

Kempsville Sanford Component Plant 298 Harvey Faulk Rd Sanford, NC 27332

Phone #:919-775-1450

Builder: DRB HOMES

Model: 88 FaNC DRAYTON 1

THE PLACEMENT PLAN NOTES:

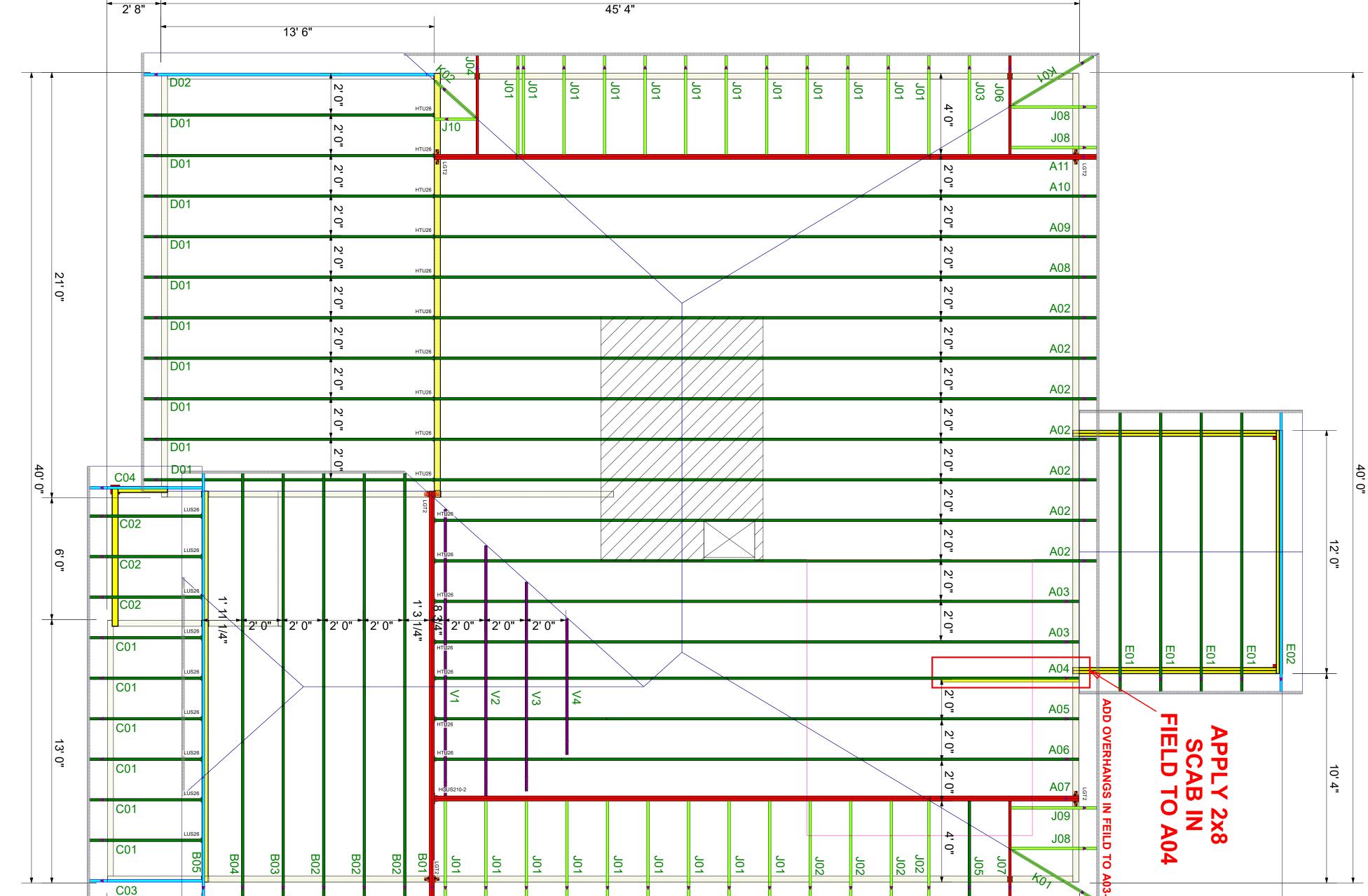
1. The Placement Plan is a diagram for truss installation. It is not an engineered drawing and has not been reviewed by an engineer. The Owner/Building Designer is responsible for obtaining an engineer's review if one is required by the local jurisdiction.

2. The responsibilities of the Owner, Contractor, Building Designer, Component Designer and Component Manufacturer shall be as set forth in ANSI/TPI 1. Capitalized terms shall be as defined in ANSI/TP 1 unless otherwise indicated.

3. Each Component is designed as an individual component utilizing information provided by others. The Owner/Building Designer is responsible for reviewing all Component Submittal Packages and individual Component Design Drawings for compliance with the Construction Documents and compatibility with the overall Building design.

4. Contractor will not proceed with component installation until the Owner/Building Designer has reviewed the Component Submittal Package. Questions on the suitability of any Component will be resolved by the Building Designer.

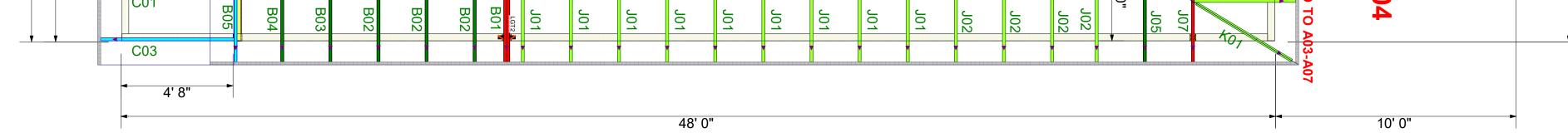
5. The Building Designer and Contractor are responsible for all temporary and permanent bracing.


6. The Placement Plan assumes the building is dimensionally correct, structurally sound, and in a suitable condition to support each Component during installation and thereafter, including but not limited to installation of all bearing points. Proper design and construction of all structural components, including foundations, headers, beams, walls and columns are the responsibility of the Owner, Building Designer and Contractor.

7. Do not cut, drill, or modify any Component without first consulting the Component Manufacturer or Building Designer. Damaged Components shall not be installed unless directed by the Building Designer or approved by the Component Manufacturer.

8. Components must be handled and installed following all applicable safety standards and best practices, including but not limited to BCSI, OSHA, TPI and local codes. Failure to properly handle, brace or otherwise install Component can result in serious injury or death.

* FRAMER MUST REFER TO PLANS WHILE SETTING COMPONENTS.	** DAMAGED COMPONENTS SHOULD NOT BE INSTALLED UNLESS TOLD TO BY THE COMPONENT PLANT.	
Truss Drawing Left End Indicator		
<u> </u>		
RUSS AS SHOWN ON INDIVIDUAL TRUSS DRAWINGS	russ Connector Product HGUS210-2 LGT2 LUS26	
¥ ₽	Total List Simpson Simpson 48'0" 45'4"	


LUMBING DROPS NOTED ARE IN THE APPROXIMATE LOCATIONS PER PLAN. BUILDER TO VERIFY LOCATIONS BEFORE SETTING TRUSSES

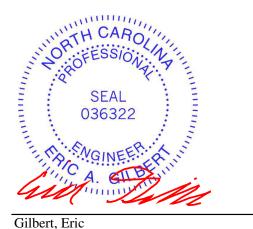
FIRST. CUSTOMER TAKES FULL RESPONSIBILITY FOR COMPONENTS IF CUT BEFORE AUTHORIZATION.

General Notes: ** CUTTING OR DRILLING OF COMPONENTS SHOULD NOT BE DONE WITHOUT CONTACTING COMPONENT SUPPLIER

** ALL BEARING POINTS MUST BE INSTALLED PRIOR TO SETTING ANY COMPONENTS.

** GIRDERS MUST BE FULLY CONNECT	ED TOGETHER PRIOR TO ADDING ANY LOADS.	** DIMENSIONS ARE READ AS: FOOT-INCH-SIXTEENTH.	ISS TO TRUSS CONNECTIONS ARE TOE-NAILED, UNLESS NOTED OTHERWISE.				
Date:	DRB HOMES		THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual components to be incorporated into the building design at the specification of the building designer. See Individual design sheets for	00/00/00	00/00/		00/00/
NTS Designer: ND Project Numb 22090053 Sheet Numbe	88 FaNC DRAYTON 1	Empsylle Building Materials	each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor systems and for the overall structure. The design of the truss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding the bracing, consult		000		Revisior
mber:	COMPONENT PLACEMENT PLA	A Division of the Center Lumber Company	"Bracing of Wood Truss" available from the Truss Plate Institute, 583 D'Onifrio Drive: Madison, WI 53179	Name	Name	Name	Name

Trenco 818 Soundside Rd Edenton, NC 27932


Re: 22090053 DRB GROUP - 88 FaNC

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Sanford, NC)).

Pages or sheets covered by this seal: I58457628 thru I58457666

My license renewal date for the state of North Carolina is December 31, 2023.

North Carolina COA: C-0844

May 22,2023

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly

incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type Qty Ply DRB GROUP - 88		DRB GROUP - 88 FaNC		
22090053	A02	Roof Special	7	1	Job Reference (optional)	158457628

TCDL

BCLL

BCDL

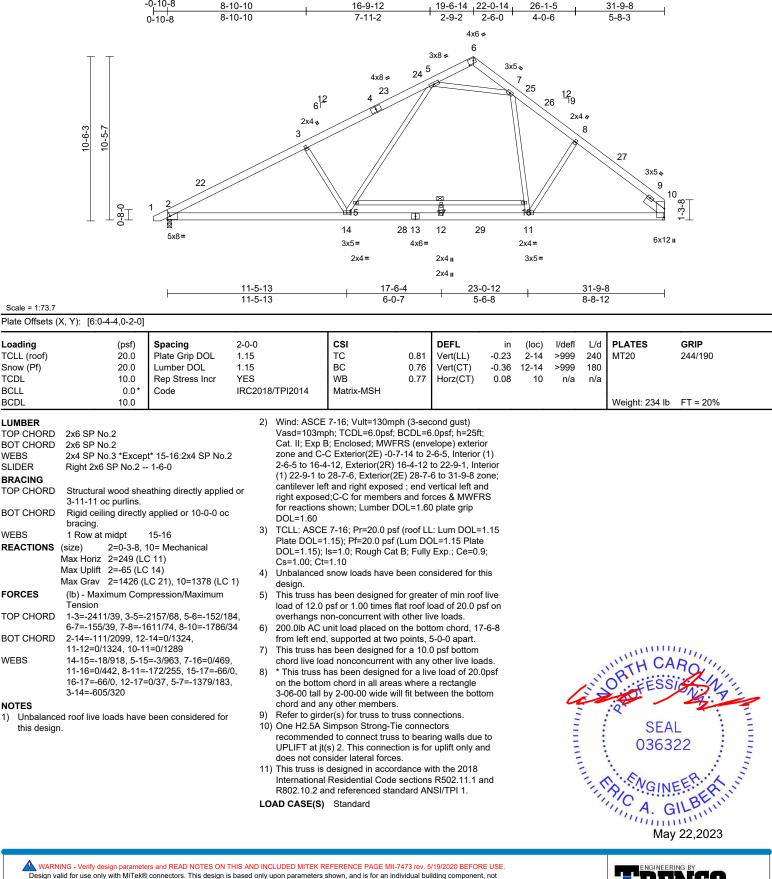
WEBS

WEBS

WEBS

NOTES

1)


SLIDER

-0-10-8

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Fri May 19 10:12:13 ID:24AZDW7zTEHAC6YN1cvXXYyEOkd-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

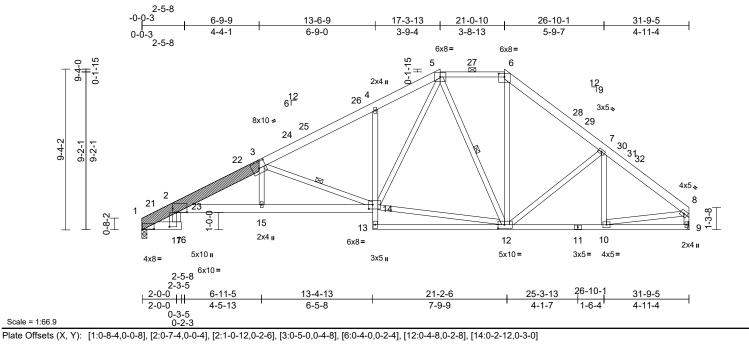
818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 88 FaNC	
22090053	A03	Roof Special	2	1	Job Reference (optional)	158457629

BCDL

Carter Components (Sanford), Sanford, NC - 27332, Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries. Inc. Fri May 19 10:12:16 Page: 1 ID:Z36wOF0uAgOGNrKJXIhZjxyEOgu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 2-5-8 -0-0-3 6-9-9 13-6-9 19-6-11 26-1-1 31-9-5 6-9-0 6-0-2 6-6-6 5-8-3 4-4-1 2-5-8 6x8 ≠ 5 22 2x4 II 23 21 12 4 24 6¹² 3x5 💊 6 10-5-9 -5-7 8x10 = ċ 3 25 20 4x5。 7 ې-8 19 0-8-2 ÷ 14 12 8 2x4 II 165 11 10 9 $6 \times 10 =$ 2x4 II 5x10 u 4x8= 3x5= 2x4 I 4x8= 6x12= 4x5= 2-5-8 2-3-5 26-1-1 31-9-5 2-0-0 19-8-7 25-3-13 6-11-5 13-4-13 6-5-8 2-0-0 4-5-13 6-3-10 5-7-6 0-9-5 5 - 8 - 30-3-5 Scale = 1:73.2 Plate Offsets (X, Y): [2:0-9-8,0-0-4], [2:1-0-12,0-2-6], [3:0-5-0,0-4-8], [13:0-4-4,0-2-4] Loading Spacing 2-0-0 CSI DEFL in l/defl L/d PLATES GRIP (psf) (loc) TCLL (roof) 20.0 Plate Grip DOL 1.15 тс 0.49 Vert(LL) -0.13 2-14 >999 240 MT20 244/190 Snow (Pf) 20.0 Lumber DOL 1.15 BC 0.48 Vert(CT) -0.26 2-14 >999 180 TCDL 10.0 Rep Stress Incr WB 0.57 Horz(CT) YES 0.15 8 n/a n/a BCLL 0.0 Code IRC2018/TPI2014 Matrix-MSH Weight: 244 lb FT = 20% 10.0 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) LUMBER Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; TOP CHORD 2x6 SP No.2 *Except* 1-3:2x8 SP 2400F Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior 2.0E zone and C-C Exterior(2E) 0-0-3 to 3-2-5, Interior (1) BOT CHORD 2x4 SP No.2 *Except* 1-15:2x6 SP No.2, 3-2-5 to 16-4-12, Exterior(2R) 16-4-12 to 22-9-0, Interior 2-13:2x6 SP 2400F 2.0E, 4-12:2x4 SP No.3 (1) 22-9-0 to 28-5-10, Exterior(2E) 28-5-10 to 31-7-12 WEBS 2x4 SP No.3 *Except* 13-5:2x4 SP No.2, zone; cantilever left and right exposed ; end vertical left 2-16:2x6 SP No.2 and right exposed:C-C for members and forces & BRACING MWFRS for reactions shown; Lumber DOL=1.60 plate TOP CHORD Structural wood sheathing directly applied or grip DOL=1.60 4-9-4 oc purlins, except end verticals. 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate bracing, Except: DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; 6-0-0 oc bracing: 1-16. Cs=1.00: Ct=1.10 WEBS 1 Row at midpt 3-13 4) Unbalanced snow loads have been considered for this **REACTIONS** (size) 1=0-3-8, 8= Mechanical desian. Max Horiz 1=262 (I C 13) 5) This truss has been designed for a 10.0 psf bottom Max Uplift 1=-134 (LC 14), 8=-80 (LC 15) chord live load nonconcurrent with any other live loads. Max Grav 1=1298 (LC 20), 8=1266 (LC 1) 6) * This truss has been designed for a live load of 20.0psf FORCES (Ib) - Maximum Compression/Maximum on the bottom chord in all areas where a rectangle Tension 3-06-00 tall by 2-00-00 wide will fit between the bottom TOP CHORD 1-2=-671/120, 2-4=-3076/364, chord and any other members. ORTH 4-5=-2053/380, 5-6=-1336/267, Refer to girder(s) for truss to truss connections. 6-7=-1558/203, 7-8=-1212/165 Provide mechanical connection (by others) of truss to 8) BOT CHORD 1-16=-82/320, 15-16=0/0, 2-14=-414/2810, bearing plate capable of withstanding 80 lb uplift at joint 13-14=-411/2828, 12-13=0/112, 4-13=-479/224, 11-12=-5/110, 9-11=-59/1177, 9) One H2.5A Simpson Strong-Tie connectors 11111111111 8-9=-23/119 recommended to connect truss to bearing walls due to WEBS 3-14=0/401, 3-13=-1182/254, 11-13=-3/868. UPLIFT at it(s) 1. This connection is for uplift only and SEAL 5-13=-294/1370. 5-11=-69/280. does not consider lateral forces. 036322 10) This truss is designed in accordance with the 2018 6-11=-347/203, 6-9=-70/105, 7-9=-57/1074, 2-16=-54/387 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. NOTES 1) Unbalanced roof live loads have been considered for LOAD CASE(S) Standard this design. G minim May 22,2023



A WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.	
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not	
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall	
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing	
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the	
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component	
Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601	

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 88 FaNC	
22090053	A04	Hip	1	1	Job Reference (optional)	158457630

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Fri May 19 10:12:17 ID:Z36wOF0uAgOGNrKJXIhZjxyEOgu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

26-10-1 31-9-5 4-11-4 12 19 3x5 💊 28 29 7 30 31₃₂

	, , , , , , , , , , , , , , , , , , , ,	[<u>2.01</u>], <u>2.1</u>		0], [0:0 0 0,0 1	0], [0:0 1 0,0 2 1]	, [12.0 1	0,0 2 0], [11.	.0 2 12,	0 0 0]					
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.32 0.86 0.55	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.15 -0.29 0.16	14-15	I/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 272 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS LBR SCAB BRACING TOP CHORD	11-9,11-13:2x4 SP N 2x4 SP No.3 *Excep 1-3 SP 2400F 2.0E Structural wood she	0.2 t* 4-13:2x4 SP No.3, No.2 t* 2-17:2x6 SP No.2 one side athing directly applied xcept end verticals, al	2) 3) I or	2.0E with 2 r o.c.except : s row(s) at 4" (joint 1, nail 2 Unbalanced this design. Wind: ASCE Vasd=103mp Cat. II; Exp E	1-0 scab 1 to 3, fr ow(s) of 10d (0.13 starting at 0-4-3 fr o.c. for 4-6-12; sta row(s) at 7" o.c. f roof live loads hav 7-16; Vult=130mp oh; TCDL=6.0psf; 3; Enclosed; MWF C Exterior(2E) 0-0	81"x3") n om end a rting at 5 or 2-0-0. ve been bh (3-sec BCDL=6 RS (env	ails spaced 9' at joint 1, nail 5-9-12 from er considered fo cond gust) 5.0psf; h=25ft; elope) exterio	" 2 nd at r pr	Inte R80 13) Gra or t bot	ernationa 02.10.2 a aphical p	I Resid and ref urlin re tation o rd.	ferenced standar epresentation doe of the purlin along	tions R502.11.1 and d ANSI/TPI 1. es not depict the size	
	Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 1- 1 Row at midpt	applied or 10-0-0 oc 17. 3-14, 5-12 9= Mechanical C 13) C 14), 9=-89 (LC 15)	,	3-2-5 to 12-1 Interior (1) 2: 31-7-12 zone vertical left a forces & MW DOL=1.60 pl TCLL: ASCE Plate DOL=1	0-1, Exterior(2R) 5-6-12 to 28-5-10, e; cantilever left ar nd right exposed; /FRS for reactions late grip DOL=1.60 5 7-16; Pr=20.0 psf 1.15); Pf=20.0 psf	12-10-1 Exterior nd right e C-C for r shown; 0 f (roof Ll (Lum DC	to 25-6-12, (2E) 28-5-10 exposed ; end nembers and Lumber .: Lum DOL= ⁻ DL=1.15 Plate	to 1.15						
FORCES	(lb) - Maximum Com Tension	pression/Maximum		Cs=1.00; Ct= Unbalanced	ls=1.0; Rough Cat =1.10 snow loads have l		•					mm	U117.	
TOP CHORD	1-2=-693/104, 2-4=- 4-5=-2271/351, 5-6= 6-7=-1674/253, 7-8= 8-9=-1438/162	1191/252,	6) 7)	This truss ha	quate drainage to as been designed to ad nonconcurrent	for a 10.	0 psf bottom	-			1111	OR FESS	ROUNT	
BOT CHORD		3=0/140,	1, 8)	* This truss h on the bottor 3-06-00 tall b	nas been designed m chord in all area by 2-00-00 wide w ny other members.	d for a liv is where ill fit betv	e load of 20.0 a rectangle)psf		4		SEA	L	
WEBS	3-15=0/316, 3-14=-1	256/249, 5-12=-536/^ =-322/180, 7-10=-176/ 7=-33/301,	, ,	Refer to gird) Provide mec	er(s) for truss to tr hanical connection capable of withst	uss conr n (by oth	ers) of truss te					0363	L 22 EER. K	
NOTES			11	recommende UPLIFT at jt(Simpson Strong-Ti ed to connect truss (s) 1. This connect isider lateral force	s to bear tion is fo	ing walls due				and and	111111		

