

Kempsville Sanford Component Plant 298 Harvey Faulk Rd Sanford, NC 27332

Phone #:919-775-1450

Builder: DRB HOMES NC

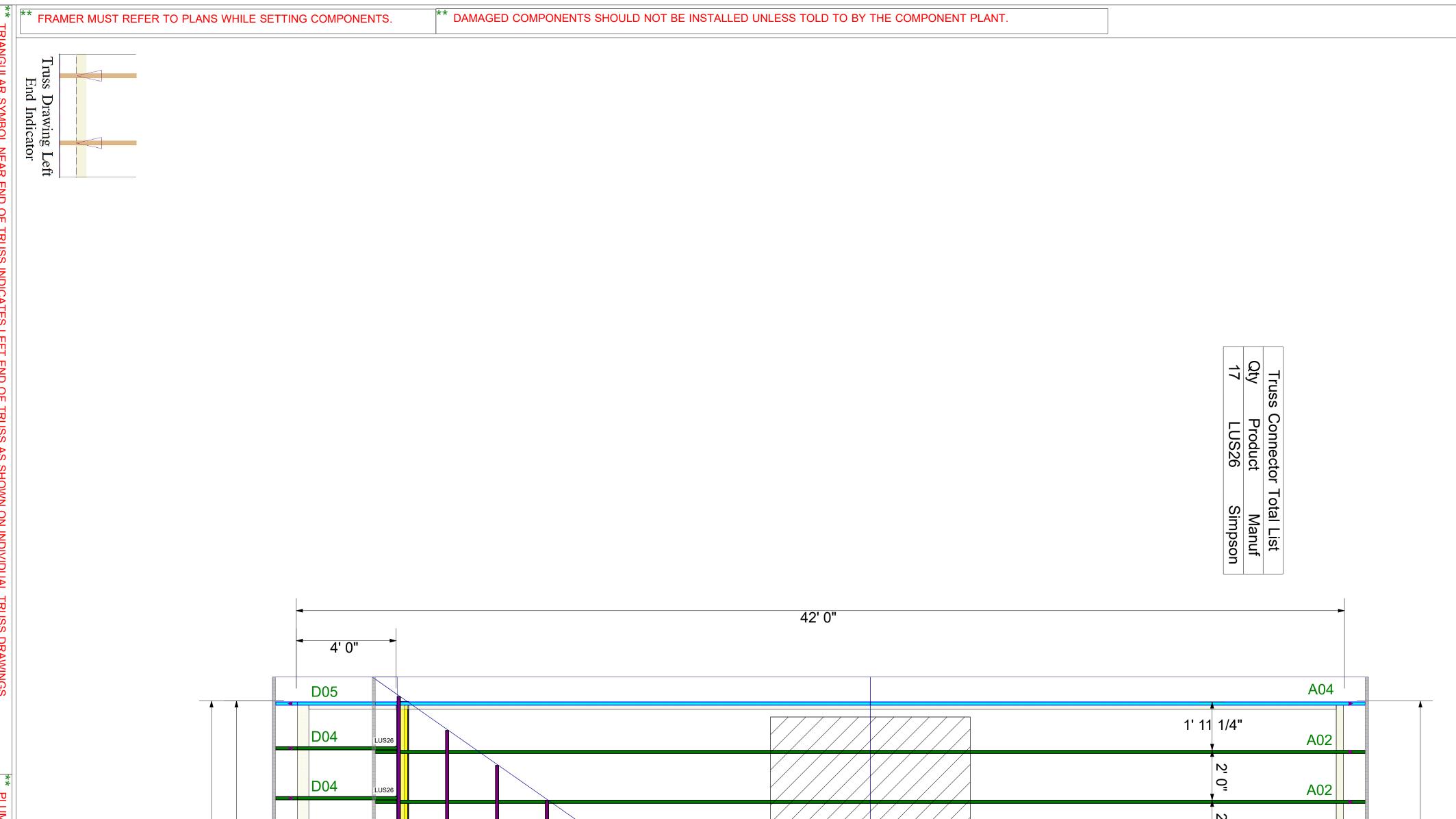
Model: CAMERON 2 - 88 FaNC

THE PLACEMENT PLAN NOTES:

1. The Placement Plan is a diagram for truss installation. It is not an engineered drawing and has not been reviewed by an engineer. The Owner/Building Designer is responsible for obtaining an engineer's review if one is required by the local jurisdiction.

2. The responsibilities of the Owner, Contractor, Building Designer, Component Designer and Component Manufacturer shall be as set forth in ANSI/TPI 1. Capitalized terms shall be as defined in ANSI/TP 1 unless otherwise indicated.

3. Each Component is designed as an individual component utilizing information provided by others. The Owner/Building Designer is responsible for reviewing all Component Submittal Packages and individual Component Design Drawings for compliance with the Construction Documents and compatibility with the overall Building design.

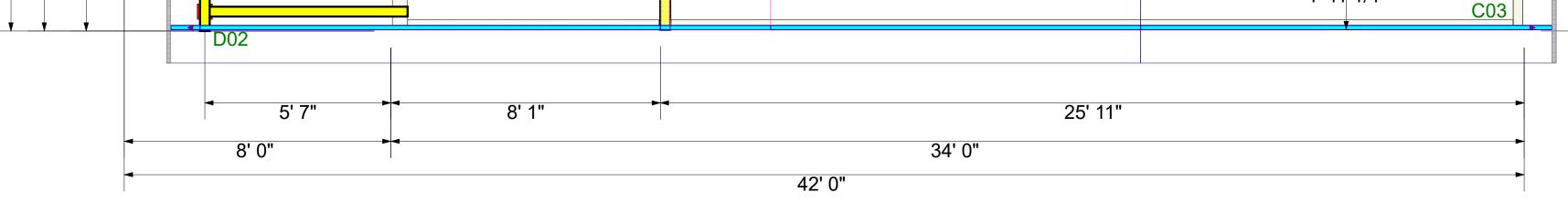

4. Contractor will not proceed with component installation until the Owner/Building Designer has reviewed the Component Submittal Package. Questions on the suitability of any Component will be resolved by the Building Designer.

5. The Building Designer and Contractor are responsible for all temporary and permanent bracing.

6. The Placement Plan assumes the building is dimensionally correct, structurally sound, and in a suitable condition to support each Component during installation and thereafter, including but not limited to installation of all bearing points. Proper design and construction of all structural components, including foundations, headers, beams, walls and columns are the responsibility of the Owner, Building Designer and Contractor.

7. Do not cut, drill, or modify any Component without first consulting the Component Manufacturer or Building Designer. Damaged Components shall not be installed unless directed by the Building Designer or approved by the Component Manufacturer.

8. Components must be handled and installed following all applicable safety standards and best practices, including but not limited to BCSI, OSHA, TPI and local codes. Failure to properly handle, brace or otherwise install Component can result in serious injury or death.


*

		D04	LUS26										2' 0"	A02
		D04	LUS26										2' 0"	A02
		D04	LUS26										2' 0"	A02
22' 0"		D04	LUS26										2' 0"	A02
		D04	LUS26	V01	V02	V03	V04	V05	V06	707			2' 0"	A01
		D04	LUS26										2' 0"	A01
		D04	LUS26										2' 0"	A01
38' O"		D04	LUS26										2' 0"	A01
		D05											1' 10 1/4"	A03
			D03		LUS2	6							2' 0"	B01 B02
	6' 3 1/2"		D03		LUS2	6							2' 0"	B02
			D03		LUS2	6				1877			1' 11 1/4"	B03
		_	D01						LUS26	3			1' 9 1/4"	C01
0"	(0)		D01						LUS26	Š			2' 0"	C01
	9' 8 1/2"		D01						LUS26				2'0"	C01
			D01						LUS26	3			2'0'	C02
													1' 11 1/4"	C03

** CUTTING OR DRILLING OF COMPONENTS SHOULD NOT BE DONE WITHOUT CONTACTING COMPONENT SUPPLIER FIRST. CUSTOMER TAKES FULL RESPONSIBILITY FOR COMPONENTS IF CUT BEFORE AUTHORIZATION.

General Notes:

38' 0"

** GIRDERS MUST BE FULLY CONNECTE	D TOGETHER PRIOR TO ADDING ANY LOADS.	DIMENSIONS ARE READ AS: FOOT-INCH-SIXTEENTH.	S TO TRUSS CONNECTIONS ARE TOE-NAILED, UNLESS NOTED OTHERWISE.				
Date:	DRB HOMES NC		THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual components to be incorporated into the building design at the specification of the building designer. See Individual design sheets for	00/00/00	00/00/		00/00/
NTS NTS Designer: ND Project Numb 22090053 Sheet Numb	CAMERON 2 - 88 FaNC	Enpsylle Building Materials	each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor systems and for the overall structure. The design of the truss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding the bracing, consult		/00/ N	00 00	Revision
	COMPONENT PLACEMENT PLAN	A Division of the Carter Lumber Company	"Bracing of Wood Truss" available from the Truss Plate Institute, 583 D'Onifrio Drive: Madison, WI 53179	Name	lame	lame	s Jame

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 22090053 DRB HOMES - 88 FaNC

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Sanford, NC)).

Pages or sheets covered by this seal: I54567158 thru I54567179

My license renewal date for the state of North Carolina is December 31, 2022.

North Carolina COA: C-0844

October 6,2022

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 88 FaNC	
22090053	A01	Common	4	1	Job Reference (optional)	154567158

Loading

TCLL (roof)

Snow (Pf)

LUMBER

TCDL

BCLL

BCDL

WFBS

SLIDER

BRACING

Run: 8.53 S Sep 22 2022 Print: 8.530 S Sep 22 2022 MiTek Industries, Inc. Wed Oct 05 11:07:18

Page: 1 ID:bD4xs?Y6N8EeiWi69pI1?iyGMN6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -0-10-8 0-10-8 38-9-8 6-6-3 12-8-13 18-5-2 19-5-14 25-2-3 31-4-13 37-11-0 6-2-11 5-8-5 6-2-11 6-6-3 6-6-3 5-8-5 1-0-11 0-10-8 5x8= 7 6x8 🗸 6x8 💊 27 28 26 29 6 8 12 7 11-9-0 2x4. 2x4 🧸 4 10 4x5 🛩 4x5 👟 3 11 ¹²13 2 0-0 K 17 30 16 15 31 14 4x8= 4x8= 4x8= 4x8= 5x8 II 5x8 ı 12-8-13 37-11-0 25-2-3 12-8-13 12-8-13 12-5-5 Scale = 1:76.6 Plate Offsets (X, Y): [6:0-4-0,0-4-4], [8:0-4-0,0-4-4] 2-0-0 CSI DEFL in l/defl L/d PLATES GRIP (psf) Spacing (loc) 20.0 Plate Grip DOL 1.15 тс 0.40 Vert(LL) -0.31 14-17 >999 240 MT20 244/190 20.0 Lumber DOL 1.15 BC 0.83 Vert(CT) -0.47 14-17 >960 180 10.0 Rep Stress Incr WB 0.56 Horz(CT) YES 0.07 12 n/a n/a 0.0 Code IRC2018/TPI2014 Matrix-MSH Weight: 282 lb 10.0 FT = 20% 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; 2x6 SP No 2 TOP CHORD Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior BOT CHORD 2x6 SP No.2 zone and C-C Exterior(2E) -0-8-1 to 3-1-7, Interior (1) 2x4 SP No.3 *Except* 17-7,14-7:2x4 SP No.2 3-1-7 to 15-2-0, Exterior(2R) 15-2-0 to 22-9-0, Interior Left 2x4 SP No.3 -- 1-6-0, Right 2x4 SP No.3 (1) 22-9-0 to 34-9-9, Exterior(2E) 34-9-9 to 38-7-1 zone; -- 1-6-0 cantilever left and right exposed ; end vertical left and right exposed C-C for members and forces & MWERS TOP CHORD Structural wood sheathing directly applied or for reactions shown; Lumber DOL=1.60 plate grip 4-1-11 oc purlins. DOL=1.60 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 bracing.

WEBS 1 Row at midpt 7-17.7-14 REACTIONS 2=0-3-8, 12=0-3-8 (size) Max Horiz 2=-265 (LC 12) Max Uplift 2=-151 (LC 14), 12=-151 (LC 15) Max Grav 2=1783 (LC 24), 12=1783 (LC 25) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/20, 2-4=-2588/259, 4-5=-2321/228, 5-7=-2355/367, 7-9=-2354/367, 9-10=-2321/228. 10-12=-2589/259 12-13=0/20 BOT CHORD 2-17=-297/2334, 14-17=-16/1512, 12-14=-130/2136 WEBS 5-17=-477/249, 7-17=-236/1197, 4-17=-296/201, 7-14=-236/1197, 9-14=-477/248, 10-14=-297/202 NOTES

Unbalanced roof live loads have been considered for 1) this design.

- Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this 4) desian.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads
- This truss has been designed for a 10.0 psf bottom 6) chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at it(s) 2 and 12. This connection is for uplift only and does not consider lateral forces.
- This truss is designed in accordance with the 2018 9) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 88 FaNC	
22090053	A02	Common	6	1	Job Reference (optional)	154567159

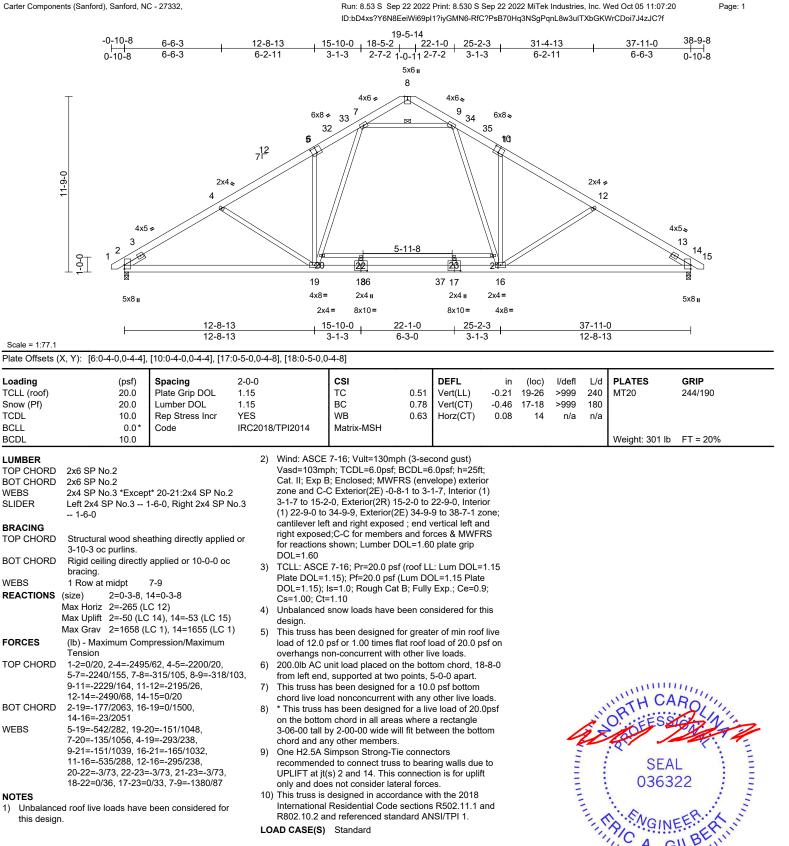
TCDL

BCLL

BCDL

WEBS

WEBS

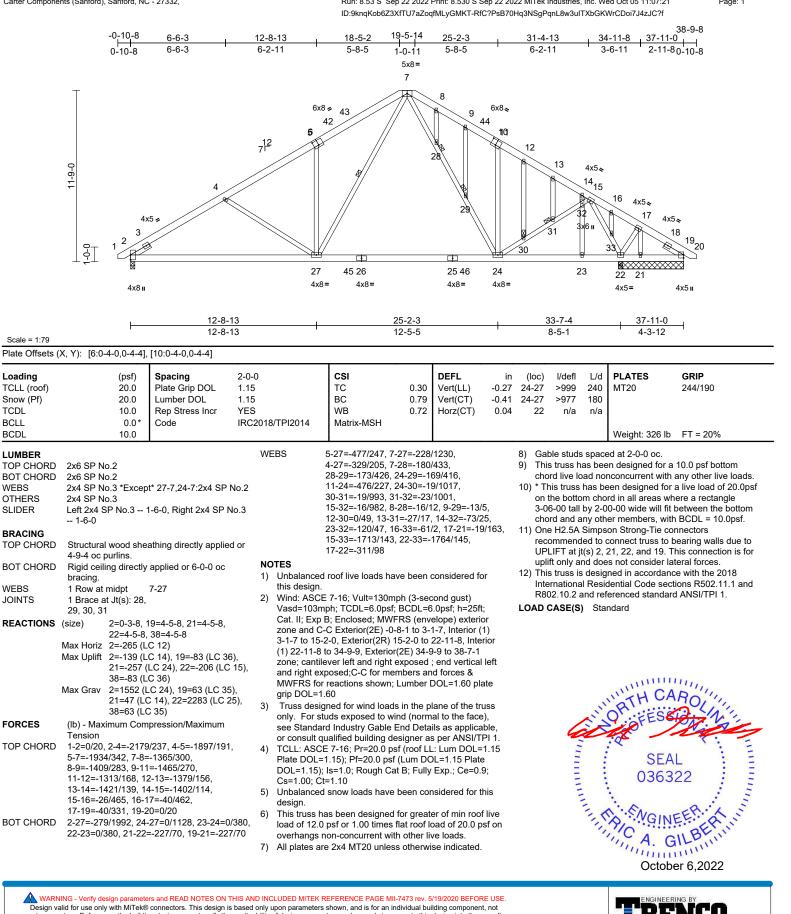

WEBS

NOTES

1)

GI 111111111 October 6,2022

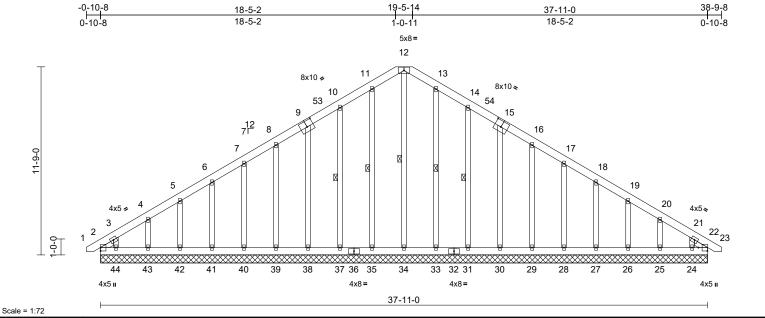
818 Soundside Road Edenton, NC 27932


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

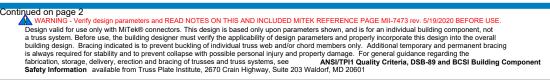
Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 88 FaNC	
22090053	A03	Common Structural Gable	1	1	Job Reference (optional)	154567160

Run: 8.53 S Sep 22 2022 Print: 8.530 S Sep 22 2022 MiTek Industries, Inc. Wed Oct 05 11:07:21

Page: 1


818 Soundside Road Edenton, NC 27932

a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 88 FaNC	
22090053	A04	Common Supported Gable	1	1	Job Reference (optional)	154567161

Run: 8.53 S Sep 22 2022 Print: 8.530 S Sep 22 2022 MiTek Industries, Inc. Wed Oct 05 11:07:22 ID:husayWcpnt6IYOYkURLMI2yGMJ9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Plate Offsets (X, Y): [9:0-5-0,0-4-8], [15:0-5-0,0-4-8], [22:Edge,0-6-12]

Loading		(psf)	Spacing	1-11-4	csi			DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.15	TC		0.05	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)		20.0		1.15	BC		0.03	Vert(CT)	n/a	-	n/a	999		
TCDL		10.0	Rep Stress Incr	YES	WB		0.15	Horz(CT)	0.01	22	n/a	n/a		
BCLL		0.0*	Code	IRC2018/TPI2014	Matrix	-MSH								
BCDL		10.0											Weight: 358 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS SLIDER BRACING TOP CHORD	2x6 SP N 2x4 SP N Left 2x4 S No.3 0-	o.2 o.3 *Excep SP No.3 (11-6	t* 34-12:2x4 SP No.2)-11-6, Right 2x4 SP athing directly applied		Max Grav	26=161 (L0 28=162 (L0 30=164 (L0 33=232 (L0 35=232 (L0 38=164 (L0	C 25), C 25), C 25), C 22), C 22), C 22), C 21), C 21),	25=165 (LC 27=161 (LC 29=154 (LC 31=228 (LC 34=191 (LC 37=228 (LC 39=154 (LC	25), 25), 25), 22), 22), 27), 21), 24),	WEBS		10-37 7-40= 4-43= 13-33 15-30 17-28 19-26	-123/73, 6-41=-1 -128/78, 3-44=-1 =-193/39, 14-31= =-125/74, 16-29= =-123/73, 18-27= =-122/71, 20-25=	125/73, 8-39=-115/6 23/72, 5-42=-122/7 14/129, 189/86, 115/66, 123/72,
	6-0-0 oc		anning anoonly applied					41=161 (LC 43=165 (LC				21-24	=-92/109	
BOT CHORD	bracing.	0 ,	applied or 10-0-0 oc				C 24),	45=233 (LC		/ -	alanced		ve loads have be	en considered for
WEBS	1 Row at		12-34, 11-35, 10-37, 13-33, 14-31	FORCES	(lb) - Ma	ximum Comp		on/Maximum		this	design.			
	Max Horiz	$\begin{array}{c} 24=37-11\\ 26=37-11\\ 30=37-11\\ 33=37-11\\ 35=37-11\\ 35=37-11\\ 40=37-11\\ 40=37-11\\ 42=37-11\\ 42=37-11\\ 2=-260 (L\\ 24=-132 (L\\ 24=-132 (L\\ 28=-49 (L\\ 30=-50 (L\\ 33=-15 (L\\ 37=-60 (L\\ 39=-43 (L\\ 41=-49 (L\\ 41=-49 (L\\ 43=-50 (L\\ 4$	$\begin{array}{l} 0,22=37-11-0,\\ 0,25=37-11-0,\\ 0,29=37-11-0,\\ 0,29=37-11-0,\\ 0,31=37-11-0,\\ 0,39=37-11-0,\\ 0,39=37-11-0,\\ 0,39=37-11-0,\\ 0,39=37-11-0,\\ 0,41=37-11-0,\\ 0,41=37-11-0,\\ 0,43=37-11-0,\\ 0,43=37-11-0,\\ 0,45=37-11-0,\\ 0,45=37-11-0,\\ 0,53=5,50\ (LC 12),22=58\ (LC 13)\ (LC 15),25=-50\ (LC 15),25=-50\ (LC 15),25=-50\ (LC 15),25=-50\ (LC 15),25=-43\ (LC 15)\ (215),35=-24\ (LC 14)\ (214),40=-49\ (LC 14)\ (214),40=-49\ (LC 14)\ (214),40=-49\ (LC 13)\ (LC 12),49=-58\ (LC 13)\ (LC 12),49=-58\ (LC 13)\ (LC 12),49=-58\ (LC 13)\ (LC 15)\ (LC 12),49=-58\ (LC 13)\ (LC 14)\ (LC $	BOT CHORD	4-5=-18 7-8=-13 10-11=- 12-13=- 20-21=- 2-44=-8 42-43=- 40-41=- 38-39=- 35-37=- 30-31=- 28-29=- 28-29=- 26-27=-	0, 2-3=-182/1 7/167, 5-6=-1 3/140, 8-10=- 135/225, 11 135/225, 11-1 105/165, 16-1 72/49, 18-19= 158/91, 21-22 8/183, 43-44 88/183, 37-36 88/184, 34-35 88/184, 34-35 88/184, 29-30 88/182, 27-25 86/182, 27-25 86/182, 22-24	63/15 122/1 12=-14 14=-13 17=-62 =-82/5 2=-134 =-88/1 2=-88/ 3=-88/ 3=-88/ 3=-88/ 3=-88/ 3=-88/ 3=-88/ 3=-86/ 3=-86/ 3=-86/	0, 6-7=-149/ 93, 19/245, 35/216, 2/78, 5, 19-20=-10 3/77, 22-23=(83, 183, 183, 183, 184, 184, 184, 184, 184, 184, 184, 184)8/72,		A. Thursday		SEA 0363	L 22 L L B F F F R H B F F H H H H H H H H H H H H H H H H

Page: 1

Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 88 FaNC	
22090053	A04	Common Supported Gable	1	1	Job Reference (optional)	154567161

