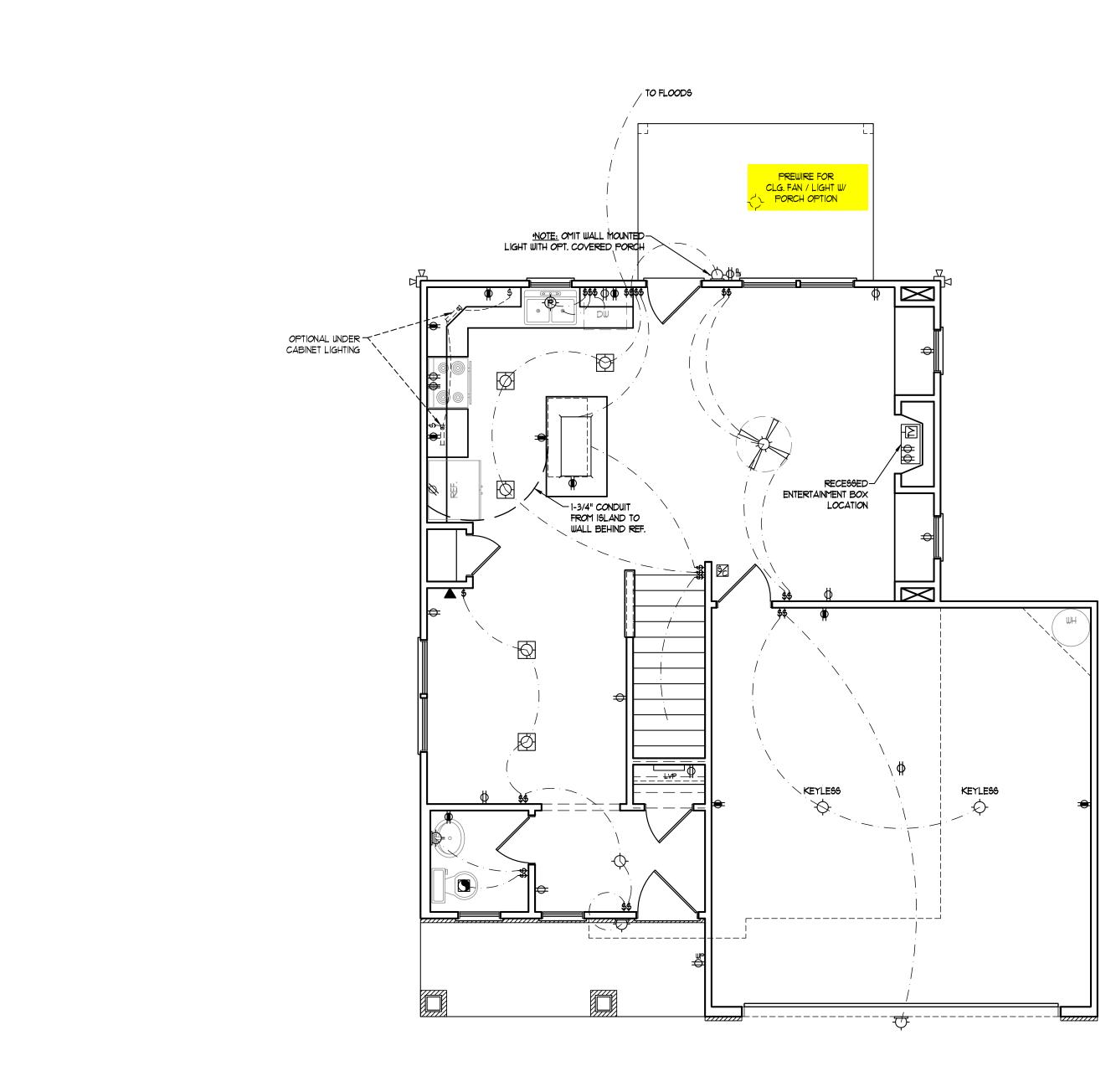
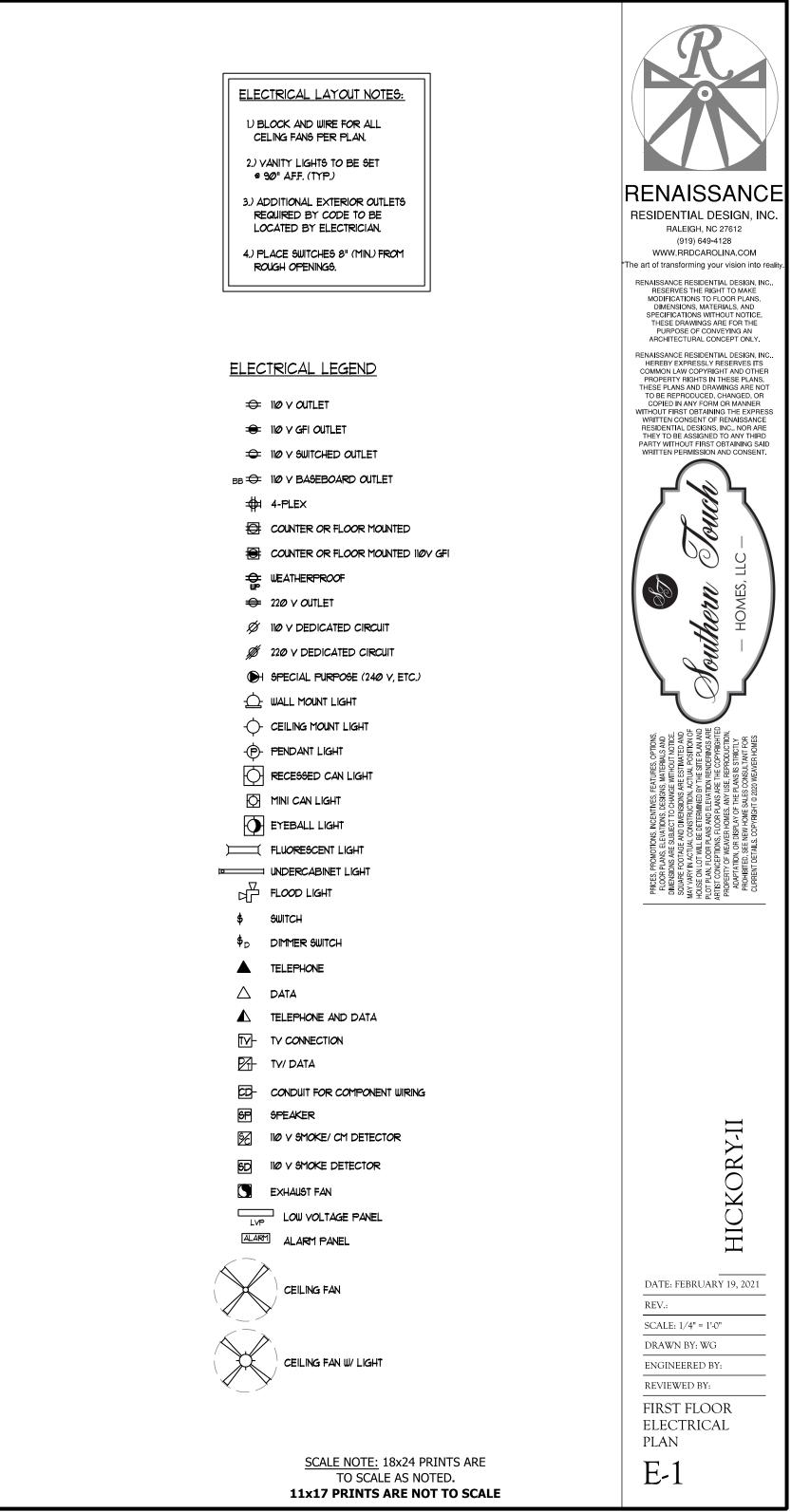
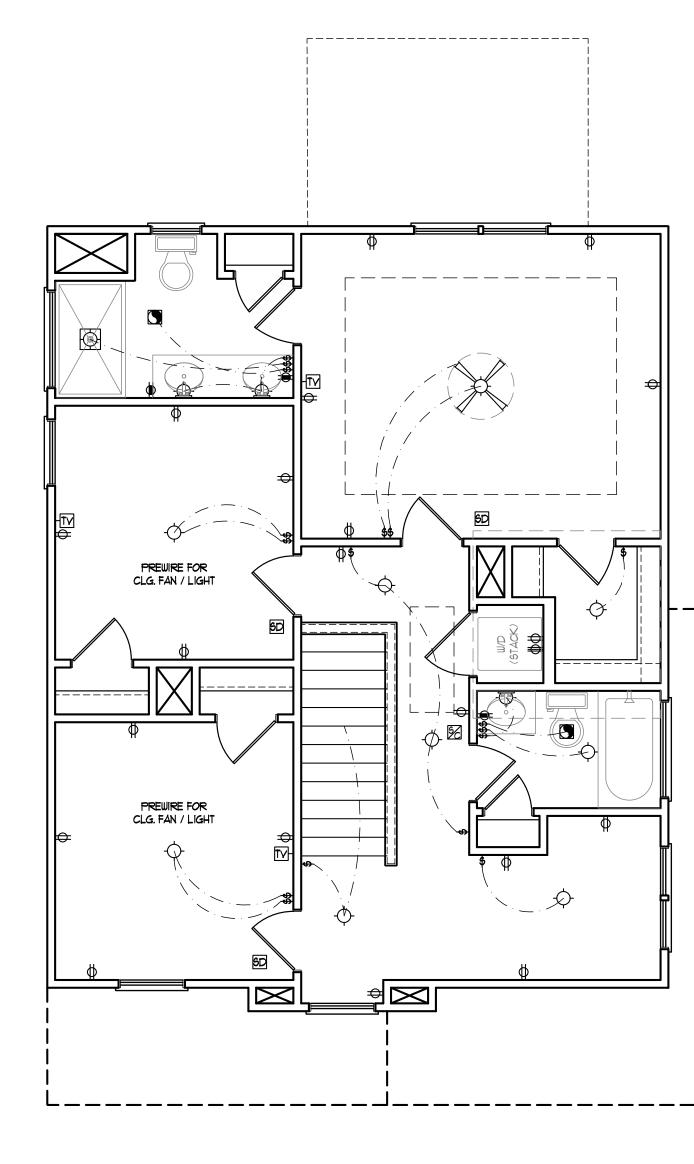
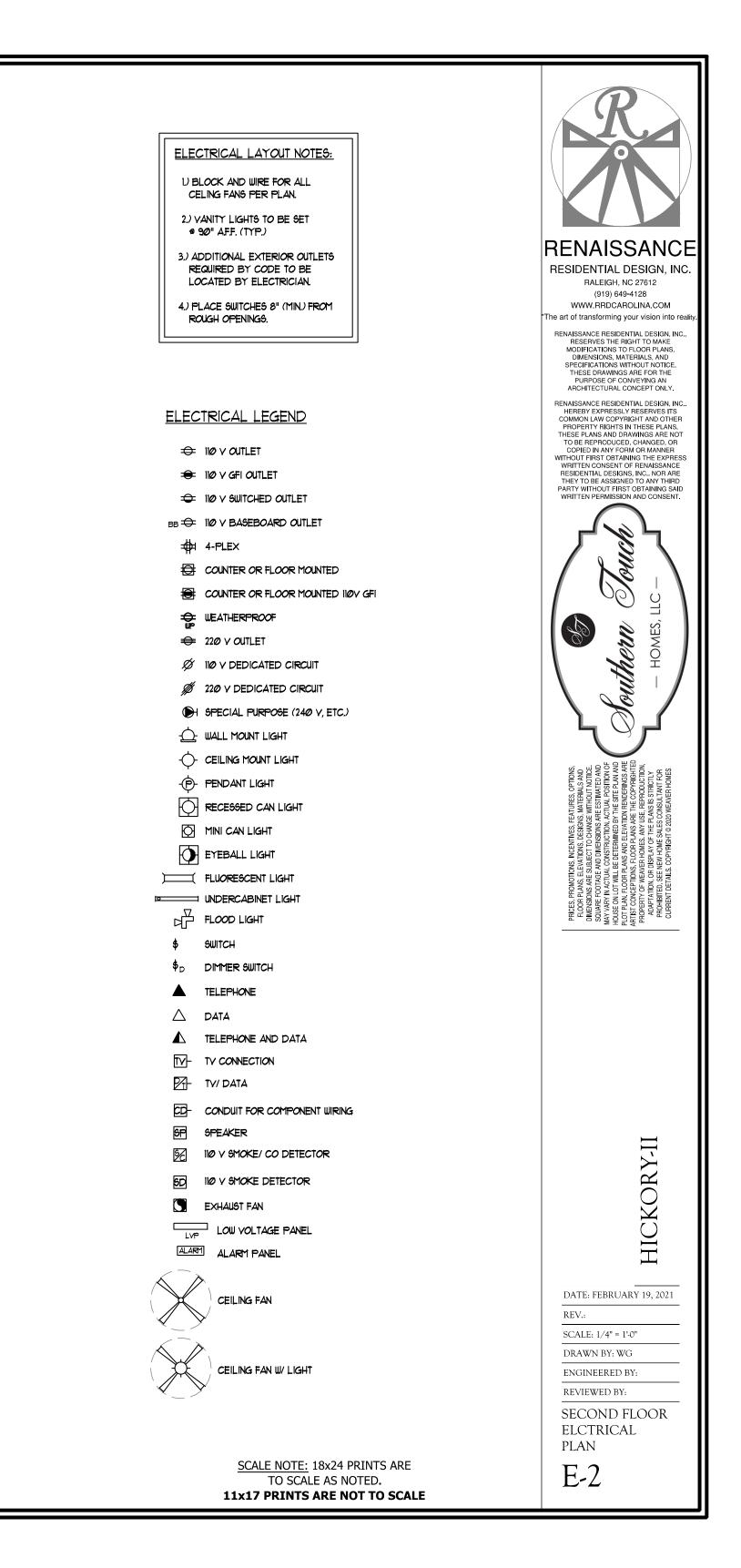
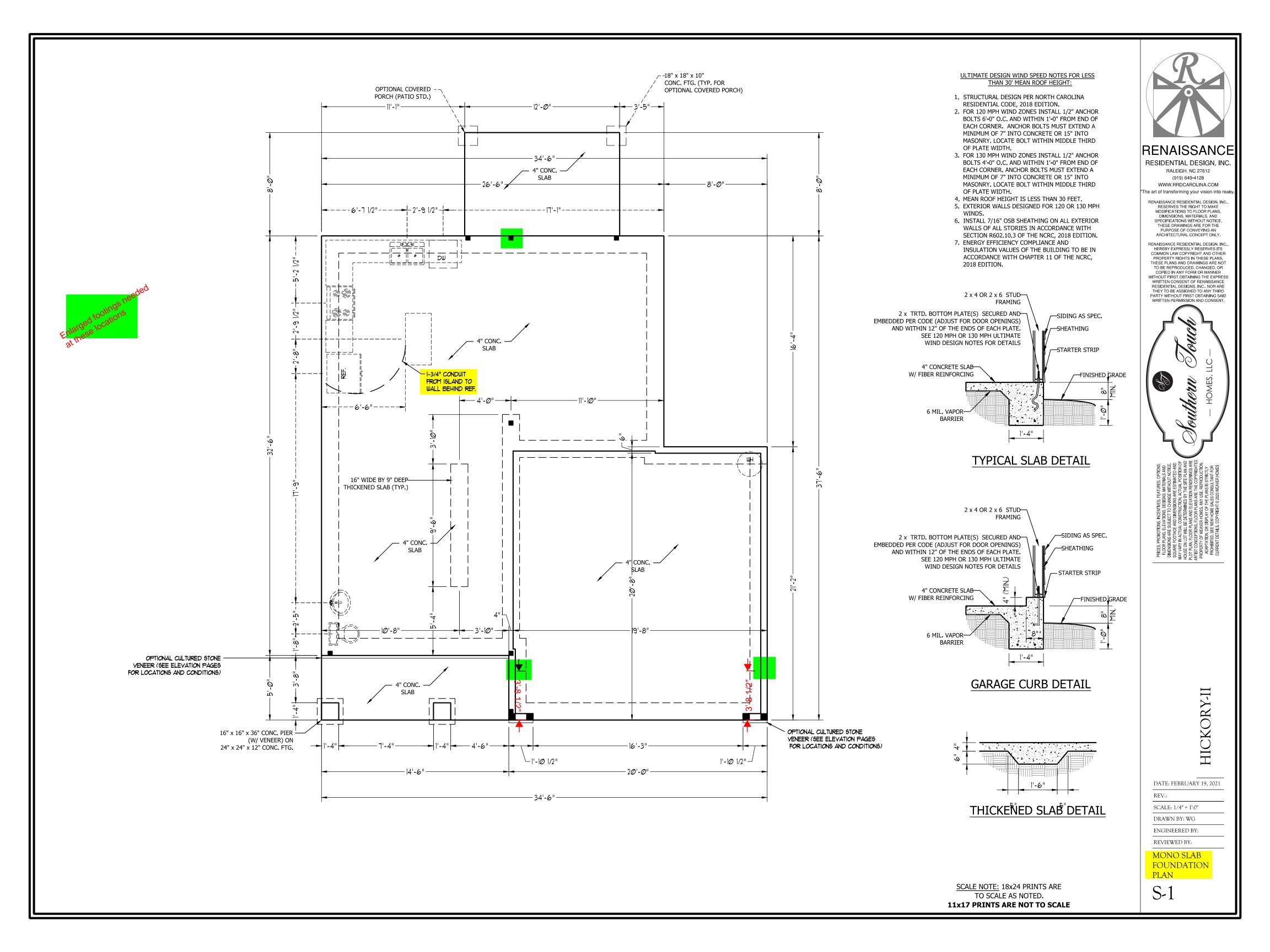

PLANS DESIGNED TO THE 2018 NORTH CAROLINA STATE

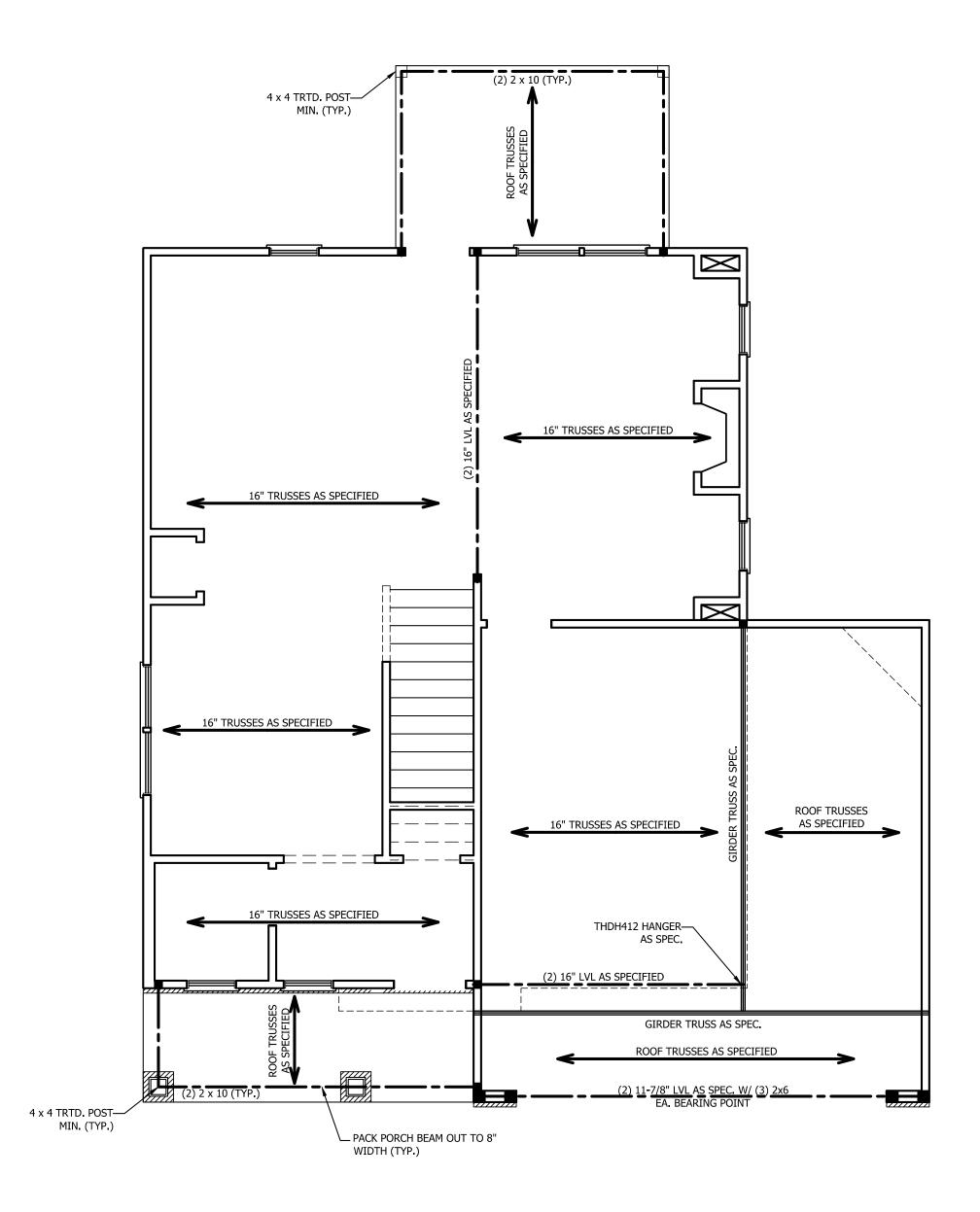








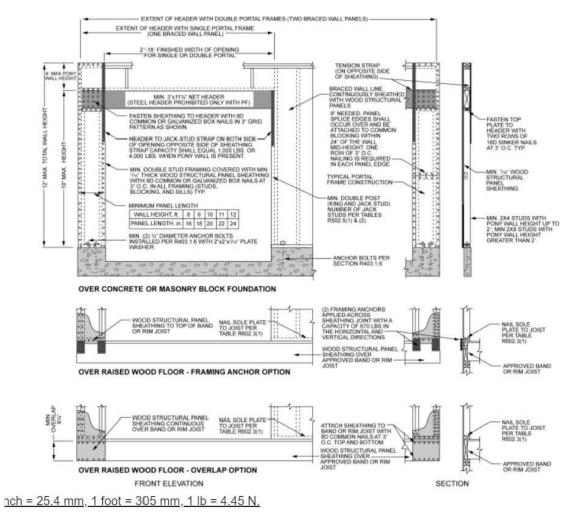

<u>SCALE NOTE:</u> 18x24 PRINTS ARE TO SCALE AS NOTED. **11x17 PRINTS ARE NOT TO SCALE**



1. ALL FRAMING LUMBER TO BE SPF #2 (UNO). ALL TREATED LUMBER TO BE SYP #2

- (UNO.) 2. ALL LOAD BEARING HEADERS TO BE (2) 2 x 4 (UNO).
- INSTALL AN EXTRA JOIST UNDER WALLS PARALLEL TO FLOOR JOISTS
- INSTALE AN EXTREMOSION ON THE ADDRESS TO BE SUPPORTED W/ (1) JACK STUD AND (1) KING STUD EA. END (UNO.). SEE TABLE R602.7.5 FOR ADDITIONAL KING STUD DECUMPENTATION
- REQUIREMENTS.5. SQUARES DENOTE POINT LOADS WHICH REQUIRE SOLID BLOCKING TO GIRDER OR FOUNDATION. ALL SQUARES TO BE (2) STUDS (UNO.)
- 6. ALL 4 X 4 POSTS SHALL BE ANCHORED TO SLABS W/ SIMPSON ABU44 POST BASES (OR EQUAL) AND 6 X 6 POSTS W/ ABU66 POST BASES (OR EQUAL) (UNO). ALL 4 X 4 AND 6 X 6 POSTS TO BE INSTALLED WITH 700 LB CAPACITY UPLIFT CONNECTORS AT TOP (UNO.)
- FOR FIBERGLASS, ALUMINUM, OR COLUMN ENG. BY OTHERS, SECURE TO SLAB W/ (2) METAL ANGLES USING 2" CONC. SCREWS. FASTEN ANGLES TO COLUMNS W/ 1/4" THROUGH BOLTS W/ NUTS AND WASHERS. LOCATE ANGLES ON OPPOSITE SIDES OF COLUMN. THROUGH BOLTS MUST BE INSTALLED PRIOR TO SETTING COLUMN.

