-MSH			 -			Weight: 80 lb	F1 = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	 2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood she 6-0-0 oc purlins, ex 	cept end verticals.									
BOT CHORD	 Rigid ceiling directly bracing. 	applied or 10-0-0 o	C								
REACTIONS	•	nanical, 16=0-3-8 LC 1), 16=673 (LC 1)								
FORCES	(lb) - Maximum Com Tension	npression/Maximum									
TOP CHORD	1-16=-57/0, 10-11=- 2-3=-1785/0, 3-4=-1 5-6=-2492/0, 6-7=-2 8-9=-1785/0, 9-10=0	785/0, 4-5=-2492/0, 2492/0, 7-8=-1785/0, 0/0									
WEBS	12-13=0/2258, 11-1 9-11=-1207/0, 2-16= 2-15=0/868, 8-12=-7 7-12=-552/0, 4-15=- 4-14=-8/462, 5-14=-	=-1201/0, 9-12=0/86 130/0, 3-15=-132/0, 551/0, 7-13=-8/462,	6,							WITH CA	Route
NOTES									15	R	the Init
 this desig 2) Refer to g 3) This truss Internatio R802.10.3 4) Recomment 10-00-00 (0.131" X at their ou 5) CAUTION 	ed floor live loads have girder(s) for truss to trus is is designed in accord mal Residential Code s 2 and referenced stance end 2x6 strongbacks, c oc and fastened to ead (3") nails. Strongbacks uter ends or restrained N, Do not erect truss ba (S) Standard	ss connections. ance with the 2018 ections R502.11.1 a lard ANSI/TPI 1. on edge, spaced at oh truss with 3-10d s to be attached to w by other means.	nd							SEA 0363	EER.X

January 15,2024


Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

TRENGINEERING BY REENCO A MITek Affiliate 818 Soundside Road Edenton, NC 27932

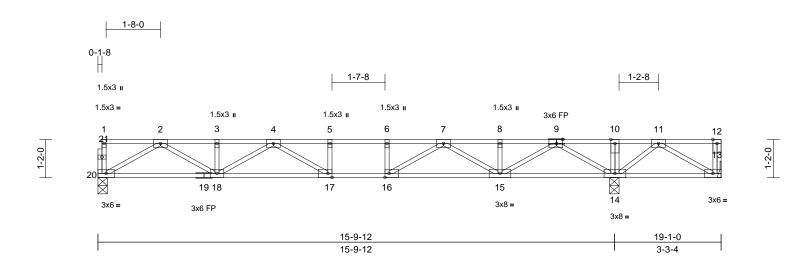
Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 89 FaNC		
22090048	F07	Floor	2	1	Job Reference (optional)	163018644	

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 13:47:29 ID:agD7JUzJhcQkQaMBHyYtsyzw7Nd-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:42.2

			0.0405	daal [04:0 4 0									
Plate Offsets (X, Y): [18:0-1-8,Edge	j, [19:0-1-8,Edge], [2 I	:3:0-1-8,E	agej, [24:0-1-8,	,Eagej								
Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-7-3 1.00 1.00 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.59 0.77 0.52	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.16 -0.22 0.03	(loc) 24-25 24-25 20	l/defl >999 >858 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 120 lb	GRIP 244/190 FT = 20%F, 11%E
	2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 17= Mech 26=0-3-8 Max Uplift 17=-92 (L Max Grav 17=268 (L 26=595 (I	cept end verticals. applied or 6-0-0 oc nanical, 20=0-3-8, C 3) _C 4), 20=1325 (LC 1	7) L0	bearing plate 17. This truss is International R802.10.2 ai Recommend 10-00-00 oc (0.131" X 3") at their outer	hanical connectior e capable of withst designed in accorn Residential Code nd referenced star I 2x6 strongbacks, and fastened to et nails. Strongback ends or restrained to not erect truss to Standard	anding 9 dance w sections ndard AN on edge ach truss ks to be d by othe	2 lb uplift at ith the 2018 SR502.11.1 a NSI/TPI 1. e, spaced at S with 3-10d attached to v er means.	joint and					
FORCES	(lb) - Maximum Com Tension 1-26=-56/0, 16-17=- 2-3=-1526/0, 3-4=-1 5-6=-1899/0, 6-7=-1 8-9=-773/0, 9-10=0/ 12-13=-377/497, 13: 14-15=-377/497, 15:	55/0, 1-2=-3/0, 526/0, 4-5=-1899/0, 899/0, 7-8=-773/0, 1425, 10-12=0/1425, -14=-377/497,										mun	900-
BOT CHORD	25-26=0/912, 24-25 21-23=0/1415, 20-2 18-19=-497/377, 17 10-20=-170/0, 9-20= 9-21=0/1085, 2-25=1 3-25=-121/0, 7-21=- 7-23=0/661, 4-24=-1 6-23=-242/0, 12-20= 12-19=0/666, 15-18 14-18=-22/139	=0/1865, 23-24=0/18 1=-280/0, 19-20=-920 18=-196/343 e-1368/0, 2-26=-1051 0/717, 8-21=-152/0, 764/0, 4-25=-396/0, 47/245, 5-24=-100/1 e-877/0, 15-17=-397/	0/68, 1/0, 5, 227,							Gunner		SEA 0363	• -
this design2) All plates a	ed floor live loads have	therwise indicated.	r									AIC A. G	E.F.R. Kunn

January 15,2024

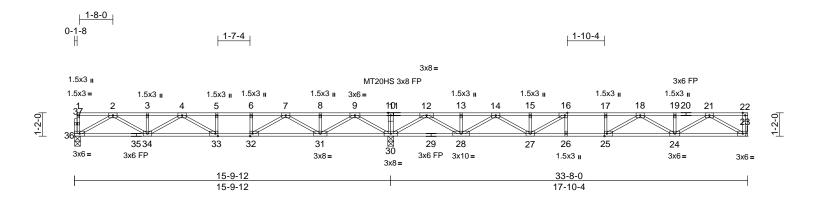

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss Truss Type Qty Ply DF		DRB GROUP - 89 FaNC			
22090048	F08	Floor	2	1	Job Reference (optional)	163018645

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 13:47:30 ID:aPhikgmfhOH9uzZwntlugMzw7Nu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ffice the second stress of the second s

Page: 1

Scale = 1:35.3


Plate Offsets	(X, Y): [9:0-2-4,Edge],	[16:0-1-8,Edge], [17	7:0-1-8,Edge]	-			_					
Loading TCLL TCDL BCLL	(psf) 40.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	1-7-3 1.00 1.00 YES	CSI TC BC WB	0.60 0.77 0.52	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 17-18 17-18 14	l/defl >999 >849 n/a	L/d 480 360 n/a	PLATES MT20	GRIP 244/190
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-MSH							Weight: 98 lb	FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD	 2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood she 6-0-0 oc purlins, exx Rigid ceiling directly bracing. (size) 13= Mech 20=0-3-8 Max Uplift 13=-490 (Max Grav 13=-12 (L 20=581 (L (lb) - Maximum Com Tension 	athing directly applie cept end verticals. applied or 6-0-0 oc anical, 14=0-3-8, LC 3) C 4), 14=1465 (LC 1 .C 3) pression/Maximum 59/0, 1-2=-3/0, 480/0, 4-5=-1795/0, 795/0, 7-8=-600/0,	5) This trus Internation R802.10 6) Recomm 10-00-00 (0.131") at their o 7) CAUTIO LOAD CASE	s is designed in acco onal Residential Code 2 and referenced sta end 2x6 strongbacks oc and fastened to e (3") nails. Strongbac uter ends or restraine N, Do not erect truss (S) Standard	e sections indard Al s, on edge each truss cks to be ed by oth	s R502.11.1 a NSI/TPI 1. e, spaced at s with 3-10d attached to w er means.					Trogn. or b	
BOT CHORD	18-20=0/889, 17-18 15-16=0/1270, 14-1	,	,								mm	1111.
WEBS	10-14=-134/0, 9-14= 9-15=0/1094, 2-18=(3-18=-119/0, 7-15=- 7-16=0/663, 4-17=-1 6-16=-244/0, 11-13=	-1392/0, 2-20=-102 0/690, 8-15=-151/0, 783/0, 4-18=-369/0, 44/229, 5-17=-95/14	5/0, 4,						4	and a	OR FESS	ROUT
NOTES											SEA	
 Unbalanc this desig All plates Refer to g Provide m 	ed floor live loads have n. are 3x5 MT20 unless c girder(s) for truss to trus nechanical connection (late capable of withstar	otherwise indicated. ss connections. (by others) of truss to	0						THINKS.		0363	EER.KI
											Januar	y 15,2024
	NING - Verify design paramete										ENGINEER	

Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss Truss Type Qty R		Ply	DRB GROUP - 89 FaNC				
22090048	F09	Floor	12	1	Job Reference (optional)	163018646		

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 13:47:30 ID:2KkeNCZdSTGQzWLrrWT81_zw7O8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:57.6

	sf) Spacing 1	7.0									
TCDL 1	D.0 Plate Grip DOL 1 0.0 Lumber DOL 1 0.0 Rep Stress Incr Y	-7-3 .00 .00 /ES RC2018/TPI2014	CSI TC BC WB Matrix-MSH	0.84 0.88 0.64	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.20 -0.27 0.04	(loc) 25-26 25 23	l/defl >999 >796 n/a	L/d 480 360 n/a	PLATES MT20 MT20HS Weight: 168 lb	GRIP 244/190 187/143 FT = 20%F, 11%E
BOT CHORD 6-0-0 oc purlin Rigid ceiling of bracing. REACTIONS (size) 23= 36 Max Grav 23=	at) at)	r NOTES 1) Unbalancec this design. 2) All plates ar	10-30=-167/0, 9-30= 9-31=0/1209, 2-34= 3-34=-121/0, 7-31=- 7-32=0/891, 4-33=- 6-32=-321/0, 12-30= 12-28=0/1344, 21-2 19-24=-128/0, 14-26 14-27=0/743, 18-25 15-27=-151/64, 17-2 16-27=-776/0, 16-26 floor live loads have	0/714, -897/0, 376/43, =-1638, 4=0/86 3=-1023 =-151/2 25=-12 6=-16/1 e been is other	8-31=-161/0, 4-34=-393/8(5-33=-46/94 0, 21-23=-12 1, 13-28=-14 1/0, 18-24=-5 325, 7/30, 35 considered for wise indicate	8, ,03/0, 0/0, 43/0,					
Tension TOP CHORD 1-36=-56/0, 2: 2-3=-1522/0, : 5-6=-1889/18 7-8=-755/876 10-12=0/2422 13-14=-706/5 15-16=-2096/ 17-18=-2456/ 19-21=-1777/ BOT CHORD 34-36=0/910, 32-33=-181/13 30-31=-1291/ 27-28=-216/13	,	 4) Refer to gird 5) This truss is Internationa R802.10.2 a 6) Recomment 10-00-00 or (0.131" X 3' at their oute 7) CAUTION, LOAD CASE(S) 	e 3x5 MT20 unless of der(s) for truss to trus designed in accorda l Residential Code s and referenced stance d 2x6 strongbacks, c and fastened to eac) nails. Strongbacks r ends or restrained Do not erect truss ba) Standard	ss conr ance w ections lard AN on edge ch truss s to be by othe	ections. th the 2018 R502.11.1 a ISI/TPI 1. spaced at with 3-10d attached to w er means.			Manna and and and and and and and and and	È	SEA 0363	• –