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-8-1 to 2-11-8, Exterior(2N) 2-11-8 to 14-11-8, Corner(3R) 14-11-8 to 22-11-8, Exterior(2N) 22-11-8 to 34-9-9, Corner(3E) 34-9-9 to 38-7-1 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 7) All plates are 2x4 MT20 unless otherwise indicated.
- 8) Gable requires continuous bottom chord bearing.
- 9) Gable studs spaced at 2-0-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members.
 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 149 lb uplift at joint 2, 58 lb uplift at joint 22, 24 lb uplift at joint 35, 60 lb uplift at joint 37, 50 lb uplift at joint 38, 43 lb uplift at joint 39, 49 lb uplift at joint 40, 49 lb uplift at joint 41, 49 lb uplift at joint 42, 50 lb uplift at joint 33, 63 lb uplift at joint 31, 50 lb uplift at joint 30, 43 lb uplift at joint 31, 50 lb uplift at joint 30, 43 lb uplift at joint 29, 49 lb uplift at joint 27, 49 lb uplift at joint 26, 50 lb uplift at joint 27, 49 lb uplift at joint 26, 50 lb uplift at joint 25, 132 lb uplift at joint 24, 149 lb uplift at joint 2 and 58 lb uplift at joint 22.
- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEX REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Run: 8.53 S Sep 22 2022 Print: 8.530 S Sep 22 2022 MiTek Industries, Inc. Wed Oct 05 11:07:22 ID:husayWcpnt6IYOYkURLMI2yGMJ9-RfC?Ps870Hq3NSgPqnL&w3uITXbGKWrCDoi7J4zJC?f Page: 2

Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 88 FaNC	
22090053	B01	Common	1	1	Job Reference (optional)	4567162

Run: 8.53 S Sep 22 2022 Print: 8.530 S Sep 22 2022 MiTek Industries, Inc. Wed Oct 05 11:07:22 ID:tZ4bPv91BhnMSJUNdOev4YyGMIS-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5 11:07:22 Page: 1

$\begin{array}{c c c c c c c c c c c c c c c c c c c $					ID:tZ4bPv91	BhnMSJUNd	Dev4YyGMIS-F	RfC?PsB70)Hq3NSgl	PqnL8w3	ulTXbGl	KWrCDoi7J4z	JC?f
$\frac{10^{10}}{10^{10}} = \frac{10^{10}}{10^{10}} $													
$\frac{14}{12} = \frac{1}{2} + $		0-10-8	0-0-0		0-0-0	5x6=	0-0-	.0			0	-0-0	0-10-8
$\frac{11}{10} = \frac{1}{10} + \frac{1}{10}$	т					6							
$\frac{1}{14} \frac{1}{2} \frac{24}{2} \frac{3}{5} \frac{1}{10} 1$					/								
$\frac{14}{100} = \frac{24}{4}$ $\frac{14}{4}$ $\frac{11}{4}$ $\frac{11}{4$				12 7	5 / /	$// \mathbb{N}$		7 27					
$\frac{1}{9} \int_{1}^{1} \int_{1}^{1} \int_{1}^{1} \int_{1}^{2} \int_{1}^$								\searrow	2x	4 1			
$\frac{435 \times 1}{9}$ $\frac{1}{2} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{2} \frac{1}{3} \frac{1}$	10-11			4						8			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10-,-												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		4x	5#									\searrow	4x5 ≈
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		- /					Υ.	$\backslash //$	/				9 10
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0-0-1		\$		₩								
43.6 II 43.6 II 43.6 II 114-13 114-13 33-11.0 114-13 11-1.5 114-13 ale = 1.71.4 114-13 11-1.5 114-13 ale = 1.71.4 11-1.5 114-13 11-1.5 ale = 1.71.4 CSI DEFL in (loc) 1/deft L/deft Ming (psf) 20.0 Lumber DOL 1.15 BC 0.72 Vert(C1) 0.00 DEFL in (loc) 1/deft L/deft Matrix-MSH WBER 0.0° Code IRC2018/TPI2014 Matrix-MSH Matrix-MSH Weight: 232 lb FT = 20% WBER Code IRC2018/TPI2014 Matrix-MSH Matrix-MSH Weight: 232 lb FT = 20% MBER Code IRC2018/TPI2014 Matrix-MSH Matrix-MSH Weight: 232 lb FT = 20% MBER Code IRC2018/TPI2014 Matrix-MSH Ublanaced snow loads have been considered for this Code Code Code Code Int-15; ls = 10; Rough Cat B; Fully Exp; Ce=09; Cas 1.0; CE=1.10 Code Code Code Code Code Code Cod	·	×	28	29					32		33		×
ale = 1:71.4 11-4-13 11-1-5 11-4-13 11-4-13 ading = 1:71.4 (psf) Spacing 2-0-0 CSI DEFL in (loc) I/defl L/d ading (Pf) 20.0 Plate Grip DOL 1.15 BC 0.68 Vert(LL) -0.19 12.15 >999 100 0L 10.0 Rep Stress Incr YES WB 0.36 Horz(CT) 0.06 10 n/a n/a 0L 0.0.0* Code IRC2018/TPI2014 Matrix-MSH WB 0.36 Horz(CT) 0.06 10 n/a n/a MBER Code IRC2018/TPI2014 Matrix-MSH Matrix-MSH Weight: 232 lb FT = 20% MBER 2x6 SP No.2 Son 2 Son 2 <td></td> <td>4x8 I</td> <td></td> <td></td> <td>3x5= 4x6=</td> <td></td> <td>4x6=</td> <td>3x5=</td> <td></td> <td></td> <td></td> <td></td> <td>4x8 I</td>		4x8 I			3x5= 4x6=		4x6=	3x5=					4x8 I
cade = 1:71.4 ading LL (roof) (psf) 20.0 Spacing 20.0 2-0-0 CSI TC 0.68 DEFL (vert(LL) in (loc) // ide Ld PLATES GRIP 00w (Pf) 20.0 Plate Grip DOL 1.15 BC 0.72 Vert(CT) -0.08 12.15 >999 180 0.0L 10.0 Rep Stress Incr Code IRC2018/TPI2014 Matrix-MSH Vert(CT) -0.06 10 n/a n/a MBER Code IRC2018/TPI2014 Matrix-MSH Matrix-MSH Vert(CT) -0.06 10 n/a n/a MBER PC CHORD 2x6 SP No.2 Structural wood sheathing directly asplied or 3-11-15 co purlins. 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15; Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cst Vertify Exp.; Ce=0.9; Vertify Exp.; Ce=0.9; Cst Vertify Exp.; Ce=0.9;		F											
LL (roof) 20.0 Plate Grip DOL 1.15 TC 0.68 Vert(LL) -0.19 12.15 >999 240 MT20 244/190 ow (P) 20.0 Lumber DOL 1.15 BC 0.72 Vert(LL) -0.19 12.15 >999 240 MT20 244/190 DL 10.0 Rep Stress Incr YES WB 0.36 Horz(CT) 0.06 10 n/a n/a MBER 0.0* Code IRC2018/TPI2014 Matrix-MSH Weight: 232 lb FT = 20% MBER 2x6 SP No.2 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15; Is=1-0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 UD=1.15; Is=1-0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 Ubhalanced snow loads have been considered for this design. 5 TC CHORD Structural wood sheathing directly applied or 3-11-5 oc purinis. This truss has been designed for a 10.0 psf lottom chard for 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 7 * This truss has been designed for a 10.0 psf bottom chard live load for 20.0 psf on overhangs non-concurrent with any other live loads. 7 * This truss has been designed for a 10.0 psf. 0.0 psf. 0.0 psf. 0.0 psf. 0.0 p	ale = 1:71.4		11-4-15			11-1-5					1-4-13		
ow (Pf) 20.0 (DL Lumber DOL 1.15 Rep Stress incr YES Code BC 0.72 WB Vert(CT) -0.30 12-15 >999 180 Horz(CT) 0.06 10 n/a n/a BLL 0.0* 10.0* Code IRC2018/TPI2014 Matrix-MSH Vert(CT) -0.30 12-15 >999 180 Horz(CT) 0.06 10 n/a n/a MBER 0.0* Code IRC2018/TPI2014 Matrix-MSH Vert(CT) -0.30 12-15 >999 180 Horz(CT) 0.06 10 n/a n/a MBER 0.0* TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pl=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Pl=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Pl=20.0 psf (Lum DOL=1.15 Plate DOL=1.15; Plate DOL=1	-					0.68						-	
LL 0.0* Code IRC2018/TPI2014 Matrix-MSH Weight: 232 lb FT = 20% MBER 10.0 2x6 SP No.2 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Plate DOL=1.15); Plate DOL=1.15); Plate DOL=1.15; Plate DOL=1.15; Plate DOL=1.15; Plate DOL=1.15; Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 Start SP No.2 *Except* 4.15,8-12:2x4 SP No.31-6-0 4) Unbalanced snow loads have been considered for this design. ACING 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. ACINOR Structural wood sheathing directly applied or 10-0-0 oc bracing. 5) This truss has been designed for a 10.0 psf bottom chord in all areas where a rectangle 3-06-00 till by 2-00-00 wide will fib tetween the bottom chord in all areas where a rectangle 3-06-00 toll by 2-00-00 wide will the beworn the bottom chord and any other members, with BCDL = 10.0psf. RCES (b) - Maximum Compression/Maximum Tension One H2:5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at tj(s) 2 and 10. This connection is for uplift	ow (Pf)	20.0 I	umber DOL 1.	15	BC	0.72	Vert(CT)	-0.30	12-15	>999	180	11120	211/100
MBER 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15, Pf=20.0 psf (Lum DOL=1.15); Pf=20.0 psf (Lu	LL	0.0*				0.50		0.00	10	II/a	n/a		
P CHORD 2x6 SP No.2 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15); Pf=20.0 psf (DoL=1.16); Provide Plate DOL=1.15; Provide Plate DOL=1.15; Pf=20.0 psf (DoL=1.16); Provide Plate DOL=1.15; Provide Plate DOL=1.15; Provide Plate DOL=1.16; Provide Plate DOL=10, Provide Plate DOL=10, Provide Plate DOL=10,		10.0		2) TOLL A	20F 7 46. D=-20 (4 45				weight: 23	2 ID FI = 20%
 2x4 SP No.2 *Except* 4-15,8-12:2x4 SP No.3 Left 2x4 SP No.3 1-6-0, Right 2x4 SP No.3 1-6-0 Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this design. This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. This truss has been designed for a 10.0 psf bottom chord live load on non-concurrent with other live loads. This truss has been designed for a 10.0 psf bottom overhangs non-concurrent with any other live loads. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with BCDL = 10.0psf. Max Grav 2=1644 (LC 24), 10=1644 (LC 25) Max Grav 2=1644 (LC 24), 10=1644 (LC 25) RCES (lb) - Maximum Compression/Maximum Tension 	P CHORD 2x6 S			Plate DC	L=1.15); Pf=20.0	psf (Lum DC	DL=1.15 Plate	Э					
 a. 1-6-0 b. Acting b. Acting<			4-15,8-12:2x4 SP No.3	3 Cs=1.00	; Ct=1.10		•						
 Actions Actions Actions RCES (lb) - Maximum Compression/Maximum Tension Actions Structural wood sheathing directly applied or 3-11-15 oc purlins. Actions Structural wood sheathing directly applied or 10-0-0 oc bracing. Actions Size 2=0-3-8, 10=0-5-8 (12 - 24) (1C - 12) (3-06 - 24) (1C -			6-0, Right 2x4 SP No.3	design.									
3-11-15 oc purlins. 3-11-15 oc purlins. overhangs non-concurrent with other live loads. T CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. ACTIONS (size) 2=0-3-8, 10=0-5-8 Max Horiz 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. Max Grav 2=1644 (LC 24), 10=1644 (LC 25) 8) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 10. This connection is for uplift		tural wood sheath	ning directly applied or	load of 1	2.0 psf or 1.00 tim	es flat roof l	oad of 20.0 p						
bracing. chord live load nonconcurrent with any other live loads. ACTIONS (size) 2=0-3-8, 10=0-5-8 Max Horiz 2=-241 (LC 12) Max Uplift 2=-136 (LC 14), 10=-136 (LC 15) Max Grav 2=1644 (LC 24), 10=1644 (LC 25) RCES (lb) - Maximum Compression/Maximum Tension Chord live load nonconcurrent with any other live loads.	3-11-	15 oc purlins.		overnanç 6) This trus	s has been desigr	ed for a 10.	0 psf bottom						
Max Horiz 2=-241 (LC 12) Solor for the bottom choice in all areas where a rectangle Max Uplift 2=-136 (LC 14), 10=-136 (LC 15) Solo-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. RCES (lb) - Maximum Compression/Maximum Tension One H2.5A Simpson Strong-Tie connections in for uplift	bracir	ng.	-										
Max Grav 2=1644 (LC 24), 10=1644 (LC 25) 8) One H2.5A Simpson Strong-Tie connectors RCES (lb) - Maximum Compression/Maximum Tension 00 H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to	Max Ho	oriz 2=-241 (LC	12)					om					
Tension UPLIFT at jt(s) 2 and 10. This connection is for uplift			,, , , ,					f.					
P CHORD 1-2-0/20 2-4-2312/220 4-6-2135/276 only and data not consider lateral formation	Tensi	on											
6-8=-2135/276, 8-10=-2312/220, 10-11=0/20 9) This truss is designed in accordance with the 2018	6-8=-2			9) This trus	s is designed in a	cordance w	ith the 2018						
T CHORD 2-15=-253/2074, 12-15=-17/1377, 10-12=-111/1893 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.			5=-17/1377,					and					
EBS 6-15=-145/1002, 6-12=-145/1002, 4-15=-497/293, 8-12=-497/293				LOAD CASE	(S) Standard							mini	CADUU
Unbalanced roof live loads have been considered for		ive loads have be	een considered for								- II	RTH	CAROLINE.
this design. Wind: ASCE 7-16: Vult=130mph (3-second gust)	this design.									4	i)	PFE	And
Vasd=103Gpt; ICDL=6.0ps; BCDL=6.0ps; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior	Vasd=103mph; T0	CDL=6.0psf; BCD)L=6.0psf; h=25ft;									K. C	
Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior SEAL zone and C-C Exterior(2E) -0-8-1 to 2-8-11, Interior (1) SEAL 2-8-11 to 13-6-13, Exterior(2R) 13-6-13 to 20-4-3, O36322	zone and C-C Ext	erior(2E) -0-8-1 t	o 2-8-11, Interior (1)							E		03	• •
Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-8-1 to 2-8-11, Interior (1) 2-8-11 to 13-6-13, Exterior(2R) 13-6-13 to 20-4-3, Interior (1) 20-4-3 to 31-2-5, Exterior(2E) 31-2-5 to 34-7-1 zone; cantilever left and right exposed ; end vertical left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60	Interior (1) 20-4-3	to 31-2-5, Exterio	or(2E) 31-2-5 to								. 8		
vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber	vertical left and rig	ht exposed;C-C	for members and							3		ENG.	INEER
DOL=1.60 plate grip DOL=1.60			m, Lumber								14	CA	GILBE
October 6 2022													

