

Kempsville Sanford Component Plant 298 Harvey Faulk Rd Sanford, NC 27332

Phone #:919-775-1450

Builder: DRB HOMES NC

Model: 116 FaNC - COOPER 7

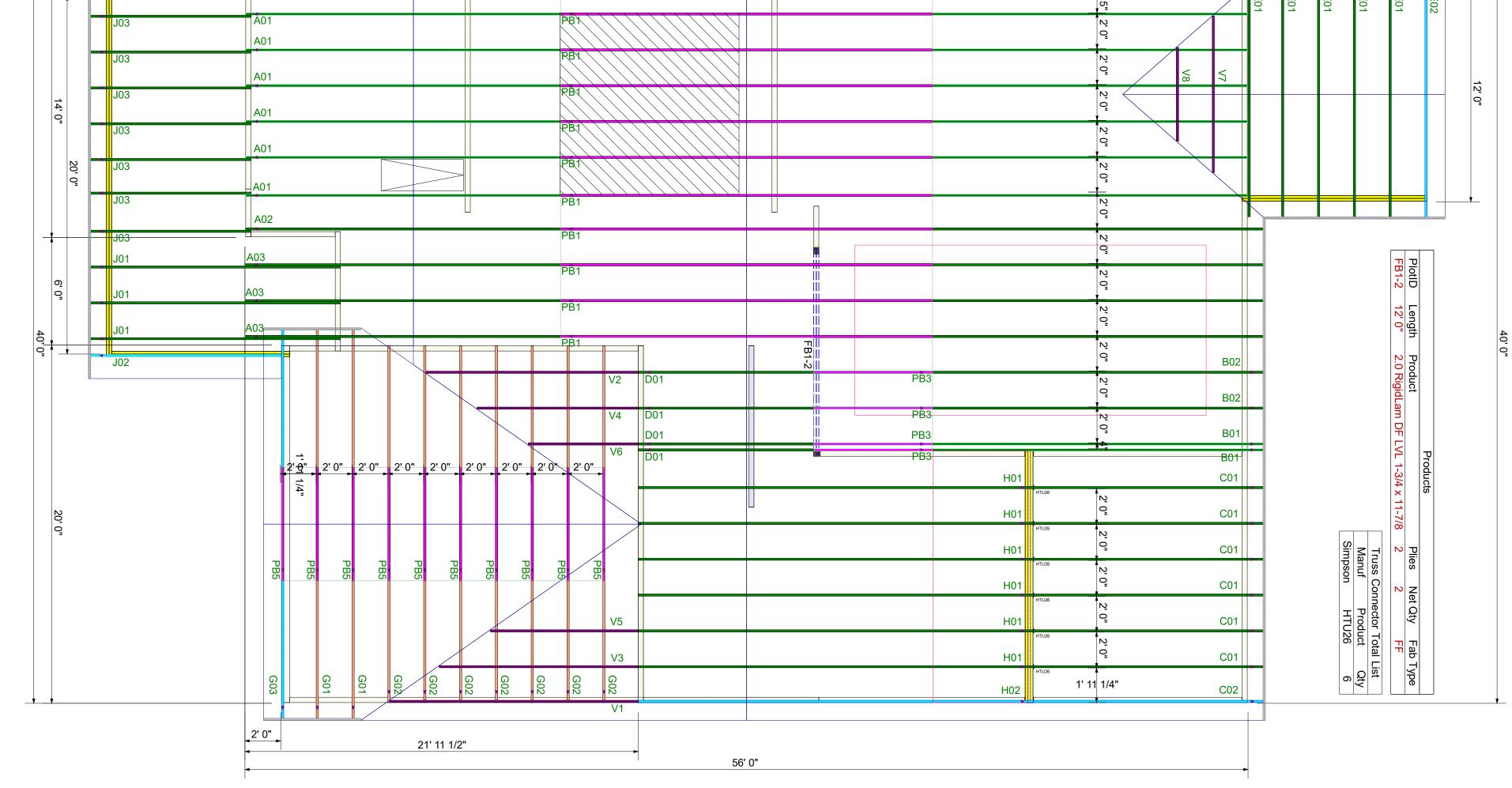
THE PLACEMENT PLAN NOTES:

1. The Placement Plan is a diagram for truss installation. It is not an engineered drawing and has not been reviewed by an engineer. The Owner/Building Designer is responsible for obtaining an engineer's review if one is required by the local jurisdiction.

2. The responsibilities of the Owner, Contractor, Building Designer, Component Designer and Component Manufacturer shall be as set forth in ANSI/TPI 1. Capitalized terms shall be as defined in ANSI/TP 1 unless otherwise indicated.

3. Each Component is designed as an individual component utilizing information provided by others. The Owner/Building Designer is responsible for reviewing all Component Submittal Packages and individual Component Design Drawings for compliance with the Construction Documents and compatibility with the overall Building design.

4. Contractor will not proceed with component installation until the Owner/Building Designer has reviewed the Component Submittal Package. Questions on the suitability of any Component will be resolved by the Building Designer.

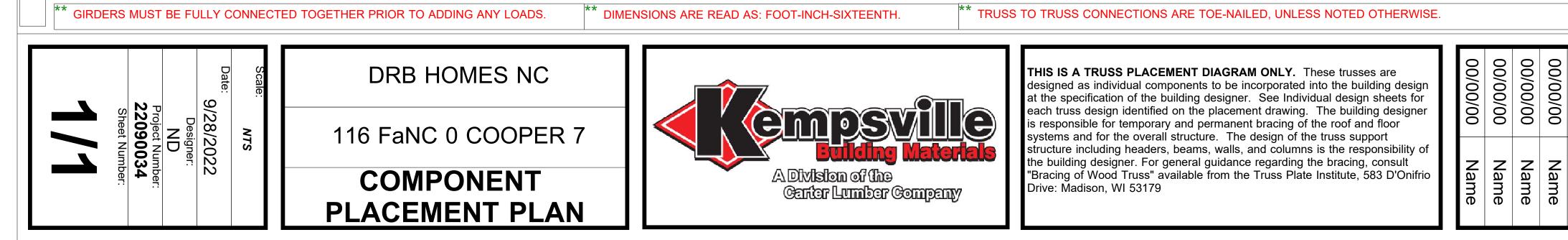

5. The Building Designer and Contractor are responsible for all temporary and permanent bracing.

6. The Placement Plan assumes the building is dimensionally correct, structurally sound, and in a suitable condition to support each Component during installation and thereafter, including but not limited to installation of all bearing points. Proper design and construction of all structural components, including foundations, headers, beams, walls and columns are the responsibility of the Owner, Building Designer and Contractor.

7. Do not cut, drill, or modify any Component without first consulting the Component Manufacturer or Building Designer. Damaged Components shall not be installed unless directed by the Building Designer or approved by the Component Manufacturer.

8. Components must be handled and installed following all applicable safety standards and best practices, including but not limited to BCSI, OSHA, TPI and local codes. Failure to properly handle, brace or otherwise install Component can result in serious injury or death.

* TR	FRAMER MUST REFER TO PLANS WHILE SETTING COMPONENTS.	** DAMAGED COMPONENTS SHOULD NOT BE INSTALLED UNLESS TOLD TO BY THE COMPONENT PLANT.	Ge
EI	Truss		neral
End Indicator	Drawing Left		Notes:
ar end of truss indicates left end of truss as shown on individual truss drawings.		50 0	CUTING OR DRILLING OF COMPONENTS SHOULD NOT BE DONE WITHOUT CONTACTING COMPONENT SUPPLIER
** PLUN	A04 A04 A01		E01


** ALL BEARING POINT

FIRST. CUSTOMER TAKES FULL RESPONSIBILITY FOR COMPONENTS IF CUT BEFORE AUTHORIZATION.

00/00/00

Name

Revisions

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 22090034 DRB HOMES - 116 FARM AT NEILLS CREEK

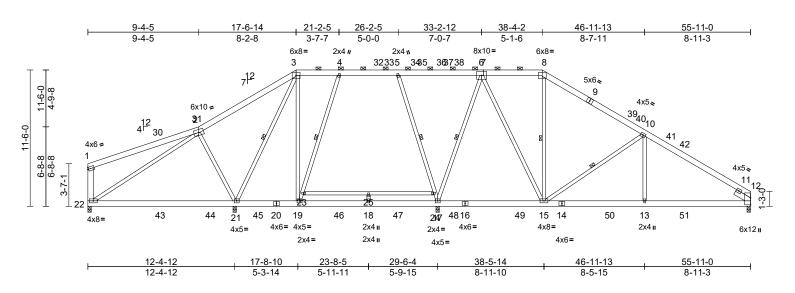
The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Sanford, NC)).

Pages or sheets covered by this seal: I54436549 thru I54436580

My license renewal date for the state of North Carolina is December 31, 2022.

North Carolina COA: C-0844

September 28,2022


Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

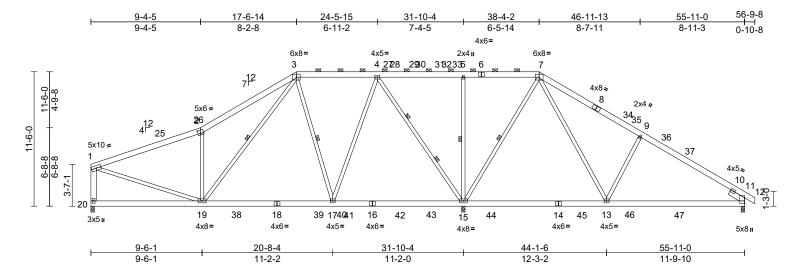
Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 116 FARM AT NEILLS CREEK
22090034	A01	Piggyback Base	6	1	Job Reference (optional)

Run: 8.53 S Sep 12 2022 Print: 8.530 S Sep 12 2022 MiTek Industries, Inc. Wed Sep 28 07:54:16 ID:vmWSYKxMeSKeeaoGnh3QrczhvSE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:97.2

		i i i i i i i i i i i i i i i i i i i			· · · · ·		-						· · · · · · · · · · · · · · · · · · ·
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.75	Vert(LL)	-0.22	21-22	>663	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.65	Vert(CT)	-0.39	21-22	>383	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.74	Horz(CT)	0.04	12	n/a	n/a		
BCLL	0.0*	Code	IRC2018	3/TPI2014	Matrix-MSH								
BCDL	10.0											Weight: 465 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING	2x6 SP No.2 2x6 SP No.2 2x4 SP No.2 *Excep 21-2,15-10,10-13,25 22-1:2x6 SP No.2 Right 2x6 SP No.2	-18:2x4 SP No.3,	NC) TES	2-21=-529/343, 3-2 9-23=-289/142, 4- 5-24=-569/188, 17- 5-17=-1043/333, 6- 8-15=-166/159, 10- 0-13=0/427, 2-22= 24-25=-7/13, 18-25	23=-273 24=-58 15=-15 15=-95 84/404 =0/45	8/158, 0/174, 1/966, 8/304, 4, 23-25=-7/1	3,	rec UP upl 10) Thi Inte R8 11) Gra	ommend LIFT at ji ift only at s truss is ernationa 02.10.2 a aphical p	led to o t(s) 21 nd doe desig desig and ref and ref	, 17, 22, and 12. Is not consider la ned in accordanc dential Code sect erenced standard	bearing walls due to This connection is for teral forces. See with the 2018 ions R502.11.1 and d ANSI/TPI 1. Ses not depict the size
TOP CHORD		athing directly applied	J. ,		roof live loads have	e been o	considered fo	or		tom chor			g the top and/or
		xcept end verticals, an		this design.									
	2-0-0 oc purlins (6-0		2)		7-16; Vult=130mpl				LUAD	CASE(S)) Sta	ndard	
BOT CHORD	Rigid ceiling directly	applied or 6-0-0 oc			oh; TCDL=6.0psf; E 3; Enclosed; MWFF								
	bracing.	0.04 4 40 5 47 0 47			C Exterior(2E) 8-0-								
WEBS		3-21, 4-19, 5-17, 6-17 8-15, 10-15	,		7-1-9, Exterior(2R								
REACTIONS		17=0-3-8, 21=0-3-8,			3-10-11 to 37-7-11,								
REACTIONS	(3126) 12-0-3-8, 22=0-3-8	17-0-3-0, 21-0-3-0,			or (1) 54-9-1 to 57-								
	Max Horiz 22=265 (L	.C 11)			ne; cantilever left ar								
		LC 15), 17=-111 (LC 1	5),		nd right exposed;C								
		LC 14), 22=-118 (LC 1			FRS for reactions s ate grip DOL=1.60		Lumber						
		(LC 52), 17=1988 (LC			7-16; Pr=20.0 psf			1 15					
	21=1796 ((LC 34), 22=498 (LC 4	3) 3)		.15); Pf=20.0 psf (I								11
FORCES	(lb) - Maximum Com	pression/Maximum			s=1.0; Rough Cat							11''' CA	Dille
	Tension			Cs=1.00; Ct=			• *	,				THUA	Dill.
TOP CHORD		11/617, 3-4=-203/231,		Unbalanced	snow loads have b	een cor	nsidered for th	his			X	ONFESS	id A'
	4-5=-287/201, 5-6=- 8-10=-982/347, 10-1	137/205, 6-8=-693/376 2- 1762/371	· .	design.							25	in the	Visin
	1-22=-466/188	21702/371,	5)		nit load placed on			8-8-8		2			
BOT CHORD	21-22=-276/109, 19-	21=-77/292	•		supported at two					-	1		
	18-19=-92/351, 17-1		6) 7)		uate drainage to p s been designed fo			g.		=		SEA	L <u>1</u> 2
	15-17=-42/467, 13-1	5=-182/1435,	()		ad nonconcurrent w			de		=		0363	22
	12-13=-182/1435		8)		as been designed					=			: :
			0)		n chord in all areas			opo.			-		1 3
					y 2-00-00 wide will			om			20	N. ENG	- CR. X S
				chord and ar	y other members,	with BC	DL = 10.0psf	f.			1	A. GIN	E. P.S
										1000000000	1	A C	IL BEIN
												A. G	in in its


A. GILBE September 28,2022

Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 116 FARM AT NEILLS CREEK
22090034	A02	Piggyback Base	1	1	Job Reference (optional)

Run: 8.53 S Sep 12 2022 Print: 8.530 S Sep 12 2022 MiTek Industries, Inc. Wed Sep 28 07:54:19 ID:vmWSYKxMeSKeeaoGnh3QrczhvSE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:98.5

Plate Offsets (X, Y): [2:0-2-5,0-3-4]

		-											
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.84	Vert(LL)		17-19	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.69	Vert(CT)	-0.21	17-19	>999	180		211/100
TCDL	10.0	Rep Stress Incr	YES		WB	0.95	• • •	0.01	15	n/a	n/a		
BCLL	0.0*	Code		18/TPI2014	Matrix-MSH	0.00	11012(01)	0.01	10	Π/α	n/a		
BCDL	10.0	Code	11(020	10/11/12/14	Matrix-INISI I							Weight: 441 lb	FT - 20%
DODL	10.0											Weight. 441 lb	11-2070
LUMBER			1) Unbalanced	roof live loads hav	e been	considered for	r	11) Thi	s truss is	s desig	ned in accordance	ce with the 2018
TOP CHORD	2x6 SP No.2			, this design.					Ínte	ernationa	al Resid	dential Code sect	tions R502.11.1 and
BOT CHORD	2x6 SP 2400F 2.0E	*Except* 18-16:2x6 \$	SP 2) Wind: ASCE	7-16; Vult=130mp	h (3-seo	cond gust)		R8	02.10.2 a	and ref	erenced standard	d ANSI/TPI 1.
	No.2	•		Vasd=103m	ph; TCDL=6.0psf; I	BCDL=6	0.0psf; h=25ft;		12) Gra	aphical p	urlin re	presentation doe	es not depict the size
WEBS	2x4 SP No.2 *Excep	ot* 19-1,19-2,13-9:2x4	4 SP		B; Enclosed; MWFI				or t	he orien	tation o	of the purlin along	g the top and/or
	No.3, 20-1:2x6 SP N	lo.2			C Exterior(2E) 8-0-			r (1)	bot	tom choi	rd.		
SLIDER	Right 2x6 SP No.2 -	- 1-6-0			17-1-9, Exterior(2F				LOAD	CASE(S) Sta	ndard	
BRACING					3-9-13 to 37-7-11,						-		
TOP CHORD	Structural wood she	athing directly applie	d or		erior (1) 54-10-6 to								
	2-2-0 oc purlins, ex	cept end verticals, ar	nd		4-6-12 zone; cantil								
	2-0-0 oc purlins (6-0)-0 max.): 3-7.			nd vertical left and d forces & MWFRS								
BOT CHORD		applied or 10-0-0 oc			_=1.60 plate grip D			,					
	bracing, Except:		2		= 1.00 plate grip D E 7-16; Pr=20.0 psf			1 1 5					
	6-0-0 oc bracing: 13		3		1.15); Pf=20.0 psf (
WEBS		5-15, 7-15, 3-19, 3-1	7		Is=1.0; Rough Cat								
WEBS	2 Rows at 1/3 pts	4-15		Cs=1.00; Ct		D, I uliy	LAP., 00-0.0	<i>'</i> ,					
REACTIONS	(size) 11=0-3-8,	, 15=0-3-8, 20=0-3-8	4		snow loads have b	been co	nsidered for th	nis					
	Max Horiz 20=261 (I			design.									
	Max Uplift 11=-161 (as been designed f	or great	er of min roof	live					
	Max Grav 11=1005		C 3),		psf or 1.00 times fl								
	20=1295	. ,		overhangs n	on-concurrent with	other li	ve loads.					TH CA	1111.
FORCES	(lb) - Maximum Corr	npression/Maximum	6		unit load placed on							I'L'H CA	Rall
	Tension			23-11-12 fro	m left end, support	ed at tw	o points, 5-0-	0			1	all	0/11
TOP CHORD	1-2=-1542/279, 2-3=			apart.							· .	O ESS	Do Vin
	3-4=-755/245, 4-5=0		. 7		quate drainage to p			J.				10	MAL
		=-1089/272, 11-12=0/	26, 8		as been designed f							:0	K: =
	1-20=-1154/264	40 75/000			ad nonconcurrent v					-	1	0.54	
BOT CHORD	19-20=-236/236, 17-	,	9		has been designed)psf		-		SEA	L : =
	15-17=-83/557, 13-1 11-13=-104/874	15=-01/194,			m chord in all areas					=	9	0363	22 E
WEBS	1-19=-105/1416, 2-1	10- 979//19			by 2-00-00 wide wi					-	2	. 0505	44 <u>i</u> E
WED3	5-15=-589/198, 7-15		4		ny other members, Simpson Strong-Tie						-	N	1 5
	9-13=-725/353, 7-13		1		ed to connect truss			to			2.	1. En.	Air >
		7=-530/269, 4-17=0/1	158		(s) 20 and 11. This						25	GIN	EFRANS
	4-15=-1620/220		,		es not consider late						11	10	BEN
NOTES				Silly and dot							C.	SEA 0363	ILLIN
NOTED												(IIIIII)	11111
												Sontombo	r 20 2022