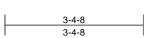
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

GI A. GIL January 15,2024

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 89 FaNC	
22090048	F10	Floor Girder	2	1	Job Reference (optional)	163018647

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 13:47:30 ID:dUW5BMK4AKkGZRp?gJ6RDmzw7OS-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1



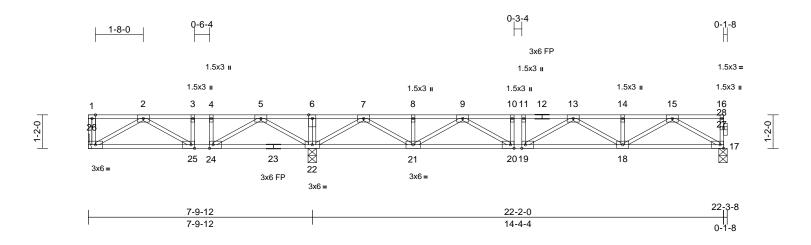
THA422

3x6 =

1-2-0

3x6 =

Scale = 1:28.1


Scale = 1:28.1												
Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-7-3 1.00 1.00 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MP	0.41 0.15 0.09	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a -0.01 0.00	(loc) - 4-5 4	l/defl n/a >999 n/a	L/d 999 360 n/a	PLATES MT20 Weight: 21 lb	GRIP 244/190 FT = 20%F, 11%E
	0.0			ted Loads (lb)		<u> </u>					Weight. 21 ib	11 - 20 /01 , 11 /02
TOP CHORD BOT CHORD WEBS	(-)			-199 (F), 6=-218 (I	F)							
BRACING TOP CHORD	Structural wood she	athing directly applic	od or									
	3-4-8 oc purlins, ex	cept end verticals.										
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 or	0									
REACTIONS	()	anical, 5= Mechanica	al									
FORCES	Max Grav 4=419 (L0 (lb) - Maximum Com											
	Tension											
TOP CHORD BOT CHORD	1-5=-22/0, 3-4=-229 4-5=0/306	/0, 1-2=0/0, 2-3=0/0										
WEBS	2-4=-354/0, 2-5=-38	8/0										
NOTES												
 This truss Internation R802.10.2 Recomme 10-00-00 c (0.131" X 3 	irder(s) for truss to trus is designed in accorda al Residential Code s and referenced stand and 2x6 strongbacks, o oc and fastened to ead 3") nails. Strongbacks ter ends or restrained	ance with the 2018 ections R502.11.1 at lard ANSI/TPI 1. on edge, spaced at ch truss with 3-10d s to be attached to w								3	WITH CA	NRO ¹¹
 Use Simps or equivale 	son Strong-Tie THA42 ent at 1-4-1 from the le nt face of top chord.	2 (Single Chord Gird							4	I.	ORIEE8S	A A A
Girder) or connect tru	son Strong-Tie THAC4 equivalent at 2-11-4 fr uss(es) to front face of	rom the left end to f top chord.									SEA	• –
7) In the LOA	holes where hanger is AD CASE(S) section, lo s are noted as front (F	oads applied to the fa							1111		0363	22
Plate Incl Uniform I	Floor Live (balanced): I rease=1.00 Loads (lb/ft)	Lumber Increase=1.0	00,									EER. KINN
vert: 4	I-5=-8, 1-3=-80											y 15,2024

TRENCIO A MITOR AMILIA

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

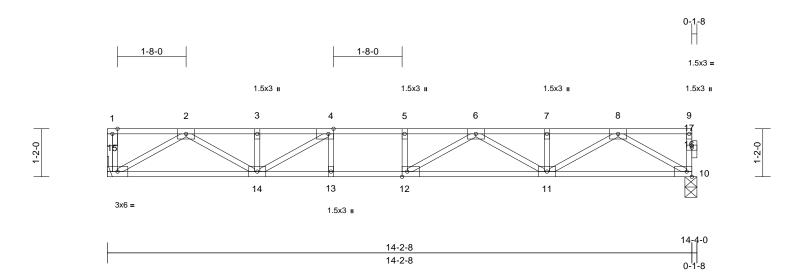
Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 89 FaNC	
22090048	F11	Floor	6	1	Job Reference (optional)	163018648

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 13:47:31 ID:HFBmZr3HLZzNw37mOiiHK7zw7Oo-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:40.2

Plate Offsets (X, Y): [19:0-1-8,Edge], [20:0-1-8,Edge], [2	24:0-1-8,E	Edge], [25:0-1-8,	Edge]								
Loading TCLL TCDL BCLL	(psf) 40.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	1-7-3 1.00 1.00 YES		CSI TC BC WB	0.52 0.48 0.46	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 18-19 18-19 17	l/defl >999 >999 n/a	L/d 480 360 n/a	PLATES MT20	GRIP 244/190
BCDL	5.0	Code		18/TPI2014	Matrix-MSH	0.40	11012(01)	0.02	17	n/a	n/a	Weight: 115 lb	FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	Mechanic Max Uplift 26=-75 (L Max Grav 17=538 (L	cept end verticals. applied or 6-0-0 oc 22=0-3-8, 26= al C 4) .C 4), 22=1252 (LC	5 ed or ⁶ 7 L	 bearing plate 26. This truss is International R802.10.2 ai Recommend 10-00-00 oc (0.131" X 3") at their outer 	hanical connectio capable of withsi designed in accor Residential Code of referenced sta 2x6 strongbacks and fastened to e nails. Strongbac ends or restraine to not erect truss i Standard	tanding 7 rdance w sections ndard AN , on edge ach truss ks to be d by othe	5 lb uplift at j th the 2018 R502.11.1 a ISI/TPI 1. s spaced at with 3-10d attached to w er means.	oint					
FORCES	26=269 (L (Ib) - Maximum Com Tension	,											
TOP CHORD	1-26=-55/0, 16-17=-1 2-3=-381/436, 3-4=-3 5-6=0/1326, 6-7=0/1 8-9=-691/0, 9-10=-11 11-13=-1550/0, 13-1 14-15=-1303/0, 15-1	381/436, 4-5=-381/4 326, 7-8=-691/0, 550/0, 10-11=-1550, 4=-1303/0,										mmm	900.
BOT CHORD	25-26=-167/345, 24- 22-24=-826/73, 21-2 19-20=0/1550, 18-19	25=-436/381, 2=-314/0, 20-21=0/									A	OR EES	ROUN
this design 2) All plates a	6-22=-167/0, 5-22=- 5-24=0/632, 2-25=-3 4-24=-249/0, 7-22=- 7-21=0/970, 15-18=(14-18=-128/0, 9-21= 9-20=0/458, 13-19=- 11-19=-46/32 ed floor live loads have	852/0, 2-26=-399/19 113/42, 3-25=-23/12 1255/0, 15-17=-913, 0/608, 8-21=-141/0, -649/0, 13-18=-294, 191/164, 10-20=-14 been considered for therwise indicated.	94, 5, /0, /0, 9/0,							Contraction of the second seco		SEA 0363	ER.K.

January 15,2024


Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 89 FaNC	
22090048	F12	Floor	2	1	Job Reference (optional)	163018649

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 13:47:31 ID:S5qVJn_WmjDEC8gd1Rbt4szw7Ou-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

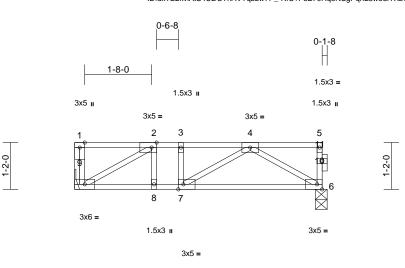
Scale = 1:28

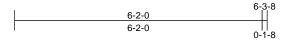
Plate Offsets (X, Y): [4:0-1-8,Edge], [12:0-1-8,Edge]

Fiale Olisels ((∧, f). [4.0-1-6,⊑uge],	, [12.0-1-0,Euge]									
Loading TCLL TCDL BCLL	(psf) 40.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	1-7-3 1.00 1.00 YES	CSI TC BC WB	0.53 0.77 0.36	DEFL Vert(LL) Vert(CT) Horz(CT)	(loc) 11-12 11-12 10	l/defl >999 >800 n/a	L/d 480 360 n/a	PLATES MT20	GRIP 244/190
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-MSH						Weight: 72 lb	FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	2x4 SP No.2(flat) 2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood she 6-0-0 oc purlins, ex		ed or								
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 or	2								
REACTIONS	(size) 10=0-3-8, Max Grav 10=617 (l	, 15= Mechanical LC 1), 15=617 (LC 1)								
FORCES	(lb) - Maximum Corr Tension	npression/Maximum									
TOP CHORD	1-15=-59/0, 9-10=-5 2-3=-1564/0, 3-4=-1 5-6=-2029/0, 6-7=-1 8-9=0/0	564/0, 4-5=-2029/0,									
BOT CHORD		,)29,								
WEBS	8-10=-1066/0, 2-15= 2-14=0/732, 7-11=-1 6-11=-440/0, 4-14=- 4-13=-25/108, 5-12=	=-1084/0, 8-11=0/759 123/0, 3-14=-150/44 649/0, 6-12=-85/327								"TH CA	Route
NOTES									1	R	in the
,	ed floor live loads have	e been considered fo	r						E 2	U. FESS	That
this desigr 2) All plates a	n. are 3x5 MT20 unless o	otherwise indicated						4	N	KI /	
	irder(s) for truss to trus							-		SEA	n 1 E
	is designed in accordanal Residential Code s							=		0363	• –
	2 and referenced stand		nu							. 0303	44 <u>:</u> E
	end 2x6 strongbacks, o							-	-	·	1 3
	oc and fastened to eac 3") nails. Strongbacks		alls						3.5	SEA 0363	EENAN
	ter ends or restrained								11	710	RELIN
,	l, Do not erect truss ba	ackwards.								CA. C	allunin
LOAD CASE	S) Standard										1111.