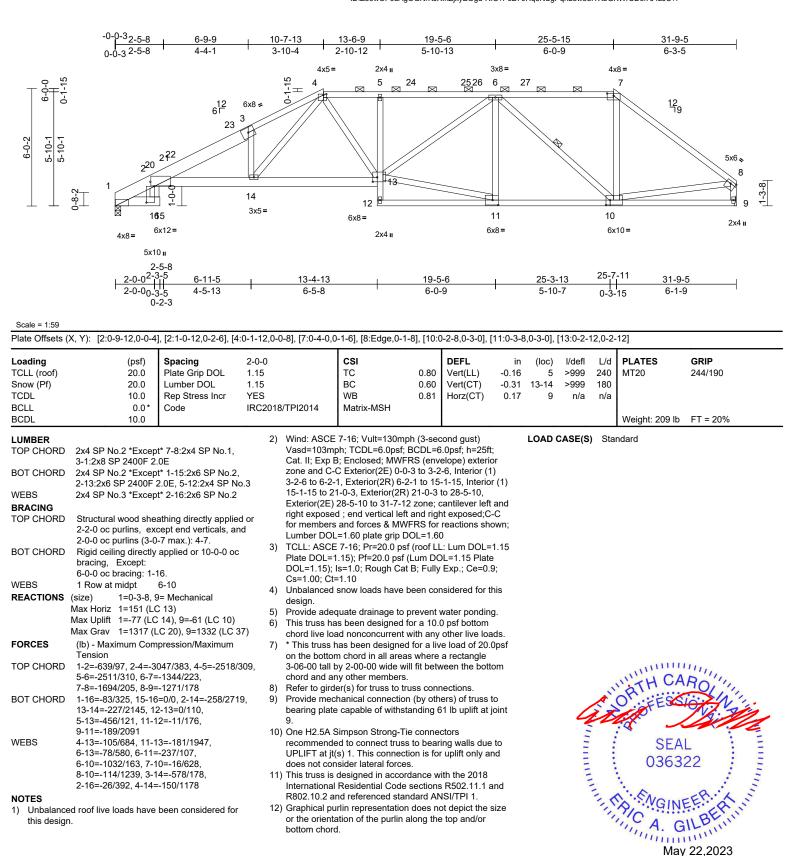
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

May 22,2023

Job	Truss	Truss Type Qty Ply DRB C		DRB GROUP - 88 FaNC			
22090053	A05	Нір	1	1	Job Reference (optional)	158457631	

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Fri May 19 10:12:18 ID:Z36wOF0uAgOGNrKJXIhZjxyEOgu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

:12:18	Page: 1
4-1000	


	-0-0-3 ₂₋₅₋₈ 0-0-3 2-5-8	<u>6-9-9</u> 4-4-1		<u>13-11-13</u> 7-2-4	· · · · · · · · · · · · · · · · · · ·	<u>18-7</u> - 4-7-1		<u>23-3-5</u> 4-7-12			<u>31-9-5</u> 8-6-0		-
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} 2 \\ 1 \\ 4x8 = \\ 2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -0 \\ 0 \end{array}$	$ \begin{array}{c} 21 \\ 20 \\ 19 \\ 54 \\ 6x10 \\ 6x12 \\ 3-5 \\ 11 \\ 6-11-5 \\ 13-5 \\ 4-5-13 \\ 3-5 \end{array} $	6 8x10≠ 3 13 2x4 µ	22 13-4-13 6-5-8	5x10 5x10 5x10 5x10= 3x5=		3x5= 25 5 ∞ 23-1-9 9-8-12		5x6= 6 10 6x12= 25-3 2-2		12 19 27 2 2 5= 5= 5= 5=	5	x8 = 7 8 8 7 8 7 8 7 8 7 8 7 8 7 8 7
Scale = 1:59.4 Plate Offsets (2	C X, Y): [2:0-9-8,0-0-4],)-2-3)-5-0,0-4-8], [4:0-5-0,0-2-	·15], [7:Edge,0-2	2-0], [8:Edg	je,0-1-8], [12:0	-4-4,0-2-8]					
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES	3/TPI2014	CSI TC BC WB Matrix-MSH	0.84 0.75 0.58	DEFL Vert(LL)	in (loc) -0.21 10-11 -0.46 10-11 0.16 8	l/defl >999 >831 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 228 lb	GRIP 244/190	
FORCES TOP CHORD BOT CHORD WEBS NOTES	2x4 SP No.3 *Excep 2-15:2x6 SP No.2 Structural wood she 2-4-4 oc purlins, ex 2-0-0 oc purlins (4-2 Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 1 1 Row at midpt (size) 1=0-3-8, 8 Max Horiz 1=191 (LC Max Uplift 1=-140 (L Max Uplift 1=-140 (L Max Grav 1=1372 (I (Ib) - Maximum Com Tension 1-2=-667/103, 2-4=- 4-5=-1705/294, 5-6 6-7=-1656/215, 7-8 1-15=-87/338, 14-15 12-13=-383/3105, 1 8-10=-116/396 3-13=0/409, 3-12=-1 7-10=-91/959, 2-15= 5-12=-77/437, 10-12 d roof live loads have	0.2 t* 1-14:2x6 SP No.2, 2.0E, 12-11:2x4 SP No.2, 2.0E, 12-11:2x4 SP No.2, athing directly applied cept end verticals, ar 1-15 max.): 4-6. applied or 10-0-0 oc 15. 3-12, 5-10 3= Mechanical C 13) C 14), 8=-101 (LC 15 C 38), 8=-10386 (LC 3 appression/Maximum 3354/380, 1176/251, 1310/198 5=0/0, 2-13=-386/308 1-12=0/167, 10-11=0 1493/284, 5-10=-714/ 48/408, 4-12=0/534 2=-125/1397, 6-10=-5	No.3 d or 1d 3) 5) 6) 5) 7) 58) 7) 88) 7) 58) 7) 77, 10] (179, 10] (179, 10] (179, 11]	Vasd=103mp Cat. II; Exp E zone and C-2 3-2-5 to 9-6- 27-9-7 to 28- cantilever left right exposed for reactions DOL=1.60 TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced design. Provide adeo This truss ha on the botton 3-06-00 tall b chord and an Refer to girdd Provide mech bearing plate joint 8.) One H2.5A S recommende UPLIFT at jt(does not con) This truss is o International R802.10.2 ar	snow loads hav juate drainage t s been designe id nonconcurrer has been design in chord in all ard y 2-00-00 wide by other membe er(s) for truss to hanical connect capable of with Simpson Strong- d to connect tru s) 1. This conne sider lateral ford designed in acc Residential Coo nd referenced st rlin representati	f; BCDL=6 VFRS (envi- l-0-3 to 3-2)-6-1 to 27. E) 28-5-10 sed ; end v ers and for ○ DOL=1.60 or f (roof LL of (Lum DC at B; Fully e been cor o prevent v d for a 10.0 d for	.0psf; h=25ft; elope) exterior -5, Interior (1) 9-7, Interior (1) to 31-7-12 zor ertical left and ces & MWFRS 0 plate grip : Lum DOL=1. L=1.15 Plate Exp.; Ce=0.9; asidered for this vater ponding. 0 psf bottom other live load: e load of 20.0p a rectangle veen the bottor ections. ers) of truss to 01 lb uplift at ctors ng walls due to uplift only and th the 2018 R502.11.1 an (SI/TPI 1.) ne; 5 15 s s. ss n n o i	CASE(S			EER.	3

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2870 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 88 FaNC	
22090053	A06	Нір	1	1	Job Reference (optional)	158457632

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Fri May 19 10:12:18 ID:Z36wOF0uAgOGNrKJXIhZjxyEOgu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 88 FaNC	
22090053	A07	Half Hip Girder	1	2	Job Reference (optional)	158457633

Continued on page 2

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Fri May 19 10:12:22 ID:Z36wOF0uAgOGNrKJXIhZjxyEOgu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

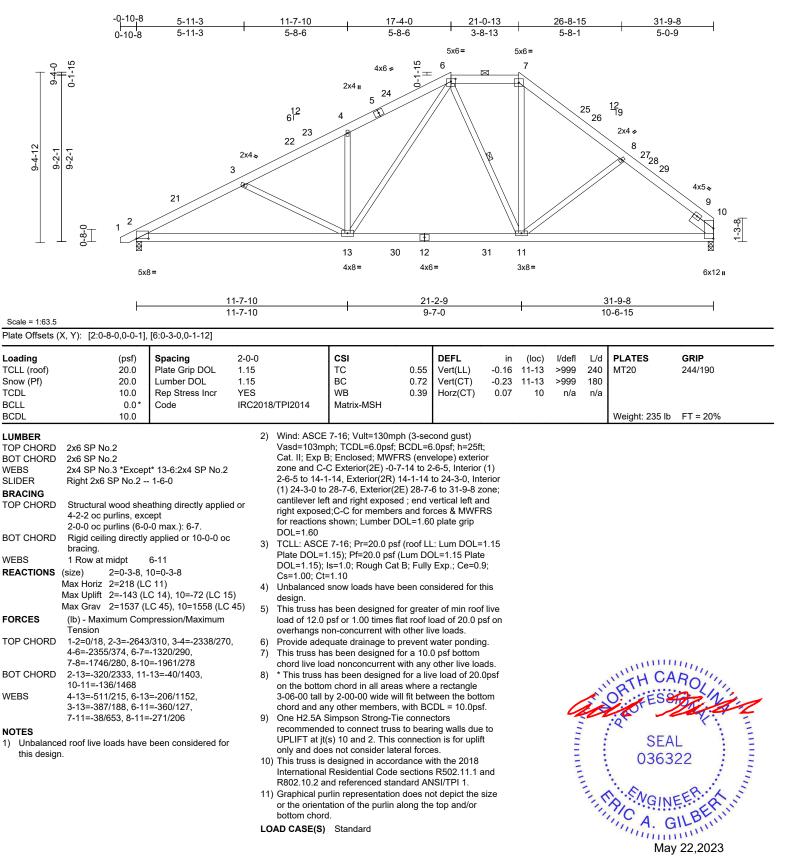
-0-0-3_{2-<u>5-8</u>} 4-11-12 7-3-13 10-6-1 13-6-9 17-10-3 22-5-5 27-0-7 31-9-5 0-0-3 2-5-8 2-6-42-4-1 3-2-4 3-0-8 4-3-10 4-7-2 4-7-2 4-8-14 NAILED NAILED NAILED NAILED NAILED NAILED NAILED NAILED NAILED 3x5= NAILED NAILED NAILED NAILED 6¹² 6x8= 3x5= 2x4 II 3x10 =2x4 I 3x10 =2x4 II NAILED 3811 3081 32 5 296 33 7 35 9 36 10 37 4 28 34 8 \boxtimes \boxtimes \boxtimes "⊠ ∭⊠ NAILED 3x6 -TR I пп Шî 26 3 ∕₪ 25 4-4-2 4-4-0 Ń 1 18 пп пп пп пп 43 17 0-8-2 39 ¦ 40 19 41 42 ħ۴, • nn 12 8x10= 220 45 16 46 15 48 49 14 1350 51 44 47 6x8= NAILED NAILED 5x10 u NAILED 2x4 II 2x4 u 5x10 =3x10 =3x5= 5x6 =NAILED 4x8 =6x10= NAILED 2-5-8 <u>2-0-0</u>2 -3-7-5-9 13-4-13 17-10-3 22-5-5 27-0-7 28-8-4 31-9-5 2-0-00-3-5 5-0-1 5-11-4 4-5-6 4-7-2 4-7-2 1-7-14 3-1-0 0-2-3 Scale = 1:58.1 Plate Offsets (X, Y): [2:0-7-8,0-0-4], [2:1-0-12,0-2-6], [4:0-6-0,0-2-8], [16:0-3-4,0-2-8], [18:0-2-12,0-4-0], [19:0-5-0,0-4-8] 2-0-0 CSI DEFL in l/defl L/d PLATES GRIP Loading (psf) Spacing (loc) TCLL (roof) 20.0 Plate Grip DOL 1.15 тс 0.51 Vert(LL) -0.27 6 >999 240 MT20 244/190 Snow (Pf) 20.0 Lumber DOL 1.15 BC 0.98 Vert(CT) -0.42 18-19 >908 180 TCDL Rep Stress Incr WB 0.97 Horz(CT) 10.0 NO 0.20 12 n/a n/a BCLL 0.0 IRC2018/TPI2014 Matrix-MSH Code BCDL 10.0 Weight: 418 lb FT = 20% LUMBER 1) 2-ply truss to be connected together with 10d 11) LGT2 Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 1. (0.131"x3") nails as follows: TOP CHORD 2x4 SP No.2 *Except* 1-4:2x8 SP 2400F Top chords connected as follows: 2x8 - 2 rows This connection is for uplift only and does not consider 2.0E staggered at 0-9-0 oc, 2x4 - 1 row at 0-9-0 oc. BOT CHORD 2x6 SP No.2 *Except* 6-17:2x4 SP No.3, lateral forces 12) This truss is designed in accordance with the 2018 17-13,13-12:2x4 SP No.2 Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc, 2x4 - 1 row at 0-9-0 oc. International Residential Code sections R502.11.1 and WEBS 2x4 SP No.3 *Except* 2-21:2x6 SP No.2 Web connected as follows: 2x4 - 1 row at 0-9-0 oc, 2x6 -R802.10.2 and referenced standard ANSI/TPI 1. BRACING 2 rows staggered at 0-9-0 oc 13) Graphical purlin representation does not depict the size TOP CHORD Structural wood sheathing directly applied or 2) All loads are considered equally applied to all plies, or the orientation of the purlin along the top and/or 6-0-0 oc purlins, except end verticals, and except if noted as front (F) or back (B) face in the LOAD bottom chord. 2-0-0 oc purlins (4-6-11 max.): 4-11. CASE(S) section. Ply to ply connections have been 14) "NAILED" indicates 3-10d (0.148"x3") or 3-12d BOT CHORD Rigid ceiling directly applied or 10-0-0 oc provided to distribute only loads noted as (F) or (B), (0.148"x3.25") toe-nails per NDS guidlines. bracing, Except: unless otherwise indicated. 15) LGT2 Hurricane ties must have two studs in line below 6-0-0 oc bracing: 1-21. Wind: ASCE 7-16; Vult=130mph (3-second gust) the truss **REACTIONS** (size) 1=0-3-8, 12= Mechanical Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; LOAD CASE(S) Standard Max Horiz 1=149 (LC 11) Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior Dead + Snow (balanced): Lumber Increase=1.15, Plate Max Uplift 1=-686 (LC 12), 12=-873 (LC 9) 1) zone; cantilever left and right exposed ; end vertical left Increase=1.15 Max Grav 1=2333 (LC 1), 12=2646 (LC 32) and right exposed; Lumber DOL=1.60 plate grip Uniform Loads (lb/ft) FORCES DOL=1.60 (Ib) - Maximum Compression/Maximum Vert: 1-4=-60, 4-11=-60, 20-22=-20, 2-18=-20, TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Tension 4) 12-17=-20 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate TOP CHORD 1-2=-1152/358, 2-3=-6607/2067 Concentrated Loads (lb) 3-4=-5547/1753. 4-5=-4944/1597. DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; OPTH CAR Cs=1.00; Ct=1.10 5-6=-6608/2158, 6-7=-6559/2144 7-8=-4161/1382, 8-10=-4161/1382, 5) Unbalanced snow loads have been considered for this 10-11=-65/48, 11-12=-313/144 design. 1-21=-165/430, 20-21=0/0, 2-19=-2075/6290, BOT CHORD 6) Provide adequate drainage to prevent water ponding. 18-19=-2002/5954, 17-18=0/106, 7) This truss has been designed for a 10.0 psf bottom COLUMN STREET WWWWWWWW 6-18=-424/179, 16-17=-126/394, chord live load nonconcurrent with any other live loads. 15-16=-1669/4940, 14-15=-876/2574, * This truss has been designed for a live load of 20.0psf 8) SEAL 12-14=-876/2574 on the bottom chord in all areas where a rectangle 36322 WEBS 4-19=-706/2319, 5-19=-1409/519, 3-06-00 tall by 2-00-00 wide will fit between the bottom 5-18=-328/912. 16-18=-1590/4689. chord and any other members. 7-18=-651/1964 7-16=-999/420 Refer to girder(s) for truss to truss connections. 7-15=-1048/365, 8-15=-543/263 10) Provide mechanical connection (by others) of truss to 10-15=-712/2115, 10-14=0/279, bearing plate capable of withstanding 873 lb uplift at 10-12=-3388/1114, 2-21=-184/630, joint 12 G 3-19=-1751/555 hummin NOTES May 22,2023

AMITEK Atfiliate

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MIL7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 88 FaNC		
22090053	A07	Half Hip Girder	1	2	Job Reference (optional)	158457633	

Vert: 4=-84 (F), 9=-116 (F), 19=-65 (F), 14=-33 (F), 10=-116 (F), 25=-101 (F), 26=-51 (F), 27=-84 (F), 28=-84 (F), 29=-84 (F), 31=-116 (F), 33=-116 (F), 34=-116 (F), 35=-116 (F), 36=-116 (F), 37=-116 (F), 38=-135 (F), 39=-149 (F), 40=-37 (F), 41=-65 (F), 42=-65 (F), 43=-65 (F), 44=-33 (F), 45=-33 (F), 46=-33 (F), 47=-33 (F), 48=-33 (F), 49=-33 (F), 50=-33 (F), 51=-39 (F) Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Fri May 19 10:12:22 ID:Z36wOF0uAgOGNrKJXIhZjxyEOgu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 88 FaNC	
22090053	A08	Нір	1	1	Job Reference (optional)	158457634

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Fri May 19 10:12:24 ID:24AZDW7zTEHAC6YN1cvXXYyEOkd-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual russ web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual russ web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual russ web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 AMITEK Affiliat 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 88 FaNC	
22090053	A09	Нір	1	1	Job Reference (optional)	158457635

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Fri May 19 10:12:24 Page: 1 ID:24AZDW7zTEHAC6YN1cvXXYyEOkd-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -0-10-8 7-1-7 14-0-0 18-7-12 27-10-5 31-9-8 23-3-8 0-10-8 7-1-7 6-10-9 4-7-12 4-7-12 4-6-13 3-11-3 4x5= 3x5= 4x8= 0-1-15 H 5 2223 24 6 25 26 7 3x6 ≠ 12 6 12 19 21 4 27 3x5 ≉ 4x5 💊 ⁸28 3 20 19 29 2x4 **I** 18 9 ł T 10 14 12 30 31 13 11

