

		Produci	IS						
PlotID	Length	Product		Plies	Net Qty	Fab Type	1		
BM1	4' 0"	1-3/4"x 16" LVL Kerto-	S	2	2	FF			
BM2	7' 0"	1-3/4"x 9-1/4" LVL Ker	to-S	2	4	FF			
GDH	20' 0"	1-3/4"x 18" LVL Kerto-	S	2	2	FF			
	Products								
PlotID	Length	n Product	Plie	S	Net Qty	Fab Type			
BM3	8' 0"	2x12 SP No.2	2		2	FF]		
							-		

	CO RO(_	Te k FL		1
R	eilly R Fayet Phon	load Ir teville	ndustr , N.C. 0) 864	ial Par 28309 -8787 1444	k
deemed requirem attached requirem size and reaction 15000#. retained reaction Tables.	to compl nents. The Tables (nents) to number s greater A register to design that exce A register to design	y with the e contract derived f determin of wood s than 3000 red desig n the supp eeds thos	e prescrip tor shall i rom the p e the min studs req D# but no n profess port syste e specifie n profess port syste	I to 3000# refer to the prescriptiv limum fou- uired to s t greater f sional shale m for any ed in the a ional shale m for all	e e ve Code indation upport than Il be y attached
Signatu	re[d La d La	a <mark>ndr</mark> ndry	У
LOA		ART FC	DR JA	CK STU	ibs
NOLLOYAN 1700 3400 5100 6800 8500 10200 11900	BER OF JA BOYSHAN(2) 1 2 3 4 5 6 7		REQUIRE: /GIRDER BG SON AND (S) 0 1 1 2 3 0 4 0 5	e ea ene	(01-01) 303 S901 S 900
13600 15300	8 9				
CITY / CO. Harnett Co. / Harnett	92 Melvill Lane	Roof	. 08/10/22	DRAWN BY David Landry	SALES REP. Marshall Naylor
сі ТҮ / со	ADDRESS	MODEL	DATE REV.	DRAWN BY	SALES REF
Benjamin Stout Real Estate	Lot 50 Liberty Meadows	Cypress / 2GLF, CP	N/A		J0822-4076
BUILDER	JOB NAME	PLAN	SEAL DATE N/A	QUOTE #	JOB #
These to comport design See ind identified designed perman for the support	russes ar nents to b at the sp lividual de ed on the er is resp ent braci overall st t structure	re designe be incorpo ecification esign she placemen onsible fo ng of the ructure. T e includir	ed as ind prated int n of the b rets for ea nt drawin pr tempor roof and The desig ng header	GRAM ON ividual buil o the buil ouilding de ach truss g. The bu ary and floor sys n of the tu s, beams, of the buil	ilding ding esigner. design ilding tem and russ , walls,

for the overall structure. The design of the truss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding bracing, consult BCSI-B1 and BCSI-B3 provided with the <u>truss delivery package or online @ sbcindustry.con</u>

Dimension Notes

1. All exterior wall to wall dimensions are to face of sheathing unless noted otherwise 2. All interior wall dimensions are to face of frame wall unless noted otherwise 3. All exterior wall to truss dimensions are to face of frame wall unless noted otherwise

RE: J0822-4076 Lot 50 Liberty Meadows Trenco 818 Soundside Rd Edenton, NC 27932

Site Information: Customer: Benjamin Stout Real Estate Project Name: J0822-4076 Lot/Block: 50 Model: Cypress Address: 92 Melvill Lane City:

Subdivision: Liberty Meadows State: NC

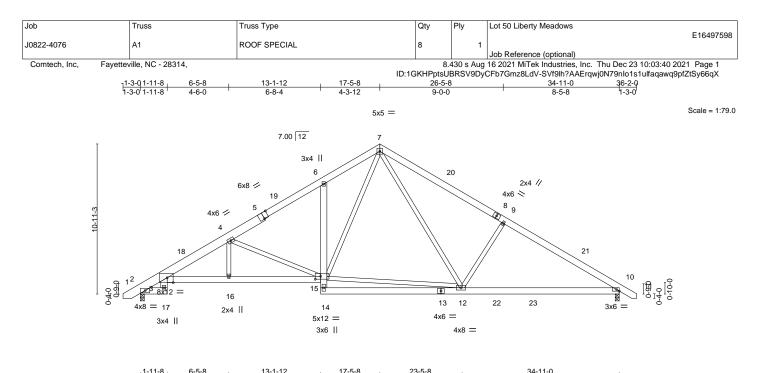
General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014 Wind Code: ASCE 7-10 Roof Load: 40.0 psf

Design Program: MiTek 20/20 8.3 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 15 individual, dated Truss Design Drawings and 0 Additional Drawings.

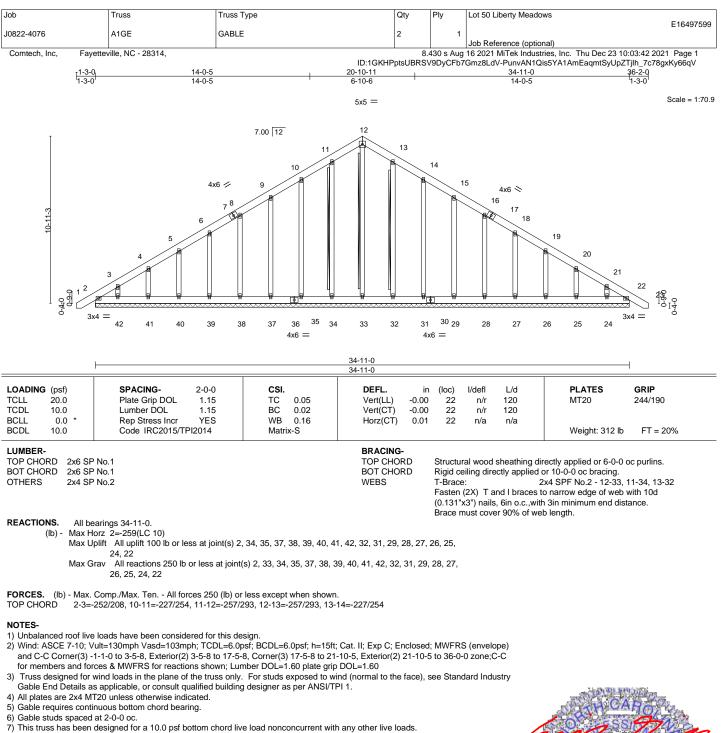
No.	Seal#	Truss Name	Date
1	E16497598	A1	12/23/2021
2	E16497599	A1GE	12/23/2021
3	E16497600	A2	12/23/2021
4	E16497601	A3	12/23/2021
5	E16497602	B1	12/23/2021
6	E16497603	B1GE	12/23/2021
7	E16497604	M1	12/23/2021
8	E16497605	M2	12/23/2021
9	E16497606	V1GE	12/23/2021
10	E16497607	V2GE	12/23/2021
11	E16497608	V3	12/23/2021
12	E16497609	V4	12/23/2021
13	E16497610	V5	12/23/2021
14	E16497611	V6	12/23/2021
15	E16497612	V7	12/23/2021


The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville. Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2022 North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Gilbert, Eric


	1-11-8		13-1-12	17-5-8				34-11-0		
	1-11-8	4-6-0	6-8-4	4-3-12	6-0-0			11-5-8	1	
Plate Offsets (X,Y) [[3:0-5-4,Edge], [5	5:0-4-0,Edge], [15:0-4-	12,0-2-8]						1	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	SPACING Plate Grip Lumber DO Rep Stress	DOL 1.15 OL 1.15	CSI. TC 0.46 BC 0.57 WB 0.97	7	· · /	in (loc) 14 10-12 29 10-12 16 10	>999 >999	L/d 360 240 n/a	PLATES MT20	GRIP 244/190
BCDL 10.0		2015/TPI2014	Matrix-S		Wind(LL) 0.			240	Weight: 281 lb	FT = 20%
					BRACING- TOP CHORD BOT CHORD				rectly applied or 5-0-6 o or 10-0-0 oc bracing.	oc purlins.
Max Up Max Gr FORCES. (lb) - Max. G TOP CHORD 2-3=-5 9-10=	brz 2=-259(LC 1(blift 2=-93(LC 12) rav 2=1450(LC 1 Comp./Max. Ten. 944/196, 3-4=-26 -2149/442	0)), 10=-95(LC 13)), 10=1459(LC 1)	2, 6-7=-1921/538,	7-9=-193	,					
		5=-10/881, 7-15=-228/								
for members and for 3) This truss has been 4) * This truss has been	ult=130mph Vasd -0-11-4 to 3-5-9, I ces & MWFRS fo designed for a 10 n designed for a li ottom chord and a connection (by ott d in accordance v	d=103mph; TCDL=6.0 Interior(1) 3-5-9 to 17- r reactions shown; Lu 0.0 psf bottom chord liv ive load of 30.0psf on any other members, w hers) of truss to beari	psf; BCDL=6.0psf; 5-8, Exterior(2) 17 mber DOL=1.60 pl ve load nonconcur the bottom chord i vith BCDL = 10.0ps ng plate capable o	-5-8 to 2 late grip l rent with n all area sf. f withstar	1-10-5, Interior(1) 21- DOL=1.60 any other live loads. as where a rectangle nding 100 lb uplift at ji	10-5 to 3 3-6-0 tall bint(s) 2,	6-0-Ò zone; by 2-0-0 wi 10.	c-c	CAN SEA	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclings with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rerection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

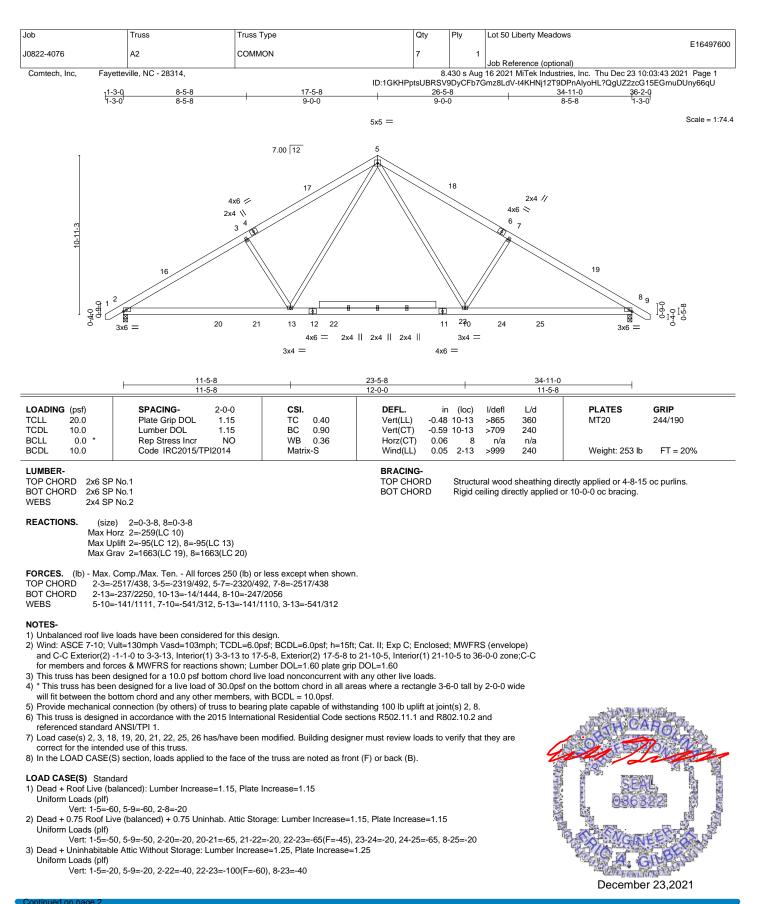
TDENEG

818 Soundside Road Edenton, NC 27932

8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 34, 35, 37, 38, 39, 40, 41, 42, 32, 31, 29, 28, 27, 26, 25, 24, 22.

10) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


11) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

December 23,2021

🗥 WARNING - Verify design pa ameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Construints - Strange, delivery, erection and bracing of trusses and truss even and/or chord members only. Additional building design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design is to here only upon parameters and properly incorporate this design is the overall building designer must verify the applicability of design parameters and properly incorporate this design is the overall building designer must verify the applicability of design parameters and properly incorporate this design is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent bucklings systems, see **ANS/TPH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in to the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of truss systems, see **ANSUTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 50 Liberty Meadows
					E16497600
J0822-4076	A2	COMMON	7	1	
					Job Reference (optional)
Comtech, Inc, Fa	etteville, NC - 28314,		8.	430 s Aug	16 2021 MiTek Industries, Inc. Thu Dec 23 10:03:43 2021 Page 2

ID:1GKHPptsUBRSV9DyCFb7Gmz8LdV-t4KHNj12T9DPnAlyoHL?QgUZ2zcG15EGrnuDUny66qU

LOAD CASE(S) Standard

 Dead + Uninhabitable Attic Storage: Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf)

Vert: 1-5=-20, 5-9=-20, 2-20=-20, 20-21=-80, 21-22=-20, 22-23=-80(F=-60), 23-24=-20, 24-25=-80, 8-25=-20

19) Dead + 0.75 Roof Live (bal.) + 0.75 Uninhab. Attic Storage + 0.75(0.6 MWFRS Wind (Neg. Int) Left): Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf) Vert: 1-2=-56, 2-5=-61, 5-8=-43, 8-9=-38, 2-20=-20, 20-21=-65, 21-22=-20, 22-23=-65(F=-45), 23-24=-20, 24-25=-65, 8-25=-20

Horz: 1-2=6, 2-5=11, 5-8=7, 8-9=12

20) Dead + 0.75 Roof Live (bal.) + 0.75 Uninhab. Attic Storage + 0.75(0.6 MWFRS Wind (Neg. Int) Right): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)

Vert: 1-2=-38, 2-5=-43, 5-8=-61, 8-9=-56, 2-20=-20, 20-21=-65, 21-22=-20, 22-23=-65(F=-45), 23-24=-20, 24-25=-65, 8-25=-20 Horz: 1-2=-12, 2-5=-7, 5-8=-11, 8-9=-6

21) Dead + 0.75 Roof Live (bal.) + 0.75 Uninhab. Attic Storage + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)