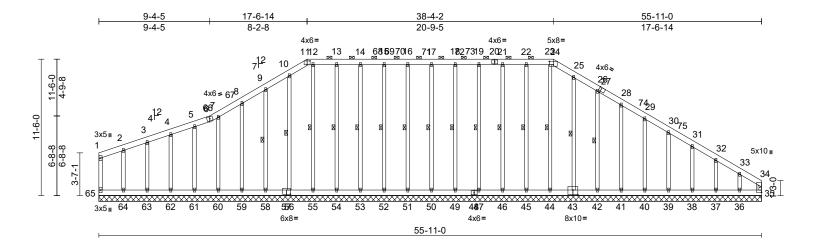
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

September 28,2022

Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 116 FARM AT NEILLS CREEK
22090034	A03	Piggyback Base	3	1	Job Reference (optional)

Run: 8.53 S Sep 12 2022 Print: 8.530 S Sep 12 2022 MiTek Industries, Inc. Wed Sep 28 07:54:20 ID:aoRBENz7FOPJS6leKNt1qPzFzyH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1


	⊢ <u>9-4-5</u> 9-4-5			24-8-5 2-3-3 4x6= 4x5= 4 537	7-1-15	D-1-12 6-4 12x16=		43-3- 4-11- x8= 7	-		<u>55-1</u> 9-1		56-9-8 D-10-8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 4^{12} \\ 33 \\ 6x8 = \\ 25 \\ 3x5 \\ 3x5 \\ 24 \\ 4x5 \end{array} $	44 45 23			49	8 6x10= 3362 2117 3362 18 2019 3x5 II	8 8 1 50 2 1 50 2 1 x8=	16 5 4x6=	4x6 × 8 8 51 15 4x5=			13 3x8 II 5x6 = 6x12	10 11 125 F 1-1-0
Scale = 1:101.1	<u>5-0-0</u> 5-1- <u>5-0-0</u> 0-1-2	12 <u>13-5-10</u> 2 8-3-14	<u>23-0-9</u> 9-7-0		31-7-8 3	34-0-0 32-1-0 1-10-4 	<u>39-6-4</u> 5-6-4		<u>9-12</u> 3-8		<u>53-7-8</u> 9-9-12	55-11 2-3-	I-Q
		, [6:0-5-0,Edge], [7:0-3-1	2,0-3-0], [10:0-4-12	0-4-0], [11:Ed	ge,0-5-9], [17	:0-2-4,0-3-0]	, [20:0 - 1-	5,0-6-12]					
Loading TCLL (roof) Snow (Pf) TCDL BCLL	(psf) 20.0 20.0 10.0 0.0*	Plate Grip DOL1Lumber DOL1Rep Stress IncrY	-0-0 .15 .15 ES RC2018/TPI2014	CSI TC BC WB Matrix-MSH	0.96 0.57 0.88	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 14-15 14-15 26	>999 2 >642	240 180 n/a	PLATES MT20	GRIP 244/19	
BCDL	10.0			1						-		lb FT = 20	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING	2400F 2.0E, 18-17, 2x4 SP No.3 *Exce	pt* 5,23-3,5-21,5-20,15-7:2x4	WEBS 4 NOTES 1) Unbalanced	3-21=-334/73 1-24=-557/39 17-34=-8/109 2-24=-1449/5 5-21=0/767, £ 7-15=-231/14 20-26=-100/1 19-26=-38/57	1, 10-13=-56 5, 17-19=-76 67, 2-23=-4/3 5-20=-1185/10 33, 6-26=-14 145, 26-33=- , 26-34=-38/5	6/210, /97, 854, 3-23=-1: 63, 9-15=-77 62/132, 100/1145, 57	75/335,	on th 3-06 chor 9) Bear using desig 10) One reco UPL	e bottom -00 tall by d and any ing at join g ANSI/T gner shou H2.5A Si mmended IFT at jt(s	n choro y 2-00 y othe nt(s) 2 PI 1 a uld ver impso d to co s) 11, 2	d in all areas -00 wide will r members, v 6 considers ngle to grain rify capacity n Strong-Tie onnect truss 24, and 26. T	to bearing w This connect	tangle the bottom 10.0psf. rain value uilding urface. alls due to ion is for
TOP CHORD	2-2-0 oc purlins, e 2-0-0 oc purlins (6- Rigid ceiling directly bracing, Except:	y applied or 10-0-0 oc	2) Wind: ASC Vasd=103n Cat. II; Exp zone and C	E 7-16; Vult=1 nph; TCDL=6.0 B; Enclosed; I -C Exterior(2E 7-5-3, Exterior)psf; BCDL=6 MWFRS (env) 7-11-0 to 13	6.0psf; h=25f elope) exteri 3-6-2, Interio	ior r (1)	11) This Inter R802 12) Grap	truss is c national f 2.10.2 an phical pur	design Reside Id refe Ilin rep	ed in accord ential Code s renced stand presentation	r lateral force ance with the ections R50 dard ANSI/TI does not dep ong the top a	e 2018 2.11.1 and PI 1. pict the size
WEBS	6-0-0 oc bracing: 1 1 Row at midpt	3-21, 7-17, 2-24, 3-23,	(1) 33-3-0 t	o 38-2-8, Exte 53-10-3 to 58-	rior(2R) 38-2-	8 to 53-10-3	,	botto	om chord.		dard		
REACTIONS	Max Horiz 24=262 (Max Uplift 11=-243 26=-79 (Max Grav 11=1262	(LC 15), 24=-246 (LC 14	64-6-12 zon vertical left forces & M), DOL=1.60 3) TCLL: ASC Plate DOL=	ne; cantilever l and right expo VFRS for reac blate grip DOL E 7-16; Pr=20 1.15); Pf=20.0	eft and right e sed;C-C for n tions shown; =1.60 .0 psf (roof LL) psf (Lum DC	exposed ; en nembers and Lumber L: Lum DOL= DL=1.15 Plat	d d =1.15 e	LOAD C	∩JE(J)	Starl	RTH C	ARO	
FORCES	(lb) - Maximum Cor	npression/Maximum	Cs=1.00; Ć			•			4	1	CEE?	SIGN	NR -
TOP CHORD	5-33=-124/429, 6-3 6-34=-109/422, 7-3 7-9=-1590/608, 9-1 10-11=-629/261, 1	4=-180/426, 0=-1702/511, I-12=0/26, 1-25=-136/57	, design. 5) This truss h load of 12.0 overhangs	as been desig psf or 1.00 tir non-concurren quate drainag	ned for great nes flat roof lo t with other liv	er of min roo oad of 20.0 p ve loads.	of live osf on		2 minute		SE 036	AL 322	
BOT CHORD	24-25=-54/77, 23-2 21-23=-138/720, 20 17-18=0/26, 15-17= 14-15=-255/1413, ' 13-14=-136/445, 1' 18-19=-133/0	0-21=-114/582, 17/495, 10-14=-206/1278,	7) This truss h	as been desig ad nonconcur	ned for a 10.0) psf bottom			to and the second second			NEER. GILBE	A LIVE
WAR	JING - Verify design parame	ters and READ NOTES ON THIS			E MII-7473 rev. 5	/19/2020 BEFO	REUSE				ENCIN	FERING BY	

Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 116 FARM AT NEILLS CREEK
22090034	A04	Piggyback Base Supported Gable	1	1	Job Reference (optional)

Run: 8.53 S Sep 12 2022 Print: 8.530 S Sep 12 2022 MiTek Industries, Inc. Wed Sep 28 07:54:22 ID:ACS0SGCfmETEfJzgbpcWMMzhrbI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:97.2

Plate Offsets (X, Y): [11:0-3-0,0-3-1	2], [24:0-4-0,0-3-3], [27	7:0-2-1,Edge], [43:0	0-5-0,0-4-8], [57:0-4-0,0-1-4]							
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	1-11-4 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matri	0.31 0.07 0.22 x-MR	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a -0.01	(loc) - - 35	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 590 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING	2x6 SP No.2 2x4 SP No.3 2x4 SP No.3 *Excep	55-12,51-16,50-17,49-1	8,	Max Upli	ft 35=-232 (LC 11 37=-27 (LC 15) 39=-48 (LC 15) 41=-50 (LC 15) 43=-24 (LC 15) 46=-30 (LC 11) 49=-24 (LC 10) 51=-24 (LC 10)	, 38=-53 (LC , 40=-49 (LC , 42=-54 (LC , 45=-22 (LC , 47=-25 (LC , 50=-25 (LC , 52=-25 (LC	15), 15), 15), 10), 11), 10), 11),	TOP CH	IORD	3-4=-6 6-7=-8 9-10= 11-12 13-14 15-16 17-18	59/101, 4-5=-78, 30/151, 7-8=-11 -156/357, 10-11 =-147/382, 12-1 =-147/382, 14-1 =-147/382, 16-1 =-147/382, 18-1	3=-147/382, 5=-147/382, 7=-147/382, 9=-147/382,
TOP CHORD	6-0-0 oc purlins, ex 2-0-0 oc purlins (6-0				53=-28 (LC 11) 58=-59 (LC 14) 60=-59 (LC 14) 62=-32 (LC 10)	, 59=-50 (LC , 61=-42 (LC	14), 14),			22-23 24-25	=-147/382, 21-2 =-147/382, 23-2 =-163/399, 25-2 =-133/266, 28-2	4=-147/382, 6=-154/348,
BOT CHORD					62=-32 (LC 10), 63=-37 (LC 10), 64=-54 (LC 14), 65=-21 (LC 10) Max Grav 35=189 (LC 19), 36=285 (LC 24), 31-32=-118/239, 32-33=-148/							=-100/235,
WEBS					 35=189 (LC 19) 37=155 (LC 40) 39=217 (LC 46) 41=233 (LC 46) 43=229 (LC 46) 45=218 (LC 39)), 38=166 (LC), 40=236 (LC), 42=238 (LC), 44=181 (LC	C 28), C 46), C 46), C 46), C 53),				=-118/239, 32-3 =-209/287, 34-3	,
REACTIONS	37=55-11 39=55-11 41=55-11 43=55-11 45=55-11 45=55-11 50=55-11 52=55-11 56=55-11	$\begin{array}{l} -0, \ 36=55-11-0, \\ -0, \ 38=55-11-0, \\ -0, \ 40=55-11-0, \\ -0, \ 42=55-11-0, \\ -0, \ 44=55-11-0, \\ -0, \ 46=55-11-0, \\ -0, \ 49=55-11-0, \\ -0, \ 51=55-11-0, \\ -0, \ 53=55-11-0, \\ -0, \ 58=55-11-0, \\ -0, \ 60=55-10-0, \\ -0, \ 60=55-10-0, \\ -0, \ 60=55-10-0, \\ -0, \ 60=55-10-0, \\ -0, \ 60=55-10-0, \\ -0, \ 60=55-10-0, \\$	FORCES	(lb) - M Tensioi	47=212 (LC 39 50=177 (LC 20 52=209 (LC 39 54=218 (LC 39 56=224 (LC 42 59=238 (LC 42 61=205 (LC 43) 63=212 (LC 43) 65=87 (LC 43) aximum Compress	, 49=190 (LC , 51=189 (LC , 53=218 (LC , 55=178 (LC , 55=178 (LC , 58=238 (LC , 60=205 (LC , 62=215 (LC , 64=225 (LC	C 20), C 21), C 39), C 53), C 42), C 42), C 42), C 43), C 43),			~~~	ORTH CA	i
	61=55-11	-0, 62=55-11-0, -0, 64=55-11-0, -0								A A A A A A A A A A A A A A A A A A A		EER. KIN

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

September 28,2022

Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 116 FARM AT NEILLS CREEK
22090034	A04	Piggyback Base Supported Gable	1	1	I54436552 Job Reference (optional)

Run: 8.53 S Sep 12 2022 Print: 8.530 S Sep 12 2022 MiTek Industries, Inc. Wed Sep 28 07:54:22

ID:ACS0SGCfmETEfJzgbpcWMMzhrbl-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

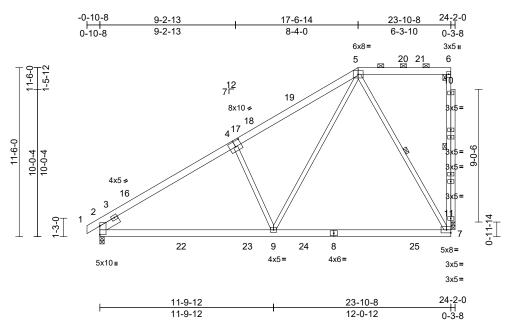
Carter Components (Sanford), Sanford, NC - 27332,

BOT CHORD	$\begin{array}{l} 64-65=-238/161, 63-64=-238/161, \\ 62-63=-238/161, 61-62=-238/161, \\ 60-61=-238/161, 59-60=-238/161, \\ 58-59=-238/161, 56-58=-238/161, \\ 55-56=-238/161, 52-53=-238/161, \\ 53-54=-238/161, 50-51=-238/161, \\ 51-52=-238/161, 47-49=-238/161, \\ 49-50=-238/161, 45-46=-238/161, \\ 44-45=-238/161, 42-44=-238/161, \\ 41-42=-237/161, 40-41=-237/161, \\ 39-40=-237/161, 38-39=-237/161, \\ 37-38=-237/161 \\ \end{array}$
WEBS	15-52=-171/58, 14-53=-179/93, 13-54=-179/84, 12-55=-139/6, 10-56=-185/56, 9-58=-200/143, 8-59=-199/111, 7-60=-166/90, 5-61=-166/65, 4-62=-176/56, 3-63=-174/56, 2-64=-184/73, 16-51=-151/48, 17-50=-138/48, 18-49=-152/48, 19-47=-173/67, 21-46=-179/97, 22-45=-179/74, 23-44=-143/10, 25-43=-190/79, 26-42=-199/141, 28-41=-195/99, 29-40=-197/72, 30-39=-179/72, 31-38=-123/73, 32-37=-117/65, 33-36=-178/126

NOTES

- Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) 7-11-0 to 13-10-2, Exterior (2N) 13-10-2 to 19-4-3, Corner(3R) 19-4-3 to 31-4-0, Exterior(2N) 31-4-0 to 39-10-2, Corner(3R) 39-10-2 to 51-10-2, Exterior(2N) 51-10-2 to 57-6-10, Corner(3E) 57-6-10 to 63-6-8 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) Provide adequate drainage to prevent water ponding.
- 7) All plates are 2x4 MT20 unless otherwise indicated.
- 8) Gable requires continuous bottom chord bearing.
- Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
 Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. 12) * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

13) N/A


- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 116 FARM AT NEILLS CREEK
22090034	B01	Piggyback Base	2	1	I54436553 Job Reference (optional)

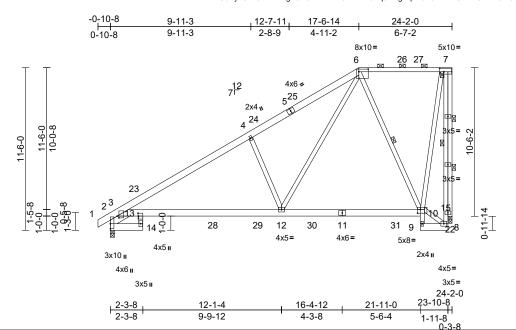
Scale =	1:78.4
---------	--------

Plate Offsets (X, Y): [4:0-5-0,0-4-8]