4x6=

3x8=

3x8=

Scale = 1:60.4

7-9-3 7-6-1 7-6-1

Plate Offsets (X, Y): [2:0-0-12,0-1-8], [7:0-4-0,0-1-6]

4x6 ≠

(psf) 20.0 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15		CSI TC	0.07	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
10.0	Rep Stress Incr Code	YES	3/TPI2014	BC WB Matrix-MSH	0.97 0.66 0.86	Vert(LL) Vert(CT) Horz(CT)		11-13 11-13 10	>999 >999 n/a	240 180 n/a	MT20 Weight: 207 lb	244/190 FT = 20%
P No.2 P No.3 2x4 SP No.3 tural wood she ot end verticals I max.): 5-7.	, and 2-0-0 oc purlins		Vasd=103mp Cat. II; Exp E zone and C- 2-3-10 to 10- Interior (1) 17 26-5-10, Inte 28-5-10 to 31 exposed ; en members and	bh; TCDL=6.0psf; E B; Enclosed; MWFF C Exterior(2E) -0-1(9-14, Exterior(2R) 7-2-2 to 20-1-6, Ext rior (1) 26-5-10 to 2 I-7-12 zone; cantile d vertical left and ri d forces & MWFRS	CDL=6 S (env) -8 to 2 10-9-14 erior(2F 28-5-10 ever left ght exp for rea	.0psf; h=25ft; elope) exterio -3-10, Interior to 17-2-2, R) 20-1-6 to , Exterior(2E) and right tosed;C-C for ctions shown;	r (1)	LOAD	CASE(S)	Sta	ndard	
ng. v at midpt 2=0-3-8, priz 2=196 (Lo plift 2=-127 (L	6-13, 6-11 10=0-3-8 C 13) C 14), 10=-53 (LC 15	3) 5) 4)	TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced	7-16; Pr=20.0 psf .15); Pf=20.0 psf (l s=1.0; Rough Cat l -1.10	(roof LL .um DC 3; Fully	: Lum DOL=1 DL=1.15 Plate Exp.; Ce=0.9	;					
Maximum Corr	<i>,,</i>	5)	This truss ha									
/23, 2-3=-2497 1618/316, 6-7=	-1257/280,	6)	overhangs no Provide adec	on-concurrent with juate drainage to p	other liv revent v	/e loads. vater ponding						11.
-197/2166, 13	-14=-197/2166,	.,	chord live loa	ad nonconcurrent w	ith any	other live load					TH CA	Bollin
0/218, 3-13=-6 -88/284, 6-11= -138/236, 8-10	378/202, 5-13=0/538, 590/153, 7-11=-42/7)=-1609/208	- /	on the bottom 3-06-00 tall b chord and an One H2.5A S recommende UPLIFT at jt(n chord in all areas by 2-00-00 wide will by other members, s Simpson Strong-Tie ed to connect truss s) 2 and 10. This co	where fit betw with BC connec to bear	a rectangle veen the botto DL = 10.0psf. ctors ing walls due on is for uplift	om to		Winn	A.	O. FESO SEA	• •
	te end verticals 4 max.): 5-7. ceiling directly ng. w at midpt 2=0-3-8, oriz 2=196 (LC plift 2=-127 (L rav 2=1488 (L Maximum Com on)/23, 2-3=-2497 1618/316, 6-7= 1686/287, 8-9= 197/2166, 13 3=-96/1563, 10 :0/218, 3-13=-6 88/284, 6-11= 138/236, 8-10	P No.2 P No.3 2x4 SP No.3 tural wood sheathing directly applied ot end verticals, and 2-0-0 oc purlins 4 max.): 5-7. ceiling directly applied or 10-0-0 oc ng. w at midpt 6-13, 6-11 2=0-3-8, 10=0-3-8 oriz 2=196 (LC 13) plift 2=-127 (LC 14), 10=-53 (LC 15 rav 2=1488 (LC 45), 10=1475 (LC Maximum Compression/Maximum on 0/23, 2-3=-2497/299, 3-5=-1907/307 1618/316, 6-7=-1257/280, 1686/287, 8-9=-263/79, 9-10=-228/6 :=-197/2166, 13-14=-130/1279 :0/218, 3-13=-678/202, 5-13=0/538,	P No.2 IP No.2 IP No.3 2x4 SP No.3 tural wood sheathing directly applied, of end verticals, and 2-0-0 oc purlins 4 max.): 5-7. ceiling directly applied or 10-0-0 oc ng. wat midpt 6-13, 6-11 2=0-3-8, 10=0-3-8 oriz 2=196 (LC 13) plift 2=-127 (LC 14), 10=-53 (LC 15) yat midpt 6-73, 6-11 yat midpt 6-13, 6-11 yat midpt 10=-0.3-8 oriz 2=196 (LC 13) plift 2=-127 (LC 14), 10=-53 (LC 15) yatimum Compression/Maximum 5) on 0 y/23, 2-3=-2497/299, 3-5=-1907/307, 1618/316, 6-7=-1257/280, 6) 1686/287, 8-9=-263/79, 9-10=-228/69 7) :-197/2166, 13-11=-130/1279 8) :=-96/1563, 10-11=-130/1279 8) :0/218, 3-13=-678/202, 5-13=0/538	P No.2 Vasd=103m; Cat. II; Exp E $P No.3$ Cat. II; Exp E $P No.3$ Cat. II; Exp E $P No.3$ Cat. II; Exp E $2x4 SP No.3$ Cat. II; Exp E tural wood sheathing directly applied, ot end verticals, and 2-0-0 cc purlins Cat. II; Exp E $4 max.$): 5-7. Ceiling directly applied or 10-0-0 oc $0g.$ $2e0-3-8, 10=0-3-8$ oriz $2=196$ (LC 13) plift $2=-127$ (LC 14), 10=-53 (LC 15) rav $2=1488$ (LC 45), 10=1475 (LC 45) Maximum Compression/Maximum on Son $002/18, 3-13=-267/209, 3-5=-1907/307, 161863/287, 8-9=-263/79, 9-10=-228/69 -:197/2166, 13-14=-197$	 P No.2 P No.2 P No.3 P No.4 P No.3 P No.4 P No.3 P No.4 P No.3 P No.4 P No.4 P No.4 P No.4 P No.4 P No.4 P No.3 P No.4 P No.5 P No.	 P No.2 P No.2 P No.3 P No.4 P No.3 P No.4 P No.3 P No.3 P No.3 P No.3 P No.3 P No.4 P No.3 P No.4 P No.5 P No.4 P No.5 P No.4 P No.5 P No.4 P No.5 P No.	 P No.2 P No.2 P No.3 P No.4 P No.3 P No.4 P No.4 P No.3 P No.3 P No.3 P No.4 P No.3 P No.3 P No.4 P No.5 P No.	 P No.2 P No.2 P No.3 P No.4 P No.3 P No.4 P No.3 P No.3 P No.3 P No.4 P No.5 P No.	 P No.2 P No.2 P No.3 Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-3-10, Interior (1) 2-3-10 to 10-9-14, Exterior(2R) 10-9-14 to 17-2-2, Interior (1) 17-2-2 to 20-1-6, Exterior(2R) 20-1-6 to 2-3-10 to 10-9-14, Exterior(2R) 20-1-6 to 2-3-10 to 10-9-14, Exterior(2R) 20-1-6 to 26-5-10, Interior (1) 126-5-10 to 28-5-10, Exterior(2E) 28-5-10 to 317-712 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-16; Pr=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate	 P No.2 P No.2 P No.3 P No.4 P No.3 P No.3 P No.3 P No.3 P No.4 P No.3 P No.3 P No.3 P No.4 P No.4 P No.4 P No.5 P No.3 P No.4 P No.4 P No.4 P No.5 P No.3 P No.4 P No.5 P No.	P No.2Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exteriorP No.3zon and C-C Exterior(2E) -0.10-8 to 2-3-10, Interior (1) 2-3-10 to 10-9-14, Exterior(2R) 10-9-14 to 17-2-2, Interior (1) 17-2-2 to 20-1-6, Exterior(2R) 20-1-6 to 26-5-10 to 32-5-10, Exterior(2E) 28-5-10 to 31-7-12 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DCL=1.60 plate grip DOL=1.6019.vat midpt 2-0-3-8, 10=0-3-86-13, 6-11 2=0-3-8, 10=0-3-83)TCLL: ASCE 7-16; Pr=20.0 psf (toof LL: Lum DOL=1.15 Plate DOL=1.5); IF=20.0 psf (Lum DOL=1.15; IF=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10Maximum Compression/Maximum on (23, 2-3=-2497/299, 3-5=-1907/307, 1618/316, 6-7=-1257/280, mession/Maximum5)This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.19/23, 2-3=-2497/299, 3-5=-1907/307, 1018/316, 6-7=-1257/280, mon6)Provide adequate drainage to prevent water ponding.19/20218, 3-13=-678/202, 5-13=0/538, 38/236, 8-10=-1609/2086)* This truss has been designed for a 10.0 psf.10/218, 3-13=-678/202, 5-13=0/538, 138/236, 8-10=-1609/2088)* This trus has been designed for a live load s.9)One H2.5A Simpson Strong-Tie connectors recommended to connect truss to be aaring walls due to UPLIFT at jt(s) 2 and 10. This connection is for upilit only and does not consider lateral forces.	 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0ps; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0.10-8 to 2-3-10, Interior (1) 2-3-10 to 10-9-14, Exterior(2R) 10-9-14 to 17-2-2, Interior (1) 17-2-2 to 20-1-6, Exterior(2R) 20-1-6 to 2-65-10, Interior (1) 26-5-10 to 28-5-10, Exterior(2E) 28-5-10 to 31-7-12 zone; cantilever left and right exposed; end vertical left and right plift 2=-127 (LC 14), 10=-53 (LC 15) Maximum Compression/Maximum on enfort live load for 20, psf on overtmargs non-courrent with other live loads. This truss has been designed for a 10.0 ps footom chord and any other members, with BCDL = 10.0psf. One H2:5A Simpson Strong-Tie connectors recommended to connect trus to bearing walls due to UPLIFT at jt(s) 2 and 10. This connection is for upilit only and does not consider lateral forces.

10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

818 Soundside Road Edenton, NC 27932

1-3-8

4x5=

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

2x4 II

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 88 FaNC	
22090053	A10	Нір	1	1	Job Reference (optional)	158457636

0-1-15

0-0-9

5-10-1 5-5-15

6-1-3

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Fri May 19 10:12:25 ID:24AZDW7zTEHAC6YN1cvXXYyEOkd-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

5-5-7 10-8-0 18-1-1 25-6-3 31-9-8 5-5-7 5-2-9 7-5-1 7-5-1 6-3-5 4x5= 3x8= 4x8= 19 0-1-15 H ≥²² 4 520 21 6 6¹² 12 19 18 2x4 👟 23 3 16¹⁷ 5x6 💊 7 1-3-8 ŀ 8 Ø 12 11 10 24 9 3x5 II 3x8= 4x6= 2x4 II 5x8=

10-6-4	18-1-1	25-7-15	31-9-8
10-6-4	7-6-13	7-6-13	6-1-9

Scale = 1:60.3

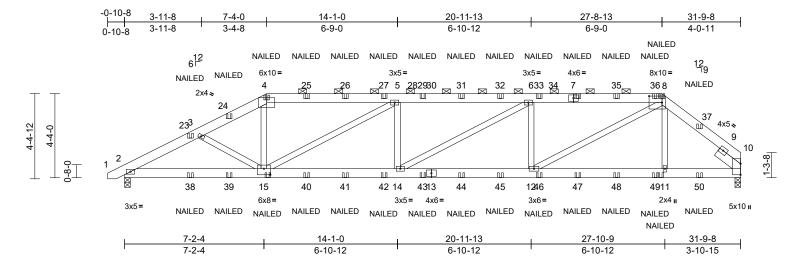
Plate Offsets (X, Y): [2:Edge,0-1-1], [6:0-4-0,0-1-6], [7:Edge,0-1-8]

4x6=

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.91 0.69 0.54	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.13 -0.21 0.06	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 196 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD WEBS REACTIONS		athing directly applie cept end verticals, ar -0 max.): 4-6. applied or 10-0-0 oc 5-12, 5-9 3=0-3-8 C 13) C 14), 8=-62 (LC 10	nd 3) 4)	Vasd=103mj Cat. II; Exp E zone and C- 2-3-10 to 7-5 (1) 13-10-2 ti Exterior(2E) right expose for members Lumber DOL TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct Unbalanced design.	7-16; Vult=130mp oh; TCDL=6.0psf; 3; Enclosed; MWF C Exterior(2E) -0- 5-14, Exterior(2R) o 22-4-0, Exterior(28-5-10 to 31-7-12 d; end vertical left and forces & MW =1.60 plate grip D : 7-16; Pr=20.0 psf I.15); Pf=20.0 psf Is=1.0; Rough Cat =1.10 snow loads have I as been designed f	BCDL=6 RS (env 10-8 to 2 7-5-14 to 2 RS (22-4 2 2 and right FRS for 10CL=1.60 f (roof LL (Lum DC B; Fully been cor	.0psf; h=25ft elope) exterit -3-10, Interio 13-10-2, Int -0 to 28-5-10 cantilever left tt exposed;C reactions sho) :: Lum DOL= 0L=1.15 Plate Exp.; Ce=0.9	r (1) erior), and -C own; 1.15 e 2; his				
FORCES	(lb) - Maximum Com Tension	pression/Maximum			psf or 1.00 times f on-concurrent with			sf on				
TOP CHORD	1-2=0/23, 2-3=-2411 4-5=-1933/297, 5-6= 6-7=-1811/237, 7-8=	-1420/261,), 6) 7)	This truss ha	quate drainage to as been designed f ad nonconcurrent	for a 10.) psf bottom					11
BOT CHORD	2-12=-231/2102, 10- 9-10=-212/2339, 8-9		8)	* This truss I	nas been designed n chord in all area	l for a liv	e load of 20.0				TH CA	Routh
WEBS	3-12=-476/197, 4-12 5-10=0/361, 5-9=-11 7-9=-110/1306		45, 9)	3-06-00 tall t chord and ar One H2.5A \$	by 2-00-00 wide wing any other members, Simpson Strong-Ti	ill fit betw with BC e conne	veen the bott DL = 10.0ps ctors	f.	4	à	OFFEESS	1000
NOTES 1) Unbalance this design	ed roof live loads have n.	been considered for		UPLIFT at jt(and does no	ed to connect truss (s) 2 and 8. This co t consider lateral fo designed in accor	onnectio orces.	n is for uplift		11111		SEA 0363	• -

- and does not consider lateral forces.
 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 88 FaNC	
22090053	A11	Roof Special Girder	1	2	Job Reference (optional)	158457637

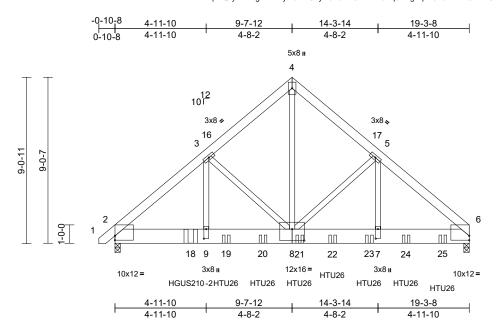
Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Fri May 19 10:12:29 ID:24AZDW7zTEHAC6YN1cvXXYyEOkd-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:59.5

Plate Offsets (X, Y): [8:0-8-0,0-4-0], [15:0-4-0,0-3-12]

												I	-
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.44	Vert(LL)	-0.15	12-14	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.64	Vert(CT)	-0.24	12-14	>999	180		
TCDL	10.0	Rep Stress Incr	NO		WB	0.61	Horz(CT)	0.07	10	n/a	n/a		
BCLL	0.0*	Code	IRC2018	3/TPI2014	Matrix-MSH								
BCDL	10.0											Weight: 437 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x6 SP No.2 2x4 SP No.3 Right 2x6 SP No.2 Structural wood she 6-0-0 oc purlins, exc 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. (size) 2=0-3-8, 1 Max Horiz 2=97 (LC Max Uplift 2=-715 (L	athing directly applie ept -0 max.): 4-8. applied or 10-0-0 oc 10=0-3-8 9) C 12), 10=-811 (LC	3) d or 4) ; 13) 5)	except if note CASE(S) sec provided to d unless othen Unbalanced this design. Wind: ASCE Vasd=103mp Cat. II; Exp E zone; cantile and right exp DOL=1.60 TCLL: ASCE Plate DOL=1	considered equally ad as front (F) or ba- titon. Ply to ply cor listribute only loads wise indicated. roof live loads have 7-16; Vult=130mp bh; TCDL=6.0psf; E 8; Enclosed; MWFF ver left and right ex loosed; Lumber DOI .7-16; Pr=20.0 psf (1 .15); Pf=20.0 psf (1	ack (B) inection is noted is been in (3-sec 3CDL=6 RS (env cposed L=1.60 (roof LI Lum DC	face in the LC s have been as (F) or (B), considered fo cond gust) .0psf; h=25ft; elope) exteric ; end vertical olate grip .: Lum DOL= L=1.15 Plate	r ; or left 1.15	or t bot 14) "NA (0. 15) LG the LOAD 1) Do In	he orien tom choi AILED" ir 148"x3.2 T2 Hurrio truss. CASE(S ead + Sr crease= niform Lo Vert: 1 oncentra Vert: 4=	tation of rd. ndicate 5") toe cane tio now (ba 1.15 pads (ll 4=-60, ted Lo -116 (l	of the purlin along es 3-10d (0.148"x -nails per NDS g es must have two ndard alanced): Lumber b/ft) 4-8=-60, 8-10=-6 ads (lb) B), 7=-116 (B), 19	3") or 3-12d uidlines. o studs in line below
FORCES	Max Grav 2=2442 (L (lb) - Maximum Com	<i>,,</i>	36)		s=1.0; Rough Cat	B; Fully	Exp.; Ce=0.9	9;					116 (B), 32=-116 (B),
FURCES	Tension	pression/waximum	6)	Cs=1.00; Ct=	snow loads have b		sidered for th	aic					116 (B), 37=-27 (B),
TOP CHORD BOT CHORD	1-2=0/26, 2-3=-4374 4-5=-3767/1229, 5-6 6-8=-4973/1636, 8-1	=-5357/1731, 0=-3222/1051 4-15=-1739/5357,	843, 7) 8)	design. This truss ha load of 12.0 p overhangs no Provide adeo	s been designed for psf or 1.00 times fit on-concurrent with quate drainage to p s been designed fo	or great at roof le other li prevent	er of min roof oad of 20.0 p ve loads. water ponding	live sf on		42=-33	(B), 43 (B), 47	39=-107 (B), 40=- 3=-33 (B), 44=-33 7=-33 (B), 48=-33	(B), 49=-66 (B),
WEBS	3-15=-213/152, 4-15 8-11=-38/204, 5-14= 5-15=-1824/665, 6-1 6-12=-1159/500, 8-1	-24/237, 4=-178/487,		chord live loa * This truss h on the botton 3-06-00 tall b	ad nonconcurrent w has been designed in chord in all areas by 2-00-00 wide will by other members.	vith any for a liv s where	other live loa e load of 20.0 a rectangle	Opsf		4	N. N	OFFESS PROFESS	No the second
(0.131"x3" Top chord staggered Bottom ch staggered	to be connected togei ') nails as follows: s connected as follows at 0-9-0 oc. ords connected as follows at 0-9-0 oc. ected as follows: 2x4 -	s: 2x6 - 2 rows ows: 2x6 - 2 rows) LGT2 Simpso connect truss and 2. This c consider late) This truss is o International	on Strong-Tie conr s to bearing walls c connection is for up	lue to U lift only lance w sections	PLIFT at jt(s) and does not ith the 2018 5 R502.11.1 a	10		1111WY	A A A A A A A A A A A A A A A A A A A	SEA 0363	EER.K.