January 15,2024

Page: 1


g) Bit Soundside Road Edenton, NC 27932


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 89 FaNC	
22090048	F13	Floor	2	1	Job Reference (optional)	163018650

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 13:47:31 ID:dxTE2kvIAtS4UDCThAVTqbzw7P_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

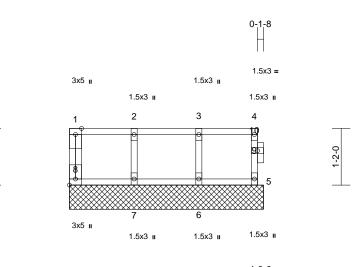
Scale = 1:28.7

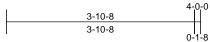
Plate Offsets (X, Y): [2:0-1-8,Edge], [7:0-1-8,Edge]

	x, i). [2.0 i 0,Euge]	, [7.0 1 0,Euge]			-							
Loading TCLL	(psf) 40.0	Spacing Plate Grip DOL	1-7-3 1.00	CSI TC	0.18	DEFL Vert(LL)	in -0.02	(loc) 6-7	l/defl >999	L/d 480	PLATES MT20	GRIP 244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.20	Vert(CT)	-0.03	6-7	>999	360		
BCLL BCDL	0.0 5.0	Rep Stress Incr Code	YES IRC2018/TPI2014	WB Matrix-MSH	0.10	Horz(CT)	0.00	6	n/a	n/a	Weight: 34 lb	FT = 20%F, 11%E
BCDL	5.0	Code	IRG2010/1712014								Weight. 34 lb	FI = 20%F, 11%E
LUMBER TOP CHORD	2x4 SP No.2(flat)											
BOT CHORD	2x4 SP No.2(flat)											
WEBS	2x4 SP No.3(flat)											
OTHERS	2x4 SP No.3(flat)											
BRACING	0 tan a transformed a star a star base	a dhùa an dùac a dhu ann a là										
TOP CHORD	Structural wood she 6-0-0 oc purlins, ex		ed or									
BOT CHORD	Rigid ceiling directly bracing.		с									
REACTIONS	0	9= Mechanical C 1), 9=263 (LC 1)										
FORCES	(lb) - Maximum Com Tension	npression/Maximum										
TOP CHORD	1-9=-63/0, 5-6=-52/0 3-4=-365/0, 4-5=0/0		5/0,									
BOT CHORD	8-9=0/365, 7-8=0/36	,										
WEBS	4-6=-382/0, 2-9=-41	, ,										
	2-8=-14/55, 3-7=-18	3/0										
NOTES												
 Unbalance this design 	ed floor live loads have	e been considered fo	DL									1
0	i. irder(s) for truss to trus	ss connections									WITH CA	in the second se
	is designed in accorda										TH UA	ROUL
	nal Residential Code s		ind							A	A	a his
	R802.10.2 and referenced standard ANSI/TPI 1.											
4) Recomme	4) Recommend 2x6 strongbacks, on edge, spaced at											

10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. 5) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 89 FaNC	
22090048	FW04	Floor Supported Gable	1	1	Job Reference (optional)	163018651

1-2-0

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 13:47:31 ID:on5znhr_a1ixmIIJKwO3bKzw7P4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:23.7

Plate Offsets (X, Y): [8:Edge,0-1-8]

Loading TCLL	(psf) 40.0	Spacing Plate Grip DOL	1-7-3 1.00	CSI TC	0.06	DEFL Vert(LL)	in n/a	(loc) -	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.01	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES	WB	0.02	Horiz(TL)	0.00	5	n/a	n/a		
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-MR	-						Weight: 19 lb	FT = 20%F, 11%E
LUMBER												
TOP CHORD	()											
BOT CHORD	()											
WEBS	2x4 SP No.3(flat)											
OTHERS	2x4 SP No.3(flat)											
BRACING TOP CHORD	Structurel wood abo	othing directly opplic	dor									
TOP CHORD	Structural wood she 4-0-0 oc purlins, ex											
BOT CHORD			2									
	bracing.											
REACTIONS	()	6=4-0-0, 7=4-0-0, 8=										
	Max Grav 5=46 (LC		=117									
	· · · ·	=48 (LC 1)										
FORCES	(lb) - Maximum Com Tension	npression/Maximum										
TOP CHORD		0 1-2=-7/0 2-3=-7/0										
	3-4=-7/0	0, 1 2- 1/0, 2 0- 1/0	,									
BOT CHORD	7-8=0/7, 6-7=0/7, 5-	·6=0/7										
WEBS	2-7=-106/0, 3-6=-10	04/0										
NOTES												
	uires continuous botto											
	e fully sheathed from o										minin	11111
	ainst lateral movemen ds spaced at 1-4-0 oc.									3	WTH CA	Rollin
	is designed in accorda									N	R	1 Alla
	nal Residential Code s		nd						/	52	C FESS	NIN S'
	2 and referenced stand								4			
	end 2x6 strongbacks, c								-		. ~	S 7 1 2
	oc and fastened to eac 3") nails. Strongbacks								=	:	SEA	L : =
	iter ends or restrained		alio						Ξ		0363	22 : 3
	I, Do not erect truss ba								=	5	. 0505	i E
LOAD CASE	·								111.	-		1 5
(5	· · A.	air i

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 89 FaNC	
22090048	FW33	Floor	1	1	Job Reference (optional)	163018652

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 13:47:32 ID:Sql4kznrmV4egWtLYNouuHzw7P9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

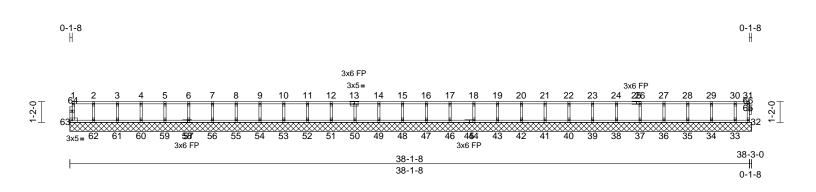
1-2-0

1-2-8 0-1-8 13-5-8 Η 3x6 FP 3x5= 3x5= 3x5= 3x6 FP 3x5 II 8 9 10 11 12 13 15 16 17 18 19 20 21 22 2324 25 26 2**7**8 5 6 14 1-2-0 56 52 51 50 49 48 4 46 45 44 43 4241 40 39 38 37 3P 34 33 32 31 30 55 5453 3x5= 3x5= 3x6 FP 3x6 FP 3x5= 3x5= 33-8-0

33-8-0

Scale = 1:57.6

Plate Offsets	(X, Y): [9:0-1-8,Edge],	[19:0-1-8,Edge], [35	:0-1-8,E	dge], [48:0-1-8	,Edge]								
Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-7-3 1.00 1.00 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-MSH	0.07 0.01 0.03	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 29	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 144 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly	cept end verticals.	d or	TOP CHORD	1-56=-35/0, 28-25 3-4=-2/0, 4-5=-2// 7-8=-2/0, 8-9=-2// 11-12=-9/0, 12-14 15-16=-5/0, 16-17 18-19=-5/0, 19-20 21-22=-14/0, 22-2 25-26=-14/0, 26-2 55-56=0/2, 54-55 50-51=0/2, 49-50	D, 5-6=-2/ D, 9-10=-5 4=-9/0, 14 7=-5/0, 17 D=-14/0, 2 23=-14/0, 27=-14/0, =0/2, 52-5	0, 6-7=-2/0, 0/0, 10-11=-9/ 15=-5/0, 18=-5/0, 10-21=-14/0, 23-25=-14/0, 27-28=-2/0 54=0/2, 51-52	′0, ≥=0/2,					
REACTIONS	32=33-8-(35=33-8-(38=33-8-(42=33-8-(42=33-8-(45=33-8-(51=33-8-(55=33-8-(55=33-8-(55=33-8-(31=115 (l 33=117 (l 35=110 (l	0, 30=33-8-0, 31=33- 0, 33=33-8-0, 34=33- 0, 36=33-8-0, 40=33- 0, 43=33-8-0, 44=33- 0, 43=33-8-0, 44=33- 0, 49=33-8-0, 50=33- 0, 52=33-8-0, 54=33- 0, 52=33-8-0, 54=33- 0, 51, 30=125 (LC 1), LC 1), 30=125 (LC 1), LC 1), 34=117 (LC 1) LC 1), 36=124 (LC 1) LC 1), 36=117 (LC 1) LC 1)	.8-0, .8-0, .8-0, .8-0, .8-0, .8-0, .8-0, .8-0, .8-0,	WEBS	46-47=0/9, 45-46 42-43=0/5, 40-42 37-38=0/5, 36-37 34-35=0/14, 33-3 31-32=0/14, 33-3 2-55=-110//0, 3-55 5-51=-107/0, 6-50 8-48=-107/0, 9-47 11-45=-107/0, 12 14-42=-109/0, 15 17-38=-107/0, 18 20-35=-107/0, 25 27-29=-93/0, 19-5	=0/9, 44-4 =0/5, 39-4 =0/5, 35-3 4=0/14, 3 1=0/14, 2 4=-106/0, 0=-107/0, 7=-101/0, 7=-101/0, -44=-106, -37=-107, -34=-107, -31=-105,	45=0/9, 43-44 40=0/5, 38-39 36=0/5, 2-33=0/14, 9-30=0/14 4-52=-107/0, 7-49=-107/0, 10-46=-106/0 (0, 13-43=-10 (0, 19-36=-11: 0, 22-33=-10 (0, 26-30=-11)	==0/9, ==0/5, 0, 7/0, 7/0, 4/0, 7/0,					
FORCES	39=117 (l 42=120 (l 44=115 (l 46=117 (l 50=117 (l 52=117 (l	LC 1), 40=117 (LC 1) LC 1), 43=117 (LC 1) LC 1), 45=118 (LC 1) LC 1), 47=112 (LC 1) LC 1), 49=117 (LC 1) LC 1), 51=117 (LC 1) LC 1), 54=117 (LC 1) LC 1), 56=39 (LC 1)	, , , , , , , , , , , , , , , , , , ,	 Gable requipage Gable requipage Truss to be braced aga Gable stud This truss i Internationa R802.10.2 Recommer 10-00-00 o (0.131" X 3 at their out 	re 1.5x3 MT20 unlives continuous bo fully sheathed from inst lateral movem is spaced at 1-4-0 of s designed in acco al Residential Code and referenced stat d 2x6 strongbacks c and fastened to e ") nails. Strongbac po not erect truss b) Standard	ttom chor m one fac ent (i.e. d oc. rdance w e sections andard AN s, on edge each truss cks to be ed by othe	d bearing. e or securely iagonal web). ith the 2018 : R502.11.1 a ISI/TPI 1. 9. spaced at s with 3-10d attached to w er means.	nd		Contraction of the second seco		SEA 0363	22 EB


