

RE: J1022-5018

Precision/39 Liberty Meadows/Harnett

Site Information:

Customer: Project Name: J1022-5018 Lot/Block: Address: City:

Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014 Wind Code: ASCE 7-10 Roof Load: 40.0 psf Design Program: MiTek 20/20 8.4 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 23 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date	No.	Seal#
1	154046232	A1-GE	9/7/2022	21	154046252
2	154046233	A2	9/7/2022	22	154046253
3	154046234	A3-GE	9/7/2022	23	154046254
4	154046235	A4	9/7/2022		
5	154046236	A5-GE	9/7/2022		
6	154046237	B1	9/7/2022		
7	154046238	B2	9/7/2022		
8	154046239	C1-GE	9/7/2022		
9	154046240	C2	9/7/2022		
10	154046241	J1-GE	9/7/2022		
11	154046242	J2	9/7/2022		
12	154046243	J3-GE	9/7/2022		
13	154046244	M1-GE	9/7/2022		
14	154046245	M2	9/7/2022		
15	154046246	P1-GE	9/7/2022		
16	154046247	P2	9/7/2022		
17	154046248	VA1	9/7/2022		
18	154046249	VA2	9/7/2022		
19	154046250	VA3	9/7/2022		
20	154046251	VA4	9/7/2022		

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision

based on the parameters provided by Comtech, Inc - Fayetteville.

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2022

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Trenco

Truss Name

VA5

VA6

VA7

Date

9/7/2022

9/7/2022

9/7/2022

818 Soundside Rd

Edenton, NC 27932

Gilbert, Eric

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Gable studs spaced at 2-0-0 oc.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=176. 12=246.

8) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

818 Soundside Road Edenton, NC 27932

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

- BOT CHORD 2-11=-244/1093, 9-11=-58/497
- WEBS 3-11=-518/305, 5-9=-829/101, 5-11=-143/1064

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-0-15 to 3-3-14, Interior(1) 3-3-14 to 15-4-5, Exterior(2) 15-4-5 to 19-9-2, Interior(1) 19-9-2 to 22-5-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 9, 2.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MITEK Affiliate 818 Soundside Road Edenton, NC 27932

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 17, 2, 21, 23, 24, 25, 26, 27, 18 except (jt=lb) 28=147, 19=104.

10) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Precision/39 Liberty Meadows/Harnett	
					,	154046237
J1022-5018	B1	FLAT GIRDER	1			
01022 0010				2	Job Reference (optional)	
Comtech Inc Equation	illo NC - 28314			8 430 c la	n 6 2022 MiTek Industries Inc. Tue Sen 6 13:53:47 2022	Page 2

30 s Jan 6 2022 MiTek Industries, Inc. Tue Sep 6 13:53:47 2022 Page 2 ID:TBflsx8xnbQ8q?qAEUg6cKzS70A-MN0xFuUSpNPTFpF?mRyvtWBCL7khdEKZoRAHHbygKf2

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 8-14=-20, 1-2=-60, 2-6=-60, 6-7=-60

Concentrated Loads (lb) Vert: 2=-65 4=-850(F) 15=-316(B) 16=-316(B) 17=-316(B) 18=-316(B) 19=-850(F) 20=-850(F) 21=-850(F) 22=-850(F) 23=-850(F) 24=-850(F) 25=-850(F) 26=-850(F) 26=-850(F

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **MISI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Precision/39 Liberty Meadows/Harnett	
						154046238
J1022-5018	B2	FLAT GIRDER	1	2		
				_	Job Reference (optional)	
Comtech, Inc, Fayettev	ille, NC - 28314,			8.430 s Jai	n 6 2022 MiTek Industries, Inc. Tue Sep 6 13:53:48 2022	Page 2

8.430 s Jan 6 2022 MiTek Industries, Inc. Tue Sep 6 13:53:48 2022 Page 2 ID:TBfIsx8xnbQ8q?qAEUg6cKzS70A-qaaJSEV4agXKtzqBJ8U8QjkZfW3fMjzj15wrp2ygKf1

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-6=-60, 7-12=-20

Concentrated Loads (lb)

Vert: 11=-758(B) 8=-758(B) 13=-441(F) 14=-441(F) 15=-758(B) 16=-758(B) 17=-758(B) 18=-758(B) 19=-441(F) 20=-441(F) 15=-758(B) 16=-758(B) 18=-758(B) 18=-758(B) 19=-441(F) 15=-758(B) 16=-758(B) 18=-758(B) 18=-75

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

			5-0-0				10-0-0)		
Plate Offsets (X	,Y)	[2:0-2-0,Edge], [6:0-2-0,Edge]	5-0-0				5-0-0			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	*	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.18 BC 0.24 WB 0.05 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.02 -0.04 0.01 0.04	(loc) 8 6-8 6 6-8	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 42 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS OTHERS	BRACING- TOP CHOR BOT CHOR	D D	Structu Rigid c	iral wood eiling dire	sheathing dir ectly applied c	ectly applied or 6-0-0 or 8-8-0 oc bracing.	oc purlins.			
REACTIONS. (size) 2=0-3-0, 6=0-3-0 Max Horz 2=-58(LC 13) Max Uplift 2=-154(LC 8), 6=-154(LC 9) Max Grav 2=470(LC 1), 6=470(LC 1)										
FORCES. (Ib) TOP CHORD BOT CHORD WEBS	- Max. (2-3=-{ 2-10= 4-9=-;	Comp./Max. Ten All forces 250 (lb) c 555/635, 3-4=-500/660, 4-5=-500/660, -479/453, 9-10=-479/453, 8-9=-479/45 334/207	or less except when shown. 5-6=-555/635 53, 6-8=-479/453							

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Gable studs spaced at 2-0-0 oc.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=154, 6=154.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

			5-	0-0		1			5-0-0			
Plate Offse	ts (X,Y)	[2:0-2-0,Edge], [4:0-2-0	,Edge]									
LOADING TCLL TCDL BCLL BCDL	(psf) 20.0 10.0 0.0 * 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/	2-0-0 1.15 1.15 YES IPI2014	CSI. TC BC WB Matrix	0.24 0.20 0.05 (-S	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.01 -0.03 0.01 0.04	(loc) 4-6 4-6 4 4-6	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 39 lb	GRIP 244/190 FT = 20%
LUMBER-TOP CHORD2x4 SP No.1BOT CHORD2x4 SP No.1WEBS2x4 SP No.2						BRACING- TOP CHOR BOT CHOR	D D	Structu Rigid ce	ral wood : eiling dire	sheathing dire	ectly applied or 6-0-0 r 9-1-1 oc bracing.	oc purlins.
REACTION	REACTIONS. (size) 2=0-3-0, 4=0-3-0 Max Horz 2=-34(LC 13) Max Uplift 2=-114(LC 8), 4=-114(LC 9) Max Grav 2=470(LC 1), 4=470(LC 1)											
FORCES. TOP CHOF BOT CHOF WEBS	(lb) - Max. {D 2-3=- {D 2-6=- 3-6=-	Comp./Max. Ten All f -554/617, 3-4=-554/617 -448/442, 4-6=-448/442 -302/232	orces 250 (lb) or	less except	when shown.							

NOTES-

1) Unbalanced roof live loads have been considered for this design.

Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-2-8 to 3-2-5, Interior(1) 3-2-5 to 5-0-0, Exterior(2) 5-0-0 to 9-4-13, Interior(1) 9-4-13 to 11-2-8 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=114, 4=114.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.06 BC 0.01 WB 0.07 Matrix-S	DEFL. in Vert(LL) 0.00 Vert(CT) 0.00 Horz(CT) 0.00	(loc) 8 7 9	l/defl n/r n/r n/a	L/d 120 120 n/a	PLATES GRIP MT20 244/190 Weight: 86 lb FT = 20%
			PRACINIC				

LUMBER-

 TOP CHORD
 2x6 SP No.1

 BOT CHORD
 2x6 SP No.1

 WEBS
 2x6 SP No.1

 OTHERS
 2x4 SP No.2

BRACING-TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. All bearings 9-3-8.

(lb) - Max Horz 2=353(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 2, 10, 11, 12 except 9=-140(LC 12), 13=-139(LC 12) Max Grav All reactions 250 lb or less at joint(s) 9, 2, 10, 11, 12, 13

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-469/347, 3-4=-364/265, 4-5=-280/197, 7-9=-208/253

NOTES-

 Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

3) All plates are 2x4 MT20 unless otherwise indicated.

- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 2-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 10, 11, 12 except (jt=lb) 9=140, 13=139.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

				6-0-8		
	G (psf)	SPACING- 2-0-0 Plate Grip DOI 1.15	CSI.	DEFL. in	(loc) I/defl L/d	PLATES GRIP
TCDL BCLL	10.0 0.0 *	Lumber DOL 1.15 Rep Stress Incr YES	BC 0.13 WB 0.07	Vert(CT) -0.02 Horz(CT) 0.00	5-6 >999 240 n/a n/a	WILLO 244/190
BCDL	10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL) 0.01	5-6 >999 240	Weight: 47 lb FT = 20%

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WEBS

2x6 SP No.1

- REACTIONS. (size) 6=0-3-8, 5=Mechanical Max Horz 6=146(LC 12) Max Uplift 5=-135(LC 12) Max Grav 6=204(LC 1), 5=359(LC 19)
- FORCES. (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown. WEBS 2-5=-347/349

NOTES-

1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-2-12 to 4-7-9, Interior(1) 4-7-9 to 7-3-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 5=135.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BRACING-TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

LOADING TCLL TCDL BCLL BCDL	(psf) 20.0 10.0 0.0 * 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TF	2-0-0 1.15 1.15 YES 12014	CSI. TC BC WB Matrit	0.09 0.09 0.04 k-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 5 4	l/defl n/r n/r n/a	L/d 120 120 n/a	PLATES MT20 Weight: 55 lb	GRIP 244/190 FT = 20%	
LUMBER-						BRACING-	2	<u>.</u>		1 41			

TOP CHORD 2x6 SP No.1

BOT CHORD	2x6 SP No.1
WEBS	2x6 SP No.1
OTHERS	2x4 SP No.2

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 6-0-8.

Max Horz 10=213(LC 12) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 10, 6, 8 except 9=-295(LC 12), 7=-156(LC 12) Max Grav All reactions 250 lb or less at joint(s) 6, 9, 8, 7 except 10=278(LC 12)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 1-2=-343/240

WEBS 4-7=-222/278

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

3) Gable requires continuous bottom chord bearing.

- 4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 10, 6, 8 except (jt=lb) 9=295, 7=156.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

L	7-1-6	9-3-8	19-3-8	
I	7-1-6	2-2-2	10-0-0	I
Plate Offsets (X,Y)	[2:0-0-6,0-1-3]			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2015/TPI2014	CSI. DEFL. TC 0.21 Vert(LL) -0 BC 0.36 Vert(CT) -0 WB 0.25 Horz(CT) 0 Matrix-S Wind(LL) 0	in (loc) I/defl L/d PLATES .08 18 >999 360 MT20 .016 18-19 >999 240 .03 15 n/a n/a .09 18 >999 240 Weight: 145 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 S BOT CHORD 2x6 S WEBS 2x4 S 12-19 OTHERS 2x4 S	SP No.1 SP No.1 SP No.2 *Except* 5: 2x6 SP No.1 SP No.2	BRACING- TOP CHORD BOT CHORD WEBS JOINTS	Structural wood sheathing directly applied or 5-9-12 except end verticals. Rigid ceiling directly applied or 9-8-5 oc bracing. 1 Row at midpt 15-26 1 Brace at Jt(s): 26, 27	oc purlins,

REACTIONS. (size) 15=Mechanical, 2=0-3-8 Max Horz 2=236(LC 8) Max Uplift 15=-251(LC 12), 2=-238(LC 8) Max Grav 15=778(LC 1), 2=816(LC 1)

15-24=-1621/646

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1744/443, 3-4=-1682/466, 4-5=-1666/484, 5-6=-1642/503

 BOT CHORD
 2-23=-642/1617, 22-23=-642/1617, 21-22=-642/1617, 20-21=-642/1617, 19-20=-642/1617, 18-19=-642/1617, 16-18=-642/1617, 15-16=-642/1617

 WEBS
 6-20=-106/362, 6-27=-1611/641, 26-27=-1576/627, 25-26=-1580/630, 24-25=-1587/631,

NOTES-

 Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

All plates are 2x4 MT20 unless otherwise indicated.

4) Gable studs spaced at 2-0-0 oc.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 15=251, 2=238.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOADING	i (psf)	SPACING- 2-0-0	CSI.	DEFL. in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL 1.15	TC 0.35	Vert(LL) -0.07	2-10	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL 1.15	BC 0.36	Vert(CT) -0.16	2-10	>999	240		
BCLL	0.0 *	Rep Stress Incr YES	WB 0.72	Horz(CT) 0.03	8	n/a	n/a		
BCDL	10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL) 0.06	2-10	>999	240	Weight: 122 lb	FT = 20%
LUMBER	-			BRACING-					

LUMBER-		BRACING-	
TOP CHORD	2x6 SP No.1	TOP CHORD	Structural wood sheathing directly applied or 5-5-8 oc purlins,
BOT CHORD	2x6 SP No.1		except end verticals.
WEBS	2x4 SP No.2 *Except*	BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.
	5-8: 2x6 SP No.1	WEBS	1 Row at midpt 3-8

REACTIONS. (size) 8=Mechanical, 2=0-3-8 Max Horz 2=165(LC 8) Max Uplift 8=-103(LC 12), 2=-98(LC 8) Max Grav 8=778(LC 1), 2=816(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-1758/239, 5-8=-268/189

BOT CHORD 2-10=-383/1636, 8-10=-383/1636

WEBS 3-10=0/418, 3-8=-1601/364

NOTES-

 Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-10-15 to 3-5-14, Interior(1) 3-5-14 to 19-3-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2 except (jt=lb) 8=103.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

REACTIONS. (size) 5=5-0-0, 2=5-0-0, 6=5-0-0

Max Horz 2=73(LC 8) Max Uplift 5=-17(LC 8), 2=-92(LC 8), 6=-71(LC 12) Max Grav 5=40(LC 1), 2=189(LC 1), 6=225(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

3) Gable requires continuous bottom chord bearing.

4) Gable studs spaced at 2-0-0 oc.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 2, 6.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss system. See **MSIVTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

		ł									
Plate Offsets (X,Y) [2:0-2-14,0-0-6]										
LOADING (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.15	тс	0.26	Vert(LL)	-0.01	2-4	>999	360	MT20	244/190
TCDL 10.0	Lumber DOL	1.15	BC	0.08	Vert(CT)	-0.01	2-4	>999	240		
BCLL 0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00		n/a	n/a		
BCDL 10.0	Code IRC2015	/TPI2014	Matrix	k-P	Wind(LL)	0.01	2-4	>999	240	Weight: 23 lb	FT = 20%
LUMBER- TOP CHORD 22	4 SP No.1				BRACING- TOP CHOR	2D	Structu	ral wood	sheathing di	rectly applied or 5-0-0	oc purlins,

BOT CHORD

except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing

TOP CHORD2x4 SP No.1BOT CHORD2x6 SP No.1WEBS2x6 SP No.1

REACTIONS. (size) 2=0-3-0, 4=0-1-8 Max Horz 2=51(LC 8)

Max Uplift 2=-121(LC 8), 4=-71(LC 8) Max Grav 2=277(LC 1), 4=174(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-2-8 to 3-2-5, Interior(1) 3-2-5 to 4-9-4 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 2=121.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LUMBER-TOP CHORD 2x4 SP No.1

BOT CHORD 2x4 SP No.1 BOT CHORD 2x6 SP No.1 OTHERS 2x4 SP No.2 BRACING-TOP CHORD BOT CHORD WEBS

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing. T-Brace: 2x4 SPF No.2 - 7-20 Fasten (2X) T and I braces to narrow edge of web with 10d (0.131"x3") nails, 6in o.c., with 3in minimum end distance. Brace must cover 90% of web length.

REACTIONS. All bearings 25-11-15. (lb) - Max Horz 1=-264(LC 8

Max Horz 1=-264(LC 8) Max Uplift All uplift 100 lb or less at joint(s) 1, 13, 21, 22, 23, 24, 19, 17, 16, 15 except 25=-126(LC 12), 14=-124(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 1, 13, 20, 21, 22, 23, 24, 25, 19, 17, 16, 15, 14

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-286/197

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) All plates are 2x4 MT20 unless otherwise indicated.

4) Gable requires continuous bottom chord bearing.