May 22,2023


Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 88 FaNC	
22090053	B01	Common Girder	1	2	Job Reference (optional)	158457638

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Fri May 19 10:12:30 ID:pVQbySBA1gxsLMVjWOPYUhyEOe5-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Scale = 1:62.7

Plate Offsets (X, Y): [2:Edge,0-2-13], [6:Edge,0-2-13], [7:0-6-4,0-1-8], [8:0-8-0,0-7-8], [9:0-6-4,0-1-8]

	, , 1 5, -	, t ² 3 , ² 3 , t	,.	-1, [,-	-1, [,-								-
Loading TCLL (roof) Snow (Pf) TCDL	(psf) 20.0 20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	1-11-4 1.15 1.15 NO		CSI TC BC WB	0.26 0.26 0.89	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.08 -0.14 0.02	(loc) 8-9 8-9 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0* 10.0	Code	IRC201	3/TPI2014	Matrix-MSH							Weight: 358 lb	FT = 20%
	5-3-11 oc purlins. Rigid ceiling directly bracing.	t* 8-4:2x4 SP No.2 athing directly applied applied or 10-0-0 oc	4) or 5)	Vasd=103mp Cat. II; Exp E zone; cantile and right exp DOL=1.60 TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct=		BCDL=6 RS (env xposed L=1.60 f (roof Ll (Lum DC B; Fully	0.0psf; h=25ft elope) exterical ; end vertical plate grip .: Lum DOL= DL=1.15 Plate Exp.; Ce=0.§	or left 1.15 9;	the LOAD (1) De Inc Ur Co	truss. CASE(S ead + Sr crease= hiform Lo Vert: 1 oncentra Vert: 18) Stan now (ba 1.15 oads (li 4=-58, ated Lo 3=-2627	ndard alanced): Lumber b/ft) 4-6=-58, 10-13=- ads (lb)	B), 20=-1367 (B),
1 1 1	Max Horiz 2=192 (LC Max Uplift 2=-867 (L Max Grav 2=6474 (L	C 9) C 12) .C 19), 6=7140 (LC 20	6) 7)	design. This truss ha	snow loads have l is been designed f psf or 1.00 times f	or great	er of min roof	live				25=-1359 (B)	
FORCES	(lb) - Maximum Com Tension	pression/Maximum	8)	•	on-concurrent with is been designed f								
TOP CHORD	1-2=0/26, 2-3=-8382 4-5=-6076/545, 5-6=	/1035, 3-4=-6069/545		chord live loa	ad nonconcurrent	with any	other live loa						
BOT CHORD WEBS	2-9=-820/6331, 7-9=	-820/6331, 6-7=-44/6 -2136/0, 5-7=0/2611,	152 🤇	 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 									
(0.131"x3") Top chords staggered a Bottom cho staggered a Web conne	to be connected toge) nails as follows: s connected as follows at 0-9-0 oc. ords connected as foll at 0-4-0 oc. ected as follows: 2x4 -	ther with 10d :: 2x6 - 2 rows ows: 2x10 - 2 rows 1 row at 0-9-0 oc.	11) LGT2 Simps connect trus: This connect lateral forces) This truss is International R802.10.2 at) Use Simpson	on Strong-Tie con s to bearing walls ion is for uplift onl i. designed in accor Residential Code nd referenced star n Strong-Tie HGU:	nectors due to U y and do dance w sections idard AN S210-2 (PLIFT at jt(s) les not consid ith the 2018 s R502.11.1 a ISI/TPI 1. 46-10d Girde	2. ler Ind r,		4	2 A	ORTH CA	ROUNT
except if no CASE(S) se	re considered equally oted as front (F) or ba- ection. Ply to ply conr distribute only loads	ck (B) face in the LOA lections have been	.D 13	connect trus:) Use Simpsor	s) or equivalent at s(es) to back face n Strong-Tie HTU2 2 Truss, Single PI	of botto 26 (20-10	m chord.)d Girder,					0363	• -

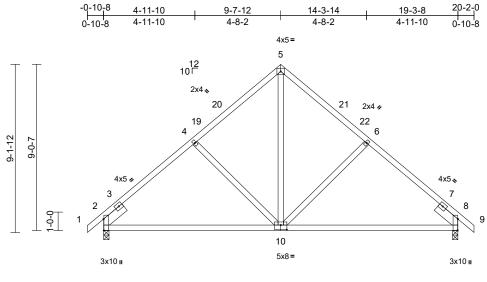
- provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design.
- end to 17-10-4 to connect truss(es) to back face of 14) Fill all nail holes where hanger is in contact with lumber.

spaced at 2-0-0 oc max. starting at 6-0-12 from the left

minin May 22,2023

G

Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

bottom chord.

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 88 FaNC	
22090053	B02	Common	3	1	Job Reference (optional)	158457639

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Fri May 19 10:12:30 ID:TANAg7xQFFvVNy7xsowHcyyB3F4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

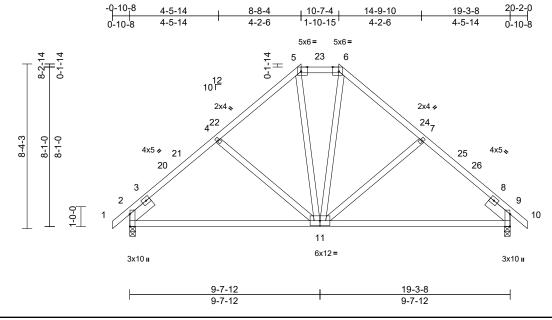
20-2-0 0-10-8

9-7-12	19-3-8	
9-7-12	9-7-12	

Scale = 1:62.7 Plate Offsets (X, Y): [2:0-7-7,Edge], [8:0-7-7,Edge], [10:0-4-0,0-3-0]

Plate Offsets (X, Y): [2:0-7-7,Edge], [8:0-7-7,Edge], [10:0-4-0,0	-3-0]								-	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf)Spacing20.0Plate Grip DOL20.0Lumber DOL10.0Rep Stress Inc0.0*Code10.0	1.15 r YES		CSI TC BC WB Matrix-MSH	0.54 0.73 0.24	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.11 -0.23 0.03	(loc) 10-17 10-17 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 109 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.3 Left 2x6 SP No.2 1-6-0, Right 2x6 S 1-6-0 Structural wood sheathing directly ap 5-7-2 oc purlins. Rigid ceiling directly applied or 10-0-bracing.	plied or 0 oc 15) 22) Jm 59, 34	 Plate DOI DOL=1.11 Cs=1.00; Unbalanc design. This truss load of 12 overhang This truss chord live This truss on the boi 3-06-00 ta chord and One H2.5 recomme UPLIFT a and does This truss Internatio 	CE 7-16; Pr=20.0 pr =1.15); Pf=20.0 ps =1.15); Pf=20.0 ps Ct=1.10; Rough Ca Ct=1.10 ed snow loads have has been designed .0 psf or 1.00 times s non-concurrent with has been designed load nonconcurrent is has been designed tom chord in all are all by 2-00-00 wide w any other members A Simpson Strong-T aded to connect trus t jt(s) 2 and 8. This of not consider lateral is designed in acco nal Residential Code 2 and referenced sta	i (Lum DC at B; Fully been coord for great flat roof I th other li for a 10. with any d for a liv as where vill fit bets 5. The conne to bear connection forces. redance we e sections	DL=1.15 Plate Exp.; Ce=0. Insidered for t er of min roo oad of 20.0 p ve loads. 0 psf bottom other live loa ve load of 20. a rectangle ween the bott ctors ing walls due n is for uplift ith the 2018 s R502.11.1 a	e 9; his f live ssf on ads. 0psf om e to					111,
this desigr 2) Wind: ASC Vasd=103	ed roof live loads have been considered n. CE 7-16; Vult=130mph (3-second gust) mph; TCDL=6.0psf; BCDL=6.0psf; h=2 D: Factored NUCED (construction)	5ft;	LOAD CASE	S) Standard					4	in the second se	ORTH CA	ROUN

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 6-7-12, Exterior(2R) 6-7-12 to 12-7-12, Interior (1) 12-7-12 to 17-2-0, Exterior(2E) 17-2-0 to 20-2-0 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 SEAL 036322 MGINEER May 22,2023


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 88 FaNC	
22090053	B03	Нір	1	1	Job Reference (optional)	158457640

Scale = 1:58.4

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Fri May 19 10:12:31 ID:e56chKhJfljipUtsVq1p71yB3E6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

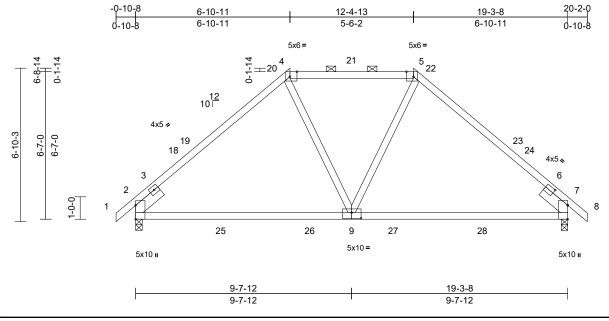
Page: 1

Plate Offsets (X, Y): [2:0-7-7,Edge], [5:0-3-12,Edge], [6:0-3-12,Edge], [9:0-7-7,Edge]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MSH	0.51 0.72 0.25	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 11-18 11-18 9	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 118 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD	2x4 SP No.3 Left 2x6 SP No.2 1 1-6-0 Structural wood shea 4-5-7 oc purlins, exc			Vasd=103mp Cat. II; Exp E zone and C-0 2-1-8 to 4-4-4 14-11-0 to 17 cantilever lef right exposed	7-16; Vult=130mp bh; TCDL=6.0psf; l b; Enclosed; MWF C Exterior(2E) -0-1 8, Exterior(2R) 4-4 7-2-0, Exterior(2R) t and right expose d;C-C for members shown; Lumber D	BCDL=6 RS (env 0-8 to 2 -8 to 14 17-2-0 d ; end v and fo	.0psf; h=25ft; elope) exterior -1-8, Interior -11-0, Interior to 20-2-0 zon rertical left an rces & MWFF	or (1) r (1) e; id					
BOT CHORD	bracing.	applied or 10-0-0 oc =0-3-8 : 13) 14), 9=-76 (LC 15)	3) 4)	TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced design.	: 7-16; Pr=20.0 psf .15); Pf=20.0 psf (is=1.0; Rough Cat =1.10 snow loads have b s been designed f	Lum DC B; Fully been col	0L=1.15 Plate Exp.; Ce=0.9 nsidered for th	e 9; his					
FORCES	(lb) - Maximum Com Tension		, 3)	load of 12.0	psf or 1.00 times fl on-concurrent with	at roof l	ad of 20.0 p						
TOP CHORD	1-2=0/34, 2-4=-1149	/151, 4-5=-905/158, 905/158, 7-9=-1149/15	6) 51, 7)	Provide adeo This truss ha	quate drainage to p s been designed f ad nonconcurrent v	orevent or a 10.	vater ponding) psf bottom						0.05
BOT CHORD WEBS	2-9=-178/806	=-291/175, 5-11=-49/2	8) 277,	* This truss h on the bottor 3-06-00 tall b	nas been designed n chord in all areas by 2-00-00 wide wi	for a liv s where	e load of 20.0 a rectangle	Opsf			- In	OPTHESS	ROJU
NOTES 1) Unbalance this design	ed roof live loads have n.	been considered for		One H2.5A S recommende UPLIFT at jt(and does not) This truss is International R802.10.2 at) Graphical pu	y other members. Simpson Strong-Tie ed to connect truss s) 2 and 9. This cc t consider lateral fr designed in accord Residential Code nd referenced star rlin representation ation of the purlin a L	to bear onnectio orces. dance w sections dard AN does n	ng walls due n is for uplift o th the 2018 R502.11.1 a ISI/TPI 1. ot depict the s	only				SEA 0363	22 EERER III

11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. LOAD CASE(S) Standard

minin May 22,2023


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 88 FaNC	
22090053	B04	Нір	1	1	Job Reference (optional)	158457641

Scale = 1:51.4

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Fri May 19 10:12:32 ID:BXjousvgtKRMR?5GwXLVjKyB3CX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [4:0-3-12,Edge], [5:0-3-12,Edge], [7:0-0-0,0-0-0], [9:0-5-0,0-3-0]

	(N, 1). [4.0-0-12,Euge	j, [0.0-0-12,Euge], [i	1.0-0-0,0-0	-0], [0.0-0-0,0-	•-•]								
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.97 0.82 0.13	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.21 -0.33 0.06	(loc) 9-12 9-12 2	l/defl >999 >707 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 94 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER		1-6-0, Right 2x6 SP		Plate DOL= DOL=1.15); Cs=1.00; Ct Unbalanced design.	snow loads have b	Lum D0 B; Fully een co	DL=1.15 Plate v Exp.; Ce=0.9 nsidered for th	e 9; his					
BRACING TOP CHORD	Structural wood she except 2-0-0 oc purlins (4-5		ed,	 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 6) Provide adequate drainage to prevent water ponding. 									
BOT CHORD				chord live lo	as been designed fo ad nonconcurrent v	vith any	other live loa						
REACTIONS	(size) 2=0-3-8, 7 Max Horiz 2=-150 (L Max Uplift 2=-85 (LC Max Grav 2=1046 (L	C 12) C 14), 7=-85 (LC 15)		on the botto 3-06-00 tall chord and a	nas been designed m chord in all areas by 2-00-00 wide wil ny other members, Simpson Strong-Tie	where I fit betv with BC	a rectangle ween the botte CDL = 10.0ps	om					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	, 9	recommende UPLIFT at jt	ed to connect truss (s) 2 and 7. This co	to bear	ing walls due						
TOP CHORD	1-2=0/34, 2-4=-1019 5-7=-1020/227, 7-8=		,		t consider lateral fo designed in accord		ith the 2018						
BOT CHORD WEBS NOTES 1) Unbalance this design	2-7=-220/693 4-9=-6/316, 5-9=-6/3 ed roof live loads have	316	1	International R802.10.2 a) Graphical pu	Residential Code s nd referenced stan Irlin representation ation of the purlin a	section: dard Al does n	s R502.11.1 a NSI/TPI 1. ot depict the s				C. M.	OR FESS	ROUT
2) Wind: ASC	 CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B0			OAD CASE(S)	Standard					2			27

Vasd=103mph; ICDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 2-7-12, Exterior(2R) 2-7-12 to 16-7-12, Interior (1) 16-7-12 to 17-2-0, Exterior(2E) 17-2-0 to 20-2-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

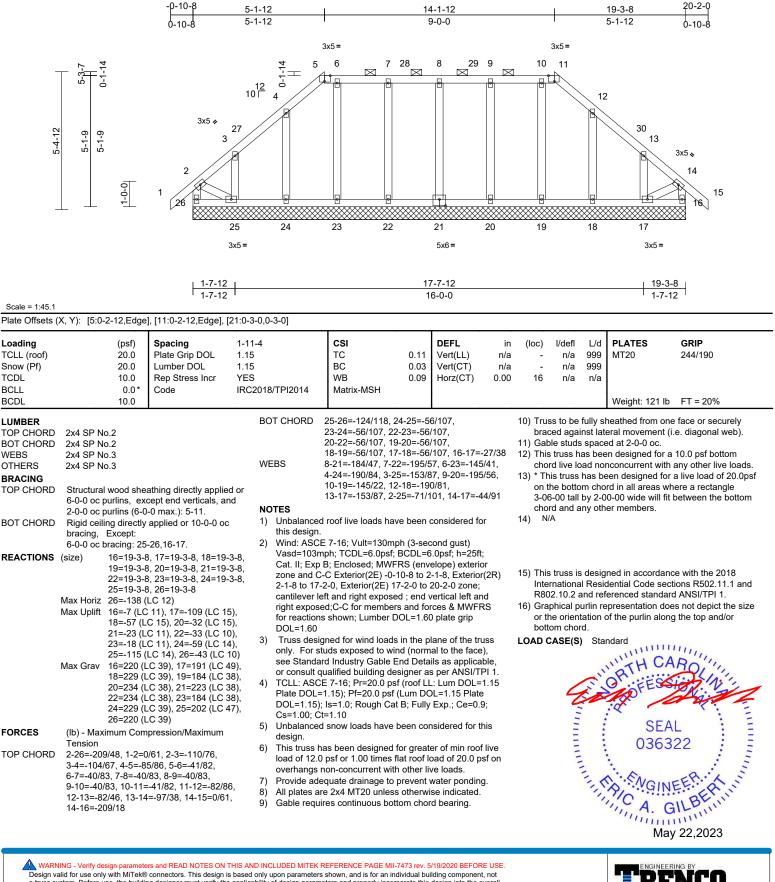
CITICO MANDALINE The second second G mumm May 22,2023

SEAL

036322

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

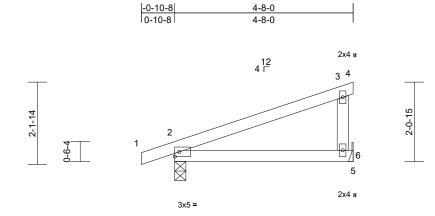

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 88 FaNC	
22090053	B05	Hip Supported Gable	1	1	Job Reference (optional)	158457642

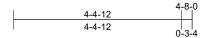
BCDL

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries. Inc. Fri May 19 10:12:32 ID:w9brgQ5aUe7q1fssSLai?HyB39j-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

818 Soundside Road Edenton, NC 27932




WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 88 FaNC	
22090053	C01		6	1	Job Reference (optional)	58457643

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Fri May 19 10:12:33 ID:bFiL8v6OcScM04zv6r3K8?yB35p-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

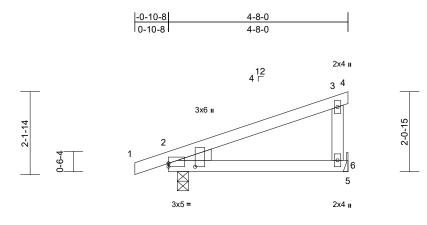
Page: 1

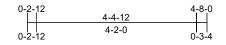
Scale = 1:30.1

тс	ading LL (roof) ow (Pf) DL	(psf) 20.0 20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.40 0.25 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.02 -0.04 0.01	(loc) 6-9 6-9 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BC BC		0.0* 10.0	Code	IRC2018/TPI20	14	Matrix-MP							Weight: 18 lb	FT = 20%
TO BC BR TO BC RE FO TO BC NC 1) 2) 3) 4)	Vasd=103 Cat. II; Exp zone and @ exposed; members a Lumber D TCLL: ASC Plate DOL DOL=1.15 Cs=1.00; (Unbalance design. This truss load of 12. overhangs	2x4 SP No.2 2x4 SP No.3 Structural wood sh 4-8-0 oc purlins, e Rigid ceiling directl bracing. (size) 2=0-3-8, Max Horiz 2=72 (LC Max Uplift 2=-57 (L Max Grav 2=324 (I (Ib) - Maximum Coi Tension 1-2=0/25, 2-3=-163 3-6=-194/129 2-6=-118/72, 5-6=0 CE 7-16; Vult=130mp imph; TCDL=6.0psf; f p B; Enclosed; MWFR OL=1.60 plate grip D CE 7-16; Pr=20.0 psf (=1.15); Pf=20.0 psf (=); Is=1.0; Rough Cat Ct=1.10 ed snow loads have b	y applied or 10-0-0 oc 6= Mechanical C 13) C 10), 6=-35 (LC 14) C 21), 6=262 (LC 21) npression/Maximum /115, 3-4=-8/0, /0 h (3-second gust) 3CDL=6.0psf; h=25ft; S (envelope) exterior e; cantilever left and r ight exposed;C-C for for reactions shown; DL=1.60 (roof LL: Lum DOL=1 Lum DOL=1.15 Plate B; Fully Exp.; Ce=0.9 een considered for th or greater of min roof at roof load of 20.0 ps other live loads.	r ight .15 is is is is is is is is is is	e bottor 00 tall k and ar to gird de mec ng plate 12.5A S mende T at jt(not con russ is ational 10.2 a	has been designed in chord in all areas by 2-00-00 wide wil by other members. er(s) for truss to tru- hanical connection e capable of withsta Simpson Strong-Tie d to connect truss s) 2. This connecti sider lateral forces designed in accord Residential Code and referenced stan Standard	s where Il fit betv uss conr h (by oth anding 3 e conne to bear ion is for s. dance w sections	a rectangle veen the bott nections. ers) of truss 5 lb uplift at ctors uplift only a ith the 2018 R502.11.1 a	to joint e to nd				SEA 0363	EER ALU
,	chord live	load nonconcurrent v	ith any other live load	ds.								C.	11, A. G	ILLIN