October 6,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2870 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 88 FaNC	
22090053	B02	Roof Special	2	1	Job Reference (optional)	154567163

Loading

TCDL

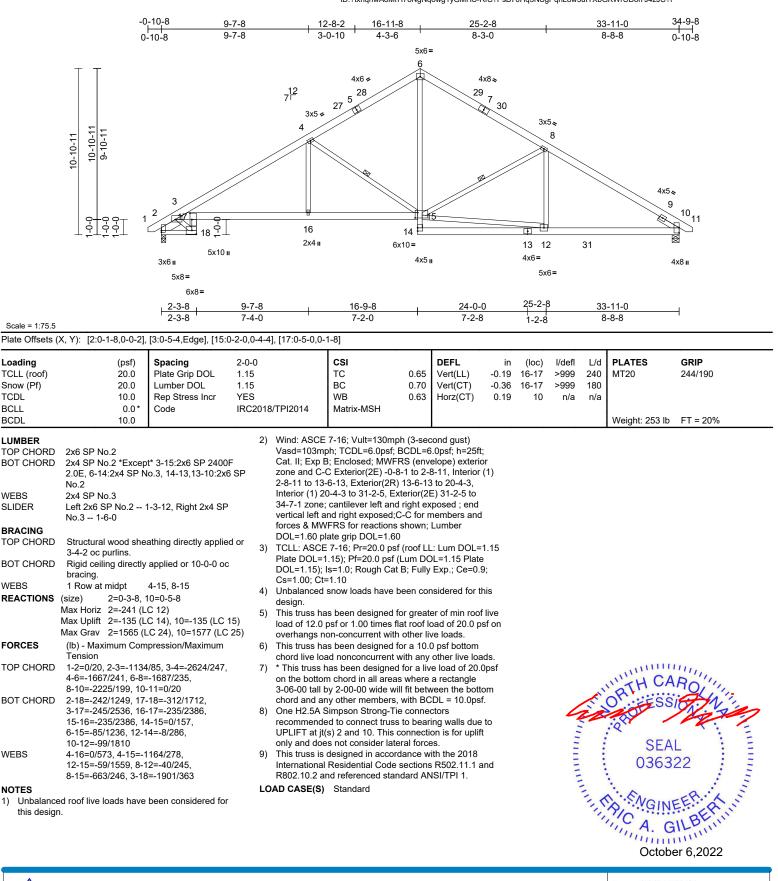
BCLL

BCDL

WEBS

WEBS

WEBS


NOTES

SLIDER

Run: 8.53 S Sep 22 2022 Print: 8.530 S Sep 22 2022 MiTek Industries, Inc. Wed Oct 05 11:07:23 ID:?txnqnwA6MrH78NgNqowg1yGMHS-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual russ web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual russ web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual russ web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 88 FaNC	
22090053	B03	Roof Special	1	1	Job Reference (optional)	154567164

Run: 8.53 S Sep 22 2022 Print: 8.530 S Sep 22 2022 MiTek Industries, Inc. Wed Oct 05 11:07:23 ID:NGVW_pqHvvls4QS2d0dz4MyGMF_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

				ID:NC	SVW_pqHvvls4QS	2d0dz4MyGMFRfC?P	sB70Hq3NSgPqn	L8w3ulTXbGKWr0	CDoi7J4zJC?t
		-0-10-8 	9-7-8 9-7-8	12-8-2	<u>16-11-8</u> 4-3-6	<u>26-0-4</u> 9-0-12		<u>33-11</u> 7-10-1	
					5» 7	8 II			
	10-10-11 1-0-0 1-0-0 9-10-11	3x6 II 5x10 = 3x5 =		2 3x5 = 46 4 3 3 26		8 8x10s 48 9 48 9 49 49 49 49 49 49 49 49 49 49 49 49 4	10 3x5 11 1 37 35 3x6 II 34 II 36 II 36 II	2 13 14 2 2 21 20 =	15 4x5 16 17 18 19 3x5 II -0
Scale = 1:75.6		2-3-8	7-4-0		2-0	7-2-8	2-0-4 0-1-1	7-9-0 12	0 '
Plate Offsets ((X, Y): [2:0-1-12,0-	0-2], [5:0-5-0,0-4-8],	[9:0-5-0,0-4-8], [25	:0-2-12,0-3-12], [27:0-4-8,0-0-8]	-	_	-	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf 20.0 20.0 10.0 0.0 10.0	 Plate Grip DOL Lumber DOL Rep Stress Incr Code 	1-11-4 1.15 1.15 YES IRC2018/TPI	CSI TC BC WB 2014 Matrix	0.5 0.9 0.7 MSH	3 Vert(LL) 0.7 0 Vert(CT) -0.2	16 26-27 >9 28 26-27 >9	99 240 MT2 99 180 n/a n/a	ATES GRIP 20 244/190 ight: 320 lb FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD BOT CHORD JOINTS REACTIONS FORCES TOP CHORD	28-27,7-24:2x4 S 2x4 SP No.3 2x4 SP No.3 Left 2x6 SP No.2 No.3 1-6-0 Structural wood s 5-0-0 oc purlins. Rigid ceiling dire bracing. 1 Brace at Jt(s): : 30, 31, 32, 33, 34 35 (size) 2=0-3- 20=8-0 42=8-0 Max Horiz 2=234 Max Uplift 2=-96 19=-17 21=-14 42=11 (lb) - Maximum C Tension 1-2=0/20, 2-3=-6	1-3-12, Right 2x4 sheathing directly ap ctly applied or 6-0-0 29, 4, 8, 17=8-0-8, 19=8-0 0-8, 21=8-0-8, 22=8-1 0-8 (LC 13) (LC 14), 17=-264 (L (LC 14), 17=-264 (L (LC 21), 17=-114 (LC 3 (LC 15), 21=-286 3 (LC 15), 22=-753 (4 (LC 14) compression/Maximu 65/50, 3-4=-1494/15 7=-556/160, 7-8=-54 10-11=-633/102, 12-13=-89/576, 14-15=-121/548,	SP WEBS plied or oc oc	3-27=-16 25-28=-1 7-25=-15 20-21=-2 17-19=-2 4-26=0/4 25-29=-5 32-34=-5 22-36=-5 22-36=-5 22-36=-5 25-31=-1 3-35=-1 10-35=-2 36-37=-1 14-20=-1 3-28=-11 balanced roof live design. d: ASCE 7-16; VI de=103mph; TCD .11 to 13-6-13, ED rrior (1) 20-4-3 e and C-C Exterior -11 to 13-6-13, ED rrior (1) 20-4-3 E and the second construction of the second to a second the second second the second to a second the second the second to a second the second the second to a second the second th	67/156, 19-20= 67/156 27, 4-30=-896/2 25/267, 25-32= 12/147, 34-36= 46/157, 12-22= 13/1029, 31-33 15/1032, 35-37 14/1063, 6-29= 74/1063, 6-29= 74/1063, 6-29= 74/1063, 6-29= 74/1063, 6-29= 74/1063, 6-29= 74/1063, 6-29= 74/1063, 6-29= 74/1063, 6-29= 74/1029, 31-36 74/1029, 31-3	-159/1245, =0/143, 58, 21-22=-467/156, -467/156, 258, 29-30=-889/254 -510/147, -512/148, -1241/231, =-110/1022, =-116/1038, -63/21, 5-30=-5/24, 1, 32-33=-45/16, 8, 11-37=-207/34, 206/34, 13/110, n considered for econd gust) =6.0psf; h=25ft; twelope) exterior 2-8-11, Interior (1) 13 to 20-4-3, r(2E) 30-11-8 to exposed ; end r members and h; Lumber plane of the truss	Plate D DOL=1. Cs=1.0 (5) Unbalau design. (6) This tru load of overhar 7) All plate 8) Gable s 9) This tru chord li 10) * This tr on the b 3-06-00 chord a 11) One H2 recomm UPLIFT for uplif	OL=1.15); Pf=20 (15); Is=1.0; Rou 0; Ct=1.10 need snow loads ss has been des 12.0 psf or 1.00 ngs non-concurr is are 2x4 MT22 tuds spaced at ss has been des ve load nonconc uss has been de oottom chord in 1 tall by 2-00-00 nd any other me .5A Simpson St nended to conne at jt(s) 2, 22, 17 t only and does	signed for a 10.0 psf bottom current with any other live loads. esigned for a live load of 20.0psf all areas where a rectangle wide will fit between the bottom embers. trong-Tie connectors act truss to bearing walls due to 7, 21, and 19. This connection is not consider lateral forces.
Continued on	page 2								

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

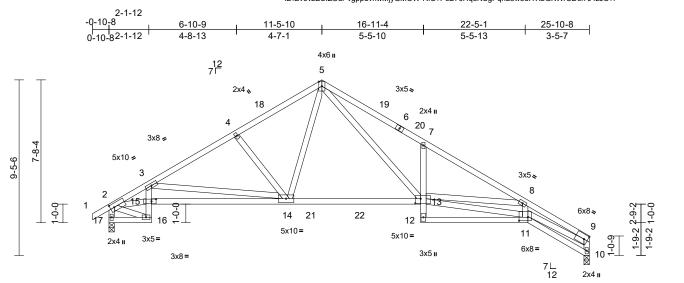
Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 88 FaNC	
22090053	B03	Roof Special	1	1	Job Reference (optional)	154567164

Run: 8.53 S Sep 22 2022 Print: 8.530 S Sep 22 2022 MiTek Industries, Inc. Wed Oct 05 11:07:23 ID:NGVW_pqHvvls4QS2d0dz4MyGMF_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 88 FaNC	
22090053	C01	Roof Special	3	1	Job Reference (optional)	154567165

Scale =

Run: 8.53 S Sep 22 2022 Print: 8.530 S Sep 22 2022 MiTek Industries, Inc. Wed Oct 05 11:07:24 ID:EvevzESfZUuPvgppuvhwMjyGMOW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	2-3-8	9-6-8	16-9-8	22-6-13	25-7-025-10-8	
	2-3-8	7-3-0	7-3-0	5-9-5	3-0-3 0-3-8	
= 1:62					000	

Plate Offsets (X, Y): [2:0-2-9,0-2-8], [11:0-5-12,0-2-4], [13:0-3-8,0-3-0], [15:0-3-0,0-1-8]