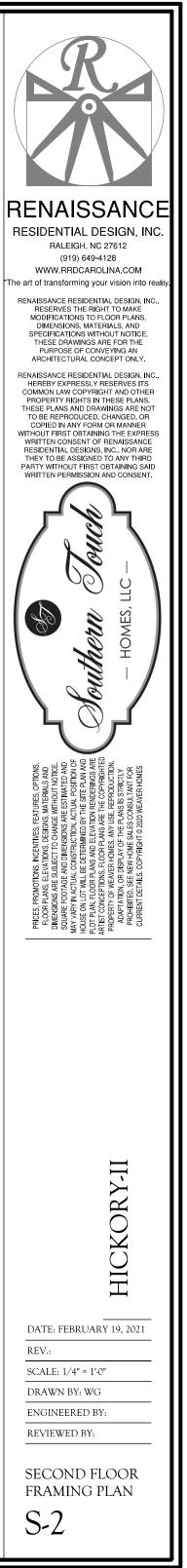
BRACE WALL PANEL NOTES:

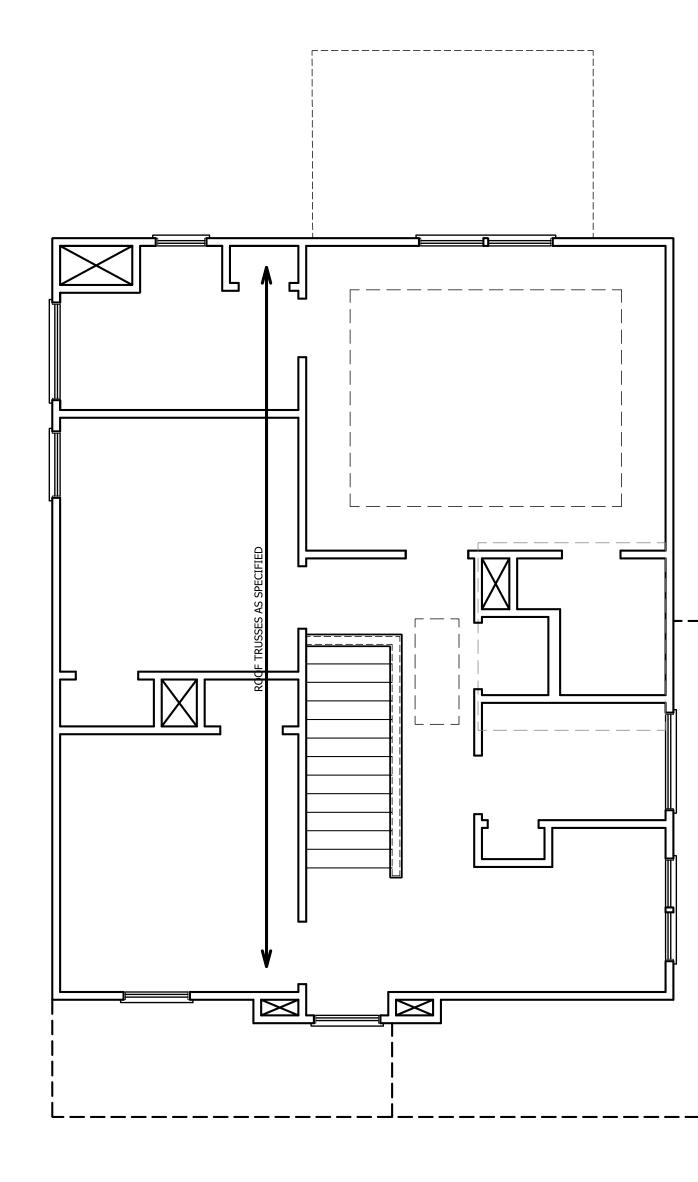

EXTERIOR WALLS: ALL EXTERIOR WALLS TO BE SHEALTHED WITH CS-WSP OR CS-SFB IN ACCORDANCE WITH SECTION R602.10.3 UNLESS NOTED OTHERWISE.

REQUIRED LENGTH OF BRACING: REQUIRED BRACE WALL LENGTH FOR EACH SIDE OF THE CIRCUMSCRIBED RECTANGLE ARE INTERPOLATED PER TABLE R602.10.3. METHODS CS-WSP AND CS-SFB CONTRIBUTE THIER ACTUAL LENGTH. METHOD GB CONTRIBUTES 0.5 ITS ACTUAL LENGTH. METHOD PF CONTRIBUTES 1.5 TIMES ITS ACTUAL LENGTH.

GYPSUM: ALL INTERIOR SIDES OF EXTERIOR WALLS AND BOTH SIDES OF INTERIOR WALLS TO HAVE 1/2" GYPSUM INSTALLED. WHEN NOT USING METHOD GB GYPSUM TO BE FASTENED PER TABLE R702.3.5. METHOD GB TO BE FASTENED PER TABLE R602.10.1.

HD: 800 LBS HOLD DOWN DEVICE FASTENED TO THE EDGE OF THE BRACE WALL PANEL NEAREST TO THE CORNER

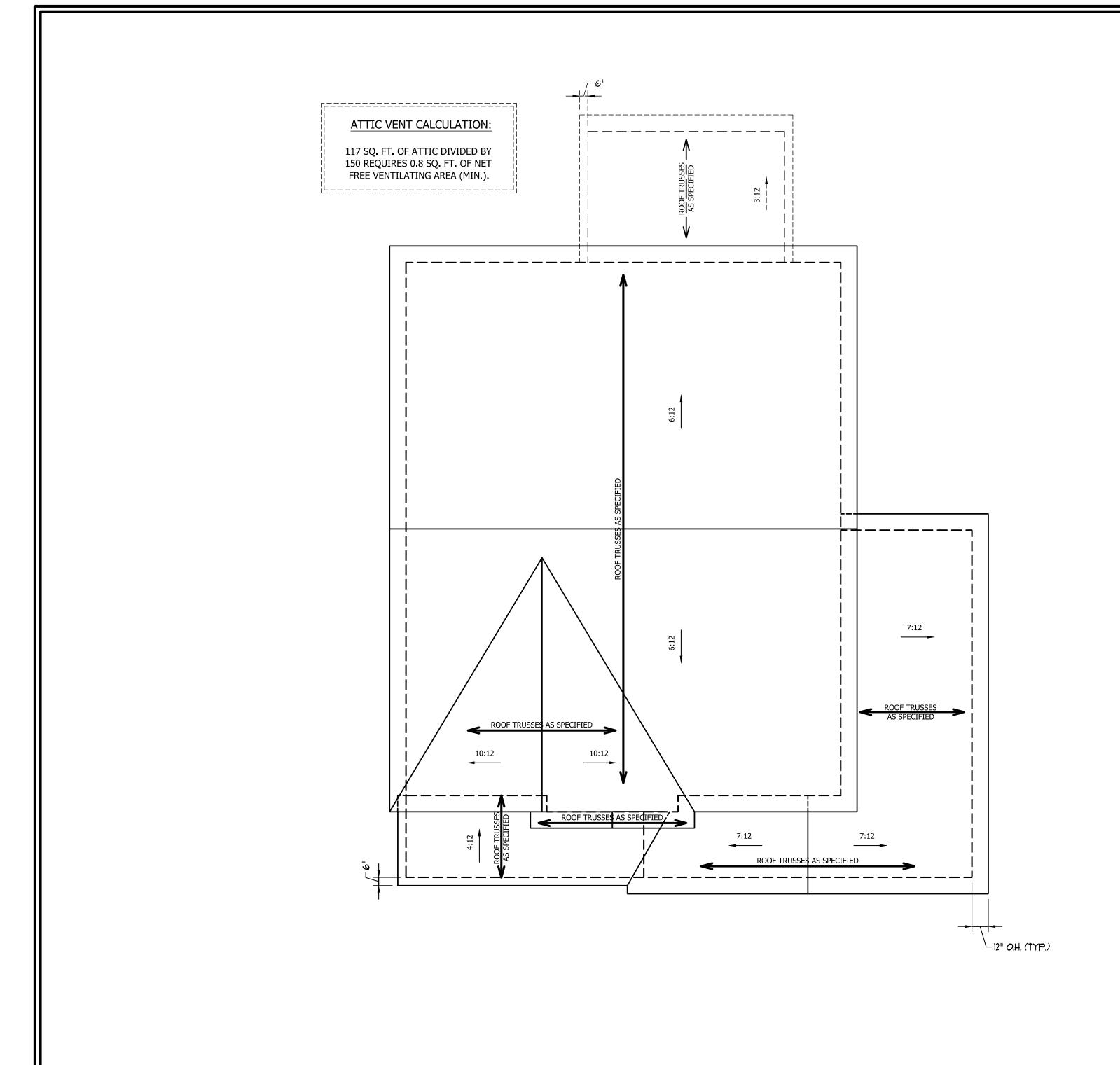

METHODS: PER TABLE R602.10.1

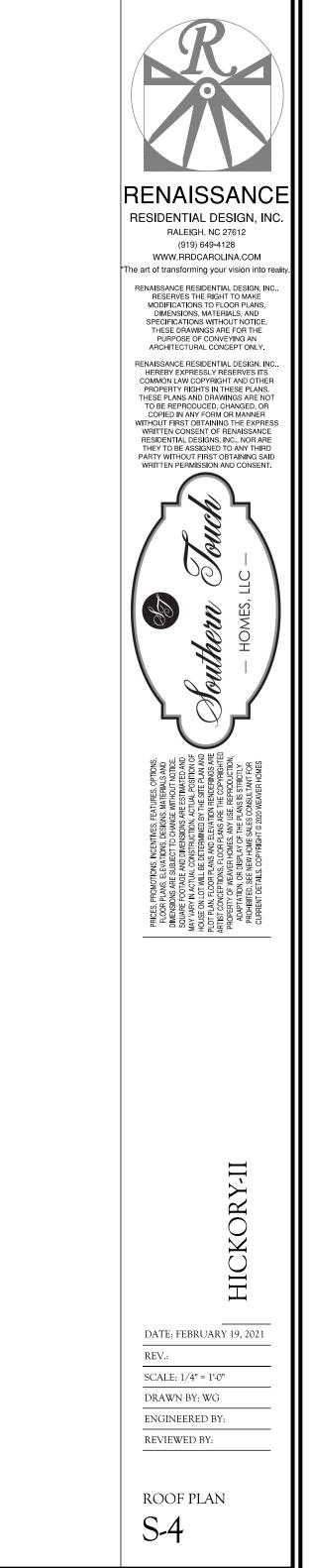


SCALE NOTE: 18x24 PRINTS ARE

TO SCALE AS NOTED. 11x17 PRINTS ARE NOT TO SCALE

ATTIC FLOOR FRAMING PLAN S-3

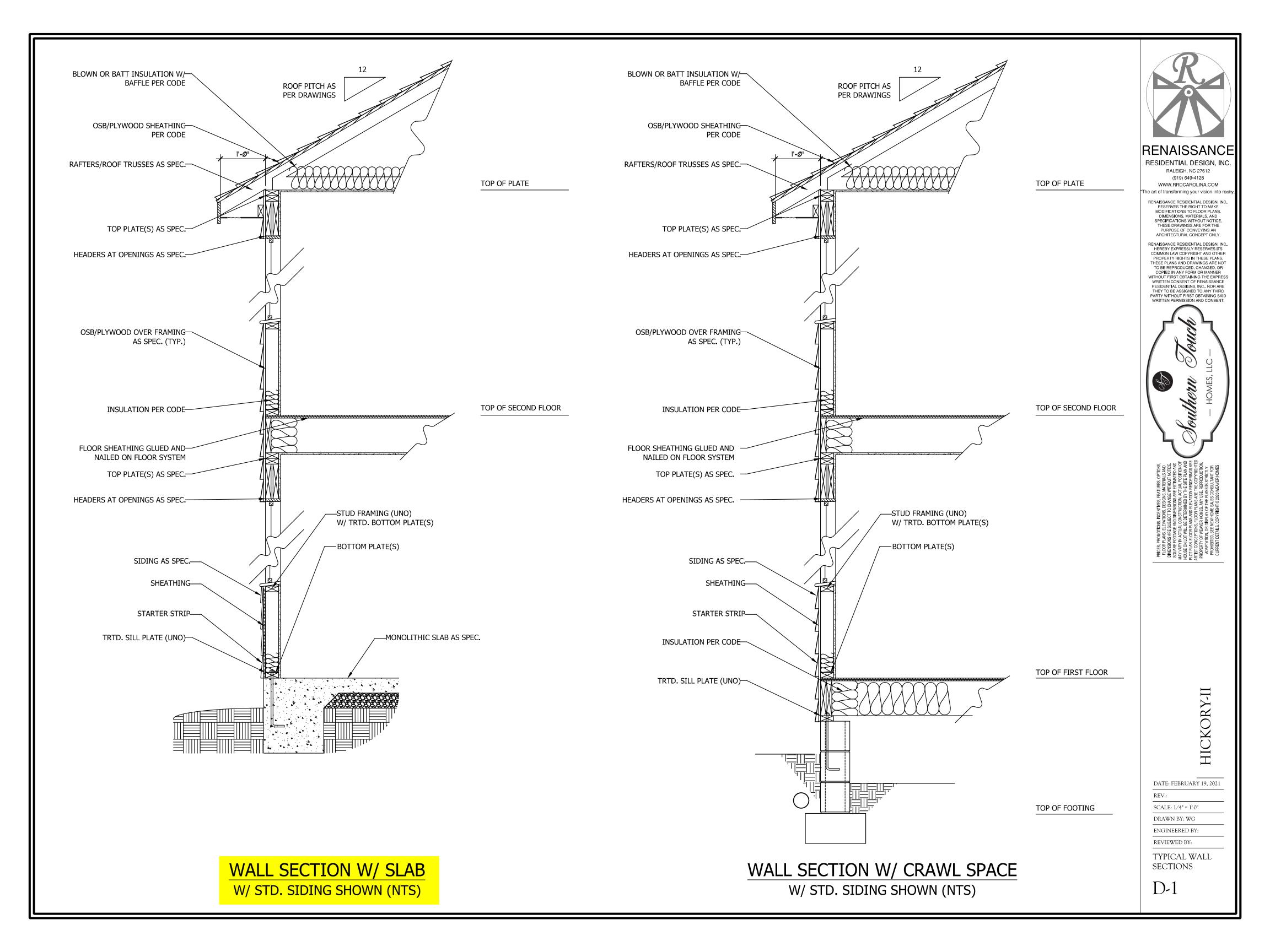

TABLE R602.7.5 MINIMUM NUMBER OF FULL HEIGHT STUDS AT EACH END OF HEADERS IN EXTERIOR WALLS

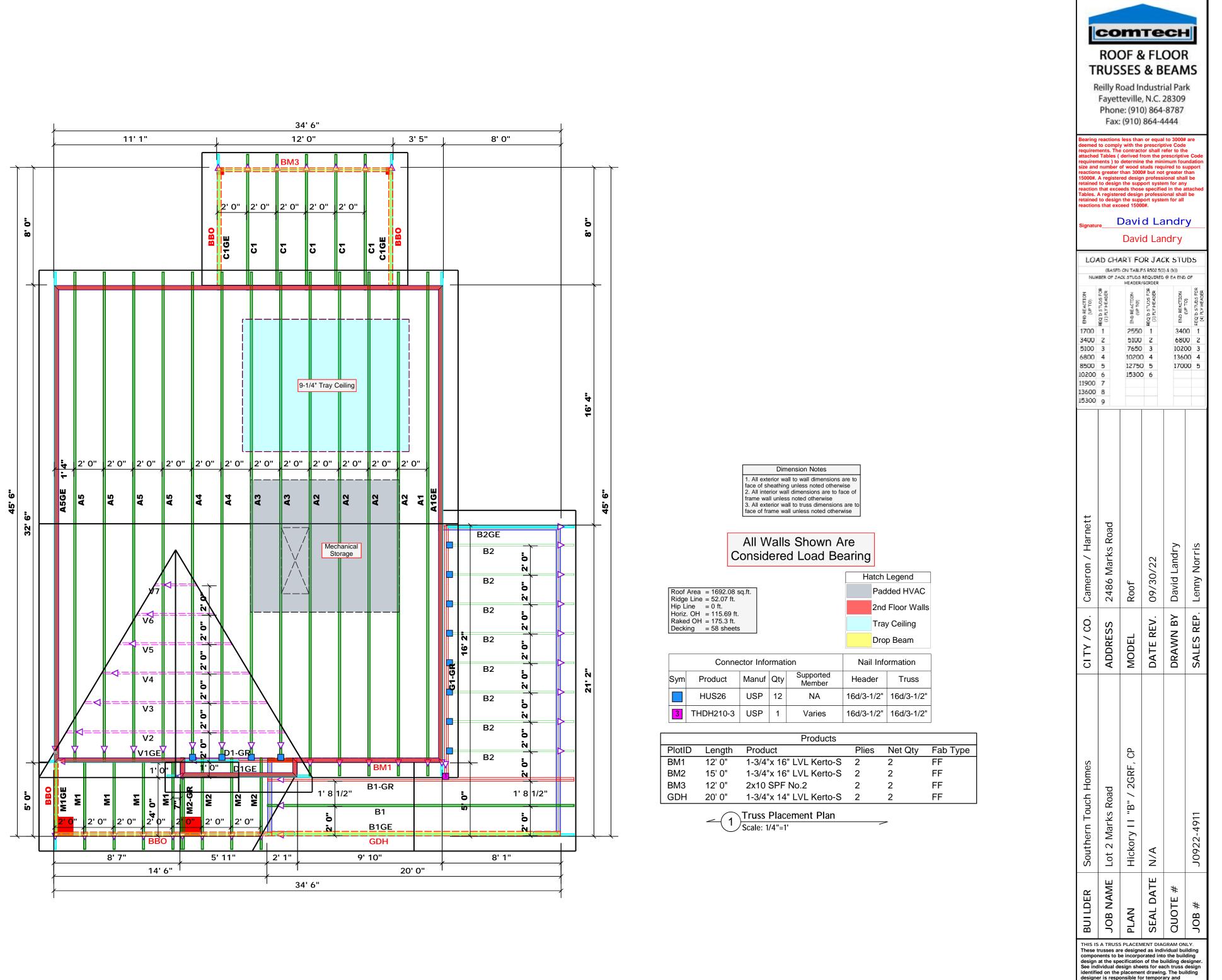

r						
HEADER SPAN (FEET)	MAXIMUM STUD SPACING (INCHES) (PER TABLE R602.3(5)					
(* == *)	16	24				
UP TO 3'	1	1				
4'	2	1				
8'	3	2				
12'	5	3				
16'	6	4				

STRUCTURAL NOTES:

- ALL FRAMING LUMBER TO BE SPF #2 (UNO). ALL TREATED LUMBER TO BE SYP #2 (UNO.)
- 2. ALL LOAD BEARING HEADERS TO BE (2) 2 x 6 (UNO).
- 3. WINDOW AND DOOR HEADERS TO BE SUPPORTED w/ (1) JACK STUD AND (1) KING STUD EA. END (UNO.). SEE TABLE R602.7.5 FOR ADDITIONAL KING STUD REQUIREMENTS.
- 4. SQUARES DENOTE POINT LOADS WHICH REQUIRE SOLID BLOCKING TO GIRDER OR FOUNDATION. ALL SQUARES TO BE (2) STUDS (UNO.)