818 Soundside Road Edenton, NC 27932

May 22,2023


A. GILL

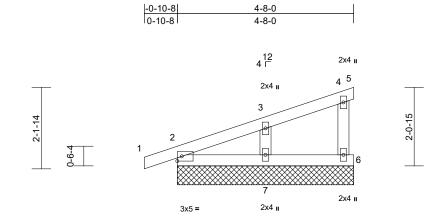

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

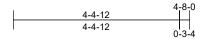
Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 88 FaNC	_
22090053	C02		3	1	I58457644 Job Reference (optional)	ļ

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Fri May 19 10:12:33 ID:cXEnijJ3bgmxZhmAbwsKKbyB35Y-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

818 Soundside Road Edenton, NC 27932

Scale =	1:30
---------	------


Loading (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Plate Grip DOL1.Lumber DOL1.Rep Stress IncrYI	15	CSI TC BC WB Matrix-MP	0.34 0.35 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.07 0.05 -0.01	(loc) 6-9 6-9 2	l/defl >786 >961 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 19 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 WEDGE Left: 2x4 SP No.3 BRACING TOP CHORD Structural wood shea 4-8-0 oc purlins, exc BOT CHORD Rigid ceiling directly bracing.	applied or 10-0-0 oc = Mechanical 13) 10), 6=-72 (LC 10) : 21), 6=262 (LC 21) pression/Maximum :58, 3-4=-8/0,) (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior cantilever left and right ht exposed; porch left ers and forces & mber DOL=1.60 plate oof LL: Lum DOL=1.15 Im DOL=1.15 Plate ; Fully Exp.; Ce=0.9; en considered for this greater of min roof live roof load of 20.0 psf on	 chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar 7) Refer to gird 8) Provide mec bearing plate 6. 9) One H2.5A S recommende UPLIFT at It does not con 10) This truss is International 	s been designed fo d nonconcurrent w las been designed in chord in all areas by 2-00-00 wide will by other members. er(s) for truss to tru- hanical connection capable of withsta simpson Strong-Tie d to connect truss s) 2. This connection sider lateral forces designed in accord Residential Code s and referenced stand Standard	vith any for a liv where I fit betv ss conre (by oth anding 7 e conne to bear on is for lance w sections	other live loa e load of 20.0 a rectangle veen the bottu- nections. ers) of truss to 2 lb uplift at j ctors ng walls due uplift only an th the 2018 R502.11.1 a	Opsf om oont to nd				SEA 0363	ROL NL EER. KIN

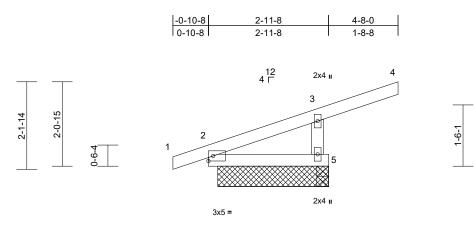

ARRING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEX REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 88 FaNC	
22090053	C03		1	1	Job Reference (optional)	158457645

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Fri May 19 10:12:34 ID:colCGXWjbuvX5JZS5_gJWAyB35H-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:30.5

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	BC 0.	09 Vert(LL) 04 Vert(CT) 05 Horz(CT)	in n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 19 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood sh 4-8-0 oc purlins, e Rigid ceiling directl bracing. (size) 2=4-8-0, 7=4-8-0, Max Horiz 2=71 (LC Max Uplift 2=-37 (L 8=-37 (L Max Grav 2=197 (L	C 13), 8=71 (LC 13) C 10), 5=-44 (LC 21), C 10), 7=-44 (LC 14), C 10) LC 21), 5=16 (LC 10), LC 21), 7=267 (LC 21)	 Plate DOL=: DOL=1.15); Cs=1.00; Ct Unbalanced design. This truss ha load of 12.0 overhangs n Gable requin Gable studs This truss ha chord live lo * This truss on the bottoo 3-06-00 tall chord and a Provide med 	E 7-16; Pr=20.0 psf (root 1.15); Pf=20.0 psf (Lurr Is=1.0; Rough Cat B; F =1.10 snow loads have been as been designed for g psf or 1.00 times flat rc ion-concurrent with oth res continuous bottom of spaced at 2-0-0 oc. as been designed for a ad nonconcurrent with has been designed for a ad nonconcurrent with has been designed for a m chord in all areas wh by 2-00-00 wide will fit ny other members. chanical connection (by e capable of withstandi	DOL=1.15 Pla ully Exp.; Ce=0 considered for reater of min ro of load of 20.0 er live loads. chord bearing. 10.0 psf bottom any other live lo a live load of 20 ere a rectangle between the bo others) of truss	te).9; this of live psf on Dods.).0psf ttom					
FORCES	Tension	mpression/Maximum 67, 3-4=-40/25, 4-5=-2	11)N/A								
BOT CHORD WEBS NOTES 1) Wind: ASG Vasd=103 Cat. II; Ex zone and 2-4-0 to 4 end vertic forces & M DOL=1.60 2) Truss der only. For	4-6=-148/68 2-7=-41/32, 6-7=-2 3-7=-208/155 CE 7-16; Vult=130mp mph; TCDL=6.0psf; f p B; Enclosed; MWFF C-C Exterior(2E) -0-1 -8-0 zone; cantilever I al left and right expos MWFRS for reactions J plate grip DOL=1.60 signed for wind loads studs exposed to win	9/32 h (3-second gust) 3CDL=6.0psf; h=25ft; RS (envelope) exterior 0-8 to 2-4-0, Interior (left and right exposed ed;C-C for members a shown; Lumber	12) This truss is Internationa R802.10.2 a LOAD CASE(S)	designed in accordanc Residential Code sect nd referenced standard Standard	ions R502.11.1			A. HILLEY		SEA 0363	EER HU


DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Page: 1

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 88 FaNC	
22090053	C04		1	1	Job Reference (optional)	158457646

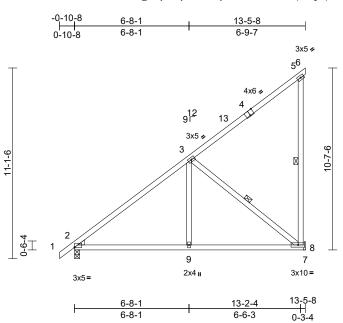
Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Fri May 19 10:12:34 ID:ymZ5JEasQRXpC4SPuXGUDEyB35C-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:28.4

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MP	0.39 0.08 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 5-8 5-8 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 15 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 2-11-8 oc purlins, e Rigid ceiling directly bracing. (size) 2=2-8-12, Max Horiz 2=69 (LC Max Uplift 2=-25 (LC 6=-25 (LC 6=-172 (LC 6=172 (LC	xcept end verticals. applied or 10-0-0 oc 5=2-8-12, 6=2-8-12 11), 6=69 (LC 11) 10), 5=-91 (LC 11), 10) 2 21), 5=375 (LC 21)	d or d or d or d or d or d or d or e line line line line b Gable studs f) This truss h chord live line b or a This truss on the botto a -06-00 tall chord and a g) N/A 10) This truss is	as been designed for psf or 1.00 times fit non-concurrent with spaced at 2-0-0 oc as been designed for bad nonconcurrent v has been designed im chord in all areas by 2-00-00 wide will ny other members.	at roof I other Ii or a 10. vith any for a Iiv s where Il fit betw dance w	oad of 20.0 ps /e loads. 0 psf bottom other live loa e load of 20.0 a rectangle /een the botto ith the 2018	sf on ds.)psf om					
FORCES	(lb) - Maximum Com Tension 1-2=0/25, 2-3=-104/3 3-5=-360/341	pression/Maximum		Il Residential Code : and referenced stan) Standard			nd					
Vasd=103/ Cat. II; Exy zone and (exposed; members a Lumber DC 2) Truss des only. For s see Stand- or consult 3) TCLL: ASC Plate DOL DOL=1.15 Cs=1.00; C	2-5=-53/21 CE 7-16; Vult=130mph mph; TCDL=6.0psf; Br o B; Enclosed; MWFRS C-C Exterior(2E) zone; end vertical left and rig and forces & MWFRS DL=1.60 plate grip DO igned for wind loads ir studs exposed to wind ard Industry Gable En- qualified building desig CE 7-16; Pr=20.0 psf (L =1.15); Pf=20.0 psf (L =1.15); Is=1.0; Rough Cat B Ct=1.10 d snow loads have be	CDL=6.0psf; h=25ft; S (envelope) exterior ; cantilever left and ri ht exposed;C-C for for reactions shown; L=1.60 the plane of the tru: (normal to the face) d Details as applicab gner as per ANSI/TP roof LL: Lum DOL=1 um DOL=1.15 Plate ;; Fully Exp.; Ce=0.9	ght ss le, l 1. .15						A HILLING	E. M. MILLER	SEA 0363	EER. Kun

May 22,2023

Page: 1



A WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component
Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty Ply DRB GROUP - 88 FaNC			
22090053	D01	Monopitch	10	1	Job Reference (optional)	158457647

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Fri May 19 10:12:34 ID:Z0_dihojcXcRjIsBXhGf5kyEOZQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

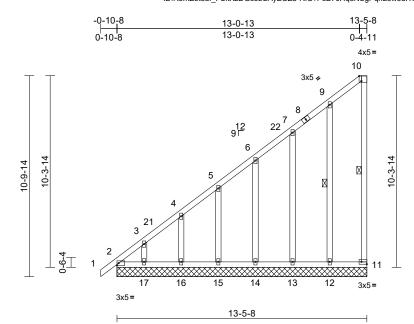
Scale = 1:67.2

Plate Offsets (X, Y):	[2:Edge,0-0-3], [4:0-3-0,Edge]
-----------------------	--------------------------------

Plate Olisets ((X, Y): [Z:Edge,0-0-3],	[4:0-3-0,Edge]										
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	BC	0.80 0.44 0.22	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.06 -0.10 0.01	(loc) 8-9 8-9 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 81 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.3 *Excep Left: 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt	athing directly applied cept end verticals. applied or 10-0-0 oc 5-8, 3-8 3= Mechanical C 13) C 14), 8=-162 (LC 14) C 21), 8=710 (LC 21)	load of 12.0 overhangs r 5) This truss h chord live lo 6) * This truss d or 3-06-00 tall chord and a 7) Refer to gird 8) Provide men bearing plat joint 8. 9) One RT8A I truss to bea connection	as been designed for psf or 1.00 times flat oon-concurrent with o as been designed for ad nonconcurrent wit has been designed for m chord in all areas v by 2-00-00 wide will f ny other members. der(s) for truss to truss chanical connection (i e capable of withstan WiTek connectors recorring walls due to UPL is for uplift only and do	or noof lo ther liv a 10.0 th any or a live where fit betw s conn by othe ding 1 omme .IFT at	bad of 20.0 p re loads.) psf bottom other live loa e load of 20.1 a rectangle recen the bott ections. ers) of truss i 62 lb uplift a' nded to conr jt(s) 2. This	sf on Ids. Opsf om to t					
TOP CHORD	Tension	110, 3-5=-255/151,	Internationa	designed in accorda Residential Code se and referenced standa	ections	R502.11.1 a	and					
Vasd=103 Cat. II; Ex zone and 2-1-8 to 1: cantilever right expo for reactio DOL=1.60 2) TCLL: AS Plate DOL	3-9=0/306, 3-8=-556 CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; Br p; B; Enclosed; MWFR C-C Exterior(2E) -0-10 0-5-8, Exterior(2E) 10- left and right exposed used;C-C for members - ons shown; Lumber DC 0 CE 7-16; Pr=20.0 psf (L _=1.15); Pf=20.0 psf (L	3/222 (3-second gust) CDL=6.0psf, h=25ft; S (envelope) exterior -8 to 2-1-8, Interior (5-8 to 13-5-8 zone; ; end vertical left and and forces & MWFRS oL=1.60 plate grip roof LL: Lum DOL=1 um DOL=1.15 Plate	LOAD CASE(S)						U HILLING	A A A A A A A A A A A A A A A A A A A	SEA 0363	
Cs=1.00;	5); Is=1.0; Rough Cat E Ct=1.10 ed snow loads have be									and and a second	- ///////	112BER 111

- 1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 3) Unbalanced snow loads have been considered for this
- design.

818 Soundside Road Edenton, NC 27932


May 22,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 88 FaNC	
22090053	D02	Half Hip Supported Gable	1	1	Job Reference (optional)	58457648

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries. Inc. Fri May 19 10:12:35 ID:R3mZ6t3uf_FSkXzDGc8bSAyEOZ5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale =	1:62.1
---------	--------

Plate Offsets (X, Y):	Plate Offsets (X, Y): [10:0-1-8,Edge], [11:Edge,0-1-8]												
Loading	(psf)	Spacing	1-11-4	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.73	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.34	Vert(CT)	n/a	-	n/a	999			
TCDL	10.0	Rep Stress Incr	YES	WB	0.18	Horz(CT)	0.00	11	n/a	n/a			
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH									
BCDL	10.0										Weight: 104 lb	FT = 20%	

LUMBER			NO
TOP CHORD	2x4 SP N	o.2	1)
BOT CHORD	2x4 SP N	o.2	
WEBS	2x4 SP N	o.2	
OTHERS	2x4 SP N	o.3	
BRACING			
TOP CHORD		I wood sheathing directly applied or purlins, except end verticals.	
BOT CHORD	Rigid ceil bracing.	ing directly applied or 10-0-0 oc	0)
WEBS	1 Row at	midpt 10-11, 9-12	2)
REACTIONS	(size)	2=13-5-8, 11=13-5-8, 12=13-5-8, 13=13-5-8, 14=13-5-8, 15=13-5-8, 16=13-5-8, 17=13-5-8, 18=13-5-8	
	Max Hariz	2=361 (LC 13), 18=361 (LC 13)	3)
		2=-93 (LC 10), 11=-84 (LC 13),	
		12=-75 (LC 14), 13=-59 (LC 14),	
		14=-67 (LC 14), 15=-65 (LC 14),	4)
		16=-59 (LC 14), 17=-102 (LC 14),	4)
		18=-93 (LC 10)	5)
	Max Grav	2=241 (LC 11), 11=98 (LC 10), 12=253 (LC 21), 13=216 (LC 21),	5)
		14=165 (LC 24), 15=166 (LC 28),	E)
		16=167 (LC 24), 17=162 (LC 28),	6) 7)
		18=241 (LC 11)	8)
FORCES	(lb) - Max Tension	imum Compression/Maximum	9)
TOP CHORD		2-3=-345/221, 3-4=-303/195.	10)
		/171. 5-6=-232/148. 6-7=-212/136.	44)
		/139, 9-10=-129/131, 10-11=-76/33	11)
BOT CHORD		6/189, 16-17=-151/189,	
		51/189, 14-15=-151/189,	
	13-14=-1	51/189, 12-13=-151/189,	12)
	11-12=-1	51/189	•=)
WEBS	9-12=-21	3/96, 7-13=-178/149,	

	11-12=-151/189
EBS	9-12=-213/96, 7-13=-178/149,
	6-14=-128/112, 5-15=-126/118,
	4-16=-129/119, 3-17=-117/133

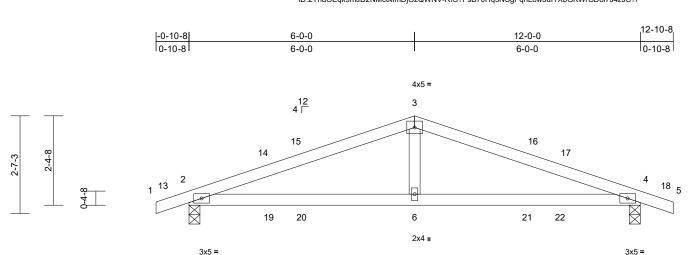
٩N	TF	S	

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 2-1-8, Exterior(2N) 2-1-8 to 10-3-12, Corner(3E) 10-3-12 to 13-3-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this desian.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding.
- All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- N/A

13) This truss is designed in accordance with the 2018

R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard


International Residential Code sections R502.11.1 and

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 88 FaNC	
22090053	E01	Common	4	1	Job Reference (optional)	158457649

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries. Inc. Fri May 19 10:12:35 ID:2YhdOEqk9mJD2NMctMmDjOzQWNV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

				6-0-0			12-0-0						
				6-0-0		I			6-0-0				
Scale = 1:30.6					-								
oading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
CLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.65	Vert(LL)	0.11	6-12	>999	240	MT20	244/190	
now (Pf)	20.0	Lumber DOL	1.15	BC	0.65	Vert(CT)	-0.12	6-12	>999	180			
CDL	10.0	Rep Stress Incr	YES	WB	0.10	Horz(CT)	0.01	4	n/a	n/a			
CLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH									
CDL	10.0										Weight: 42 lb	FT = 20%	

BOT CHORD		
WEBS BRACING	2x4 SP N	0.3
BRACING		
TOP CHORD	Structural 4-6-8 oc p	l wood sheathing directly applied or ourlins.
BOT CHORD	Rigid ceili bracing.	ing directly applied or 5-2-14 oc
REACTIONS	(size)	2=0-3-8, 4=0-3-8
	Max Horiz	2=36 (LC 14)
	Max Uplift	2=-195 (LC 10), 4=-195 (LC 11)
	Max Grav	2=638 (LC 21), 4=638 (LC 22)
FORCES	(lb) - Max Tension	imum Compression/Maximum
TOP CHORD	1-2=0/21, 4-5=0/21	2-3=-914/1256, 3-4=-914/1256,
BOT CHORD	2-6=-109	9/798, 4-6=-1099/798

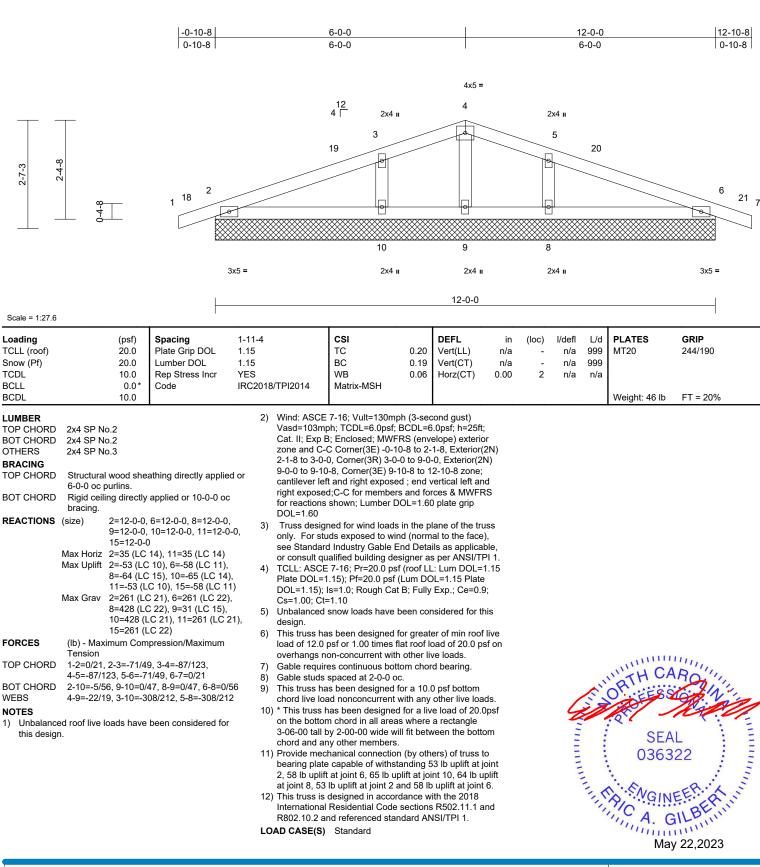
WEBS

3-6=-474/271 NOTES Unbalanced roof live loads have been considered for 1)

- this design. 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 3-0-0, Exterior(2R) 3-0-0 to 9-0-0, Interior (1) 9-0-0 to 9-10-8, Exterior(2E) 9-10-8 to 12-10-8 zone; cantilever left and right exposed ; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.