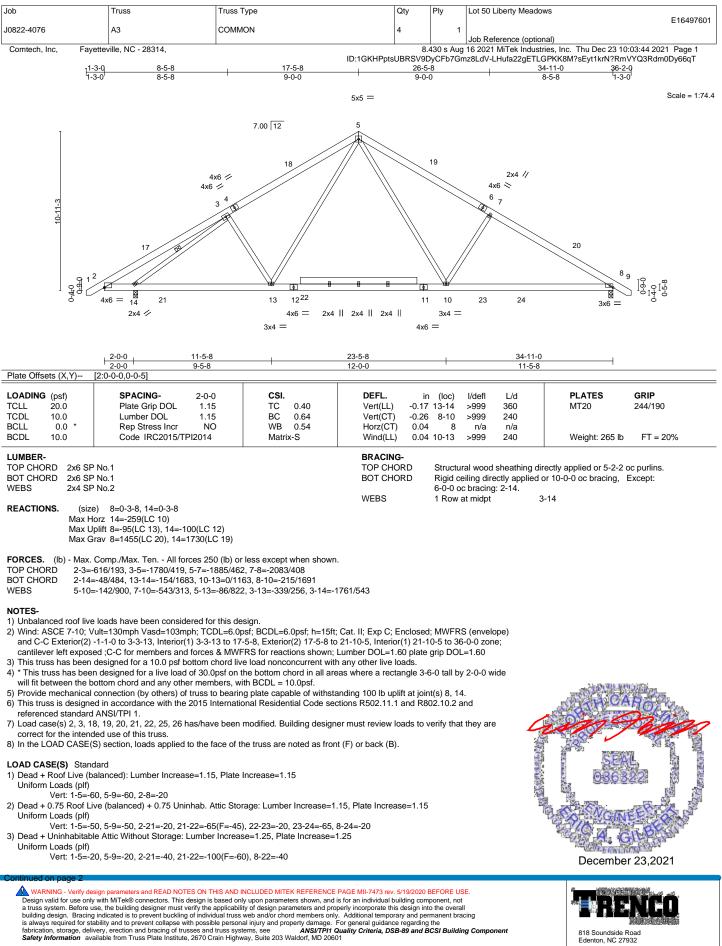
Vert: 1-2=-31, 2-5=-36, 5-8=-45, 8-9=-40, 2-20=-20, 20-21=-65, 21-22=-20, 22-23=-65(F=-45), 23-24=-20, 24-25=-65, 8-25=-20

Horz: 1-2=-19, 2-5=-14, 5-8=5, 8-9=10

22) Dead + 0.75 Roof Live (bal.) + 0.75 Uninhab. Attic Storage + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)

Vert: 1-2=-40, 2-5=-45, 5-8=-36, 8-9=-31, 2-20=-20, 20-21=-65, 21-22=-20, 22-23=-65(F=-45), 23-24=-20, 24-25=-65, 8-25=-20

Horz: 1-2=-10, 2-5=-5, 5-8=14, 8-9=19 25) 3rd Dead + 0.75 Roof Live (unbalanced) + 0.75 Uninhab. Attic Storage: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)


Vert: 1-5=-50, 5-9=-20, 2-20=-20, 20-21=-65, 21-22=-20, 22-23=-65(F=-45), 23-24=-20, 24-25=-65, 8-25=-20

26) 4th Dead + 0.75 Roof Live (unbalanced) + 0.75 Uninhab. Attic Storage: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-5=-20, 5-9=-50, 2-20=-20, 20-21=-65, 21-22=-20, 22-23=-65(F=-45), 23-24=-20, 24-25=-65, 8-25=-20

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, rerotion and bracing of trusses systems, see **AVSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Lot 50 Liberty Meadows
					E16497601
J0822-4076	A3	COMMON	4	1	
					Job Reference (optional)
Comtech, Inc,	Fayetteville, NC - 28314,		8.	430 s Aug	16 2021 MiTek Industries, Inc. Thu Dec 23 10:03:45 2021 Page 2

ID:1GKHPptsUBRSV9DyCFb7Gmz8LdV-pTS2oO3J?nT71UvLwiNTV5ZvamKfVyoZI5NKYfy66qS

LOAD CASE(S) Standard

- 18) Dead + Uninhabitable Attic Storage: Lumber Increase=1.25, Plate Increase=1.25 Uniform Loads (plf)
- Vert: 1-5=-20, 5-9=-20, 2-21=-20, 21-22=-80(F=-60), 22-23=-20, 23-24=-80, 8-24=-20

19) Dead + 0.75 Roof Live (bal.) + 0.75 Uninhab. Attic Storage + 0.75(0.6 MWFRS Wind (Neg. Int) Left): Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf)

Vert: 1-2=-56, 2-5=-61, 5-8=-43, 8-9=-38, 2-14=-3, 14-21=-20, 21-22=-65(F=-45), 22-23=-20, 23-24=-65, 8-24=-20

Horz: 1-2=6, 2-5=11, 5-8=7, 8-9=12 20) Dead + 0.75 Roof Live (bal.) + 0.75 Uninhab. Attic Storage + 0.75(0.6 MWFRS Wind (Neg. Int) Right): Lumber Increase=1.60, Plate Increase=1.60

Uniform Loads (plf)

Vert: 1-2=-38, 2-5=-43, 5-8=-61, 8-9=-56, 2-21=-20, 21-22=-65(F=-45), 22-23=-20, 23-24=-65, 8-24=-20

- Horz: 1-2=-12, 2-5=-7, 5-8=-11, 8-9=-6
- 21) Dead + 0.75 Roof Live (bal.) + 0.75 Uninhab. Attic Storage + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)

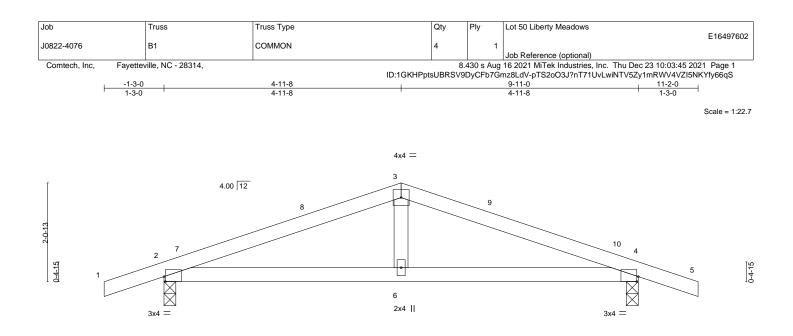
Vert: 1-2=-31, 2-5=-36, 5-8=-45, 8-9=-40, 2-21=-20, 21-22=-65(F=-45), 22-23=-20, 23-24=-65, 8-24=-20

- Horz: 1-2=-19, 2-5=-14, 5-8=5, 8-9=10
- 22) Dead + 0.75 Roof Live (bal.) + 0.75 Uninhab. Attic Storage + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)

Vert: 1-2=-40, 2-5=-45, 5-8=-36, 8-9=-31, 2-21=-20, 21-22=-65(F=-45), 22-23=-20, 23-24=-65, 8-24=-20 Horz: 1-2=-10, 2-5=-5, 5-8=14, 8-9=19

25) 3rd Dead + 0.75 Roof Live (unbalanced) + 0.75 Uninhab. Attic Storage: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-5=-50, 5-9=-20, 2-21=-20, 21-22=-65(F=-45), 22-23=-20, 23-24=-65, 8-24=-20

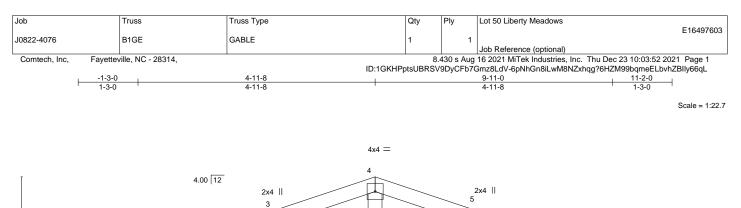

26) 4th Dead + 0.75 Roof Live (unbalanced) + 0.75 Uninhab. Attic Storage: Lumber Increase=1.15, Plate Increase=1.15

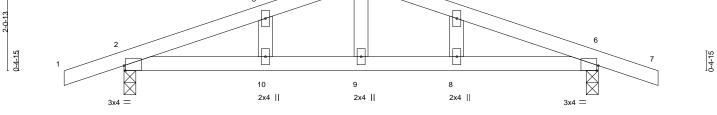
Uniform Loads (plf)

Vert: 1-5=-20, 5-9=-50, 2-21=-20, 21-22=-65(F=-45), 22-23=-20, 23-24=-65, 8-24=-20

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MTek® connectors. This does not have a seed only upon parameters show, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of truss systems, see **ANSETPH Quelity Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

		11-8 11-8		<u>9-11-0</u> 4-11-8	
Plate Offsets (X,Y)	[2:0-0-6,Edge], [4:0-0-6,Edge]				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.24 BC 0.20 WB 0.05 Matrix-S	DEFL. i Vert(LL) 0.04 Vert(CT) -0.05 Horz(CT) 0.07	3 2-6 >999 240	PLATES GRIP MT20 244/190 Weight: 37 lb FT = 20%
Max U	No.1 No.2	11	BRACING- TOP CHORD BOT CHORD	Structural wood sheathing di Rigid ceiling directly applied	rectly applied or 6-0-0 oc purlins. or 7-8-15 oc bracing.
FORCES. (lb) - Max. TOP CHORD 2-3=- BOT CHORD 2-6=-	Comp./Max. Ten All forces 250 (lb) o 654/750, 3-4=-654/750 624/567, 4-6=-624/567 293/227	r less except when shown.			
 Wind: ASCE 7-10; V and C-C Exterior(2) left and right expose This truss has been * This truss has been will fit between the b 	loads have been considered for this d ult=130mph Vasd=103mph; TCDL=6.0 -1-3-0 to 3-1-13, Interior(1) 3-1-13 to 4- d;C-C for members and forces & MWF designed for a 10.0 psf bottom chord li n designed for a live load of 30.0psf on ottom chord and any other members. connection (by others) of truss to beari	psf; BCDL=6.0psf; h=15ft; 11-8, Exterior(2) 4-11-8 to RS for reactions shown; Lu /e load nonconcurrent with the bottom chord in all are	9-4-5, Interior(1) 9-4-5 umber DOL=1.60 plate of any other live loads. as where a rectangle 3-	to 11-2-0 zone; porch grip DOL=1.60 -6-0 tall by 2-0-0 wide	

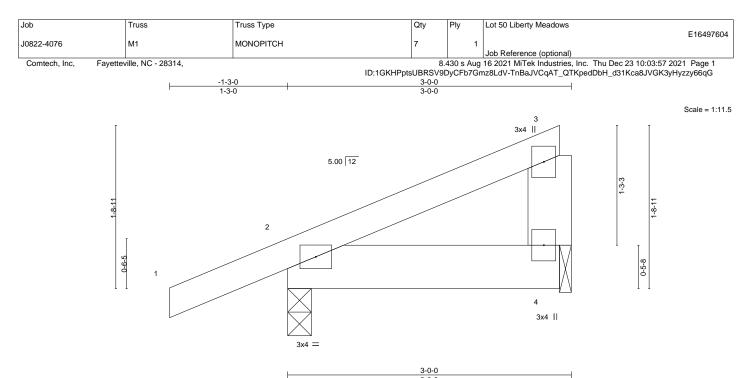

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb 2=191, 4=191.
6) This true is designed in accordance with the 2015 Interpretional Posidential Code sections RE02 11 1 and R802 10 2 and


6) This trues is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclings with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rerection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

		<u>11-8</u> 11-8		<u>9-11-0</u> 4-11-8	
Plate Offsets (X,Y)	[2:0-0-6,Edge], [6:0-0-6,Edge]	11-0		4-11-0	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.18 BC 0.23 WB 0.04 Matrix-S	DEFL. in Vert(LL) 0.04 Vert(CT) -0.04 Horz(CT) -0.01	(loc) l/defl L/d 8 >999 240 10 >999 240 6 n/a n/a	PLATES GRIP MT20 244/190 Weight: 39 lb FT = 20%
	No.1 No.2 No.2		BRACING- TOP CHORD BOT CHORD		ing directly applied or 6-0-0 oc purlins. plied or 7-6-4 oc bracing.
Max G ORCES. (Ib) - Max. (OP CHORD 2-3=-6 OT CHORD 2-10=	rav 2=469(LC 1), 6=469(LC 1) Comp./Max. Ten All forces 250 (lb) o 555/778, 3-4=-607/789, 4-5=-607/790, -660/573, 9-10=-660/573, 8-9=-660/57 291/185	5-6=-655/778			
NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-10; Vi gable end zone and i Lumber DOL=1.60 pl 3) Truss designed for v Gable End Details as 4) Gable studs spaced i 5) This truss has been of	vind loads in the plane of the truss only s applicable, or consult qualified buildin	psf; BCDL=6.0psf; h=15ft; ht exposed;C-C for memb- . For studs exposed to wi g designer as per ANSI/TF re load nonconcurrent with	ers and forces & MWFRS nd (normal to the face), s Pl 1. n any other live loads.	s for reactions shown; see Standard Industry	CARGE

will fit between the bottom chord and any other members. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=271, 6=271.


8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

December 23,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclings with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rerection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

							3-0-0					
LOADING	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	ТС	0.09	Vert(LL)	-0.00	2	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.02	Vert(CT)	-0.00	2-4	>999	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00		n/a	n/a		
BCDL	10.0	Code IRC2015/TF	PI2014	Matri	x-P	Wind(LL)	0.00	2-4	>999	240	Weight: 16 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x4 SP No.1BOT CHORD2x6 SP No.1WEBS2x6 SP No.1

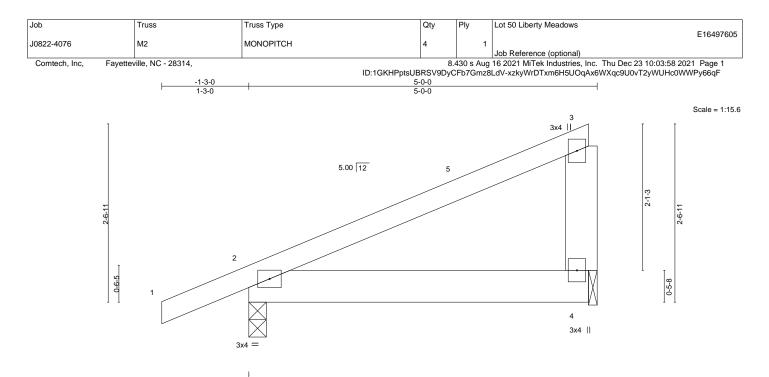
REACTIONS. (size) 2=0-3-0, 4=0-1-8

Max Horz 2=76(LC 12) Max Uplift 2=-98(LC 8), 4=-38(LC 8) Max Grav 2=210(LC 1), 4=84(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify
- capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and
- referenced standard ANSI/TPI 1.