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 13, 21, 22, 23,
- 24, 19, 17, 16, 15 except (jt=lb) 25=126, 14=124.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss system. See **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 9=136, 6=136.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 OTHERS 2x4 SP No.2

REACTIONS. All bearings 14-7-5. (lb) - Max Horz 1=-117(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 1 except 8=-108(LC 12), 6=-107(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=252(LC 1), 8=351(LC 19), 6=351(LC 20)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. 2-8=-305/211. 4-6=-305/211 WFBS

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-5-9 to 4-10-6, Interior(1) 4-10-6 to 7-4-3, Exterior(2) 7-4-3 to 11-9-0, Interior(1) 11-9-0 to 14-2-13 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 8=108, 6=107.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

REACTIONS. (size) 1=10-10-3, 3=10-10-3, 4=10-10-3 Max Horz 1=-85(LC 8) Max Uplift 1=-25(LC 12), 3=-33(LC 13) Max Grav 1=202(LC 1), 3=203(LC 1), 4=395(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-5-9 to 4-10-6, Interior(1) 4-10-6 to 5-5-10, Exterior(2) 5-5-10 to 9-10-7, Interior(1) 9-10-7 to 10-5-11 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

6) Non Standard bearing condition. Review required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss system. See **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

I OP CHORD2x4 SP No.1BOT CHORD2x4 SP No.1OTHERS2x4 SP No.2

REACTIONS. (size) 1=7-1-0, 3=7-1-0, 4=7-1-0 Max Horz 1=-53(LC 10) Max Uplift 1=-22(LC 12), 3=-27(LC 13)

Max Grav 1=138(LC 1), 3=138(LC 1), 4=223(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.6) Non Standard bearing condition. Review required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

2x4 1/

2x4 📎

Structural wood sheathing directly applied or 3-4-14 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Plate Offsets (X X)	0-0-8 0-0-8				3-4-14 3-4-6						
LOADING (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.15	TC	0.02	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL 10.0	Lumber DOL	1.15	BC	0.05	Vert(CT)	n/a	-	n/a	999		
3CLL 0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL 10.0	Code IRC2015/TP	912014	Matri	x-P						Weight: 10 lb	FT = 20%

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1

REACTIONS. (size) 1=3-3-13, 3=3-3-13 Max Horz 1=-21(LC 10) Max Uplift 1=-5(LC 12), 3=-5(LC 13) Max Grav 1=99(LC 1), 3=99(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Trenco 818 Soundside Rd Edenton, NC 27932

Re: J1022-5019 Precision/39 Liberty Meadows/Harnett

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville.

Pages or sheets covered by this seal: I54566784 thru I54566793

My license renewal date for the state of North Carolina is December 31, 2022.

North Carolina COA: C-0844

October 5,2022

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	Precision/39 Liberty	Meadows/Harnett	15 450070 4
J1022-5019	ET1	GABLE	1	1			154566784
					Job Reference (option	nal)	
Comtech, Inc, Fayette	ville, NC - 28314,	IC	D:TBflsx8xnbQ8q	8.430 s Ja ?qAEUg6c	n 62022 MiTek Indust KzS70A-WbrogXiQ3tL	ries, Inc. Wed Oct 5 10 dGYeDwtNBuAa55kc?X):54:57 2022 Page 1 (2bww6m4TGyWUSi
0-1-8							0- <mark>1</mark> -8
							Scale = 1:33.7
1 0	2 4 5	6 7 9	0 10	11	3X0 FP	4 15	16 17
			9 10			4 15 A A	
95				2			36 0
ЧЩ Ц				-			
34 33	32 31 30	29 28 27 26	25 24	23	22 2	21 20	19 18
3x4 =		3x6 FP =					3x4 =
1-4-0 2-8-0	4-0-0 5-4-0	6-8-0 8-0-0 9-4-0 10-8-0	12-0-0	13-4-0	14-8-0 16-0-0	17-4-0 18-8-0	20-3-0
1-4-0 1-4-0	1-4-0 1-4-0	1-4-0 1-4-0 1-4-0 1-4-0	1-4-0	1-4-0	1-4-0 1-4-0	1-4-0 1-4-0	1-7-0
LOADING (psf)	SPACING- 2-0-0	CSI. D	DEFL. ir	n (loc)	l/defl L/d	PLATES	GRIP
TCLL 40.0	Plate Grip DOL 1.00	TC 0.09 V	/ert(LL) n/a	a -	n/a 999	MT20	244/190
TCDL 10.0	Lumber DOL 1.00	BC 0.01 V	/ert(CT) n/a	a -	n/a 999		
BCDL 5.0	Code IRC2015/TPI2014	Matrix-R	10rz(CT) 0.00) 18	n/a n/a	Weight: 84 lb	FT = 20%F. 11%E
0.0						rreigini e i iz	
LUMBER-	A (11 - 1)	B	RACING-	o			
BOT CHORD 2x4 SP No	.1(flat) 1(flat)	I	OP CHORD	Structur	al wood sheathing dii	ectly applied or 6-0-0	oc purlins,
WEBS 2x4 SP No	.3(flat)	В	OT CHORD	Rigid ce	eiling directly applied of	or 10-0-0 oc bracing.	
OTHERS 2x4 SP No	.3(flat)			0		5	
REACTIONS. All bearing	ngs 20-3-0.						
(lb) - Max Grav	All reactions 250 lb or less	at joint(s) 34, 18, 33, 32, 31, 30, 28, 27, 2	26, 25, 24, 23, 2	2, 21, 20,			

19

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

lob	Truss	Truss Type			Qty	Ply	Precision/39 I	Liberty Meadows	/Harnett	15.4	ECC70E
1022-5019	ET2	GABLE			1	1				1543	200702
Comtech Inc Equation	illo NC - 28314					8 430 e la	Job Reference	e (optional)	Wed Oct 5 10:	54.58 2022 Pag	1 01
Connech, inc, i ayellev	ille, NC - 20314,			ID:	FBflsx8xnbQ	8q?qAEUg6	6cKzS70AnPB	utj2qAUUtiDPUt	uQRO7HI8xHG	Ut49mVe?jyWU	JSh
										0	1 <mark>1</mark> 8
										Scale	= 1:21.5
3x4											
1 2	3	4	5	6		7	8	9	10) 11	
	•	•	<u> </u>	•		•	<u> </u>	•		• •	
-2-0										•	23
					******				******		
22 21	20	19	18	17		16	15	14	1:	3 12	
3x4										3x4	=
1-4-0	2-8-0 4	-0-0 5-4	1-0 ·	6-8-0	8-0-0	. 9	-4-0	10-8-0	12-0-0	13-0-8	

Plate Offsets (X,Y) [1:Edge,0-1-8], [22:Edg	je,0-1-8]							
LOADING (psf)SPACING-TCLL 40.0Plate Grip DOLTCDL 10.0Lumber DOLBCLL 0.0Rep Stress IncrBCDL 5.0Code IBC2015/	2-0-0 1.00 1.00 YES TPI2014	CSI. TC 0.06 BC 0.01 WB 0.03 Matrix-R	DEFL. Vert(LL) Vert(CT) Horz(CT) 0	in (loo n/a n/a .00 1	c) l/defl - n/a - n/a 2 n/a	L/d 999 999 n/a	PLATES MT20 Weight: 56 lb	GRIP 244/190 ET = 20%E 11%E
LUMBER- TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat)			BRACING- TOP CHORD	Stru	ctural wood	d sheathing dir	rectly applied or 6-0-0	oc purlins,

TOP CHORD	2x4 SP No.1(flat)	TOP CHORD	Structural wood sheathing directly applied or 6-0-0 oc purlins
BOT CHORD	2x4 SP No.1(flat)		except end verticals.
WEBS	2x4 SP No.3(flat)	BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.
OTHERS	2x4 SP No.3(flat)		

REACTIONS. All bearings 13-0-8.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 22, 12, 21, 20, 19, 18, 17, 16, 15, 14, 13