January 15,2024

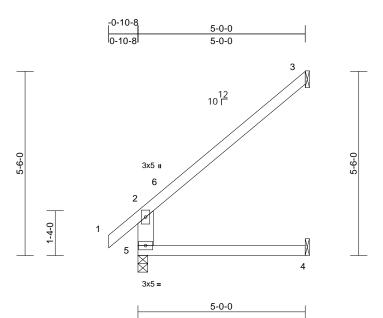
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 89 FaNC	
22090048	FW38	Floor Supported Gable	1	1	Job Reference (optional)	163018653

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 13:47:32 ID:CYCpjGFtuHfl?v45WrXpeDzw7Pq-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Scale = 1:64.6

Scale = 1:64.6												
Loading	(psf)	Spacing	1-7-3	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	(psi) 40.0	Plate Grip DOL	1.00	TC	0.06	Vert(LL)	n/a	(100)	n/a	999	MT20	244/190
		1 '		-							WIT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.01	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES	WB	0.03	Horiz(TL)	0.00	32	n/a	n/a		
BCDL	5.0	Code	IRC2018/TPI2014	Matrix-MR							Weight: 156 lb	FT = 20%F, 11%E
LUMBER			TOP CHOR	D 1-63=-40/0, 31-32	2=-19/0, 1	-2=-6/0, 2-3=	-6/0,	7) CAU	JTION,	Do not	t erect truss back	wards.
TOP CHORD	2x4 SP No.2(flat)			3-4=-6/0, 4-5=-6/), 5-6=- 6/	0, 6-7=-6/0,		LOAD	ASE(S) Sta	ndard	
BOT CHORD	2x4 SP No.2(flat)			7-8=-6/0, 8-9=-6/), 9-10=-6	5/0, 10-11=-6/	0.	20/12 0	,,,or	, 010	indund	
WEBS	2x4 SP No.3(flat)			11-12=-6/0, 12-14	4=-6/0, 14	1-15=-2/0,						
OTHERS	2x4 SP No.3(flat)			15-16=-2/0, 16-17	,	,						
BRACING				18-19=-2/0, 19-20								
	Chruchturel weed also	منامحه بالتممنان ممماله		21-22=-2/0, 22-23	,	,						
TOP CHORD		athing directly applied	d or	24-26=-2/0, 26-2								
	6-0-0 oc purlins, ex			28-29=-2/0, 29-30)=-2/0.30)-31=-2/0						
BOT CHORD		applied or 10-0-0 oc	BOT CHOR	,	,		=0/6.					
	bracing.			57-59=0/6, 56-57	,	,	,					
REACTIONS	()	0, 33=38-3-0, 34=38-3	,	53-54=0/6, 52-53								
		0, 36=38-3-0, 37=38-3	,	49-50=0/2, 48-49	,	,	,					
		0, 39=38-3-0, 40=38-3	,	44-46=0/2, 43-44	,	,	,					
		0, 42=38-3-0, 43=38-3		40-41=0/2, 39-40								
		0, 46=38-3-0, 47=38-3		36-37=0/2, 35-36								
		0, 49=38-3-0, 50=38-3	,	32-33=0/2	,		,					
		0, 52=38-3-0, 53=38-3		2-62=-105/0, 3-6	1=-107/0	4-60=-106/0						
		0, 55=38-3-0, 56=38-3	3-0,	5-59=-107/0, 6-5	,	,						
		0, 59=38-3-0, 60=38-3		8-55=-107/0, 9-54)					
	61=38-3-	0, 62=38-3-0, 63=38-3	3-0	11-52=-107/0, 12								
	Max Grav 32=21 (L0	C 1), 33=98 (LC 1),		14-49=-109/0, 15		,	,					
	34=121 (I	LC 1), 35=116 (LC 1),		17-46=-107/0, 18		,	'					
	36=118 (I	LC 1), 37=117 (LC 1),		20-42=-107/0, 21		,	,					
	38=117 (I	LC 1), 39=117 (LC 1),		23-39=-107/0, 24							ORTH CA	1111
		LC 1), 41=117 (LC 1),		27-36=-107/0, 24							IN CA	Della
	42=117 (I	LC 1), 43=117 (LC 1),		30-33=-90/0	-35=-100	/0, 29-34=-110	0/0,				ORTH CA	TO MA
		LC 1), 46=117 (LC 1),		30-33=-90/0						2	ON SEGO	A ANTA
	47=117 (I	LC 1), 48=117 (LC 1),								52	C. F. S.	PN
	49=120 (I	LC 1), 50=117 (LC 1),	, ,	s are 1.5x3 MT20 unl			1.		4	Ŵ		1. 4.
	51=115 (I	LC 1), 52=118 (LC 1),	Gable r	equires continuous bo	ttom chor	d bearing.			1		i Q	1
	53=117 (I	LC 1), 54=117 (LC 1),	Truss to	be fully sheathed from	m one fac	e or securely			-		CEA	1 1 5
	55=117 (I	LC 1), 56=117 (LC 1),		against lateral movem		liagonal web).			=	:	SEA	- : :
		LC 1), 59=117 (LC 1),		tuds spaced at 1-4-0	DC.						0363	22 : =
		LC 1), 61=118 (LC 1),		ss is designed in acco	rdance w	ith the 2018			-			: :
		LC 1), 63=43 (LC 1)	Internat	ional Residential Code	e sections	s R502.11.1 a	nd			-	λ.	1 2
FORCES	(lb) - Maximum Corr		R802.10	0.2 and referenced sta	Indard AN	ISI/TPI 1.				1	· · .	Airs
IONOLO	Tension	prossion/maximum	6) Recomr	nend 2x6 strongbacks	, on edge	e, spaced at				15	SEA 0363	EFICAN
			10-00-0	0 oc and fastened to e	each truss	s with 3-10d				11	710	atti
			(0.131"	X 3") nails. Strongba	cks to be	attached to w	alls				IL A G	ILD
			at their	outer ends or restraine	ed by othe	er means.					111111	ann
					•						lonuar	15 2024
											January	EER. HILL 15,2024


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 89 FaNC	
22090048	J01	Jack-Open	22	1	Job Reference (optional)	163018654

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 13:47:32 ID:Gd1C9yqIND7shNKAPHtMBdzw7QO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:34.4

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MR	0.60 0.54 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.06 -0.06 -0.09	(loc) 4-5 4-5 3	l/defl >876 >877 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 22 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORE BOT CHORE WEBS BRACING TOP CHORE BOT CHORE REACTIONS	 2x4 SP No.2 2x6 SP No.2 Structural wood she 5-0-0 oc purlins, ex Rigid ceiling directly bracing. 	cept end verticals. applied or 10-0-0 or anical, 4= Mechanica C 14) C 14), 4=-11 (LC 14	8 c 9 al, 1)	on the bottor 3-06-00 tall to chord and ar 9 Bearings are crushing cap 1 Refer to gird 2 Provide mec 2 bearing platte 3 and 11 b u 20 This truss is International	has been designem n chord in all area by 2-00-00 wide w hy other members assumed to be: , acity of 425 psi. er(s) for truss to 1 hanical connectio e capable of withs uplift at joint 4. designed in accoo Residential Code and referenced sta Standard	as where vill fit betw Joint 5 U truss con n (by oth tanding 1 rdance w sections	a rectangle veen the both Jser Defined nections. ers) of truss 16 lb uplift a ith the 2018 ; R502.11.1 ;	to to t joint					
FORCES	(lb) - Maximum Com Tension												
TOP CHORE		42, 2-3=-163/107											
NOTES		(2 accord quat)											
Vasd=10 Cat. II; E zone and exposed members Lumber I 2) TCLL: AS Plate DC DOL=1.1 Cs=1.00; 3) Unbaland design.	SCE 7-16; Vult=130mph J3mph; TCDL=6.0psf; B xxp B; Enclosed; MWFR d C-C Exterior(2E) zone ; end vertical left and ris s and forces & MWFRS DOL=1.60 plate grip DC SCE 7-16; Pr=20.0 psf (L JL=1.15); Pf=20.0 psf (L JL=1.15); Is=1.0; Rough Cat E ; Ct=1.10 ced snow loads have be s has been designed fo	CDL=6.0psf; h=25ft; S (envelope) exterio ; cantilever left and r ght exposed;C-C for for reactions shown DL=1.60 roof LL: Lum DOL=1 um DOL=1.15 Plate B; Fully Exp.; Ce=0.9 even considered for th	r right ; 1.15); nis							M. and M.	e a	SEA 0363	• –

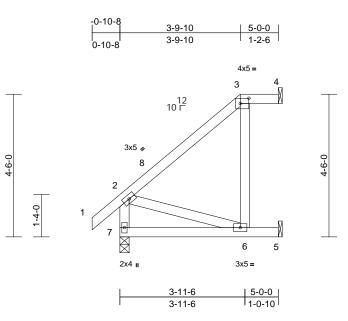
load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5)

A. GILB

A. GILDIN January 15,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road Edenton, NC 27932

C

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 89 FaNC	
22090048	J02	Jack-Open	3	1	Job Reference (optional)	63018655

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 13:47:32 ID:gwBwDAfWgwMr0EGTbLd4dgzw7Qc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:36.3

Plate Offsets (X, Y): [3:0-3-4,0-2-0]