Structural wood sheathing directly applied or 3-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oucling of individual truss expleta muddior chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, rerection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOADING	G (psf)		·0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL 1	.15	TC	0.26	Vert(LL)	-0.01	2-4	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL 1	.15	BC	0.08	Vert(CT)	-0.01	2-4	>999	240		
BCLL	0.0 *	Rep Stress Incr Y	'ES	WB	0.00	Horz(CT)	0.00		n/a	n/a		
BCDL	10.0	Code IRC2015/TPI20	14	Matri	x-P	Wind(LL)	0.01	2-4	>999	240	Weight: 26 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.1 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WEBS

BRACING-TOP CHORD

Structural wood sheathing directly applied or 5-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 2=0-3-0, 4=0-1-8 Max Horz 2=79(LC 12)

Max Uplift 2=-83(LC 8), 4=-57(LC 8) Max Grav 2=281(LC 1), 4=174(LC 1)

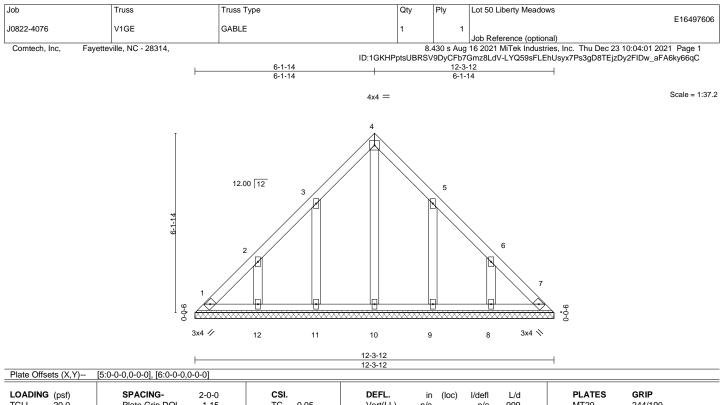
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-3-0 to 3-1-13, Interior(1) 3-1-13 to 4-9-4 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify

- capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and
- referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oucling in trusses and truss systems, see **AVSUPPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2015/TPI2014	CSI. TC 0.05 BC 0.03 WB 0.07 Matrix-S	DEFL.in(loc)l/deflVert(LL)n/a-n/aVert(CT)n/a-n/aHorz(CT)0.007n/a	L/d 999 999 n/a	PLATES GRIP MT20 244/190 Weight: 66 lb FT = 20%
LUMBER-			BRACING-		

TOP CHORD2x4 SP No.1BOT CHORD2x4 SP No.1OTHERS2x4 SP No.2

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 12-3-12.

(lb) - Max Horz 1=-174(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 1, 7 except 11=-143(LC 12), 12=-148(LC 12), 9=-142(LC 13), 8=-149(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 1, 7, 10, 11, 12, 9, 8

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

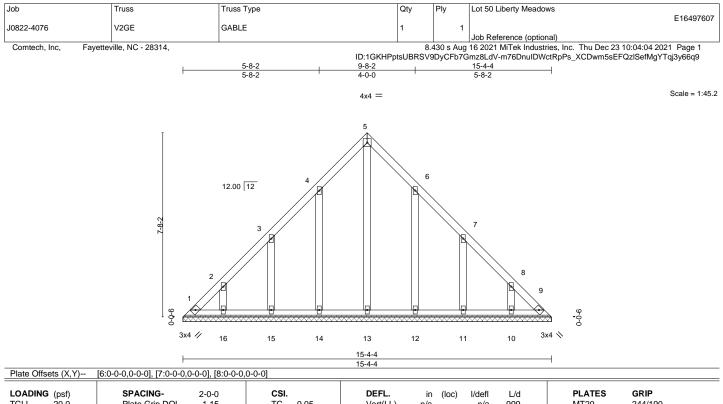
NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) All plates are 2x4 MT20 unless otherwise indicated.

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7 except (jt=lb) 11=143, 12=148, 9=142, 8=149.

8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITEk® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulpase with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rerection and bracing of trusses systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	BC 0.05 BC 0.03 WB 0.15 Matrix-S	Vert(LL) n/a - n/a 999 Vert(CT) n/a - n/a 999 Horz(CT) 0.00 9 n/a n/a	M120 244/190 Weight: 92 lb FT = 20%
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) l/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.05	Vert(LL) n/a - n/a 999	MT20 244/190

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

BOT CHORD 2x4 SP No.1

REACTIONS. All bearings 15-4-4

Max Horz 1=-220(LC 8) (lb) -

2x4 SP No 2

Max Uplift All uplift 100 lb or less at joint(s) 1, 9 except 14=-142(LC 12), 15=-143(LC 12), 16=-128(LC 12), 12=-140(LC 13), 11=-144(LC 13), 10=-128(LC 13) Max Grav All reactions 250 lb or less at joint(s) 1, 9, 13, 14, 15, 16, 12, 11, 10

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-290/181, 8-9=-255/169

NOTES-

OTHERS

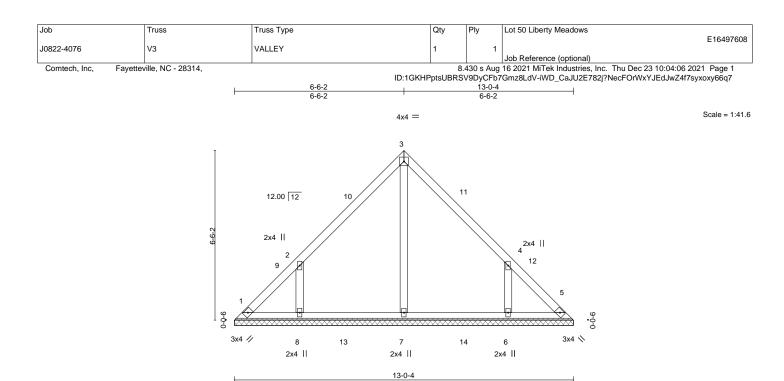
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) All plates are 2x4 MT20 unless otherwise indicated.

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 9 except (jt=lb) 14=142, 15=143, 16=128, 12=140, 11=144, 10=128.

8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

rameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. 🛕 WARNING - Verify design pa Design valid for use only with MTek® connectors. This design is based only upon parameters show, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of truss systems, see **ANSETPH Quelity Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Plate Offsets (X,Y) [4:0	0-0-0,0-0-0]				
OADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) l/	/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.14	Vert(LL) n/a -	n/a 999	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.15	Vert(CT) n/a -	n/a 999	
3CLL 0.0 *	Rep Stress Incr YES	WB 0.09	Horz(CT) 0.00 5	n/a n/a	
3CDL 10.0	Code IRC2015/TPI2014	Matrix-S	· ·		Weight: 60 lb FT = 20%

TOP CHORD

BOT CHORD

TOP CHORD

2x4 SP No.1 2x4 SP No.1 BOT CHORD 2x4 SP No.2 OTHERS

REACTIONS. All bearings 13-0-4

(lb) - Max Horz 1=-148(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 1, 5 except 8=-163(LC 12), 6=-162(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=384(LC 19), 8=374(LC 19), 6=374(LC 20)

WEBS 2-8=-358/290, 4-6=-358/290

NOTES-

1) Unbalanced roof live loads have been considered for this design.

 Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-4-4 to 4-9-0, Interior(1) 4-9-0 to 6-6-2, Exterior(2) 6-6-2 to 10-10-15, Interior(1) 10-10-15 to 12-8-0 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

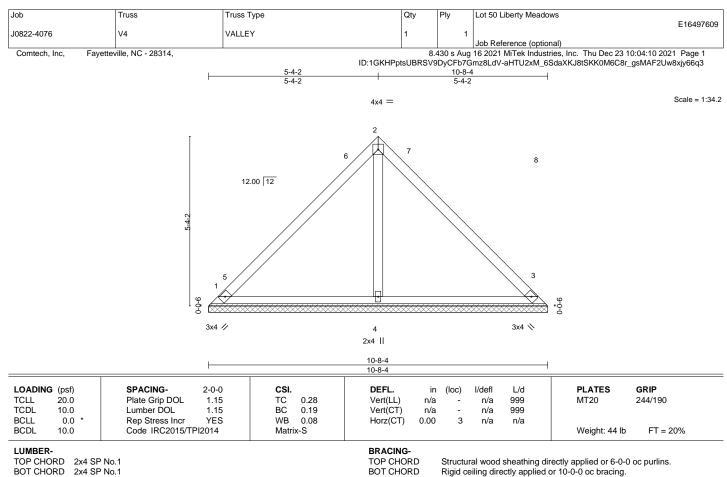
3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=163, 6=162,

7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

🛕 WARNING - Verify design pa rameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Construints - Strange, delivery, erection and bracing of trusses and truss even and/or chord members only. Additional building design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design is to here only upon parameters and properly incorporate this design is the overall building designer must verify the applicability of design parameters and properly incorporate this design is the overall building designer must verify the applicability of design parameters and properly incorporate this design is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent bucklings systems, see **ANS/TPH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

BOT CHORD 2x4 SP No.2 OTHERS

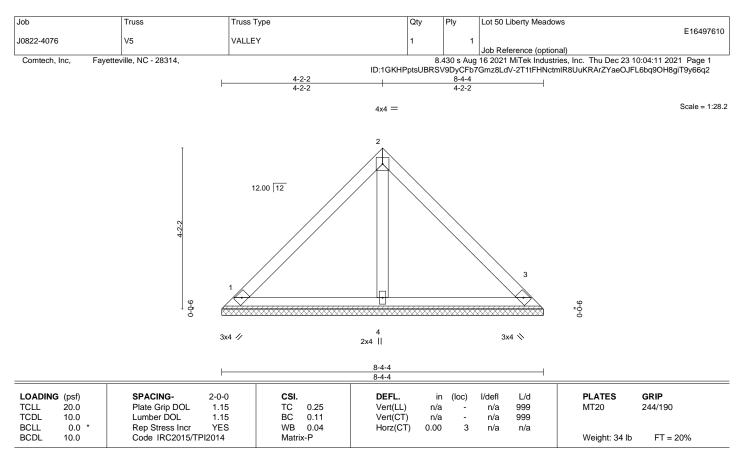
REACTIONS. (size) 1=10-8-4, 3=10-8-4, 4=10-8-4

Max Horz 1=-120(LC 8)

Max Uplift 1=-30(LC 13), 3=-30(LC 13)

Max Grav 1=226(LC 1), 3=226(LC 1), 4=346(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.


NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-4-4 to 4-9-0, Interior(1) 4-9-0 to 5-4-2, Exterior(2) 5-4-2 to 9-8-15, Interior(1) 9-8-15 to 10-4-0 zone;C-C for
- members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
- will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

🛕 WARNING - Verify design pa rameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MTek® connectors. This design is based only upon parameters show, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of truss systems, see **ANSETPH Quelity Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 2x4 SP No.1 BOT CHORD 2x4 SP No.2 OTHERS

REACTIONS. (size) 1=8-4-4, 3=8-4-4, 4=8-4-4

Max Horz 1=92(LC 9) Max Uplift 1=-33(LC 13), 3=-33(LC 13)

Max Grav 1=186(LC 1), 3=186(LC 1), 4=239(LC 1)

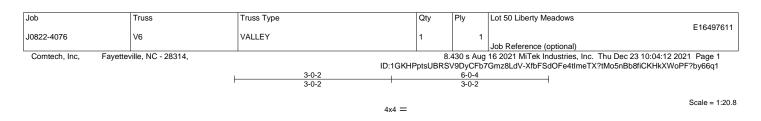
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

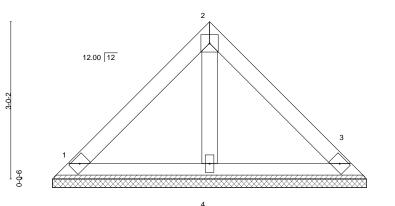
NOTES-

1) Unbalanced roof live loads have been considered for this design.

Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0ps; BCDL=6.0ps; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.




Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

🛕 WARNING - Verify design pa rameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MTek® connectors. This design is based only upon parameters show, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of truss systems, see **ANSETPH Quelity Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

2x4 ||

LOADING	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.12	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.05	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.02	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code IRC2015/TP	12014	Matri	x-P						Weight: 24 lb	FT = 20%
		1									-	
LUMBER	t-					BRACING-						

TOP CHORD

BOT CHORD

6-0-4

LUMBER-

TOP CHORD 2x4 SP No.1 2x4 SP No.1 BOT CHORD 2x4 SP No.2 OTHERS

REACTIONS. (size) 1=6-0-4, 3=6-0-4, 4=6-0-4

Max Horz 1=64(LC 9)

Max Uplift 1=-23(LC 13), 3=-23(LC 13)

Max Grav 1=129(LC 1), 3=130(LC 1), 4=166(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

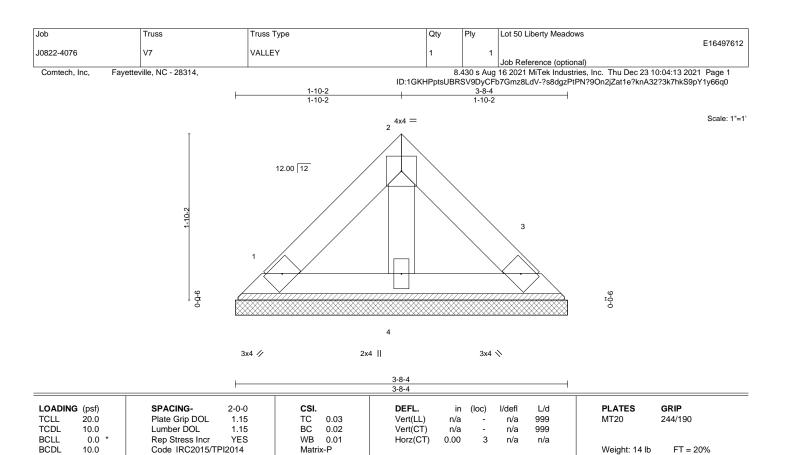
Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0ps; BCDL=6.0ps; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

0-<u>0</u>-6


Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

3x4 🔨

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oucling in trusses and truss systems, see **AVSUPPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BRACING-

TOP CHORD

BOT CHORD

н	111	MP	۶F	R.	

TOP CHORD 2x4 SP No.1 2x4 SP No.1 BOT CHORD 2x4 SP No.2 OTHERS

REACTIONS. (size) 1=3-8-4, 3=3-8-4, 4=3-8-4

Max Horz 1=-36(LC 8) Max Uplift 1=-13(LC 13), 3=-13(LC 13)

Max Grav 1=73(LC 1), 3=73(LC 1), 4=93(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

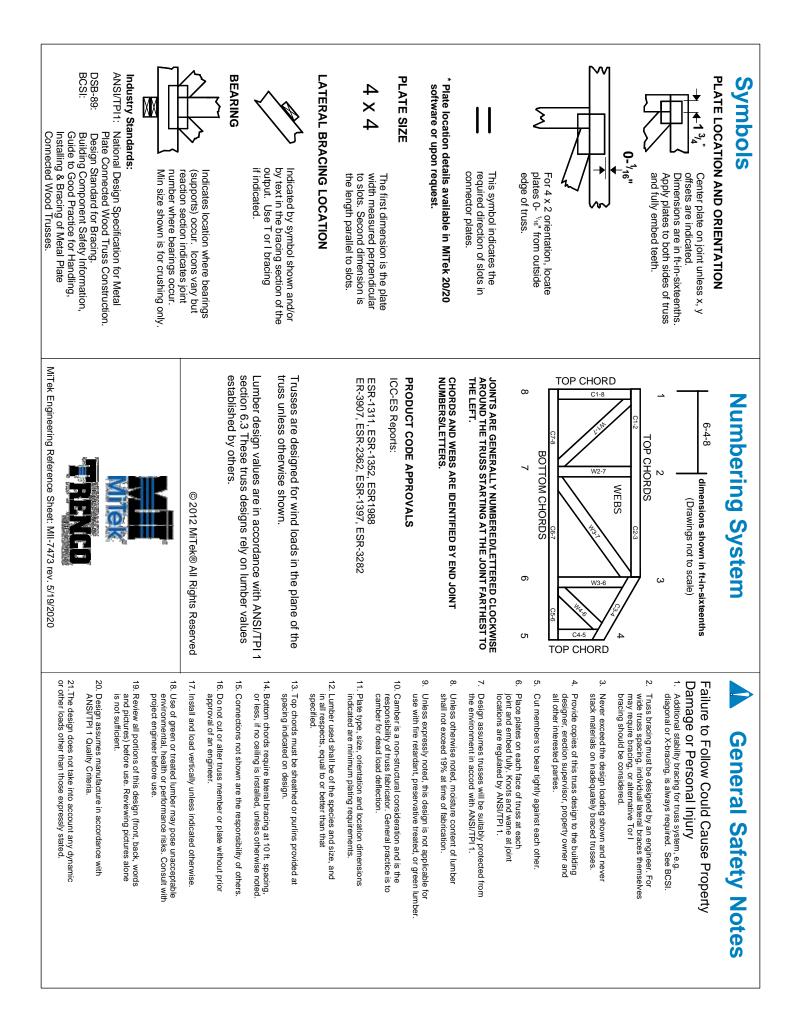
1) Unbalanced roof live loads have been considered for this design.