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

7) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Precision/39 Liberty N	leadows/Harnett	
11022 5010	ET2	CARLE	1	1			154566786
J1022-3019		GABLE		· ·	Job Reference (option	al)	
Comtech, Inc, Fayette	eville, NC - 28314,			8.430 s Ja	n 6 2022 MiTek Industr	ies, Inc. Wed Oct 51	0:55:06 2022 Page 1
			ID:TBflsx8xn	bQ8q?qAE	Ug6cKzS70A-IJuCZcp3	xeUMrxqyyG1II3SfIMg	gB86tF?0S3IFyWUSZ
0- <u>1</u> -8							0-1-8
							Scale = 1:35.4
				3x6	FP=		
1 2	3 4 5	6 7 8	9 10	11 1	2 13 14	15 16	17 18
G7 [<u>e</u> e e		9 9	<u> </u>		<u>e</u> e	
¥7, ₩							
		*****	~~~~~	~~~	****	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	*****
36 35	34 33 32	31 30 29 28	27 26	25	24 23	22 21	20 19
3x4 ≡		3x6 FP =					3x4 =
140 280	400 540 6	80 800 040 108	0 1200 124	0 1/ 0	0 1600 174	0 19 9 0 20	0.0 21.2.9
1-4-0 2-8-0	1-4-0 1-4-0 1-	4-0 1-4-0 1-4-0 1-4-0) 1-4-0 1-4-	0 14-0	0 1-4-0 1-4-	0 1-4-0 1-4	4-0 1-3-8
LOADING (psf)	SPACING- 2-0-		DEFL. i	n (loc)	I/defI L/d	PLATES	GRIP
TCLL 40.0	Lumber DOL 1.0		Vert(LL) N/	a -	n/a 999 n/a 999	MT20	244/190
BCLL 0.0	Rep Stress Incr YES	S WB 0.03	Horz(CT) 0.0	a - 0 19	n/a n/a		
BCDL 5.0	Code IRC2015/TPI2014	Matrix-R				Weight: 88 lb	FT = 20%F, 11%E
		I					
	1 (flot)		BRACING-	Ctructure	al wood aboathing die	atly applied or C.O.C	
BOT CHORD 2x4 SP No	o.1(flat)		IOF CHORD	excepte	and verticals.	ecuy applied of 6-0-0	oc putilitis,
WEBS 2x4 SP No	p.3(flat)		BOT CHORD	Rigid ce	eiling directly applied o	r 10-0-0 oc bracing.	
OTHERS 2x4 SP No	p.3(flat)			÷		0	

REACTIONS. All bearings 21-3-8.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 36, 19, 35, 34, 33, 32, 31, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Precision/39 Liberty Meadows/Harnett
					154566787
J1022-5019	F1	FLOOR	1	1	
					Job Reference (optional)
Comtech, Inc, Fayettev	/ille, NC - 28314,		8	3.430 s Jar	6 2022 MiTek Industries, Inc. Wed Oct 5 10:55:08 2022 Page 1
		ID:TBf	lsx8xnbQ8	q?qAEUg6	cKzS70A-ii0y_IrJTFk34F_K4h3mrUXsbACBcoSYSKx9M8yWUSX
0-1-8					
<mark> -3-0</mark>	2-	4-4			2-3-12 0-1-8 Scale = 1:56.9

L	19-8-12				32-11	-0	
	19-8-12		I		13-2	4	
Plate Offsets (X,Y)	[12:0-3-0,Edge], [23:0-3-0,Edge], [42:0-	1-8,0-0-8], [43:0-1-8,0-0-8	3]				
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 1-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr NO Code IRC2015/TPI2014	CSI. TC 0.58 BC 0.68 WB 0.92 Matrix-S	DEFL. ir Vert(LL) -0.32 Vert(CT) -0.43 Horz(CT) 0.07	(loc) l/defl 36-37 >743 36-37 >543 30 n/a	L/d 480 360 n/a	PLATES GRIP MT20 244/190 M18AHS 186/179 Weight: 231 lb FT = 20%F. 11	 1%E
						,,,	
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF REACTIONS. (siz Max L Max C	 2400F 2.0E(flat) 2400F 2.0E(flat) 2400F 2.0E(flat) No.3(flat) e) 41=0-3-0, 30=0-3-8, 24=0-3-0 Jplift 24=-247(LC 3) Grav 41=1576(LC 3), 30=2864(LC 1), 24 	=50(LC 4)	BRACING- TOP CHORD BOT CHORD	Structural wood except end ver Rigid ceiling di	d sheathing dir ticals. rectly applied c	ectly applied or 6-0-0 oc purlins, r 6-0-0 oc bracing.	
FORCES. (lb) - Max. TOP CHORD 2-3= 9-11	Comp./Max. Ten All forces 250 (lb) or -3504/0, 3-4=-6223/0, 4-5=-6223/0, 5-6= =-4970/0, 11-12=-4970/0, 12-13=-746/0, 20/0455, 4740, 0/4055, 40, 0/4055	less except when shown -7661/0, 6-7=-7661/0, 7-9 13-14=0/4779, 14-15=0/	9=-6965/0, 4779,				
BOT CHORD 40-4 31-3 25-2	/=0/3457, 17-18=0/1956, 18-19=0/1956 1=0/2080, 38-40=0/5030, 37-38=0/7087 33=0/3400, 30-31=-1894/0, 28-30=-3921 6=-1032/0, 24-25=-366/28	, 19-21=0/1956, 21-22=0/ , 36-37=0/7661, 35-36=0/ /0, 27-28=-2958/0, 26-27=	669 7661, 33-35=0/6235, =-1956/0,				
WEBS 2-41 12-3 6-37 22-2	=-2547/0, 2-40=0/1809, 3-40=-1939/0, 3 1=-3335/0, 12-33=0/1934, 9-33=-1560/0 =-369/0, 7-35=-995/0, 15-30=-1141/0, 1 5=-384/0, 21-25=0/461, 21-26=-1169/0,	-38=0/1454, 13-30=-3542 , 9-35=0/959, 5-38=-1054 5-28=0/870, 17-28=-919/0 19-26=0/606, 17-27=0/15	//0, 13-31=0/3079, //0, 5-37=0/835, 0, 22-24=-31/451, 13, 18-27=-780/0				
 NOTES- Unbalanced floor liv All plates are MT20 All plates are 3x6 M Plates checked for : Provide mechanical Recommend 2x6 st Strongbacks to be a CAUTION, Do not e Hanger(s) or other or chord. The design/. In the LOAD CASE(s) Stan Dead + Floor Live (1 Uniform Loads (plf) Vert: 24-41 Concentrated Loads Vert: 12=-7 	e loads have been considered for this de plates unless otherwise indicated. T20 unless otherwise indicated. a plus or minus 1 degree rotation about i connection (by others) of truss to bearir rongbacks, on edge, spaced at 10-0-0 c titached to walls at their outer ends or re prect truss backwards. connection device(s) shall be provided si selection of such connection device(s) is (S) section, loads applied to the face of t dard balanced): Lumber Increase=1.00, Plate =-5, 1-12=-170, 12-23=-50 s (lb) 43(F)	esign. ts center. ng plate capable of withsta cc and fastened to each tr strained by other means. ufficient to support concer the responsibility of other he truss are noted as fron Increase=1.00	anding 247 lb uplift at joir uss with 3-10d (0.131" X ntrated load(s) 783 lb doo rs. t (F) or back (B).	nt 24. 3") nails. wn at 15-9-12 or	n top	SEAL 036322 October 5,2022	Manunnin

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job		Truss	Truss Type	Qty	Ply	Precision/39 Liberty Meadows/Harnett
						154566788
J10	22-5019	F2	Floor	5	1	
						Job Reference (optional)
Co	omtech, Inc, Fayettev	/ille, NC - 28314,		6	8.430 s Jar	6 2022 MiTek Industries, Inc. Wed Oct 5 10:55:11 2022 Page 1
			ID:TI	Bflsx8xnb0	28q?qAEU	g6cKzS70A-6Hi5dKtCmA6exiivlpdTS79LxNDJpDf_8l9qzSyWUSU
	0-1-8					
	1-3-0	2	-4-4			2-3-12 0-1-8 Scale = 1:55.9

	<u>14-7-4</u> 14-7-4		19-8-12 5-1-8	<u>32</u> 1:	-11-0
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.70 BC 0.65 WB 0.70 Matrix-S	DEFL. ir Vert(LL) -0.27 Vert(CT) -0.38 Horz(CT) 0.05	n (loc) I/defl L/d 7 34 >858 480 8 34 >627 360 9 22 n/a n/a	PLATES GRIP MT20 244/190 M18AHS 186/179 Weight: 167 lb FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF	2 2400F 2.0E(flat) 2 2400F 2.0E(flat) 2 No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing di except end verticals. Rigid ceiling directly applied o	rectly applied or 6-0-0 oc purlins, or 6-0-0 oc bracing.

REACTIONS. (size) 37=0-3-0, 27=0-3-8, 22=0-3-0 Max Grav 37=953(LC 10), 27=2150(LC 1), 22=621(LC 4)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- TOP CHORD 2-3=-2014/0, 3-4=-3356/0, 4-5=-3356/0, 5-6=-3950/0, 6-7=-3950/0, 7-8=-3454/0, 8-10=-2300/0, 10-11=-2300/0, 11-12=-379/347, 12-13=0/2735, 13-14=0/2735,
- 14-16=-486/1427, 16-17=-1633/515, 17-18=-1633/515, 18-19=-1633/515, 19-20=-1198/26 BOT CHORD 36-37=0/1196, 35-36=0/2803, 34-35=0/3743, 33-34=0/3950, 32-33=0/3950, 30-32=0/3014, 29-30=-29/1454, 27-29=-1220/0, 26-27=-1763/0, 25-26=-1049/1109, 24-25=-515/1633, 23-24=-155/1563. 22-23=0/765 WEBS 2-37=-1497/0, 2-36=0/1065, 3-36=-1027/0, 3-35=0/705, 12-27=-1900/0, 12-29=0/1468, 11-29=-1445/0, 11-30=0/1128, 8-30=-947/0, 8-32=0/684, 5-35=-495/0, 5-34=-175/543, 7-32=-902/0, 14-27=-1409/0, 14-26=0/960, 16-26=-1036/0, 20-22=-957/0, 20-23=-38/563, 19-23=-475/168, 19-24=-452/87, 16-25=0/1148, 17-25=-491/0

NOTES-

1) Unbalanced floor live loads have been considered for this design.