Loading (pst) Spacing 2-0-0 CSI DEFL in (loc) Udet L/d PLATES GRP TCLL (roof) 2.0.0 Lumber DOL 1.1.5 TC 0.36 Vert(LL) 0.06 6-7 >680 0 Vert(LL) 0.06 6-7 >668 0 Hot N/d	Plate Olisets (A, T). [3.0-3-4,0-2-0]													
TOP CHORD 2x4 SP No.2 load of 12.0 psf or 100 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. BOT CHORD 2x4 SP No.3 load of 12.0 psf or 100 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. BRACING Structural wood sheathing directly applied or 5-0-0 oc purlins; s-4. Provide adequate drainage to prevent water ponding. FOR CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. This truss has been designed for a live load of 20.0 psf on the bottom chord in all areas where a rectangle BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. This truss has been designed for a live load of 20.0 psf on the bottom chord in all areas where a rectangle ABOT CHORD Hechanical, 5= Mechanical, 7=0-3-8 Provide adequate drainage to prevent water a rectangle Not Hyper A = 14 (LC 10), 5=-73 (LC 14) Max Grav 4=55 (LC 38), 5=186 (LC 38), -7=30 (LC 38) Prevent water a rectangle of withstanding 14 lb uplift at joint 4 and 73 lb uplift at joint 5. TOP CHORD 2-7-295/28, 1-2=0/63, 2-3=-138/78, 3-4=00 Not Hyper A = 14 (LC 10), -5=-771/228 NOTES - - - NOTES - - - 1) Unbalanced root live loads have been considered for this design. - <t< td=""><td>TCLL (roof) Snow (Pf) TCDL BCLL</td><td>20.0 20.0 10.0 0.0*</td><td>Plate Grip DOL Lumber DOL Rep Stress Incr</td><td>1.15 1.15 YES</td><td>PI2014</td><td>TC BC WB</td><td>0.45</td><td>Vert(LL) Vert(CT)</td><td>0.06 -0.09</td><td>6-7 6-7</td><td>>999 >668</td><td>240 180</td><td>MT20</td><td>244/190</td><td></td></t<>	TCLL (roof) Snow (Pf) TCDL BCLL	20.0 20.0 10.0 0.0*	Plate Grip DOL Lumber DOL Rep Stress Incr	1.15 1.15 YES	PI2014	TC BC WB	0.45	Vert(LL) Vert(CT)	0.06 -0.09	6-7 6-7	>999 >668	240 180	MT20	244/190	
Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 4) Unbalanced snow loads have been considered for this design. January 15.2024	TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalance this design (2) Wind: ASC Vasd=103 Cat. II; Ex zone and (exposed ; members Lumber DU 3) TCLL: ASC Plate DOL DOL=1.15 CS=1.00; (4) Unbalance	2x4 SP No.2 2x4 SP No.3 Structural wood she 5-0-0 oc purlins; ex 2-0-0 oc purlins; 3-4 Rigid ceiling directly bracing. (size) 4= Mecha 7=0-3-8 Max Horiz 7=126 (LC Max Uplift 4=-14 (LC Max Grav 4=55 (LC 7=380 (LC (lb) - Maximum Com Tension 2-7=-296/28, 1-2=0/ 6-7=-224/79, 5-6=0/ 3-6=-176/159, 2-6=- ed roof live loads have n. CE 7-16; Vult=130mph imph; TCDL=6.0psf; Bi p B; Enclosed; MWFRS OL=1.60 plate grip DC CE 7-16; Pr=20.0 psf (L =1.15); Pf=20.0 psf (L =1.15)	cept end verticals, and applied or 10-0-0 oc anical, 5= Mechanica C 14) C 10), 5=-73 (LC 14) 35), 5=186 (LC 36), C 36) npression/Maximum 63, 2-3=-138/78, 3-4 0 77/228 been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior ; cantilever left and right ght exposed;C-C for for reactions shown; D=1.60 roof LL: Lum DOL=1 um DOL=1.15 Plate 3; Fully Exp.; Ce=0.9	() () () () () () () () () ()	bad of 12.0 p verhangs ne rovide adecc his truss ha hord live loa This truss ha hord live loa This truss h n the botton -06-00 tall b hord and an earing are rushing cap tearing plate and 73 lb u his truss is iternational 2802.10.2 ar 67aphical pu r the orienta ottom chorc	best or 1.00 times fi pon-concurrent with juate drainage to just s been designed fut has been designed in chord in all area by 2-00-00 wide with yo other members. active of 425 psi. er(s) for truss to the hanical connection capable of withst plift at joint 5. designed in accorn Residential Code and referenced star rlin representation tion of the purlin a l.	lat roof I o other Ii prevent for a 10. with any I for a Ii's s where ill fit betw Joint 7 I russ con h (by oth anding dance w sections h does n	bad of 20.0 p ve loads. water pondin 0 psf bottom other live loa e load of 20. a rectangle veen the bott Jser Defined nections. ers) of truss 4 lb uplift at ith the 2018 c R502.11.1 a USI/TPI 1. ot depict the	esf on g. ads. Opsf om to joint		4		SEA 0363	EER. K	Manual and

- المناح المناح
- 4) Unbalanced snow loads have been considered for this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties.

January 15,2024

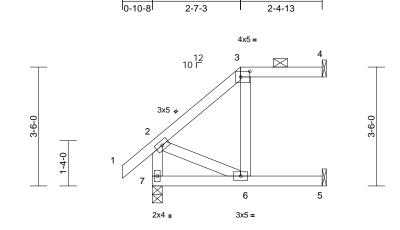
818 Soundside Road Edenton, NC 27932

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 89 FaNC	
22090048	J03	Jack-Open	3	1	Job Reference (optional)	163018656

2-7-3

-0-10-8


Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 13:47:33 ID:8rDtsiSTR0L65m1Pf_LKzIzw7Qs-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-0-0

Page: 1

Scale = 1:33.9 Plate Offsets (X, Y): [3:0-3-4,0-2-0]

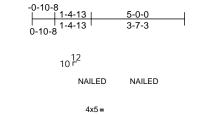
Plate Olisets ((X, Y): [3:0-3-4,0-2-0]										-	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MP	0.16 0.53 0.05	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.08 -0.10 0.13	(loc) 6-7 6-7 4	l/defl >708 >556 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 27 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 5-0-0 oc purlins: 3-4 Rigid ceiling directly bracing.	cept end verticals, a applied or 10-0-0 o anical, 5= Mechanica 14) 2 10), 5=-27 (LC 14) C 35), 5=122 (LC 35	design. 5) This tru load of overhar ed or 6) Provide al, 7=-6 10) Refer to 11) Provide bearing 7) Bearing 10) Refer to 11) Provide bearing	hered snow loads have ss has been designed 12.0 psf or 1.00 times ngs non-concurrent wi adequate drainage to ss has been designed ve load nonconcurren uss has been designed bottom chord in all are tall by 2-00-00 wide v ind any other member s are assumed to be: g capacity of 425 psi. girder(s) for truss to mechanical connectin plate capable of with 5 lb uplift at joint 5.	I for great flat roof I th other li p prevent 1 for a 10. t with any ed for a liv eas where will fit betv s. , Joint 7 t truss con on (by oth	er of min roo bad of 20.0 p ve loads. water pondin 0 psf bottom other live loz e load of 20.0 a rectangle veen the bott Jser Defined nections. ers) of truss	f live isf on g. ads. Opsf to				rogni. 27 D	
this design 2) Wind: ASC Vasd=103 Cat. II; Ex zone and exposed ; members Lumber D	(lb) - Maximum Com Tension 2-7=-245/28, 1-2=0/ 6-7=-168/54, 5-6=0/ 3-6=-140/127, 2-6=- ed roof live loads have n. CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B p B; Enclosed; MWFR C-C Exterior(2E) zone end vertical left and ria and forces & MWFRS OL=1.60 plate grip DC CE 7=16: Pr=20.0 psf (63, 2-3=-98/45, 3-4= 0 53/176 been considered fo (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exteric ; cantilever left and i ght exposed;C-C for for reactions shown 0L=1.60	12) One H2 recomm ∪PLIFT does nc 13) This tru Internat r R802.11 14) Graphic or the o bottom r LOAD CAS	.5A Simpson Strong- nended to connect true at jt(s) 7. This connect true consider lateral force ss is designed in accor ional Residential Cod 0.2 and referenced sta al purlin representation rientation of the purlin	ss to bear ction is for es. ordance w e sections andard AN on does no	ing walls due uplift only a th the 2018 SR502.11.1 a ISI/TPI 1. ot depict the	nd and		Manna and and and and and and and and and		SEA 0363	• –

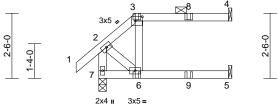
TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

A. GILB A. GILD


January 15,2024


C

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 89 FaNC	
22090048	J04	Jack-Open Girder	3	1	Job Reference (optional)	163018657

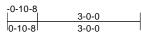
Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 13:47:33 ID:8ahRluFpRnCWY9E89vXLnizw7R7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