Loading TCLL (roof)	(psf) 20.0	Plate Grip DOL	2-0-0 1.15		CSI TC	0.73 0.83	DEFL Vert(LL) Vert(CT)		(loc) 13-14	I/defl >999	L/d 240 180	PLATES MT20	GRIP 244/190
Snow (Pf) TCDL	20.0 10.0		1.15 YES		BC WB	0.83	Horz(CT)	-0.47 0.34	13-14 10	>651 n/a	180 n/a		
BCLL	0.0*			B/TPI2014	Matrix-MSH		()						
BCDL	10.0											Weight: 162 lb	FT = 20%
UMBER			2)	Wind: ASCE	7-16; Vult=130mp	oh (3-seo	ond gust)						
TOP CHORD					oh; TCDL=6.0psf;								
BOT CHORD	2x4 SP No.2 *Excep No.3, 15-13:2x4 SP				3; Enclosed; MWF C Exterior(2E) -0- ²								
WEBS	2x4 SP No.3 *Except			2-1-12 to 8-5	-10, Exterior(2R)	8-5-10 to	0 14-5-10, Int	erior					
	No.2	,			o 22-8-12, Exterio								
BRACING					ver left and right e oosed;C-C for men			left					
TOP CHORD	Structural wood sheat 2-6-7 oc purlins, exc	athing directly applied	or	MWFRS for	reactions shown; I			ate					
BOT CHORD	Rigid ceiling directly		•	grip DOL=1.									
	bracing, Except:		3)		7-16; Pr=20.0 ps .15); Pf=20.0 psf								
	6-0-0 oc bracing: 15-				Is=1.0; Rough Cat								
REACTIONS	(size) 10=0-3-8, Max Horiz 17=216 (L			Cs=1.00; Ct=									
	Max Uplift 10=-106 (I		4) 4)	Unbalanced design.	snow loads have l	been coi	isidered for t	nis					
	Max Grav 10=1170 (LC 25), 17=1205 (LC	24) 5)		is been designed f	for great	er of min root	f live					
ORCES	(lb) - Maximum Com	pression/Maximum			psf or 1.00 times f			sf on					
FOP CHORD	Tension	/211, 3-4=-1752/162,	6)		on-concurrent with is been designed f								
	4-5=-1607/175, 5-7=	, ,	0)		ad nonconcurrent			ads.					
	7-8=-2485/188, 8-9=	,	7)		nas been designed			0psf				minin	1111
BOT CHORD	9-10=-1162/129, 2-1 16-17=-178/209, 15-				n chord in all area by 2-00-00 wide wi		0	om				OR FESS	Roill
	3-15=-14/371, 14-15	,			y other members,						N	A SESS	A. 11.1
	,	3=0/133, 7-13=-513/22	5, 8)	Bearing at jo	int(s) 10 considers	s paralle	to grain valu				22	OFC	Ni Sil
VEBS	11-12=-15/212, 10-1 3-14=-921/159, 4-14				FPI 1 angle to grain ould verify capacity					-		2	my s
VEDO	5-14=-56/730, 5-13=	,	9)		Simpson Strong-Ti					-		SEA	r : E
	11-13=-272/3186, 8-	,	0)		ed to connect truss			e to		3		ODC2	• •
	8-11=0/600, 9-11=-2 2-15=-173/2017, 2-1				s) 10 and 17. This			lift		=	:	0363	22 : :
NOTES	2-13173/2017, 2-1	0142/293	10		es not consider late designed in accor					-			1 E
	ed roof live loads have n.	been considered for	10	International	Residential Code nd referenced star	sections	R502.11.1 a	and			111	SEA 0363	EERA
5			LC	DAD CASE(S)	Standard						1	A. G	ILBEIT
												Ostab	er 6 2022

818 Soundside Road Edenton, NC 27932

October 6,2022

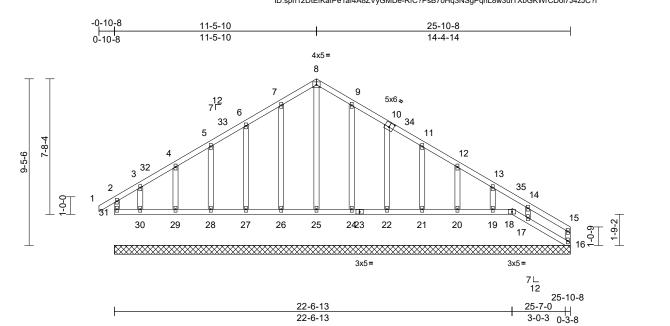
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 88 FaNC	
22090053	C02	Roof Special	1	1	Job Reference (optional)	154567166

Run: 8.53 S Sep 22 2022 Print: 8.530 S Sep 22 2022 MiTek Industries, Inc. Wed Oct 05 11:07:24

Page: 1

818 Soundside Road Edenton, NC 27932



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 88 FaNC	
22090053	C03	Roof Special Supported Gable	1	1	Job Reference (ontional)	154567167

Run: 8.53 S Sep 22 2022 Print: 8.530 S Sep 22 2022 MiTek Industries, Inc. Wed Oct 05 11:07:25 ID:sph12DtEfKafPe1af4A8ZVyGMDe-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:65.4 Plate Offsets (X, Y): [10:0-3-0,0-3-0]

	X, Y): [10:0-3-	-0,0-3-0]	-									-	-
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-MR	0.17 0.08 0.22	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc)	- n/a - n/a	L/d 999 999 n/a	PLATES MT20 Weight: 154 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	6-0-0 oc purl Rigid ceiling bracing, Ex 6-0-0 oc brac (size) 16	ood she ins, ex directly cept: cing: 17 5=25-10	athing directly applied cept end verticals. applied or 10-0-0 oc -18. -8, 17=25-10-8, -8, 19=25-10-8,	dor BC		2-31=-168/110, 1- 3-4=-140/143, 4-5 6-7=-143/228, 7-8 9-11=-142/226, 11 12-13=-67/92, 13- 15-16=-73/15 30-31=-65/77, 29- 27-28=-65/77, 26- 24-25=-65/77, 22- 20-21=-62/76, 19- 17-18=-86/93, 16- 8-25=-215/82, 7-2 5-28=-123/72, 4-2 9-24=-218/70, 10-	=-131/16 =-168/26 I-12=-95 14=-60/5 30=-65/7 27=-65/7 24=-65/7 20=-62/7 17=-72/8 6=-206/6 9=-123/7	34, 5-6=-117/1 19, 8-9=-168/2 1/140, 52, 14-15=-81, 17, 28-29=-65, 17, 25-26=-65, 17, 21-22=-62, 16, 18-19=-62, 16, 16, 19, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	90, 269, /59, /77, /76, /76, /76, /75, /88,	de 6) TI lo ov 7) Al 8) G 9) TI br 10) G 11) TI ct 12) *	esign. his truss h ad of 12.0 verhangs Il plates a able requ russ to be raced aga able stud his truss h nord live h This truss	has bee) psf or non-co re 2x4 ires col fully sl inst lat s space has bee bad not has be	en designed for gr 1.00 times flat ro nocurrent with oth MT20 unless oth ntinuous bottom o heathed from one eral movement (i. en designed for a noconcurrent with een designed for	erwise indicated. shord bearing. face or securely e. diagonal web). 10.0 psf bottom any other live loads. a live load of 20.0psf
	20 22 25 27 29 31 Max Horiz 31 Max Uplift 16 18 20 22 26 28 28 30 Max Grav 16 18 20 22 25 27 29	=25-10 =25-10 =25-10 =25-10 =25-10 =25-10 =209 (L =-9 (LC =-9 (LC =-53 (L =-53 (L =-53 (L =-51 (L =-51 (L =-51 (L =-51 (L =-217 (L =221 (L =222 (L =222 (L =222 (L =222 (L	$\begin{array}{c} 8,\ 21=25\cdot10\cdot6,\\ 8,\ 24=25\cdot10\cdot8,\\ 8,\ 26=25\cdot10\cdot8,\\ 8,\ 28=25\cdot10\cdot8,\\ 8,\ 30=25\cdot10\cdot8,\\ 8,\ 30=25\cdot10\cdot8,\\ 8,\ 30=25\cdot10\cdot8,\\ 8,\ 30=25\cdot10\cdot8,\\ 8,\ 30=25\cdot10\cdot8,\\ 14),\ 17=\cdot115\ (LC\ 15\\ C\ 13),\ 19=-42\ (LC\ 16\\ C\ 15),\ 24=-47\ (LC\ 16\\ C\ 15),\ 24=-47\ (LC\ 16\\ C\ 14),\ 27=-51\ (LC\ 14\\ C\ 14),\ 27=-51\ (LC\ 16\\ C\ 12),\ 24=-47\ (LC\ 25\\ C\ 10),\ 19=-147\ (LC\ 25\\ C\ 25),\ 21=150\ (LC\ 2\\ C\ 25),\ 21=150\ (LC\ 2\\ C\ 25),\ 26=245\ (LC\ 2\\ C\ 21),\ 28=163\ (LC\ 2\\ C\ 21),\ 30=194\ (LC\ 24$	1) 2)),),),),),), 10)),), 5), 3) 2), 1), 4),	this design. Wind: ASC! Vasd=103m Cat. II; Exp zone and C 2-1-8 to 8-5 (2N) 14-5-1 zone; cantili and right ex MWFRS for grip DOL=1 Truss desig only. For sl see Standa or consult q TCLL: ASC Plate DOL=	E 7-16; Vult=130mp pph; TCDL=6.0psf; B; Enclosed; MWF -C Corner(3E) -0-1 -10, Corner(3R) 8- 0 to 22-8-12, Corne ever left and right e posed;C-C for mer reactions shown; I 60 gned for wind loads tuds exposed to wind rd Industry Gable E ualified building de E 7-16; Pr=20.0 ps 1.15); Pf=20.0 ps	3-19=-11 ve been bh (3-see BCDL=6 RS (env 0-8 to 2- 5-10 to 1 er(3E) 22 exposed mbers ar Lumber l is in the p nd (norm End Deta signer a: f (roof LL (Lum DC	2/61, considered for cond gust) 5.0psf; h=25ft; elope) exterio 1-8, Exterior(2 4-5-10, Exterior 2-8-12 to 25-8 ; end vertical 1 dd forces & DOL=1.60 pla lane of the tru ial to the face) ills as applicat s per ANSI/TF c. Lum DOL= ⁻ DL=1.15 Plate	r 2N) ior -12 left ite iss), ole, Pl 1. 1.15	3-	-06-00 tall	l by 2-0 any oth	rd in all areas wh 10-00 wide will fit I ter members. TH CA 0363 SEA 0363 NGINI	Petween the bottom
FORCES	(lb) - Maximu Tension	ım Com	pression/Maximum		DOL=1.15); Cs=1.00; C	; Is=1.0; Rough Ca t=1.10	t B; Fully	Exp.; Ce=0.9	<i>)</i> ;			1	A. G	ILBUIL

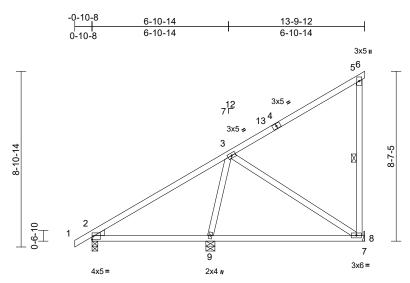
October 6,2022

Continued on page 2	
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE	MII-7473 rev. 5/19/2020 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for a	
a truss system. Before use, the building designer must verify the applicability of design parameters and properly ir	
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Addi	
is always required for stability and to prevent collapse with possible personal injury and property damage. For get	neral guidance regarding the
	Criteria, DSB-89 and BCSI Building Component
Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601	

Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 88 FaNC	
22090053	C03	Roof Special Supported Gable	1	1	Job Reference (optional)	154567167

- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 145 lb uplift at joint 31, 44 lb uplift at joint 18, 9 lb uplift at joint 16, 46 lb uplift at joint 26, 51 lb uplift at joint 27, 50 lb uplift at joint 28, 42 lb uplift at joint 29, 111 lb uplift at joint 30, 47 lb uplift at joint 24, 54 lb uplift at joint 22, 40 lb uplift at joint 21, 53 lb uplift at joint 20, 42 lb uplift at joint 19 and 115 lb uplift at joint 17.
- 14) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 31, 18, 25, 26, 27, 28, 29, 30, 24, 22, 21, 20, 19, 17.
- 15) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard


Run: 8.53 S Sep 22 2022 Print: 8.530 S Sep 22 2022 MiTek Industries, Inc. Wed Oct 05 11:07:25 ID:sph12DtEfKafPe1af4A8ZVyGMDe-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 88 FaNC	
22090053	D01	Monopitch	4	1	Job Reference (optional)	154567168

Run: 8.53 S Sep 22 2022 Print: 8.530 S Sep 22 2022 MiTek Industries, Inc. Wed Oct 05 11:07:25 ID:duDvsaOamEtiR5Ee7uw_GLyGMD_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