							I						
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.63	Vert(LL)	-0.27	7-9	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.79	Vert(CT)	-0.41	7-9	>695	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.71	Horz(CT)	-0.05	11	n/a	n/a		
BCLL	0.0*	Code	IRC20	18/TPI2014	Matrix-MSH								
BCDL	10.0											Weight: 199 lb	FT = 20%
LUMBER			3) TCLL: ASCE	7-16; Pr=20.0 psf	f (roof Ll	: Lum DOL=	1.15					
TOP CHORD	2x6 SP No.2				1.15); Pf=20.0 psf (
BOT CHORD	2x6 SP No.2				Is=1.0; Rough Cat								
WEBS	2x4 SP No.2 *Excep	ot* 4-9:2x4 SP No.3		Cs=1.00; Ct	=1.10								
OTHERS	2x4 SP No.2		4) Unbalanced	snow loads have b	been cor	nsidered for t	his					
SLIDER	Left 2x6 SP No.2 1	1-6-0		design.									
BRACING			5	,	is been designed f	0							
TOP CHORD	Structural wood she	athing directly applie	ed or		psf or 1.00 times fl			osf on					
	5-8-5 oc purlins, ex	cept end verticals, a	nd	•	on-concurrent with								
	2-0-0 oc purlins (6-0		6		quate drainage to p			g.					
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 o	c /		as been designed f ad nonconcurrent v			ada					
	bracing.		g		as been designed								
WEBS		6-7, 5-7	L.	,	n chord in all areas			opsi					
	(size) 2=0-3-8, 7				by 2-00-00 wide wi			tom					
	Max Horiz 2=396 (LC				ny other members,								
	Max Uplift 2=-116 (L	<i>.</i>	Ý 3) Bearing at jo	int(s) 11 considers	paralle	I to grain valເ	Je					
	Max Grav 2=1244 (I		C 24)	using ANSI/	TPI 1 angle to grain	n formul	a. Building						
FORCES	(lb) - Maximum Com	pression/Maximum			ould verify capacity								
	Tension			,	Simpson Strong-Tie								
TOP CHORD	1-2=0/26, 2-5=-1501	,	,		ed to connect truss								
BOT CHORD	7-11=-119/1109, 6-1			,	(s) 2 and 11. This o			t				111111111	1111
	2-9=-310/1366, 7-9=		C/040 4		es not consider late							I'TH CA	Roille
WEBS	5-7=-1007/216, 5-9=	105/1254, 4-9=-59	0/312 1	,	designed in accord Residential Code			and			N	A	anda's
NOTES					nd referenced stan					/	52	FEDS	This and -
	ed roof live loads have	been considered fo	r 1					size		4		the last	Thing
this design		(2 accord suct)	12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or							N 📜 🚍			
	CE 7-16; Vult=130mph mph; TCDL=6.0psf; B			bottom chore						-	:	SEA	L 🗼 E
vasu-103	mpn, robe-o.opsi, b	obe=0.0psi, n=20it,									·	ULA	- 1 2

(i) Wind. ASCE 7-16, Vulle-1Soniphi (S-Second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 13-3-15, Exterior(2R) 13-3-15 to 21-9-12, Interior (1) 21-9-12 to 23-8-12 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

LOAD CASE(S) Standard


Page: 1

Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 116 FARM AT NEILLS CREEK
22090034	B02	Piggyback Base	2	1	I54436554 Job Reference (optional)

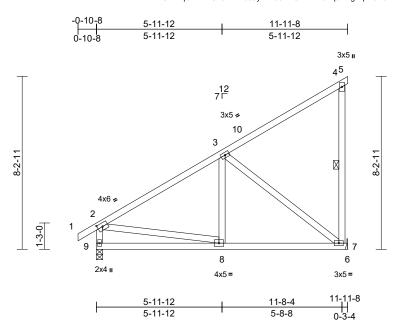
Scale = 1:81.5

Run: 8.53 S Sep 12 2022 Print: 8.530 S Sep 12 2022 MiTek Industries, Inc. Wed Sep 28 07:54:24 ID:U0VysG?d9oeHisHgY8i761zFzil-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Plate Offsets (X, Y): [2:Edge,0-0-0], [3:0-1-9,0-1-8], [6:0-8-0,0-2-4], [7:0-3-8,0-3-0], [10:0-2-4,0-3-0], [13:0-2-8,0-0-8]

						-							-
Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.83	DEFL Vert(LL)	in -0.23	(loc) 12-13	l/defl >999	L/d 240	PLATES MT20	GRIP 244/190
Snow (Pf) TCDL	20.0 10.0	Lumber DOL Rep Stress Incr	1.15 YES		BC WB	0.88 0.55	Vert(CT) Horz(CT)	-0.44 0.15	12-13 22	>659 n/a	180 n/a		
BCLL	0.0*	Code		8/TPI2014	Matrix-MSH	0.55		0.15	22	n/a	n/a		
BCDL	10.0	Code	11(0201	0/11/12/014								Weight: 215 lb	FT = 20%
LUMBER			2)	Wind: ASCE	7-16; Vult=130mp	oh (3-seo	cond gust)		LOAD	CASE(S)	Sta	ndard	
TOP CHORD BOT CHORD	2x6 SP No.2 *Excep		0	Cat. II; Exp E	ph; TCDL=6.0psf; 3; Enclosed; MWF	RS (env	elope) exterio	or					
WEBS	No.3	ot* 8-10,12-4,10-7:2x4	1 90		C Exterior(2E) -0- ⁻ 8-15, Exterior(2R)			(1)					
WEB3	No.3	JL 6-10, 12-4, 10-7.2X	+ 35		1-9-12 to 23-8-12			nd					
OTHERS	2x4 SP No.2				d; end vertical left								
SLIDER	Left 2x6 SP No.2 7	1-5-11			and forces & MW =1.60 plate grip D			own;					
BRACING			3)		= 1.00 plate grip D = 7-16; Pr=20.0 ps			1 15					
TOP CHORD		athing directly applie			1.15); Pf=20.0 psf								
	2-0-0 oc purlins, ex	cept end verticals, ar	a	DOL=1.15);	ls=1.0; Rough Cat								
BOT CHORD	Rigid ceiling directly			Cs=1.00; Ct=									
201 0110112	bracing.		4)		snow loads have l	been cor	nsidered for th	nis					
WEBS	1 Row at midpt	7-15, 6-10	5)	design.	as been designed f	for groat	or of min roof	livo					
WEBS	2 Rows at 1/3 pts	7-22	5)		psf or 1.00 times f								
REACTIONS	(size) 2=0-3-8, 2	22=0-3-0			on-concurrent with								
	Max Horiz 2=383 (LC		6)		quate drainage to			g.					
	Max Uplift 2=-72 (LC			This truss ha	s been designed f	or a 10.	0 psf bottom	-					
	Max Grav 2=1276 (L		3)		ad nonconcurrent								
FORCES	(Ib) - Maximum Com	pression/Maximum	8)		nas been designed			Opsf				munn	11111
TOP CHORD	Tension 1-2=0/26, 2-3=-803/	0 3 4- 1022/142			n chord in all area by 2-00-00 wide wi			~ m				"TH CA	Bally
TOF CHORD	,	-207/31, 8-15=-40/1	3		by 2-00-00 wide will a will be a straight of the rembers.						5	A	in Chile
	7-15=-40/13	201701, 0 10 10/1	9) 9)		int(s) 22 considers					/	52	C.FESO	A sin
BOT CHORD		14=-114/208,	-,		TPI 1 angle to grai					9	D	US P	
	3-13=-197/1285, 12-	-13=-367/1543,		designer sho	ould verify capacity	of bear	ing surface.			-			
	10-12=-125/573, 9-1	10=-19/14, 8-9=-146/	0 10		Simpson Strong-Ti					=		SEA	L i i
WEBS	,)=0/204, 4-12=-734/3	33,		ed to connect truss					=		0363	• -
	6-12=-243/1453, 7-1	10=-139/1070,			(s) 2 and 22. This es not consider late			[Ξ		0505	44 i E
	7-22=-1078/197		1.		designed in accor					-			1 2
NOTES	ad roof live loads have	hoop considered for			Residential Code			ind			2, 1	N. ENO	CR. L S
this design	ed roof live loads have	been considered for			nd referenced star						1	S, GIN	E. P.N
una desigi			13) Graphical pu	urlin representation	does no	nt denict the s	ize			1	10	ALIN

12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. September 28,2022


Page: 1

ENGINEERING BY ENGINEERING BY AMITEK AMILIA B18 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 116 FARM AT NEILLS CREEK
22090034	C01	Monopitch	6	1	I54436555 Job Reference (optional)

Run: 8.53 S Sep 12 2022 Print: 8.530 S Sep 12 2022 MiTek Industries, Inc. Wed Sep 28 07:54:25 ID:CLXxqOYYKtIC18TKvZ333yzFwJ8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

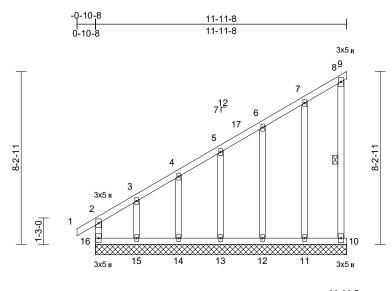
Page: 1

Scale = 1:54.9

Plate Offsets (X, Y): [2:0-2-14,0-2-0]

- (X, 1). [2.0-2-14,0-2-0	L.										
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MSH	0.61 0.34 0.51	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.05 0.01	(loc) 7-8 7-8 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 77 lb	GRIP 244/190 FT = 20%
	6-0-0 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt (size) 7= Mecha Max Horiz 9=288 (L0 Max Uplift 7=-126 (L	4-7 anical, 9=0-3-8 C 13) .C 14), 9=-43 (LC 14)	load of 12. overhangs 5) This truss chord live 1 or 6) * This truss on the bott 3-06-00 ta chord and 7) Refer to gi 8) Provide mu bearing pla joint 7.	has been designed for o psf or 1.00 times for non-concurrent with has been designed for oad nonconcurrent with s has been designed om chord in all area to by 2-00-00 wide with any other members. der(s) for truss to the chanical connection the capable of withst & Simpson Strong-Ti	lat roof I o other Ii for a 10. with any I for a Iiv s where ill fit betw uss conin (by oth anding	bad of 20.0 p ve loads. O psf bottom other live loa e load of 20. a rectangle veen the bott nections. ers) of truss (26 lb uplift a	ads. Opsf com to					
FORCES	Max Grav 7=634 (L0 (lb) - Maximum Com Tension 1-2=0/31, 2-3=-559/	npression/Maximum 107, 3-4=-186/106,	UPLIFT at does not c 10) This truss	ded to connect truss jt(s) 9. This connect onsider lateral forces s designed in accord	ion is fo s. dance w	r uplift only a ith the 2018	nd					
BOT CHORD WEBS	4-5=-13/0, 4-7=-264 8-9=-277/261, 7-8=- 3-8=0/233, 3-7=-510	101/419, 6-7=0/0		al Residential Code and referenced star 3) Standard			and					
 Vasd=103/ Cat. II; Exp zone and (2-1-8 to 8- cantilever right exposition DOL=1.60 TCLL: ASC Plate DOL DOL=1.15 Cs=1.00; (CE 7-16; Pr=20.0 psf (=1.15); Pf=20.0 psf (L); Is=1.0; Rough Cat E	CDL=6.0psf; h=25ft; S (envelope) exterior 0-8 to 2-1-8, Interior (1 1-8 to 11-11-8 zone; ; end vertical left and and forces & MWFRS 0L=1.60 plate grip froof LL: Lum DOL=1. um DOL=1.15 Plate 3; Fully Exp.; Ce=0.9;) 15						G	the second secon	SEA 0363	EER A

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

September 28,2022

Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 116 FARM AT NEILLS CREEK
22090034	C02	Monopitch Supported Gable	1	1	I54436556 Job Reference (optional)

Run: 8.53 S Sep 12 2022 Print: 8.530 S Sep 12 2022 MiTek Industries, Inc. Wed Sep 28 07:54:25 ID:cwD4SPaRdognucCvbhdmhazFwJ5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:54.9					11-0-4			0-3-4				
Loading	(psf)	Spacing	1-11-4	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	тс	0.69	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.20	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.17	Horz(CT)	-0.04	9	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MR								
BCDL	10.0										Weight: 84 lb	FT = 20%
LUMBER TOP CHORD 2	x4 SP No.2	•		E 7-16; Vult=130 nph; TCDL=6.0p								ce with the 2018 tions R502.11.1 and

LUMBER		
TOP CHORD	2x4 SP N	lo.2
BOT CHORD	2x4 SP N	lo.2
WEBS	2x4 SP N	lo.3
OTHERS	2x4 SP N	lo.3
BRACING		
TOP CHORD		I wood sheathing directly applied or purlins, except end verticals.
BOT CHORD	Rigid ceil bracing.	ling directly applied or 10-0-0 oc
WEBS	1 Row at	midpt 8-10
REACTIONS	(size)	9=11-11-8, 10=11-11-8, 11=11-11-8 12=11-11-8, 13=11-11-8, 14=11-11-8, 15=11-11-8, 16=11-11-8
	Max Horiz	16=280 (LC 11)
	Max Uplift	9=-83 (LC 14), 10=-146 (LC 13), 11=-53 (LC 14), 12=-46 (LC 14), 13=-58 (LC 14), 14=-14 (LC 14), 15=-200 (LC 14), 16=-97 (LC 10)
	Max Grav	9=93 (LC 13), 10=144 (LC 10), 11=234 (LC 21), 12=223 (LC 21), 13=165 (LC 24), 14=158 (LC 1), 15=236 (LC 24), 16=256 (LC 25)
FORCES	(lb) - Max Tension	kimum Compression/Maximum
TOP CHORD	3-4=-185/	9/75, 1-2=0/30, 2-3=-259/166, /120, 4-5=-170/109, 5-6=-154/98, /99, 7-8=-109/117, 8-9=-87/66,
BOT CHORD	15-16=-1 13-14=-1	15/144, 14-15=-115/144, 15/144, 12-13=-115/144, 15/144, 10-11=-115/144
WEBS		5/57, 6-12=-184/118, 4/105, 4-14=-120/83, 3-15=-157/204

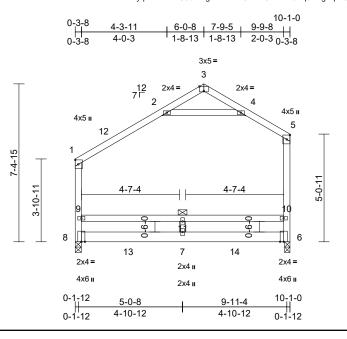
NOTES

Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 1-11-8, Exterior(2N) 1-11-8 to 11-11-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. ^{1-8,} 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

- 4) Unbalanced snow loads have been considered for this desian.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 6) All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing. 7)
- 8) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). Gable studs spaced at 2-0-0 oc. 9)
- 10) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members. 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 97 lb uplift at joint 16, 83 lb uplift at joint 9, 146 lb uplift at joint 10, 53 lb uplift at joint 11, 46 lb uplift at joint 12, 58 lb uplift at joint 13, 14 lb uplift at joint 14 and 200 lb uplift at joint 15.

R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard


Page: 1

Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 116 FARM AT NEILLS CREEK
22090034	D01	Common	4	1	I54436557 Job Reference (optional)

Run: 8.53 S Sep 12 2022 Print: 8.530 S Sep 12 2022 MiTek Industries, Inc. Wed Sep 28 07:54:25 ID:1yqKDdM?oLU90fiheg7MINzTRGw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

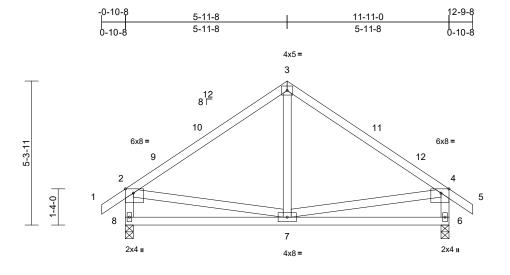
Scale = 1:54.1

Plate Offsets (X, Y): [3:0-2-8,Edge]

-													
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.95	Vert(LL)	-0.07	7	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.41	Vert(CT)	-0.21	7	>569	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.49	Horz(CT)	0.00	6	n/a	n/a		
BCLL	0.0*	Code	IRC201	8/TPI2014	Matrix-MSH								
BCDL	10.0											Weight: 74 lb	FT = 20%
LUMBER			4) Unbalanced	snow loads have l	been cor	nsidered for t	his					
TOP CHORD	2x4 SP No.2		- ,	design.									
BOT CHORD	2x6 SP No.2		5)) 200.0lb AC (init load placed on	the bott	om chord, 5-	0-0					
WEBS	2x4 SP No.3 *Excep	t* 8-1,6-5:2x4 SP N	o.2	from left end	, supported at two	points,	5-0-0 apart.						
BRACING			6)) This truss ha	is been designed f	or a 10.) psf bottom						
TOP CHORD	Structural wood she	athing directly applie	ed or		ad nonconcurrent								
	1-7-8 oc purlins, exe	cept end verticals.	7)		nas been designed			0psf					
BOT CHORD	Rigid ceiling directly	applied or 6-0-0 oc			n chord in all area								
	bracing.				by 2-00-00 wide wing other members.		veen the bott	om					
WEBS	1 Row at midpt	9-10	8		int(s) 8, 6 conside		ol to grain va	luo					
REACTIONS	(size) 6=0-3-0, 8		0,		TPI 1 angle to grain			lue					
	Max Horiz 8=218 (LC	,			ould verify capacity								
	Max Grav 6=561 (LC	C 21), 8=564 (LC 20) 9)		designed in accord								
FORCES	(lb) - Maximum Com	pression/Maximum	- /		Residential Code			and					
	Tension			R802.10.2 a	nd referenced star	Idard AN	ISI/TPI 1.						
TOP CHORD	1-2=-311/150, 2-3=-	,		OAD CASE(S)	Standard								
	4-5=-270/176, 8-9=-3		55,	()									
BOT CHORD	6-10=-372/133, 5-10 7-8=-42/262, 6-7=-42												
WEBS	9-11=-222/167, 10-1		140										
NEDO	9-11=-222/167, 10-1 2-4=0/218	1222/10/, /-11=U	<i>∥</i> +∠,										11.
NOTES	2-4-0/210											TH CA	
NOTES 1) Unbalance	ed roof live loads have	been considered fo	-									"TH UA	ROIL
this design		Deen considered to	l.								15	n'iiii	A. MARY

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-1-12 to 3-1-12, Exterior (2R) 3-1-12 to 9-0-8, Interior (1) 9-0-8 to 9-11-4 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10