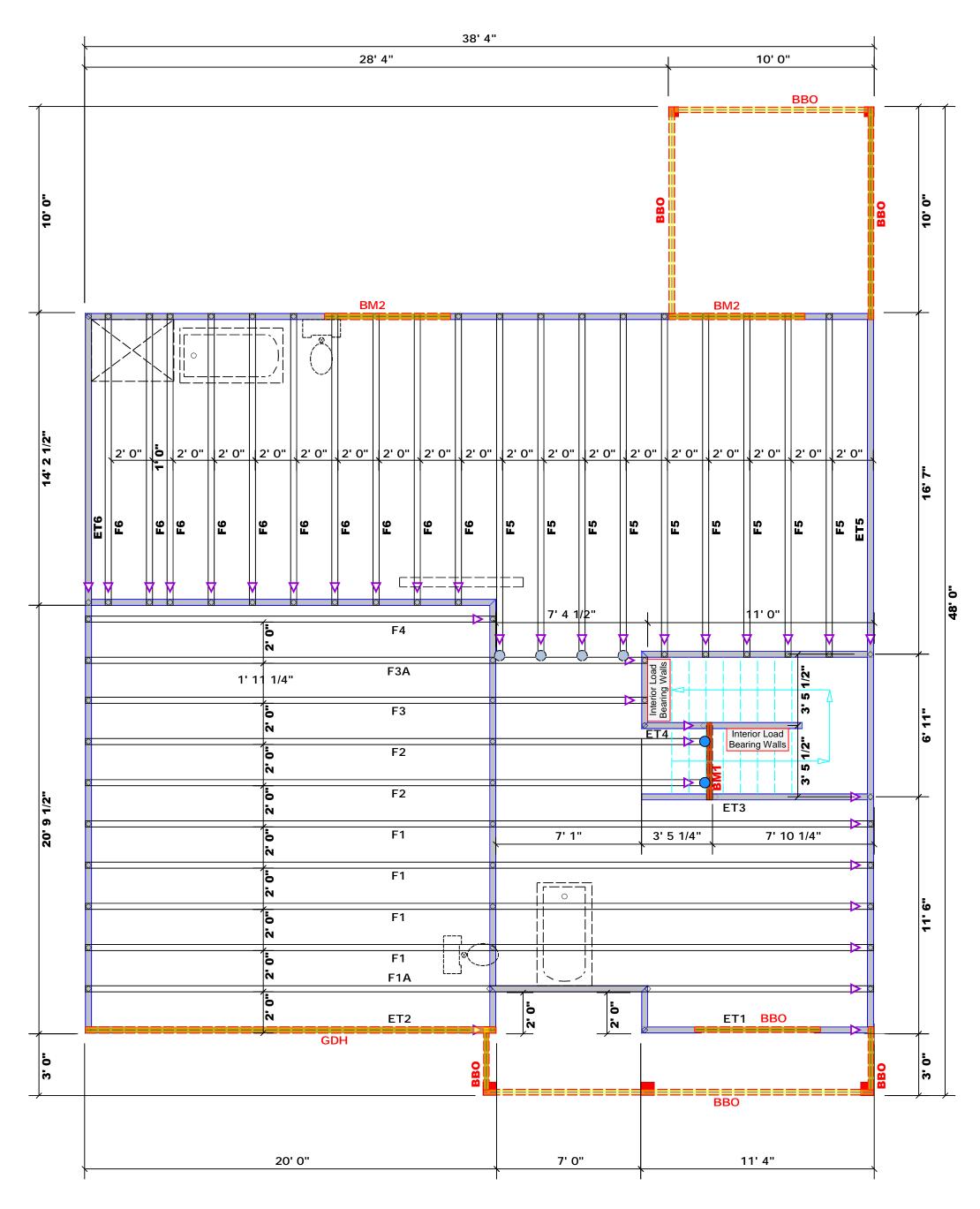
Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0ps; BCDL=6.0ps; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

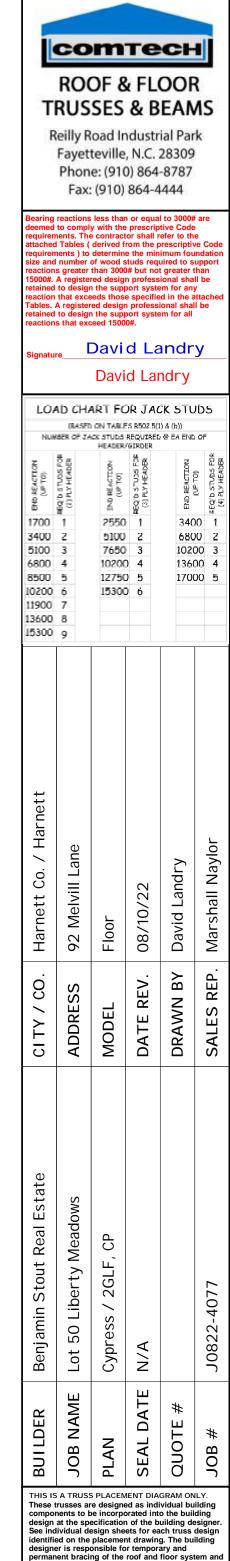
7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

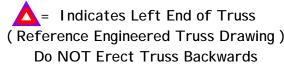



Structural wood sheathing directly applied or 3-8-4 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601




		Products				Truss Placement Plan
PlotID	Length	Product	Plies	Net Qty	Fab Type	Scale: 1/4"=1'
BM1	4' 0"	1-3/4"x 16" LVL Kerto-S	2	2	FF	
BM2	7' 0"	1-3/4"x 9-1/4" LVL Kerto-S	2	4	FF	All Walls Shown Are
GDH	20' 0"	1-3/4"x 18" LVL Kerto-S	2	2	FF	Considered Load Bearing
						Considered Load Dearing

Dimension Notes 1. All exterior wall to wall dimensions are to face of sheathing unless noted otherwise All interior wall dimensions are to face of frame wall unless noted otherwise
 All exterior wall to truss dimensions are to face of frame wall unless noted otherwise

	Conne	Nail Information				
Sym	Product	Manuf	Qty	Supported Member	Header	Truss
\bigcirc	MSH422	USP	4	Varies	10d/3"	10d/3"
\bigcirc	HUS410	USP	2	NA	16d/3-1/2"	16d/3-1/2"

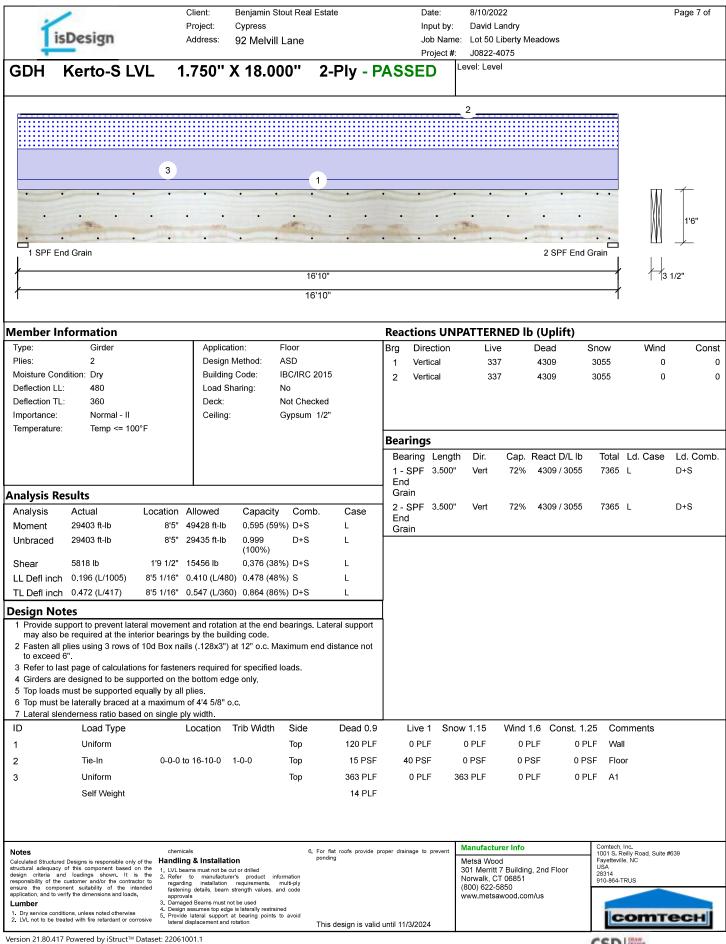
Plumbing Drop Notes
 Plumbing drop locations shown are NOT exact. Contractor to verify ALL plumbing drop locations prior to setting Floor Trusses. Adjust spacing as needed not to exceed 24"oc.

THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual building components to be incorporated into the building design at the specification of the building designer. See individual design sheets for each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor system and for the overall structure. The design of the truss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding bracing, consult BCSI-B1 and BCSI-B3 provided with the truss delivery package or online @ sbcindustry.com

Project: Cypress Address: 92 Melvill Lane BM1 Kerto-S LVL 1.750" X 16.000" 2-Ply - F	Input by: David Landry Job Name: Lot 50 Liberty Meadows Project #: J0822-4075 PASSED Level: Level
BM1 Kerto-S LVL 1.750" X 16.000" 2-Ply - F Image: constraint of the state of	Project #: J0822-4075 PASSED Level: Level $ \int \int \int \frac{1}{14^n} \int \frac{1}{$
Image: state of the state	PASSED Level: Level Image: state of the s
Image: state of the state	Reactions UNPATTERNED Ib (Uplift) Brg Direction Live Dead Snow Wind Co 1 Vertical 345 140 0 0 2 Vertical 345 140 0 0
I SPF 2 SPF J 3'9" 3'9" 3'9" J 3'9" J 3'9" J SPF J 3'9" J SPF J Deflection LL: Momber Not Checked Importance: Normal - II <th>Reactions UNPATTERNED Ib (Uplift) Brg Direction Live Dead Snow Wind Co 1 Vertical 345 140 0 0 2 Vertical 345 140 0 0</th>	Reactions UNPATTERNED Ib (Uplift) Brg Direction Live Dead Snow Wind Co 1 Vertical 345 140 0 0 2 Vertical 345 140 0 0
Type:GirderApplication:FloorPlies:2Design Method:ASDMoisture Condition:DryBuilding Code:IBC/IRC 2015Deflection LL:480Load Sharing:NoDeflection TL:240Deck:Not CheckedImportance:Normal - IINormal - II	Brg Direction Live Dead Snow Wind Co 1 Vertical 345 140 0 0 2 Vertical 345 140 0 0
Type:GirderApplication:FloorPlies:2Design Method:ASDMoisture Condition:DryBuilding Code:IBC/IRC 2015Deflection LL:480Load Sharing:NoDeflection TL:240Deck:Not CheckedImportance:Normal - IINormal - II	Brg Direction Live Dead Snow Wind Co 1 Vertical 345 140 0 0 2 Vertical 345 140 0 0
Plies: 2 Design Method:: ASD Moisture Condition: Dry Building Code:: IBC/IRC 2015 Deflection LL: 480 Load Sharing: No Deflection TL: 240 Deck: Not Checked Importance: Normal - II Normal - II Normal - II	1 Vertical 345 140 0 0 2 Vertical 345 140 0 0
Deflection LL: 480 Load Sharing: No Deflection TL: 240 Deck: Not Checked Importance: Normal - II	
Deflection TL: 240 Deck: Not Checked Importance: Normal - II	Bearings
Importance: Normal - II	Bearings
	Bearings
	Bearings
	Bearing Length Dir. Cap. React D/L lb Total Ld. Case Ld. Cor
	1 - SPF 3.500" Vert 9% 140 / 345 485 L D+L
	2 - SPF 3.500" Vert 9% 140 / 345 485 L D+L
Analysis Results	7
Analysis Actual Location Allowed Capacity Comb. Case Moment 354 ft-lb 1'10 1/2" 34565 ft-lb 0.010 (1%) D+L L	
Moment 354 ft-lb 1'10 1/2" 34565 ft-lb 0.010 (1%) D+L L Unbraced 354 ft-lb 1'10 1/2" 29800 ft-lb 0.012 (1%) D+L L	
Shear 409 lb 2'1 1/2" 11947 lb 0.034 (3%) D+L L	
LL Defl inch 0.001 1'10 1/2" 0.083 (L/480) 0.009 (1%) L L	
(L/54618)	
TL Defl inch 0.001 1'10 1/2" 0.166 (L/240) 0.006 (1%) D+L L	
(L/38886)	-
Design Notes	4
 Provide support to prevent lateral movement and rotation at the end bearings. Lateral support may also be required at the interior bearings by the building code. Fasten all plies using 3 rows of 10d Box nails (.128x3") at 12" o.c. Maximum end distance not to exceed 6". Refer to last page of calculations for fasteners required for specified loads. Girders are designed to be supported on the bottom edge only. Top must be laterally braced at end bearings. Bottom must be laterally braced at end bearings. 	
7 Lateral slenderness ratio based on single ply width. ID Load Type Location Trib Width Side Dead 0.9	Live 1 Snow 1.15 Wind 1.6 Const. 1.25 Comments
1 Uniform Near Face 62 PLF	
Self Weight 12 PLF	
Calculated Structured Designs is responsible only of the structural adequacy of this component based on the 1. LVL beams must not be cut or drilled design criteria and loadings shown. It is the responsibility of the customer and/or the contractor to responsibility of the customer and/or th	proper drainage to prevent Manufacturer Info Metsä Wood 301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851 (800) 622-5850 Contech, Inc. Fayetterille, NC USA 28314 910-864-TRUS (800) 622-5850
ensure the component suitability of the intended application, and to verify the dimensions and loads. fastening details, beam strength values, and code approvals	(800) 522-550 www.metsawood.com/us
Lumber 3, Damaged Beams must not be used 1. Dry service conditions, unless noted otherwise 4. Design assumes top edge is laterally restrained 5. Provide lateral support at bearing points to avoid	соттесн
2. LVL not to be treated with fire retardant or corrosive lateral displacement and rotation This design is vali	d until 11/3/2024