rag

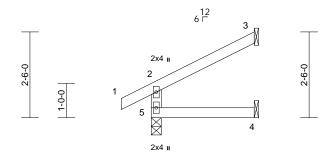
NAILED

NAILED

Scale = 1:44.4


Plate Offsets	(X, Y): [3:0-3-4,0-2-0]	1			1								
-oading CLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.45	DEFL Vert(LL)	in -0.07	(loc) 5-6	l/defl >851	L/d 240	PLATES MT20	GRIP 244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.72	Vert(CT)	-0.12	5-6	>471	180		
CDL	10.0	Rep Stress Incr	NO		WB	0.05	Horz(CT)	0.16	4	n/a	n/a		
BCLL	0.0*	Code	IRC2018	3/TPI2014	Matrix-MP								
BCDL	10.0											Weight: 24 lb	FT = 20%
UMBER TOP CHORD 30T CHORD VEBS BRACING TOP CHORD 30T CHORD REACTIONS	 2x4 SP No.2 2x4 SP No.3 Structural wood she 5-0-0 oc purlins, ex 2-0-0 oc purlins: 3-4 Rigid ceiling directly bracing. 	cept end verticals, a applied or 10-0-0 or inical, 5= Mechanica 9) : 8), 5=-4 (LC 9), 7=-	6) 7) ed or nd 8) c 1, 9) 10 -51 ¹¹	load of 12.0 overhangs n Provide ade This truss ha chord live lo * This truss lo on the botton 3-06-00 tall chord and an Bearings are crushing cap) Refer to gird) Provide meet bearing plate 4 and 4 lb up	as been designe psf or 1.00 times on-concurrent w quate drainage t is been designe ad nonconcurrer has been design m chord in all ar py 2-00-00 wide y other membe e assumed to be hanical connect e capable of with blift at joint 5.	a flat roof k ith other lin o prevent t d for a 10.0 tt with any ed for a liv as where will fit betw s. . Joint 7 L o truss con on (by oth standing 6	bad of 20.0 p re loads. water pondin 0 psf bottom other live loa e load of 20. a rectangle veen the bott Jser Defined nections. ers) of truss 0 lb uplift at	esfon g. ads. Opsf com to					
ORCES	7=370 (L0 (lb) - Maximum Com	,	12	recommende	Simpson Strong- ed to connect tru (s) 7. This conne	ss to bear	ng walls due						
this desig Wind: AS	6-7=-60/35, 5-6=0/0 3-6=-211/94, 2-6=-4	4/77 been considered fo (3-second gust)	14 r 15	does not cor) This truss is International R802.10.2 a) Graphical pu or the orient bottom chore) "NAILED" in	sider lateral for designed in acc Residential Coo nd referenced st Irlin representati ation of the purli	ces. ordance w le sections andard AN on does no n along the 148"x3") o	ith the 2018 R502.11.1 a ISI/TPI 1. of depict the top and/or or 3-12d	and			ALL IN	OR FESS	ROLLIN
Cat. II; Ex zone; car and right DOL=1.6	xp B; Enclosed; MWFR ntilever left and right exp exposed; Lumber DOL	S (envelope) exterio bosed ; end vertical =1.60 plate grip	r 16 left LC 1)) In the LOAD of the truss a OAD CASE(S)	CASE(S) section are noted as from Standard pw (balanced): L	n, loads a it (F) or ba	oplied to the ck (B).			THE PARTY OF		SEA 0363	• •
DOL=1.1 Cs=1.00;	L=1.15); Pf=20.0 psf (L 5); Is=1.0; Rough Cat E Ct=1.10 ced snow loads have be	3; Fully Exp.; Ce=0.9);	Concentrat	ads (lb/ft) =-60, 2-3=-60, 3 ed Loads (lb) 47 (B), 6=-9 (B)						in the	A.C.A.C	EER AL
design.					(-),(-)		, (-)						y 15,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


ENGINEERING BY TREENCO A MiTek Atfiliate 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 89 FaNC	
22090048	J05	Jack-Open	6	1	Job Reference (optional)	163018658

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 13:47:33 ID:cVjOxQ3nCtBodi03DYFb8Kzw7RN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Special

Special

3-0-0

Scale = 1:33.6

LUMBER TOP CHORD 2x4 SP No.2 TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3 BRACING Structural wood sheathing directly applied or 3-0-0 oc purlins, except end verticals. BOT CHORD Structural wood sheathing directly applied or 3-0-0 oc purlins, except end verticals. BOT CHORD Structural wood sheathing directly applied or 3-0-0 oc purlins, except end verticals. BOT CHORD Sized core purlins, except end verticals. BOT CHORD (size) 3= Mechanical, 4= Mechanical, 5=0-3-8 Max Horiz 5=558 (LC 14) Max Uplit 3=55 (LC 14) Max Uplit 3=55 (LC 14) Max Grav 3=107 (LC 21), 4=55 (LC 7), 5=265 (LC 21) FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 2-5=-241/117, 1-2=0/42, 2-3=-66/37 BOT CHORD SOT CHORD 4-5=0/0 NotTES (b) - Maximum Compression/Maximum Tension 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) vade=103mph; TCDL=6.0psf; h=25f;	Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI201	CSI TC BC WB Matrix-MR	0.19 0.10 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 -0.01 -0.01	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 12 lb	GRIP 244/190 FT = 20%
 Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2E) zone; cantilever left and right exposed; c-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 T TCLL: ASCE 7-16; Pr=20.0 psf (root DL=1.15 plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this design. This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 	TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD Cat. II; E: zone and exposed members Lumber D 2) TCLL: AS Plate DO DOL=1.1 Cs=1.00; 3) Unbalanc design. 4) This truss load of 1: overhang 5) This truss	 2x4 SP No.2 2x4 SP No.3 Structural wood she 3-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 3= Mecha 5=0-3-8 Max Horiz 5=58 (LC Max Uplift 3=-52 (LC Max Grav 3=107 (LC (LC 21) (lb) - Maximum Com Tension 2-5=-241/117, 1-2=(0) 3-45=0/0 SCE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B xp B; Enclosed; MWFR I C-C Exterior(2E) zone ; end vertical left and ri, s and forces & MWFRS COL=1.60 plate grip DC SCE 7-16; Pr=20.0 psf (L 5); Is=1.0; Rough Cat E Ct=1.10 zed snow loads have be s has been designed fo 2.0 psf or 1.00 times fla s non-concurrent with of s has been designed fo 	cept end verticals. applied or 10-0-0 oc anical, 4= Mechanical, 14) 214), 5=-13 (LC 14) 221), 4=55 (LC 7), 5= appression/Maximum 0/42, 2-3=-66/37 (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior ; cantilever left and rig ght exposed; C-C for for reactions shown; D=1.60 (roof LL: Lum DOL=1.: um DOL=1.15 Plate B; Fully Exp.; Ce=0.9; sen considered for this r greater of min roof lin t roof load of 20.0 psf other live loads. r a 10.0 psf bottom	on the 3-06-00 chord a 7) Bearing crushin 8) Refer to 9) Provide bearing 3. 10) One H2 recomr UPLIFT does no 10) One H2 recomr UPLIFT does no 11) This tru Interna R802.1 12) Hanger provide down a down a dow	wittom chord in all a tall by 2-00-00 wide and any other members is are assumed to be grapacity of 425 ps grider(s) for truss to mechanical connect plate capable of with .5A Simpson Strong- tended to connect tr at jt(s) 5. This connect is consider lateral for sis is designed in ac- tional Residential Co- .2 and referenced sis (s) or other connectif d sufficient to support d 47 lb up at 2-11-4 selection of such co- ibility of others. OAD CASE(S) secti- uss are noted as fro E(S) Standard F Snow (balanced): se=1.15 n Loads (lb/ft) : 1-2=-60, 2-3=-60, ntrated Loads (lb)	reas where e will fit betwers. e:, Joint 5 L i. to truss contition (by oth thistanding 5 g-Tie conne russ to bear hection is foi cordance words sections standard AN condevice(s rt concentra 4 on top ch on bottom nnection de tion, loads a ont (F) or ba	a rectangle veen the bot Jser Defined nections. ers) of truss 52 lb uplift at ctors ing walls due r uplift only a ith the 2018 5 R502.11.1 JSJ/TPI 1.) shall be ated load(s) : ord, and 9 lb chord. The vice(s) is the pplied to the ck (B).	tom to joint e to and 27 lb face				SEA 0363	

- overhangs non-concurrent with other live loads. 5) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 89 FaNC	
22090048	K01	Jack-Open	3	1	Job Reference (optional)	163018659

-1-8-7

1-8-7

Carter Components (Sanford, NC), Sanford, NC - 27332,

2-4-15

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 13:47:34 ID:faYnN6dBhpevJAG86_c9glzw7Rx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3

2-4-15

2-6-2

2-6-2

12 5.14 Г

3x5 🛛 2

0 5

2x4 🛛

0-0-10 2-6-2 2-5-8 0-0-10

4

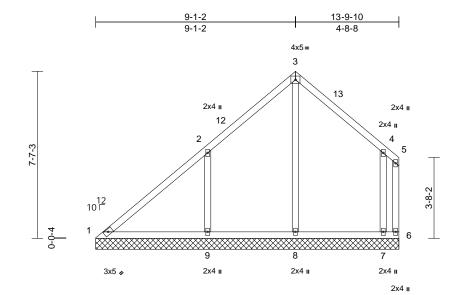
Scale = 1:29.8

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-MR	0.36 0.07 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 -0.01	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 12 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 2-6-2 oc purlins, ex Rigid ceiling directly bracing. (size) 3= Mecha 5=0-5-9 Max Horiz 5=60 (LC Max Uplift 3=-32 (LC Max Grav 3=51 (LC (LC 21) (lb) - Maximum Corr	cept end verticals. applied or 10-0-0 or anical, 4= Mechanica 11) 214), 5=-42 (LC 10) 21), 4=40 (LC 7), 5=	ed or g	 on the botton 3-06-00 tall 11 chord and an 7) Bearings are crushing cap 8) Refer to gird 9) Provide mec bearing plate 3) One RT8A M truss to bear connection is forces. 11) This truss is International 	has been designed in chord in all area by 2-00-00 wide w hy other members assumed to be: , bacity of 425 psi. er(s) for truss to t hanical connection capable of withst tiTek connectors r ing walls due to U is for uplift only and designed in accor Residential Code	is where ill fit betw Joint 5 U russ con n (by oth tanding 3 recomme PLIFT at d does no dance w sections	a rectangle veen the bott Jser Defined nections. ers) of truss : 2 Ib uplift at j ended to comr jt(s) 5. This of consider la ith the 2018 ; R502.11.1 a	to joint nect tteral					
TOP CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=103r Cat. II; Exp zone and C exposed ; c members a Lumber DC	Tension 2-5=-323/219, 1-2=(4-5=0/0 CE 7-16; Vult=130mph mph; TCDL=6.0psf; B b B; Enclosed; MWFR C-C Corner (3) zone; c end vertical left and ri and forces & MWFRS DL=1.60 plate grip DC DL=1.61; Pr=20.0 psf (, (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterio antilever left and rig ght exposed;C-C for for reactions shown DL=1.60	ır Iht	LOAD CASE(S)	nd referenced star Standard	ndard Aiv	ISI/TP11.			4		OR DEESS	ROLIN
Plate DOL	=1.15); Pf=20.0 psf (L); Is=1.0; Rough Cat E	um DOL=1.15 Plate										SEA	L

- Cs=1.00; Ct=1.10 3) Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live 4) load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on
- overhangs non-concurrent with other live loads. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5)

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 89 FaNC	
22090048	V1	Valley	1	1	Job Reference (optional)	163018660

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 13:47:34 ID:bh86E_RnDCl10scFkKqdZazw7SA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