SEAL 036322 September 28,2022

Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 116 FARM AT NEILLS CREEK
22090034	E01	Common	5	1	I54436558 Job Reference (optional)

Run: 8.53 S Sep 12 2022 Print: 8.530 S Sep 12 2022 MiTek Industries, Inc. Wed Sep 28 07:54:26 ID:_chtVMf3J_GcW_b8at2KjlzFzYt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

5-11-8	11-11-0	
5-11-8	5-11-8	

Plate Offsets (X, Y): [2:0-3-8,Edge], [4:0-3-8,Edge]

Scale = 1:42.4

- 1410 0110010 (1	, , ,). [<u>=</u> :0 0 0, <u>=</u> ugo],	[lie e e,Euge]			-								
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MSH	0.91 0.30 0.10	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.05 0.00	(loc) 7-8 7-8 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 69 lb	GRIP 244/190 FT = 20%
	6-0-0 oc purlins, exe Rigid ceiling directly bracing.	applied or 10-0-0 oc 8=0-3-8 C 13) C 15), 8=-56 (LC 14) C 22), 8=619 (LC 21) apression/Maximum 122, 3-4=-539/122, 164, 4-6=-566/164 85/252	7) 8) 9)	design. This truss ha load of 12.0 overhangs n This truss ha chord live loa * This truss h on the bottor 3-06-00 tall k chord and ar One H2.5A S recommended UPLIFT at jtt and does no This truss is International	snow loads have as been designed psf or 1.00 times f on-concurrent with as been designed ad nonconcurrent has been designed m chord in all area by 2-00-00 wide w hy other members Simpson Strong-Ti ed to connect truss (s) 8 and 6. This c t consider lateral f designed in accor Residential Code nd referenced stat Standard	for great flat roof I h other Ii for a 10. with any d for a liv s where rill fit betv. ie conne s to bear onnectio forces. dance w	er of min rood oad of 20.0 p ve loads. 0 psf bottom other live loa re load of 20. a rectangle ween the bott ctors ing walls due n is for uplift ith the 2018 s R502.11.1 a	f live sf on ads. Opsf om to only					
 Unbalance this design Wind: ASC 	ed roof live loads have n. CE 7-16; Vult=130mph mph; TCDL=6.0psf; B0	(3-second gust)									A.	ORTH CA	ROUT

- Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 2-11-8, Exterior(2R) 2-11-8 to 8-11-8, Interior (1) 8-11-8 to 9-9-8, Exterior(2E) 9-9-8 to 12-9-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

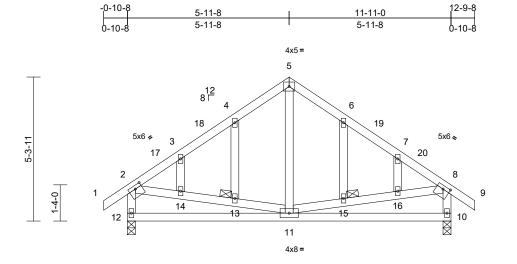
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

GILB

SEAL

036322

C


201110000000

The manual

Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 116 FARM AT NEILLS CREEK				
22090034	E02	Common Structural Gable	1	1	I54436559 Job Reference (optional)				

Run: 8.53 S Sep 12 2022 Print: 8.530 S Sep 12 2022 MiTek Industries, Inc. Wed Sep 28 07:54:26 ID:sNxOLkiaNCm2?cvvpi6Gu8zFzYp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

5-11-8	11-11-0
5-11-8	5-11-8

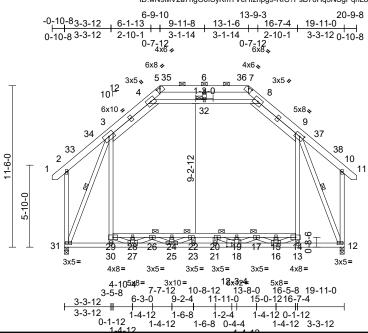
Plate ()tteete (X Y).	[2:0-3-0,0-1-8],	18.0-3-0 0-1-81
1 1410 0113013 (, , , , , , , , , , , , , , , , , , ,	[2.0-0-0,0-1-0],	[0.0-0-0,0-1-0]

Scale = 1:42.4

	A, T). [2.0-3-0,0-1-0],	[0.0-3-0,0-1-0]											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.69 0.29 0.70	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 11-12 11-12 10	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 81 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD JOINTS	6-0-0 oc purlins, ex	athing directly applied cept end verticals. applied or 10-0-0 oc	2) d or 3)	Vasd=103mp Cat. II; Exp E zone and C 1-11-8 to 2-1 (1) 8-11-8 to cantilever lef right expose for reactions DOL=1.60 Truss design only. For stu	7-16; Vult=130mpl bh; TCDL=6.0psf; E 3; Enclosed; MWFF C Exterior(2E) -0-1 1-8, Exterior(2R) 2 9-9-8, Exterior(2R) t and right exposed d;C-C for members shown; Lumber DC ned for wind loads i ids exposed to wind	3CDL=6 RS (env 0-8 to 1 -11-8 to 1 9-9-8 to 2 and fo DL=1.60 in the p d (norm	6.0psf; h=25ft; elope) exterio -11-8, Interio o 8-11-8, Interio o 12-9-8 zone vertical left an rcces & MWFF D plate grip lane of the tru al to the face	or r (1) rior ∋; d &S uss),	Ínte	rnationa)2.10.2 a	al Resid and ref	erenced standar	ions R502.11.1 and
		LC 12) C 15), 12=-56 (LC 14	,	see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9;									
FORCES	(lb) - Maximum Com Tension	pression/Maximum	5)	Cs=1.00; Ct=	=1.10		•						
TOP CHORD	1-2=0/34, 2-3=-511/ 4-5=-380/134, 5-6=- 7-8=-511/79, 8-9=0/3 8-10=-563/162	380/134, 6-7=-436/98	3, 6)	 Unbalanced snow loads have been considered for this design. This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 									1999),
BOT CHORD WEBS	11-12=-135/232, 10- 5-11=-11/209, 2-14= 11-13=-27/254, 11-1	-22/253, 13-14=-22/2 5=-31/254, ;=-25/253, 4-13=-82/4	13, 9)	All plates are Truss to be f braced agair Gable studs	e 2x4 MT20 unless ully sheathed from ast lateral movemen spaced at 2-0-0 oc	otherwi one fac nt (i.e. c	se indicated. e or securely liagonal web)			4	i	OR FESS	ROLLING A
NOTES 1) Unbalance this design	ed roof live loads have		11	 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 12) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 12 and 10. This connection is for uplift only and does not consider lateral forces. 								22 EERER III	

818 Soundside Road Edenton, NC 27932

A. GI A. GIL


September 28,2022

³⁻⁰⁶⁻⁰⁰ tall by 2-00-00 wide will fit between the bottom

Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 116 FARM AT NEILLS CREEK
22090034	G01	Attic	2	1	I54436560 Job Reference (optional)

Run: 8.53 S Sep 12 2022 Print: 8.530 S Sep 12 2022 MiTek Industries, Inc. Wed Sep 28 07:54:27 ID:wN9MV2a7ngO0fSyKmTVeHIzhpg9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:82

Plate Offsets (X, Y):	[5:0-3-0,0-1-1], [7:0-3-0,0-1-1], [9:0-3-8,0-2-4], [18:0-4-4]	,0-3-4	ij

		1 .			-											
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP			
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.37	Vert(LL)	-0.23			240	MT20	244/190			
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.92	Vert(CT)	-0.38		>617	180					
TCDL	10.0	Rep Stress Incr	YES		WB	0.69	Horz(CT)	0.05	12	n/a	n/a					
BCLL	0.0*	Code		8/TPI2014	Matrix-MSH		Attic	-0.20		>806	360					
BCDL	10.0	0000		0,1112011			,	0.20				Weight: 226 lb	FT = 20%			
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD		ot* 3-30,9-13,4-8:2x4 ⊃ No.2 athing directly applie	1 SP d or		29-30=-98/396, 3-2 29-30=-98/396, 3-2 3-31=-1610/18, 9-1 14-16=0/1452, 27-2 27-28=-183/0, 16-1 26-27=-1204/0, 17- 18-19=-165/0, 24-2 22-25=-474/52, 22-	=-645/30 2=-160 29=0/14 7=-118 18=0/90 5=-156	69, 8-32=-645 6/14, 24, 15-16=-1 3/0, 09, 25-26=0/8 ′0, 18-20=-45	5/369, 91/0, 894, 0/39,	on 3-0 cho 10) Ce 8-3 11) Bot	the botto 6-00 tall ord and a iling dea 2; Wall ttom cho	om cho by 2-0 any oth d load dead lo rd live	een designed for rd in all areas wh 0-00 wide will fit er members. (5.0 psf) on men oad (5.0psf) on n load (40.0 psf) a	a live load of 20.0psf here a rectangle between the bottom hber(s). 3-4, 8-9, 4-32, hember(s).3-29, 9-14 nd additional bottom			
BOT CHORD	2-0-0 oc purlins (6-0 Rigid ceiling directly)-0 max.): 5-7.		OTES	6-32=-1/59								only to room. 28-29, 17-19, 15-17, 14-15			
WEBS	bracing, Except: 2-2-0 oc bracing: 16 3-1-0 oc bracing: 17 5-4-0 oc bracing: 26 1 Row at midpt	5-18. 7-26 5-29, 14-17 3-31, 9-12	1)	 Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=130mph (3-second gust) 							 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 					
JOINTS	1 Brace at Jt(s): 17, 26, 32			2-3-11 to 17-7-5, Exterior(2E) 17-7-5 to 20-7-5 zone;								d for L/360 defle	ction.			
REACTIONS	(size) 12=0-3-8, Max Horiz 31=-337 (Max Grav 12=1584		C 46)	cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60						CASE(S) Sta	ndard				
FORCES	(lb) - Maximum Corr Tension	pression/Maximum	3)	TCLL: ASCE	E 7-16; Pr=20.0 psf								111111			
TOP CHORD	1-2=0/32, 2-3=-304/ 4-5=-806/248, 5-6=- 7-8=-807/251, 8-9=- 10-11=0/32, 2-31=-4	774/224, 6-7=-774/2 698/162, 9-10=-302/	233, 4)	 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); ls=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 4) Unbalanced snow loads have been considered for this design. 						A A A A A A A A A A A A A A A A A A A						
BOT CHORD	25-27=0/2673, 23-2 16-21=0/3868, 13-1 12-13=-37/601, 28-2 26-28=-1200/57, 24 22-24=-3005/0, 20-2 19-20=-3017/0, 17-1	 =64/623, 27-30=-240/600, 7=0/2673, 23-25=0/3868, 21-23=0/3868, =0/3868, 13-16=-21/404, 3=-37/601, 28-29=-1200/57, 8=-1200/57, 24-26=-3005/0, 1=-3005/0, 20-22=-3400/0, b=-3017/0, 17-19=-3017/0, r=-1211/48, 14-15=-1211/48 5) This truss has been designed for greater load of 12.0 psf or 1.00 times flat roof lox overhangs non-concurrent with other live load between the signed to reveal the signed of 12.0 psf or 1.00 times flat roof lox overhangs non-concurrent with other live load of 12.0 psf or 1.00 times flat roof lox overhangs non-concurrent with other live load between the signed to reveal the sinter signed to reveal the signed to reveal the signed to reve						sf on g.			A A A A A A A A A A A A A A A A A A A	SEA 0363	EER.K			

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

September 28,2022

Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 116 FARM AT NEILLS CREEK
22090034	G02	Attic	7	1	I54436561 Job Reference (optional)

6-9-10

0-7₄12 6x8 🖌

4 32

6-1-13

2-10-1

3x5、 10¹²

6x10

2

31

3

3-3-12

3-3-12

<u>++ 9-11-8</u>

3-1-14

+

Carter Components (Sanford), Sanford, NC - 27332

Scale = 1:80

Loading

TCLL (roof)

Snow (Pf)

LUMBER

TOP CHORD

BOT CHORD

BRACING

TOP CHORD

BOT CHORD

WEBS

JOINTS

FORCES

TOP CHORD

BOT CHORD

REACTIONS (size)

TCDL

BCLL

BCDL

WEBS

(psf)

20.0

20.0

10.0

0.0

2-0-0 oc purlins (6-0-0 max.): 4-6.

Rigid ceiling directly applied or 10-0-0 oc

10=0-3-8, 29=0-3-8

(Ib) - Maximum Compression/Maximum

28-29=-66/617, 25-28=-240/591,

14-19=0/3869, 11-14=-29/406,

10-11=-38/596, 26-27=-1192/54

24-26=-1192/54, 22-24=-3006/0,

20-22=-3006/0, 18-20=-3400/0,

17-18=-3017/0, 15-17=-3017/0,

13-15=-1202/44, 12-13=-1202/44

Max Grav 10=1542 (LC 45), 29=1542 (LC 45)

1-2=-290/178, 2-3=-700/145, 3-4=-804/252,

4-5=-770/230, 5-6=-770/230, 6-7=-804/255,

7-8=-701/144, 8-9=-288/179, 1-29=-375/161,

23-25=0/2674, 21-23=0/3869, 19-21=0/3869,

2-29, 8-10

10.0

2x6 SP No.2

bracing, Except:

1 Row at midpt

24, 30

Tension

9-10=-372/162

1 Brace at Jt(s): 15,

2-2-0 oc bracing: 14-16.

3-1-0 oc bracing: 15-24

Max Horiz 29=-321 (LC 10)

5-4-0 oc bracing: 24-27, 12-15

Run: 8.53 S Sep 12 2022 Print: 8.530 S Sep 12 2022 MiTek Industries, Inc. Wed Sep 28 07:54:28 ID:wN9MV2a7ngO0fSyKmTVeHIzhpg9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

13-9-3

4x6 💊

336

3x5 🥠

5x8 🔹

8

34

q

11-6-0 9-2-12 5-10-0 29 假 10 K 3x5= 14 28 25 23 21 19 16 3x5= 11 3x5= 3x5= 4x8= 3x5= 3x10 =5x8= 5x8= 6x13=8-0 8-0 4x8= 16-5-8 19-11-0 15-0-12 16-7-4 3x5= 0x18=0 10-8-1212-3-4 4-10-4 7-7-12 3-3-123-5-8 6-3-0 9-2-4 11-11-0 3-3-12 1-6-81-6-8 0-4 2 1-2-4 1-4-12 0-1-12 1-4-12 3-3-12 1-4-12 0-4-4 0-1-12 1-4-12 1-4-12 Plate Offsets (X, Y): [4:0-3-0,0-1-1], [6:0-3-0,0-1-1], [8:0-3-8,0-2-4], [16:0-4-4,0-3-4] 2-0-0 CSI DEFL in l/defl Spacing (loc) Plate Grip DOL 1.15 тс 0.36 Vert(LL) -0.23 18-20 >999 Lumber DOL 1.15 BC 0.92 Vert(CT) -0.38 18-20 >617 Rep Stress Incr WB 0.05 YES 0.69 Horz(CT) 10 n/a Code IRC2018/TPI2014 Matrix-MSH -0.20 12-27 >806 Attic WEBS 27-28=-96/391, 2-27=0/1028, 11-12=-90/368, 9) 8-12=0/1022, 3-30=-655/364, 7-30=-655/364, 2-29=-1597/21, 8-10=-1593/17, 2x4 SP No.2 *Except* 29-16:2x4 SP No.1 12-14=0/1452, 25-27=0/1424, 13-14=-191/0, 2x4 SP No.3 *Except* 2-28,8-11,3-7:2x4 SP No.2, 2-3,7-8:2x6 SP No.2 25-26=-183/0. 14-15=-1183/0. 24-25=-1204/0, 15-16=0/909, 23-24=0/894, 16-17=-165/0. 22-23=-156/0. 16-18=-447/37. Structural wood sheathing directly applied or 20-23=-470/51, 20-21=-13/45, 18-19=-12/41, 6-0-0 oc purlins, except end verticals, and

NOTES

Unbalanced roof live loads have been considered for 1) this design.