DSP - DOUBLE STUD POCKET TSP - TRIPLE STUD POCKET


ATTIC VENT CALCULATION:


1302 SQ. FT. OF ATTIC DIVIDED BY 150 REQUIRES 8.7 SQ. FT. OF NET FREE VENTILATING AREA (MIN.).

STRUCTURAL NOTES:

- ALL FRAMING LUMBER TO BE #2 SPF (UNO).
 HIP SPLICES ARE TO BE SPACED A MIN. OF 8'-0". FASTEN MEMBERS WITH THREE ROWS OF 12d NAILS @ 16" O.C. (TYP.)
- 3. STICK FRAME OVER-FRAMED ROOF SECTIONS W/ 2 x 8 RIDGES, 2 x 6 RAFTERS @ 16" O.C. AND FLAT 2 x 10 VALLEYS OR USE VALLEY TRUSSES.
- FASTEN FLAT VALLEYS TO RAFTERS OR TRUSSES WITH SIMPSON H2.5A HURRICANE TIES @ 32" O.C. MAX. PASS HURRICANE TIES THROUGH NOTCH IN ROOF SHEATHING. EACH RAFTER IS TO BE FASTENED TO THE FLAT VALLEY WITH A MIN. OF (6) 12d TOE NAILS.
- 5. REFER TO SECTION R802.11 OF THE 2018 NCRC FOR REQUIRED UPLIFT RESISTANCE AT RAFTERS AND TRUSSES.

SCALE NOTE: 18x24 PRINTS ARE TO SCALE AS NOTED. 11x17 PRINTS ARE NOT TO SCALE

Indicates Left End of Truss
 (Reference Engineered Truss Drawing)
 Do NOT Erect Truss Backwards

THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual building components to be incorporated into the building design at the specification of the building designer. See individual design sheets for each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor system and for the overall structure. The design of the truss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding bracing, consult BCSI-B1 and BCSI-B3 provided with the truss delivery package or online @ sbcindustry.com

3

4

5

6

7

8

9

10

11 12

13

14

15

16

17

18

19

20

E16492051

E16492052

E16492053

E16492054

E16492055

E16492056

E16492057

E16492058

E16492059

E16492060

E16492061

E16492062

E16492063

E16492064

E16492065

E16492066

E16492067

E16492068

RE: J0922-4911 818 Soundside Rd Lot 2 Marks Road Edenton, NC 27932 Site Information: Customer: Southern Touch Homes Project Name: J0922-4911 Lot/Block: 2 Model: Hickory II Address: 2486 Marks Road Subdivision: Marks Road State: NC City: Cameron General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions): Design Code: IRC2015/TPI2014 Design Program: MiTek 20/20 8.4 Wind Code: ASCE 7-10 Wind Speed: 130 mph Roof Load: 40.0 psf Floor Load: N/A psf This package includes 28 individual, dated Truss Design Drawings and 0 Additional Drawings. No. Seal# Truss Name Date No. Seal# Truss Name Date E16492049 12/20/2021 M2-GR 12/20/2021 A1 21 E16492069 1 12/20/2021 E16492050 A1GE E16492070 V1GE 2 12/20/2021 22

12/20/2021

12/20/2021

12/20/2021

12/20/2021

12/20/2021

12/20/2021

12/20/2021

12/20/2021

12/20/2021

12/20/2021

12/20/2021

12/20/2021

12/20/2021

12/20/2021

12/20/2021

12/20/2021

12/20/2021

12/20/2021

1 of 1

23

24

25

26

27

28

E16492071

E16492072

E16492073

E16492074

E16492075

E16492076

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville.

A2

A3

A4

A5

B1

B2

C1

A5GE

B1-GR

B1GE

B2GE

C1GE

D1-GR

D1GE

G1-GR

M1GE

M1

M2

Truss Design Engineer's Name: Strzyzewski, Marvin

My license renewal date for the state of North Carolina is December 31, 2022 North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Strzyzewski, Marvin

V2

V3

V4

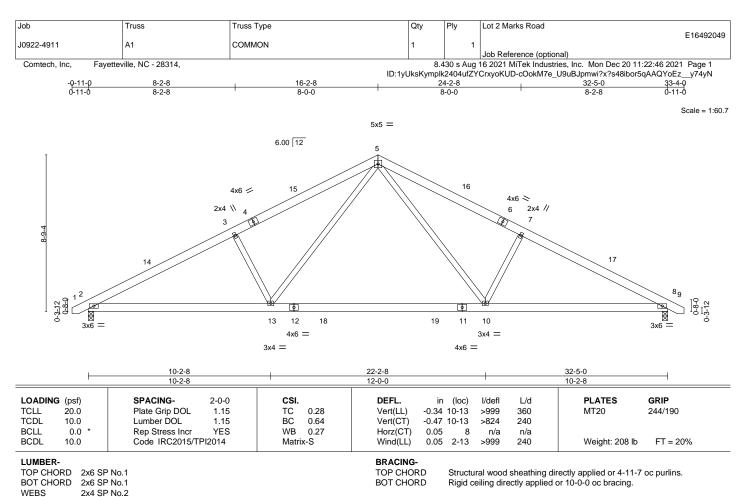
V5

V6

V7

December 20, 2021

12/20/2021


12/20/2021

12/20/2021

12/20/2021

12/20/2021

12/20/2021

REACTIONS. (size) 2=0-3-8, 8=0-3-8 Max Horz 2=-110(LC 10) Max Uplift 2= 80(LC 10) 8=

Max Horz 2=-110(LC 10) Max Uplift 2=-89(LC 12), 8=-89(LC 13) Max Grav 2=1337(LC 1), 8=1337(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-2307/486, 3-5=-2125/534, 5-7=-2125/534, 7-8=-2307/486

BOT CHORD 2-13=-316/2007, 10-13=-106/1303, 8-10=-320/1964

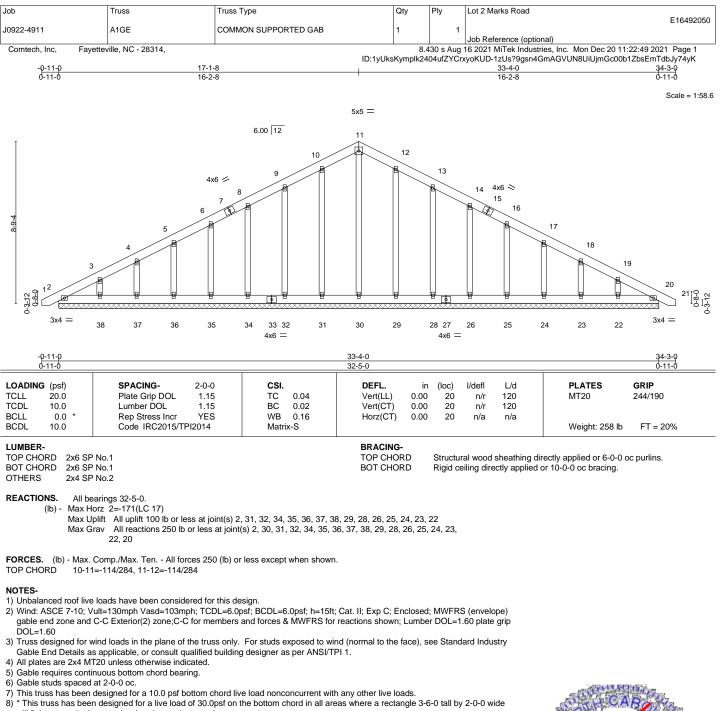
WEBS 5-10=-147/921, 7-10=-454/288, 5-13=-147/921, 3-13=-454/288

NOTES-

1) Unbalanced roof live loads have been considered for this design.

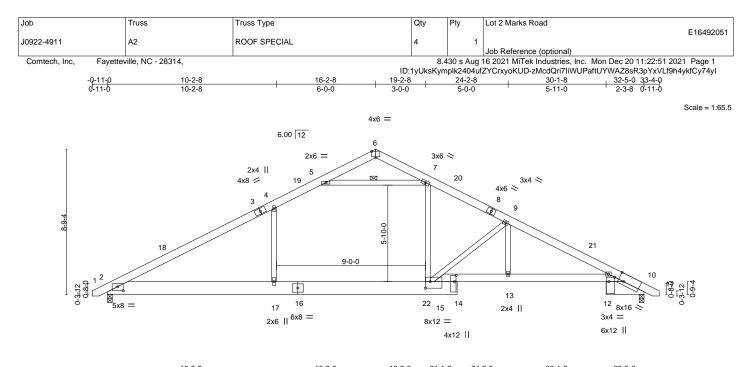
2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-10 to 3-8-3, Interior(1) 3-8-3 to 16-2-8, Exterior(2) 16-2-8 to 20-7-5, Interior(1) 20-7-5 to 33-1-10 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8.

6) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.



will fit between the bottom chord and any other members.
9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 31, 32, 34, 35, 36, 37, 38, 29, 28, 26, 25, 24, 23, 22.

10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

	10-2-8	16-2-8	19-2-8 21-1	-8 24-2-8	30-1-8	32-5-0	
	10-2-8	6-0-0	3-0-0 1-11	-0 3-1-0	5-11-0	2-3-8	
Plate Offsets (X,Y)	[2:0-4-0,0-2-14], [6:0-3-0,Edge], [10:0-4-	0,Edge], [12:0-3-4,Edge]	, [14:0-4-8,0-1-4], [15:0-3	3-8,0-4-12]			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.75 BC 0.67 WB 0.70 Matrix-S	DEFL. ir Vert(LL) -0.21 Vert(CT) -0.38 Horz(CT) 0.09 Wind(LL) 0.17	17 >999 17 >999 10 n/a	L/d 360 240 n/a 240	PLATES MT20 Weight: 247 lb	GRIP 244/190 FT = 20%
BOT CHORD 2x10 10-15	P No.1 SP No.1 *Except* : 2x6 SP 2400F 2.0E P No.2		BRACING- TOP CHORD BOT CHORD WEBS		0	ly applied or 4-0-8 o 0-0-0 oc bracing.	c purlins.
Max Max	ze) 2=0-3-8, 10=0-3-8 Horz 2=110(LC 11) Jplift 2=-90(LC 12), 10=-90(LC 13) Grav 2=1393(LC 2), 10=1353(LC 2)						

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-2217/403, 4-5=-1870/483, 7-9=-2258/519, 9-10=-2889/551

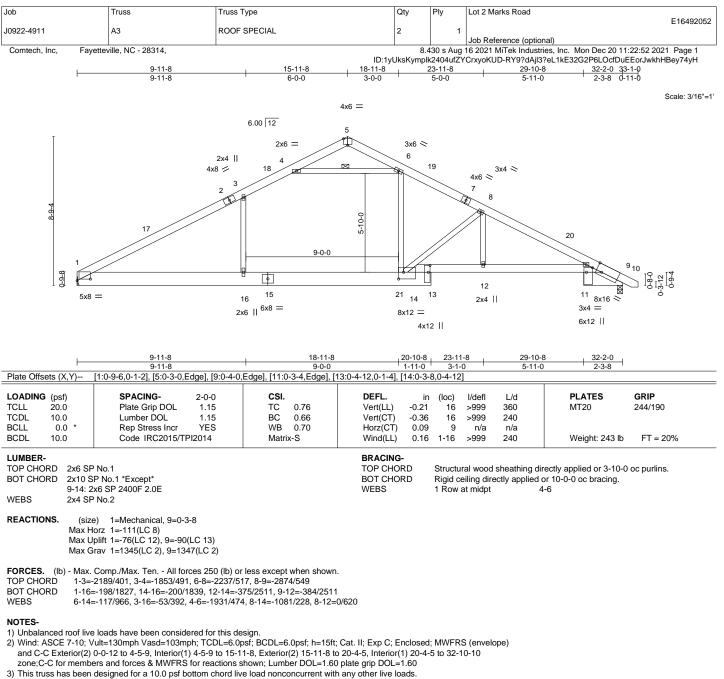
- 2-17=-193/1848, 15-17=-195/1860, 13-15=-371/2525, 10-13=-380/2525 BOT CHORD WEBS
 - 4-17=-29/402, 7-15=-114/967, 9-15=-1075/232, 9-13=0/616, 5-7=-1955/459

NOTES-

1) Unbalanced roof live loads have been considered for this design.

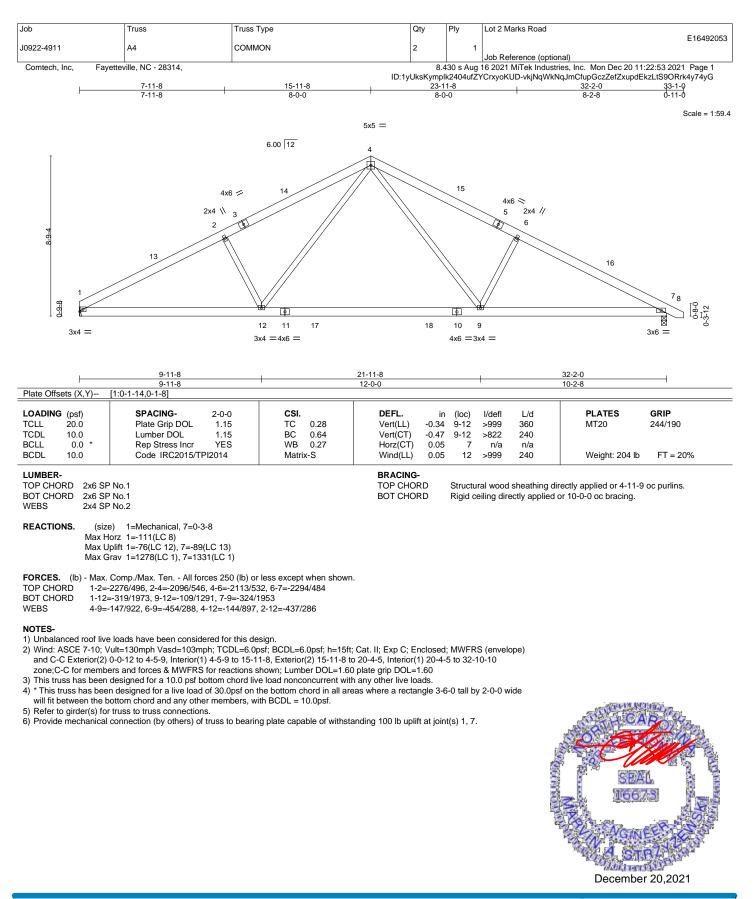
2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-10 to 3-8-3, Interior(1) 3-8-3 to 16-2-8, Exterior(2) 16-2-8 to 20-7-5, Interior(1) 20-7-5 to 33-1-10 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

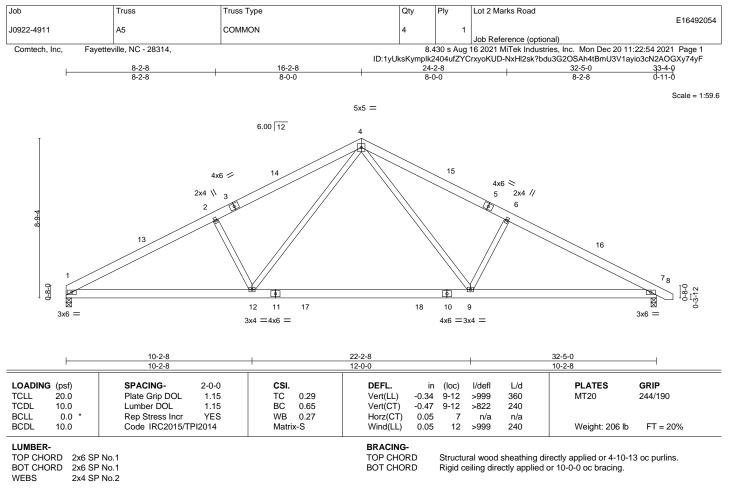

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 10.

6) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.


4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Refer to girder(s) for truss to truss connections.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 9.

REACTIONS. (size) 1=0-3-8, 7=0-3-8 Max Horz 1=-111(LC 10) Max Uplift 1=-77(LC 12), 7=-89(LC 13) Max Grav 1=1284(LC 1), 7=1337(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-2310/503, 2-4=-2129/551, 4-6=-2126/535, 6-7=-2308/487

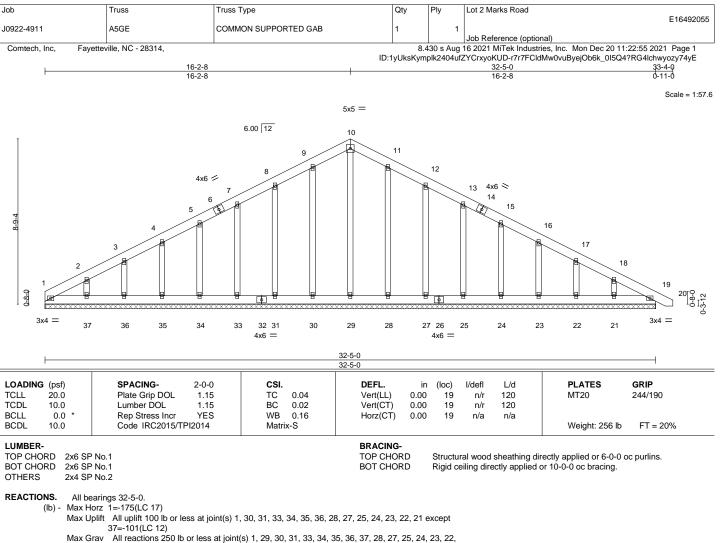
BOT CHORD 1-12=-327/2012, 9-12=-111/1304, 7-9=-326/1966

WEBS 4-9=-147/921, 6-9=-454/288, 4-12=-149/924, 2-12=-458/292

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-1-12 to 4-6-9, Interior(1) 4-6-9 to 16-2-8, Exterior(2) 16-2-8 to 20-7-5, Interior(1) 20-7-5 to 33-1-10 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

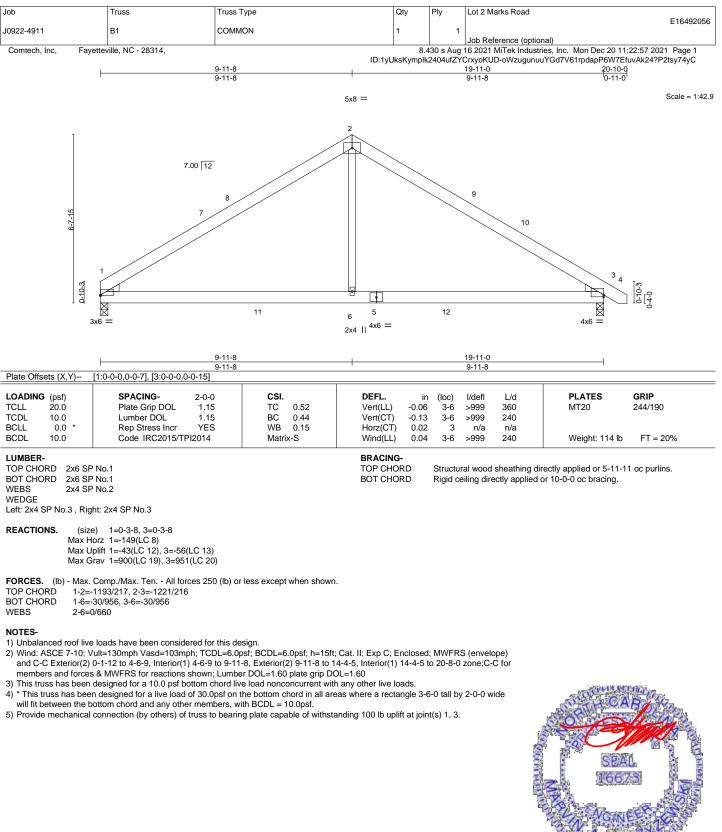
4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7.

21, 19

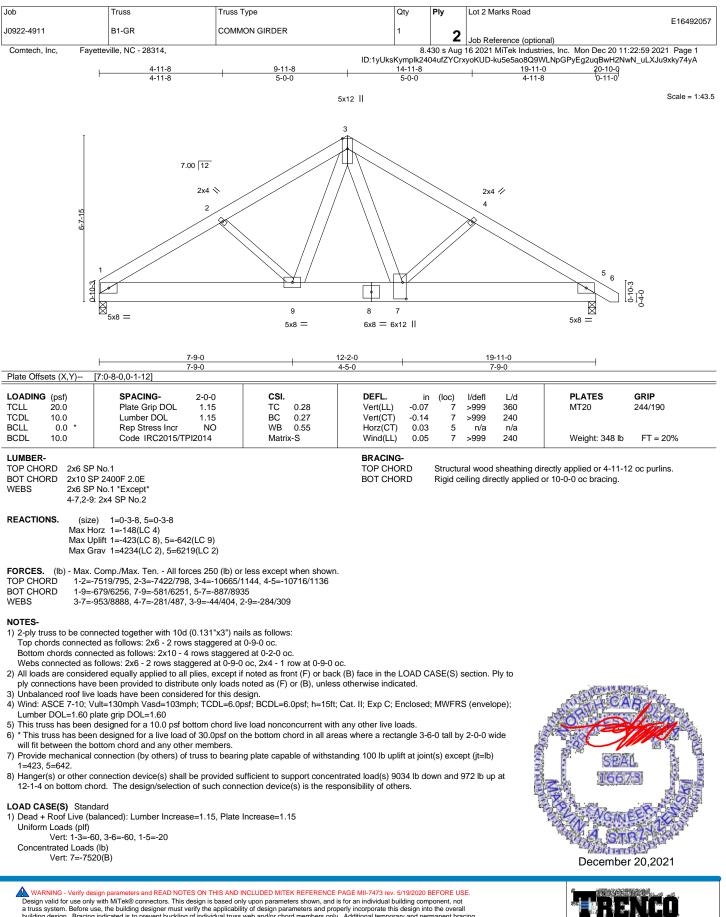
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 9-10=-114/284, 10-11=-114/284

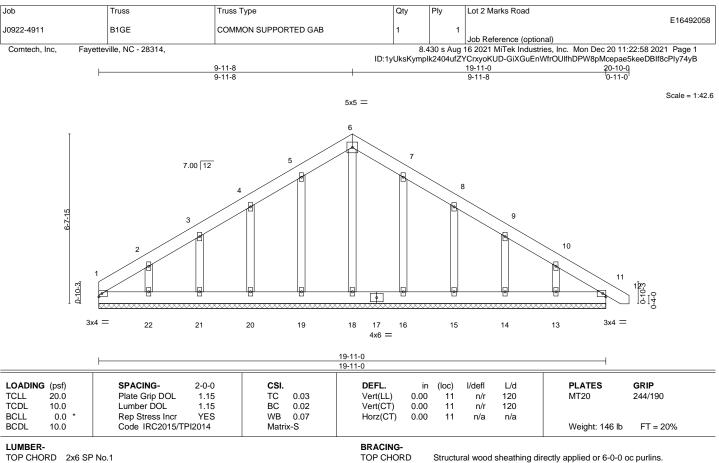
NOTES-


- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.