L	6-0-0	6-2-12	13-6-8	13-9-12
Γ	6-0-0	0-2-12	7-3-12	0-3-4

Scale	=	1:58.4

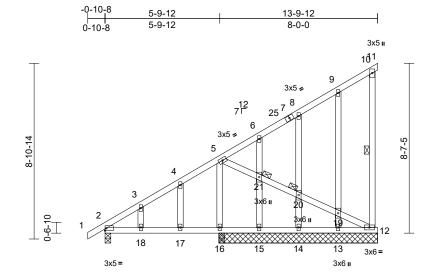
Ocale - 1.50.4											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	BC	0.81 Vert(LL) 0.48 Vert(CT) 0.37 Horz(CT)	in 0.09 -0.16 -0.01	(loc) 9-12 8-9 2	l/defl >816 >561 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 76 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-3-8, i Max Horiz 2=299 (L0 Max Uplift 2=-79 (LC Max Grav 2=400 (L0 9=445 (L0	cept end verticals. ⁷ applied or 10-0-0 or 5-8 8= Mechanical, 9=0- C 13) C 13) C 14), 8=-155 (LC 14) C 1), 8=-525 (LC 21),	ed or solution of the set of the	has been designed for 0 psf or 1.00 times flat non-concurrent with of has been designed for oad nonconcurrent with s has been designed fo om chord in all areas w l by 2-00-00 wide will fi any other members. rder(s) for truss to truss echanical connection (to the capable of withstan opson Strong-Tie connec- st to bearing walls due ction is for uplift only a	roof load of 20.0 ther live loads. a 10.0 psf bottoo h any other live l or a live load of 2 where a rectangle it between the b s connections. by others) of trus ding 155 lb upliff ctors recommen e to UPLIFT at jt	n oads. 0.0psf e obtom s to at ded to (s) 2.					
FORCES TOP CHORD	(lb) - Maximum Com Tension 1-2=0/26, 2-3=-360/		10) This truss Internation	s designed in accordar al Residential Code se and referenced standa	ctions R502.11.						
Vasd=103 Cat. II; Exp zone and 0 2-1-8 to 10 cantilever right expos forces & M	5-6=-13/0, 5-8=-292 2-9=-274/328, 8-9=- 3-9=-279/23, 3-8=-3 CE 7-16; Vult=130mph mph; TCDL=6.0psf; B p B; Enclosed; MWFR C-C Exterior(2E) -0-10 0-9-12, Exterior(2E) -0-10 left and right exposed sed; porch left exposed sed; porch left exposed VWFRS for reactions s	213/303, 7-8=0/0 12/361 cDL=6.0psf; h=25ft; S (envelope) exteric 0-8 to 2-1-8, Interior 0-9-12 to 13-9-12 zoi ; end vertical left an d;C-C for members a	r (1) ne; d	5) Standard					I. I.	SEA 0363	•
2) TCLL: AS(Plate DOL DOL=1.15 Cs=1.00; () plate grip DOL=1.60 CE 7-16; Pr=20.0 psf (_=1.15); Pf=20.0 psf (L 5); Is=1.0; Rough Cat E Ct=1.10 ed snow loads have be	um DOL=1.15 Plate 3; Fully Exp.; Ce=0.9);						and the second sec	A. C	EER. X

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; 2) Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.

818 Soundside Road Edenton, NC 27932

October 6,2022

A. GI A. GIL


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 88 FaNC	
22090053	D02	Monopitch Structural Gable	1	1	Job Reference (optional)	154567169

Run: 8.53 S Sep 22 2022 Print: 8.530 S Sep 22 2022 MiTek Industries, Inc. Wed Oct 05 11:07:25 ID:HCyRNhX5xwO?tx9yqQ8oltyGMCo-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

r

Scale = 1:58.4			5	-11-0		7-7-0		0-3-	4			
Loading	(psf)	Spacing	1-11-4	CSI		DEFL	in	(loc)	l/defl		PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.64	Vert(LL)	0.06	17-18	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.31	Vert(CT)	-0.07	17-18	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.15	Horz(CT)	0.01	2	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 105 lb	FT = 20%

LUMBER		
TOP CHORD	2x4 SP N	o.2
BOT CHORD	2x4 SP N	o.2
WEBS	2x4 SP N	o.3
OTHERS	2x4 SP N	o.3
BRACING		
TOP CHORD		l wood sheathing directly applied or purlins, except end verticals.
BOT CHORD	Rigid ceili bracing.	ing directly applied or 10-0-0 oc
WEBS	1 Row at	midpt 10-12
JOINTS	1 Brace a 21	at Jt(s): 20,
REACTIONS	(size)	2=0-3-8, 12=8-0-8, 13=8-0-8, 14=8-0-8, 15=8-0-8, 16=8-0-8
	Max Horiz	2=290 (LC 13)
	Max Uplift	
	- 1	13=-38 (LC 14), 14=-62 (LC 14), 15=-7 (LC 7), 16=-26 (LC 11)
	Max Grav	2=345 (LC 21), 12=194 (LC 21),
		13=214 (LC 21), 14=261 (LC 21),
		15=54 (LC 11), 16=287 (LC 2)
FORCES	(lb) - Max Tension	imum Compression/Maximum
TOP CHORD		2-3=-308/169, 3-4=-273/179,
		/190, 5-6=-176/103, 6-8=-161/105,
	8-9=-153/	/105, 9-10=-105/103, 10-11=-13/0,
	10-12=-9	5/34
BOT CHORD		3/199, 17-18=-159/199,
		59/199, 15-16=-159/199,
		59/199, 13-14=-159/199,
	12-13=-1	
WEBS		0/256, 20-21=-189/255,
		90/256, 12-19=-193/259,
		8/70, 13-19=-182/65,
		1/100, 14-20=-198/98, 6-21=-56/41, 8/42, 5-16=-81/0, 4-17=-62/49,
	5-1055/	71

NOTES 1) Win

Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 10-9-12, Exterior(2E) 10-9-12 to 13-9-12 zone; cantilever left and right exposed ; end vertical left and right exposed; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

 Unbalanced snow loads have been considered for this design.

 This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

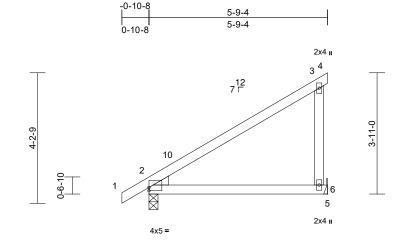
- 6) All plates are 2x4 MT20 unless otherwise indicated.
- 7) Gable studs spaced at 2-0-0 oc.

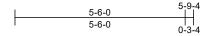
8) This truss has been designed for a 10.0 psf bottom

- chord live load nonconcurrent with any other live loads.
 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members.
 10) H10A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 11) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 12, 13, 14, 15, and 16. This connection is for uplift only and does not consider lateral forces.

12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard


818 Soundside Road Edenton, NC 27932


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 88 FaNC	
22090053	D03	Monopitch	3	1	I5 Job Reference (optional)	54567170

Run: 8.53 S Sep 22 2022 Print: 8.530 S Sep 22 2022 MiTek Industries, Inc. Wed Oct 05 11:07:26 ID:a5wx_i1pHWYAIEoqkXNQwXyGMC9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:37.2

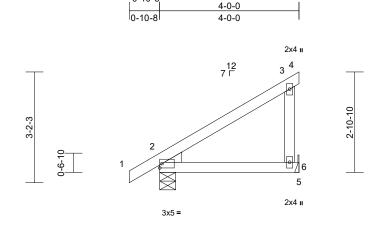
Plate Offsets (X, Y): [2:Edge,0-1-5]

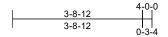
	(, .). [====9=,=]												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/T	FPI2014	CSI TC BC WB Matrix-MP	0.76 0.50 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.15 -0.12 0.02	(loc) 6-9 6-9 2	l/defl >440 >541 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 26 lb	GRIP 244/190 FT = 20%
	 2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Structural wood she 5-9-4 oc purlins, ex Rigid ceiling directly bracing. (size) 2=0-3-8, (Max Horiz 2=131 (LC Max Grav 2=352 (LC (lb) - Maximum Com Tension 1-2=0/26, 2-3=-154/ 3-6=-263/130 2-6=-187/230, 5-6=(SCE 7-16; Vult=130mph 	r applied or 10-0-0 oc 6= Mechanical C 13) C 14), 6=-77 (LC 11) C 21), 6=352 (LC 21) pression/Maximum (195, 3-4=-13/0, 0/0	d or (10) F	oad of 12.0 overhangs no This truss han chord live loa ' This truss h on the bottor 3-06-00 tall b chord and ar Refer to gird Provide mec bearing plate 3. H10A Simps connect truss This connect ateral forces This truss is international	designed in accor Residential Code nd referenced star	The transfer of the transfer o	bad of 20.0 p ve loads. 0 psf bottom other live loa e load of 20. a rectangle veen the bott nections. ers) of truss 77 lb uplift at PLIFT at jt(s is pes not consi- ith the 2018 is R502.11.1 a	ads. Opsf tom to joint ed to) 2. der					
Cat. II; Ez zone and 2-1-8 to 2 cantilevel right expr members Lumber I 2) TCLL: AS Plate DO DOL=1.1 Cs=1.00;	3mph; TCDL=6.0psf; B xp B; Enclosed; MWFR I C-C Exterior(2E) -0-10 2-9-4, Exterior(2E) 2-9-4 r left and right exposed osed; porch left and right and forces & MWFRS 0OL=1.60 plate grip DC SCE 7-16; Pr=20.0 psf (L 5); Is=1.0; Rough Cat E Ct=1.10; Rough Cat E Ct=1.10; Rough Cat E	S (envelope) exteriol)-8 to 2-1-8, Interior (4 to 5-9-4 zone; ; end vertical left and th exposed;C-C for for reactions shown;)L=1.60 (roof LL: Lum DOL=1 .um DOL=1.15 Plate 3; Fully Exp.; Ce=0.9	1) 1 .15							1. Contraction		SEA 0363	• -

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 2) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this 3) design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

GI A. GIL October 6,2022


Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 88 FaNC	
22090053	D04	Monopitch	10	1	I54567171 Job Reference (optional)	


-0-10-8

Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.53 S Sep 22 2022 Print: 8.530 S Sep 22 2022 MiTek Industries, Inc. Wed Oct 05 11:07:26 ID:ppzLtn8T9Hhvtd_Zlw1XnQyGMC0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

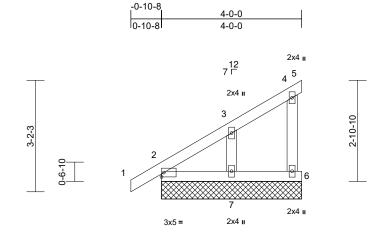
Page: 1

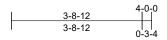
Scale = 1:33.1

Loading (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI201	CSI TC BC WB Matrix-MP	0.31 0.18 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.02 0.01	(loc) 6-9 6-9 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 19 lb	GRIP 244/190 FT = 20%
4-0-0 oc purlins, exc BOT CHORD Rigid ceiling directly bracing.	applied or 10-0-0 oc 5= Mechanical 13) 14), 6=-41 (LC 14) 2 21), 6=243 (LC 21) pression/Maximum	on the 3-06-0 chord a 7) Refer t 8) Provid bearing 6. 9) H10A 3 connec This co lateral 10) This frr Interna R802.1	truss has been designed bottom chord in all area 0 tall by 2-00-00 wide w and any other members to girder(s) for truss to tr e mechanical connectio g plate capable of withsi Simpson Strong-Tie cor ct truss to bearing walls connection is for uplift onl forces. uss is designed in accor tional Residential Code 10.2 and referenced stat SE(S) Standard	is where ill fit betw russ coni n (by oth tanding 4 unectors due to L ly and do rdance w sections	a rectangle veen the bott nections. ers) of truss 11 lb uplift at PLIFT at jt(s bes not consist ith the 2018 \$ R502.11.1 at	tom joint ed to) 2. der					
3-6=-184/72 BOT CHORD 2-6=-118/0, 5-6=0/0 NOTES 1) Wind: ASCE 7-16: Vult=130mph)										

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 2) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this 3) design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- This truss has been designed for a 10.0 psf bottom 5) chord live load nonconcurrent with any other live loads.