- overhands non-concurrent with other live loads. 6) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 8) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 4. This connection is for uplift only and does not consider lateral forces.
- This truss is designed in accordance with the 2018 9) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

1111111 \cap Contra Contra Contra VIIIIIIIIIIIII SEAL 036322 G mmm May 22,2023

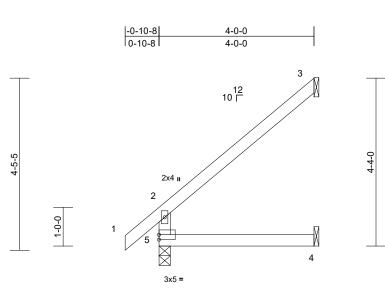

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 88 FaNC	
22090053	E02	Common Supported Gable	1	1	Job Reference (optional)	158457650

1)

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Fri May 19 10:12:35 ID:y 56EBjic5TjGZCw4IS68uzQWDJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

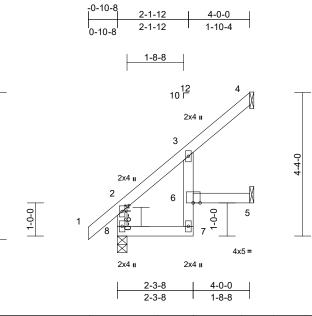
Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 88 FaNC	
22090053	J01	Jack-Open	21	1	Job Reference (optional)	158457651

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Fri May 19 10:12:36 ID:8cC9PhYNJMzb1LRwxeS2zryB3xT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

4-0-0

Scale = 1:29.7

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MR	0.46 0.31 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.02 -0.02 -0.03	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 17 lb	GRIP 244/190 FT = 20%
	4-0-0 oc purlins, ex Rigid ceiling directly bracing.	v applied or 10-0-0 oc anical, 4= Mechanica C 14) C 14), 4=-3 (LC 14)	on the bot 3-06-00 ta chord and 7) Bearings a crushing c 8) Refer to g 9) Provide m bearing pl 3 and 3 lb 10) This truss Internation R680210.2	s has been designed om chord in all area Il by 2-00-00 wide wi any other members. Ire assumed to be: , apacity of 425 psi. rder(s) for truss to the echanical connection ate capable of withst uplift at joint 4. is designed in accorr al Residential Code and referenced star 5) Standard	s where ill fit betw Joint 5 t russ con n (by oth canding 9 dance w sections	a rectangle veen the both Jser Defined nections. ers) of truss 22 lb uplift at ith the 2018 5 R502.11.1 a	to joint					
FORCES	(lb) - Maximum Con Tension 2-5=-284/83, 1-2=0/											
Vasd=103/ Cat. II; Ext zone and (exposed; members a Lumber D0 2) TCLL: ASC Plate DOL DOL=1.15 Cs=1.00; (3) Unbalance design. 4) This truss load of 12. overhangs 5) This truss	4-5=0/0 CE 7-16; Vult=130mph imph; TCDL=6.0psf; B p B; Enclosed; MWFR C-C Exterior(2E) zone end vertical left and ri and forces & MWFRS OL=1.60 plate grip DC CE 7-16; Pr=20.0 psf (L =1.15); Pf=20.0 psf (L =1.15); Pf=20.0 psf (L i); Is=1.0; Rough Cat If Ct=1.10 ed snow loads have be has been designed fo 0 psf or 1.00 times flat s non-concurrent with has been designed for load nonconcurrent w	CDL=6.0psf; h=25ft; S (envelope) exterio c; cantilever left and r ght exposed;C-C for for reactions shown; DL=1.60 (roof LL: Lum DOL=1 .um DOL=1.15 Plate 3; Fully Exp.; Ce=0.9 een considered for th r greater of min roof it roof load of 20.0 ps other live loads. r a 10.0 psf bottom	r ight ; 1.15 ; iis live sf on								SEA 0363	EEP A


May 22,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 88 FaNC	
22090053	J02	Jack-Open	4	1	Job Reference (optional)	158457652

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Fri May 19 10:12:36 ID:8cC9PhYNJMzb1LRwxeS2zryB3xT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

4-5-5

Scale = 1:34.8

Scale = 1.54.0												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2	CSI TC BC WB Matrix-MR	0.23 0.27 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.02 -0.03 -0.02	(loc) 7 7 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 20 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=103 Cat. II; Ex zone and	2x4 SP No.2 2x4 SP No.2 *Excep 2x4 SP No.3 Structural wood she 4-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 4= Mecha 8=0-3-8 Max Horiz 8=133 (Li Max Uplift 4=-66 (LC Max Grav 4=144 (Li 8=307 (Li (lb) - Maximum Con Tension 2-8280/72, 1-2=0/ 3-4=-90/80 7-8=-103/89, 6-7=-3 CE 7-16; Vult=130mpt mph; TCDL=6.0psf; B p B; Enclosed; MWFR C-C Exterior(2E) zone	eathing directly applie cept end verticals. r applied or 10-0-0 or anical, 5= Mechanica C 14) C 14), 5=-30 (LC 14) C 21), 5=85 (LC 21), C 21) npression/Maximum (39, 2-3=-197/0, (2/38, 3-6=-41/61, 5- n (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exteric ; cantilever left and i	5) This cho 6) * Th on t 3-06 c cho 7) Bea crus c 8) Refi bea 4 ar 10) This Inte R80 LOAD C	truss has been designed id live load nonconcurrent is truss has been designed he bottom chord in all are 6-00 tall by 2-00-00 wide id and any other members rings are assumed to be: hing capacity of 425 psi. er to girder(s) for truss to vide mechanical connection ing plate capable of withs d 30 lb uplift at joint 5. truss is designed in acco mational Residential Cod 2.10.2 and referenced stat CASE(S) Standard	t with any ed for a liv as where will fit betw s. , Joint 8 l truss cor on (by oth standing 6 ordance w e sections	other live load e load of 20. a rectangle veen the bott Jser Defined nections. ers) of truss 36 lb uplift at ith the 2018 a R502.11.1 a	0psf tom to joint				Weight: 20 lb	FT = 20%
 members Lumber D TCLL: AS Plate DOL DOL=1.15 Cs=1.00; Unbalance design. This truss 	end vertical left and ri and forces & MWFRS OL=1.60 plate grip DC CE 7-16; Pr=20.0 psf (L =1.15); Pf=20.0 psf (L 5); Is=1.0; Rough Cat E Ct=1.10 ed snow loads have be has been designed fo .0 psf or 1.00 times fla	for reactions shown DL=1.60 (roof LL: Lum DOL=- um DOL=1.15 Plate 3; Fully Exp.; Ce=0.9 sen considered for the r greater of min roof t roof load of 20.0 ps	; 1.15 9; nis live								SEA 0363	• •

- Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this 3) desian.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

GI

minim May 22,2023

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 88 FaNC	
22090053	J03	Jack-Open	1	1	I58457653 Job Reference (optional)	

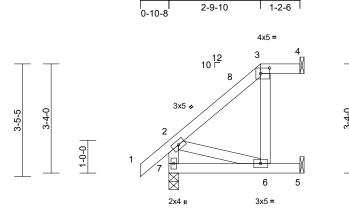
2-9-10

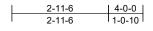
0-10-8

Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Fri May 19 10:12:36 ID:v1TA8dcZtndIBbOGQRy4v_yB3qx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-0-0

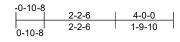



3-4-0

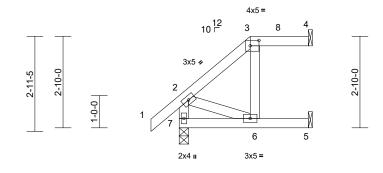
A. GILB A. GILDIN

May 22,2023

Scale = 1:35.2


Plate Offsets (X, Y): [3:0-3-4,0-2-0]

Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC		0.15	DEFL Vert(LL)	in 0.03	(loc) 6-7	l/defl >999	L/d 240	PLATES MT20	GRIP 244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC		0.15	Vert(LL)	-0.03	6-7	>999 >999	240 180	101120	244/190
TCDL	10.0	Rep Stress Incr	YES	WB		0.07	Horz(CT)	0.03	4	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TP	12014 Mat	trix-MP								
BCDL	10.0											Weight: 24 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 Structural wood she 4-0-0 oc purlins, ex 2-0-0 oc purlins: 3-4 Rigid ceiling directly bracing.	applied or 10-0-0 oc anical, 5= Mechanical C 14) C 10), 5=-44 (LC 14), 35), 5=127 (LC 36), C 36)	PI: DO Cs 4) Ur dor de dor de nov 6) Pr 7) Th 6) Pr 7) Th 8) * 1 7=-1 on 3-1 7=-1 3-1 9) Re 10) Pr	CLL: ASCE 7-16 ate DOL=1.15); JL=1.15); JS=1.0; JL=1.00; Ct=1.10 ibalanced snow sign. is truss has bee ad of 12.0 psf or erhangs non-co ovide adequate is truss has bee ord live load no 'his truss has bee ord live load no 'his truss has bee the bottom cho D6-00 tall by 2-0 ord and any oth efer to girder(s) i ovide mechanic aring plate capa	Pf=20.0 psf (Lu); Rough Cat B; v loads have been en designed for r 1.00 times flat oncurrent with or drainage to pra- neoncurrent with een designed for nconcurrent with een designed for or din all areas v 00-00 wide will f ier members. for truss to trus aal connection (li	im DC ; Fully en cor greate roof lo ther liv event v a 10.0 h any or a liv vhere it betw ss con by oth	DL=1.15 Plate Exp.; Ce=0.1 sidered for t er of min rool bad of 20.0 p re loads. water pondin: 0 psf bottom other live loa e load of 20.1 a rectangle reen the bott nections. ers) of truss	e 9; f live sf on g. dds. 0psf om					
TOP CHORD BOT CHORD WEBS	Tension 1-2=0/63, 2-3=-104/	56, 3-4=0/0, 2-7=-25 0	4 8	aning plate capa and 44 lb uplift a N/A		ung i	4 ib upint at j	John				WITH CA	RO
this desig 2) Wind: AS Vasd=100 Cat. II; E> zone and 2-1-8 to 2 cantilever right expo	CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B kp B; Enclosed; MWFR C-C Exterior(2E) -0-10 2-9-10, Exterior(2E) 2-9 r left and right exposed sed;C-C for members ons shown; Lumber DC	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior -8 to 2-1-8, Exterior(: -10 to 3-11-4 zone; ; end vertical left anc and forces & MWFR	Int R8 13) Gr or 2R) bo LOAD	is truss is desig ernational Resid 02.10.2 and ref aphical purlin re the orientation of ttom chord. CASE(S) Sta	dential Code se ferenced standa epresentation do of the purlin alo	ctions ard AN oes no	R502.11.1 a ISI/TPI 1. ot depict the s			A summer of		SEA 0363	EER KINN



Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 88 FaNC	
22090053	J04	Half Hip Girder	1	1	Job Reference (optional)	158457654

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Fri May 19 10:12:37 ID:8gOtmSuZmfCfcWOwTYOE0YyB3rs-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Special

Scale = 1:35.7

Plate Offsets (X	, Y):	[3:0-3-4,0-2-0]
------------------	-------	-----------------

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018/TPI2014	CSI TC BC WB Matrix-MP	0.14 0.46 0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.04 -0.05 0.06	(loc) 6-7 6-7 4	l/defl >999 >895 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 22 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 4-0-0 oc purlins; ex 2-0-0 oc purlins: 3-4 Rigid ceiling directly bracing. 	cept end verticals, an , applied or 10-0-0 oc anical, 5= Mechanica 12) 2 8), 5=-62 (LC 12), 7 33), 5=141 (LC 22),	d or d or	d snow loads have to has been designed f 0 psf or 1.00 times fil non-concurrent with lequate drainage to p has been designed foad nonconcurrent v s has been designed om chord in all areas I by 2-00-00 wide wi any other members. rder(s) for truss to tr echanical connectior ate capable of withsta o uplifit at joint 5. A Simpson Strong-Tie	or great at roof lo other liv or a 10.0 vith any for a liv s where Il fit betv uss con (by oth anding 2	er of min roo pad of 20.0 p ve loads. veter pondin p sf bottom other live loa e load of 20. a rectangle veen the bott nections. ers) of truss 1 lb uplift at	f live sf on g. ads. Opsf om to	Co	oncentra	2=-60, ated Lo	b/ft) 2-3=-60, 3-4=-60	
 this desig Wind: AS Vasd=10: Cat. II; E: zone; car and right DOL=1.6 TCLL: AS Plate DO 	6-7=-86/40, 5-6=0/0 3-6=-148/100, 2-6=- ced roof live loads have m. iCE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B xp B; Enclosed; MWFR htilever left and right exp exposed; Lumber DOL 0 SCE 7-16; Pr=20.0 psf (L 1=1.15); Pf=20.0 psf (L 5); Is=1.0; Rough Cat E	7, 3-4=0/0, 2-7=-231 37/96 been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior posed ; end vertical I =1.60 plate grip froof LL: Lum DOL=1 um DOL=1.15 Plate	UPLIFT at does not of 12) This truss Internation R802.10.2 13) Graphical or the orie bottom ch 14) Hanger(s) provided s b down an design/sel responsibi .15 15) In the LOA of the trus LOAD CASE(or other connection of ufficient to support of d 111 lb up at 2-2-6 17 lb up at 2-2-6 on ection of such conne ity of others. D CASE(S) section, s are noted as front (5) Standard now (balanced): Lun	on is for ance w sections dard AN does no long the device(s oncentra on top bottom ction de loads a F) or ba	uplift only a th the 2018 R502.11.1 a SI/TPI 1. the depict the si- top and/or) shall be (ted load(s) 1 chord, and 3 chord, The vice(s) is the opplied to the ck (B).	nd and size 140 5 lb face		N., 1111111	The second second	SEA 0363	ROUL 22 EER. KIN

May 22,2023

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 88 FaNC	
22090053	J05	Half Hip	1	1	Job Reference (optional)	158457655

2-1-12 2-1-12

0-10-8

0_10_8

Carter Components (Sanford), Sanford, NC - 27332

TCDL

BCLL

BCDL

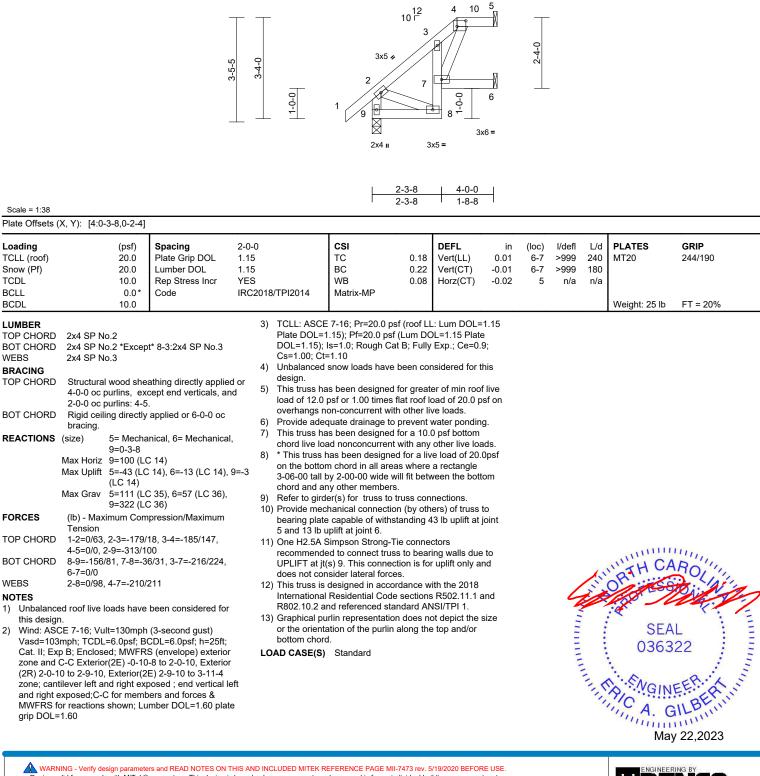
WEBS

WEBS

1)

2)

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Fri May 19 10:12:37 ID:8cC9PhYNJMzb1LRwxeS2zryB3xT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

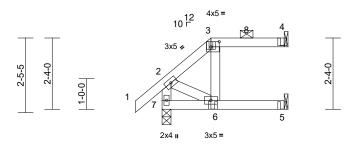

4x5 =

5 10

2x4

Page: 1

818 Soundside Road Edenton, NC 27932


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 88 FaNC	
22090053	J06	Half Hip Girder	1	1	Job Reference (optional)	158457656

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Fri May 19 10:12:38 ID:nv0i?IDQyS8cuv69BnO6kkyB3sk-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

-0-10-8 4-0-0 1-7-3 1-7-3 2-4-13 0-10-8

> NAILED NAILED

NAILED

1-8-15	4-0-0

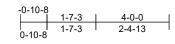
1-8-15 2-3-1

NAILED

Scale = 1:37.7

Plate Offsets ((X, Y): [3:0-3-4,0-2-0]												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	8/TPI2014	CSI TC BC WB Matrix-MP	0.17 0.56 0.04	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.04 -0.06 0.08	(loc) 5-6 5-6 4	l/defl >999 >741 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 20 lb	GRIP 244/190 FT = 20%
BCDL LUMBER TOP CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=103 Cat. II; Ex zone; canl	10.0 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 4-0-0 oc purlins: 3-4 Rigid ceiling directly bracing. (size) 4= Mecha 7=0-3-8 Max Horiz 7=63 (LC Max Uplift 4=-68 (LC) (LC 12) Max Grav 4=175 (LC 7=341 (LC) (lb) - Maximum Com Tension 1-2=0/63, 2-3=-80/1 6-7=-68/33, 5-6=0/0 3-6=-172/75, 2-6=-3 ed roof live loads have	eathing directly applie cept end verticals, a paplied or 10-0-0 or anical, 5= Mechanica 12) C 8), 5=-6 (LC 12), 7: C 33), 5=155 (LC 33 C 34) npression/Maximum 3, 3-4=0/0, 2-7=-216 5/75 been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterio posed; end vertical	4) 5) ed or 6) nd 7) c 8) al, 9) =-39 1(), 1 ⁻¹ 5/6 12 r 1 ² r 1 ² left	 Unbalanced design. This truss ha load of 12.0 overhangs n Provide adee This truss ha chord live loa * This truss la chord live loa * This truss la chord and at the ottoo * On the bottoo 3-06-00 tall la chord and at the ottoo Provide meet bearing plate 4 and 6 lb up One H2.5A S recommended UPLIFT at jt does not cor This truss is International R802.10.2 a Graphical pu or the orients bottom chord "NAILED" in (0.148"x3.25 In the LOAD of the truss a 	snow loads have as been designed psf or 1.00 times on-concurrent wi quate drainage to to been designed ad nonconcurrent has been designed n chord in all are by 2-00-00 wide v hy other members er(s) for truss to hanical connection capable of withs blift at joint 5. Simpson Strong-T ad to connect trus (s) 7. This connect isider lateral force designed in accor Residential Codi nd referenced sta trilin representatic ation of the purlin J. dicates 3-10d (0. ") toe-nails per N CASE(S) section are noted as front	for great flat roof k th other link of prevent v for a 10.1 twith any ed for a 10.1 twith any ed for a liv as where will fit betw s. truss con on (by oth standing 6 Fie conne ess to bear ction is for es. ordance w e sections andard AN on does nn along the 148"x3") of DS guidil DS guidil n, loads aj	er of min roo pad of 20.0 p vater pondin) psf bottom other live loz e load of 20. psf bottom other live loz e load of 20. a rectangle veen the bott nections. ers) of truss 8 lb uplift at ctors ng walls due uplift only a stith the 2018 R502.11.1 a st depict the top and/or or 3-12d nes. oplied to the	f live isf on g. ads. Opsf to joint to nd and size				ORTH CA	
DOL=1.60 3) TCLL: AS Plate DOL) CE 7-16; Pr=20.0 psf (_=1.15); Pf=20.0 psf (L 5); Is=1.0; Rough Cat E	(roof LL: Lum DOL=1 um DOL=1.15 Plate	1) 1.15	Increase=1 Uniform Lo Vert: 1-2 Concentrat	ow (balanced): Lu .15	4=-60, 5-	7=-20	Plate			A MARTINE T		EER. KIN