Client:	Benjamin Stout Real Estate	Date:	8/10/2022	Page 2 of
Project:	Cypress	Input by:	David Landry	
isDesign Address	92 Melvill Lane	Job Name:	Lot 50 Liberty Meadows	
		Project #:	J0822-4075	
BM1 Kerto-S LVL 1.750	" X 16.000" 2-Ply	- PASSED	vel: Level	
				/
• • • •				$\overline{\mathbf{M}}$ 1
۶ ۶				IVIVI
· · · ·				<u> </u>
1 SPF 2 SPF				
3'9"				ິງ
3'9"				
Multi-Ply Analysis				
Fasten all plies using 3 rows of 10d Box nai	ls (.128x3") at 12" o.c Maxim	um end distance not	to exceed 6".	
Capacity 50.1 %				
Load 123.0 PLF				
Yield Limit per Foot245.6 PLFYield Limit per Fastener81.9 lb.				
Yield Mode IV				
Edge Distance 1 1/2"				
Min. End Distance 3"				
Load Combination D+L				
Duration Factor 1.00				
		и и и	anufacturer Info	Comtech, Inc.
Notes chemicals Calculated Structured Designs is responsible only of the Handling & Insta		vide proper dramage to prevent	etsä Wood	1001 S. Reilly Road, Suite #639 Fayetteville, NC
structural adequacy of this component based on the 1. LVL beams must no design criteria and loadings shown. It is the 2. Refer to manuf		30	01 Merritt 7 Building, 2nd Floor	USA 28314
responsibility of the customer and/or the contractor to regarding installa ensure the component suitability of the intended factoring details it	acturer's product information ition requirements, multi-ply eam strength values, and code	(8	orwalk, CT 06851 000) 622-5850	910-864-TRUS
application, and to verify the dimensions and loads. approvals Lumber 3. Damaged Beams m	ust not be used		ww.metsawood.com/us	
1. Dry service conditions, unless noted otherwise 4. Design assumes to 5. Provide lateral sur	oedge is laterally restrained poort at bearing points to avoid			соттесн
2. LVL not to be treated with fire retardant or corrosive lateral displacemen		valid until 11/3/2024		Contraction
Version 21.80.417 Powered by iStructIN Dataset: 22061001.1				A A A A A A A A A A A A A A A A A A A

Version 21.80.417 Powered by iStruct™ Dataset: 22061001.1


	-		lient:	Benjamin S	Stout Real	Estate	Date					_	Page 3 of
Tie	Design		roject: ddress:	Cypress 92 Melvi	llane		Inpu Job	-	d Landry 0 Liberty Meadows				
									2-4075				
BM2	Kerto-S L	VL 1	.750"	X 9.2	250''	2-Ply -	PASSE	D Level: L	evel				
							3						
	2												
•	- min •	•		•		•	•	•				NA.	1 1
	Wa				and a							IXIX	9
•		•	1111	•	1	•	•	•				V V	
1 SPF	End Grain						2 SPF	End Grain					ļ
				6'7"								<u> </u>	3 1/2"
1				6'7"					1				
/lember In	formation						Reactions	UNPATTE	RNED lb (Upli	ft)			
Туре:	Girder		Applicat		Floor		Brg Direct	ion L	ive Dead	Sn		Wind	Cons
Plies: Moisture Con	2 Idition: Drv		Design I Building		ASD IBC/IRC	2015	1 Vertica		10921601092160		369 369	0 0	
Deflection LL	-		Load Sh		No	2015	2 Vertica	1 1	109 2160	13	369	U	
Deflection TL	: 240		Deck:		Not Chee	cked							
Importance:	Normal - II												
Temperature:	Temp <= 100°	°F					Bearings						
							Bearings Bearing L	ength Dir.	Cap. React D)/I_Ib	Total	Ld. Case	Ld. Comb
							1 - SPF 3	-	•		10tai 4019		D+0.75(L+
Analysis Re	esults		I				End Grain						
Analysis	Actual	Location A		Capacit	-		2 - SPF 3 End	.500" Vert	39% 2160 /	1859	4019	L	D+0.75(L+
Moment	5726 ft-lb	3'3 1/2" 1			0%) D+0.7	. ,	Grain						
Unbraced	5726 ft-lb	3'3 1/2" 1			5%) D+0.7	. ,							
Shear	2727 lb	1' 3/4" 7			4%) D+0.3	. ,							
LL Defl inch	. ,		.153 (L/480										
	0.104 (L/706)	3'3 1/2" 0	.306 (L/240) 0.340 (3	4%) D+0.	(5(L+S) L	-						
Design No 1 Provide su	tes pport to prevent later	al movement	and rotatio	n at the end	d bearings	Lateral support							
may also b	be required at the inte plies using 2 rows of	rior bearings	by the build	ling code.									
	st page of calculation	is for fastener	s required f	or specified	loads.								
	e designed to be supp must be supported ed		-	e only.									
	be laterally braced at												
	ist be laterally braced nderness ratio based		0										
ID	Load Type	0 1 7		Trib Width	Side	Dead 0.9	Live 1	Snow 1.15	Wind 1.6 Cor	nst. 1.25	Com	ments	
1	Uniform				Тор	113 PLF	337 PLF	0 PLF	0 PLF	0 PLF	F5		
2	Uniform				Тор	416 PLF	0 PLF	416 PLF	0 PLF	0 PLF	A2		
3	Uniform				Тор	120 PLF	0 PLF	0 PLF	0 PLF	0 PLF	Wall		
	Self Weight					7 PLF							
Notos		chemical	e		0	For flat roofs provide	proper draipage to an	Manufa	cturer Info		comtech, In		
Notes Calculated Structure	d Designs is responsible only o	fthe Handling	& Installatio		6.	For flat roofs provide ponding	Proper orainage to pre	Metsä V	Vood	F	001 S. Rei ayetteville, ISA	lly Road, Suite # NC	539
design criteria an responsibility of the	of this component based on d loadings shown. It is customer and/or the contractor	the 2 Refer t	ns must not be cu o manufacture installation	it or drilled r's product in requirements,				Norwalk	ritt 7 Building, 2nd Floo , CT 06851	or 2	8314 10-864-TR	us	
ensure the compo	nent suitability of the inter arify the dimensions and loads.	nded fastening approvals	details, beam s s	strength values,				(800) 62 www.me	2-5850 stsawood.com/us	F			
Lumber		Damaged	d Beams must no								1		
Lumber 1. Dry service condi	itions, unless noted otherwise	4. Design a: 5. Provide I	ssumes top edge lateral support a	is laterally restra	lined						Ilen	omte	mon all

120	1	C	Client:	Benjamin Stout Re	eal Estate		Date:	8/10/2022	Page 4 of
1		F	Project:	Cypress			Input by:	David Landry	
	isDesign	A	ddress:	92 Melvill Lane	•			Lot 50 Liberty Meadows	
			750				Project #:	J0822-4075 evel: Level	
BM2	Kerto-S L\	VL 1	.750"	' X 9.250'	2-Ply	- PASS	ED		
									,
•	•	•		•	٠	•		•	$\Lambda \Lambda = 1$
								• 1/2"	9 1/2
•	•	•		•	•	•		• — — — — — — — — — — — — — — — — — — —	
1 SF	PF End Grain					2	SPF End G	Grain	
1				6'7"				1	1 13 1/2"
1				6'7"				1	
Multi-Ply	^y Analysis								
Fasten all	plies using 2 rows	of 10d Bo	ox nails (.128x3") at 12"	o.c Maximu	um end dist	ance no	t to exceed 6".	
Capacity		0.0 %							
Load Yield Limit pe	er Foot	0.0 PLF 163.7 PLF							
Yield Limit pe		81.9 lb.							
Yield Mode Edge Distanc	ce .	IV 1 1/2"							
Min. End Dist	tance	3"							
Load Combin Duration Fact		1.00							
								Manufacturer Info	Comtech, Inc. 1001 S. Reilly Road, Suite #639
Notes Calculated Structu	ured Designs is responsible only of		& Installati		For flat roofs prov ponding	nde proper drainage	lo prevent	Metsä Wood	1001 S. Reilly Road, Suite #639 Fayetteville, NC USA
design criteria responsibility of t	acy of this component based on and loadings shown. It is the customer and/or the contracto	the 2 Refer to regarding	ms must not be co to manufacture dinstallation	ut or drilled r's product information requirements, multi-ply			1	301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851	28314 910-864-TRUS
ensure the con application, and to	nponent suitability of the inten o verify the dimensions and loads.	ded fastening approval	; details, beam : s	strength values, and code				800) 622-5850 www.metsawood.com/us	
Lumber 1. Dry service co	onditions, unless noted otherwise	 Design a Provide 	d Beams must no ssumes top edge lateral support a	ot be used e is laterally restrained at bearing points to avoid					COMTROL
2. LVL not to be	treated with fire retardant or corros	sive lateral di	splacement and r	rotation	This design is	valid until 11/3/20	24		соттесн
Version 21.80.4	417 Powered by iStruct™ Da	ataset: 220610	01.1						COD LORAW

Version 21.80.417 Powered by iStruct™ Dataset: 22061001

is	Design	Р	roject:	Benjamin S Cypress 92 Melvill	tout Real Estate Lane	2		Date: Input by: Job Name: Project #:	8/10/202 David La Lot 50 L J0822-4	andry iberty Me	eadows			Page 5 of
BM3	SP #2	2.000"	X 12.	000''	2-Ply -	PAS	SED	L	evel: Leve					
			1				ष व व व व							
	ind Grain	•			2 SPF Er	•							\mathbb{M}	11 1
			5'6"		2011 EI									3"
/			6'1"				ł							
lember In	formation						Reacti	ons UNP	ATTERN	JFD lb	(Uplift)			
Type: Plies: Moisture Cond Deflection LL: Deflection TL:	Girder 2 dition: Dry 480 240		Applicati Design M Building Load Sh Deck:	/lethod: Code: aring:	Floor ASD IBC/IRC 2015 No Not Checked		Brg [1 \	Direction /ertical /ertical	Live 0 0		Dead 1265 1265	Snow 1265 1265	Wind 0 0	Co
Importance: Temperature:	Normal - II Temp <= 100	°F					Dearin							
								ng Length PF 3.500"	Dir. Vert	Cap. I 43%	React D/L lb 1265 / 1265	Total 2531	Ld. Case L	Ld. Cor D+S
nalysis Re	sults						Grain	PF 3.500"	Vert	43%	1265 / 1265	2531	I	D+S
Analysis Moment Unbraced Shear	Actual 3291 ft-lb 3291 ft-lb 1508 lb	Location A 3' 1/2" 4 3' 1/2" 4 1'2 3/4" 4	548 ft-lb 171 ft-lb	Capacity 0.723 (72 0.789 (79 0.333 (33	%) D+S %) D+S	Case L L	End Grain	F 0.000		4370	120371203	2001	L	
LL Defl inch	0.019 (L/3590)	3' 1/2" 0.	.141 (L/480)) 0.134 (13	%) S	L								
TL Defl inch Design Not	0.038 (L/1795)	3' 1/2" 0.	.281 (L/240)) 0.134 (13	%) D+S	L	l							
 Provide sup may also be 2 Fasten all p to exceed 6 Refer to las Girders are Top loads n Top must be Bottom must 	oport to prevent later e required at the inte blies using 2 rows of	erior bearings 10d Box nails ns for fastener ported on the qually by all pl end bearings. d at end bearir	by the build s (.128x3") a s required fo bottom edg lies ngs	ing code. t 12" o.c. M or specified	aximum end dis									
ID 1	Load Type Uniform	L	ocation T	Frib Width	Side Top	Dead 0.9 416 PLF			v 1.15 6 PLF	Wind 1 0 Pl	.6 Const. 1 _F 0 F	.25 Com PLF A2	iments	
									Manufactur	er Info		Comtech, Ir 1001 S. Rei Fayetteville USA 28314 910-864-TF		639

		Stout Real Estate	Date:	8/10/2022	Page 6 of
isDesign	Project: Cypress		Input by:	David Landry	
Ispesign	Address: 92 Melv	II Lane	Job Name: Project #:	Lot 50 Liberty Meadows J0822-4075	
BM3 SP #2	2 000" ¥ 12 000"	2-Ply - PASSI		evel: Level	
	2.000" X 12.000"	2-FIY - FA331			
					,
•••	• •	• • •	Ę.,		\overline{M} 1
			<1 1/2"		
	• •		\overline{V}		11 1/4"
	• •		$\overline{+}$		
1 SPF End Grain		2 SPF End Grain			
	5'6"	1			1 3"
/	6'1"				
Multi-Ply Analysis					
	rows of 10d Box nails (.128x3")	at 12" o.c. Maximum or	d distance no	t to overad 6"	
Capacity	0.0 %			t to exceed 0.	
Load	0.0 PLF				
Yield Limit per Foot Yield Limit per Fastener	202.6 PLF 101.3 lb.				
Yield Mode	IV				
Edge Distance	1 1/2"				
Min. End Distance Load Combination	3"				
Duration Factor	1.00				
			Γ	Manufacturer Info	Comtech, Inc. 1001 S. Reilly Road, Suite #639 Fayetteville, NC
			F		USA
					28314 910-864-TRUS
					соттесн
		This design is valid unt	il 11/3/2024		Contech

	Client:	Benjamin Stout Re	al Estate	Date:	:	8/10/2022	Page 8 of
1	Project:	Cypress		Input	by:	David Landry	
isDesign	Address:	92 Melvill Lane				Lot 50 Liberty Meadows	
				Proje		J0822-4075	
GDH Kerto-S LVL	1.750" >	K 18.000''	2-Ply -	PASSED		evel: Level	
			_				
	•	• •	• •	• •	•	• • •	· ·] 5, []]
	• •	• •	• •	• •		• • • •	"CT 1'6"
	•						
1 SPF End Grain						2 SPF End	Grain
			16'10"				1 1/3 1/2"
1			16'10"				
Multi-Ply Analysis							
Fasten all plies using 3 rows of 10c	d Roy pails (179,2") -+ 17"	o.c. Maximi	m and distance	0 00	t to overand 6"	
Capacity 0.0 %					eno		
Load 0.0 PLF							
Yield Limit per Foot 245.6 P	LF						
Yield Limit per Fastener 81.9 lb. Yield Mode IV							
Edge Distance 1 1/2"							
Min. End Distance 3" Load Combination							
Duration Factor 1.00							
	emicals		6. For flat roofs provi	de proper drainage to prev		Manufacturer Info	Comtech, Inc. 1001 S. Reilly Road, Suite #639 Fayetteville, NC
	L beams must not be cu	ıt or drilled	ponding			Metsä Wood 301 Merritt 7 Building, 2nd Floor	USA
design criteria and loadings shown. It is the 2 Re responsibility of the customer and/or the contractor to reg	fer to manufacture parding installation	r's product information requirements, multi-ply			1	Norwalk, CT 06851 800) 622-5850	28314 910-864-TRUS
application, and to verify the dimensions and loads. app	tening details, beam s provals maged Beams must no	strength values, and code				www.metsawood.com/us	
1. Dry service conditions, unless noted otherwise 5. Pro	sign assumes top edge ovide lateral support a	is laterally restrained it bearing points to avoid					соттесн
late	eral displacement and re	otad011	This design is v	alid until 11/3/2024			

Version 21.80.417 Powered by iStruct™ Dataset: 22061001.1

RE: J0822-4077 Lot 50 Liberty Meadows Trenco 818 Soundside Rd Edenton, NC 27932

Site Information: Custo Lot/E

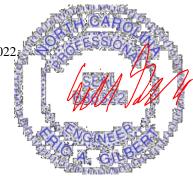
Customer: Benjamin Stout Real Estate Lot/Block: 50	Project Name: J0822-4077 Model: Cypress
Address: 92 Melvill Lane City:	Subdivision: Liberty Meadows State: NC

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

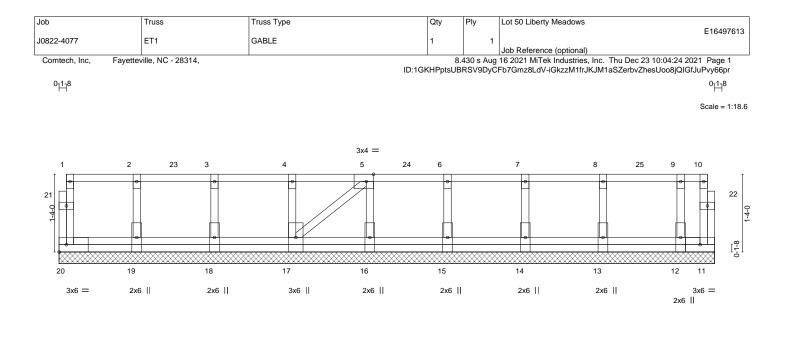
Design Code: IRC2015/TPI2014 Wind Code: N/A Roof Load: N/A psf

Design Program: MiTek 20/20 8.3 Wind Speed: N/A mph Floor Load: 55.0 psf

This package includes 14 individual, dated Truss Design Drawings and 0 Additional Drawings.