All plates are MT20 plates unless otherwise indicated.

- 3) All plates are 3x4 MT20 unless otherwise indicated.
- 4) Plates checked for a plus or minus 1 degree rotation about its center.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

			20-3-0						
Plate Offsets (X,	Y) [6:0-1-8,Edge], [7:0-1-8,Edge]		20-3-0						
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING-1-7-3Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.27 BC 0.55 WB 0.49 Matrix-S	DEFL. ir Vert(LL) -0.30 Vert(CT) -0.41 Horz(CT) 0.07	n (loc) l/defl 18-19 >801 18-19 >581 7 14 n/a	L/d 480 360 n/a	PLATES MT20 M18AHS Weight: 102 lb	GRIP 244/190 186/179 FT = 20%F, 11%E		
LUMBER- TOP CHORD 22 BOT CHORD 22 WEBS 22	x4 SP 2400F 2.0E(flat) x4 SP 2400F 2.0E(flat) x4 SP No.3(flat)	BRACING- TOP CHORD BOT CHORD	Structural wood except end verti Rigid ceiling dire	sheathing dire cals. ectly applied or	ctly applied or 6-0-0 c	oc purlins,			
REACTIONS.	(size) 24=0-3-0, 14=0-3-0 Max Grav 24=874(LC 1), 14=874(LC 1)								
FORCES. (Ib) - TOP CHORD	ORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. OP CHORD 2-3=-1894/0, 3-4=-3231/0, 4-5=-3231/0, 5-6=-3966/0, 6-7=-4188/0, 7-8=-3966/0, 8 10- 3231/0, 10, 14- 3231/0, 11, 12- 1894/0								
BOT CHORD	SOT CHORD 23-24=0/1104, 22-23=0/2656, 14-15=0/3714, 19-20=0/4188, 18-19=0/4188, 17-18=0/4188, 16-17=0/3714, 15-16=0/2656, 14-15=0/1104 VIERS 2-24=-1383(0, 2-23=-0/2028, 3-23=-092/0, 3-22=0/734, 12-14=-1383(0, 12-15=-0/4028)								

11-15=-993/0, 11-16=0/734, 5-22=-617/0, 5-20=0/453, 8-16=-617/0, 8-17=0/453, 7-17=-555/72, 6-20=-555/72

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are MT20 plates unless otherwise indicated.3) All plates are 3x6 MT20 unless otherwise indicated.

4) Plates checked for a plus or minus 1 degree rotation about its center.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	<u>15-9</u> 15-9	<u>12</u> 12		<u>21-3-8</u> 5-5-12
Plate Offsets (X,Y)	[12:0-1-8,Edge], [13:0-1-8,Edge]			
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0CSPlate Grip DOL1.00TCLumber DOL1.00BCRep Stress IncrYESWCode IRC2015/TPI2014Matrix	I. DEFL. 0.67 Vert(LL) 0.62 Vert(CT) 3 0.49 Horz(CT)	in (loc) l/defl L/d -0.26 21-23 >724 480 -0.35 21-23 >535 360 0.04 15 n/a n/a	PLATES GRIP MT20 244/190 M18AHS 186/179 Weight: 108 lb FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 BOT CHORD 2x4 WEBS 2x4	SP 2400F 2.0E(flat) SP 2400F 2.0E(flat) SP No.3(flat)	BRACING- TOP CHOR BOT CHOR	D Structural wood sheathing directly a except end verticals. D Rigid ceiling directly applied or 6-0-	applied or 6-0-0 oc purlins, -0 oc bracing.

REACTIONS. (size) 25=0-3-0, 18=0-3-8, 15=0-3-8 Max Grav 25=837(LC 10), 18=1251(LC 9), 15=267(LC 4)

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 2-3=-1720/0, 3-4=-2792/0, 4-5=-2792/0, 5-6=-2928/0, 6-7=-2928/0, 7-8=-2928/0, 8-10=-1500/0, 10-11=0/406, 11-12=0/406, 12-13=-283/78

 BOT CHORD
 24-25=0/1041, 23-24=0/2381, 21-23=0/3024, 20-21=0/2928, 19-20=0/2225, 18-19=0/810, 17-18=-78/283, 16-17=-78/283, 15-16=-78/283

 WEBS
 2-25=-1303/0, 2-24=0/883, 3-24=-861/0, 3-23=0/525, 5-23=-296/0, 5-21=-310/289,

7-20=-456/0, 10-18=-1382/0, 10-19=0/910, 8-19=-962/0, 12-18=-670/0, 13-15=-346/99, 8-20=0/1032

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are MT20 plates unless otherwise indicated.

3) All plates are 3x6 MT20 unless otherwise indicated.

4) Plates checked for a plus or minus 1 degree rotation about its center.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Edenton, NC 27932

3x6 =

			3-7-8			
Plate Offsets (X,Y)	[1:Edge,0-1-8], [2:0-1-8,Edge], [3:0-1-8,	Edge]	010			
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.08 BC 0.04 WB 0.05 Matrix-S	DEFL. ii Vert(LL) -0.00 Vert(CT) -0.00 Horz(CT) 0.00	n (loc) l/defl L/d 0 7 >999 480 0 7 >999 360 0 5 n/a n/a	PLATES MT20 Weight: 22 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF	P No.1(flat) P No.1(flat) P No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dir except end verticals. Rigid ceiling directly applied o	ectly applied or 3-7-8 or 10-0-0 oc bracing.	oc purlins,

REACTIONS. (size) 5=Mechanical, 8=Mechanical Max Grav 5=186(LC 1), 8=186(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Refer to girder(s) for truss to truss connections.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