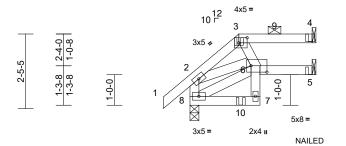
May 22,2023


Page: 1

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 88 FaNC	
22090053	J07	Half Hip Girder	1	1	Job Reference (optional)	158457657


Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Fri May 19 10:12:38 ID:1NSgF3ctNaT1WzIhAUW_7hyB3xP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

NAILED

NAILED

1-4-0

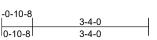
NAILED

2-3-8	4-0-0	
2-3-8	1-8-8	

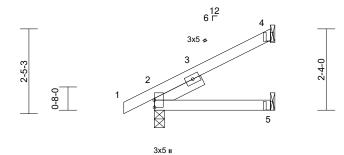
Scale = 1:37.7

Plate Offsets	(X, Y): [3:0-3-4,0-2-0],	, [6:0-6-4,0-2-8]											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	8/TPI2014	CSI TC BC WB Matrix-MP	0.24 0.61 0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.03 0.03	(loc) 6 5-6 4	l/defl >999 >999 ⊳999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 24 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD SOT CHORD WEBS BRACING TOP CHORD SOT CHORD REACTIONS	 2x4 SP No.2 2x4 SP No.2 *Excep 2x4 SP No.3 Structural wood she 4-0-0 oc purlins, ex 2-0-0 oc purlins: 3-4 Rigid ceiling directly bracing. 	athing directly applic cept end verticals, a applied or 10-0-0 or anical, 5= Mechanica 53) C 9), 5=-35 (LC 12), a C 33), 5=169 (LC 33	ed or 6) nd 7) c 8) II, 9) 3=-39	design. This truss ha load of 12.0 overhangs n Provide ader This truss ha chord live loa * This truss l on the bottor 3-06-00 tall l chord and an Refer to gird D) Provide mec bearing plate 4 and 35 lb u	snow loads have snow loads have on-concurrent wit quate drainage to as been designed ad nonconcurrent has been designed been designed ad nonconcurrent in chord in all area by 2-00-00 wide w ny other members er(s) for truss to i hanical connectio e capable of withs splift at joint 5. Simpson Strong-T	for great flat roof k h other lin prevent v for a 10.1 with any d for a liv as where vill fit betv truss con n (by oth tanding 4 ie conne	er of min roo pad of 20.0 p (e loads. water pondin) psf bottom other live loa e load of 20. a rectangle veen the bott nections. ers) of truss 3 lb uplift at ctors	f live isf on g. ads. Opsf to to joint				Weight. 24 ib	11 - 2070
 this desig Wind: AS Vasd=100 Cat. II; E> zone; car and right DOL=1.60 TCLL: AS Plate DO 	(lb) - Maximum Corr Tension 1-2=0/63, 2-3=-129/ 7-8=-47/176, 6-7=0/ 2-6=-54/29, 3-6=-93 ed roof live loads have in. CE 7-16; Vult=130mph 3mph; TCDL=6.0psf, B kp B; Enclosed; MWFR tillever left and right ext exposed; Lumber DOL 0 SCE 7-16; Pr=20.0 psf (L L=1.15); Pf=20.0 psf (L 5); Is=1.0; Rough Cat E	npression/Maximum 38, 3-4=0/0, 2-8=-26 64, 5-6=0/0 /53, 6-8=-163/27 been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterio posed ; end vertical =1.60 plate grip froof LL: Lum DOL= ² um DOL=1.15 Plate	12 13 14 r 15 left L(1)	UPLIFT at jt does not cor 2) This truss is International R802.10.2 a 3) Graphical pu or the orient bottom chorr 4) "NAILED" in (0.148"x3.25 5) In the LOAD of the truss a DAD CASE(S) Dead + Sm Increase=1 Uniform Lo Vert: 1-2 Concentrat	dicates 3-10d (0.1 ") toe-nails per NI CASE(S) section are noted as front Standard ow (balanced): Lu .15	tion is for is. rdance w a sections ndard AN n does nd along the 48"x3") c DS guidili , loads ai (F) or ba mber Inc 4=-60, 7-f	ith the 2018 s R502.11.1 is ISI/TPI 1. bt depict the top and/or or 3-12d nes. oplied to the ck (B). rease=1.15, B=-20, 5-6=-2	nd and size face Plate 20				SEA 0363	EER A III

May 22,2023


Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 88 FaNC	
22090053	J08	Jack-Open	3	1	Job Reference (optional)	158457658

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Fri May 19 10:12:39 ID:1NSgF3ctNaT1WzIhAUW_7hyB3xP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

NAILED

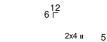
-

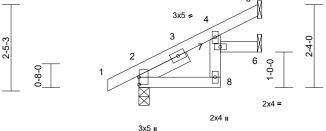
NAILED

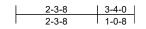
Scale = 1:33

Plate Offsets	(X,	Y):	[2:0-2-8,0-0-1]
---------------	-----	-----	-----------------

). [2.0-2-0,0-0-1]												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	/TPI2014	CSI TC BC WB Matrix-MP	0.20 0.15 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.01 0.01	(loc) 5-8 5-8 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 14 lb	GRIP 244/190 FT = 20%
BOT CHORD 2x SLIDER Let BRACING TOP CHORD St 3 BOT CHORD R REACTIONS (siz REACTIONS (siz A A A A TOP CHORD 1- BOT CHORD 1- BOT CHORD 1- BOT CHORD 1- BOT CHORD 1- BOT CHORD 2- NOTES 1) Wind: ASCE 7 Vasd=103mpf Cat. II; Exp 8; zone and C-C exposed ; end members and Lumber DOL= 2) TCLL: ASCE 7 Plate DOL=1.15); IS Cs=1.00; Ct=1 3) Unbalanced st design. 4) This truss has load of 12.0 ps	4-0 oc purlins. igid ceiling directly acing. e) 2=0-3-8,4 Mechanic x Horiz 2=74 (LC x Uplift 2=-18 (LC x Grav 2=276 (LC 5=63 (LC b) - Maximum Com- ension 2=0/36, 2-4=-96/4 5=-110/78 -16; Vult=130mph n; TCDL=6.0psf; B- Enclosed; MWFR Exterior(2E) zone vertical left and rig foces & MWFRS 1.60 plate grip DC 7-16; Pr=20.0 psf (L =1.0; Rough Cat E .10 now loads have be been designed foi	athing directly applied applied or 10-0-0 oc 4= Mechanical, 5= al 14) 21), 4=-55 (LC 14) 221), 4=124 (LC 21), 7) pression/Maximum 4 (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior ; cantilever left and rig ght exposed;C-C for for reactions shown; U=1.60 roof LL: Lum DOL=1.7 roof LL: Lum DOL=1.5 Fully Exp.; Ce=0.9; even considered for this r greater of min roof lin t roof load of 20.0 psf	or 7) 8) 9) 10) 11) 12) 13) ht 1) 15 ; /e	chord live loa * This truss f on the bottor 3-06-00 tall b chord and ar Bearings are crushing cap Refer to gird Provide mec bearing plate 4. One H2.5A S recommende UPLIFT at jt(does not cor This truss is International R802.10.2 ai "NAILED" inc NDS guidine In the LOAD of the truss a AD CASE(S) Dead + Snc Increase=1 Uniform Loc. Vert: 1-4	CASE(S) section, are noted as front (Standard ow (balanced): Lun .15	vith any for a liv s where II fit betw Joint 2 I uss conn (by oth anding 5 e conne to bear fon is fo 3. dance w sections dard AN H8"x3.25 loads a F) or ba	other live loa e load of 20.0 a rectangle veen the bottu Jser Defined nections. ers) of truss t 55 lb uplift at j ctors ing walls due r uplift only ar ith the 2018 a R502.11.1 a USI/TPI 1. ") toe-nails p oplied to the to ck (B).	Opsf om to joint eto nd and er face				SEA 0363	EER AL


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


SIMEEDING 818 Soundside Road Edenton, NC 27932


May 22,2023

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 88 FaNC	
22090053	J09	Jack-Open	1	1	Job Reference (optional)	158457659

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Fri May 19 10:12:39 ID:comXd1Z?4f5SfV06VMzHV2yB3xS-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:32.4

Plate Offsets (X, Y): [2:0-2-8,0-0-1]

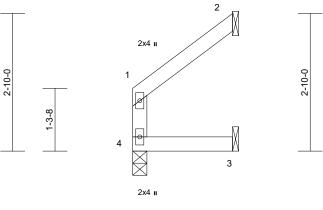
Fiale Oliseis ((^, 1). [2.0-2-0,0-0-1]											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER TOP CHORD BOT CHORD		Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	load of 12	CSI TC BC WB Matrix-MR has been designed 0 psf or 1.00 times non-concurrent wit	flat roof l	oad of 20.0 p		(loc) 8 8 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 16 lb	GRIP 244/190 FT = 20%
BOT CHORD SLIDER BRACING TOP CHORD BOT CHORD	Left 2x4 SP No.3 Structural wood she 3-4-0 oc purlins.		5) This truss chord live ed or 6) * This trus on the bot 3-06-00 ta chord and	has been designed load nonconcurrent s has been designe tom chord in all area Il by 2-00-00 wide w any other members	for a 10. with any d for a liv as where vill fit betv 5.	0 psf bottom other live loa ve load of 20. a rectangle ween the bott	0psf					
REACTIONS FORCES TOP CHORD BOT CHORD NOTES	(size) 2=0-3-8, 5 Mechanic Max Horiz 2=74 (LC Max Uplift 2=-18 (LC 6=-14 (LC Max Grav 2=276 (LC 21) (lb) - Maximum Con Tension 1-2=0/36, 2-4=-112/	14) C 14), 5=-27 (LC 14), C 14) C 21), 5=91 (LC 21), npression/Maximum	6=83 7=0/0 crushing c 8) Refer to g 9) Provide m bearing pl 5 and 14 l 10) One H2.5/ recommer UPLIFT at does not c 11) This truss Internation	are assumed to be: apacity of 425 psi. rder(s) for truss to echanical connection ate capable of withs o uplift at joint 6. A Simpson Strong-T ided to connect trus jt(s) 2. This connect onsider lateral force is designed in acco all Residential Code and referenced sta	truss con in (by oth tanding 2 ie conne s to bear stion is fo es. rdance w e sections	nections. lers) of truss 27 Ib uplift at ctors ing walls due r uplift only a with the 2018 s R502.11.1 a	joint e to nd					1111) -
Vasd=103 Cat. II; Ex zone and exposed ; members Lumber D 2) TCLL: AS Plate DOL DOL=1.15 Cs=1.00;	CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B p; B; Enclosed; MWFR C-C Exterior(2E) zone end vertical left and ri and forces & MWFRS IOL=1.60 plate grip DC CE 7-16; Pr=20.0 psf (L =1.15); Pf=20.0 psf (L 5); Is=1.0; Rough Cat E Ct=1.10 ed snow loads have be	CDL=6.0psf; h=25ft; S (envelope) exterior ; cantilever left and ri ght exposed;C-C for for reactions shown; DL=1.60 (roof LL: Lum DOL=1 .um DOL=1.15 Plate 3; Fully Exp.; Ce=0.9	r ight 1.15 ;	5) Standard							SEA 0363	EER. HUILING

May 22,2023

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 88 FaNC	
22090053	J10	Jack-Open	1	1	I58 Job Reference (optional)	3457660


2-0-11

9 Г

Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Fri May 19 10:12:40 ID:?kN6whuRsfHDh0i0lgPJHYyB3uS-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

2-0-11

Scale = 1:23.7

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.20	Vert(LL)	0.00	3-4	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.13	Vert(CT)	0.00	3-4	>999	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.00	Horz(CT)	-0.01	2	n/a	n/a		
BCLL	0.0*	Code	IRC2018	3/TPI2014	Matrix-MR								
BCDL	10.0											Weight: 8 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 Structural wood she 3-9-5 oc purlins, ex Rigid ceiling directly bracing.	8) , LC	on the bottom 3-06-00 tall b chord and an Refer to girde Provide med bearing plate 2 and 6 lb up This truss is International	designed in accor Residential Code nd referenced star	as where rill fit betv truss con n (by oth tanding 5 rdance w sections	a rectangle veen the botto nections. ers) of truss t i0 lb uplift at j ith the 2018 i R502.11.1 a	om to oint						
FORCES	(lb) - Maximum Com Tension												
TOP CHORD	1-2=-74/40, 1-4=-85	/0											
BOT CHORD	3-4=0/0												
Vasd=103 Cat. II; Ex zone and exposed ; members Lumber D 2) TCLL: AS Plate DOL	CE 7-16; Vult=130mph imph; TCDL=6.0psf; B p B; Enclosed; MWFR C-C Exterior(2E) zone end vertical left and ri and forces & MWFRS OL=1.60 plate grip DC CE 7-16; Pr=20.0 psf (L =1.15); Pf=20.0 psf (L 5); Is=1.0; Rough Cat E	CDL=6.0psf; h=25ft; S (envelope) exterior ; cantilever left and ri ght exposed;C-C for for reactions shown; IL=1.60 roof LL: Lum DOL=1 um DOL=1.15 Plate	ght .15							Charles and the second s		ORTH CA	• -

Cs=1.00; Ct=1.10 3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

SEAL 036322 May 22,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type Qty Ply DRB GROUP - 88 FaN		DRB GROUP - 88 FaNC		
22090053	K01	Jack-Open	2	1	Job Reference (optional)	158457661

-1-8-7

1-8-7

Carter Components (Sanford), Sanford, NC - 27332,

2-3-8

1-0-0

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Fri May 19 10:12:40 ID:comXd1Z?4f5SfV06VMzHV2yB3xS-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3

M

4

2-2-15

2-10-13

2-10-13

2-10-13

12 5.14 ∟

3x5 II

2

ø

0

2x4 I

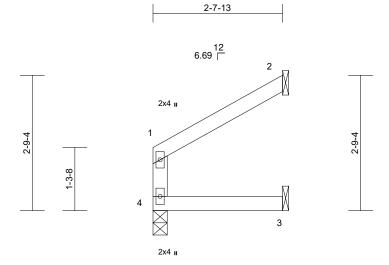
0-0-10

5

2-10-3 0-0-10

Scale = 1:28.8

Loading (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Plate Grip DOL1.Lumber DOL1.Rep Stress IncrYI	0-0 15 15 ES 8C2018/TPI2014	CSI TC BC WB Matrix-MR	0.40 0.11 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 -0.01	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 13 lb	GRIP 244/190 FT = 20%
BOT CHORD 2-10-13 oc purlins, Rigid ceiling directly bracing. REACTIONS (size) 3= Mecha 5=0-5-9 Max Horiz 5=58 (LC Max Uplit) 3=-34 (LC)		 on the bottor 3-06-00 tall b chord and ar 7) Refer to gird 8) Provide mec bearing plate 3. 9) One H2.5A S recommende UPLIFT at jt(does not con 10) This truss is International R802.10.2 ar 	as been designed in chord in all areas by 2-00-00 wide will by other members. er(s) for truss to tru- hanical connection a capable of withsta Simpson Strong-Tie ed to connect truss s) 5. This connection sider lateral forces. designed in accord Residential Code s and referenced stance	where fit betw uss con (by oth nding 3 connec to bear on is for ance w sections	a rectangle veen the botto nections. ers) of truss t 4 lb uplift at j ctors ng walls due uplift only an th the 2018 R502.11.1 a	om to joint to nd					
 FORCES (Ib) - Maximum Corr Tension TOP CHORD 2-5=-342/229, 1-2=(BOT CHORD 4-5=0/0 NOTES 1) Wind: ASCE 7-16; Vult=130mph Vasd=103mph; TCDL=6.0psf; B Cat. II; Exp B; Enclosed; MWFR zone and C-C Corner (3) zone; c exposed ; end vertical left and ri members and forces & MWFRS Lumber DOL=1.60 plate grip DC 2) TCLL: ASCE 7-16; Pr=20.0 psf (L DOL=1.15); Is=1.0; Rough Cat E Cs=1.00; Ct=1.10 3) Unbalanced snow loads have be design. 4) This truss has been designed fo load of 12.0 psf or 1.00 times fla overhangs non-concurrent with or 5) This truss has been designed fo 	,)/70, 2-3=-65/24 (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior cantilever left and right ght exposed;C-C for for reactions shown; 0L=1.60 roof LL: Lum DOL=1.15 um DOL=1.15 Plate B; Fully Exp.; Ce=0.9; even considered for this r greater of min roof live t roof load of 20.0 psf on other live loads.	LOAD CASE(S)	Standard							SEA 0363	22 EER A LUN


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

May 22,2023

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 88 FaNC	
22090053	K02	Jack-Open	1	1	Job Reference (optional)	158457662

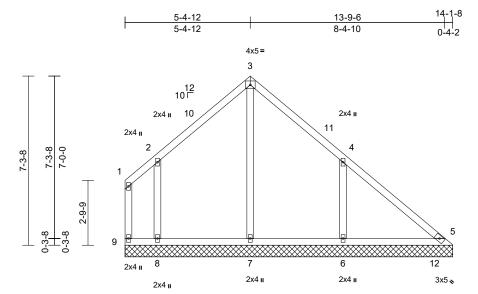
Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Fri May 19 10:12:40 ID:6ibAWVeFpCeBgnb_0mXOx6yB3un-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