No.	Seal#	Truss Name	Date
1	E16497613	ET1	12/23/2021
2	E16497614	ET2	12/23/2021
3	E16497615	ET3	12/23/2021
4	E16497616	ET4	12/23/2021
5	E16497617	ET5	12/23/2021
6	E16497618	ET6	12/23/2021
7	E16497619	F1	12/23/2021
8	E16497620	F1A	12/23/2021
9	E16497621	F2	12/23/2021
10	E16497622	F3	12/23/2021
11	E16497623	F3A	12/23/2021
12	E16497624	F4	12/23/2021
13	E16497625	F5	12/23/2021
14	E16497626	F6	12/23/2021

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville. Truss Design Engineer's Name: Gilbert, Eric


My license renewal date for the state of North Carolina is December 31, 2022 North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the

designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

December 23, 2021

L	1-4-0	2-8-0	4-0-0	5-4-0	6-8-0	8-0-0	9-4-0	10-8-0	11-3-0
	1-4-0	1-4-0	1-4-0	1-4-0	1-4-0	1-4-0	1-4-0	1-4-0	0-7-0
Plate	Offsets (X,Y)	[5:0-1-8,Edge]			1				
LOAI TCLL TCDL BCLL BCDL	- 10.0 . 0.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/	2-0-0 1.00 1.00 YES TPI2014	CSI. TC 0.07 BC 0.00 WB 0.03 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) l/defl n/a - n/a n/a - n/a 0.00 17 n/a	L/d 999 999 n/a	PLATES MT20 Weight: 69 lb	GRIP 244/190 FT = 20%F, 11%E
	CHORD 2x4 SP CHORD 2x4 SP S 2x4 SP	No.1(flat) No.1(flat) No.3(flat) No.3(flat)			BRACING- TOP CHORD BOT CHORD	except end ver	d sheathing directly a ticals. rectly applied or 6-0-		oc purlins,

REACTIONS. All bearings 11-3-0. (lb) - Max Uplift All uplift 100 lb o

- Max Uplift All uplift 100 lb or less at joint(s) 11 Max Grav All reactions 250 lb or less at joint(s) 20, 19, 18, 17, 16, 15, 14, 13, 12

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 11.

7) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

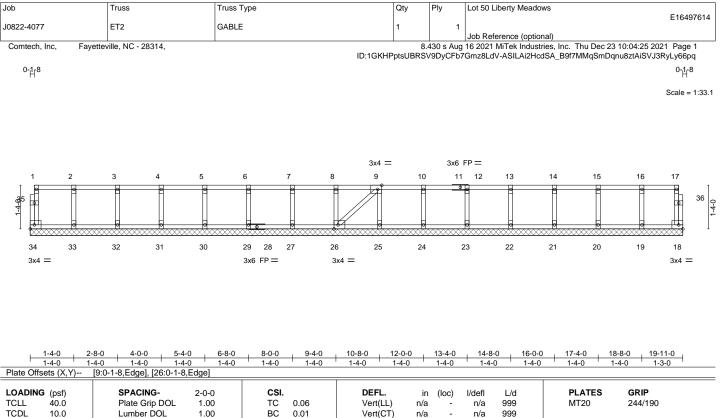
Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf)

Vert: 11-20=-10, 1-10=-100


Concentrated Loads (lb) Vert: 4=-26 7=-26 23=-26 24=-26 25=-26

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Edenton, NC 27932

LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.06 BC 0.01 WB 0.03 Matrix-S	DEFL. in (lo Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.00 1	oc) l/defl - n/a - n/a 18 n/a	L/d 999 999 n/a	PLATES MT20 Weight: 90 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 S	P No.1(flat)		BRACING- TOP CHORD Stru	uctural wood	sheathing di	rectly applied or 6-0-0	oc purlins,

NO.1 (flat) BOT CHORD 2x4 SP No.1(flat) 2x4 SP No.3(flat) WFBS 2x4 SP No.3(flat) OTHERS

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 19-11-0.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 34, 18, 33, 32, 31, 30, 29, 27, 26, 25, 24, 23, 22, 21, 20, 19

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

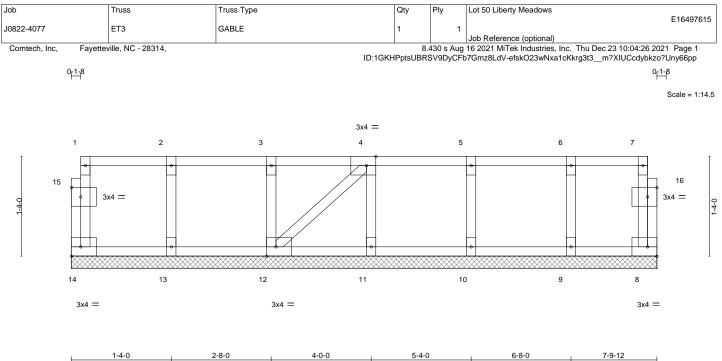
2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.


Strongbacks to be attached to walls at their outer ends or restrained by other means.

December 23,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oucling in trusses and truss systems, see **AVSUPPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	1-4-0 1-4-0	1-4-0	1-4-0	1-4-0	1-1-12
Plate Offsets (X,Y)	[4:0-1-8,Edge], [12:0-1-8,Edge], [15:0-	1-8,0-1-8], [16:0-1-8,0-1-8]			
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.06 BC 0.01 WB 0.03 Matrix-P	DEFL. in (I Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.00	loc) l/defl L/d - n/a 999 - n/a 999 8 n/a n/a	PLATES GRIP MT20 244/190 Weight: 39 lb FT = 20%F, 11%E
BOT CHORD 2x4 S WEBS 2x4 S	SP No.1(flat) SP No.1(flat) SP No.3(flat) SP No.3(flat)		ex	tructural wood sheathing dire coept end verticals. igid ceiling directly applied or	ctly applied or 6-0-0 oc purlins, 10-0-0 oc bracing.

REACTIONS. All bearings 7-9-12.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 14, 8, 13, 12, 11, 10, 9

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

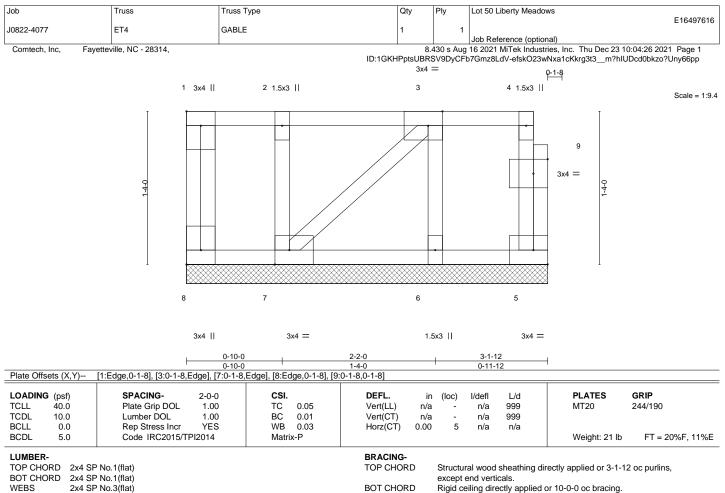
1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.


6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

December 23,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUFTH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

2x4 SP No.3(flat) WFBS 2x4 SP No.3(flat) OTHERS

REACTIONS. All bearings 3-1-12.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 8, 5, 7, 6

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Plates checked for a plus or minus 1 degree rotation about its center.

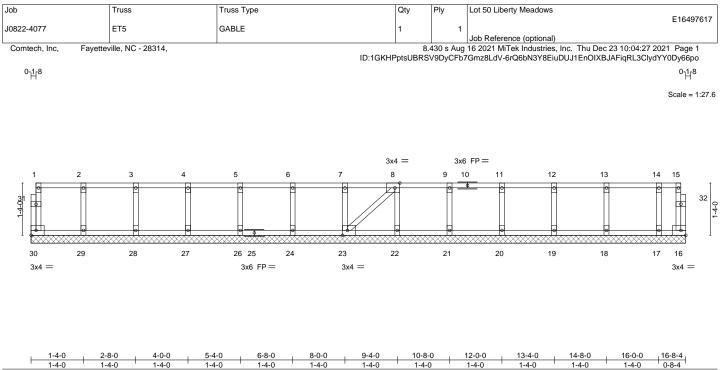
2) Gable requires continuous bottom chord bearing.

3) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

4) Gable studs spaced at 1-4-0 oc.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.


6) CAUTION, Do not erect truss backwards.

December 23,2021

🛕 WARNING - Verify design pa rameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MTek® connectors. This design is based only upon parameters show, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of truss systems, see **ANSETPH Quelity Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Plate Offsets (X,Y)	[8:0-1-8,Edge], [23:0-1-8,Edge]		
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.06 BC 0.01 WB 0.03 Matrix-S	DEFL. in (loc) l/defl L/d PLATES GRIP Vert(LL) n/a - n/a 999 MT20 244/190 Vert(CT) n/a - n/a 999 Horz(CT) 0.00 16 n/a n/a Weight: 77 lb FT = 20%F, 1 FT = 20%F, 1 FT = 20%F, 1 FT = 20%F, 1
	P No.1(flat) P No.1(flat)	1	BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

BOT CHORD WEBS 2x4 SP No.1(flat) 2x4 SP No.3(flat) OTHERS 2x4 SP No.3(flat)

REACTIONS.

DNS. All bearings 16-8-4. (lb) - Max Grav All reactions 250 lb or less at joint(s) 30, 16, 29, 28, 27, 26, 24, 23, 22, 21, 20, 19, 18, 17

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

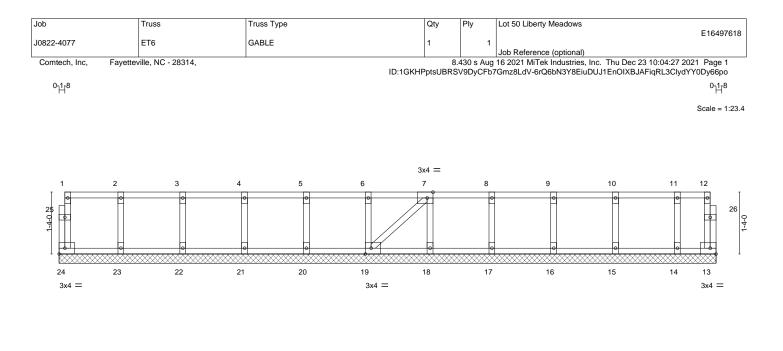
1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.


6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oucling in trusses and truss systems, see **AVSUPPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

1	1-4-0	2-8-0	4-0-0	5-4-0	6-8-0	8-0-0	9-4-0	10-8-0	12-0-0	13-4-0) 14-2-0
F	1-4-0	1-4-0	1-4-0	1-4-0	1-4-0	1-4-0	1-4-0	1-4-0	1-4-0	1-4-0	0-10-0
Plate C	Offsets (X,Y)	[7:0-1-8,Edge],	[19:0-1-8,Edge]								
LOADI TCLL TCDL BCLL BCDL	ING (psf) 40.0 10.0 0.0 5.0	SPACIN Plate Gri Lumber Rep Stre Code IR	ip DOL 1.00 DOL 1.00) T) E	CSI. FC 0.06 3C 0.01 WB 0.03 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) n/a - n/a - 0.00 13	l/defl L/d n/a 999 n/a 999 n/a n/a	MT	ATES 20	GRIP 244/190 FT = 20%F, 11%E
LUMB TOP C BOT C WEBS	HORD 2x4 S HORD 2x4 S	P No.1(flat) P No.1(flat) P No.3(flat)		I		BRACING- TOP CHOP BOT CHOP	RD Structo exception	ural wood sheathin t end verticals. ceiling directly appl	5 <i>j</i> 11		oc purlins,

2x4 SP No.3(flat) OTHERS REACTIONS.