5) Gable requires continuous bottom chord bearing.

- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 30, 31, 33, 34, 35, 36, 28, 27, 25, 24, 23, 22, 21 except (jt=lb) 37=101.




rameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. 🛕 WARNING - Verify design pa Design valid for use only with MTek® connectors. This design is based only upon parameters show, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of truss systems, see **ANSETPH Quelity Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Design valid for use only with MiTek® connectors. This shot into CLUDED will the REFERENCE FAGE MIF/473 fev. 519/2020 beForke USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent bucklings of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of truss systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

BOT CHORD

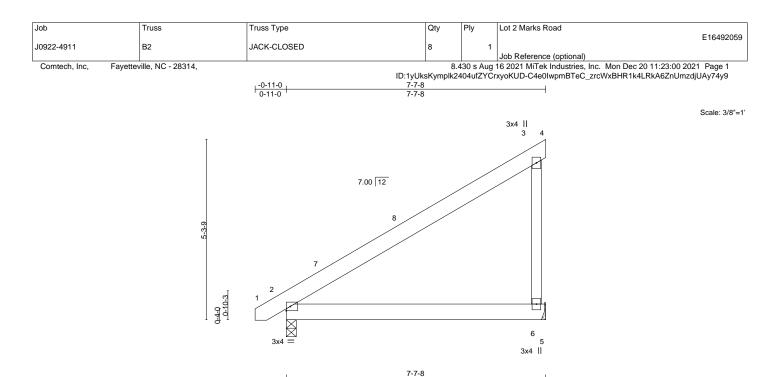
Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD2x6 SP No.1BOT CHORD2x6 SP No.1OTHERS2x4 SP No.2

REACTIONS. All bearings 19-11-0.

(lb) - Max Horz 1=-186(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 1, 19, 20, 21, 16, 15, 14, 11 except 22=-116(LC 12), 13=-103(LC 13) Max Grav All reactions 250 lb or less at joint(s) 1, 18, 19, 20, 21, 22, 16, 15, 14, 13, 11


FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 19, 20, 21, 16, 15, 14, 11 except (jt=lb) 22=116, 13=103.

		7-7-8	
SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
Plate Grip DOL 1.15	TC 0.33	Vert(LL) -0.04 2-6 >999 360	MT20 244/190
Lumber DOL 1.15	BC 0.21	Vert(CT) -0.07 2-6 >999 240	
Rep Stress Incr YES	WB 0.00	Horz(CT) 0.00 n/a n/a	
Code IRC2015/TPI2014	Matrix-P	Wind(LL) 0.00 2 **** 240	Weight: 48 lb FT = 20%
	Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYES	Plate Grip DOL 1.15 TC 0.33 Lumber DOL 1.15 BC 0.21 Rep Stress Incr YES WB 0.00	Plate Grip DOL 1.15 TC 0.33 Vert(LL) -0.04 2-6 >999 360 Lumber DOL 1.15 BC 0.21 Vert(CT) -0.07 2-6 >999 240 Rep Stress Incr YES WB 0.00 Horz(CT) 0.00 n/a n/a

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 BOT CHORD 2x4 SP No.2 WEBS

REACTIONS. (size) 6=Mechanical, 2=0-3-8 Max Horz 2=158(LC 12) Max Uplift 6=-82(LC 12) Max Grav 6=318(LC 19), 2=345(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 3-6=-288/220

NOTES-

Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-9-0 to 3-7-13, Interior(1) 3-7-13 to 7-7-8 zone;C-C for members and forces & MWFRS for reactions shown;

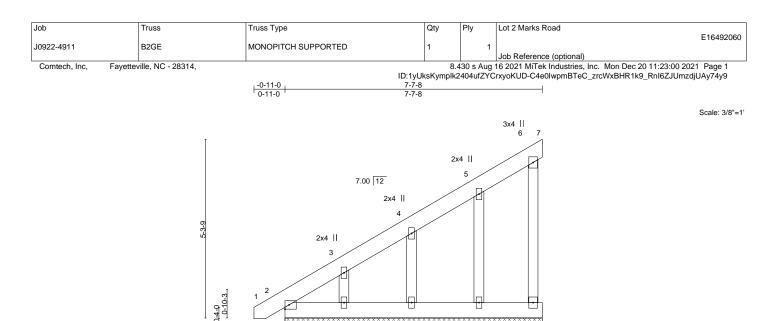
Lumber DOL=1.60 plate grip DOL=1.60

- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oucling in trusses water must systems, see **AVSUPPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



TOP CHORD

except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

BRACING-

Structural wood sheathing directly applied or 6-0-0 oc purlins,

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.03	Vert(LL) -0	0.00 1	n/r	120	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.01	Vert(CT) -0	0.00 1	n/r	120	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.03	Horz(CT) -(0.00 7	n/a	n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P					Weight: 57 lb FT = 20%

TOP CHORD 2x6 SP No.1 2x6 SP No.1 BOT CHORD 2x4 SP No.2 WFBS OTHERS 2x4 SP No 2

TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

8 3x4 II

REACTIONS. All bearings 7-7-8.

(lb) - Max Horz 2=228(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 7, 8, 9, 10 except 11=-117(LC 12) Max Grav All reactions 250 lb or less at joint(s) 7, 8, 2, 9, 10, 11

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-269/227

NOTES-

1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

ł

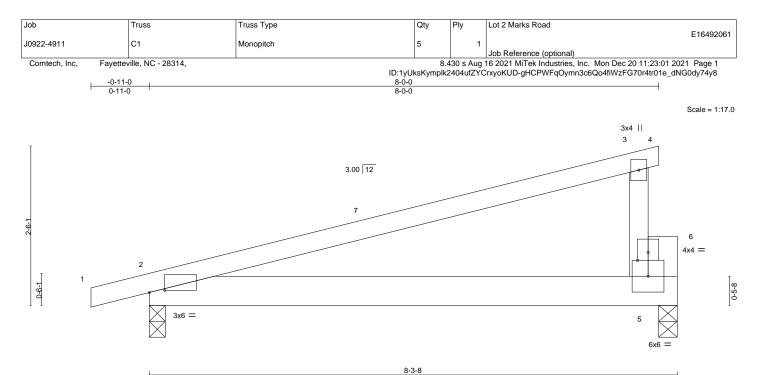
2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

3) Gable requires continuous bottom chord bearing.

4) Gable studs spaced at 2-0-0 oc.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 8, 9, 10 except (it=lb) 11=117.

December 20,2021

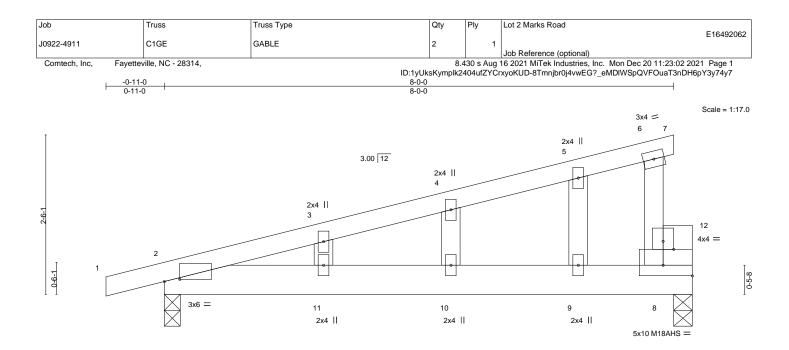
🛕 WARNING - Verify design pa rameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MTek® connectors. This design is based only upon parameters show, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of truss systems, see **ANSETPH Quelity Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

¹¹¹¹¹

			8-3-8	,
Plate Offsets (X,Y)	[2:0-2-14,0-0-6], [6:0-2-0,0-1-8]			
-OADING (psf) ICLL 20.0 ICDL 10.0 BCLL 0.0 *	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYES	CSI. TC 0.84 BC 0.24 WB 0.00	DEFL. in (loc) I/defl L/d Vert(LL) -0.05 2-5 >999 360 Vert(CT) -0.10 2-5 >969 240 Horz(CT) 0.00 5 n/a n/a	PLATES GRIP MT20 244/190
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P	Wind(LL) 0.10 2-5 >886 240	Weight: 37 lb FT = 20%
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x6 SP WEBS 2x4 SP OTHERS 2x6 SP	P No.1 P No.2		BRACING- TOP CHORD Structural wood sheathing except end verticals. BOT CHORD Rigid ceiling directly applied	directly applied or 5-3-4 oc purlins, d or 10-0-0 oc bracing.

REACTIONS. (size) 2=0-3-0, 5=0-3-8 Max Horz 2=74(LC 8) Max Uplift 2=-150(LC 8), 5=-127(LC 8) Max Grav 2=375(LC 1), 5=314(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.


NOTES-

- Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-11-0 to 3-5-13, Interior(1) 3-5-13 to 8-0-0 zone; porch left exposed; C-C for members and forces & MWFRS for
- reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=150, 5=127.

TCLL 20.0 Plate Grip DOL 1.15 TC 0.35 V TCDL 10.0 Lumber DOL 1.15 BC 0.26 V BCLL 0.0 * Rep Stress Incr YES WB 0.01 H BCDL 10.0 Code IRC2015/TPI2014 Matrix-S B	DEFL. in (loc) l/defl L/d Vert(LL) 0.09 10-11 >999 240 MT20 244/19 Vert(CT) -0.08 10-11 >999 240 M18AHS 186/17 Horz(CT) -0.00 8 n/a n/a Weight: 41 lb FT
TCLL 20.0 Plate Grip DOL 1.15 TC 0.35 V TCDL 10.0 Lumber DOL 1.15 BC 0.26 V BCLL 0.0 * Rep Stress Incr YES WB 0.01 H BCDL 10.0 Code IRC2015/TPI2014 Matrix-S B	Vert(LL) 0.09 10-11 >999 240 MT20 244/19 Vert(CT) -0.08 10-11 >999 240 M18AHS 186/17 Horz(CT) -0.00 8 n/a n/a 1000000000000000000000000000000000000
	troigini trib
BOT CHORD 2x6 SP No.1	BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlin except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

Max Horz 2=105(LC 8) Max Uplift 2=-216(LC 8), 8=-188(LC 8)

Max Grav 2=375(LC 1), 8=314(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

BOT CHORD 2-11=-284/207, 10-11=-284/207, 9-10=-284/207, 8-9=-284/207

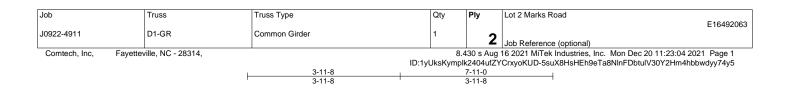
NOTES-

 Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

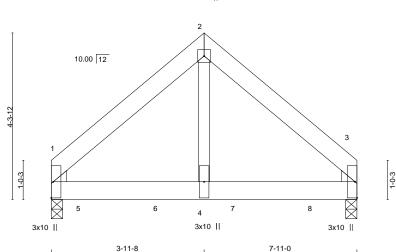
2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

3) All plates are MT20 plates unless otherwise indicated.

4) Gable studs spaced at 2-0-0 oc.


5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=216, 8=188.

4x4 ||

				3-1	1-8		3	-11-8				
LOADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.38	Vert(LL)	-0.02	3-4	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.57	Vert(CT)	-0.04	3-4	>999	240		
BCLL	0.0 *	Rep Stress Incr	NO	WB	0.39	Horz(CT)	0.01	3	n/a	n/a		
BCDL	10.0	Code IRC2015/TF	912014	Matri	ix-P	Wind(LL)	0.01	3-4	>999	240	Weight: 100 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.2 WEDGE

Left: 2x4 SP No.2 , Right: 2x4 SP No.2

REACTIONS. (size) 1=0-3-8, 3=0-3-8 Max Horz 1=91(LC 24) Max Uplift 1=-191(LC 8), 3=-180(LC 9) Max Grav 1=2919(LC 1), 3=2779(LC 2)

 FORCES.
 (ib) - Max. Comp./Max. Ten. - All forces 250 (ib) or less except when shown.

 TOP CHORD
 1-2=-2418/177, 2-3=-2418/177

 BOT CHORD
 1-4=-100/1678, 3-4=-100/1678

WEBS 2-4=-154/3142

NOTES-

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 cc.

- Webs connected as follows: 2x4 1 row at 0-9-0 oc.
- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design.
- 4) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); Lumber DOL=1.60 plate grip DOL=1.60
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=191, 3=180.
- 8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1261 lb down and 93 lb up at 0-9-12, 1258 lb down and 96 lb up at 2-9-12, and 1325 lb down and 96 lb up at 4-9-12, and 1325 lb down and 96 lb up at 6-9-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

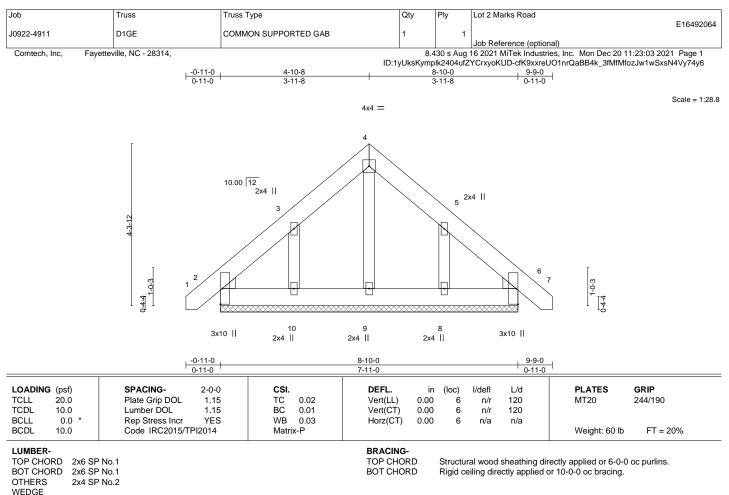
1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-2=-60, 2-3=-60, 1-3=-20

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Scale = 1:28.1



Job	Truss	Truss Type	Qty	Ply	Lot 2 Marks Road				
J0922-4911	D1-GR	Common Girder	1		E16492063				
					Job Reference (optional)				
Comtech, Inc, Fayettev	rille, NC - 28314,	8.430 s Aug 16 2021 MiTek Industries, Inc. Mon Dec 20 11:23:04 2021 Page 2							
		ID:1yUksKymplk2404ufZYCrxyoKUD-5suX8HsHEh9eTa8NInFDbtulV30Y2Hm4hbbwdyy74y5							

LOAD CASE(S) Standard Concentrated Loads (Ib)

Vert: 5=-1261(B) 6=-1258(B) 7=-1258(B) 8=-1258(B)

Left: 2x4 SP No.2 , Right: 2x4 SP No.2

REACTIONS. All bearings 7-11-0.

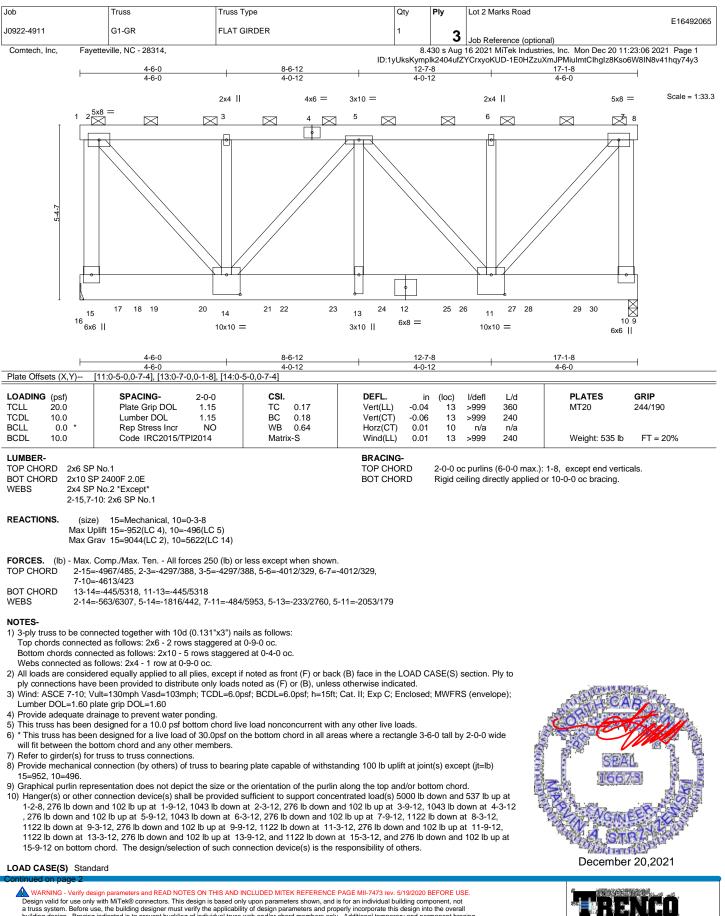
(Ib) - Max Horz 2=-118(LC 10) Max Uplift All uplift 100 lb or less at joint(s) 2, 6 except 10=-152(LC 12), 8=-148(LC 13) Max Grav All reactions 250 lb or less at joint(s) 2, 6, 9, 10, 8

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable End Details as applicable, or consult qualified building designer
 Gable requires continuous bottom chord bearing.

5) Gable studs spaced at 2-0-0 oc.

- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0ps for the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- will fit between the bottom chord and any other members. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6 except (jt=lb) 10=152.8=148.
- 9) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

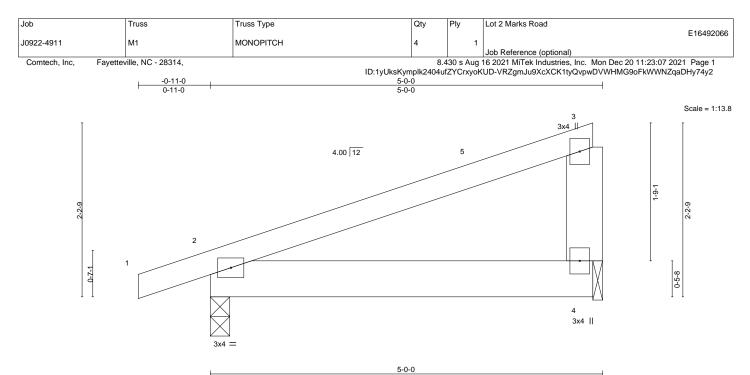
Construints - Strange, delivery, erection and bracing of trusses and truss even and/or chord members only. Additional building design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design is to here only upon parameters and properly incorporate this design is the overall building designer must verify the applicability of design parameters and properly incorporate this design is the overall building designer must verify the applicability of design parameters and properly incorporate this design is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent bucklings systems, see **ANS/TPH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

B18 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Lot 2 Marks Road
J0922-4911	G1-GR	FLAT GIRDER	1		E16492065
30322-4911	GI-GI	TEXT GIRDER	1	3	Job Reference (optional)
Comtech, Inc, Fayettev	ille, NC - 28314,		. 8.4	30 s Aug	16 2021 MiTek Industries, Inc. Mon Dec 20 11:23:06 2021 Page 2

ID:1yUksKymplk2404ufZYCrxyoKUD-1E0HZzuXmJPMiuImtClhgIz8Kso6W8IN8v41hqy74y3

LOAD CASE(S) Standard


1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-2=-60, 2-7=-60, 7-8=-60, 9-16=-20

Concentrated Loads (lb)

Vert: 12=-276(F) 14=-255(B) 13=-291(B) 17=-5000(B) 18=-276(F) 19=-255(B) 20=-276(F) 21=-276(F) 22=-255(B) 23=-276(F) 24=-291(B) 25=-291(B) 26=-276(F) 27=-291(B) 28=-276(F) 29=-291(B) 30=-276(F) 21=-276(F) 21=-276(F) 21=-276(F) 22=-255(B) 23=-276(F) 21=-276(F) 21=-276(F) 21=-276(F) 21=-276(F) 21=-276(F) 22=-255(B) 23=-276(F) 21=-276(F) 21=-

			I			5-0-0					I	
LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	тс	0.28	Vert(LL)	-0.01	2-4	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.08	Vert(CT)	-0.01	2-4	>999	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00		n/a	n/a		
BCDL	10.0	Code IRC2015/TF	912014	Matri	x-P	Wind(LL)	0.01	2-4	>999	240	Weight: 24 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x6 SP No.1 2x6 SP No.1 WFBS

BRACING-TOP CHORD Structural wood sheathing directly applied or 5-0-0 oc purlins, except end verticals. BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 2=0-3-0, 4=0-1-8 Max Horz 2=63(LC 8)

Max Uplift 2=-102(LC 8), 4=-79(LC 8)

Max Grav 2=255(LC 1), 4=179(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

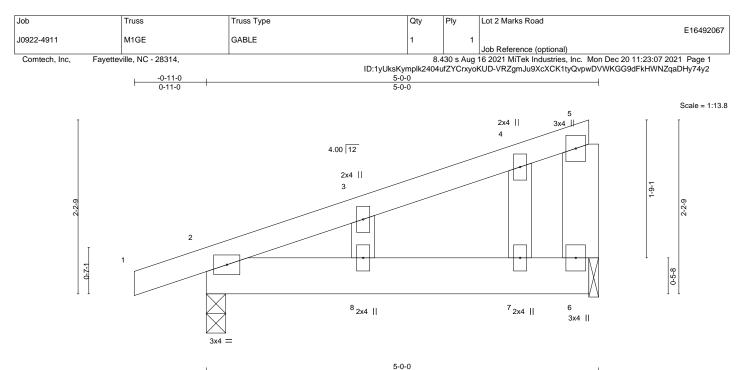
NOTES-

1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-11-0 to 3-5-13, Interior(1) 3-5-13 to 4-9-4 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify


capacity of bearing surface.