2-7-13

Scale = 1:23.6

Loading TCLL (roof) (psf) 2.0.0 Spacing Plate Grip DOL 1.15 Spacing 1.15 CSI TC DEFL TC in (loc) //del L/del L/del L/del PLATES GRIP MT20 Show (P) 2.0.0 Lumber DOL 1.15 1.5 BC 0.13 Vert(CT) 0.00 3.4 >999 160 BCLL 0.01 Rep Stress Incr YES WB 0.00 Horz(CT) -0.01 2 n/a n/a BCLL 0.01 10.0 Rep Stress Incr YES WB 0.00 Horz(CT) -0.01 2 n/a n/a BCLL 0.01 10.0 Stress Incr YES WB 0.00 Wer(CT) 0.01 2 n/a n/a BCLL 0.01 10.0 Stress Incr YES Stress Incr YES Stress Incr Stress Incr Stress Incr YES Stress Incr YES Stress Incr Stress Incr Stress Incr YES Stress Incr Stress Incr Stress Incr Stress Incr Stress Inc						
Snow (Pf) 20.0 TCDL Lumber DOL Rep Stress Incr 1.15 Rep Stress Incr BC 0.13 WB Vert(CT) 0.00 3.4 >999 180 Horz(CT) BCLL 0.0 ⁺ BCDL 10.0 Code IRC2018/TPI2014 WB 0.00 Horz(CT) -0.01 2 n/a n/a BCDL 10.0 Code IRC2018/TPI2014 Matix-MR Matix-MR Weight: 10 lb FT = 20% LUMBER TOP CHORD 2x4 SP No.2 5 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle -0.60 tall by 2-00-00 wide will fit between the bottom chord and any other members. 6) Refer to gird(reft) for truss to truss connections. 7) Provide mechanical connection (by Others) of truss to brainig plate capable of withstanding 49 lb upilit at joint 2. 6) This truss is designed in accordance with the 2018 -0.012	Loading (psf)	ing 2-0-0	CSI	DEFL in	(loc) l/defl	L/d PLATES GRIP
TCDL 10.0 Rep Stress Incr YES WB 0.00 Horz(CT) -0.01 2 n/a n/a BCDL 10.0 10.0 Code IRC2018/TPI2014 WB Matrix-MR Weight: 10 lb FT = 20% LUMBER TOP CHORD 2x4 SP No.2 ************************************	TCLL (roof) 20.0	Grip DOL 1.15	TC 0.21	Vert(LL) 0.00	3-4 >999	240 MT20 244/190
BCLL 0.0* Code IRC2018/TPI2014 Matrix-MR Weight: 10 lb FT = 20% LUMBER 10.0 10.0 10.0 10.0 10.0 Weight: 10 lb FT = 20% LUMBER TOP CHORD 2x4 SP No.2 50 * This truss has been designed for a live load of 20.0psf 01.0 lb FT = 20% BOT CHORD 2x4 SP No.3 50 * This truss has been designed for a live load of 20.0psf 01.0 lb 10.0 lb FT = 20% WEBS 2x4 SP No.3 50 * This truss has been designed for a live load of 20.0psf 01.0 lb 10.0 lb FT = 20% WEBS 2x4 SP No.3 60 Structural wood sheathing directly applied or 10-0-0 oc bracing. 60 Refer to girder(s) for truss to truss connections. 7 Provide mechanical concection (by others) of truss to bearing plate capable of withstanding 49 lb uplit at joint 4.0 lb 2. 8 11.1 lo oc 4.449 (LC 11) Refer to girder(s) for truss to truss connections R502.11.1 and R802.10.2 and referenced standard ANSi/TP1 1. LOAD CASE(S) Standard FORCES (lb) - Maximum Compression/Maximum Tension (LC 20) Standard Standard Standard 10 Vind: ASCE 7-16; Vult=130mph (3-second gust) Vinder ASCE 7-16; Vult=130mph (3-second gust) Vinder ASCE 7-16; Vult=130mph (3-second gust) <td>Snow (Pf) 20.0</td> <td></td> <td></td> <td>Vert(CT) 0.00</td> <td></td> <td>180</td>	Snow (Pf) 20.0			Vert(CT) 0.00		180
BCDL 10.0 Weight: 10.1b FT = 20% LUMBER TOP CHORD 2x4 SP No.2 Structural wood sheathing directly applied or 4:11-10 oc purins, except end verticals. 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3:06-00 tail by 2:00-00 wide will fit between the bottom chord and any other members. BRACING TOP CHORD Structural wood sheathing directly applied or 4:11-10 oc purins, except end verticals. 6) Refer to girder(s) for truss to truss connections. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 49 lb uplift at joint 2. 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSU/TPI 1. Max Horiz 2=99 (LC 20), 3=47 (LC 7), 4=130 (LC 20) LOAD CASE(S) Standard FORCES (b) - Maximum Compression/Maximum Tension 1.4=-53/38, 1.4=-112/23 BOT CHORD 3:4=00- 0.4=0.00 Notes 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasder-106.0psf; BCDL=6.0psf; h=25f; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) zone; cantilever left and right exposed; end writical left and right exposed; C-C for 4				Horz(CT) -0.01	2 n/a	n/a
LUMBER ToP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3 BRACING Structural wood sheathing directly applied or 10-0-0 oc brarcing. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc brarcing. BOT CHORD Size 2 REACTIONS (size) 2= Mechanical, 3= Mechanical, 4=0-3-8 Max Horiz 4=49 (LC 11) Max Koriz 4=49 (LC 11) Max Grav 2=99 (LC 20), 3=47 (LC 7), 4=130 (LC 20) FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 34=-0/0 NOTES 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vase 4:00 (Some and C-C Correr (3) zone; cantilever left and right exposed; -CC for		IRC2018/TPI201	4 Matrix-MR			
 TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 BACING 2x4 SP No.3 BRACING 3x4 SP No.3 BRACING 5tructural wood sheathing directly applied or 4.11-10 oc purlins, except end verticals. BOT CHORD 6tructural wood sheathing directly applied or 10-0-0 oc braining. REACTIONS (size) 2- Mechanical, 3= Mechanical, 4=0-3-8 Max Horiz 4=49 (LC 11) Max Upilt 2=-49 (LC 14) Max Grav 2=99 (LC 20), 3=47 (LC 7), 4=130 (LC 20) FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-59/38, 14=-112/23 BOT CHORD 3-4=0/0 NOTES 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasaed -0.60 gust) Vasaed -0.60 gust) Standard Nortes 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasaed -0.60 gust) Caster (C 20) NOTES 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasaed -0.60 gust) Caster (C 20) NOTES 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasaed -0.60 gust) Caster (C 20) NOTES 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasaed -0.60 gust) Caster (C 20) NOTES 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasaed -0.60 gust) Caster (C 20) NOTES 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasaed -0.60 gust) Angel (C 20) NOTES 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasaed -0.60 gust) Angel (C 20) Notes 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasaed -0.60 gust) Angel (C 20) NOTES 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasaed -0.60 gust) Angel (C 20) NOTES 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasaed -0.60 gust) Angel (C 20) NOTES 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasaed -0.60 gust) Angel (C 20) Note (C 20)<td>BCDL 10.0</td><td></td><td></td><td></td><td></td><td>Weight: 10 lb FT = 20%</td>	BCDL 10.0					Weight: 10 lb FT = 20%
FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-59/38, 1-4=-112/23 BOT CHORD 3-4=0/0 NOTES 1) 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for	TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 BRACING TOP CHORD Structural wood she 4-11-10 oc purlins, BOT CHORD Rigid ceilirg directly bracing. REACTIONS (size) 2= Mech: 4=0-3-8 Max Horiz 4=49 (LC Max Uplift 2=-49 (LC Max Grav 2=99 (LC	directly applied or end verticals. a or 10-0-0 oc = Mechanical, d or 10-0-0 ac the mechanical, d or 10-0-0 ac the mechanical, d or 10-0-0 ac the mechanical, d or 10-0-0 ac the mechanical the mechanical the mechanical	bottom chord in all areas where a 0 tall by 2-00-00 wide will fit betw and any other members. to girder(s) for truss to truss conre e mechanical connection (by othe g plate capable of withstanding 4 uss is designed in accordance wi ational Residential Code sections 10.2 and referenced standard AN	a rectangle reen the bottom nections. ers) of truss to 9 lb uplift at joint th the 2018 R502.11.1 and		
Tension TOP CHORD 1-2=-59/38, 1-4=-112/23 BOT CHORD 3-4=0/0 NOTES 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for		n/Maximum				
BOT CHORD 3-4=0/0 NOTES 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for						
NOTES 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for	TOP CHORD 1-2=-59/38, 1-4=-12					
1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for	BOT CHORD 3-4=0/0					
Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for	NOTES					
 members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this design. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 	 Vasd=103mph; TCDL=6.0psf; B Cat. II; Exp B; Enclosed; MWFR zone and C-C Corner (3) zone; exposed ; end vertical left and members and forces & MWFRS Lumber DOL=1.60 plate grip DC TCLL: ASCE 7-16; Pr=20.0 psf Plate DOL=1.15); Pf=20.0 psf (I DOL=1.15); Is=1.0; Rough Cat I cs=1.00; Ct=1.10 Unbalanced snow loads have by design. This truss has been designed for 	Opsf; h=25ft; Hope) exterior er left and right osed;C-C for stions shown; : Lum DOL=1.15 L=1.15 Plate Exp.; Ce=0.9; sidered for this psf bottom			1 Martinian	

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 2) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this desian.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


818 Soundside Road Edenton, NC 27932

B GI minim May 22,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 88 FaNC	
22090053	V1		1	1	Job Reference (optional)	158457663

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Fri May 19 10:12:40 ID:wTC0FxTXrova25bgu3BycFyB3oY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

14-1-8

Scale = 1:49.7

-		1										
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	тс	0.34	Vert(LL)	n/a	· -	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.17	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.24	Horiz(TL)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2	014 Matrix-SH								
BCDL	10.0										Weight: 72 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 5=14-1-8 8=14-1-8 Max Horiz 9=-195 (L Max Upliff 5=-58 (LC 9=-83 (LC Max Grav 5=213 (LI	applied or 6-0-0 oc 6=14-1-8, 7=14-1-8, 9=14-1-8 C 10) C 11), 6=-196 (LC 15) 10), 8=-161 (LC 14), C 20)	d or 4) TCL Plat DOL CS= 5) Unb desi 6) Gab 7) Gab 8) This chor 9) * Th 3-06 , chor	ss designed for wind For studs exposed Standard Industry Ga insult qualified buildi :: ASCE 7-16; Pr=20, = 0.15; Pf=20, = 1.15; Is=1.0; Roug 1.00; Ct=1.10 alanced snow loads I gn. e requires continuou e studs spaced at 4- truss has been desig d live load nonconcu s truss has been d live load nonconcu s truss has been d live load	to wind (norm able End Deta ng designer a: 0.0 psf (Lum DC psf (Lum DC h Cat B; Fully have been cor us bottom chor 0-0 oc: gned for a 10.1 rrent with any signed for a 10.4 rrent with any signed for a where ide will fit betv	al to the face ils as applica is per ANSI/TI :: Lum DOL= ::Lum DOL= :L1.15 Plate Exp.; Ce=0.9 ansidered for the d bearing. 0 psf bottom other live loa re load of 20.0. a rectangle veen the botto), ble, Pl 1. 1.15 e 9; his dds. 0psf om					
FORCES	(lb) - Maximum Con Tension	pression/Maximum										
TOP CHORD	1-9=-46/80, 1-2=-54 3-4=-166/193, 4-5=-											inin,
BOT CHORD	8-9=-142/169, 7-8=- 5-6=-142/169	142/169, 6-7=-142/1	69,							AN	RTHUA	ROLIN
WEBS	3-7=-254/54, 2-8=-3	88/201, 4-6=-398/23	3						/	53	FESS	Nit sie
NOTES									4	D		Bill
,	ed roof live loads have	been considered for								9		
this desig		(a.). (;							=		SEA	L È È
Vasd=103 Cat. II; Ex zone and (2R) 3-1- ² Exterior(2 right expo for memb	CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B (p B; Enclosed; MWFR C-C Exterior(2E) 0-1-1 12 to 8-4-12, Interior (1 2E) 10-8-15 to 13-8-15 used; end vertical left a ers and forces & MWF DOL=1.60 plate grip DC	CDL=6.0psf; h=25ft; S (envelope) exterior I2 to 3-1-12, Exterior) 8-4-12 to 10-8-15, zone; cantilever left a and right exposed;C- RS for reactions show	and C						6 (11) (11)		in min	22 EERIK

May 22,2023

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 88 FaNC	
22090053	V2		1	1	Job Reference (optional)	158457664

Run: 8.53 S Mar 9 2023 Print: 8.530 S Mar 9 2023 MiTek Industries, Inc. Fri May 19 10:12:41 ID:wTC0FxTXrova25bgu3BycFyB3oY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-SH	0.33 0.12 0.15	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 56 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 5=12-3-14 8=12-3-14 Max Horiz 9=-141 (L Max Uplift 5=-48 (LC 8=-180 (L Max Grav 5=113 (LC 	applied or 10-0-0 oc 4, 6=12-3-14, 7=12-3 4, 9=12-3-14 C 10) C 11), 6=-157 (LC 15) C 14), 9=-72 (LC 20) C 23), 6=430 (LC 21) C 20), 8=447 (LC 20)	d or 5) -14, 6) 8) 9, 9)	only. For stu see Standard or consult qu) TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct=) Unbalanced design.) Gable requiri) Gable requiri) Gable studs) This truss ha chord live loa chord live loa 3-06-00 tall b	hed for wind loads dis exposed to wi d Industry Gable I alified building de .7-16; Pr=20.0 ps .15); Pf=20.0 ps .15); Pf=20.0 ps .15); Pf=20.0 ps is=1.0; Rough Ca .1,10 snow loads have es continuous bol spaced at 4-0-0 c s been designed ad nonconcurrent nas been designe n chord in all area by 2-00-00 wide w y other members	nd (norm End Deta ssigner aus sf (roof LL (Lum DC t B; Fully been cor tom chor c. for a 10.1 with any d for a liv as where rill fit betv	al to the face ils as applical s per ANSI/TF :Lum DOL=: L=1.15 Plate Exp.; Ce=0.5 asidered for th d bearing. D psf bottom other live loa e load of 20.0 a rectangle), ble, PI 1. 1.15 D; his ds. Dpsf					
FORCES	(lb) - Maximum Com Tension												
TOP CHORD	3-4=-166/150, 4-5=-	133/135										mm	1111
WEBS	5-6=-94/111	9/213, 4-6=-364/211									11	"TH CA	ROLIN
NOTES 1) Unbaland this desig 2) Wind: AS Vasd=10 Cat. II; E: zone and (2R) 3-1- Exterior(2 right expo	ced roof live loads have	been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior 2 to 3-1-12, Exterior) 8-4-12 to 8-11-5, one; cantilever left ar and right exposed;C-f	nd C							G. minines	The second secon	SEA 0363	

right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 88 FaNC	
22090053	V3		1	1	Job Reference (optional)	158457665

5-1-8

5-1-8

Carter Components (Sanford), Sanford, NC - 27332

Scale = 1:38 Loading

TCLL (roof)

Snow (Pf)

TCDL

BCLL

BCDL

NOTES

this design.

DOL=1.60

1)

2)

3)

Run: 8,53 E Oct 7 2022 Print: 8,530 E Oct 7 2022 MiTek Industries, Inc. Fri May 19 13:44:18 ID:wTC0FxTXrova25bgu3BycFyB3oY-0CLIfaTJTktXsOTRrzFOhXnvYFopvJJrtPzD2DzEwBx

9-10-15

4-9-6

10-3-

L/d

999

999

n/a

PLATES

Weight: 39 lb

MT20

GRIP

244/190

FT = 20%

12 10 □ 0-0-4 4 1.5x3 II 3x5 🖌 10-3-1 2-0-0 CSI DEFL l/defl in (loc) Plate Grip DOL 1.15 TC 0.52 Vert(LL) n/a n/a BC 1 15 Lumber DOL 0.48 Vert(TL) n/a n/a Rep Stress Incr YES WB 0.22 Horiz(TL) 0.01 4 n/a IRC2018/TPI2014 Matrix-MSH TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4)

LUMBER 2x4 SP No.2 TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3 OTHERS BRACING TOP CHORD Structural wood sheathing directly applied or 10-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. REACTIONS 1=10-3-1, 3=10-3-1, 4=10-3-1 (size) Max Horiz 1=96 (LC 11) Max Uplift 1=-65 (LC 21), 3=-65 (LC 20), 4=-123 (LC 14) Max Grav 1=91 (LC 20), 3=91 (LC 21), 4=850 (LC 21) FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-129/419, 2-3=-129/419 WEBS 2-4=-663/293

Unbalanced roof live loads have been considered for

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft;

Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Exterior(2R)

right exposed;C-C for members and forces & MWFRS

Truss designed for wind loads in the plane of the truss

only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Wind: ASCE 7-16; Vult=130mph (3-second gust)

3-0-5 to 7-3-6, Exterior(2E) 7-3-6 to 10-3-6 zone; cantilever left and right exposed ; end vertical left and

for reactions shown; Lumber DOL=1.60 plate grip

(psf)

20.0

20.0

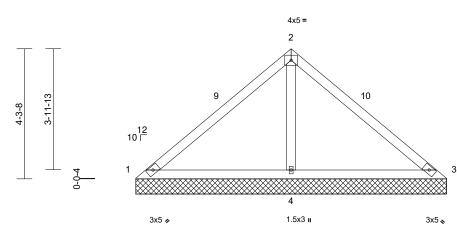
10.0

10.0

0.0

Spacing

Code


- Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this 5)
- desian.
- Gable requires continuous bottom chord bearing. 6)
- Gable studs spaced at 4-0-0 oc. 7)
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 9) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 65 lb uplift at joint 1 and 65 lb uplift at joint 3.
- 11) N/A
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 88 FaNC	
22090053	V4		1	1	Job Reference (optional)	58457666

2-9-8

Run: 8,53 E Oct 7 2022 Print: 8,530 E Oct 7 2022 MiTek Industries, Inc. Fri May 19 13:44:52 ID:kbflbV3qv2KRAkoInx0b8uyB3jv-0IP8oCteSB9jxc3_r6sM3iBouySstj4shiC0FFzEwBP

Page: 1

3-3-15 6-3-12 3-3-15 2-11-13 4x5 = 2 9 10 3 2-5-1 12 10 ∟ 3 0-0-4 Δ 2x4 🍫 1.5x3 u 2x4 💊

6-7-14

Scale = 1:30.4

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.21	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.22	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES		WB	0.07	Horiz(TL)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC201	8/TPI2014	Matrix-MP								
BCDL	10.0											Weight: 25 lb	FT = 20%
BOT CHORD 2 OTHERS 2 BRACING TOP CHORD 3 BOT CHORD 4 REACTIONS (S M M	6-7-14 oc purlins. Rigid ceiling directly pracing. ize) 1=6-7-14, ax Horiz 1=-61 (LC ax Uplift 1=-7 (LC (LC 14) ax Grav 1=103 (LC 4=468 (LC	21), 3=-7 (LC 20), 4= C 20), 3=103 (LC 21)	9) 10 62 ,	design. Gable require Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar	snow loads have es continuous bo spaced at 4-0-0 s been designed ad nonconcurrent has been designed n chord in all are y 2-00-00 wide v y other member hanical connection capable of withe t at joint 3.	ttom chor oc. for a 10.0 with any ed for a liv as where vill fit betw s. on (by oth	d bearing. O psf bottom other live loa re load of 20. a rectangle veen the bott ers) of truss	ads. Opsf tom to					

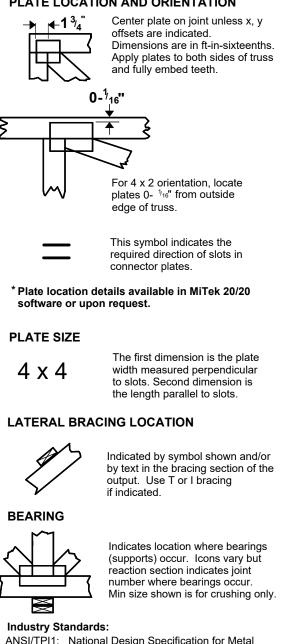
WEBS

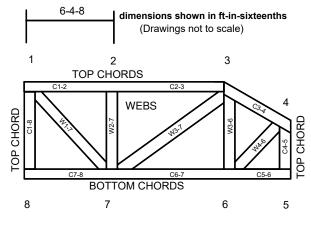
NOTES

1) Unbalanced roof live loads have been considered for this design.

2-4=-325/175

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior 2) zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Exterior(2R) 3-0-5 to 3-8-2, Exterior(2E) 3-8-2 to 6-8-2 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10


annin anni RTH 111111111 SEAL 036322 G mumm May 22,2023


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Symbols

PLATE LOCATION AND ORIENTATION

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

PRODUCT CODE APPROVALS

ICC-ES Reports:

ESR-1311, ESR-1352, ESR1988 ER-3907, ESR-2362, ESR-1397, ESR-3282

Trusses are designed for wind loads in the plane of the truss unless otherwise shown.

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

© 2012 MiTek® All Rights Reserved

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- 1. Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.
- 2. Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- 3. Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- 4. Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- 5. Cut members to bear tightly against each other.
- 6. Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- 7. Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- 8. Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- 9. Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- 10. Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- 11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- 12. Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- 13. Top chords must be sheathed or purlins provided at spacing indicated on design.
- 14. Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
- 16. Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- 18. Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- 19. Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- 20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.

21. The design does not take into account any dynamic or other loads other than those expressly stated.

ANSI/TPI1:	National Design Specification for Metal
	Plate Connected Wood Truss Construction.
DSB-89:	Design Standard for Bracing.
BCSI:	Building Component Safety Information,
	Guide to Good Practice for Handling,
	Installing & Bracing of Metal Plate
	Connected Wood Trusses.

MiTek Engineering Reference Sheet: MII-7473 rev. 5/19/2020