DNS. All bearings 14-2-0. (lb) - Max Grav All reactions 250 lb or less at joint(s) 24, 13, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

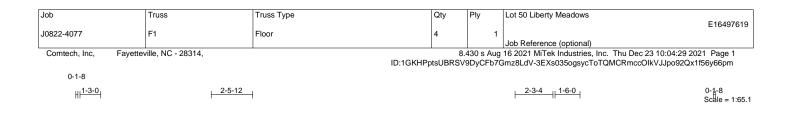
NOTES-

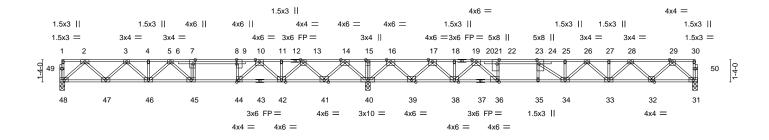
All plates are 1.5x3 MT20 unless otherwise indicated.
 Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

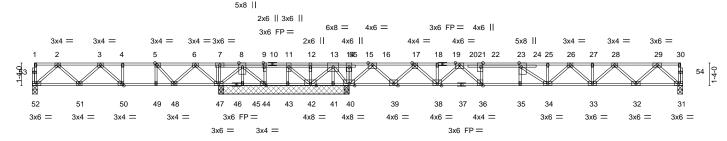

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	18-5-12 18-5-12			38-3-0 19-9-4					
Plate Offsets (X,Y)	[7:0-3-0,Edge], [8:0-3-0,0-0-0], [22:0-3-	0,Edge], [23:0-3-0,Edge],	[36:0-1-8,Edge], [44:0-	1-8,Edge]					
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES	CSI. TC 0.96 BC 0.81 WB 0.71	Vert(LL) -0.2	in (loc) l/defl 27 34-35 >864 36 34-35 >655 36 31 n/a	L/d 480 360 n/a	PLATES MT20	GRIP 244/190		
BCDL 5.0	Code IRC2015/TPI2014	Matrix-S				Weight: 211 lb	FT = 20%F, 11%		
BOT CHORD 2x4 S	SP No.1(flat) SP No.1(flat) SP No.3(flat)		BRACING- TOP CHORD BOT CHORD	except end ver	icals.	rectly applied or 2-2-0 or 6-0-0 oc bracing.	oc purlins,		
8-1 15- 22- 28-	=-1560/0, 3-4=-2546/0, 4-5=-2546/0, 5-7= D=-2888/105, 10-11=-1673/754, 11-13=- 16=0/3309, 16-17=-64/1187, 17-18=-176 23=-3236/0, 23-25=-3338/0, 25-26=-3338 29=-1704/0 48=0/394 46-47=0/2157, 45-46=0/2787	673/754, 13-14=-128/140 7/545, 18-20=-1767/545, 2 8/0, 26-27=-2818/0, 27-28=	7, 14-15=0/3309, 20-22=-3258/0, =-2818/0,						
BOT CHORD 47- 41-	48=0/939, 46-47=0/2157, 45-46=0/2787, 42=-1069/990, 40-41=-1989/0, 39-40=-19	925/0, 38-39=-852/1004, 3	6-38=-294/2360,						
WEBS 2-4 13- 5-4 28 17-	36=0/3236, 34-35=0/3236, 33-34=0/3146 8=-1248/0, 2-47=0/864, 3-47=-830/0, 3-4 41=-1322/0, 13-42=0/1058, 10-42=-801/(5=-530/142, 7-45=-88/295, 8-44=-798/0, -33=0/619, 26-33=-445/18, 26-34=-20/26 39=-1403/0, 17-38=0/1136, 20-38=-907/0 34=-351/0, 23-34=-99/656	6=-14/529, 14-40=-1757/0), 10-44=0/1338, 5-46=-32 29-31=-1348/0, 29-32=0/9 2, 16-40=-1842/0, 16-39=0	, 14-41=0/1364, 8/67, 59, 28-32=-916/0, 0/1446,			1. Spotter con	antorn:		
NOTES- 1) Unbalanced floor I	ive loads have been considered for this d MT20 unless otherwise indicated.	esign.				C CAR	Rolling States		

 Plates checked for a plus or minus 1 degree rotation about its center.
 Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

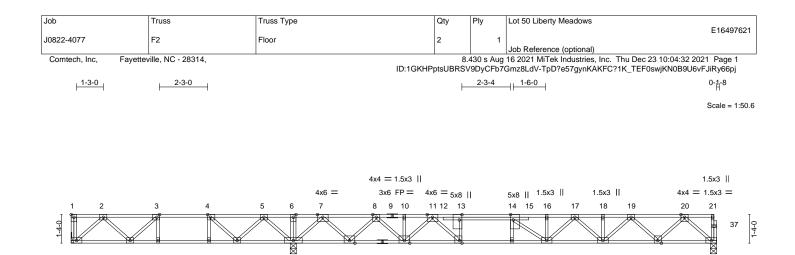

5) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclings with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rerection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job		Truss	Truss Type	Qty		Ply	Lot 50 Liberty Meadows	
		_	_					E16497620
J0822-4077		F1A	Floor	1		1		
							Job Reference (optional)	
Comtech, Inc,	Fayettev	/ille, NC - 28314,			8.4	30 s Aug	16 2021 MiTek Industries, Inc. Thu Dec 2	23 10:04:31 2021 Page 1
				ID:1GKHPptsUE	BRS	/9DyCFb	7Gmz8LdV-?cfdRl72CTCJi6doTcTEh1Th	7J0hHjGKtFWm9?y66pk
0-1-8								
 1-3-0 		<u>1-10-0</u>	<mark>1-2-8 1-2-8 1-2-8 1-2-8 1-2-8 -9-0</mark>				<u>2-1-8</u> <u>1-6-0</u>	0-1-8 Scale: 3/16"=1'
			U					

	10-11-8	14-9-8 18-7-8		38-3	-0			
	10-11-8	3-10-0 3-10-0		19-7	-8			
Plate Offsets (X	,Y) [5:0-1-8,Edge], [9:0-3-0,Edge], [22:0	-3-0,Edge], [23:0-3-0,Edge],	[36:0-1-8,Edge], [44:0-1	-8,Edge], [50:0-1-8,Edge]			
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES	CSI. TC 0.71 BC 0.75 WB 0.67 Matrix-S	Vert(LL) -0.23	n (loc) l/defl L/d 3 34-35 >999 480 3 34-35 >746 360 4 31 n/a n/a	PLATES GRIP MT20 244/190 Weight: 221 lb FT = 20	0%F, 11%E		
					110igini 221 ib	,,		
BOT CHORD	2x4 SP No.1(flat) 2x4 SP No.1(flat) 2x4 SP No.3(flat)		BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing.					
	All bearings 7-8-0 except (jt=length) 52=0 Max Uplift All uplift 100 lb or less at joint(Max Grav All reactions 250 lb or less at j 40=3094(LC 7), 40=3081(LC 1)	e) except 41=-793(LC 4), 42= pint(s) 42, 43, 45 except 52=	560(LC 3), 47=830(LC 3					
FORCES. (lb) TOP CHORD BOT CHORD	- Max. Comp./Max. Ten All forces 250 (lt 2-3=-901/0, 3-4=-1142/0, 4-5=-1142/0, 5- 8-9=0/380, 9-11=0/380, 11-12=0/792, 12 16-17=0/638, 17-18=-1159/0, 18-20=-112 23-25=-2972/0, 25-26=-2972/0, 26-27=-2 51-52=0/591, 50-51=0/1157, 49-50=0/1	5=-768/0, 6-7=-96/503, 7-8= 13=0/792, 13-14=0/3016, 14 9/0, 20-22=-2752/0, 22-23=- 570/0, 27-28=-2570/0, 28-29	-106/487, I-16=0/3018, 2728/0, =-1579/0					
	T CHORD 51-52=0/591, 50-51=0/1157, 49-50=0/1142, 48-49=0/1142, 47-48=0/420, 45-47=-318/0, 44-45=-318/0, 43-44=-380/0, 42-43=-380/0, 41-42=-1769/0, 40-41=-1769/0, 39-40=-1647/0, 38-39=0/350, 36-38=0/1799, 35-36=0/2728, 34-35=0/2728, 33-34=0/2834, 32-33=0/2177, 31-32=0/949							
WEBS	14-40-299/0, 2-52=-784/0, 2-51=0/432, 5-48=-571/0, 13-40=-1985/0, 13-41=0/77 28-32=-833/0, 28-33=0/534, 26-33=-358 17-39=-1366/0, 17-38=0/1101, 20-38=-8; 25-34=-290/12, 23-34=-215/498, 13-42=	I, 11-43=-60/286, 29-31=-12 0, 16-40=-1830/0, 16-39=0/ 1/0, 20-36=0/1328, 22-36=-7	61/0, 29-32=0/876, 1403, 794/0,			-		
 All plates are Plates checked Provide mech joint 42 and 2 Recommend Strongbacks 	floor live loads have been considered for th 1.5x3 MT20 unless otherwise indicated. ed for a plus or minus 1 degree rotation aboranical connection (by others) of truss to be 275 lb uplift at joint 43. 2x6 strongbacks, on edge, spaced at 10-0- to be attached to walls at their outer ends of o not erect truss backwards.	ut its center. aring plate capable of withsta 0 oc and fastened to each tr						
Uniform Load	Live (balanced): Lumber Increase=1.00, P	ate Increase=1.00			December 23 202	4		

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oucling with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rerection and bracing of trusses and truss systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 December 23,2021


	Job	Truss	Truss Type	Qty	Ply	Lot 50 Liberty Meadows		
	J0822-4077	F1A	Floor	1	1	E16497620		
l				-		Job Reference (optional)		
Comtech, Inc, Fayetteville, NC - 28314, 8.430 s Aug 16 2021 MiTek Industries, Inc. Thu Dec 23 10:04:31 2								
			ID:1GKHPptsUBRSV9DyCFb7Gmz8LdV-?cfdRl72CTCJi6doTcTEh1Th7J0hHjGKtFWm9?y66pk					

LOAD CASE(S) Standard Concentrated Loads (Ib)

Vert: 10=-69 12=-69 8=-69 55=-69

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclidual truss event and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, rection and bracing of trusses and truss systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

30	2	9	28	
4x6 =	3x6	FP	=	
			4x6	=

27

4x4 =

26

30-1-12

1.5x3 ||

25

3x6 =

24

3x6 =

23

4x4 =

22

3x6 =

29

30

	10-4-8 30-1-12								
	10-4-8					9-9-4			
Plate Offsets (X,Y)	[1:Edge,0-1-8], [3:0-1-8,	dge], [4:0-1-8,	Edge], [13:0-3-0,Ed	ge], [14:0-3-0,Edge], [27	7:0-1-8,Edge]				
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.00 1.00 YES	CSI. TC 0.77 BC 0.85 WB 0.63	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.29 25-26 -0.39 25-26 0.06 22	l/defl >821 >604 n/a	L/d 480 360 n/a	PLATES MT20	GRIP 244/190
BCDL 5.0	Code IRC2015/T	PI2014	Matrix-S					Weight: 163 lb	FT = 20%F, 11%
BOT CHORD 2x4 S	SP No.1(flat) SP No.1(flat) SP No.3(flat)			BRACING- TOP CHOR BOT CHOR	D Structu except	t end vert	icals.	rectly applied or 5-10-1 or 6-0-0 oc bracing.	oc purlins,
Max 0 Max 0	ze) 36=Mechanical, 31= Uplift 36=-26(LC 4) Grav 36=490(LC 3), 31=1 <. Comp./Max. Ten All fo	947(LC 1), 22=	989(LC 7)	shown.					
8-10	=-721/150, 3-4=-860/441, 4 0=-2401/0, 10-11=-2401/0, 17=-3669/0, 17-18=-3045/0	11-13=-3738/0), 13-14=-3719/0, 14						
30-3	36=-18/514, 34-35=-441/8(31=-576/0, 28-30=0/1695, -24=0/2533, 22-23=0/1075				32,				
WEBS 2-36 4-33 11-2 19-2	6=-685/24, 2-35=-183/287, 3=0/301, 3-34=-264/0, 7-3 28=-774/0, 11-27=0/1261, 23=-993/0, 19-24=0/697, 1 25=-439/328	l=-1699/0, 7-30 13-27=-758/0, 2)=0/1314, 8-30=-128 20-22=-1428/0, 20-2	80/0, 8-28=0/1005, 23=0/1035,					
NOTES-									1. WR. CO.

1) Unbalanced floor live loads have been considered for this design.

33

1.5x3 ||

32

31

3x10 =

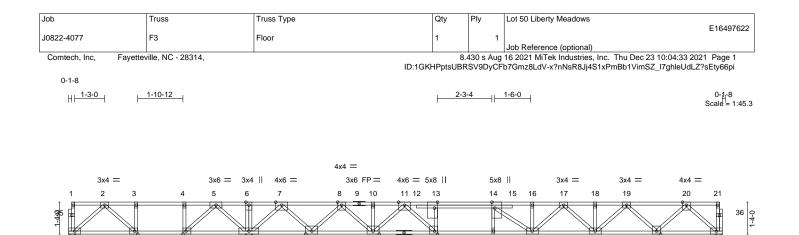
- 2) All plates are 3x4 MT20 unless otherwise indicated.
- 3) Plates checked for a plus or minus 1 degree rotation about its center.4) Refer to girder(s) for truss to truss connections.
- b) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 26 lb uplift at joint 36.
 c) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.
- Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 7) CAUTION, Do not erect truss backwards.

36

3x6 =

35

34


1.5x3 ||

10-4-8

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclings with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rerection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

29

4x6 =

28

3x8 M18AHS FP =

27

4x4 =

26

25

3x6 =

24

3x6 =

23

4x4 =

L	7-6-4			27-3-8		
	7-6-4			19-9-4		1
Plate Offsets (X,Y)	[13:0-3-0,Edge], [14:0-3-0,Edge], [27:0	-1-8,Edge], [32:0-1-8,Edge], [33:0-1-8,Edge]			
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.85 BC 0.85 WB 0.62 Matrix-S	Vert(LL) -0.29	n (loc) I/defl L/d 9 25-26 >817 480 9 25-26 >598 360 6 22 n/a n/a	PLATES MT20 M18AHS Weight: 149 lb	GRIP 244/190 186/179 FT = 20%F, 11%E
BOT CHORD 2x4 SI	P No.1(flat) P No.1(flat) P No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dir except end verticals. Rigid ceiling directly applied o	, ,,	oc purlins,
	e) 34=0-3-8, 31=0-3-8, 22=0-3-8 Jplift 34=-112(LC 4) Grav 34=328(LC 3), 31=1806(LC 1), 22:	=996(LC 7)				
FORCES. (lb) - Max.	Comp./Max. Ten All forces 250 (lb) o	r less except when shown.				