		C	lient:					Date:	10/5/202	22				Page 1 of 11
	Destars	P	roject:					Input by:	Neal Ba	ggett				
	Design	A	ddress:					Job Nam	e: 39 LIBE	RTY MEA	DOWS			
		// /			011 0		A 0 0 F		Level: Leve					
BINI	Nerto-5 LV	/L 1.	/5U X	14.00	0 3-	Ply - P	ASSE	J		-				
3									Ę	5				
· · · · · · · · · ·		••••									4			
					1						·			
······	•	•	•		• •	•		•	• •	••••••••	•	•	ΠΠ	
	·				att in the	· · · · ·		·	- Mar .				MM	1'2"
	And Person and Person and	- Mariana		the second second			Service Martine		100 . IS 1000	a manual second			/WW	
1 SPF												2 SPF	1 1	
/					20'4"								,	5 1/4"
					2014							,	/	, .
					20'4"									
Member In	formation		1				Reactio	ons UN	PATTERI	NED Ib	(Uplift)			
Туре:	Girder		Applicati	on: F	loor		Brg Di	rection	Live	e [Dead	Snow	Wind	Const
Plies: Moisture Con	3 dition: Dry		Design N Building	/lethod: /	4SD BC 2012		1 Ve	ertical	()	2362	976	0	0
Deflection LL:	480		Load Sh	aring:	les 2012		2 Ve	ertical	()	2362	976	0	0
Deflection TL:	360		Deck:	j. 1	Not Checked									
Importance:	Normal - II													
Temperature:	Temp <= 100)°F												
							Bearing	gs						
							Bearing	g Lengt	h Dir.	Cap. R	React D/L lb	Total	Ld. Case	Ld. Comb.
							1 - SPF	- 3.500'	' Vert	43%	2362 / 976	3337	L	D+S
Analysis Re	sults						2 - SPI	- 3.500	vert	43%	2362/976	3337		D+5
Analysis	Actual	Location A	llowed	Capacity	Comb.	Case	1							
Moment	9135 ft-lb	10'2" 3	7907 ft-lb	0.241 (24%	6) D	Uniform								
Unbraced	11538 ft-lb	10'2" 1	1541 ft-lb	1.000	D+S	L								
Shear	2628 lb	1910 1/2" 1	9032 lb	(100%)	() D+6	i								
	2020 ID 0 085 (I /2795)	10101/2 1	497 (I /480	0.140(137	6) D+3 6) S	L 								
TL Defl inch	0.381 (L/2793)	10'2 1/16" 0	662 (L/400) 0.172 (177)	6) D+S	L I								
Deciser Not		102 11 10 0		,	.,	-	1							
1 Provide su	pport to prevent late	ral movement	and rotation	at the end b	earings Late	eral support	4							
may also b	e required at the inte	erior bearings	by the build	ing code.	ounigo: Lui	oral capport								
2 Fasten all to exceed	olies using 3 rows of 5".	f 10d Box nails	s (.128x3") a	it 12" o.c. Ma	ximum end c	distance not								
3 Refer to las	st page of calculation	ns for fastener	s required f	or specified le	oads.									
4 Girders are	e designed to be sup	ported on the	bottom edg	e only.										
6 Top must b	e laterally braced at	a maximum c	nes. of 15'1 11/16	" o.c.										
7 Bottom mu	st be laterally brace	d at end bearii	ngs.											
8 Lateral slei	nderness ratio based	d on single ply	width.		Qid-	Destac	<u> </u>	. 1 . 0		10/5	0.0	1.05 0		
ID	Load Type	L	ocation	i rid vvidtn	Side	Dead 0.9	LIVE	e 1 Sho	ow 1.15	Wind 1.	6 Const. 1	1.25 Co	mments	
1	Uniform				Тор	120 PLF	0 P	'LF	0 PLF	0 PL	F 0		\LL	
2	Part. Uniform	0-0-0	to 5-4-8		Тор	49 PLF	0 P	'L ⊢	49 PLF	0 PL	⊢ 0 _	PLF J2		_
3	Tie-In	0-0-0	to 5-4-8 6	5-7-8	Тор	20 PSF	0 P	SF	20 PSF	0 PS	F 01	PSF ST	ICK FRAMIN	G
4	Part. Uniform	14-11-8 to	o 20-4-0		Тор	49 PLF	0 P	LF	49 PLF	0 PL	F 0	PLF J2		
Continued on pa	age 2													
									Manufacto	ror Info		Comtech	. Inc.	
Notes Calculated Structured	Designs is responsible only o	chemicals of the Handling	s & Installation	n	 For f pondi 	flat roofs provide p ing	roper drainage	to prevent	Metsä Woo	d		1001 S. Fayettev	Reilly Road, Suite #	#639
structural adequacy design criteria and	of this component based or loadings shown. It is	n the 1. LVL bean the 2. Refer t	ns must not be cu o manufacturer	t or drilled 's product info	mation				301 Merritt	7 Building, T 06851	2nd Floor	USA 28314	TRUE	
responsibility of the ensure the comport application and to ver-	customer and/or the contract nent suitability of the inte	tor to regarding ended fastening	installation details, beam s	requirements, n trength values, an	ulti-ply d code				(800) 622-5	850 /		910-864	IRUS	
Lumber	, sie ameriaiona anu iodus.	approvals 3. Damageo 4. Design as	s d Beams must not ssumes top edge	be used is laterally restrained	d				www.metsa	wooa.com/	นร่			
 Dry service condit LVL not to be treat 	tions, unless noted otherwise ated with fire retardant or corr	osive 5. Provide lateral dis	lateral support a splacement and ro	t bearing points to	avoid This	s design is valid	until 11/3/20)24					:omT	есн

Í	isDesign	Client: Project: Address:	Da In; Jo	tte: 10/5/2022 but by: Neal Baggett b Name: 39 LIBERTY MEADOWS	Page 2 of 11
BM1	Kerto-S LVL	1.750" X 14.000"	3-Ply - PASSED	Dect #: Level: Level	
1 SPF	3 2 2 2 		1	5 4 2 SP	F
			20'4" 20'4"		→
ļ			204		I
Continued ID 5	from page 1 Load Type Tie-In Self Weight	Location Trib Width Side 14-11-8 to 20-4-0 6-7-8 Top	e Dead 0.9 Live 1 20 PSF 0 PSF 16 PLF	Snow 1.15 Wind 1.6 Const. 1.25 20 PSF 0 PSF 0 PSF	Comments STICK FRAMING
Notes Calculated Struct structural adequidesign criteria responsibility of ensure the co	ctured Designs is responsible only of the uacy of this component based on the and loadings shown. It is the the customer and/or the contractor to momonent suitability of the intended	chemicals Handling & Installation 1. LVJ beams must not be cut or drilled 2. Refer to manufacturer's product information regarding installation requirements, multi-ply fastening details, beam strength values, and code	 For flat roofs provide proper drainage to ponding 	prevent Manufacturer Info Co Metsä Wood Fa 301 Merritt 7 Building, 2nd Floor 28 Norwalk, CT 06851 911 (800) 622-5850	mtech, Inc. J1 S. Reilly Road, Suite #639 yetteville, NC A 314 3-864-TRUS
application, and Lumber 1. Dry service of 2. LVL not to be	to verify the dimensions and loads. conditions, unless noted otherwise be treated with fire retardant or corrosive	approvals 3. Damaged Beams must not be used 4. Design assumes top edge is laterally restrained 5. Provide lateral support at bearing points to avoid lateral displacement and rotation	This design is valid until 11/3/2024	www.metsawood.com/us	соттесн
Version 21.80.	.417 Powered by iStruct™ Datas	et: 22061001.1			

	Client:	Date: 10/5/2022 Page 3 of 11
	Project:	Input by: Neal Baggett
isDesign	Address:	Job Name: 39 LIBERTY MEADOWS
—		Project #:
BM1 Kerto-S	LVL 1.750" X 14.00	0" 3-Ply - PASSED
1 SPF	· · · · · · · · · · · · · · · · · · ·	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Multi-Ply Analysis	rows of 10d Box nails (128x3") a	t 12" o.c. Nail from both sides. Maximum end distance not to exceed
6"		
Canacity	0.0 %	
Load	0.0 PLF	
Vield Limit per Foot	245 6 PLF	
Yield Limit per Fastener	81 9 lb.	
Yield Mode	IV	
Edge Distance	1 1/2"	
Min. End Distance	3"	
Load Combination	-	
Duration Factor	1.00	

Notes chemicals 6. For flat roofs provide proper drainage to proproduct to proper drainage to proper draina drainage to pr					
Calculated Structured Designs is responsible only of the structural adequacy of this component based on this the structural adequacy of this component based on this the structural adequacy of this component based on the intended application, and to verify the dimensions and loads. Lumber 1. Dry service conditions, unless noted otherwise 2. UVL not to be treated with fire retardant or corrorswite 3. Dramed Beams must not be used 4. Design assumes to pedge is laterally restarined 5. Provide lateral support at bearing points to avoid lateral displacement and rotation This design or interview of the contractor of the c	Notes	chemicals	6. For flat roofs provide proper drainage to prevent	Manufacturer Info	Comtech, Inc. 1001 S. Reilly Road, Suite #639
	Calculated Structured Designs is responsible only of the structural adequacy of this component based on the design criteria and loadings shown. It is the responsibility of the customer and/or the contractor to ensure the component suitability of the interded application, and to verify the dimensions and loads. Lumber 1. Dry service conditions, unless noted otherwise 2. LVL not to be treated with fire retardant or corrosive	Handling & Installation 1. LVL beams must not be cut or drilled 2. Refer to manufacturer's product information regarding installation requirements, multi-ply fastering details, beam strength values, and code approvals 3. Damaged Beams must not be used 4. Design assumes top edge is laterally restrained 5. Provide lateral support at bearing points to avoid lateral displacement and rotation	ponding This design is valid until 11/3/2024	Metsä Wood 301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851 (800) 622-5850 www.metsawood.com/us	Fayetteville, NC USA 28314 910-864-TRUS