5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 2=102.

					5-0-0					1	
LOADING (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.15	тс	0.09	Vert(LL)	0.01	8	>999	240	MT20	244/190
TCDL 10.0	Lumber DOL	1.15	BC	0.09	Vert(CT)	-0.01	8	>999	240		
BCLL 0.0 *	Rep Stress Incr	YES	WB	0.02	Horz(CT)	-0.00	6	n/a	n/a		
BCDL 10.0	Code IRC2015/TF	912014	Matri	x-S						Weight: 27 lb	FT = 20%

LUMBER-

 TOP CHORD
 2x4 SP No.1

 BOT CHORD
 2x6 SP No.1

 WEBS
 2x6 SP No.1

 OTHERS
 2x4 SP No.2

BRACING-TOP CHORD

 TOP CHORD
 Structural wood sheathing directly applied or 5-0-0 oc purlins, except end verticals.

 BOT CHORD
 Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 2=0-3-0, 6=0-1-8

Max Horz 2=90(LC 8) Max Uplift 2=-147(LC 8), 6=-115(LC 8)

Max Grav 2=255(LC 1), 6=179(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

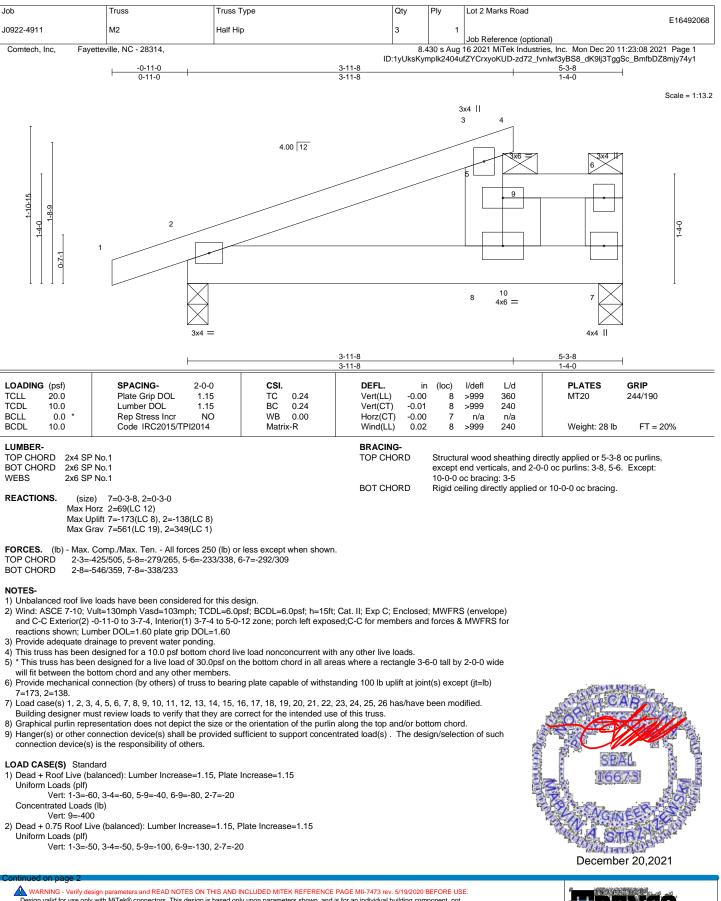
NOTES-

- Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

3) Gable studs spaced at 2-0-0 oc.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


6) Bearing at joint(s) 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

7) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 6.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=147, 6=115.

Job	Truss	Truss Type	Qty	Ply	Lot 2 Marks Road
					E16492068
J0922-4911	M2	Half Hip	3	1	
					Job Reference (optional)
Comtech, Inc, Fayettev	ille, NC - 28314,		8.4	130 s Aug	16 2021 MiTek Industries, Inc. Mon Dec 20 11:23:08 2021 Page 2

8.430 s Aug 16 2021 MiTek Industries, Inc. Mon Dec 20 11:23:08 2021 Page 2 ID:1yUksKymplk2404ufZYCrxyoKUD-zd72_fvnlwf3yBS8_dK9lj3TggSc_BmfbDZ8mjy74y1

Concentrated Loads (lb)	
Vert: 9=-300	
4) Dead + 0.6 C-C Wind (Pos. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60	
Uniform Loads (plf) Vert: 1-2=70, 2-3=58, 3-4=153, 5-6=12, 2-8=52, 8-10=115, 7-10=52	
Horz: 1-2=-82, 2-3=-70, 3-4=-165, 3-5=-55	
Concentrated Loads (lb)	
Vert: 9=548	
 Dead + 0.6 C-C Wind (Pos. Internal) Case 2: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) 	
Vert: 1-2=51, 2-3=58, 3-4=51, 5-6=42, 2-8=52, 8-10=115, 7-10=52	
Horz: 1-2=-63, 2-3=-70, 3-4=-63, 3-5=-55	
Concentrated Loads (lb)	
Vert: 9=566	
 Dead + 0.6 C-C Wind (Neg. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) 	
Vert: 1-2=-1, 2-3=-45, 3-4=17, 5-6=-58, 2-8=-9, 8-10=2, 7-10=-9	
Horz: 1-2=-19, 2-3=25, 3-4=-37, 3-5=51	
Concentrated Loads (Ib)	
Vert: 9=-420 7) Dead + 0.6 C-C Wind (Neg. Internal) Case 2: Lumber Increase=1.60, Plate Increase=1.60	
Uniform Loads (plf)	
Vert: 1-2=-39, 2-3=-45, 3-4=-39, 5-6=-58, 2-8=-9, 8-10=2, 7-10=-9	
Horz: 1-2=19, 2-3=25, 3-4=19, 3-5=51	
Concentrated Loads (lb) Vert: 9=-420	
8) Dead + 0.6 MWFRS Wind (Pos. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60	
Uniform Loads (plf)	
Vert: 1-2=36, 2-3=21, 3-4=14, 5-6=-11, 2-8=10, 8-10=33, 7-10=10	
Horz: 1-2=-48, 2-3=-33, 3-4=-26, 3-5=7	
Concentrated Loads (lb) Vert: 9=154	
9) Dead + 0.6 MWFRS Wind (Pos. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60	
Uniform Loads (plf)	
Vert: 1-2=6, 2-3=12, 3-4=28, 5-6=1, 2-7=-12 Horz: 1-2=-18, 2-3=-24, 3-4=-40, 3-5=-27	
Concentrated Loads (Ib)	
Vert: 9=43	
 Dead + 0.6 MWFRS Wind (Neg. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) 	
Vert: 1-2=6, 2-3=-1, 3-4=6, 5-6=-33, 2-8=2, 8-10=25, 7-10=2	
Horz: 1-2=-26, 2-3=-19, 3-4=-26, 3-5=34	
Concentrated Loads (lb)	
Vert: 9=-339 11) Dead + 0.6 MWFRS Wind (Neg. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60	
Uniform Loads (plf)	
Vert: 1-2=-2, 2-3=-9, 3-4=-2, 5-6=-21, 2-7=-20	
Horz: 1-2=-18, 2-3=-11, 3-4=-18, 3-5=-0	
Concentrated Loads (lb) Vert: 9=-234	
12) Dead + 0.6 MWFRS Wind (Pos. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60	
Uniform Loads (plf)	
Vert: 1-2=14, 2-3=21, 3-4=14, 5-6=-11, 2-7=-12	
Horz: 1-2=-26, 2-3=-33, 3-4=-26, 3-5=-39 Concentrated Loads (lb)	
Vert: 9=43	
13) Dead + 0.6 MWFRS Wind (Pos. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60	
Uniform Loads (plf)	
Vert: 1-2=2, 2-3=9, 3-4=2, 5-6=1, 2-7=-12 Horz: 1-2=-14, 2-3=-21, 3-4=-14, 3-5=-27	
Concentrated Loads (lb)	
Vert: 9=43	
 Dead + 0.6 MWFRS Wind (Pos. Internal) 3rd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) 	
Vert: 1-2=14, 2-3=21, 3-4=14, 5-6=-11, 2-7=-12	
Horz: 1-2=-26, 2-3=-33, 3-4=-26, 3-5=-39	
Concentrated Loads (lb)	
Vert: 9=43 15) Dead + 0.6 MWFRS Wind (Pos. Internal) 4th Parallel: Lumber Increase=1.60, Plate Increase=1.60	
10° bout 10.0 Minu (10.0. minu) the ardicle Lumber morease-1.00, rate morease=1.00	

3) Dead + Uninhabitable Attic Without Storage: Lumber Increase=1.25, Plate Increase=1.25

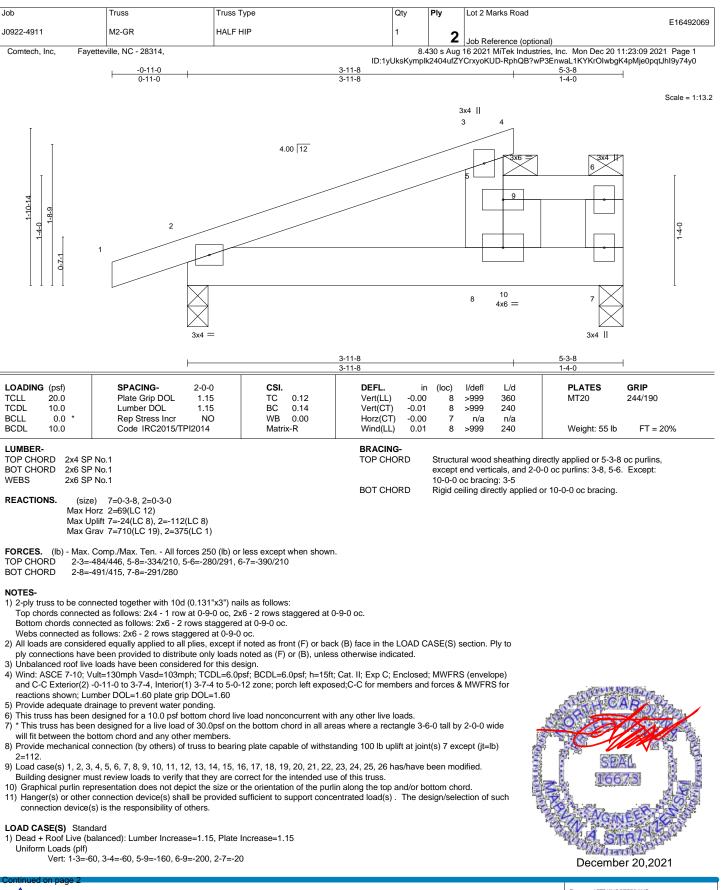
Vert: 1-3=-20, 3-4=-20, 5-6=-40, 2-7=-40

LOAD CASE(S) Standard Concentrated Loads (lb) Vert: 9=-350

Uniform Loads (plf)

~

WARTING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss evel and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclings with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rerection and bracing of trusses systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



Job	Truss	Truss Type	Qty	Ply	Lot 2 Marks Road
					E16492068
J0922-4911	M2	Half Hip	3	1	
					Job Reference (optional)
Comtech, Inc, Fayetteville, NC - 28314,			8.4	30 s Aug	16 2021 MiTek Industries, Inc. Mon Dec 20 11:23:08 2021 Page 3

8.430 s Aug 16 2021 MiTek Industries, Inc. Mon Dec 20 11:23:08 2021 Page 3 ID:1yUksKymplk2404ufZYCrxyoKUD-zd72_fvnlwf3yBS8_dK9lj3TggSc_BmfbDZ8mjy74y1

	ID:1yUksKympik2404utZYCrxyoKUD-zd/2_tvniwt3y
LO	AD CASE(S) Standard
	Uniform Loads (plf)
	Vert: 1-2=2, 2-3=9, 3-4=2, 5-6=1, 2-7=-12
	Horz: 1-2=-14, 2-3=-21, 3-4=-14, 3-5=-27
	Concentrated Loads (Ib)
	Vert: 9=43
16)	Dead + 0.6 MWFRS Wind (Neg. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf) Vert: 1-2=6, 2-3=-1, 3-4=6, 5-6=-33, 2-7=-20
	Horz: 1-2=-26, 2-3=-19, 3-4=-26, 3-5=-12
	Concentrated Loads (lb)
	Vert: 9=-234
17)	Dead + 0.6 MWFRS Wind (Neg. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf)
	Vert: 1-2=-6, 2-3=-13, 3-4=-6, 5-6=-21, 2-7=-20
	Horz: 1-2=-14, 2-3=-7, 3-4=-14, 3-5=-0
	Concentrated Loads (lb)
18)	Vert: 9=-234 Dead: Lumber Increase=0.90, Plate Increase=0.90 Plt. metal=0.90
10)	Dead. Lunide indeade-0.50, Frate increase-0.50 Filt. Inetai-0.50
	Vert: 1-3=-20, 3-4=-20, 5-6=-120, 2-7=-20
	Concentrated Loads (lb)
	Vert: 9=-200
19)	Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) Left): Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf)
	Vert: 1-2=-31, 2-3=-36, 3-4=-31, 5-9=-95, 6-9=-125, 2-8=-3, 8-10=13, 7-10=-3
	Horz: 1-2=-19, 2-3=-14, 3-4=-19, 3-5=26 Concentrated Loads (lb)
	Verte 9=454
20)	Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) Right): Lumber Increase=1.60, Plate Increase=1.60
- ,	Uniform Loads (plf)
	Vert: 1-2=-37, 2-3=-42, 3-4=-37, 5-9=-86, 6-9=-116, 2-7=-20
	Horz: 1-2=-13, 2-3=-8, 3-4=-13, 3-5=-0
	Concentrated Loads (lb)
24)	Vert: 9=-375 Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.60, Plate Increase=1.60
21)	Uniform Loads (plf)
	Vert: 1-2=-31, 2-3=-36, 3-4=-31, 5-9=-95, 6-9=-125, 2-7=-20
	Horz: 1-2=-19, 2-3=-14, 3-4=-19, 3-5=-9
	Concentrated Loads (lb)
	Vert: 9=-375
22)	Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf)
	Vert: 1-2=-40, 2-3=-45, 3-4=-40, 5-9=-86, 6-9=-116, 2-7=-20 Horz: 1-2=-10, 2-3=-5, 3-4=-10, 3-5=-0
	FIGE. F2=F10, 2-3=-10, 3-3=-10, 3-3=-0
	Vert: 9=-375
23)	1st Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15
	Uniform Loads (plf)
	Vert: 1-3=-60, 3-4=-60, 5-6=-40, 2-7=-20
	Concentrated Loads (lb)
0.4	Vert: 9=-400
24)	2nd Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)
	Vert: 1-3=-20, 3-4=-20, 5-9=-40, 6-9=-80, 2-7=-20
	Concentrated Loads (lb)
	Vert: 9=-400
25)	3rd Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15
	Uniform Loads (plf)
	Vert: 1-3=-50, 3-4=-50, 5-6=-100, 2-7=-20
	Concentrated Loads (lb)
26)	Vert: 9=-350 4th Dead + 0.75 Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15
20)	Uniform Loads (plf)
	Vert: 1-3=-20, 3-4=-20, 5-9=-100, 6-9=-130, 2-7=-20
	Concentrated Loads (lb)
	Vert: 9=-350

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of truss systems, see **ANSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

B18 Soundside Road Edenton, NC 27932

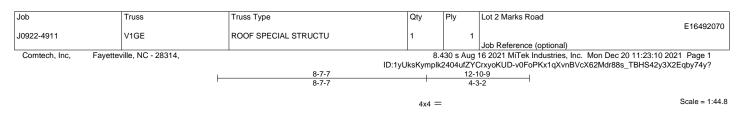
Job	Truss	Truss Type	Qty	Ply	Lot 2 Marks Road
J0922-4911	M2-GR	HALF HIP	1	_	E16492069
	-			2	Job Reference (optional)

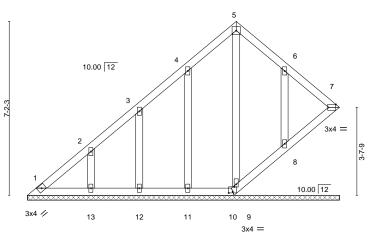
Comtech, Inc, Fayetteville, NC - 28314,

LOAD CASE(S) Standard Concentrated Loads (lb) Vert: 9=-400 8.430 s Aug 16 2021 MiTek Industries, Inc. Mon Dec 20 11:23:09 2021 Page 2 ID:1yUksKymplk2404ufZYCrxyoKUD-RphQB?wP3EnwaL1KYKrOlwbgK4pMje0pqtJhl9y74y0

2)	Dead + 0.75 Roof Live (balanced) + 0.75 Attic Floor: Lumber Increase=1.15, Plate Increase=1.15
	Uniform Loads (plf) Vert: 1-3=-50, 3-4=-50, 5-9=-220, 6-9=-250, 2-7=-20
	Concentrated Loads (lb)
	Vert: 9=-350
3)	Dead + Uninhabitable Attic Without Storage: Lumber Increase=1.25, Plate Increase=1.25
	Uniform Loads (plf)
	Vert: 1-3=-20, 3-4=-20, 5-6=-160, 2-7=-40
	Concentrated Loads (lb)
4)	Vert: 9=-300
4)	Dead + 0.6 C-C Wind (Pos. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)
	Vert: 1-2=70, 2-3=58, 3-4=153, 5-6=-108, 2-8=52, 8-10=115, 7-10=52
	Horz: 1-2=-82, 2-3=-70, 3-4=-165, 3-5=-55
	Concentrated Loads (lb)
	Vert: 9=548
5)	Dead + 0.6 C-C Wind (Pos. Internal) Case 2: Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf)
	Vert: 1-2=51, 2-3=58, 3-4=51, 5-6=-78, 2-8=52, 8-10=115, 7-10=52 Horz: 1-2=-63, 2-3=-70, 3-4=-63, 3-5=-55
	Concentrated Loads (Ib)
	Vert: 9=566
6)	Dead + 0.6 C-C Wind (Neg. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf)
	Vert: 1-2=-1, 2-3=-45, 3-4=17, 5-6=-178, 2-8=-9, 8-10=2, 7-10=-9
	Horz: 1-2=-19, 2-3=25, 3-4=-37, 3-5=51 Concentrated Loads (lb)
	Vert: 9=-420
7)	Dead + 0.6 C-C Wind (Neg. Internal) Case 2: Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf)
	Vert: 1-2=-39, 2-3=-45, 3-4=-39, 5-6=-178, 2-8=-9, 8-10=2, 7-10=-9
	Horz: 1-2=19, 2-3=25, 3-4=19, 3-5=51
	Concentrated Loads (Ib)
8)	Vert: 9=-420 Dead + 0.6 MWFRS Wind (Pos. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60
0)	Uniform Loads (plf)
	Vert: 1-2=36, 2-3=21, 3-4=14, 5-6=-131, 2-8=10, 8-10=33, 7-10=10
	Horz: 1-2=-48, 2-3=-33, 3-4=-26, 3-5=7
	Concentrated Loads (Ib)
	Vert: 9=154
9)	Dead + 0.6 MWFRS Wind (Pos. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf) Vert: 1-2=6, 2-3=12, 3-4=28, 5-6=-119, 2-7=-12
	Horz: 1-2=-18, 2-3=-24, 3-4=-40, 3-5=-27
	Concentrated Loads (lb)
	Vert: 9=43
10) Dead + 0.6 MWFRS Wind (Neg. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf)
	Vert: 1-2=6, 2-3=-1, 3-4=6, 5-6=-153, 2-8=2, 8-10=25, 7-10=2 Horz: 1-2=-26, 2-3=-19, 3-4=-26, 3-5=34
	Concentrated Loads (lb)
	Vert: 9=-339
11) Dead + 0.6 MWFRS Wind (Neg. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf)
	Vert: 1-2=-2, 2-3=-9, 3-4=-2, 5-6=-141, 2-7=-20
	Horz: 1-2=-18, 2-3=-11, 3-4=-18, 3-5=-0
	Concentrated Loads (lb) Vert: 9=-234
12) Dead + 0.6 MWFRS Wind (Pos. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60
	Uniform Loads (plf)
	Vert: 1-2=14, 2-3=21, 3-4=14, 5-6=-131, 2-7=-12
	Horz: 1-2=-26, 2-3=-33, 3-4=-26, 3-5=-39
	Concentrated Loads (Ib)
10	Vert: 9=43
13) Dead + 0.6 MWFRS Wind (Pos. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)
	Vert: 1-2=2, 2-3=9, 3-4=2, 5-6=-119, 2-7=-12
	Horz: 1-2=-14, 2-3=-21, 3-4=-14, 3-5=-27
	Concentrated Loads (lb)
	Vert: 9=43
14) Dead + 0.6 MWFRS Wind (Pos. Internal) 3rd Parallel: Lumber Increase=1.60, Plate Increase=1.60