_

Page: 1

13-9-10

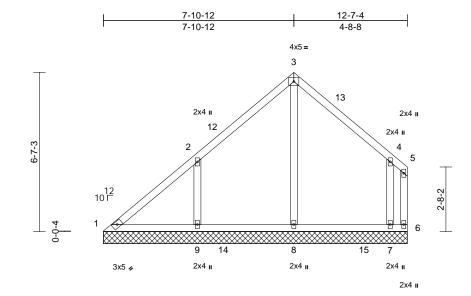
Scale = 1:52.5

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MSH	0.38 0.25 0.25	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 9	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 73 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, e: Rigid ceiling directl bracing. (size) 1=13-9-1 8=13-9-1 Max Horiz 1=216 (L Max Uplift 1=-47 (L 7=-185 (9=-207 (L Max Grav 1=237 (L	y applied or 6-0-0 oc 10, 6=13-9-10, 7=13-5 10, 9=13-9-10 .C 11) C 10), 6=-286 (LC 6), LC 15), 8=-19 (LC 11 LC 14) .C 24), 6=95 (LC 15), .C 6), 8=428 (LC 23),	only. For st see Standar or consult q 1 TCLL: ASCI Plate DOL= DOL=1.15); Cs=1.00; CT 5) Unbalanced design. 6) Gable requi 7) Gable studs 8) This truss his chord live lo 3-06-00 tall chord and a 10) Provide med	I ned for wind load dds exposed to wi d Industry Gable I alified building de 7-16; PT=20.0 ps I.15); Pf=20.0 ps I.15); Pf=20.0 ps Is=1.0; Rough Ca =1.10 snow loads have es continuous bo spaced at 4-0-0 c as been designed ad nonconcurrent nas been designed n chord in all area oy 2-00-00 wide w ny other members hanical connectic o capable of withs	ind (norm End Deta esigner as is (roof LL (Lum DC tt B; Fully been cor ttom chor oc. for a 10.1 with any d for a liv as where vill fit betv s, with BC	al to the face ils as applical is per ANSI/TF s: Lum DOL=: DL=1.15 Plate Exp.; Ce=0.9 nsidered for th d bearing. D psf bottom other live loa e load of 20.0 a rectangle ween the bottw DL = 10.0psf ers) of truss t), ble, >I 1. 1.15 ; ds. Opsf cm ; o				vegn. 73 b	
FORCES	(lb) - Maximum Cor Tension	mpression/Maximum		uplift at joint 1, 19 9 and 185 lb uplif			7 lb					
TOP CHORD	1-2=-310/214, 2-3= 4-5=-98/164, 5-6=-	177/198, 3-4=-154/1 127/225	97, 11) This truss is	designed in acco	rdance w	ith the 2018						000 c.
BOT CHORD	1-9=-59/198, 8-9=- 6-7=-48/68		R802.10.2 a	Residential Code nd referenced sta			ina				"TH CA	ARO
WEBS	3-8=-247/71, 2-9=-4	412/238, 4-7=-496/24	7 LOAD CASE(S)	Standard					/	S.	0,758	12/1/20
NOTES									L	t		
 Unbalance this design Wind: ASC Vasd=103 Cat. II; Exy zone and 3-0-5 to 6- 10-8-3 to 7 end vertica 	n. CE 7-16; Vult=130mpl mph; TCDL=6.0psf; E o B; Enclosed; MWFF C-C Exterior(2E) 0-0- 1-7, Exterior(2R) 6-1 13-8-3 zone; cantileve	CDL=6.0psf; h=25ft; RS (envelope) exterio 5 to 3-0-5, Interior (1) -7 to 10-8-3, Exterior(er left and right expos ed;C-C for members	r 2E) ed ;							A A A A A A A A A A A A A A A A A A A	SEA 0363	• –

Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Interior (1) 3-0-5 to 6-1-7, Exterior(2R) 6-1-7 to 10-8-3, Exterior(2E) 10-8-3 to 13-8-3 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932


G

mmm January 15,2024

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 89 FaNC	
22090048	V2	Valley	1	1	Job Reference (optional)	163018661

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 13:47:34 ID:q9f5YFLm5kl92d?jGfhlFuzw7SI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

12-7-4

Scale = 1:47.8

Loading TCLL (roof) Snow (Pf) TCDL BCLL	(psf) 20.0 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MSH	0.34 0.16 0.19	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 6	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0										Weight: 63 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins, exi Rigid ceiling directly bracing. (size) 1=12-7-4, 8=12-7-4, Max Horiz 1=180 (LC Max Uplift 1=-50 (LC 7=-200 (L 9=-174 (L) Max Grav 1=184 (LC	cept end verticals. applied or 6-0-0 oc 6=12-7-4, 7=12-7-4, 9=12-7-4 2 11) 10), 6=-268 (LC 6), C 15), 8=-6 (LC 11), C 14) 2 24), 6=106 (LC 15) 0 6), 8=443 (LC 23),	 only. For stisee Standar or consult q or Consult q TCLL: ASCE Plate DOL= DOL=1.15); Cs=1.00; Ct 5) Unbalanced design. 6) Gable requin 7) Gable studs 8) This truss has chord live lo 9) * This truss on the botto 3-06-00 tall chord and a 10) Provide medical 	snow loads have res continuous bot spaced at 4-0-0 o as been designed ad nonconcurrent has been designed m chord in all area by 2-00-00 wide w ny other members chanical connection	nd (norm ind Deta signer as f (roof LL (Lum DC t B; Fully been cor tom chor c. for a 10.0 with any d for a liv s where ill fit betw , with BC	al to the face Is as applical as per ANSI/TF \pm per ANSI/TF \pm Lum DOL= \pm \pm L=1.15 Plate Exp.; Ce=0.5 (sidered for the d bearing.) psf bottom other live loa e load of 20.0 a rectangle reen the bottom DL = 10.0psf ers) of truss t), ble, Pl 1. 1.15 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	joint 6, 50 lb	e capable of withst uplift at joint 1, 6 I 9 and 200 lb uplift	b uplift a	t joint 8, 174						
TOP CHORD	1-2=-238/182, 2-3=- 4-5=-94/165, 5-6=-12		78, 11) This truss is	designed in accor Residential Code	dance w	th the 2018	nd					um.
BOT CHORD	1-9=-46/142, 8-9=-30 6-7=-36/50	6/50, 7-8=-36/50,	R802.10.2 a	nd referenced star			ind ind			13	WH CA	AROUT
WEBS	3-8=-252/55, 2-9=-3	79/220, 4-7=-503/25	D LOAD CASE(S)	Standard						S.	Ontes	The Ala
NOTES									4	t /	10/1	White the second
 Unbalance this design Wind: ASG Vasd=103 Cat. II; Exz zone and 3-0-5 to 4. (2E) 9-5-1 exposed ; 	ed roof live loads have n. CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; Bd p B; Enclosed; MWFR C-C Exterior(2E) 0-0-5 -11-1, Exterior(2R) 4-1 3 to 12-5-13 zone; can end vertical left and rig and forces & MWFRS	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior to 3-0-5, Interior (1) 1-1 to 9-5-13, Exterior tilever left and right pht exposed;C-C for									SEA 0363	• –

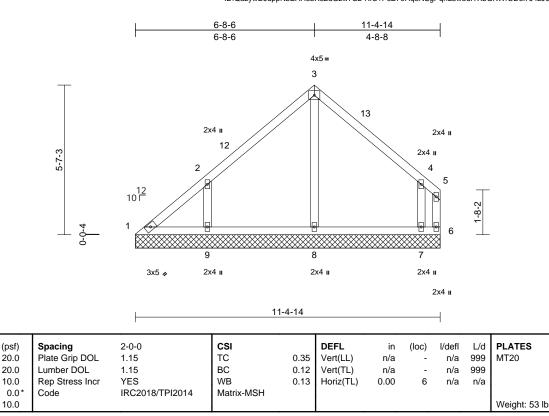
Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Interior (1) 3-0-5 to 4-11-1, Exterior(2R) 4-11-1 to 9-5-13, Exterior (2E) 9-5-13 to 12-5-13 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

GI

"minimi January 15,2024


Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 89 FaNC	
22090048	V3	Valley	1	1	Job Reference (optional)	163018662

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 13:47:35 ID:QazywDJuppNbBAH8bX82dGzw7SL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

GRIP

244/190

FT = 20%

TOP CHORD	2X4 SP IN	0.2
BOT CHORD	2x4 SP N	0.2
WEBS	2x4 SP N	0.3
OTHERS	2x4 SP N	0.3
BRACING		
TOP CHORD	Structural	wood sheathing directly applied or
	6-0-0 oc p	ourlins, except end verticals.
BOT CHORD	Rigid ceili	ng directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(size)	1=11-4-14, 6=11-4-14, 7=11-4-14,
		8=11-4-14, 9=11-4-14
	Max Horiz	1=145 (LC 11)

0.4 OD NI- 0

Scale = 1:43.1 Loading

TCLL (roof)

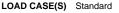
Snow (Pf)

LUMBER

TCDL

BCLL

BCDL


- Max Uplift 1=-50 (LC 10), 6=-251 (LC 21), 7=-225 (LC 15), 9=-149 (LC 14) 1=123 (LC 24), 6=131 (LC 15), Max Grav 7=581 (LC 21), 8=323 (LC 20), 9=431 (LC 20) FORCES (Ib) - Maximum Compression/Maximum
- Tension TOP CHORD 1-2=-156/150, 2-3=-162/151, 3-4=-166/155, 4-5=-103/161, 5-6=-139/231 BOT CHORD 1-9=-35/80, 8-9=-29/37, 7-8=-29/37, 6-7=-29/37

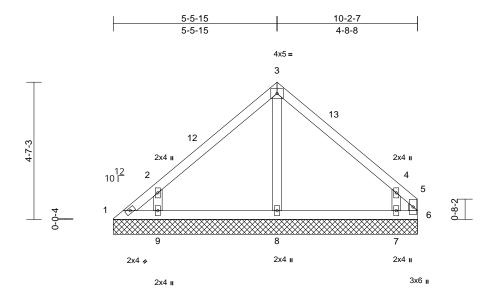
3-8=-238/35, 2-9=-370/222, 4-7=-511/271

WEBS NOTES

- 1) Unbalanced roof live loads have been considered for this design
- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Interior (1) 3-0-5 to 3-8-10, Exterior(2R) 3-8-10 to 8-3-6, Exterior (2E) 8-3-6 to 11-3-6 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this 5) desian.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 8)
- chord live load nonconcurrent with any other live loads. 9) * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 251 lb uplift at joint 6, 50 lb uplift at joint 1, 149 lb uplift at joint 9 and 225 lb uplift at joint 7.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 89 FaNC	
22090048	V4	Valley	1	1	Job Reference (optional)	163018663

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 13:47:35 ID:0?IpIBG?Wu_0KiYZwOaL?dzw7SO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