	Client:	Date:	10/5/2022	Page 5 of
isDesign	Project: Address:	Input b Job Na	y: Neal Baggett me: 39 LIBERTY MEADOWS	
		Project	: #:	
GDH Kerto-S L	VL 1.750" X 16.000"	2-Ply - PASSED	Level: Level	
• • • •	• • • •	• • • •	• • • •	
<u> </u>	• • • •	• • • •	• • • •	
1 SPF End Grain			2 SPF En	
<u> </u>		16'7"		3 1/2"
·		16'7"		
				·
ulti-Ply Analysis				
sten all plies using 3 row	rs of 10d Box nails (.128x3") at 12"	o.c Maximum end distance	not to exceed 6".	
pacity	0.0 %			
ad Id Limit per Foot	0.0 PLF 245.6 PLF			
ld Limit per Fastener	81.9 lb.			
eld Mode	IV			
ge Distance	1 1/2" 3"			
ad Combination	3			
uration Factor	1.00			
otes aculated Structured Designs is responsible only uctural adequacy of this component based o sign criteria and loadings shown. It is sponsibility of the customer and/or the contra- sure the component suitability of the inte plication, and to verify the dimensions and loads. umber Dov service conditions unless noted attention	chemicals of the Handling & Installation n the 1. LVL beams must not be cut or drilled the 2. Refer to manufacturer's product information regarding installation requirements, multi-ply fastening details, beam strength values, and code approvals 3. Damaged Beams must not be used 4. Design assumes top edge is laterally restrained	 For flat roofs provide proper drainage to prever ponding 	t Manufacturer Info Metsä Wood 301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851 (800) 622-5850 www.metsawood.com/us	Comtech, Inc. 1001 S. Reilly Road, Suite #639 Fayettevile, NC USA 28314 910-864-TRUS
. LVL not to be treated with fire retardant or con	5. Provide lateral support at bearing points to avoid lateral displacement and rotation	This design is valid until 11/3/2024		сотесн
rsion 21.80.417 Powered by iStruct™ [Dataset: 22061001 1		•	

bу

		(Client:				Dat	te:	10/5/202	2				Page 6 of 11
		F	Project:				Inp	ut by:	Neal Ba	ggett				0
is	Design	ŀ	Address:				Job	Name	: 39 LIBE	RTY ME	ADOWS			
							Pro	oject #:						
BM2	Kerto-S L	.VL 1	I.750" X 9	.250"	2-Ply -	PAS	SSE	ש'	Levei: Leve					
													N A	
													M	/
	a sitter		and the second second	al Mar Ba				and the	- Min				IAI/	9 1/4
					•				•				V V	
1 SPF	End Grain						2 SP	FEnd	Grain				1	1
1			6'7"	1						•			1	3 1/2"
ł			6'7'	1						•				
Member In	formation					Read	tions	s UN	PATTERN	IED Ib	(Uplift)			
Туре:	Girder		Application:	Floor		Brg	Dired	ction	Live		Dead	Snow	Wind	Const
Plies:	2 dition: Dr/		Design Method:	ASD		1	Vertic	cal	2670		912	0	0	0
			Building Code:	IBC 2012		2	Vertic	cal	2670		912	0	0	0
Deflection TL:	360		Deck:	Not Checke	d									
Importance:	Normal - II													
Temperature:	Temp <= 100)°F												
						Bear	ings							
						Bea	ring	Length	n Dir.	Cap.	React D/L lb	Total	Ld. Case	Ld. Comb.
						1 - 8 End	SPF	3.500"	Vert	35%	912/2670	3582	L	D+L
Analysis Re	sults					Gra	in							
Analysis	Actual	Location A	Allowed Capa	city Comb.	Case	2 - 8	SPF	3.500"	Vert	35%	912 / 2670	3582	L	D+L
Moment	5103 ft-lb	3'3 1/2" 1	12542 ft-lb 0.407	(41%) D+L	L	Gra	in							
Unbraced	5103 ft-lb	3'3 1/2" 9	9934 ft-lb 0.514	(51%) D+L	L									
Shear	2431 lb	1' 3/4" 6	6907 lb 0.352	(35%) D+L	L									
LL Defl inch	0.069 (L/1063)	3'3 1/2" ().153 (L/480) 0.452	(45%) L (45%) D±l	L									
	0.093 (L/792)	3'3 1/2" (0.204 (L/360) 0.455	(45%) D+L	L	┥								
1 Provide su	tes	ral movement	t and rotation at the	and bearings. La	teral support	4								
may also b	e required at the inte	erior bearings	by the building code	enu beannys. La e.										
2 Fasten all p to exceed 6	olies using 2 rows of 5"	f 10d Box nail	s (.128x3") at 12" o.o	. Maximum end	distance not									
3 Refer to las	st page of calculation	ns for fastene	rs required for specif	ied loads.										
4 Girders are	e designed to be sup	ported on the	bottom edge only.											
6 Top must b	e laterally braced at	end bearings	S.											
7 Bottom mu	st be laterally brace	d at end bear	ings.											
8 Lateral sler	I ogd Type	d on single ply	y width.	lth Side	Dead 0.0		ivo 1	Sno	w 1 15	Wind 1	6 Const 1	25 Co	mente	
1	Uniform	L		Ton	270 PI F	ו גע		510				LE F2	innents	
'	Self Weight			104	7 DI E	01			5 I LI	υr				
	Sell Weight				71 -									
Notes		chemica	ls 1 & Installation	6. For por	flat roofs provide j nding	proper drain	age to p	orevent	Manufactur	er Info		Loomtech, 1001 S. F	Inc. eilly Road, Suite le. NC	639
structural adequacy design criteria and	of this component based of d loadings shown. It is	n the 1. LVL bea the 2 Pofor	ms must not be cut or drilled	information					301 Merritt 7	Building	, 2nd Floor	USA 28314	,	
responsibility of the ensure the compor	customer and/or the contract	tor to regardin ended fastening	g installation requiremen g details, beam strength valu	ts, multi-ply es, and code					(800) 622-58	350 .	,	910-864-	TRUS	
application, and to ver Lumber	my die uniensions and loads.	approva 3. Damage 4. Decigo 2	Is ed Beams must not be used assumes top edge is laterally m	strained					www.metsav	vood.con	1/us			
 Dry service condit LVL not to be treat 	ions, unless noted otherwise ated with fire retardant or corr	5. Provide lateral di	lateral support at bearing poissing poi	pints to avoid	is design is valid	d until 11/	3/2024					C	от	есн
				In	no acorgin is valle	a uniur 11/	012024							

				D 1 10/5/0000	
2		Client:		Date: 10/5/2022	Page 7 of 11
1	isDesign				
	Ispesign	Address.		Dob Name. 39 LIBERT FINEADOWS	
- DMO					
BM2	Kerto-S LV	L 1.750" X 9.250"	2-Ply - PASS		
	•	• •	• •	•	
	-			12	
					∖ ∖ 9 1/
•	•	• •	• •	•	
1 S	SPF End Grain		2	SPF End Grain	. .
1		6'7"		1	1/2 "
/		6'7"			
'		67		ı	
ļ					
Multi-Pl	y Analysis				
Fasten all	l plies usina 2 rows o	of 10d Box nails (.128x3") at 12"	o.c Maximum end dist	ance not to exceed 6".	
Capacity	0.	0 %			
Load	0.	.0 PLF			
Yield Limit p	er Foot 16	63.7 PLF			
Yield Limit p	er Fastener 8'	1.9 lb.			
Edge Distan	ice 1	1/2"			
Min. End Dis	stance 3'	"			
Load Combi	nation				
Duration Fac	ctor 1.	.00			
ļ					
Notes		chemicals	6. For flat roofs provide proper drainage ponding	to prevent Manufacturer Info	Comtech, Inc. 1001 S. Reilly Road, Suite #639
Calculated Structural adequ	ctured Designs is responsible only of the uacy of this component based on the	Handling & Installation 1. LVL beams must not be cut or drilled	Policing	Metsä Wood 301 Merritt 7 Building, 2nd Floor	Fayetteville, NC USA
design criteria responsibility of	and loadings shown. It is the the customer and/or the contractor to	 Refer to manufacturer's product information regarding installation requirements, multi-plv 		Norwalk, CT 06851	28314 910-864-TRUS
ensure the co application, and	to verify the dimensions and loads.	fastening details, beam strength values, and code approvals		(800) 622-5850 www.metsawood.com/us	
Lumber	conditions, unless noted otherwise	3. Damaged Beams must not be used 4. Design assumes top edge is laterally restrained 5. Design detacts			
2. LVL not to b	e treated with fire retardant or corrosive	 Provide lateral support at bearing points to avoid lateral displacement and rotation 	This design is valid until 11/3/20	24	соттесн
L			3		