2) Dead + 0.75 Roof Live (balanced) + 0.75 Attic Floor: Lumber Increase=1.15, Plate Increase=1.15




Job	Truss	Truss Type	Qty	Ply	Lot 2 Marks Road
					E16492069
J0922-4911	M2-GR	HALF HIP	1	2	
				_	Job Reference (optional)
Comtech, Inc, Fayette	ville, NC - 28314,		8.4	130 s Aug	16 2021 MiTek Industries, Inc. Mon Dec 20 11:23:09 2021 Page 3

8.430 s Aug 16 2021 MiTek Industries, Inc. Mon Dec 20 11:23:09 2021 Page 3 ID:1yUksKymplk2404ufZYCrxyoKUD-RphQB?wP3EnwaL1KYKrOlwbgK4pMje0pqtJhl9y74y0

	, ,
LOAD CASE(S) Standard	
Uniform Loads (plf)	
Vert: 1-2=14, 2-3=21, 3-4=14, 5-6=-131, 2-7=-12	
Horz: 1-2=-26, 2-3=-33, 3-4=-26, 3-5=-39	
Concentrated Loads (Ib)	
Vert: 9=43	
15) Dead + 0.6 MWFRS Wind (Pos. Internal) 4th Parallel: Lumber Increase=1.60, Plate Increase=1.60	
Uniform Loads (plf)	
Vert: 1-2=2, 2-3=9, 3-4=2, 5-6=-119, 2-7=-12	
Horz: 1-2=-14, 2-3=-21, 3-4=-14, 3-5=-27	
Concentrated Loads (lb)	
Vert: 9=43	
16) Dead + 0.6 MWFRS Wind (Neg. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60	
Uniform Loads (plf)	
Vert: 1-2=6, 2-3=-1, 3-4=6, 5-6=-153, 2-7=-20 Horz: 1-2=-26, 2-3=-19, 3-4=-26, 3-5=-12	
Concentrated Loads (Ib)	
Vert: 9=-234	
17) Dead + 0.6 MWFRS Wind (Neg. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60	
Uniform Loads (plf)	
Vert: 1-2=-6, 2-3=-13, 3-4=-6, 5-6=-141, 2-7=-20	
Horz: 1-2=-14, 2-3=-7, 3-4=-14, 3-5=-0	
Concentrated Loads (lb)	
Vert: 9=-234	
18) Dead: Lumber Increase=0.90, Plate Increase=0.90 Plt. metal=0.90	
Uniform Loads (plf)	
Vert: 1-3=-20, 3-4=-20, 5-6=-240, 2-7=-20	
Concentrated Loads (lb)	
Vert: 9=-200	
19) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) Left): Lumber Increase=1.60, Plate	Increase=1.60
Uniform Loads (plf)	
Vert: 1-2=-31, 2-3=-36, 3-4=-31, 5-9=-215, 6-9=-245, 2-8=-3, 8-10=13, 7-10=-3	
Horz: 1-2=-19, 2-3=-14, 3-4=-19, 3-5=26	
Concentrated Loads (lb)	
Vert: 9=-454	
20) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) Right): Lumber Increase=1.60, Pla	te Increase=1.60
Uniform Loads (plf)	
Vert: 1-2=-37, 2-3=-42, 3-4=-37, 5-9=-206, 6-9=-236, 2-7=-20	
Horz: 1-2=-13, 2-3=-8, 3-4=-13, 3-5=-0	
Concentrated Loads (lb) Vert: 9=-375	
 Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) 1st Parallel): Lumber Increase=1.6 	0 Plate Increase=1.60
Uniform Loads (plf)	0, 1 1010 11010000 - 1.00
Vert: 1-231, 2-336, 3-4=-31, 5-9=-215, 6-9=-245, 2-7=-20	
Horz: 1-2=-19, 2-3=-14, 3-4=-19, 3-5=-9	
Concentrated Loads (lb)	
Vert: 9–-375	
22) Dead + 0.75 Roof Live (bal.) + 0.75 Attic Floor + 0.75(0.6 MWFRS Wind (Neg. Int) 2nd Parallel): Lumber Increase=1.	60. Plate Increase=1.60
Uniform Loads (plf)	
Vert: 1-2=-40, 2-3=-45, 3-4=-40, 5-9=-206, 6-9=-236, 2-7=-20	
Horz: 1-2=-10, 2-3=-5, 3-4=-10, 3-5=-0	
Concentrated Loads (Ib)	
Vert: 9=-375	
23) 1st Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15	
Uniform Loads (plf)	
Vert: 1-3=-60, 3-4=-60, 5-6=-160, 2-7=-20	
Concentrated Loads (Ib)	
Vert: 9=-400	
24) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15	
Uniform Loads (plf)	
Vert: 1-3=-20, 3-4=-20, 5-9=-160, 6-9=-200, 2-7=-20	
Concentrated Loads (lb)	
Vert: 9=-400	
25) 3rd Dead + 0.75 Roof Live (unbalanced) + 0.75 Attic Floor: Lumber Increase=1.15, Plate Increase=1.15	
Uniform Loads (plf)	
Vert: 1-3=-50, 3-4=-50, 5-6=-220, 2-7=-20	
Concentrated Loads (lb)	
Vert: 9=-350 26) 4th Dead + 0.75 Poof Live (unbalanced) + 0.75 Attic Floor: Lumber Increase=1.15. Plate Increase=1.15.	
26) 4th Dead + 0.75 Roof Live (unbalanced) + 0.75 Attic Floor: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)	
Vert: 1-3=-20, 3-4=-20, 5-9=-220, 6-9=-250, 2-7=-20	
Concentrated Loads (lb)	
Vert: 9=-350	

Plate Offsets (X,Y)-- [7:0-3-11.Edge], [9:0-1-6.0-1-0], [10:0-2-0.0-0-10]

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) l/defl L/d PLATES GRIP Vert(LL) n/a - n/a 999 MT20 244/190 Vert(CT) n/a - n/a 999 MT20 244/190
TCLL 20.0	Plate Grip DOL 1.15	TC 0.06	
TCDL 10.0	Lumber DOL 1.15	BC 0.03	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.08	Horz(CT) 0.00 7 n/a n/a
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	Weight: 75 lb FT = 20%

8<u>-6-5</u>

LUMBER-

TOP CHORD2x4 SP No.1BOT CHORD2x4 SP No.1OTHERS2x4 SP No.2

BRACING-TOP CHORD

TOP CHORDStructural wood sheathing directly applied or 6-0-0 oc purlins.BOT CHORDRigid ceiling directly applied or 10-0-0 oc bracing.

12-10-9

4-4-4

REACTIONS. All bearings 12-10-9.

(lb) - Max Horz 1=231(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 1, 7, 10 except 11=-112(LC 12), 12=-107(LC 12), 13=-133(LC 12), 8=-126(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 1, 7, 10, 9, 11, 12, 13, 8

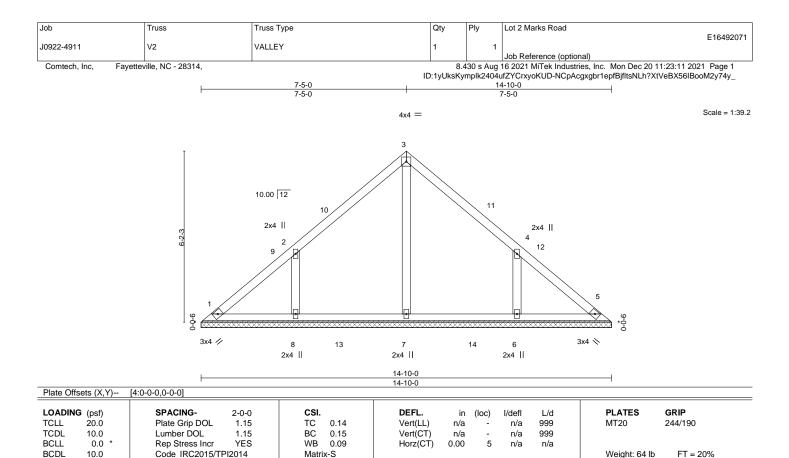
H

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-295/189

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.

5) Gable requires continuous bottom chord bearing


- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
 9) Bearing at joint(s) 7, 9, 8 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify

10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7, 10 except

- (jt=lb) 11=112, 12=107, 13=133, 8=126.
- 11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 7, 9, 8.

 MB	ER-	

TOP CHORD	2x4 SP No.1
BOT CHORD	2x4 SP No.1
OTHERS	2x4 SP No 2

BRACING-TOP CHORD

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 14-10-0.

(lb) - Max Horz 1=-140(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 1 except 8=-135(LC 12), 6=-135(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=400(LC 19), 8=393(LC 19), 6=393(LC 20)

WEBS 2-8=-338/247, 4-6=-338/247

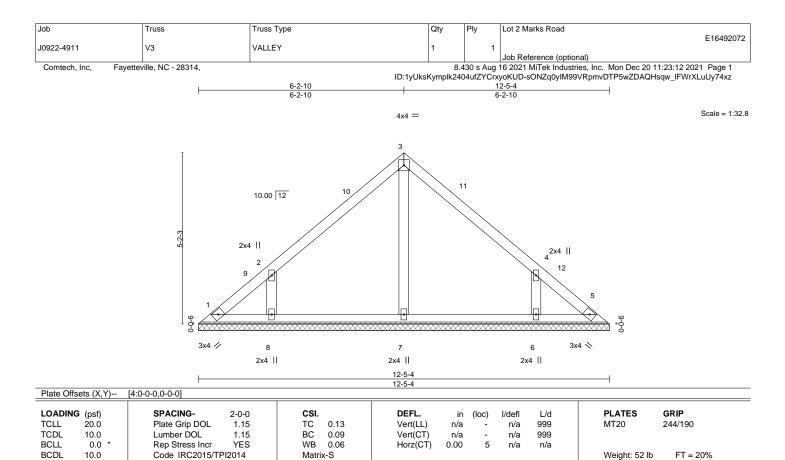
NOTES-

1) Unbalanced roof live loads have been considered for this design.

 Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-4-13 to 4-9-10, Interior(1) 4-9-10 to 7-5-0, Exterior(2) 7-5-0 to 11-9-13, Interior(1) 11-9-13 to 14-5-3 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 8=135, 6=135.

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

	ИB		

TOP CHORD	2x4 SP No.1
BOT CHORD	2x4 SP No.1
OTHERS	2x4 SP No.2

BRACING-TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

All bearings 12-5-4. REACTIONS.

Max Horz 1=-116(LC 8) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 1, 5 except 8=-123(LC 12), 6=-123(LC 13) Max Grav All reactions 250 lb or less at joint(s) 1, 5, 7 except 8=326(LC 19), 6=326(LC 20)

WEBS 2-8=-312/241, 4-6=-312/241

NOTES-

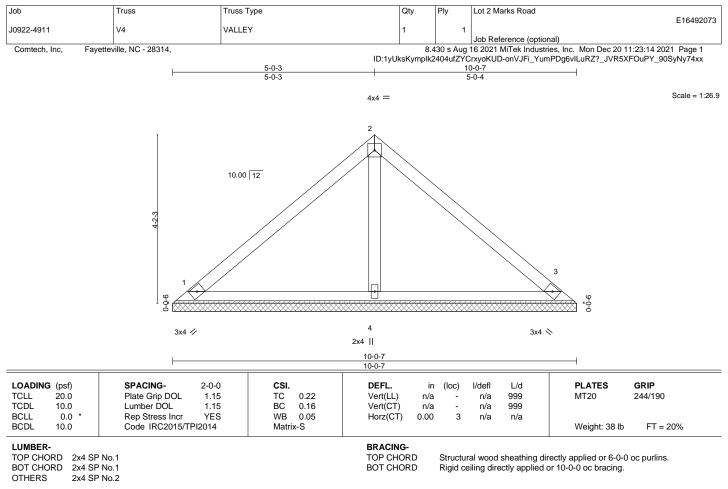
1) Unbalanced roof live loads have been considered for this design.

 Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0ps; BCDL=6.0ps; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-4-13 to 4-9-10, Interior(1) 4-9-10 to 6-2-10, Exterior(2) 6-2-10 to 10-7-7, Interior(1) 10-7-7 to 12-0-7 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=123. 6=123.

rameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. 🛕 WARNING - Verify design pa Construints - Strange, delivery, erection and bracing of trusses and truss even injury and property damage. For general guidance regarding the fashication strategy and bracing of the strategy and brack and bracing of the strategy and brack and

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

REACTIONS. (size) 1=10-0-7, 3=10-0-7, 4=10-0-7 Max Horz 1=-92(LC 8)

Max Horz 1=-92(LC 8)Max Uplift 1=-22(LC 13), 3=-30(LC 13)

Max Grav 1=197(LC 1), 3=197(LC 1), 4=344(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

- and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

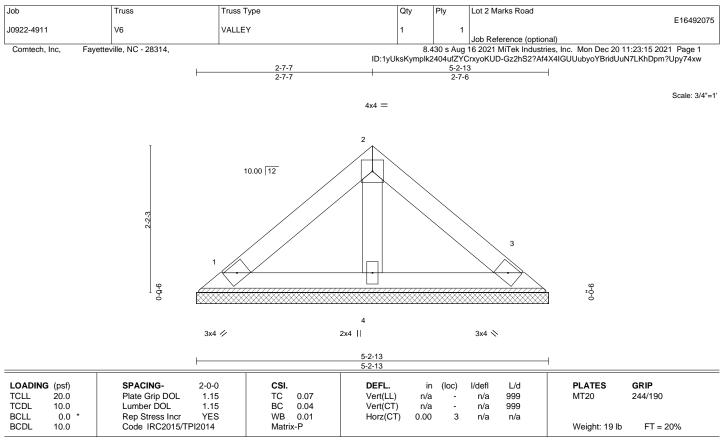
REACTIONS. (size) 1=7-7-10, 3=7-7-10, 4=7-7-10 Max Horz 1=68(LC 9)

Max Uplift 1=-24(LC 13), 3=-30(LC 13)

Max Grav 1=158(LC 1), 3=158(LC 1), 4=230(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-


1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

- and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x4 SP No.1BOT CHORD2x4 SP No.1OTHERS2x4 SP No.2

REACTIONS. (size) 1=5-2-13, 3=5-2-13, 4=5-2-13 Max Horz 1=-44(LC 8)

Max Uplift 1=-15(LC 13), 3=-19(LC 13)

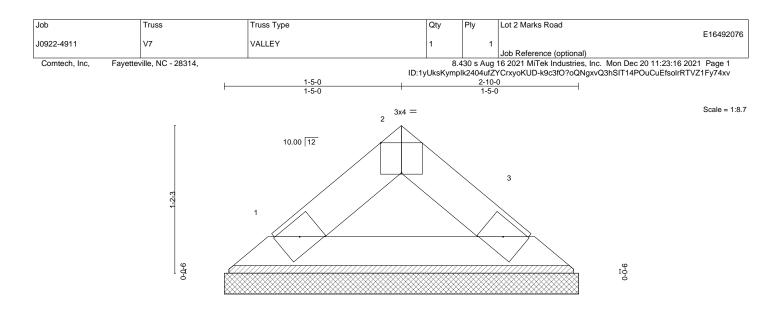
Max Grav 1=102(LC 1), 3=102(LC 1), 4=149(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)


- and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

Structural wood sheathing directly applied or 5-2-13 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

3x4 🥢

3x4 📎

2-10-0 Plate Offsets (X,Y) [2:0-2-0,Edge]													
LOADING (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP		
TCLL 20.0	Plate Grip DOL	1.15	тс	0.01	Vert(LL)	n/a	-	n/a	999	MT20	244/190		
TCDL 10.0	Lumber DOL	1.15	BC	0.03	Vert(CT)	n/a	-	n/a	999				
BCLL 0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a				
BCDL 10.0	Code IRC2015/TP	12014	Matri	x-P						Weight: 8 lb	FT = 20%		

2-10-0

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1

REACTIONS. (size) 1=2-10-0, 3=2-10-0 Max Horz 1=-20(LC 8)

Max Uplift 1=-4(LC 12), 3=-4(LC 13) Max Grav 1=81(LC 1), 3=81(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

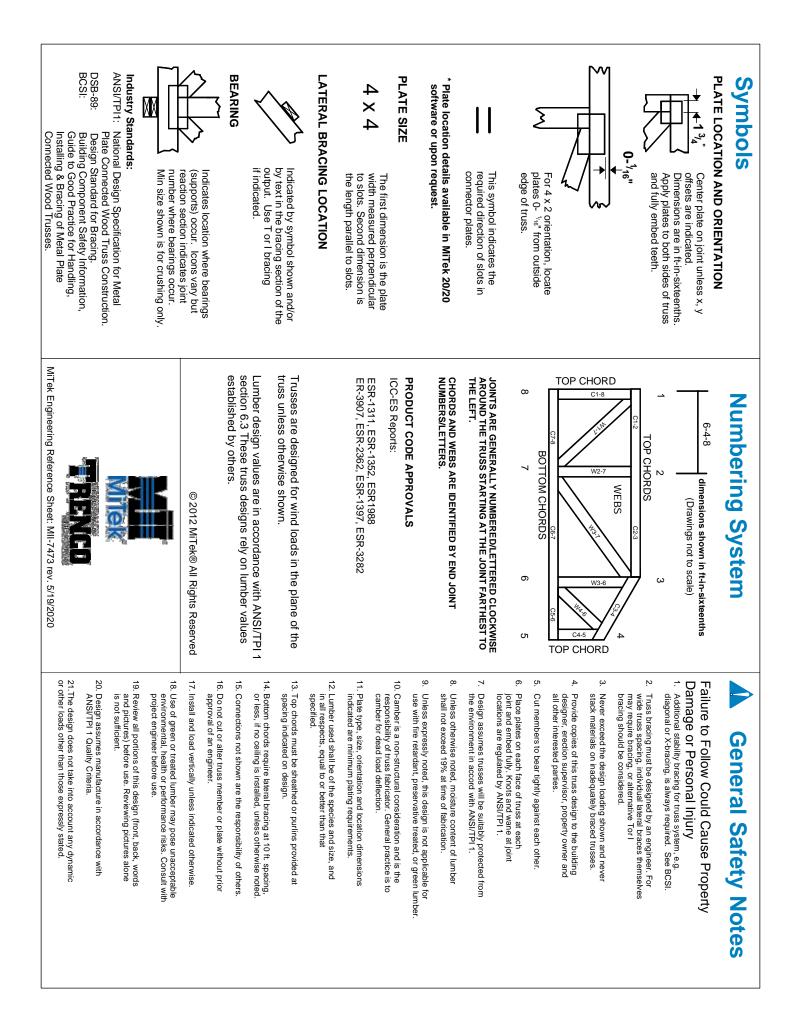
1) Unbalanced roof live loads have been considered for this design.