5-30=0/59

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-1-12 to 3-3-12, Exterior (2R) 3-3-12 to 16-7-4, Exterior(2E) 16-7-4 to 19-9-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- 4) Unbalanced snow loads have been considered for this design
- 5) Provide adequate drainage to prevent water ponding. 6) All plates are 2x4 MT20 unless otherwise indicated. 7)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 8) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

Ceiling dead load (5.0 psf) on member(s). 2-3, 7-8, 3-30, 7-30: Wall dead load (5.0psf) on member(s).2-27. 8-12

Weight: 221 lb

PLATES

MT20

GRIP

244/190

FT = 20%

Page: 1

- 10) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 26-27, 24-26, 22-24, 20-22, 18-20, 17-18, 15-17, 13-15, 12-13
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 13) Attic room checked for L/360 deflection. LOAD CASE(S) Standard

L/d

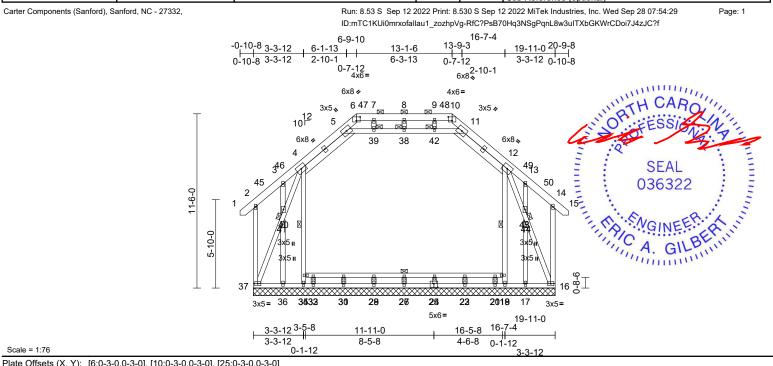
240

180

n/a

360

MILLING ORTH MUTURI SEAL 036322 GI munn


September 28,2022

Job	Truss Truss Type		Qty	Ply	DRB HOMES - 116 FARM AT NEILLS CREEK		
22090034	G03	Attic Supported Gable	1	1	Job Reference (optional)		

Scale = 1:76

Plate Offsets (X, Y): [6:0-3-0,0	-3-0],	[10:0-3-0,0-3-0], [25:	0-3-0,0-3-0]			-						
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	20 20 10	rsf) 0.0 0.0 0.0 0.0 * 0.0 *	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MSH	0.32 0.09 0.19	Vert(CT)	in n/a n/a 0.01	(loc) - - 16	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 231	GRIP 244/190 Ib FT = 20%
	4-5,11-12:2x6 = 2x4 SP No.3 Structural woo 6-0-0 oc purlin: Rigid ceiling di bracing. Excep 10-0-0 oc brac 1 Row at midp 1 Brace at Jt(s 39, 40, 42, 43 (size) 16= 18= 23= 23= 27= 31= 35= Max Horiz 37= Max Horiz 37= Max Grav 16= 18= 36= Max Grav 16= 18= 36= 37= Max Grav 16= 18= 36= 37= 37= 37= 37= 37= 37= 37= 37= 37= 37	SP Nc d shea s, exc s (6-0 rectly pt: it 19-11- 19-11- 19-11- 19-11- 19-11- 19-11- 19-11- 19-11- 19-11- 19-11- 19-11- 19-11- 19-11- (159) (1 227) (1 227) (1 222) (1 2368) (2 232) (2	athing directly applied cept end verticals, an -0 max.): 6-10. applied or 10-0-0 oc 9-34 4-35, 12-18 -0, 17=19-11-0, -0, 21=19-11-0, -0, 25=19-11-0, -0, 33=19-11-0, -0, 36=19-11-0, -0, 36=19-11-0, -0	d WEBS 39), 11), 10) NOTES 0), 1) Unbalance 1), this design 1), 1),	3-4=-125/268, 4-5 6-7=-874/112, 7-8 9-10=-874/112, 10 11-12=-543/203, 1 13-14=-138/207, 1 14-16=-188/193 36-37=-142/275, 3 33-35=-138/259, 2 29-31=-138/259, 2 23-27=-138/265, 2 18-21=-137/265, 1 16-17=-142/275, 3 28-30=-4/19, 26-2 22-24=-6/17, 20-2 37-41=-713/308, 4 4-40=-748/319, 34 4-40=-748/319, 34 4-34=-399/289, 16 12-19=-370/253, 1 43-44=-629/244, 1 5-39=-57/616, 13- 38-42=-57/616, 11 26-27=-117/0, 7- 30-31=-120/0, 32- 36-41=-39/144, 9- 22-23=-120/0, 20- 17-44=-41/144	=-543/2(=-874/1)-11=-88 (2-13=-1 4-15=0/)5-36=-1 11-33=-1 (7-29=-1 17-18=-1 (7-18=-1 17-18=-1 17-18=-1 (7-18=-1 (7-18=-1 (7-18=-1 (7-18=-1) (7-18=-1 (7-18=-1) (7-1	<pre>)3, 5-6=-884/12 12, 8-9=-874/11 4/134, 28/268, 31, 42/275, 38/259, 38/259, 38/259, 38/259, 37/265, 42/276, /19, 30-32=-4/1 24-26=-4/19, 19-20=-6/17 55/280, 7/221, 8/185, 41/284, 02/274, 316, /616, 8-38=-71/, 28-29=-115/0, 0, 3-40=-42/181 8, 24-25=-115/0</pre>	23, 2, 9, , /29, , ,	Vas Cat zon 2-3 can for DO 3) Tru DO 3) Tru DO Cs= 5) Unt des 5) This load	sd=103n t. II; Exp he and C -11 to 17 titilever lk texpose reaction vL=1.60 uss desig y. For si e Standa consult q LL: ASC te DOL= vL=1.15); =1.00; C balance sign. s truss h d of 12.0	nph; T(B; Enc -C Ext 7-7-5, I eft and ed;C-C s show gned fo tuds ex rd Indu ualified E 7-16 (1.15); ; Is=1.0 t=1.10 d snow as bee psf or	CDL=6.0psf; B closed; MWFR erior(2E) -0-8 Exterior(2E) 17 right exposed for members <i>n</i> ; Lumber DO or wind loads in cposed to wind ustry Gable En d building desi ; Pr=20.0 psf (L Pf=20.0 psf (L D; Rough Cat E cloads have be en designed fo	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior 5 to 2-3-11, Exterior(2R) 7-7-5 to 20-7-5 zone; ; end vertical left and and forces & MWFRS DL=1.60 plate grip In the plane of the truss I (normal to the face), d Details as applicable, gner as per ANSI/TPI 1. (roof LL: Lum DOL=1.15 .um DOL=1.15 Plate 3; Fully Exp.; Ce=0.9; even considered for this r greater of min roof live t roof load of 20.0 psf on other live loads.
FORCES			pression/Maximum									.	

September 28,2022

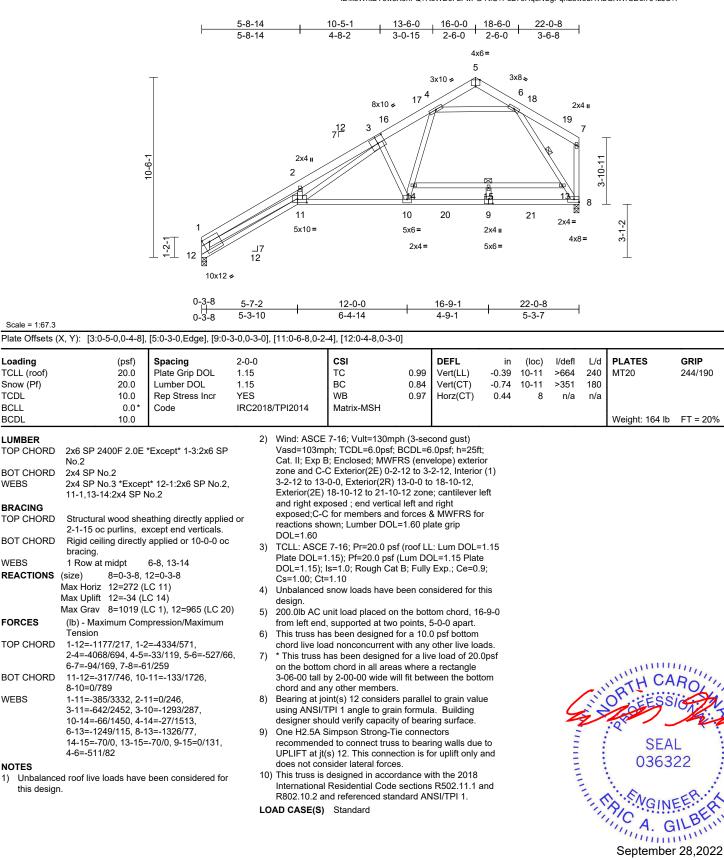
Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 116 FARM AT NEILLS CREEP	-
22090034	G03	Attic Supported Gable 1		1	Job Reference (optional)	154436562
Carter Components (Sanford), S	anford. NC - 27332.	Run: 8.53 S Sep 12 2	Page: 2			

ID:mTC1KUi0mrxofallau1_zozhpVg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Carter Components (Sanford), Sanford, NC - 27332.

- 7) Provide adequate drainage to prevent water ponding.
- 8) All plates are 2x4 MT20 unless otherwise indicated.
- 9) Gable requires continuous bottom chord bearing.
- 10) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 11) Gable studs spaced at 2-0-0 oc.
- 12) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 13) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 14) Ceiling dead load (5.0 psf) on member(s). 4-5, 11-12, 5-39, 38-39, 38-42, 11-42; Wall dead load (5.0psf) on member(s).34-35, 4-34, 18-19, 12-19
- 15) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 261 lb uplift at joint 37, 227 lb uplift at joint 16, 194 lb uplift at joint 35, 159 lb uplift at joint 18, 109 lb uplift at joint 36 and 109 lb uplift at joint 17.
- 16) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 17) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 18) Attic room checked for L/360 deflection.

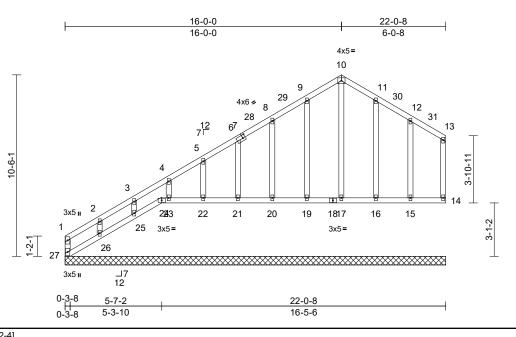
LOAD CASE(S) Standard


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 116 FARM AT NEILLS CREEK
22090034	H01	Roof Special	6	1	I54436563 Job Reference (optional)

Run: 8.53 S Sep 12 2022 Print: 8.530 S Sep 12 2022 MiTek Industries, Inc. Wed Sep 28 07:54:31 ID:x3WhtBY6w3X0nFQ?ReWD6FzFwFG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



MANDER IN INTERNET

Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 116 FARM AT NEILLS CREEK
22090034	H02	Roof Special Structural Gable	1	1	Job Reference (optional)

Run: 8.53 S Sep 12 2022 Print: 8.530 S Sep 12 2022 MiTek Industries, Inc. Wed Sep 28 07:54:31 ID:DWIMNuBsIfQvL2sTt7VyadzFwH0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:66.7 Plate Offsets (X, Y): [7:0-1-12.0-2-4]

Plate Offsets (X, Y): [7:0-1-12,0-2-4	1]	-		-							-		
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2018/TF	912014	CSI TC BC WB Matrix-MR	0.30 0.19 0.14	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 14	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 132 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	6-0-0 oc purlins, ex	/ applied or 10-0-0 oc	BOT	CHORD	 1-27=-185/123, 1-2=-276/217, 2-3=-203/162, 3-4=-186/153, 4-5=-164/134, 5-6=-151/130, 6-8=-137/126, 8-9=-124/131, 9-10=-137/174, 10-11=-137/174, 11-12=-110/130, 12-13=-87/98, 13-14=-80/70 26-27=-100/77, 25-26=-67/70, 24-25=-73/60, 20-21=-53/51, 12-22=-53/51, 20-21=-53/51, 15-16=-53/51, 14-15=-53/51, 10-17=-123/52, 9-19=-206/72, 8-20=-180/73, 6-21=-123/72, 5-22=-121/71, 4-23=-126/78, 2-25=-145/51, 15-16=-53/51, 10-17=-123/72, 5-22=-121/71, 4-23=-126/78, 2-25=-145/51, 15-16=-2182/182 8) Truss to be fully sheathed from one fac braced against lateral movement (i.e. of braced against lateral movement (i.e. of 9) Gable studs spaced at 2-0-0 oc. 10) This truss has been designed for a 10.1 chord live load nonconcurrent with any 11) * This truss has been designed for a live on the bottom chord in all areas where schoel and any other members. 12) Provide mechanical connection (by oth bearing plate capable of withstanding 3 2-4 - 4 with fit d taisit of and 0.20 with with 								.e. diagonal web). 10.0 psf bottom any other live loads. a live load of 20.0psf here a rectangle between the bottom v others) of truss to ing 32 lb uplift at joint	
REACTIONS	6-0-0 oc bracing: 24-25. EACTIONS (size) 14=22-0-8, 15=22-0-8, 16=22-0-8, 17=22-0-8, 19=22-0-8, 20=22-0-8, 21=22-0-8, 22=22-0-8, 24=22-0-8, 25=22-0-8, 27=22-0-8 Max Horiz 27=267 (LC 11) Max Uplift 14=-50 (LC 14), 15=-41 (LC 15), 16=-52 (LC 15), 17=-10 (LC 13), 19=-49 (LC 14), 20=-50 (LC 14), 21=-49 (LC 14), 22=-47 (LC 14), 23=-53 (LC 14), 24=-32 (LC 13), 25=-4 (LC 14), 26=-230 (LC 14), 27=-183 (LC 12)				 3-25=-115/51, 2-26=-183/163, 11-16=-205/72, 12-15=-187/78 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior (1) 3-1-12 to 13-0-0, Exterior(2R) 13-0-0 to 18-10-12, Exterior(2E) 18-10-12 to 21-10-12 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for 					 24, 4 lb uplift at joint 25 and 230 lb uplift at joint 26. 13) N/A 14) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 24, 14, 17, 19, 20, 21 22, 23, 25, 26, 16, 15. 				
	Max Grav 14=68 (L4 16=243 (l 19=245 (l 21=162 (l 23=155 (l	C 21), 15=227 (LC 21 LC 21), 17=161 (LC 2 LC 20), 20=219 (LC 2 LC 23), 22=161 (LC 2 LC 23), 22=161 (LC 2 LC 23), 24=34 (LC 10 LC 1), 26=282 (LC 23), D 3), 3) T 0), 3) T 7), or 7), se), or), 4) T	DL=1.60 russ desig ily. For st e Standa consult q CLL: ASC	nown; Lumber DOL= gned for wind loads tuds exposed to win rd Industry Gable E ualified building des E 7-16; Pr=20.0 psf	in the p d (norm nd Deta signer as (roof Ll	lane of the tru al to the face ils as applica s per ANSI/TF .: Lum DOL=), ble, Pl 1. 1.15		G	à	SEA 0363	L 22	
FORCES	(lb) - Maximum Con Tension	,	D C 5) U de 6) Al	OL=1.15); s=1.00; C nbalancec esign. I plates ar	_=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate 5); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Ct=1.10 ed snow loads have been considered for this are 2x4 MT20 unless otherwise indicated. uires continuous bottom chord bearing.						A MARTINE AND	September	EER. KIN	

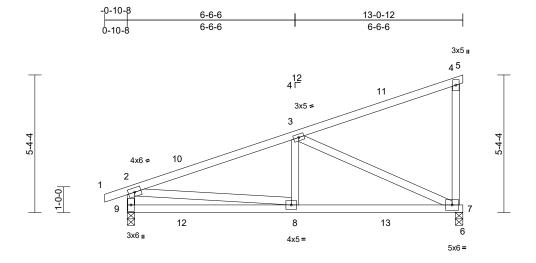
mann September 28,2022

i on page 2	
/ARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.	
gn valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not	
ss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall	

Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 116 FARM AT NEILLS CREE	
22090034	H02	Roof Special Structural Gable	1	1	Job Reference (optional)	154436564
Carter Components (Sanford	, Sanford, NC - 27332,	Run: 8.53 S Sep 12	Page: 2			

Run: 8.53 S Sep 12 2022 Print: 8.530 S Sep 12 2022 MiTek Industries, Inc. Wed Sep 28 07:54:31 ID:DWIMNuBsIfQvL2sTt7VyadzFwH0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

15) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 116 FARM AT NEILLS CREEK
22090034	J01	Monopitch	3	1	I54436565 Job Reference (optional)

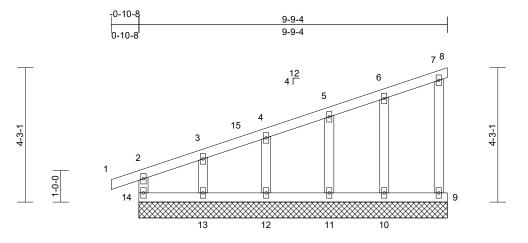
Run: 8.53 S Sep 12 2022 Print: 8.530 S Sep 12 2022 MiTek Industries, Inc. Wed Sep 28 07:54:32 ID:UxC8s1x5iH5xuuOcBwY_cFzFn_8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

6-6-6	12-9-8	13-0-12
6-6-6	6-3-2	0-3-4

Scale = 1:44.8										0-0			
.oading TCLL (roof) Snow (Pf) TCDL SCLL SCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/	TPI2014	CSI TC BC WB Matrix-MSH	0.66 0.42 0.73	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.10 0.08 0.01	(loc) 7-8 7-8 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 72 lb	GRIP 244/190 FT = 20%
BOT CHORD WEBS BRACING FOP CHORD BOT CHORD REACTIONS (2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 5-11-2 oc purlins, e Rigid ceiling directly bracing. (size) 7=0-3-8, 9 Max Horiz 9=203 (L1 Max Uplift 7=-209 (L Max Grav 7=670 (L1 (lb) - Maximum Com	applied or 6-7-1 oc 9=0-3-8 C 11) .C 10), 9=-212 (LC 1 C 21), 9=614 (LC 21)	6) ed or 7) 8) 0)	chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar One H2.5A S recommende UPLIFT at jt(and does noi This truss is International	is been designed ad nonconcurrent has been designed n chord in all are by 2-00-00 wide v ny other members simpson Strong-1 ed to connect trus s) 9 and 7. This t consider lateral designed in acco Residential Code nd referenced sta Standard	with any d for a liv as where vill fit betw s. Te conne s to bear connectio forces. rdance w e sections	other live load e load of 20.1 a rectangle veen the botti ctors ing walls due n is for uplift ith the 2018 s R502.11.1 a	Opsf om to only					
OP CHORD	Tension 1-2=0/19, 2-3=-867/												
BOT CHORD	4-5=-8/0, 4-7=-266/ ⁻ 8-9=-320/242, 7-8=- 3-8=-336/246, 3-7=-	,	58										
Vasd=103n Cat. II; Exp zone and C	E 7-16; Vult=130mph nph; TCDL=6.0psf; B B; Enclosed; MWFR C-C Exterior(2E) -0-10 -0-12, Exterior(2E) 10	CDL=6.0psf; h=25ft; S (envelope) exterio)-8 to 2-1-8, Interior (r 1)								a la	ORTH CA	ROLIN

- 2-1-8 to 10-0-12, Exterior(2E) 10-0-12 to 13-0-12 zone; cantilever left and right exposed; end vertical left and right exposed; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 plate DOL=1.45 plate)
- Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.