		Oliciati	Dete	10/5/0000	
		Client:	Date:	10/5/2022	Page 9 01 11
1 1	isDesign	Address:	Input C		
4	130631311	Address.	Projec		
DMA					
BM3	Kerto-S LV	L 1.750" X 9.250"	2-Ply - PASSED		
•	•	•	• •	12	N/N/I I
					Å Å 9 1/4
•	•	• •	• •	•¥	
				———————— — ———————————————————————————	
1 S	SPF End Grain		2 SPF E	nd Grain	
 		6'7"			3 1/2"
1 1		6'7"		T	
Multi-Ply	v Analysis				
Fasten all	i piles using 2 rows o		o.c Maximum end distance	not to exceed 6".	
Capacity	0.	0 % 0 Pl E			
Yield Limit p	er Foot 10	63.7 PLF			
, Yield Limit p	er Fastener 8	1.9 lb.			
Yield Mode	١٧	/			
Edge Distan	ice 1	1/2"			
Ivin. End Dis	stance 3	- -			
Duration Fac	ctor 1.	.00			
Notes		chemicals	6. For flat roofs provide proper drainage to preven	Manufacturer Info	Comtech, Inc. 1001 S. Reilly Road, Suite #639
Calculated Struct structural adequ	ctured Designs is responsible only of the uacy of this component based on the	Handling & Installation	ponding	Metsä Wood 301 Merritt 7 Building, 2nd Floor	Fayetteville, NC USA
design criteria responsibility of	and loadings shown. It is the f the customer and/or the contractor to	 Refer to manufacturer's product information regarding installation requirements multi-nly 		Norwalk, CT 06851	28314 910-864-TRUS
ensure the co application, and	omponent suitability of the intended to verify the dimensions and loads.	fastening details, beam strength values, and code approvals		(800) 622-5850 www.metsawood.com/us	
Lumber	conditions unless noted attenuing	 Damaged Beams must not be used Design assumes top edge is laterally restrained 			
2. LVL not to b	be treated with fire retardant or corrosive	5. Provide lateral support at bearing points to avoid lateral displacement and rotation	This design is valid until 11/3/2024		сотесн
L			g a anai 11,0,2024	I	

		Clier	nt:				Date:	10/5/202	2				Page 10 of 1
Ti	sDesign	Proj Add	ect: ress:				Job Name	Neal Bag : 39 LIBEF	gett RTY MEAD	ows			
							Project #:						
BM4	Kerto-S LVI	L 1.7	750" X 9.2	250"	2-Ply -	PASS	SED	evel: Level					
					3								
	2												
•	•	•	•		•	•						M	$7 \uparrow$
	·		17	-	a. 17	-						X	9 1/4
1 SPF	End Grain				2 S	SPF End G	rain						
			5'11"									1	3 1/2"
1			5'11"				1						
Member II	nformation					Reaction	ons UNF	PATTERN	IED lb (Uplift)			
Type:	Girder		Application:	Floor		Brg D	irection	Live	D	ead	Snow	Wind	Const
Moisture Co	ndition: Dry		Building Code:	IBC 2012	2	$\begin{vmatrix} 1 & V \\ 2 & V \end{vmatrix}$	ertical ertical	695 695	1	787 787	1180 1180	0	0
Deflection Ll	L: 480		Load Sharing:	No		_							
Deflection TI	L: 360		Deck:	Not Cheo	ked								
Temperature	e: Temp <= 100°F												
						Bearin	gs						
						Bearin	g Length	Dir.	Cap. Re	act D/L lb	Total	Ld. Case	Ld. Comb.
						1 - SP End	F 3.000"	Vert	36% 1	787 / 1407	3194	L	D+0.75(L+S
Analysis R	esults					Grain			000/	707 / 4407	0404		D . 0 75/1 . 0
Analysis	Actual Lo	cation Allo	wed Capaci	ty Coml	o. Case	End	F 3.000"	vert	36% 1	787 / 1407	3194	L	D+0.75(L+S
Moment	4145 ft-lb 2'	11 1/2" 144: 11 1/2" 110:	23 ft-lb 0.287 (2 27 ft-lb 0.376 (2	29%) D+0.7 38%) D+0.7	′5(L+S) L ′5(L+S) L	Grain							
Shear	2097 lb 4'	10 3/4" 794:	3 lb 0.264 (2	26%) D+0.7	'5(L+S) L								
LL Defl inch	n 0.028 (L/2346) 2'	11 1/2" 0.13	9 (L/480) 0.205 (2	20%) 0.75(l	_+S) L								
TL Defl incl	h 0.064 (L/1033) 2'	11 1/2" 0.18	5 (L/360) 0.348 (3	35%) D+0.7	′5(L+S) L								
Design No	otes					1							
1 Provide s may also 2 Fasten all	upport to prevent lateral r be required at the interior plies using 2 rows of 100	novement an [·] bearings by d Box nails (. <i>'</i>	d rotation at the er the building code. 128x3") at 12" o.c.	id bearings. Maximum e	Lateral support and distance not								
to exceed	6".	or fasteners r	equired for specifie	sheal b									
4 Girders a	re designed to be support	ed on the bo	ttom edge only.	u 10003.									
5 Top loads 6 Top must	must be supported equa	lly by all plies I bearings	5.										
7 Bottom m	ust be laterally braced at	end bearings	S.										
8 Lateral sle	enderness ratio based on Load Type	single ply wi	atn. ation Trih Widtl	n Side	Dead 0 9	l Liv	e 1 Snov	w 1.15	Wind 1 6	Const 1	.25 Cor	nments	
. <u> </u>	Uniform	LOO		Тор	120 PLF	0 F	PLF	0 PLF	0 PLF	0	PLF WAI	LL	
2	Uniform			Тор	399 PLF	0 F	PLF 39	99 PLF	0 PLF	0	PLF A2		
3	Uniform			Тор	78 PLF	235 F	PLF	0 PLF	0 PLF	0	PLF F2		
	Self Weight				7 PLF								
Notes	ed Designs is responsible only of the	chemicals	nstallation	6.	For flat roofs provide p ponding	roper drainage	to prevent	Manufacture	er Info		Comtech, 1001 S. Re Fayetteville	Inc. eilly Road, Suite e, NC	#639
structural adequacy design criteria a	y of this component based on the ind loadings shown. It is the	1. LVL beams m 2. Refer to	ust not be cut or drilled manufacturer's product	information				301 Merritt 7	Building, 2 06851	nd Floor	USA 28314	2010	
responsibility of the ensure the comp application, and to v	e customer and/or the contractor to onent suitability of the intended verify the dimensions and loads.	regarding i fastening det approvals	nstallation requirements, ails, beam strength values	multi-ply , and code				(800) 622-58	350 yood.com/u	3	910-864-T	RUS	
Lumber 1. Dry service cond	ditions, unless noted otherwise	3. Damaged Bea 4. Design assun 5. Provide Jates	ams must not be used nes top edge is laterally rest al support at begring pairs	rained									
2. LVL not to be tr	eated with fire retardant or corrosive	lateral displace	ement and rotation		This design is valid	until 11/3/2	024				6	Juni	CH

2		Client: Proiect:		Date:	10/5/2022 Neal Baggett	Page 11 of 1
	isDesign	Address:		Job Nam	e: 39 LIBERTY MEADOWS	
BM4	Kerto-S LV	/L 1.750" X 9.2	250" 2-Ply	- PASSED	: Level: Level	
•	•	• •	•	• •	5"	
						9 1/
	• PE End Grain	• •	•	2 SPE End Grain		
,		5'11"				3 1/2"
1		5'11"		{		
Multi-Ply	v Analysis					
Fasten all Capacity	plies using 2 rows	of 10d Box nails (.128x3") 0.0 %	at 12" o.c Maxim	um end distance n	ot to exceed 6".	
Load Yield Limit pe	er Foot	0.0 PLF 163 7 PLF				
Yield Limit pe	er Fastener	81.9 lb.				
Field Mode Edge Distanc	ce	1 1/2"				
Min. End Dist Load Combin	tance :	3"				
Duration Fac	tor	1.00				
Notes		chemicals	6. For flat roofs pro	vide proper drainage to prevent	Manufacturer Info	Comtech, Inc.
Calculated Struct structural adequa	tured Designs is responsible only of the acy of this component based on the task of the second secon	he Handling & Installation ^{he} 1. LVL beams must not be cut or drilled	ponding	, , <u></u> to protont	Metsä Wood 301 Merritt 7 Building 2nd Floor	Fayetteville, NC USA
design criteria responsibility of t ensure the con	and loadings shown. It is the the customer and/or the contractor mponent suitability of the intende	2. Refer to manufacturer's product to regarding installation requirements,	information multi-ply		Norwalk, CT 06851 (800) 622-5850	28314 910-864-TRUS
application, and to	o verify the dimensions and loads.	 rastening details, beam strength values, approvals Damaged Beams must not be used 	and code		www.metsawood.com/us	
 Dry service co LVL not to be 	onditions, unless noted otherwise e treated with fire retardant or corrosi	 Design assumes top edge is laterally restr Provide lateral support at bearing point lateral displacement and rotation 	ained s to avoid This design in	valid until 11/2/2024		соттесн
			i nis design is	vanu unui 11/3/2024	l	