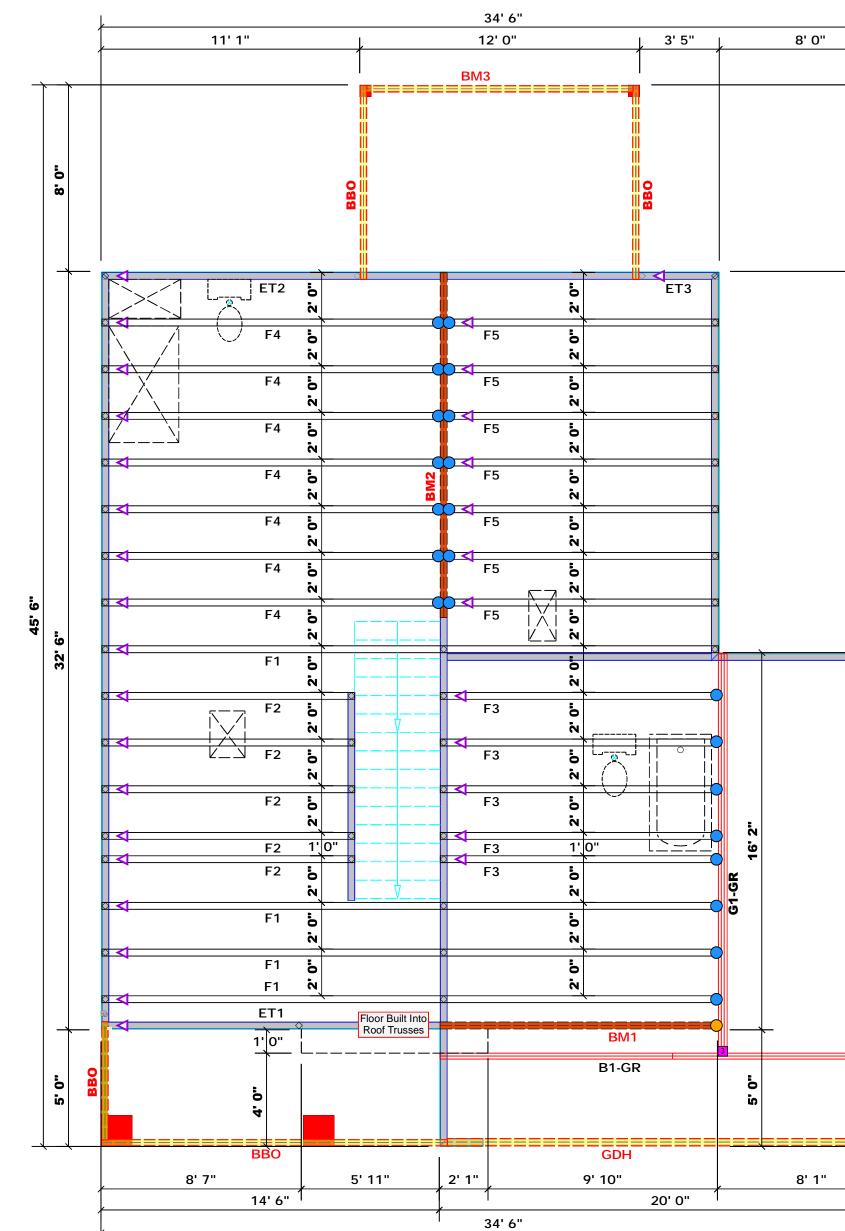
Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0ps; BCDL=6.0ps; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

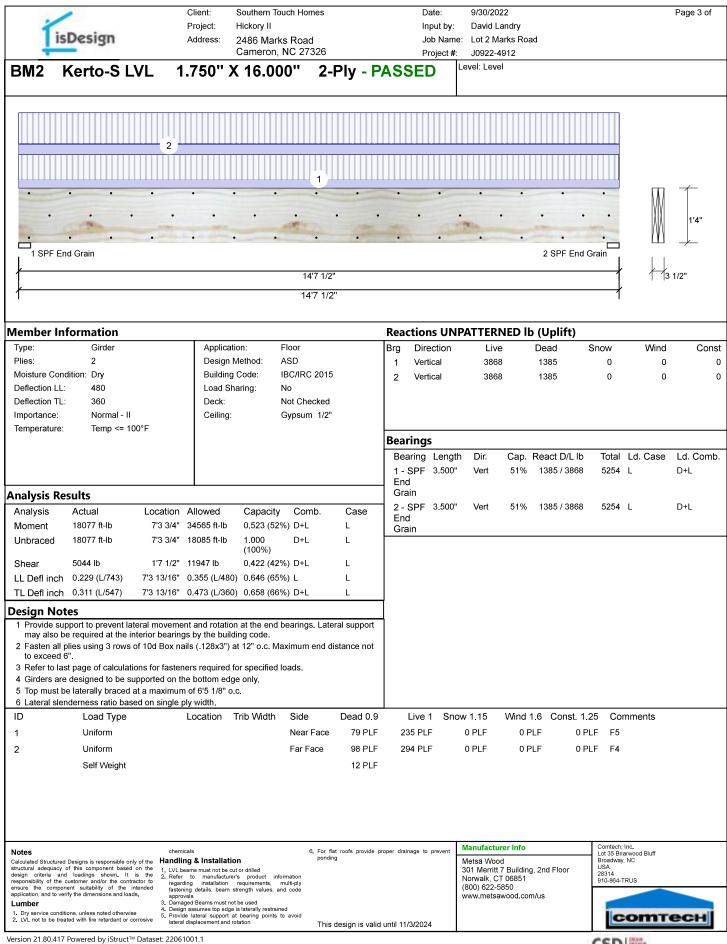



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oucling in trusses and truss systems, see **AVSUPPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BRACING-TOP CHORD

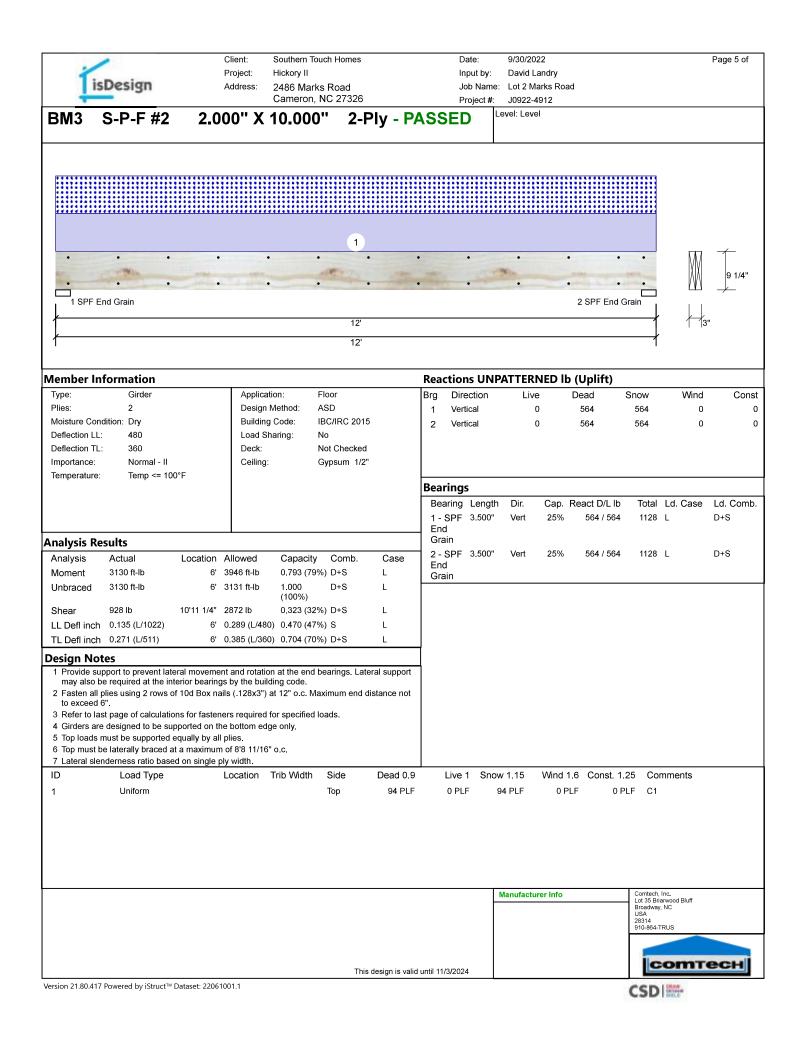
Structural wood sheathing directly applied or 2-10-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

JOB NJ ADB NJ ADD NJ AD		21.2" 16:4" 8:0"	45: 6"	Interview Nowe 1 - defension of two information of	Bearing deemed requirer size and reaction reacti	ROR RUS Reilly R Fayet Phon Fax reactions to design to d	Hickory II = 2550 Bood Ir teville e: (910) Bess that y with the e contract Davi Davi ART FC Davi Bess that y with the e contract Davi Davi Davi Bess that y with the e contract Davi Davi Davi Bess that Package Davi	A FL & B hdustr 0, N.C. 0) 864-4 n or equa e prescription of La id La DR JAC ES REAL AL DOL JAC DOL JAC ES REAL AL DOL JAC DOL JAC	I to 3000# I to 3000# titive Code refer to tho prescriptiv, imum fou uired to s to greater to sional shal am for any di in the a ional shal am for all am	# J0922-4912 SALES REP. Lenny Norris
--	--	------------------	--------	---	---	---	--	--	--	--------------------------------------


THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual building components to be incorporated into the building design at the specification of the building designer. See individual design sheets for each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor system and for the overall structure. The design of the truss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding bracing, consult BCSI-B1 and BCSI-B3 provided with the truss delivery package or online @ sbcindustry.com

Indicates Left End of Truss
 (Reference Engineered Truss Drawing)
 Do NOT Erect Truss Backwards

is	Design	Clier Proj Add	ect: Hickory I ress: 2486 Ma	arks Road		Jok	ut by: Name:	9/30/2022 David Landı Lot 2 Marks	Road			Page 1 of
BM1 k	Kerto-S LVI	L 1.75	50" X 16.(n, NC 27326	-Ply - P		oject #:	J0922-4912 evel: Level				
	2											
•	•	• •		•			•	• •			M	1
1 SPF	-	-	1	and the	•		4.23	• • • • 2 SPF	_		W	1'4"
<u> </u>			11'	11"					\rightarrow			1/2"
<u>/</u>			11'	11"					┦			
/lember Inf	formation					Reaction	5 UNP	ATTERNEI	D lb (Uplift)		
Туре:	Girder		Application:	Floor		Brg Direc	ction	Live	Dead	Snow	Wind	Cor
Plies: Moisture Cond	2 lition [.] Drv		Design Method: Building Code:	ASD IBC/IRC 201	5	1 Vertio		0 0	2869 2869	2079 2079	0 0	
Deflection LL:	480		Load Sharing:	No	0	2 Vertio	a	U	2009	2079	U	
Deflection TL:	360		Deck:	Not Checked								
Importance:	Normal - II		Ceiling:	Gypsum 1/2	"							
Temperature:	Temp <= 100°F	-				Bearings						
							Longth	Dir C	on Booot D/I	lh Total	Ld. Case	Ld. Com
						Bearing 1 - SPF	-		ap. React D/L 5% 2869 / 20			D+S
						2 - SPF			5% 2869/20			D+S
nalysis Re	sults											
Analysis		ocation Allo	•	-	Case							
Moment		5'11 1/2" 397		34%) D+S	L							
Unbraced	13679 ft-lb	5'11 1/2" 1369	99 ft-lb 0.999 (100%)	D+S	L							
Shear	3615 lb	1'7 1/2" 1373		26%) D+S	L							
	0.069 (L/2000)		7 (L/480) 0.240 (L							
			3 (L/360) 0.428 (L							
Design Not	es					1						
1 Provide sup may also be	port to prevent lateral e required at the interi lies using 3 rows of 1	ior bearings by	the building code.	5								
3 Refer to las4 Girders are5 Top loads n6 Top must be	t page of calculations designed to be suppo nust be supported equ e laterally braced at a	orted on the bo ually by all plies maximum of 8	ttom edge only. : 8 3/8" o.c.	ed loads.								
7 Lateral slen			dth. ation Trib Widt	h Side	Dead 0.9	Live 1	Snow	1.15 Wi	nd 1.6 Cons	t. 1.25 Cc	mments	
1	Uniform	200		Тор	120 PLF	0 PLF		D PLF	0 PLF	0 PLF Wa		
2	Uniform			Тор	349 PLF	0 PLF		9 PLF	0 PLF	0 PLF A2		
	Self Weight				12 PLF							
ID 1 2 Notes Calculated Structured structural adequacy of design criteria and responsibility of the compon	Uniform Self Weight Designs is responsible only of ti of this component based on ti badings shown. It is at ustomer and/or the contractor ent suitability of the intendo	chemicals he Handling & I he 1. LVL beams m 2. Refer to 1 to regarding i dastening det	ation Trib Widt	Top Top 6. For ponc information multi-ply	349 PLF 12 PLF		revent N N N N N	D PLF D PLF D PLF Intesta Wood D1 Merritt 7 Bu Iorwalk, CT 064 S00) 622-5850	0 PLF 0 PLF nfo ilding, 2nd Floor 351	0 PLF Wa 0 PLF A2	, Inc. iarwood Bluff y, NC	
application, and to veri Lumber	fy the dimensions and loads.	approvals 3. Damaged Bea	ams must not be used	trained			×	ww.metsawoo	u.com/us			
1. Dry service conditi	ons, unless noted otherwise ted with fire retardant or corrosiv	 Design assumed to the second se	nes top edge is laterally res al support at bearing poi rement and rotation	nts to avoid	- destruction of the					Ic	omt	есн
LVL not to be treat		ratorial uisplac	a conclama rotatuoli	Thi	s design is valid	UNTU 11/3/2024				Concession in succession in su		


-	Client:	Southern Touch Homes		Date:	9/30/2022	Page 2 of
LinDesting	Project:	Hickory II		Input by:	David Landry	
isDesign	Address:	2486 Marks Road Cameron, NC 27326		Job Name:		
	4 2201			Project #:	J0922-4912 evel: Level	
BM1 Kerto-S LV	L 1.750"	X 16.000" 2-	Ply - PASSE	:D		
	• •	• • •	• •	•	••	M
••••	• •	• •	• •	•	• 112	1'4"
	• •			•	 \	W L
1 SPF						
		11'11"				3 1/2"
		11'11"			I	
Multi-Ply Analysis						
Fasten all plies using 3 rows		(.128x3") at 12" o.c I	Maximum end dist	tance no	t to exceed 6".	
Capacity Load	0.0 % 0.0 PLF					
Yield Limit per Foot	245.6 PLF					
Yield Limit per Fastener Yield Mode	81.9 lb. IV					
Edge Distance	1 1/2"					
Min. End Distance	3"					
Load Combination Duration Factor	1.00					
						_
Notes	chemicals		at roofs provide proper drainage	to prevent	Manufacturer Info	Comtech, Inc. Lot 35 Briarwood Bluff Broadway, NC
Calculated Structured Designs is responsible only of structural adequacy of this component based on design criteria and loadings shown. It is	the 1. LVL beams must not be	cut or drilled	-e-	:	Metsä Wood 301 Merritt 7 Building, 2nd Floor	Broadway, NC USA 28314
responsibility of the customer and/or the contracto ensure the component suitability of the inten	r to regarding installation ded fastening details, bear	irer's product information requirements, multi-ply n strength values, and code			Norwalk, CT 06851 (800) 622-5850	910-864-TRUS
application, and to verify the dimensions and loads. Lumber	approvals 3 Damaged Beams must	not be used		ľ	www.metsawood.com/us	
 Dry service conditions, unless noted otherwise LVL not to be treated with fire retardant or corror 	5. Provide lateral suppor lateral displacement an	ge is laterally restrained t at bearing points to avoid d rotation This	design is valid until 11/3/20)24		соттесн
Version 21.80.417 Powered by iStruct™ Da		1113				

Version 21.80.417 Powered by iStruct™ Dataset: 22061001

Í	isDesign		Client: Project: Address:	Southern Touch He Hickory II 2486 Marks Roa	ad	l		9/30/2022 David Landry e: Lot 2 Marks Road	Page 4 of
BM2	Kerto-S		1.750" >	Cameron, NC 2		- PASSE	Project #:	J0922-4912 Level: Level	
· ·	• •	•	•	• •	• •	•	•	• • •	
	•	• •	•	• •	•	•••			·
1 SPF	End Grain							2 SPF End	
					14'7 1/2"				13 1/2"
Multi-Ply	-	ows of 10d	Box nails (128v3") at 12"	oc Mavim	um and dist:	ance no	ot to exceed 6".	
Capacity Load	plies using 5 h	79.8 % 196.0 PL		.120,5 / 41 12					
Yield Limit pe		245.6 PL							
Yield Limit pe Yield Mode		81.9 lb. IV							
Edge Distand Min. End Dist		1 1/2" 3"							
Load Combin Duration Fac	nation	D+L 1.00							
Notes Calculated Struct	tured Designs is responsible	only of the Hand	nicals ling & Installati	on	6. For flat roofs pro ponding	ovide proper drainage t	o prevent	Manufacturer Info Metsä Wood	Comtech, Inc. Lot 35 Briarwood Bluff Broadway, NC
structural adequa design criteria responsibility of	acy of this component bas and loadings shown. I the customer and/or the co mponent suitability of the	ed on the 1. LVL It is the 2. Refe entractor to rega	beams must not be c or to manufacture rding installation	ut or drilled er's product information requirements, multi-ply				301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851 (800) 622-5850	USA 28314 910-864-TRUS
application, and to Lumber 1. Dry service co	overify the dimensions and lo outitions, unless noted other treated with fire retardant o	oads. app 3. Dan 4. Des wise 5. Prov	rovals haged Beams must no ign assumes top edge	e is laterally restrained at bearing points to avoid	This design in	s valid until 11/3/202	24	www.metsawood.com/us	соттесн
Version 21.80	417 Powered by iStruc				inio desigil is	and anur / 1/3/202	- 7		

Version 21.80.417 Powered by iStruct™ Dataset: 22061001.1

1	isDesign	Project: Address:	Southern Touch Homes Hickory II 2486 Marks Road Cameron, NC 27326	Input by: I Job Name: I	9/30/2022 David Landry Lot 2 Marks Road J0922-4912	Page 6 of
BM3	S-P-F #2	2.000" X 1		,	el: Level	
				I		
	• •	• •	• • •		• • •	• \$
	• • • • • • • • • • • • • • • • • • •	•••	• • •	•	• • • 2 SPF End Gr	
			12'			
			12'			1
Multi-Ply	/ Analysis					
Capacity Load Yield Limit pe Yield Mode Edge Distand Min. End Dis Load Combir Duration Fac	er Foot er Fastener ce tance nation	0.0 % 0.0 PLF 157.4 PLF 78.7 lb. IV 1 1/2" 3" 1.00	128x3") at 12" o.c Maximum			
				Ма	nufacturer Info	Comtech, Inc. Lot 35 Briarwood Bluff Broadway, NC
						USA 28314 910-864-TRUS
			This design is valid	until 11/3/2024		соттесн

	•	CI	ient: Southern	Touch Homes		Date	9/30/2	022			Page 7 of
Tie	Design		oject: Hickory II ddress: 2486 Ma			Inpu	tby: David Name: Lot2N	-			
13	Design	A		arks Road n, NC 27326			ect #: J0922-				
GDH	Kerto-S L	VL 1.7	750" X 14.0	000" 2	Ply - P	ASSED	Level: Lev	el			
						3				1	
		2								_	
• •				1)	• •	• •	• •			-
				A Maria	• •	-			-	M	1'2"
1 SPF End	d Grain							2 SF	F End Grain		<u> </u>
,				20'							1/2"
1				20'						1	
lember In	formation					Reactions	UNPATTER	NED lb (Upli	ft)		
Туре:	Girder		Application:	Floor		Brg Direct			Snow	Wind	Co
Plies: Moisture Cond	2 hition: Dry		Design Method: Building Code:	ASD IBC/IRC 20 ²	15	1 Vertica		0 1804	196	0	
Deflection LL:	-		Load Sharing:	No	15	2 Vertica	1	0 1750	141	0	
Deflection TL:			Deck:	Not Checke	d						
Importance:	Normal - II		Ceiling:	Gypsum 1/2	2"						
Temperature:	Temp <= 10	0°F									
						Bearings					
						Bearing L	ength Dir.	Cap. React [D/L lb Tota	I Ld. Case	Ld. Cor
						1 - SPF 3	.500" Vert	19% 1804	/ 196 200	D L	D+S
						End					
nalysis Re						Grain 2 - SPF 3	.500" Vert	18% 1750	/ 141 189	1 L	D+S
Analysis	Actual	Location Al		-	Case	End	JUU Ven	1070 1750	/ 141 103	1 L	0.0
Moment	8592 ft-lb	9'11 11/16" 24	,		Uniform	Grain					
Unbraced	9503 ft-lb	9'11 1/2" 95	509 ft-lb 0.999 (100%)	D+S	L						
Shear	1553 lb	1'5 1/2" 94		17%) D	Uniform						
	0.041 (L/5726)		489 (L/480) 0.084 (i	,	L						
	0.430 (L/546)		651 (L/360) 0.660 (,	L						
esign Not			(,	_	ł					
		eral movement a	and rotation at the er	id bearings. La	teral support	1					
may also b	e required at the in	terior bearings b	by the building code.	Ū							
2 Fasten all p to exceed 6		of 10d Box nails	(.128x3") at 12" o.c.	Maximum end	distance not						
		ons for fasteners	s required for specifie	d loads.							
	designed to be su		0,								
•	nust be supported e laterally braced a										
•	iderness ratio base										
ID	Load Type		ocation Trib Widt	n Side	Dead 0.9	Live 1	Snow 1.15	Wind 1.6 Co	nst. 1.25 C	omments	
1	Uniform			Тор	60 PLF	0 PLF	0 PLF	0 PLF		/all	
2	Uniform			Тор	90 PLF	0 PLF	0 PLF	0 PLF		1GE	
3	Tie-In	0-0-0 to 1	16-10-0 1-0-0	Тор	20 PSF	0 PSF	20 PSF	0 PSF		oof Load	
	Self Weight	0-0-0 10		104	20 P 3P	0101	20101	5101			
	Sen weight										
lotes		chemicals		6. For	flat roofs provide p	oper drainage to pre	went Manufact	urer Info	Comtec Lot 35	Briarwood Bluff	
Calculated Structured	Designs is responsible only of this component based		& Installation s must not be cut or drilled	pon	ding		Metsä Wo 301 Merrit	od t 7 Building, 2nd Flo	Broadw USA	vay, NC	
lesign criteria and esponsibility of the o	I loadings shown. It customer and/or the contra	is the 2 Refer to ictor to recarding	manufacturer's product installation requirements,	information multi-plv			Norwalk, 0	CT 06851		4-TRUS	
ensure the compon application, and to ver	ent suitability of the in ify the dimensions and load	tended fastening s. approvals	details, beam strength values	, and code			(800) 622- www.mets	5850 awood.com/us			
Lumber	ions, unless noted otherwise	 Damaged Design as 	Beams must not be used sumes top edge is laterally res	rained					-		
2. LVL not to be trea	ted with fire retardant or co	. 5. Provide la	iteral support at bearing poir placement and rotation	ts to avoid	is design is valid	until 11/3/2024				COMT	есн

1	isDesign		Client: Project: Address:	Southern Touch H Hickory II 2486 Marks Roa Cameron, NC 2	ad		it by: Name:	9/30/2022 David Landry Lot 2 Marks Road		Page 8 of
GDH	Kerto-S	LVL	1.750"	X 14.000"		- PASSED	ect #:	J0922-4912 evel: Level		
									~	
					• •		•	· · · · ·		1'2"
	End Grain	•		••••	•••	•••	•	2 SPF En		
					20'					3 1/2"
1					20'				1	
Multi-Ply	y Analysis									
Fasten all Capacity	plies using 3 ro	ows of 10	d Box nails)	(.128x3") at 12"	o.c Maxim	um end distand	ce no	t to exceed 6".		
Load Yield Limit pe	er Foot	0.0 PL 245.6								
Yield Limit pe		81.9 lb								
Yield Mode Edge Distand	се	IV 1 1/2"								
Min. End Dis	stance	3"								
Load Combir Duration Fac		1.00								
Notes	tured Designs is responsible		themicals ndling & Installa	tion	6. For flat roofs pro- ponding	vide proper drainage to pre		Manufacturer Info Metsä Wood	Comtech, Inc. Lot 35 Briarwood Broadway, NC	Bluff
structural adequ design criteria responsibility of ensure the co	acy of this component base and loadings shown. I the customer and/or the co opponent suitability of the	ed on the 1 L t is the 2 P ntractor to r intended f	VL beams must not be Refer to manufacti egarding installatior					801 Merritt 7 Building, 2nd Floor Norwalk, CT 06851 (800) 622-5850	USA 28314 910-864-TRUS	
application, and t Lumber 1. Dry service c	to verify the dimensions and lo conditions, unless noted otherv e treated with fire retardant or	oads. 3.[4.[wise 5.F	approvals Damaged Beams must Design assumes top eg	not be used dge is laterally restrained t at bearing points to avoid	This design in	valid until 11/3/2024		www.metsawood.com/us	CO	птесн
Version 21.80	417 Powered by istruc				i na ucaiyii 18				Com Lines	1

Version 21.80.417 Powered by iStruct™ Dataset: 22061001.1

RE: J0922-4912 Lot 2 Marks Road **Trenco** 818 Soundside Rd Edenton, NC 27932

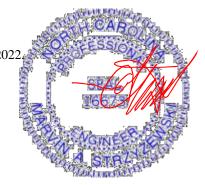
Site Information:

Customer: Southern Touch Homes	Project Name: J0922-4912
Lot/Block: 2	Model: Hickory II
Address: 2486 Marks Road City: Cameron	Subdivision: Marks Road State: NC

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

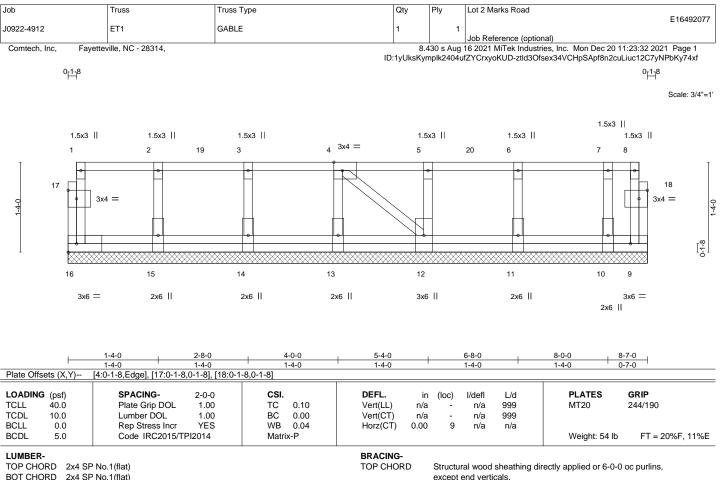
Design Code: IRC2015/TPI2014 Wind Code: N/A Roof Load: N/A psf

Design Program: MiTek 20/20 8.4 Wind Speed: N/A mph Floor Load: 55.0 psf


This package includes 8 individual, dated Truss Design Drawings and 0 Additional Drawings.