SEAL 036322 MGINEER A. GILBERT

ENGINEERING BY EREENCO A MITEK Atfillate B18 Soundside Road Edenton, NC 27932

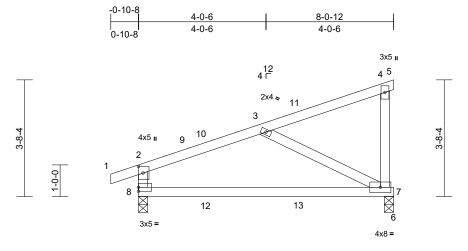
Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 116 FARM AT NEILLS CREEK
22090034	J02	Monopitch Supported Gable	1	1	I54436566 Job Reference (optional)

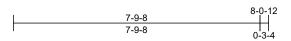
Run: 8.53 S Sep 12 2022 Print: 8.530 S Sep 12 2022 MiTek Industries, Inc. Wed Sep 28 07:54:32 ID:Y58EZzK9I67OjpqI3e6Uv_zFmze-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:36.5

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.25	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.11	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.05	Horz(CT)	-0.01	8	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MR								
BCDL	10.0										Weight: 50 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	6-0-0 oc purlins, ex Rigid ceiling directly bracing.	athing directly applie cept end verticals. ' applied or 10-0-0 oc 9=9-9-4, 10=9-9-4,	d or 2) Truss des 2) Truss des	CE 7-16; Vult=130m mph; TCDL=6.0psf b B; Enclosed; MWI C-C Corner(3E) -0- 9-4 zone; cantileve al left and right expo IWFRS for reaction plate grip DOL=1.6 igned for wind load studs exposed to w ard Industry Gable	; BCDL=6 FRS (env 10-8 to 2- r left and osed;C-C s shown; 50 s in the p ind (norm End Deta	6.0psf; h=25ft elope) exterior 0-6, Exterior (right exposed for members Lumber lane of the tru al to the face ils as applica	; pr (2N) d; and uss e), ble,	Ínte	ernationa 02.10.2 a	al Resid and ref	dential Code sec ferenced standar	ce with the 2018 tions R502.11.1 and d ANSI/TPI 1.
	11=9-9-4 14=9-9-4 Max Horiz 14=159 (I Max Uplift 8=-32 (LC 10=-28 (L 12=-24 (L Max Grav 8=26 (LC 10=201 (I	, 12=9-9-4, 13=9-9-4, _C 11) C 10), 9=-33 (LC 11), C 10), 11=-35 (LC 1- C 10), 13=-80 (LC 1- 13), 9=102 (LC 21), _C 21), 11=203 (LC 2 _C 21), 13=149 (LC 2	 TCLL: ASI Plate DOL DOL=1.15 Cs=1.00; 0 4), Unbalance design. This truss Ioad of 12 overhangs 	qualified building do CE 7-16; Pr=20.0 ps =1.15); Pf=20.0 psf); Is=1.0; Rough Ca Ct=1.10 ad snow loads have has been designed 0 psf or 1.00 times non-concurrent wit are 2x4 MT20 unles	sf (roof LI (Lum DC at B; Fully been cou for great flat roof I th other li	L: Lum DOL= DL=1.15 Plate Exp.; Ce=0. Insidered for t er of min root oad of 20.0 p ve loads.	1.15 9; his f live sf on					
FORCES	(lb) - Maximum Con Tension		7) Gable req	uires continuous bo	ttom choi	d bearing.					min	1111
TOP CHORD	2-14=-124/58, 1-2=(3-4=-90/25, 4-5=-83 6-7=-64/62, 7-8=-23	/26, 5-6=-72/23,	braced ag 9) Gable stud	e fully sheathed from ainst lateral movem Is spaced at 2-0-0 of has been designed	ent (i.e. o oc.	liagonal web)					OR EESS	ROUT
BOT CHORD	13-14=-59/73, 12-13 10-11=-59/73, 9-10=	3=-59/73, 11-12=-59/ =-59/73	73, chord live	load nonconcurrent	with any	other live loa			Z	25		hill
WEBS	4-12=-175/127, 3-13 5-11=-166/134, 6-10	3=-109/181,	on the bot 3-06-00 ta	om chord in all area Il by 2-00-00 wide v	as where vill fit betv	a rectangle					SEA	L
NOTES			12) Provide m bearing pl 8, 33 lb up	any other members echanical connection ate capable of withs lift at joint 9, 24 lb u 35 lb uplift at joint	on (by oth standing 3 uplift at jo	32 lb́ uplift at j int 12, 80 lb ι	joint Iplift		100	A A A A A A A A A A A A A A A A A A A	SEA 0363	EER. KININ


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


818 Soundside Road Edenton, NC 27932

September 28,2022

Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 116 FARM AT NEILLS CREEK
22090034	J03	Monopitch	7	1	I54436567 Job Reference (optional)

Run: 8.53 S Sep 12 2022 Print: 8.530 S Sep 12 2022 MiTek Industries, Inc. Wed Sep 28 07:54:32 ID:4A6HwRWC_187eG3q??PEYMzFmzO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:36.4

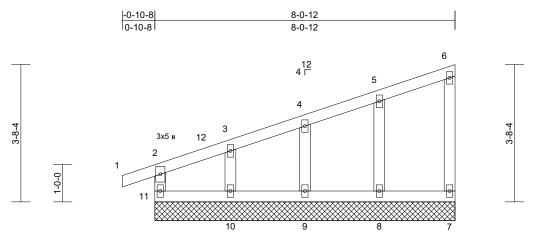
Plate Offsets (X, Y): [2:0-2-8,0-1-12]

`	(, T). [2.0-2-0,0-T-T2	1											
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.76	Vert(LL)	0.28	7-8	>328	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.62	Vert(CT)	0.22	7-8	>416	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.15	Horz(CT)	0.00	7	n/a	n/a		
BCLL	0.0*	Code	IRC201	8/TPI2014	Matrix-MSH								
BCDL	10.0						-					Weight: 38 lb	FT = 20%
BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS (2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 cc purlins, ex Rigid ceiling directly bracing. (size) 7=0-3-8, 8 Max Horiz 8=136 (LC Max Uplift 7=-128 (L Max Grav 7=439 (LC	cept end verticals. applied or 7-4-7 oc 3=0-3-8 C 11) C 10), 8=-142 (LC 1	7)	load of 12.0 overhangs n) This truss ha chord live loa) * This truss h on the bottou 3-06-00 tall h chord and an) One H2.5A S recommende UPLIFT at jtu and does no	is been designed psf or 1.00 times f on-concurrent with is been designed ad nonconcurrent has been designed in chord in all area by 2-00-00 wide w by 2-00-000 wide w	lat roof lo n other liv for a 10.0 with any d for a liv s where ill fit betw ie connectio orces.	bad of 20.0 p ve loads. D psf bottom other live loa e load of 20.1 a rectangle veen the bott ctors ng walls due n is for uplift	sf on nds. Opsf om to					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	0,	International	Residential Code	sections	R502.11.1 a	and					
TOP CHORD	1-2=0/19, 2-3=-451/3 4-5=-8/0, 4-7=-193/7		L	OAD CASE(S)	Standard								
	7-8=-330/375, 6-7=0	0/0											
WEBS	3-7=-379/331												
NOTES													11
Vasd=103n Cat. II; Exp zone and C 2-1-8 to 5-0 cantilever le right expose members a Lumber DC	E 7-16; Vult=130mph nph; TCDL=6.0psf; 8' B; Enclosed; MWFR: -C Exterior(2E) -0-10 0-12, Exterior(2E) 5-0- eft and right exposed ed; porch left and right nd forces & MWFRS DL=1.60 plate grip DO E 7-16; Pr=20.0 psf (CDL=6.0psf; h=25ft; S (envelope) exterio -8 to 2-1-8, Interior (-12 to 8-0-12 zone; ; end vertical left and t exposed;C-C for for reactions shown iL=1.60	r (1) d ; 1.15							Manual VI		SEA 0363	• -

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.

SEAL 036322 A. GILBER September 28,2022

Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 116 FARM AT NEILLS CREEK
22090034	J04	Monopitch Supported Gable	1	1	I54436568 Job Reference (optional)


Run: 8.53 S Sep 12 2022 Print: 8.530 S Sep 12 2022 MiTek Industries, Inc. Wed Sep 28 07:54:33 ID:R8vAz9aKpZnPl2xonY_PFQzFmzJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

GI A. GIL

September 28,2022

818 Soundside Road Edenton, NC 27932

Scale = 1:30.9

8-	-0-12

Scale = 1:30.9											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2018/TPI2014	CSI TC 0.30 BC 0.12 WB 0.06 Matrix-MSH 0.06	2 Vert(CT)	in n/a n/a n/a	(loc) - -	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 39 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 7=8-0-12, 10=8-0-12 Max Horiz 11=97 (LC Max Uplift 7=-12 (LC Max Grav 7=79 (LC 9=212 (LC 11=136 (L	x applied or 10-0-0 oc , 8=8-0-12, 9=8-0-12, 2, 11=8-0-12 C 10) C 10), 8=-38 (LC 14), C 10), 10=-86 (LC 14), 2 1), 8=228 (LC 21), C 21), 10=190 (LC 21), C 21), 10=190 (LC 21), LC 1)	 only. For st see Standar or consult q TCLL: ASCI Plate DOL= DOL=1.15); Cs=1.00; Ct Unbalanced design. This truss h load of 12.0 overhangs r All plates ar Gable requi Truss to be braced agai 10) Gable studs 	gned for wind loads in the uds exposed to wind (nor rd Industry Gable End De ualified building designer E 7-16; Pr=20.0 psf (roof 1.15); Pf=20.0 psf (Lum E Is=1.0; Rough Cat B; Ful t=1.10 I snow loads have been c as been designed for grea psf or 1.00 times flat roof non-concurrent with other e 2x4 MT20 unless othen res continuous bottom ch fully sheathed from one fa nst lateral movement (i.e. as been designed for a 10	mal to the face), tails as applicabl as per ANSI/TPI L: Lum DOL=1. ODL=1.15 Plate by Exp.; Ce=0.9; onsidered for this ater of min roof li load of 20.0 psf live loads. wise indicated. ord bearing. ace or securely diagonal web).	e, 1. 15 s					
this design 2) Wind: ASC Vasd=103 Cat. II; Ex zone and 2-0-6 to 4- cantilever right expos	3-4=-132/41, 4-5=-8 10-11=0/0, 9-10=0/0 4-9=-174/130, 3-10= 6-7=-64/54 ed roof live loads have n. CE 7-16; Vult=130mph Brph; TCDL=6.0psf; B p B; Enclosed; MWFR C-C Corner(3E) -0-10- -11-0, Corner(3E) -4-11 left and right exposed sed;C-C for members ns shown; Lumber DC)/19, 2-3=-204/64, i3/28, 5-6=-31/15), 8-9=0/0, 7-8=0/0 =-151/211, 5-8=-186/- been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior 8 to 2-0-6, Exterior(2 I-0 to 7-11-0 zone; ; end vertical left and and forces & MWFRS	 12) * This truss on the botto 3-06-00 tall chord and a 13) Provide mer bearing plat 7, 20 lb uplif uplift at joint 14) This truss is Internationa R802.10.2 a LOAD CASE(S) 	designed in accordance Residential Code section and referenced standard A	vice load of 20.0p e a rectangle tween the bottor thers) of truss to 12 lb uplift at joi oint 10 and 38 lb with the 2018 ns R502.11.1 an	osf n nt		A stranger		SEA 0363	22 EERER III

Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 116 FARM AT NEILLS CREEK
22090034	PB1	Piggyback	10	1	I54436569 Job Reference (optional)

Run: 8.53 S Sep 12 2022 Print: 8.530 S Sep 12 2022 MiTek Industries, Inc. Wed Sep 28 07:54:33 ID:UWNIgCZass9xdfRGAgascczFn54-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

-0-9-12 19-10-11 19-0-15 9-6-8 d-9-12 9-6-8 9-6-8 0-9-12 4x5 = 5 12 7 25 26 4 6 24 27 6-0-11 ý 23 28 3 0-4-5 15 14 29 13 30 12 11 10 3x5 = 3x5 = 3x5 = 19-0-15 Scale = 1:44.6 Loading 2-0-0 CSI DEFL L/d PLATES GRIP (psf) Spacing in (loc) l/defl TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.30 Vert(LL) n/a n/a 999 MT20 244/190 Snow (Pf) 20.0 BC Lumber DOL 1 15 0.17 Vert(CT) n/a n/a 999 10.0 Rep Stress Incr YES WB 0.13 Horz(CT) 0.00 19 n/a n/a 0.0 Code IRC2018/TPI2014 Matrix-MSH Weight: 83 lb 10.0 FT = 20%Wind: ASCE 7-16; Vult=130mph (3-second gust) 14) See Standard Industry Piggyback Truss Connection LUMBER 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Detail for Connection to base truss as applicable, or 2x4 SP No.2 TOP CHORD Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior consult qualified building designer. BOT CHORD 2x4 SP No.2 2x4 SP No.3 zone and C-C Exterior(2E) 0-3-11 to 3-3-11, Interior (1) OTHERS LOAD CASE(S) Standard 3-3-11 to 7-4-10, Exterior(2R) 7-4-10 to 13-4-10, Interior BRACING (1) 13-4-10 to 17-5-10, Exterior(2E) 17-5-10 to 20-5-10 TOP CHORD Structural wood sheathing directly applied or zone; cantilever left and right exposed ; end vertical left 6-0-0 oc purlins. and right exposed:C-C for members and forces & BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

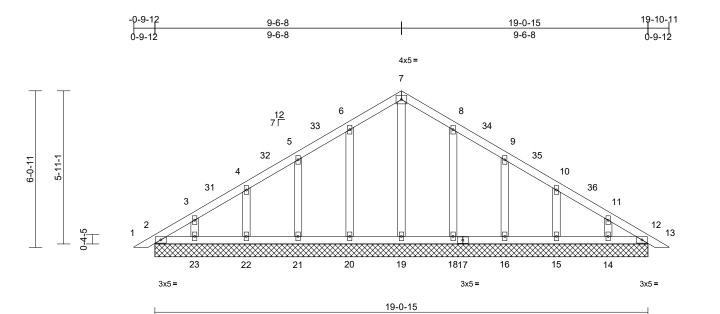
- bracing. **REACTIONS** (size) 2=19-0-15, 8=19-0-15, 10=19-0-15, 12=19-0-15, 13=19-0-15, 14=19-0-15, 15=19-0-15, 16=19-0-15, 19=19-0-15 Max Horiz 2=138 (LC 13), 16=138 (LC 13) Max Uplift 2=-36 (LC 10), 8=-9 (LC 11), 10=-79 (LC 15), 12=-115 (LC 15), 14=-116 (LC 14), 15=-80 (LC 14), 16=-36 (LC 10), 19=-9 (LC 11) Max Grav 2=89 (LC 25), 8=75 (LC 22), 10=310 (LC 25), 12=479 (LC 6), 13=374 (LC 24), 14=479 (LC 5), 15=311 (LC 24), 16=89 (LC 25), 19=75 (LC 22) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/16, 2-3=-127/108, 3-4=-130/87, 4-5=-147/128, 5-6=-147/111, 6-7=-90/52,
- 7-8=-91/55, 8-9=0/16 BOT CHORD 2-15=-39/90, 14-15=-39/90, 13-14=-39/90, 12-13=-39/90, 10-12=-39/90, 8-10=-39/90 WEBS 5-13=-203/0, 4-14=-395/165, 3-15=-206/129, 6-12=-395/164, 7-10=-206/128
- NOTES

TCDL

BCLL

BCDL

1) Unbalanced roof live loads have been considered for this design.


- MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this 5) desian.
- This truss has been designed for greater of min roof live 6) load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing. 8)
- 9) Gable studs spaced at 4-0-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 11) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 12) N/A
- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- C VIIIIIIIIIIIII SEAL 036322 GI mmm September 28,2022

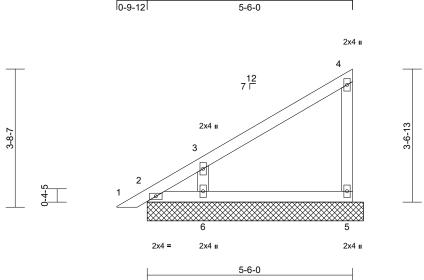
Page: 1

Job	Truss	Truss Type	Qty Ply		DRB HOMES - 116 FARM AT NEILLS CREEK				
22090034	PB2	Piggyback	1	1	I54436570 Job Reference (optional)				

Run: 8.53 S Sep 12 2022 Print: 8.530 S Sep 12 2022 MiTek Industries, Inc. Wed Sep 28 07:54:33 ID:_yGnhJ2Aar_rjAcghDlxQrzFn1t-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:44.6

			i			1								;
Loading		(psf)	Spacing	1-11-4	Ļ	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.15		TC	0.08	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)		20.0	Lumber DOL	1.15		BC	0.03	Vert(CT)	n/a	-	n/a	999		
TCDL		10.0	Rep Stress Incr	YES		WB	0.08	Horz(CT)	0.00	12	n/a	n/a		
BCLL		0.0*	Code	IRC20	18/TPI2014	Matrix-MSH								
BCDL		10.0		_									Weight: 101 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD	OP CHORD 2x4 SP No.2 OT CHORD 2x4 SP No.2 ITHERS 2x4 SP No.3 RACING OP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins.				WEBS	2-23=-42/92, 22-2; 20-21=-42/92, 19-2 16-18=-42/92, 15- 12-14=-42/92 7-19=-110/5, 6-20; 4-22=-126/74, 3-2; 9-16=-180/72, 10-	/92, /92, /92, 72, /73,	 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 12) N/A 						
BOT CHORD		ing directly	applied or 10-0-0 oc	,	NOTES									
	bracing.				,	roof live loads hav	e been	considered fo	r	13) Thi	s truss is	desia	ned in accordance	e with the 2018
REACTIONS	Max Horiz Max Uplift	14=19-0-1 16=19-0-1 19=19-0-1 21=19-0-1 27=19-0-1 2=-134 (L 2=-24 (LC 15=-49 (L 18=-50 (L 21=-49 (L 23=-49 (L) (L 23=-49 (L)	C 12), 24=-134 (LC : 10), 14=-47 (LC 15 C 15), 16=-50 (LC 1 C 15), 20=-51 (LC 1 C 14), 22=-49 (LC 1 C 14), 24=-24 (LC 1 C 29), 12=91 (LC 22) C 25), 15=164 (LC 2 C 22), 18=245 (LC 2)	12)), 5), 4), 4), 25), 22),	 Vasd=103m Cat. II; Exp I zone and C- 3-3-11 to 7/ (1) 13-4-10 1 zone; cantile and right exy, MWFRS for grip DOL=1. Truss desig only. For st see Standar or consult qu TCLL: ASCE Plate DOL=1 	ned for wind loads uds exposed to wir d Industry Gable E ualified building de 5 7-16; Pr=20.0 psf 1.15); Pf=20.0 psf	BCDL=6 RS (env -11 to 3- 7-4-10 to r(2E) 17 xposed hbers ar Lumber 1 in the p hd (norm ind Deta signer a f (roof LI (Lum DC	6.0psf; h=25ft; elope) exterio -3-11, Interior -5-10 to 20-5- ; end vertical dd forces & DOL=1.60 pla lane of the tru al to the face? ills as applicat s per ANSI/TF c.: Lum DOL=-	or (1) erior 10 left uss), ble, PI 1. 1.15	Inte R80 14) See Def cor	ernationa)2.10.2 a Standa ail for Co	I Resid and ref rd Indu onnect lified b	dential Code sect erenced standard ustry Piggyback T ion to base truss uilding designer.	ions R502.11.1 and
FORCES TOP CHORD	13-149 (LC 21), 22-164 (LC 21), DOL=1.15); 23=153 (LC 24), 24=102 (LC 29), CS=1.00; C 27=91 (LC 22) Unbalanced ES (lb) - Maximum Compression/Maximum Tension HORD 1-2=0/16, 2-3=-114/100, 3-4=-96/86, 1-2=0/16, 2-3=-114/100, 3-4=-96/86, 4-5=-87/74, 5-6=-76/99, 6-7=-82/124, 7 7-8=-82/116, 8-9=-64/68, 9-10=-49/36, 10-11=-57/34, 11-12=-79/48, 12-13=0/16 9 Gable stude 10-11=-57/34, 11-12=-79/48, 12-13=0/16 9				Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9;					SEAL 036322				


September 28,2022

Page: 1

Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 116 FARM AT NEILLS CREEK
22090034	PB3	Piggyback	4	1	I54436571 Job Reference (optional)

Scale = 1:30.9

Scale = 1:30.9)												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/	/TPI2014	CSI TC BC WB Matrix-MP	0.32 0.12 0.08	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 24 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=5-9-8, 4 Max Horiz 2=124 (LC Max Uplift 2=-18 (LC 6=-101 (L Max Grav 2=62 (LC 6=461 (LC 	applied or 10-0-0 or 5=5-9-8, 6=5-9-8, 7= C 14), 7=124 (LC 14), C 14), 5=-39 (LC 14), C 14), 7=-18 (LC 12) (L 14), 5=185 (LC 21), C 21), 7=62 (LC 14)	5) 6) ed or 7) 8) 5-9-8)	design. This truss ha load of 12.0 y overhangs n Gable requir Gable studs This truss ha chord live loa * This truss h on the botton 3-06-00 tall b	snow loads have a sbeen designed a post or 1.00 times f on-concurrent with es continuous bei spaced at 4-0-0 o s been designed a d nonconcurrent had nonconcurrent had nonconcurrent as been designed n chord in all area y 2-00-00 wide w y other members	for great lat roof le n other li tom chor c. for a 10. with any d for a liv is where ill fit betw	er of min roof bad of 20.0 ps ve loads. d bearing. 0 psf bottom other live loa e load of 20.0 a rectangle	live sf on ds.)psf					
Vasd=103 Cat. II; Ex zone and exposed ; members Lumber D 2) Truss de only. For see Stanc or consult 3) TCLL: AS Plate DOI	2-6=-29/2, 5-6=0/0 3-6=-420/225, 4-5=- CE 7-16; Vult=130mph may be readed by the readed by the readed provided by the readed by the readed by the readed concerned by the readed by the	114, 3-4=-114/58 152/78 (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterio ; cantilever left and r ght exposed;C-C for for reactions shown; JL=1.60 n the plane of the tru (normal to the face) d Details as applicat gner as per ANSI/TF roof LL: Lum DOL=1.15 Plate	12) LO, r ight ss , ole, , 11. .15	International R802.10.2 ar See Standard Detail for Co	designed in accor Residential Code nd referenced star d Industry Piggyba nnection to base t fied building desig Standard	sections ndard AN ack Trus russ as a	s R502.11.1 a NSI/TPI 1. s Connection			M. HILLING	SI	SEA 0363	L 22 EER ALL

- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate 3) DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

GILB

A. GIL September 28,2022

Page: 1

Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 116 FARM AT NEILLS CREEK
22090034	PB5	Piggyback	10	1	I54436572 Job Reference (optional)

Run: 8.53 S Sep 12 2022 Print: 8.530 S Sep 12 2022 MiTek Industries, Inc. Wed Sep 28 07:54:34 ID:FdqRVfn0ZNVmMDACD34oHRzTR4m-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:39.8

Plate Offsets	(X, Y): [2:0-2-1,0-1-0],	, [4:0-2-1,0-1-0]											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2018/7	TPI2014	CSI TC BC WB Matrix-MP	0.11 0.12 0.01	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 22 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=5-0-6, 4 7=5-0-6, 7 Max Horiz 2=-55 (LC Max Uplift 2=-24 (LC 7=-24 (LC Max Grav 2=199 (LC 	C 12), 7=-55 (LC 12) 14), 4=-31 (LC 15), 14), 11=-31 (LC 15), C 14), 11=-31 (LC 15) C 21), 4=199 (LC 22), C 21), 7=199 (LC 21), LC 22)	4) or 5) 6) 7) 8) 9) 10)	only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. This truss ha logad of 12.0 overhangs n Gable requir Gable studs This truss ha ober truss ha chord live loa * This truss ha	need for wind loads dids exposed to wi d Industry Gable I alified building de .7-16; Pr=20.0 ps .15); Pf=20.0 ps .15); Pf=20.0 ps is=1.0; Rough Ca =1.10 snow loads have s been designed ops for 1.00 times on-concurrent wit es continuous be spaced at 2-0-0 c s been designed ad nonconcurrent has been designed ad nonconcurrent nas been designed with the second second second ad nonconcurrent has been designed with the second second second in all areas y 2-00-00 wide with	nd (norm End Deta ssigner as sf (roof LL (Lum DC (Lum DC t B; Fully been cor for greate flat roof lc h other lift tom chor oc. for a 10.0 with any d for a lift as where	al to the face ils as applica s per ANSI/TI .: Lum DOL= DL=1.15 Plate Exp.; Ce=0.9 nsidered for the er of min roof bad of 20.0 p ve loads. d bearing. D psf bottom other live loa e load of 20.0 a rectangle	e), bble, PI 1. 1.15 9; his 9; f live sf on sf on ads. 0psf					
this desig 2) Wind: AS Vasd=10 Cat. II; Ez zone and exposed members	4-5=0/24 2-6=-16/55, 4-6=-9/5 3-6=-63/0	55 been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior cantilever left and rig ght exposed;C-C for for reactions shown;	11) 12) 13) 13)	chord and ar N/A This truss is International R802.10.2 ar See Standar Detail for Co	y other members designed in acco Residential Code nd referenced sta d Industry Piggyb nnection to base fied building desig	rdance w e sections ndard AN ack Trus truss as a	ith the 2018 ≩ R502.11.1 a ISI/TPI 1. s Connection	and		(J). 1111111		SEA O363	EEP P

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

September 28,2022

Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 116 FARM AT NEILLS CREEK
22090034	V1	Valley	1	1	Job Reference (optional)

Scale = 1:50 Loading

TCLL (roof)

Snow (Pf)

LUMBER

TOP CHORD

BOT CHORD

TCDL

BCLL

BCDL

WEBS

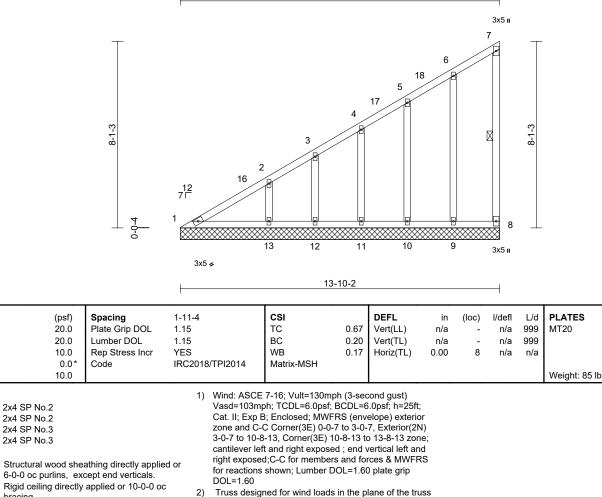
OTHERS

BRACING

TOP CHORD

BOT CHORD

Run: 8.53 S Sep 12 2022 Print: 8.530 S Sep 12 2022 MiTek Industries, Inc. Wed Sep 28 07:54:35 ID:obl8CR79AVIhJxhIYr2zsHzhpM4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


13-10-2 3x5 II 7 6 18 5 17 4 ကု X 3 ò 2

Page: 1

GRIP

244/190

FT = 20%

	bracing.	
WEBS	1 Row at	midpt 7-8
REACTIONS	(size)	1=13-10-2, 8=13-10-2, 9=13-10-2, 10=13-10-2, 11=13-10-2, 12=13-10-2, 13=13-10-2
	Max Horiz	1=270 (LC 11)
	Max Uplift	1=-11 (LC 10), 8=-40 (LC 13), 9=-54 (LC 14), 10=-46 (LC 14), 11=-52 (LC 14), 12=-40 (LC 14),
	Max Grav	13=-72 (LC 14) 1=164 (LC 24), 8=87 (LC 20), 9=243 (LC 20), 10=220 (LC 20), 11=179 (LC 20), 12=101 (LC 23), 13=308 (LC 23)
FORCES	(lb) - Max Tension	imum Compression/Maximum
TOP CHORD		/158, 2-3=-190/116, 3-4=-164/108, /97, 5-6=-143/97, 6-7=-104/107, /0
BOT CHORD	11-12=-1	4/184, 12-13=-114/142, 14/142, 10-11=-114/142, 4/142, 8-9=-114/142
WEBS		/63, 5-10=-184/114, 4-11=-132/96, /80, 2-13=-201/142
NOTES		

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this desian.
- All plates are 2x4 MT20 unless otherwise indicated. 5)
- 6) Gable requires continuous bottom chord bearing.
- Gable studs spaced at 2-0-0 oc. 7)
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 9) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 40 lb uplift at joint 8, 11 lb uplift at joint 1, 54 lb uplift at joint 9, 46 lb uplift at joint 10, 52 lb uplift at joint 11, 40 lb uplift at joint 12 and 72 lb uplift at joint 13.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 116 FARM AT NEILLS CREEK
22090034	V2	Valley	1	1	Job Reference (optional)

11-9-14

Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.53 S Sep 12 2022 Print: 8.530 S Sep 12 2022 MiTek Industries, Inc. Wed Sep 28 07:54:35 ID:dZR1oJ6SMNhWOks6TOXq3xzTR1m-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

> 2x4 II 4

Page: 1

2x4 II 3 10 6-11-0 6-11-0 2x4 II 2 12 7 0-0-4 5 7 6 2x4 🛛 3x5 🛩 2x4 II 2x4 II 11-9-14 Spacing 2-0-0 CSI DEFL l/defl L/d PLATES GRIP in (loc) Plate Grip DOL 1.15 TC 0.46 Vert(LL) n/a n/a 999 MT20 244/190 BC Lumber DOL 1 15 999 0.16 Vert(TL) n/a n/a . Rep Stress Incr YES WB 0.15 Horiz(TL) 0.00 5 n/a n/a Code IRC2018/TPI2014 Matrix-MSH Weight: 55 lb FT = 20% 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 4) Unbalanced snow loads have been considered for this desian. Gable requires continuous bottom chord bearing. 5) or 6) Gable studs spaced at 4-0-0 oc. 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 8) 14. on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. Provide mechanical connection (by others) of truss to 9) bearing plate capable of withstanding 35 lb uplift at joint 5, 4 lb uplift at joint 1, 109 lb uplift at joint 6 and 94 lb uplift at joint 7. 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard C SEAL 036322 G mmm September 28,2022 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 818 Soundside Road Edenton, NC 27932

Scale = 1:45

Loading

TCLL (roof)

Snow (Pf)

TCDL

BCLL

BCDL		10.0	
LUMBER			
TOP CHORD	2x4 SP N	o.2	
BOT CHORD	2x4 SP N	o.2	
WEBS	2x4 SP N	o.3	
OTHERS	2x4 SP N	0.3	
BRACING			
TOP CHORD			athing directly applied
			ept end verticals.
BOT CHORD	Rigid ceili bracing.	ing directly	applied or 10-0-0 oc
REACTIONS	(size)	1=11-9-14 7=11-9-14	, 5=11-9-14, 6=11-9-1
	Max Horiz	1=236 (LC	: 11)
	Max Uplift	1=-4 (LC 1	10), 5=-35 (LC 11),
		6=-109 (L0	C 14), 7=-94 (LC 14)
	Max Grav		24), 5=211 (LC 5),
		6=491 (LC	5), 7=413 (LC 23)
FORCES	(lb) - Max Tension	imum Com	pression/Maximum
TOP CHORD	1-2=-268/	/139, 2-3=-^	160/110, 3-4=-136/89,
	4-5=-159/	/45	
BOT CHORD	1-7=-99/1	96, 6-7=-99	9/110, 5-6=-99/110
WEBS	3-6=-387/	152, 2-7=-2	254/148
NOTES			
1) Wind: AS	CE 7-16; Vu	lt=130mph	(3-second gust)

(psf)

20.0

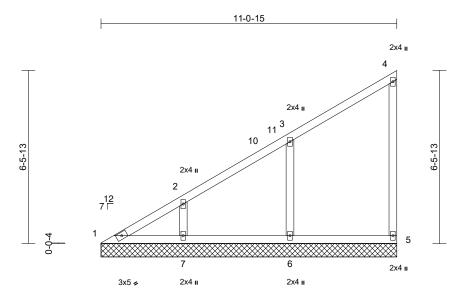
20.0

10.0

40.0

0.0

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-7 to 3-0-7, Interior (1) 3-0-7 to 8-8-9, Exterior(2E) 8-8-9 to 11-8-9 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face). see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.

Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 116 FARM AT NEILLS CREEK
22090034	V3	Valley	1	1	Job Reference (optional)

Run: 8.53 S Sep 12 2022 Print: 8.530 S Sep 12 2022 MiTek Industries, Inc. Wed Sep 28 07:54:35 ID:dlfQSUCwlL2q1s9Sv59O5YzhpM_-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

11-0-15

Scale = 1:43.1

Loading		(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)		20.0	Plate Grip DOL	1.15		тс	0.40	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
Snow (Pf)		20.0	Lumber DOL	1.15		BC	0.16	Vert(TL)	n/a	-	n/a	999			
TCDL		10.0	Rep Stress Incr	YES		WB	0.13		0.00	5	n/a	n/a			
BCLL		0.0*	Code	IRC20	18/TPI2014	Matrix-MSH		. ,							
BCDL	-	10.0											Weight: 51 lb	FT = 20%	
LUMBER				3	B) TCLL: ASCE	7-16; Pr=20.0 p	sf (roof Ll	L: Lum DOL=	1.15						
TOP CHORD	2x4 SP N	o.2			Plate DOL=1	l.15); Pf=20.0 ps	f (Lum DC	DL=1.15 Plate	;						
BOT CHORD	2x4 SP N	o.2				ls=1.0; Rough Ca	at B; Fully	' Exp.; Ce=0.9	9;						
WEBS	2x4 SP N	o.3			Cs=1.00; Ct=										
OTHERS	2x4 SP N	o.3		2	,	snow loads have	e been coi	nsidered for t	his						
BRACING				_	design.										
TOP CHORD	Structura	I wood sh	eathing directly applie	u 01		es continuous bo		rd bearing.							
	6-0-0 oc j	purlins, e	xcept end verticals.			spaced at 4-0-0									
BOT CHORD	Rigid ceil	ing directl	y applied or 10-0-0 oc			as been designed ad nonconcurren			ala						
	bracing.					as been designe									
REACTIONS	(size)	1=11-0-1	15, 5=11-0-15, 6=11-0	-15, [°]		n chord in all are			opsi						
		7=11-0-1	15			oy 2-00-00 wide v			om						
	Max Horiz					y other member									
	Max Uplift		C 10), 5=-33 (LC 11),	ç		hanical connection									
			C 14), 7=-86 (LC 14)		bearing plate	e capable of with	standing 3	33 lb uplift at j	oint						
	Max Grav		_C 24), 5=209 (LC 5), _C 5), 7=364 (LC 23)		5, 11 lb uplift uplift at joint	t at joint 1, 61 lb i 7	uplift at jo	int 6 and 86 li	b						
FORCES	(lb) - Max Tension	timum Cor	mpression/Maximum	1	0) This truss is	designed in acco Residential Cod			and						
TOP CHORD			153/110, 3-4=-133/82		R802.10.2 a	nd referenced sta									
BOT CHORD			93/103, 5-6=-93/103	L	OAD CASE(S)	Standard									
WEBS			=-229/129											111111	
NOTES													IN THUM	ROM	
1) Wind: ASC	CE 7-16; Vu	lt=130mp	h (3-second gust)									15	Ohi is 8	Donia	_
			BCDL=6.0psf; h=25ft;									11		No.	7
			RS (envelope) exterior										ion /	1: 3	
			7 to 3-1-6, Interior (1)								2	3 8			-
			8-11 to 10-11-10 zone								=	:	SEA	AL :	=
			d ; end vertical left and and forces & MWFR								=		0363	:	-
			OL=1.60 plate grip	5							-		0505		-
DOL=1.60			OL-1.00 plate grip								-	4 A			
		ind loads	in the plane of the trus	s								1	A. E.	Richi	
			d (normal to the face),									25	GIN	EFICAS	
			nd Details as applicab									11	10	BEN	
or consult	qualified bu	uilding des	signer as per ANSI/TP	11.									11, A. (ALLIN	
													A. C	11111	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

minimum) September 28,2022

Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 116 FARM AT NEILLS CREEK
22090034	V4	Valley	1	1	Job Reference (optional)

5-3-0

Run: 8.53 S Sep 12 2022 Print: 8.530 S Sep 12 2022 MiTek Industries, Inc. Wed Sep 28 07:54:36

Page: 1

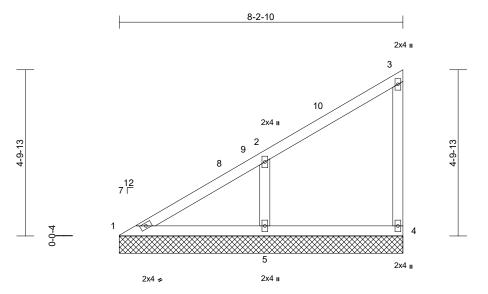
ID: WLgYeg9zPbBytL9tiEbmDnzTR1i-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f8-11-9 2x4 II 3 2x4 II 11 2 10 5-3-0 9 8 12 7 Г 1 0-0-4 4 5 2x4 II

2x4 II

8-11-9

3x5 ≉

Scale = 1:35.2


Scale - 1.55.2												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER TOP CHORD BOT CHORD	(psf) 20.0 20.0 10.0 0.0* 10.0 2x4 SP No.2 2x4 SP No.2	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	design.	CSI TC BC WB Matrix-MP ed snow loads hav guires continuous b			in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 38 lb	GRIP 244/190 FT = 20%
WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing.	cept end verticals.	6) Gable stu 7) This truss chord live ed or 8) * This tru on the bo c 3-06-00 t chord an	ds spaced at 4-0-0 thas been designe load nonconcurrer ss has been design ttom chord in all are all by 2-00-00 wide d any other membe	oc. d for a 10. nt with any ed for a liv eas where will fit betw rs.	0 psf bottom other live loa e load of 20.0 a rectangle veen the botto)psf om					
	(size) 1=8-11-9, Max Horiz 1=177 (LC Max Uplift 4=-27 (LC Max Grav 1=167 (LC 5=575 (LC	C 11), 5=-112 (LC 14 C 24), 4=165 (LC 20 C 20)	bearing p 4 and 11) 10) This trus:), Internatio	nechanical connect late capable of with 2 Ib uplift at joint 5. 5 is designed in acc nal Residential Coo 2 and referenced st	istanding 2 ordance w le sections	27 lb uplift at j ith the 2018 s R502.11.1 a	oint					
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-2=-265/128, 2-3=- 1-5=-79/227, 4-5=-7 2-5=-442/189	124/65, 3-4=-144/45		(S) Standard								
Vasd=103 Cat. II; Ex zone and 3-0-7 to 4. cantilever right expo for reactio DOL=1.6C 2) Truss dee only. For see Stand or consult 3) TCLL: AS Plate DOL	signed for wind loads ir studs exposed to wind lard Industry Gable En. qualified building desi CE 7-16; Pr=20.0 psf (=1.15); Pf=20.0 psf (L 5); Is=1.0; Rough Cat E	CDL=6.0psf; h=25ft; S (envelope) exterior to 3-0-7, Interior (1) 5 to 8-10-4 zone; ; end vertical left an and forces & MWFR L=1.60 plate grip n the plane of the tru (normal to the face) d Details as applicat gner as per ANSI/TF roof LL: Lum DOL= um DOL=1.15 Plate	r) d SS ISS), ole, PI 1. 1.15						CH. CHINA		SEA 0363	EER. KUU

munn September 28,2022

Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 116 FARM AT NEILLS CREEK
22090034	V5	Valley	1	1	Job Reference (optional)

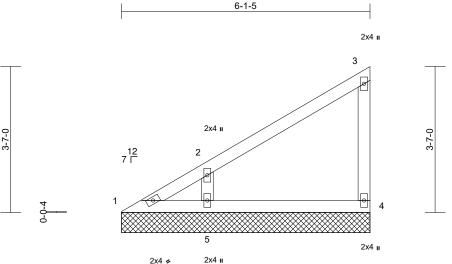
Run: 8.53 S Sep 12 2022 Print: 8.530 S Sep 12 2022 MiTek Industries, Inc. Wed Sep 28 07:54:36 ID:VWvwIsFRpZYGWTSD8xEKGOzhpLw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

8-2-10

Scale = 1:33.4

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.34	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.15	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES		WB	0.09	Horiz(TL)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC201	8/TPI2014	Matrix-MP								
BCDL	10.0											Weight: 35 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 1=8-2-10, Max Horiz 1=161 (LC Max Uplift 4=-26 (LC Max Grav 1=142 (LC	cept end verticals. applied or 10-0-0 oc 4=8-2-10, 5=8-2-10 C 11) C 11), 5=-107 (LC 14)	9)	design. Gable requir Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Provide mec bearing plate 4 and 107 lb	snow loads have es continuous bo spaced at 4-0-0 d is been designed ad nonconcurrent nas been designe m chord in all are: y 2-00-00 wide v y 2-00-00 wide v y other members hanical connectio e capable of withs uplift at joint 5. designed in accoo Residential Code	ttom chor oc. for a 10. with any d for a liv as where vill fit betw s. on (by oth standing 2 wrdance w	d bearing. D psf bottom other live loa e load of 20.0 a rectangle veen the bott ers) of truss t 26 lb uplift at j ith the 2018	ids. Opsf om to joint					
FORCES	5=535 (L0 (lb) - Maximum Corr	,		R802.10.2 a	nd referenced sta								
FORCES	Tension	ipression/waximum	LO	DAD CASE(S)	Standard								
TOP CHORD BOT CHORD WEBS	1-2=-220/116, 2-3=- 1-5=-72/181, 4-5=-7 2-5=-419/186	,											
NOTES													
Vasd=103 Cat. II; Ex zone and 3-0-7 to 3- cantilever right expos	CE 7-16; Vult=130mph imph; TCDL=6.0psf; B p B; Enclosed; MWFR C-C Exterior(2E) 0-0-7 -10-7, Exterior(2R) 3-1 left and right exposed sed;C-C for members ns shown; Lumber DC)	CDL=6.0psf; h=25ft; S (envelope) exterior to 3-0-7, Interior (1) 0-7 to 8-1-5 zone; ; end vertical left and and forces & MWFR	1							Change and the second s		ORTEESS REA	• •
 administration of the first of the former of the									EERA				

- DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10


A. GILL September 28,2022

Page: 1

Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 116 FARM AT NEILLS CREEK
22090034	V6	Valley	1	1	I54436578 Job Reference (optional)

Run: 8.53 S Sep 12 2022 Print: 8.530 S Sep 12 2022 MiTek Industries, Inc. Wed Sep 28 07:54:36 ID:9eP49nIUaHiFJB4BPIpajJzTR1W-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

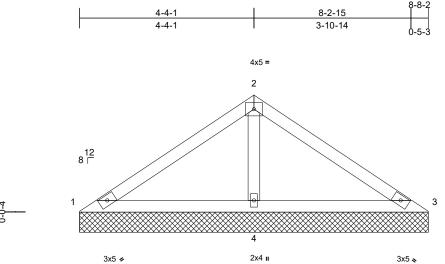
6-1-5

Scale = 1:28.3

Scale = 1:28.3													
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MP	0.31 0.12 0.08	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 24 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD WEBS NOTES	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 1=6-1-5, 4 Max Horiz 1=117 (LC Max Uplift 1=-12 (LC 5=90 (LC Max Grav 1=55 (LC 5=462 (LC (lb) - Maximum Com Tension 1-2=-106/99, 2-3=-1 1-5=-54/59, 4-5=-54 2-5=-415/211	cept end verticals. applied or 10-0-0 o 4=6-1-5, 5=6-1-5 C 11) C 10), 4=-24 (LC 14) C 14) 24), 4=186 (LC 20), C 20) appression/Maximum 14/58, 3-4=-153/42	c 9) , , ,	design. Gable requir Gable studs This truss ha chord live lo. * This truss l on the bottoo 3-06-00 tall l chord and an Provide mec bearing plate 4, 12 lb uplif)) This truss is International	snow loads have es continuous boi spaced at 4-0-0 d as been designed ad nonconcurrent has been designe m chord in all area by 2-00-00 wide w ny other members chanical connectic e capable of withs t at joint 1 and 90 designed in acco Residential Code nd referenced sta Standard	ttom choi oc. for a 10. with any d for a liv as where vill fit betw s. nn (by oth tanding 2 lb uplift a rdance we	d bearing. 0 psf bottom other live loa e load of 20.0 a rectangle veen the bott ers) of truss 1 24 lb uplift at j 44 lb uplift at j 44 joint 5. ith the 2018 \$ R502.11.1 a	ads. Opsf om to joint					
Vasd=103 Cat. II; Ex zone and	CE 7-16; Vult=130mph mph; TCDL=6.0psf; Bi p B; Enclosed; MWFR C-C Exterior(2E) zone end vertical left and ric	CDL=6.0psf; h=25ft; S (envelope) exterio ; cantilever left and i	or right							4	in the second	ORTH CA	ROLIN

- members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face),
- see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3)
- Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

Varmannen anninnin annin a SEAL 036322 GILB C A. GIL September 28,2022


818 Soundside Road Edenton, NC 27932

Page: 1

Job	Truss	Truss Type	Qty	Ply	DRB HOMES - 116 FARM AT NEILLS CREEK
22090034	V7	Valley	1	1	Job Reference (optional)

Run: 8.53 S Sep 12 2022 Print: 8.530 S Sep 12 2022 MiTek Industries, Inc. Wed Sep 28 07:54:36 ID:BJweuyr2dKwhU0kO5sRv9pzG_Fp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

8-8-2

2-7-4

2-10-15

Scale = 1:28.7													
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/	TPI2014	CSI TC BC WB Matrix-MP	0.38 0.37 0.11	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 30 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS	8-8-2 oc purlins. Rigid ceiling directly bracing.	3=8-8-2, 4=8-8-2 C 10) C 21), 3=-40 (LC 20), C 14) C 20), 3=104 (LC 21) C 21) npression/Maximum -109/336	5) d or 6) 7) 8) 9) 10) 11)	Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced design. Gable requirt Gable studs This truss ha chord live loa * This truss ha chord live loa the botton 3-06-00 tall b chord and an Provide med bearing plate bearing plate to lo up upift This truss is International	snow loads have es continuous bo spaced at 4-0-0 s been designed ad nonconcurren has been designed nord in all are by 2-00-00 wide by 2-00-00 wide to yo other member hanical connecti capable of with at joint 3 and 76 designed in acco Residential Cod nd referenced st	of (Lum DC at B; Fully be been cor octom chor oc. d for a 10.0 t with any ed for a liv ass where will fit bety on (by oth standing 4 6 lb uplift a ordance w le sections	DL=1.15 Plate Exp.; Ce=0.9 asidered for the d bearing. D psf bottom other live loa e load of 20.0 a rectangle veen the botto ers) of truss t 0 lb uplift at j t joint 4. it the 2018 i R502.11.1 a	e e); his dds. Dpsf om to oint					
NOTES 1) Unbalance this design	ed roof live loads have	been considered for											inin,

this design 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-6 to 3-0-6, Exterior(2R) 3-0-6 to 5-8-8, Exterior(2E) 5-8-8 to 8-8-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

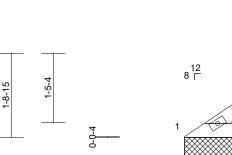
Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

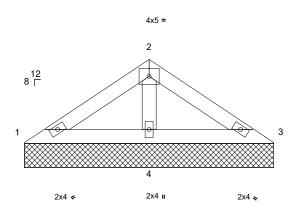
Job	Truss	Truss Type	Qty Ply		DRB HOMES - 116 FARM AT NEILLS CREEK
22090034	V8	Valley	1	1	I54436580 Job Reference (optional)

2-7-1

2-7-1

Carter Components (Sanford), Sanford, NC - 27332,


Run: 8.53 S Sep 12 2022 Print: 8.530 S Sep 12 2022 MiTek Industries, Inc. Wed Sep 28 07:54:37 ID:BJweuyr2dKwhU0kO5sRv9pzG_Fp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


4-8-15

2-1-14

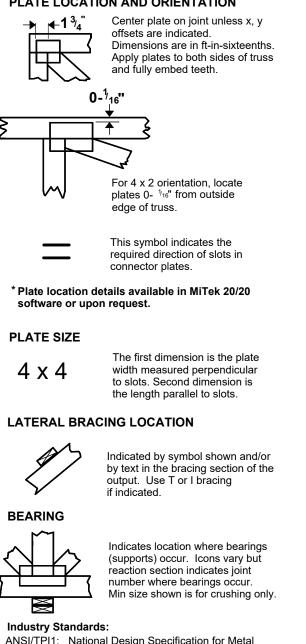
5-2-2

5-2-2

Scale = 1:23.9

30ale - 1.23.9														
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-MP	0.09 0.12 0.04	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 17 lb	GRIP 244/190 FT = 20%	
LUMBER 10.0 TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 OTHERS 2x4 SP No.3 BRACING TOP CHORD TOP CHORD Structural wood sheathing directly applied or 5-2-2 oc purlins. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. REACTIONS (size) 1=5-2-2, 3=5-2-2, 4=5-2-2 Max Horiz Max Horiz 1=-37 (LC 10) Max Uplift 1=5 (LC 14), 3=-11 (LC 15), 4=-28 (LC 14) Max Grav 1=90 (LC 20), 3=90 (LC 21), 4=314 (LC 20)		ed or g 4=-28	 design. Gable requin Gable studs Gable studs This truss ha chord live lo * This truss on the botto 3-06-00 tall chord and a Provide mec bearing plate 1, 11 lb uplif This truss is International 	snow loads hav res continuous b spaced at 4-0-0 as been design m chord in all ar by 2-00-00 wide ny other membe hanical connect e capable of with t at joint 3 and 2 designed in acc Residential Coo nd referenced s	bottom chor) oc. dd for a 10.0 nt with any need for a liv reas where will fit betw ers. tion (by oth- hstanding 5 28 Ib uplift a cordance wi de sections	d bearing.) psf bottom other live loa e load of 20. a rectangle veen the bott ers) of truss i lb uplift at jo t joint 4. th the 2018 R502.11.1 a	ads. Opsf com to pint							
 FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-88/120, 2-3=-88/120 BOT CHORD 1-4=-91/83, 3-4=-91/83 WEBS 2-4=-196/100 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DCL=1.60 plate grip DCL=1.60 3) Truss designed for wind loads in the plane of the truss 			r or right	OAD CASE(S)	Standard						- AL	ORTH CA ORTHESE SEA 0363	L	1 mmm

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ćt=1.10



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


818 Soundside Road Edenton, NC 27932

Symbols

PLATE LOCATION AND ORIENTATION

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

PRODUCT CODE APPROVALS

ICC-ES Reports:

ESR-1311, ESR-1352, ESR1988 ER-3907, ESR-2362, ESR-1397, ESR-3282

Trusses are designed for wind loads in the plane of the truss unless otherwise shown.

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

© 2012 MiTek® All Rights Reserved

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- 1. Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI.
- 2. Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- 3. Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- 4. Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- 5. Cut members to bear tightly against each other.
- 6. Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- 7. Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- 8. Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- 9. Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- 10. Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- 11. Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- 12. Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- 13. Top chords must be sheathed or purlins provided at spacing indicated on design.
- 14. Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
- 16. Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- 18. Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- 19. Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- 20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.

21. The design does not take into account any dynamic or other loads other than those expressly stated.

ANSI/TPI1:	National Design Specification for Metal
	Plate Connected Wood Truss Construction.
DSB-89:	Design Standard for Bracing.
BCSI:	Building Component Safety Information,
	Guide to Good Practice for Handling,
	Installing & Bracing of Metal Plate
	Connected Wood Trusses.

MiTek Engineering Reference Sheet: MII-7473 rev. 5/19/2020