OR Vananonan MANULULI, SEAL 036322 GI unnun 1 October 6,2022


818 Soundside Road Edenton, NC 27932


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 88 FaNC	
22090053	D05	Monopitch Supported Gable	2	1	Job Reference (optional)	154567172

Run: 8.53 S Sep 22 2022 Print: 8.530 S Sep 22 2022 MiTek Industries, Inc. Wed Oct 05 11:07:26 ID:IC56HT9jhuxc7w7ytL4?sryGMC_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

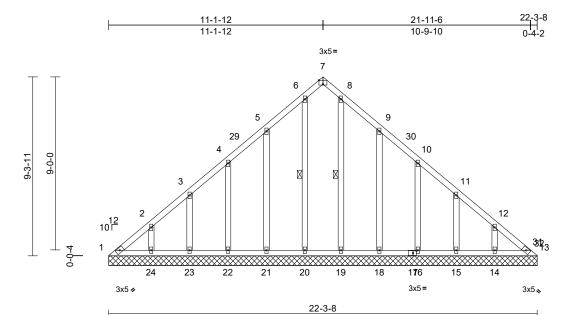
Page: 1

Scale = 1:32.9

												1	
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.12	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.04	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES		WB	0.05	Horz(CT)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC2018	/TPI2014	Matrix-MP								
BCDL	10.0											Weight: 20 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 4-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 2=4-0-0, 7=4-0-0, Max Horiz 2=94 (LC Max Uplift 5=-17 (LC 7=-61 (LC Max Grav 2=203 (L	s applied or 10-0-0 oc 5=4-0-0, 6=4-0-0, 8=4-0-0 13), 8=94 (LC 13) C 21), 6=-23 (LC 14),	4) or 5) 6) 7) 8) 9) 127	Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced design. This truss ha load of 12.0 p overhangs nc Gable require Gable studs a this truss ha chord live loa * This truss ha on the bottom 3-06-00 tall b chord and an Provide meck	7-16; Pr=20.0 psf. 15); Pf=20.0 psf (s=1.0; Rough Cat 1.10 snow loads have b s been designed f psf or 1.00 times fl pn-concurrent with es continuous bott spaced at 2-0-0 oc s been designed f d nonconcurrent w as been designed n chord in all areas y 2-00-00 wide wi y other members. nanical connectior capable of withsts	(Lum DC B; Fully been cor for great at roof k other lin om chor c. for a 10.0 with any l for a liv s where ll fit betv n (by oth	DL=1.15 Plate Exp.; Ce=0.9 Insidered for the er of min roof bad of 20.0 psi ve loads. Id bearing. Dipsf bottom other live loa e load of 20.0 a rectangle veen the botto ers) of truss t); live sf on ds. Dpsf om					
FORCES	(lb) - Maximum Con Tension	npression/Maximum	11)	5, 23 lb uplift	at joint 6 and 61 li e or shim required	b uplift a	it joint 7.						
TOP CHORD	,		,		truss chord at joint								
DOT OUDEE	4-5=-22/9, 4-6=-115		12)		designed in accord							minin	1111
BOT CHORD	, .	2/56			Residential Code			nd				W'LH CA	ROUL
WEBS	3-7=-194/172				nd referenced stan	ndard AN	ISI/TPI 1.				1	alt	UT IT
Vasd=103 Cat. II; Ex zone and 2-0-0 to 4 end vertic forces & N DOL=1.60 2) Truss det only. For	CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B ps B; Enclosed; MWFR C-C Corner(3E) -0-10 -0-0 zone; cantilever le al left and right exposes WWFRS for reactions s 0 plate grip DOL=1.60 signed for wind loads i studs exposed to wind lard Industry Gable Er	CDL=6.0psf; h=25ft; S (envelope) exterior 8 to 2-0-0, Exterior(2N ff and right exposed ; ed;C-C for members an shown; Lumber n the plane of the truss I (normal to the face),	I) nd	AD CASE(S)	Standard					Contraction of the second seco	The second se	SEA 0363	• -

- Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 2-0-0, Exterior(2N) 2-0-0 to 4-0-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



GI

minim October 6,2022

Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 88 FaNC	
22090053	V01	Valley	1	1	Job Reference (optional)	154567173

Run; 8.53 S Sep 22 2022 Print; 8.530 S Sep 22 2022 MiTek Industries, Inc. Wed Oct 05 11:07:26 ID:fryBRKWsrW_wSCYj2OGZwHyGMN8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:59.9												
Plate Offsets ()	X, Y): [7:0-2-8,Edge]], [17:0-2-0,0-1-8]										
Loading	(psf)	Spacing	1-11-4	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.08	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.06	Vert(TL)	n/a	-	n/a	999		
FCDL	10.0	Rep Stress Incr	YES	WB	0.17	Horiz(TL)	0.01	13	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 144 lb	FT = 20%
UMBER			BOT CHORD	1-24=-105/214, 2	3-24=-10	5/214,		9) Thi	s truss h	as bee	en designed for a	10.0 psf bottom
OP CHORD	2x4 SP No.2			22-23=-105/214,	21-22=-1	05/214,	chord live load nonconcurrent with any other live load			any other live loads.		
BOT CHORD	2x4 SP No.2			20-21=-105/214,	19-20=-1	05/214,		10) * Tł	nis truss	has be	een designed for	a live load of 20.0psf
OTHERS	2x4 SP No.3			18-19=-105/214,	16-18=-1	05/214,		on f	he botto	om cho	rd in all areas wh	nere a rectangle

BRACING		
TOP CHORD	Structural wood sheathing directly applied or 6-0-0 oc purlins.	WEBS
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.	

WEBS	1 Row at	midpt 6-20, 8-19
REACTIONS	(size)	1=22-3-8, 13=22-3-8, 14=22-3-8,
		15=22-3-8, 16=22-3-8, 18=22-3-8,
		19=22-3-8, 20=22-3-8, 21=22-3-8,
		22=22-3-8, 23=22-3-8, 24=22-3-8
	Max Horiz	1=207 (LC 11)
	Max Uplift	1=-47 (LC 12), 13=-20 (LC 13),
		14=-37 (LC 15), 15=-85 (LC 15),
		16=-68 (LC 15), 18=-96 (LC 15),
		20=-2 (LC 11), 21=-92 (LC 14),
		22=-69 (LC 14), 23=-81 (LC 14),
		24=-48 (LC 14)
	Max Grav	1=143 (LC 14), 13=126 (LC 15),
		14=187 (LC 21), 15=164 (LC 24),
		16=170 (LC 21), 18=247 (LC 21),

19=209 (LC 21), 20=209 (LC 20), 21=247 (LC 20), 22=170 (LC 20),

23=160 (LC 23), 24=198 (LC 23) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-272/163, 2-3=-212/133, 3-4=-131/106, 4-5=-94/78, 5-6=-87/107, 6-7=-66/81, 7-8=-66/77, 8-9=-88/76, 9-10=-63/46, 10-11=-103/64, 11-12=-184/92, 12-13=-241/131

)	1-24=-105/214, 23-24=-105/214,
	22-23=-105/214, 21-22=-105/214,
	20-21=-105/214, 19-20=-105/214,
	18-19=-105/214, 16-18=-105/214,
	15-16=-105/214, 14-15=-105/214,
	13-14=-105/214
	6-20=-172/25, 8-19=-171/0, 5-21=-209/115,
	4-22=-129/93, 3-23=-128/102, 2-24=-135/78,
	9-18=-209/119, 10-16=-129/92,
	11-15=-129/104, 12-14=-129/73

- Unbalanced roof live loads have been considered for 1) this design
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Interior (1) 3-0-5 to 8-2-1, Exterior(2R) 8-2-1 to 14-1-5, Interior (1) 14-1-5 to 18-11-4, Exterior(2E) 18-11-4 to 21-11-4 zone; cantilever left and right exposed : end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) All plates are 2x4 MT20 unless otherwise indicated
- 7) Gable requires continuous bottom chord bearing.
- 8) Gable studs spaced at 2-0-0 oc.

818 Soundside Road

Edenton, NC 27932

G mmm October 6,2022

SEAL

036322

WWWWWWW

3-06-00 tall by 2-00-00 wide will fit between the bottom

at joint 21, 69 lb uplift at joint 22, 81 lb uplift at joint 23, 48 lb uplift at joint 24, 96 lb uplift at joint 18, 68 lb uplift

at joint 16, 85 lb uplift at joint 15 and 37 lb uplift at joint

International Residential Code sections R502.11.1 and

12) This truss is designed in accordance with the 2018

R802.10.2 and referenced standard ANSI/TPI 1.

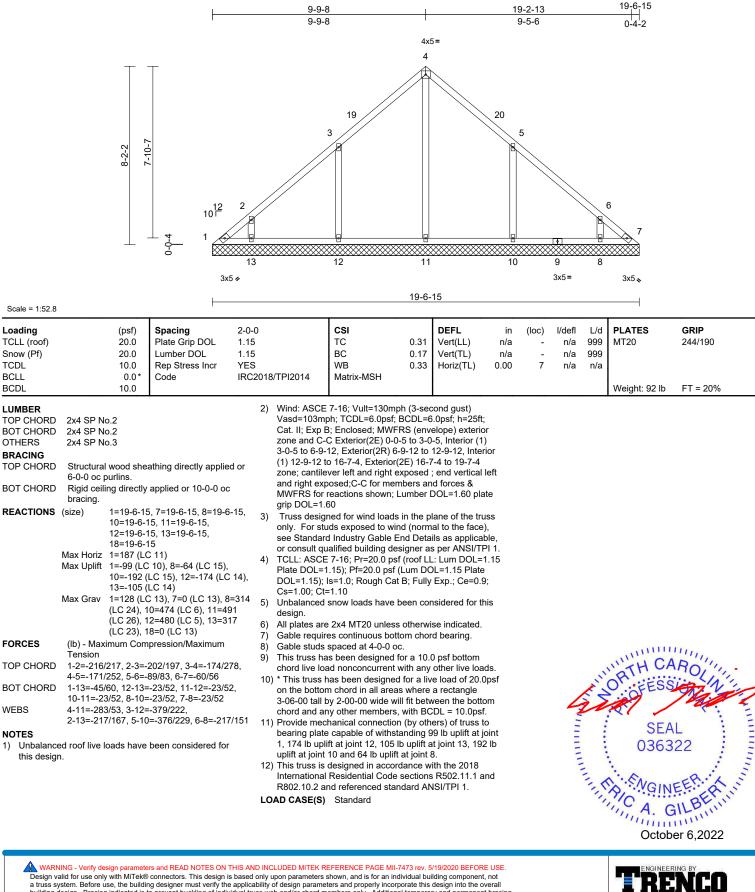
ORT

11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 47 lb uplift at joint 1, 20 lb uplift at joint 13, 2 lb uplift at joint 20, 92 lb uplift

chord and any other members.

14

LOAD CASE(S) Standard


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

NOTES

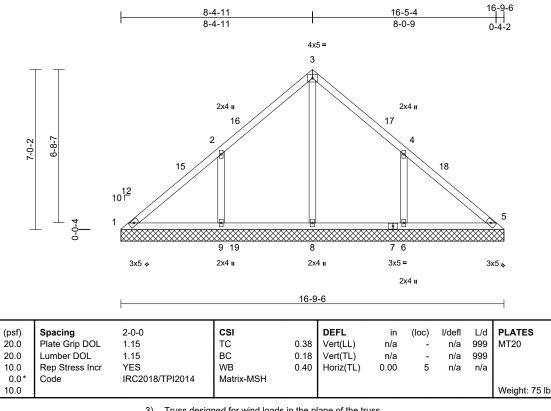
Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 88 FaNC	
22090053	V02	Valley	1	1	Job Reference (optional)	154567174

1)

Run: 8.53 S Sep 22 2022 Print: 8.530 S Sep 22 2022 MiTek Industries, Inc. Wed Oct 05 11:07:27 ID:fryBRKWsrW_wSCYj2OGZwHyGMN8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 88 FaNC	
22090053	V03	Valley	1	1	Job Reference (optional)	154567175


Run: 8.53 S Sep 22 2022 Print: 8.530 S Sep 22 2022 MiTek Industries, Inc. Wed Oct 05 11:07:27 ID:71WZefXUcq6n4M7vc5noTUyGMN7-RfC?PsB70Hq3NSqPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