No. 1 2 3 4 5 6 7	Seal# E16492077 E16492078 E16492079 E16492080 E16492081 E16492082 E16492083	Truss Name ET1 ET2 ET3 F1 F2 F3 F4	Date 12/20/2021 12/20/2021 12/20/2021 12/20/2021 12/20/2021 12/20/2021
7 8	E16492083 E16492084	F4 F5	12/20/2021 12/20/2021

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville. Truss Design Engineer's Name: Strzyzewski, Marvin My license renewal date for the state of North Carolina is December 31, 2022 North Carolina COA: C-0844 IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer


should verify applicability of design parameters and properly incorporate these designs

into the overall building design per ANSI/TPI 1, Chapter 2.

December 20, 2021

Strzyzewski, Marvin

BOT CHORD2x4 SP No.1(flat)BOT CHORD2x4 SP No.1(flat)WEBS2x4 SP No.3(flat)OTHERS2x4 SP No.3(flat)

 TOP CHORD
 Structural wood sheathing directly applied or 6-0-0 oc except end verticals.

 BOT CHORD
 Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 8-7-0.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 16, 9, 15, 14, 13, 12, 11, 10

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Plates checked for a plus or minus 1 degree rotation about its center.

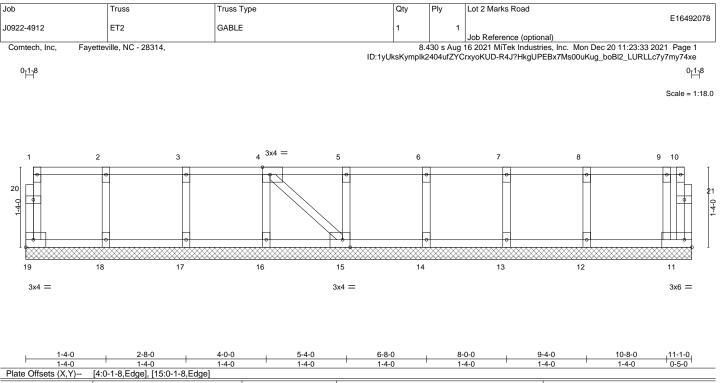
2) Gable requires continuous bottom chord bearing.

3) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

4) Gable studs spaced at 1-4-0 oc.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.


LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf) Vert: 9-16=-10, 1-8=-100 Concentrated Loads (lb) Vert: 4=-71 7=-77 19=-71 20=-71

Plate Offsets (X,Y)	[4:0-1-8,Edge], [15:0-1-8,Edge]	1			1	
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES	CSI. TC 0.06 BC 0.01 WB 0.03	DEFL. i Vert(LL) n/: Vert(CT) n/: Horz(CT) 0.00	a - n/a 999	PLATES MT20	GRIP 244/190
BCDL 5.0	Code IRC2015/TPI2014	Matrix-S			Weight: 54 lb	FT = 20%F, 11%E
	P No.1(flat) P No.1(flat)	BRACING- TOP CHORD	Structural wood sheathing di except end verticals.	rectly applied or 6-0-0) oc purlins,	

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

2x4 SP No.1(flat) 2x4 SP No.3(flat) BOT CHORD WFBS 2x4 SP No.3(flat) OTHERS

REACTIONS.

DNS. All bearings 11-1-0. (lb) - Max Grav All reactions 250 lb or less at joint(s) 19, 11, 18, 17, 16, 15, 14, 13, 12

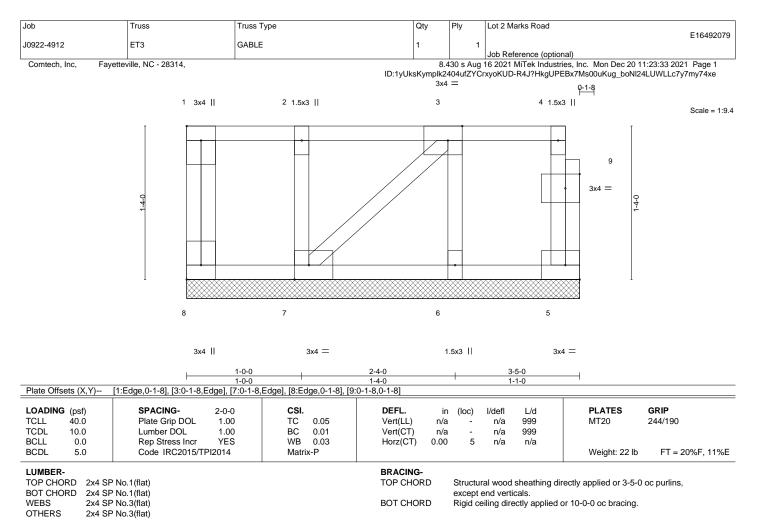
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.


4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

REACTIONS. All bearings 3-5-0.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 8, 5, 7, 6

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

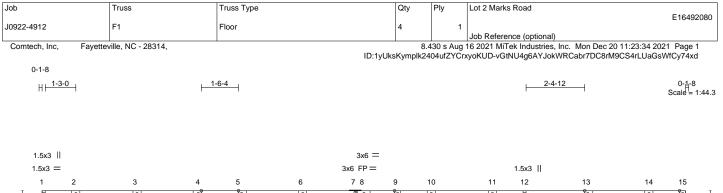
NOTES-

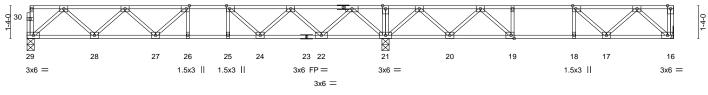
1) Plates checked for a plus or minus 1 degree rotation about its center.

2) Gable requires continuous bottom chord bearing.

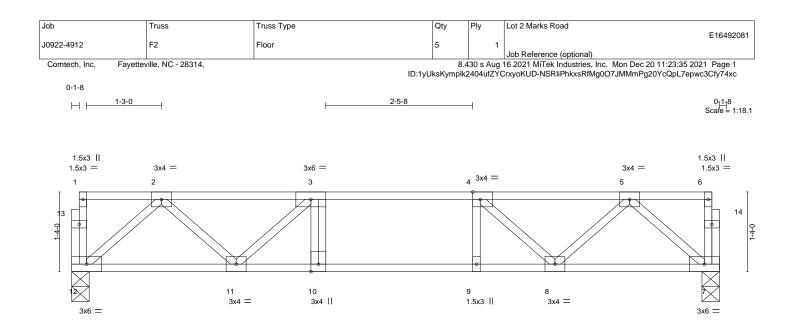
3) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

4) Gable studs spaced at 1-4-0 oc.


5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.


Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.



L	14-7-12					26-5		
Plate Offsets (X,Y)	14-7-12 [4:0-1-8,Edge], [5:0-1-8,Edge], [13:0-1-4	8,Edge], [19:0-1-8,Edge]				11-9	9-4	
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr NO Code IRC2015/TPI2014	CSI. TC 0.55 BC 0.76 WB 0.44 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.10 26-27 -0.13 26-27 0.03 16	l/defl >999 >999 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 136 lb	GRIP 244/190 FT = 20%F, 11%E
	P No.1(flat) P No.3(flat)	-	BRACING- TOP CHOR BOT CHOR	excep	t end vert	icals.	rectly applied or 6-0-0 o	oc purlins,
	te) 29=0-3-8, 16=Mechanical, 21=0-3-8 Grav 29=727(LC 10), 16=1063(LC 4), 21							
TOP CHORD 15-1 8-9= 13-1 BOT CHORD 28-2 22-2 17-1 WEBS 2-29 13-1	. Comp./Max. Ten All forces 250 (lb) or 6a-537/0, 2-3=-1257/0, 3-4=-1883/0, 4-5 0/1401, 9-10=0/1401, 10-11=-468/367, 1 4=-884/0 9=0/771, 27-28=0/1717, 26-27=0/2002, 4=-34/1340, 21-22=-444/147, 20-21=-63 8=0/1158, 16-17=0/586 =-1023/0, 2-28=0/677, 3-28=-640/0, 8-2 7=-372/90, 10-21=-1064/0, 8-22=0/923, 0=0/687, 11-20=-690/0, 11-19=0/582, 12	5=-2002/0, 5-6=-1658/0, 6 11-12=-1158/0, 12-13=-11 25-26=0/2002, 24-25=0/2 17/19, 19-20=-175/900, 18 1=-1289/0, 14-16=-780/0, 6-22=-882/0, 6-24=0/527	-8=-756/225, 158/0, 002, 3-19=0/1158, 14-17=0/415,					
 All plates are 3x4 M Plates checked for : Refer to girder(s) fo Recommend 2x6 st Strongbacks to be a CAUTION, Do not e LOAD CASE(S) Stan Dead + Floor Live (Uniform Loads (plf) 	ndard balanced): Lumber Increase=1.00, Plate)=-10, 1-15=-100 s (lb)	ts center. to and fastened to each tr strained by other means.	uss with 3-10d (0.1	∣31" X 3") nai	ls.		SEA TOO	

December 20,2021

			10-10-0 10-10-0			
Plate Offsets (X,Y)	[4:0-1-8,Edge]	1			1	
LOADING(psf)TCLL40.0TCDL10.0BCLL0.0BCDL5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.36 BC 0.46 WB 0.21 Matrix-S	DEFL. ir Vert(LL) -0.07 Vert(CT) -0.09 Horz(CT) 0.01	10 >999 480 10 >999 360	PLATES MT20 Weight: 57 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat) WEBS 2x4 SP No.3(flat)			BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dir except end verticals. Rigid ceiling directly applied o	,) oc purlins,
REACTIONS. (size	e) 12=0-3-8, 7=0-3-8					

Max Grav 12=576(LC 1), 7=576(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-923/0, 3-4=-1242/0, 4-5=-925/0

11-12=0/606, 10-11=0/1242, 9-10=0/1242, 8-9=0/1242, 7-8=0/603 BOT CHORD

WEBS 2-12=-805/0, 2-11=0/441, 3-11=-469/0, 5-7=-800/0, 5-8=0/449, 4-8=-475/0

NOTES-

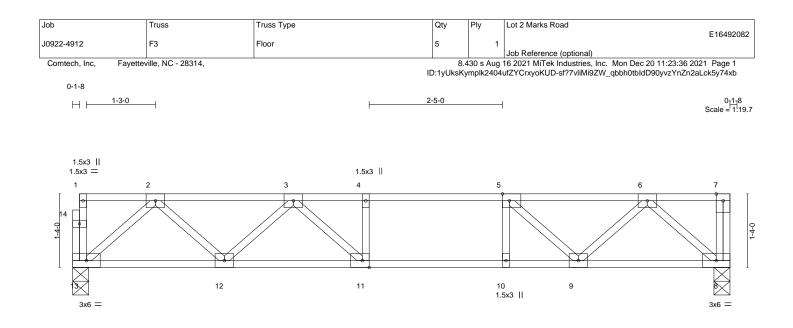

1) Unbalanced floor live loads have been considered for this design.

Plate checked for a plus or minus 1 degree rotation about its center.
 Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

			11-11-0			
I			11-11-0			1
Plate Offsets (X,Y)	[5:0-1-8,Edge], [11:0-1-8,Edge]					
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr NO Code IRC2015/TPI2014	CSI. TC 0.60 BC 0.70 WB 0.27 Matrix-S	- ()	5 11-12 >999 480 5 11-12 >894 360	PLATES MT20 Weight: 62 lb	GRIP 244/190 FT = 20%F, 11%E
BOT CHORD 2x4 SF	P No.1(flat) P No.1(flat) P No.3(flat)	BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dire except end verticals. Rigid ceiling directly applied o	, ,,	oc purlins,	

11-11-0

REACTIONS. (size) 13=0-3-8, 8=0-3-8 Max Grav 13=635(LC 1), 8=1142(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 7-8=-548/0, 2-3=-1060/0, 3-4=-1495/0, 4-5=-1495/0, 5-6=-1059/0

 BOT CHORD
 12-13=0/676, 11-12=0/1395, 10-11=0/1495, 9-10=0/1495, 8-9=0/659

 WEBS
 2-13=-898/0, 2-12=0/534, 3-12=-466/0, 3-11=-19/356, 6-8=-877/0, 6-9=0/557,

2-13=-898/0, 2-12=0/534, 3-12=-466/0, 3-11=-19/356, 6-8=-877/0, 6-9=0/55 5-9=-616/0

NOTES-

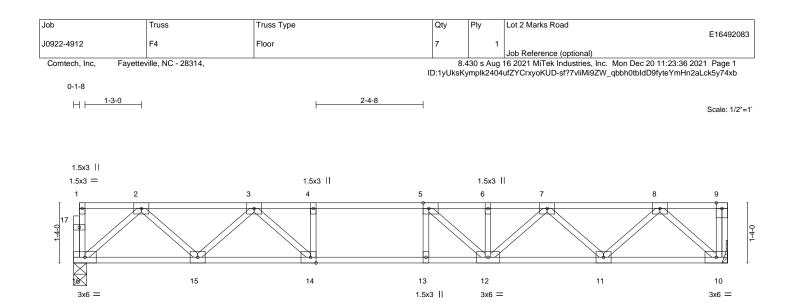
1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x4 MT20 unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.


LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf) Vert: 8-13=-10, 1-7=-100 Concentrated Loads (lb) Vert: 7=-500

Plate Offsets (X,Y)	[5:0-1-8,Edge], [14:0-1-8,Edge]		14-6-0 14-6-0			
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.62 BC 0.78 WB 0.35 Matrix-S	- () -	12-13 >999 480 12-13 >790 360	PLATES MT20 Weight: 76 lb	GRIP 244/190 FT = 20%F, 11%E
BOT CHORD 2x4 SF	P No.1 (flat) P No.1 (flat) P No.3 (flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dire except end verticals. Rigid ceiling directly applied or	2 11	oc purlins,

REACTIONS. (size) 16=0-3-8, 10=Mechanical

Max Grav 16=778(LC 1), 10=784(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 2-3=-1348/0, 3-4=-2244/0, 4-5=-2244/0, 5-6=-2152/0, 6-7=-2152/0, 7-8=-1359/0

 BOT CHORD
 15-16=0/834, 14-15=0/1856, 13-14=0/2244, 12-13=0/2244, 11-12=0/1857, 10-11=0/835

 WEBS
 2-16=-1109/0, 2-15=0/714, 3-15=-707/0, 3-14=0/697, 4-14=-339/0, 8-10=-1111/0, 8-11=0/729, 7-11=-693/0, 7-12=0/401, 5-12=-438/123

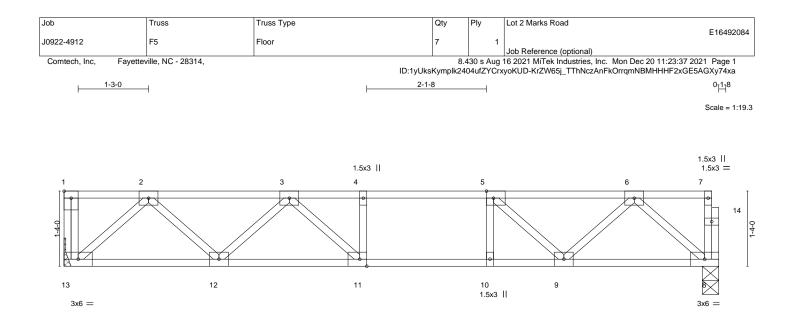
NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x4 MT20 unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Refer to girder(s) for truss to truss connections.


5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.

H			<u>11-7-8</u> 11-7-8			
Plate Offsets (X,Y)	[1:Edge,0-1-8], [5:0-1-8,Edge], [11:0-1-	8,Edge]				
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.44 BC 0.56 WB 0.25 Matrix-S	Vert(LL) -0.1	in (loc) l/defl L/d 0 11-12 >999 480 3 11-12 >999 360 2 8 n/a n/a	PLATES MT20 Weight: 61 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat) WEBS 2x4 SP No.3(flat)			BRACING- TOP CHORD BOT CHORD	Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.		
REACTIONS. (size	e) 13=Mechanical, 8=0-3-8					

Max Grav 13=626(LC 1), 8=619(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-1025/0, 3-4=-1427/0, 4-5=-1427/0, 5-6=-1022/0

 BOT CHORD
 12-13=0/658, 11-12=0/1345, 10-11=0/1427, 9-10=0/1427, 8-9=0/644

 WEBS
 2-13=-876/0, 2-12=0/510, 3-12=-446/0, 3-11=-41/323, 6-8=-854/0, 6-9=0/526, 5-9=-570/0

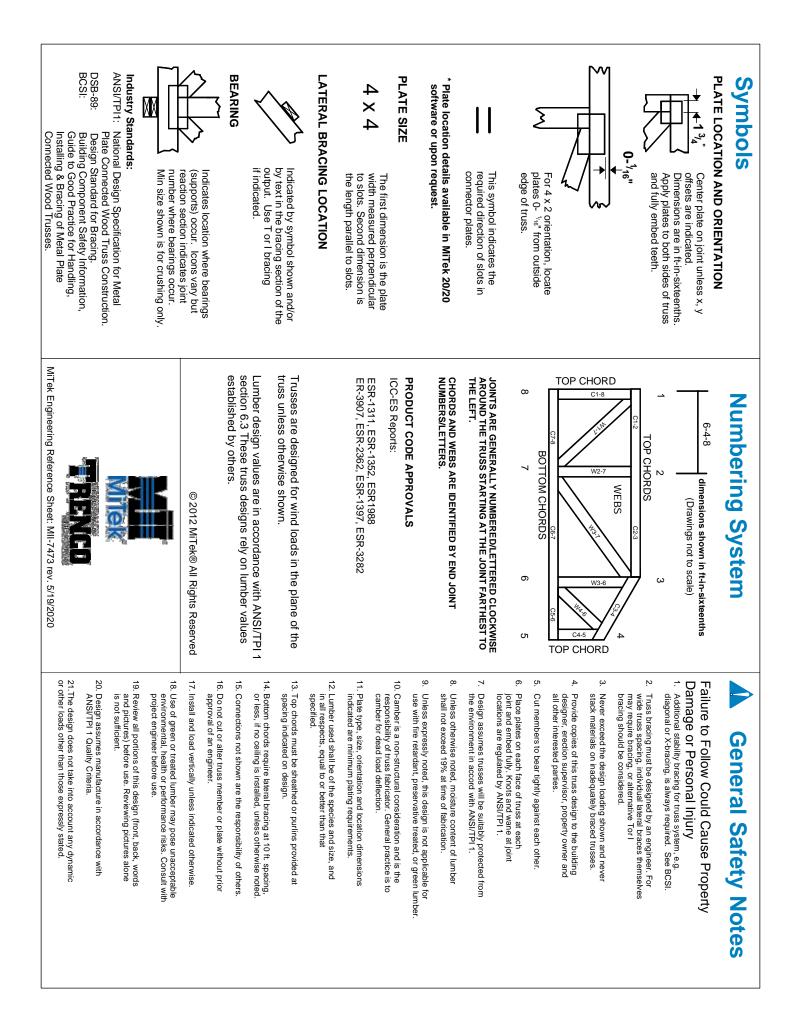
NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x4 MT20 unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Refer to girder(s) for truss to truss connections.


5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.