 TOP CHORD
 2-3=-381/510, 3-4=-381/510, 4-5=-381/510, 5-6=0/1504, 6-7=0/1504, 7-8=-907/0, 8-10=-2479/0, 10-11=-2479/0, 11-13=-3798/0, 13-14=-3780/0, 14-16=-3711/0, 16-17=-3711/0, 17-18=-3074/0, 18-19=-3074/0, 19-20=-1833/0

 BOT CHORD
 33-34=-159/298, 32-33=-510/381, 31-32=-1003/24, 29-30=0/1785, 27-29=0/3008,

 26-27=0/3780, 25-26=0/3780, 24-25=0/3468, 23-24=0/2554, 22-23=0/1082

 WEBS
 2-34=-393/211, 2-33=-476/113, 5-31=-838/0, 5-32=0/903, 4-32=-461/0, 7-31=-1673/0, 7-30=0/1302, 8-30=-1244/0, 8-29=0/966, 20-22=-1438/0, 20-23=0/1045, 19-23=-1002/0, 19-24=0/706, 17-24=-536/0, 17-25=0/330, 11-29=-743/0, 11-27=0/1229, 13-27=-738/0, 14-25=-493/278

 \boxtimes

31

3x10 =

30

4x6 =

NOTES-

Ň

34

3x6 =

33

3x4 =

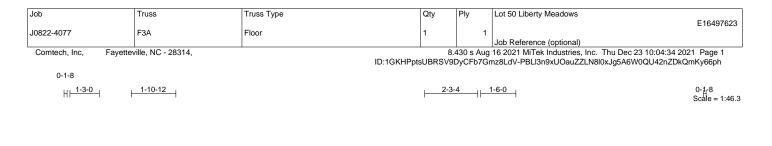
32

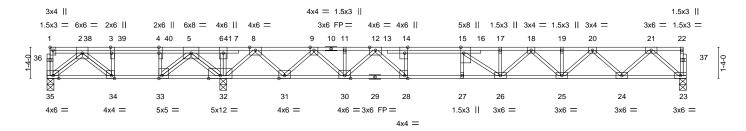
3x4 =

- 1) Unbalanced floor live loads have been considered for this design.
- 2) All plates are MT20 plates unless otherwise indicated.
- 3) All plates are 1.5x3 MT20 unless otherwise indicated.
- 4) Plates checked for a plus or minus 1 degree rotation about its center.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 112 lb uplift at joint 34.
6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

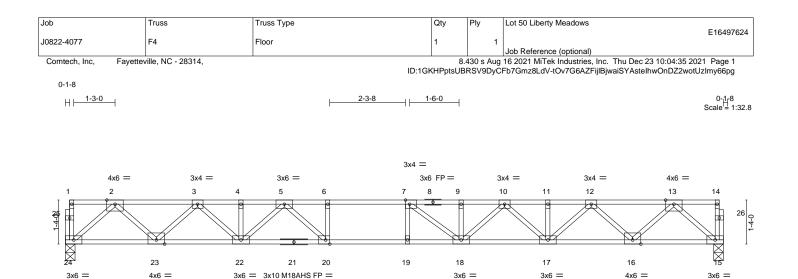
7) CAUTION, Do not erect truss backwards.


Þ


22

3x6 =

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oucling in trusses and truss systems, see **AVSUPPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 2000111001 20,2021


1	7-6-4			27-3-8			I
Plate Offsets (X,Y)	7-6-4 [1:Edge,0-1-8], [3:0-3-0,Edge], [4:0-3-0	Edge] [14:0-3-0 Edge] [1	15:0-3-0 Edge] [28:0-1-	19-9-4 3 Edge] [33:0-1-8	Edge] [34:0-1	-8 Edgel	
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr NO Code IRC2015/TPI2014	CSI. TC 0.79 BC 0.88 WB 0.66 Matrix-S	DEFL. ir Vert(LL) -0.25	n (loc) l/defl 5 26-27 >928 5 26-27 >677	L/d 480 360 n/a	PLATES MT20 Weight: 169 lb	GRIP 244/190 FT = 20%F, 11%E
REACTIONS. (size			BRACING- TOP CHORD BOT CHORD	except end vertic	cals. ctly applied or	ctly applied or 6-0-0 o 10-0-0 oc bracing, 30-31.	1 /
TOP CHORD 2-3=- 9-11= 17-18 BOT CHORD 34-33 28-30 WEBS 6-32= 3-34= 21-24	Comp./Max. Ten All forces 250 (lb) o 2360/0, 3-4=-2360/0, 4-5=-2360/0, 5-6= =-1518/0, 11-12=-1518/0, 12-14=-3071/ 3=-3209/0, 18-19=-2730/0, 19-20=-2730 5=0/1750, 33-34=0/2360, 32-33=-583/83 9=0/2135, 27-28=0/3047, 26-27=0/3047 =-874/0, 2-35=-2265/0, 2-34=-2/810, 5- =-536/0, 8-32=-1779/0, 8-31=0/1395, 9- 4=0/929, 20-24=-886/0, 20-25=0/589, 11 3=0/1364, 14-28=-816/0, 15-26=-269/47	60/2626, 6-8=0/2626, 8-9= 0, 14-15=-3047/0, 15-17=- 1/0, 20-21=-1659/0 33, 31-32=-1290/0, 30-31= , 25-26=0/3034, 24-25=0// 25=-2781/0, 5-33=0/2696, 31=-1342/0, 9-30=0/1070, 3-25=-413/0, 17-26=-297/2	:0/427, :3209/0, :-107/736, 2296, 23-24=0/991 4-33=-1680/0, 21-23=-1317/0,				
 Plates checked for a Recommend 2x6 str Strongbacks to be a CAUTION, Do not e Hanger(s) or other c down at 3-2-4, and device(s) is the resp 	connection device(s) shall be provided s 878 lb down at 5-2-4, and 857 lb down onsibility of others. S) section, loads applied to the face of t	ts center. to and fastened to each tru- strained by other means. ufficient to support concern at 7-2-4 on top chord. Th	trated load(s) 878 lb do	wn at 1-2-4, 878 lb			All and a second

Concentrated Loads (lb) Vert: 38=-798(B) 39=-798(B) 40=-798(B) 41=-798(B)

A. GIL CONFERENCE PARTY December 23,2021

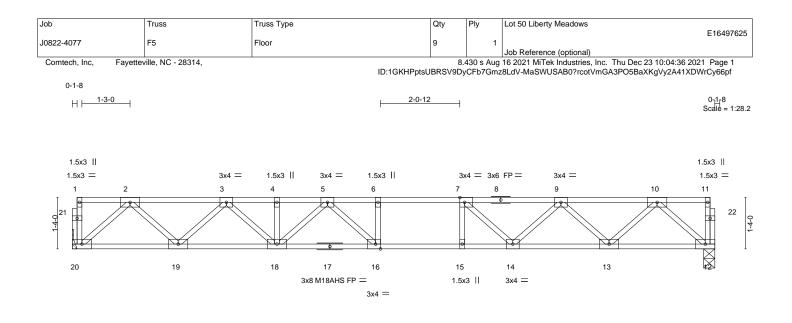
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclings with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rerection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

3x4 =

			19-11-0 19-11-0				
Plate Offsets (X,Y)	[7:0-1-8,Edge], [20:0-1-8,Edge]						
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.99 BC 0.74 WB 0.55 Matrix-S	Vert(CT) -0	in (loc) l/def 0.35 18-19 >683 0.47 18-19 >498 0.07 15 n/a	8 480 8 360	PLATES MT20 M18AHS Weight: 105 lb	GRIP 244/190 186/179 FT = 20%F, 11%E
BOT CHORD 2x4 S 15-21 WEBS 2x4 S REACTIONS. (siz	P No.1(flat) P No.1(flat) *Except* : 2x4 SP 2400F 2.0E(flat) P No.3(flat) ze) 24=0-3-8, 15=0-3-8 Grav 24=1075(LC 1), 15=1075(LC 1)		BRACING- TOP CHORD BOT CHORD			ectly applied, except (r 10-0-0 oc bracing.	end verticals.
TOP CHORD 2-3= 9-10 BOT CHORD 23-2 16- WEBS 2-24 6-20	. Comp./Max. Ten All forces 250 (lb) o 2007/0, 3-4=-3409/0, 4-5=-3409/0, 5-6= 4232/0, 10-11=-3412/0, 11-12=-3412/ 24=0/1174, 22-23=0/2804, 20-22=0/3891 17=0/2808, 15-16=0/1172 I=-1560/0, 2-23=0/1159, 3-23=-1108/0, 3 395/0, 13-15=-1558/0, 13-16=0/1159, 18=0/460, 9-18=-251/64, 7-18=-606/291	4323/0, 6-7=-4323/0, 7-5 0, 12-13=-2005/0 , 19-20=0/4323, 18-19=0/ -22=0/823, 5-22=-655/0, 5	9=-4232/0, 4323, 17-18=0/3894, 5-20=0/865,				
NOTES- 1) Unbalanced floor liv	ve loads have been considered for this d	esign.					

2) All plates are MT20 plates unless otherwise indicated.

3) All plates are 1.5x3 MT20 unless otherwise indicated.


4) Plates checked for a plus or minus 1 degree rotation about its center.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclings with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rerection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

L			16-8-4				
			16-8-4				1
Plate Offsets (X,Y)	[7:0-1-8,Edge], [16:0-1-8,Edge]						
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.54 BC 0.91 WB 0.43 Matrix-S	Vert(LL) -0.22	loc) l/defl 16-18 >892 16-18 >666 12 n/a	L/d 480 360 n/a	PLATES MT20 M18AHS Weight: 87 lb	GRIP 244/190 186/179 FT = 20%F, 11%E
BOT CHORD 2x4 WEBS 2x4 REACTIONS. (SP No.1(flat) SP No.1(flat) SP No.3(flat) size) 20=Mechanical, 12=0-3-8 (Grav 20=898(LC 1), 12=898(LC 1)		BRACING- TOP CHORD BOT CHORD	except end vert	icals.	ectly applied or 6-0-0 or 10-0-0 oc bracing.	oc purlins,
TOP CHORD 2 9- BOT CHORD 19 12 WEBS 2	ax. Comp./Max. Ten All forces 250 (lb) of 3=-1619/0, 3-4=-2661/0, 4-5=-2661/0, 5-6= 10=-1624/0 -20=0/970, 18-19=0/2244, 16-18=0/2936, -13=0/970 20=-1289/0, 2-19=0/903, 3-19=-869/0, 3-18 13=-861/0, 9-14=0/557, 5-18=-374/0, 5-16	3022/0, 6-7=-3022/0, 7-5 15-16=0/3022, 14-15=0/3 8=0/567, 10-12=-1289/0,	9=-2612/0, 022, 13-14=0/2243,				

NOTES-

1) Unbalanced floor live loads have been considered for this design.

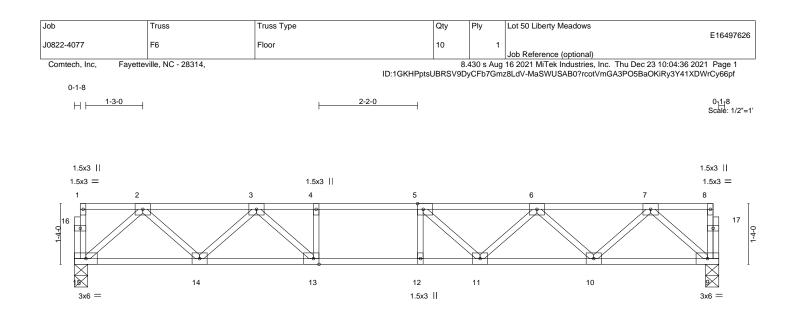
2) All plates are MT20 plates unless otherwise indicated.

3) All plates are 3x6 MT20 unless otherwise indicated.

4) Plates checked for a plus or minus 1 degree rotation about its center.

5) Refer to girder(s) for truss to truss connections.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.


Strongbacks to be attached to walls at their outer ends or restrained by other means.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclings with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rerection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

L			14-2-0			
1			14-2-0			1
Plate Offsets (X,Y)	[5:0-1-8,Edge], [13:0-1-8,Edge]					
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES	CSI. TC 0.54 BC 0.78 WB 0.34	Vert(LL) -0.15	n (loc) l/defl L/d 5 11-12 >999 480 0 11-12 >854 360 3 9 n/a n/a	PLATES MT20	GRIP 244/190
BCDL 5.0	Code IRC2015/TPI2014	Matrix-S	1012(01) 0.00	, <u> </u>	Weight: 73 lb	FT = 20%F, 11%
	' ? No.1(flat) ? No.1(flat)		BRACING- TOP CHORD	Structural wood sheathing dir except end verticals.	ectly applied or 6-0-0	oc purlins,
	° No.3(flat)		BOT CHORD	Rigid ceiling directly applied o	or 10-0-0 oc bracing.	
REACTIONS. (size	e) 15=0-3-8, 9=0-3-8					

Max Grav 15=759(LC 1), 9=759(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1309/0, 3-4=-2153/0, 4-5=-2153/0, 5-6=-2019/0, 6-7=-1326/0

 BOT CHORD
 14-15=0/813, 13-14=0/1799, 12-13=0/2153, 11-12=0/2153, 10-11=0/1821, 9-10=0/806

 WEBS
 2-15=-1080/0, 2-14=0/690, 3-14=-683/0, 3-13=0/649, 7-9=-1070/0, 7-10=0/723, 0.0000 (0.0000)

6-10=-689/0, 6-11=0/352, 5-11=-383/24, 4-13=-299/0

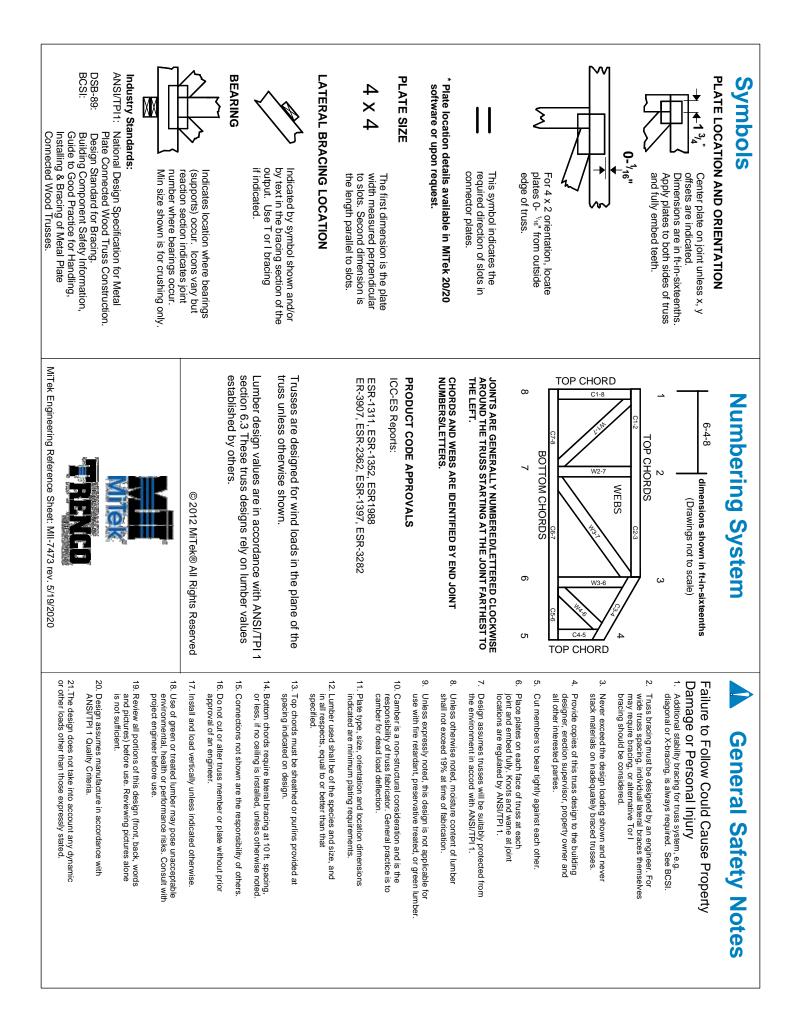
NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x4 MT20 unless otherwise indicated.

Plates checked for a plus or minus 1 degree rotation about its center.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.


Strongbacks to be attached to walls at their outer ends or restrained by other means.

December 23,2021