GRIP

244/190

FT = 20%

LUMBER								
TOP CHORD	2x4 SP N	o.2						
BOT CHORD	2x4 SP N	2x4 SP No.2						
OTHERS	2x4 SP N	o.3						
BRACING								
TOP CHORD		Structural wood sheathing directly applied or 10-0-0 oc purlins.						
BOT CHORD	Rigid ceili bracing.	Rigid ceiling directly applied or 6-0-0 oc bracing.						
REACTIONS	(size)	1=16-9-6, 5=16-9-6, 6=16-9-6, 8=16-9-6, 9=16-9-6, 14=16-9-6						
	Max Horiz	1=160 (LC 11)						
	Max Uplift	1=-58 (LC 10), 6=-182 (LC 15), 9=-188 (LC 14)						
	Max Grav	1=82 (LC 33), 5=1 (LC 24), 6=510 (LC 6), 8=653 (LC 23), 9=509 (LC 5), 14=1 (LC 24)						
FORCES	(lb) - Max Tension	imum Compression/Maximum						
TOP CHORD		1-2=-105/368, 2-3=-26/318, 3-4=-3/297, 4-5=-137/288						
BOT CHORD	1-9=-179/ 5-6=-179/	/76, 8-9=-179/73, 6-8=-179/73, /73						
WEBS	3-8=-469/	0, 2-9=-392/220, 4-6=-392/218						
NOTES								
 I I - I		and a basis basis and shared from						

Scale = 1:50.5

TCLL (roof)

Snow (Pf)

TCDL

BCLL

BCDL

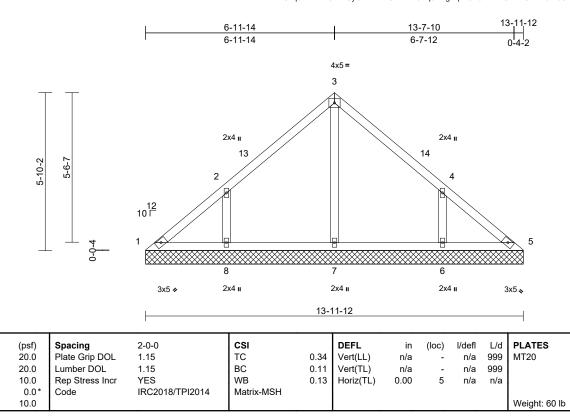
- Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Interior (1) 3-0-5 to 5-5-0, Exterior(2R) 5-5-0 to 11-5-0, Interior (1) 11-5-0 to 13-9-10, Exterior(2E) 13-9-10 to 16-9-10 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 58 lb uplift at joint 1, 188 lb uplift at joint 9 and 182 lb uplift at joint 6.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 88 FaNC	
22090053	V04	Valley	1	1	Job Reference (optional)	154567176


Run: 8.53 S Sep 22 2022 Print: 8.530 S Sep 22 2022 MiTek Industries, Inc. Wed Oct 05 11:07:27 ID:71WZefXUcq6n4M7vc5noTUYGMN7-RfC?PsB70Hq3NSqPqnL8w3u1TXbGKWrCDoi7J4zJC?f

Page: 1

GRIP

244/190

FT = 20%

BRACING	
OTHERS	2x4 SP No.3
BOT CHORD	2x4 SP No.2
TOP CHORD	2x4 SP No.2

Scale = 1:42.6

TCLL (roof)

Snow (Pf)

LUMBER

TCDL

BCLL

BCDL

TOP CHORD		wood sheathing directly applied or
	6-0-0 oc p	ourlins.
BOT CHORD	Rigid ceili	ing directly applied or 6-0-0 oc
	bracing.	
REACTIONS	(size)	1=13-11-12, 5=13-11-12,
	. ,	6=13-11-12, 7=13-11-12,
		8=13-11-12
	Max Horiz	1=133 (LC 11)
	Max Uplift	1=-25 (LC 10), 6=-150 (LC 15),

8=-153 (LC 14) Max Grav 1=116 (LC 28), 5=92 (LC 23), 6=447 (LC 21), 7=293 (LC 21), 8=447 (LC 20)

FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-144/124, 2-3=-186/117, 3-4=-186/113,

4-5=-114/88 001 01/000 4-5=-114/88

3-7=-212/0, 2-8=-374/194, 4-6=-374/192

- BOT CHORD 1-8=-53/116, 7-8=-53/94, 6-7=-53/94, 5-6=-53/94
- WEBS
- NOTES
- Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25f; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-3, Interior (1) 3-0-3 to 4-0-3, Exterior(2R) 4-0-3 to 10-0-3, Interior (1) 10-0-3 to 11-0-1, Exterior(2E) 11-0-1 to 14-0-1 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 25 lb uplift at joint 1, 153 lb uplift at joint 8 and 150 lb uplift at joint 6.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
 LOAD CASE(S) Standard
- SEAL 036322 October 6,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 88 FaNC	
22090053	V05	Valley	1	1	Job Reference (optional)	154567177

Run: 8.53 S Sep 22 2022 Print: 8.530 S Sep 22 2022 MiTek Industries, Inc. Wed Oct 05 11:07:28

ID:71WZefXUcq6n4M7vc5noTUyGMN7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 11-2-2 5-7-1 10-10-0 5-7-1 5-2-15 4x5 = 3 2x4 II 4-4-7 13 14 4-8-2 2x4 II 12 10 Г 4 2 1 5 0-0-7 8 6 7 3x5 🛷 2x4 🛛 2x4 🛛 2x4 🛚 3x5 💊

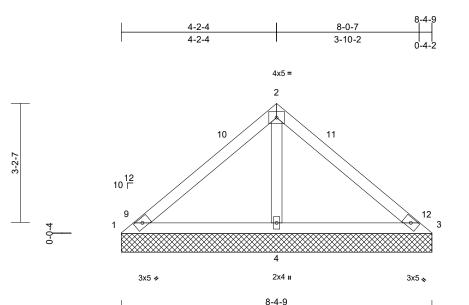
11-2-2

-					-	-	
Sca	le	=	1	:41	D.	2	

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC207	18/TPI2014	CSI TC BC WB Matrix-MSH	0.32 0.12 0.09	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 45 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP N Structura 6-0-0 oc	o.2 o.2 o.3 I wood sheathing directly applied or			 only. For stusee Standard or consult question or consult question of the consult question	ned for wind load dids exposed to wi d Industry Gable i lalified building da 7-16; Pr=20.0 psf 1.15); Pf=20.0 psf ls=1.0; Rough Ca =1.10 snow loads have	nd (norm End Deta esigner as f (roof Ll (Lum DC t B; Fully	al to the face ils as applica s per ANSI/TI .: Lum DOL= DL=1.15 Plate Exp.; Ce=0.9), ble, PI 1. 1.15 9;				<u> </u>	
REACTIONS	Max Horiz Max Uplift	7=11-2-2, 1=-105 (L 1=-42 (LC 6=-134 (L 1=70 (LC		7 7 8 (4) 9 6=446	 Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b 	Gable requires continuous bottom chord bearing. Gable studs spaced at 4-0-0 oc. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.								
FORCES	Tension		pression/Maximum 225/111, 3-4=-225/1		 chord and any other members. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 42 lb uplift at joint 1, 16 lb uplift at joint 5, 138 lb uplift at joint 8 and 134 lb 									
BOT CHORD	4-5=-104	/68 74, 7-8=-24	/74, 6-7=-24/74,	,	uplift at joint 1) This truss is		rdance w	ith the 2018					TH CA	in the
WEBS NOTES		,	7/252, 4-6=-447/252	L	R802.10.2 a OAD CASE(S)	nd referenced sta Standard	ndard AN	ISI/TPI 1.				111	OR FESS	ROLIN

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Exterior(2R) 3-0-5 to 8-2-7, Exterior(2E) 8-2-7 to 11-2-7 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 88 FaNC	
22090053	V06	Valley	1	1	Job Reference (optional)	154567178

3-6-2

Run: 8.53 S Sep 22 2022 Print: 8.530 S Sep 22 2022 MiTek Industries, Inc. Wed Oct 05 11:07:28 ID:71WZefXUcq6n4M7vc5noTUyGMN7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:31.1

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MP	0.38 0.36 0.13	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 32 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.3 Structural wood she 8-4-9 oc purlins. Rigid ceiling directly bracing.	C 21), 3=-42 (LC 20), C 14) 20), 3=90 (LC 21), 4	5) d or 6) 7) 8) 9)	Plate DOL=1 DOL=1.15); Cs=1.00; Ct Unbalanced design. Gable require Gable studs This truss ha chord live loa * This truss f on the bottor 3-06-00 tall t chord and ar)) Provide mec bearing plate	7-16; Pr=20.0 ps .15); Pf=20.0 ps s=1.0; Rough Cat .1.10 snow loads have l es continuous bott spaced at 4-0-0 of s been designed id nonconcurrent tas been designed n chord in all area by 2-00-00 wide with y other members. hanical connection capable of withst at joint 3 and 99 l	(Lum DC B; Fully been cor tom chor c. for a 10.0 with any d for a liv d for a liv for a liv for a liv for betw n (by oth anding 4	DL=1.15 Plate Exp.; Ce=0.9 Insidered for the d bearing. D psf bottom other live loa e load of 20.0 a rectangle veen the botto ers) of truss t I2 lb uplift at j	ds. Dpsf om					
TOP CHORD BOT CHORD	Tension 1-2=-121/305, 2-3=- 1-4=-206/182, 3-4=-		11	I) This truss is International	designed in accor Residential Code nd referenced star	dance w sections	ith the 2018 R502.11.1 a	nd					
WEBS	2-4=-494/248		L	DAD CASE(S)									
NOTES 1) Unbalance	ed roof live loads have	been considered for										mm	1111.

this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Exterior(2R) 3-0-5 to 5-4-14, Exterior(2E) 5-4-14 to 8-4-14 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. SEAL 036322 October 6,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

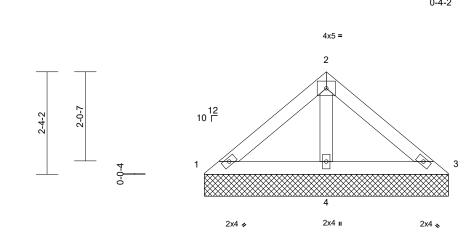
Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 88 FaNC	
22090053	V07	Valley	1	1	Job Reference (optional)	154567179

2-9-8

2-9-8

Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.53 S Sep 22 2022 Print: 8.530 S Sep 22 2022 MiTek Industries, Inc. Wed Oct 05 11:07:28 ID:6iyrTodBVts4IwcRf1G8x4yGMBN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


5-6-15

5-2-13

2-5-6

Page: 1

Scale = 1:26.3

FORCES

WFBS NOTES

2)

3)

4)

TOP CHORD

BOT CHORD

this design.

Max Grav

Tension

2-4=-236/128

(LC 20)

1-2=-86/136, 2-3=-86/136

1) Unbalanced roof live loads have been considered for

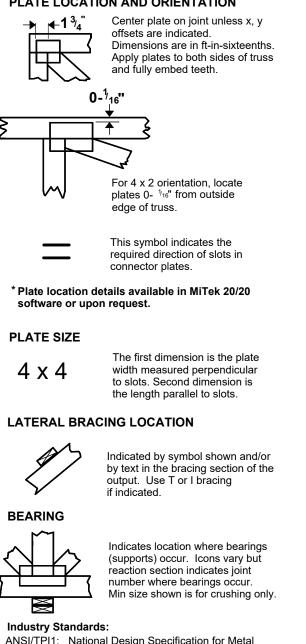
Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for

members and forces & MWFRS for reactions shown;

1-4=-103/109, 3-4=-103/109

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.13	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.15	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES		WB	0.05	Horiz(TL)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2018	3/TPI2014	Matrix-MP								
BCDL	10.0											Weight: 20 lb	FT = 20%
TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.3			Gable studs	es continuous bo spaced at 4-0-0 as been designed	oc. I for a 10.0) psf bottom						

and 44 lb uplift at joint 4. 1=96 (LC 20), 3=96 (LC 21), 4=360 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and (Ib) - Maximum Compression/Maximum R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard


818 Soundside Road Edenton, NC 27932

Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Symbols

PLATE LOCATION AND ORIENTATION

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

PRODUCT CODE APPROVALS

ICC-ES Reports:

ESR-1311, ESR-1352, ESR1988 ER-3907, ESR-2362, ESR-1397, ESR-3282

Trusses are designed for wind loads in the plane of the truss unless otherwise shown.

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

© 2012 MiTek® All Rights Reserved

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- 1. Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.
- 2. Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- 3. Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- 4. Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- 5. Cut members to bear tightly against each other.
- 6. Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- 7. Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- 8. Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- 9. Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- 10. Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- 11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- 12. Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- 13. Top chords must be sheathed or purlins provided at spacing indicated on design.
- 14. Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
- 16. Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- 18. Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- 19. Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- 20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.

21. The design does not take into account any dynamic or other loads other than those expressly stated.

ANSI/TPI1:	National Design Specification for Metal
	Plate Connected Wood Truss Construction.
DSB-89:	Design Standard for Bracing.
BCSI:	Building Component Safety Information,
	Guide to Good Practice for Handling,
	Installing & Bracing of Metal Plate
	Connected Wood Trusses.

MiTek Engineering Reference Sheet: MII-7473 rev. 5/19/2020