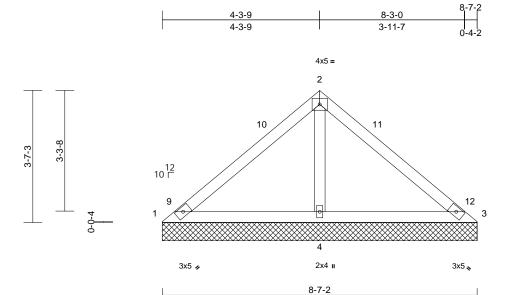
10-2-7

Scale = 1:38.6

Loading TCLL (roof) Snow (Pf) TCDL	(psf) 20.0 20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI TC BC WB	0.36 0.12 0.10	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 6	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0* 10.0	Code	IRC2018/TPI2014	Matrix-MSH							Weight: 43 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 1=10-2-7, 8=10-2-7, Max Horiz 1=109 (LC Max Uplift 1=-52 (LC 7=-242 (L Max Grav 1=71 (LC	cept end verticals. applied or 10-0-0 oc 6=10-2-7, 7=10-2-7, 9=10-2-7 2 11) 12), 6=-239 (LC 21) C 15), 9=-139 (LC 21) 11), 6=171 (LC 15), 2 21), 8=279 (LC 21)	only. For stu see Standar or consult qu 1) TCLL: ASCE Plate DOL=' DOL=1.15); Cs=1.00; Ct 5) Unbalanced design. 6) Gable requir 7) Gable studs 8) This truss ha chord live lo 9) * This truss ha on the botton 3-06-00 tall l	.15); Pf=20.0 ps Is=1.0; Rough Ci =1.10 snow loads have es continuous bo spaced at 4-0-0 is been designed ad nonconcurren on chord in all are by 2-00-00 wide v by other member	vind (norm End Deta esigner a: sf (roof LL f (Lum DC t (Lum DC been cor bttom chor oc. f for a 10. t with any ed for a liv as where will fit betv s.	al to the face ils as applica s per ANSI/TI :Lum DOL= :L1.15 Plate Exp.; Ce=0.9 asidered for the d bearing. 0 psf bottom other live loa te load of 20.0 a rectangle veen the bottom), ble, PI 1. 1.5 e); his ds. Opsf				Trogn. 10 D	
FORCES	(lb) - Maximum Com Tension	pression/Maximum	bearing plate	capable of with uplift at joint 1, 1	standing 2	239 Ib uplift at	t					
TOP CHORD	1-2=-135/114, 2-3=- 4-5=-149/143, 5-6=-	,	10, 242 lb uplift	at joint 7.			u					
BOT CHORD				Residential Cod	e sections	s R502.11.1 a	and					Dilli
WEBS	3-8=-195/7, 2-9=-45	6/279, 4-7=-534/316	LOAD CASE(S)	nd referenced sta Standard	andard Ar	NSI/TPI 1.				15	RTHOF	TO MAN
this design 2) Wind: ASC Vasd=103 Cat. II; Ex zone and 3-0-5 to 7- cantilever right expos	CE 7-16; Vult=130mph imph; TCDL=6.0psf; B0 p B; Enclosed; MWFR: C-C Exterior(2E) 0-0-5 -1-0, Exterior(2E) 7-1-0 left and right exposed sed;C-C for members a ns shown; Lumber DO	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior to 3-0-5, Exterior(2F to 10-1-0 zone; ; end vertical left and and forces & MWFRS)						Contraction of the second seco		SEA 0363	• –

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

GI mmm January 15,2024



Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 89 FaNC	
22090048	V5	Valley	1	1	Job Reference (optional)	163018664

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 13:47:35 ID:XpkR4rGNlbs9jZzNMh36SQzw7SP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:31.4

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MP	0.40 0.38 0.14	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 32 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	Max Horiz 1=80 (LC	applied or 6-0-0 oc 3=8-7-2, 4=8-7-2 11)	5) ed or 6) 7) 8) 9)	Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced design. Gable requiri Gable studs This truss ha chord live loa * This truss h	7-16; Pr=20.0 p 15); Pf=20.0 ps is=1.0; Rough Ci 1.10 snow loads have es continuous bc spaced at 4-0-0 is been designed ad nonconcurren nas been designed in chord in all are	f (Lum DC at B; Fully been cor ttom chor oc. I for a 10. t with any of for a liv	DL=1.15 Plate Exp.; Ce=0. Insidered for t rd bearing. 0 psf bottom other live loa re load of 20.	e 9; his ads.					
FORCES TOP CHORD BOT CHORD WEBS	Max Uplift 1=-48 (LC 4=-104 (L Max Grav 1=87 (LC (LC 20) (lb) - Maximum Com Tension 1-2=-127/320, 2-3=- 1-4=-215/187, 3-4=- 2-4=-517/258	C 14) 20), 3=87 (LC 21), 4 pression/Maximum 127/320	^{I=693} 10 11	 chord and ar provide mec bearing plate 1, 48 lb uplift This truss is International 	by 2-00-00 wide way other member hanical connectine e capable of wither at joint 3 and 10 designed in accord Residential Cod nd referenced star Standard	s. on (by oth standing 4 4 lb uplift ordance w e sections	ers) of truss 18 lb uplift at at joint 4. ith the 2018 \$ R502.11.1 a	to joint					
this design 2) Wind: ASC Vasd=103	ed roof live loads have n. CE 7-16; Vult=130mph mph; TCDL=6.0psf; Bi p B; Enclosed; MWFR	(3-second gust) CDL=6.0psf; h=25ft;									TIN	ORTH CA	ROIN

zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Exterior(2R) 3-0-5 to 5-7-6, Exterior(2E) 5-7-6 to 8-7-6 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 89 FaNC				
22090048	V6	Valley	1	1	Job Reference (optional)	163018665			

3-1-2

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 13:47:36 ID:7E2JSqDVSgUas5EohZWPrnzw7SS-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-10-3

3

2x4 💊

3-1-2 2-9-0 4x5 = 2 2-3-8 2-7-3 12 10 ∟ 0-0-4 4 2x4 🛚

6-2-5

Scale = 1:27.4

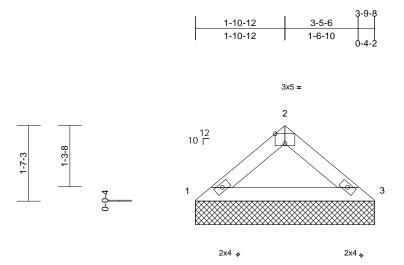
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MP	0.17 0.19 0.06	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 23 lb	GRIP 244/190 FT = 20%
BOT CHORD 6-2-5 (Rigid o bracin; REACTIONS (size) Max Ho Max Up Max Gra FORCES (lb) - N Tensic TOP CHORD 1-2=-8	 No.2 No.3 Iral wood she co purlins. eiling directly 3. 1=6-2-5, 1 itz 1=-57 (LC ift 3=-3 (LC ift 3=-3 (LC ift 4=420 (Lf 4=420 (L	15), 4=-54 (LC 14) C 20), 3=100 (LC 21) C 21) apression/Maximum 8/168	9) 1(), 1 [,]	 design. Gable requil Gable studs This truss hichord live lo * This truss on the botto 3-06-00 tall chord and a Chord and a 54 lb up This truss is Internationa 	designed in acc Residential Co nd referenced s	bottom chor) oc. dd for a 10.0 nt with any read for a liv reas where will fit betw ers. tion (by oth hstanding 3 cordance w de sections	d bearing.) psf bottom other live loa e load of 20. a rectangle veen the bott ers) of truss Ib uplift at jo ith the 2018 R502.11.1 a	ads. .0psf tom to pint 3					

NOTES

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 89 FaNC	
22090048	V7	Valley	1	1	Job Reference (optional)	163018666

Run: 8.63 S Nov 1 2023 Print: 8.630 S Nov 1 2023 MiTek Industries, Inc. Fri Jan 12 13:47:36 ID:Zvl8HbZVG4moSHQWoMZpwOzw7Vu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3-9-8

Page: 1

Scale =	1:24.4
---------	--------

Plate Offsets (X, Y): [2:0-2-8,Edge]

		-										
Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC	0.11	DEFL Vert(LL)	in n/a	(loc) -	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.09	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0		;								Weight: 12 lb	FT = 20%
LUMBER				s spaced at 4-0-0 o								
TOP CHORD				has been designed bad nonconcurrent			do					
BOT CHORD	2x4 SP No.2			has been designe								
BRACING TOP CHORD	Structural wood she	athing directly appli	on the hett	om chord in all are			. , , , , , , , , , , , , , , , , , , ,					
	3-9-8 oc purlins.	auning unecuy appir	3-06-00 tal	by 2-00-00 wide v		veen the botto	om					
BOT CHORD		applied or 10-0-0 o		any other members			_					
	bracing.			chanical connection te capable of withs								
REACTIONS				uplift at joint 3.	starraing	2 ib apint at j	onn					
	Max Horiz 1=-33 (LC Max Uplift 1=-12 (LC		11) This truss is	s designed in acco	ordance w	ith the 2018						
	Max Grav 1=179 (LC		1 Internationa	al Residential Code			nd					
FORCES	(lb) - Maximum Con		/ ROUZ.10.2	and referenced sta	andard Ar	NSI/TPI 1.						
	Tension		LUAD CASE(S	Januaru								
TOP CHORD	,	32/86										
BOT CHORD	1-3=-53/170											
NOTES												
 Unbalance this design 	ed roof live loads have n	been considered to	r									
	 CE 7-16; Vult=130mph	(3-second aust)										
	Bmph; TCDL=6.0psf; B		;								MILLIN	11111
	p B; Enclosed; MWFR										WAH CA	Rolly
	C-C Exterior(2E) zone end vertical left and ri									N	R	in Lille
	and forces & MWFRS								/	22	U. FESS	The year
	OL=1.60 plate grip DC		3						4	e n		and I
	signed for wind loads i								-	() j	. 4	1 1 E
	studs exposed to wind								=	1	SEA	∖L : =
	lard Industry Gable En								Ξ		0363	22 : E
	CE 7-16; Pr=20.0 psf (. 0000	: : :
	_=1.15); Pf=20.0 psf (L									2		- 1 - S
	5); Is=1.0; Rough Cat E	B; Fully Exp.; Ce=0.9	Э;							2.1	N. SNOW	FER. A.S
Cs=1.00;										1	A GIN	E. ERN
 Unbalance design. 	ed snow loads have be	een considered for ti	115								SEA 0363	HLB
	uires continuous botto	m chord bearing.									A. C	111111
,		· · · · · · · · · · · · · · · · · · ·									Januar	y 15,2024
											• c	,,

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

