

Version 21.80.417 Powered by iStruct[™] Dataset: 22061001.1

		Client: Precision Cus	tom Homes	Date:	10/3/2022	Page 2 of 3
		Project:		Input by:	: Hampton Horrocks	
is	s Design	Address:		Job Nam	ne: Lot 40 Liberty Meadow	
				Project #	#: J0922-4860	
BM4	Kerto-S LVL 1	.750" X 14.000)" 2-Ply - F	PASSED	Level: Level	
			,			
	2					
	1					
						\square \uparrow
						MM
	and the second s					1'2"
	CARGESTER STREET, STRE	The Print of the Assessment				/ V V
1 SPF		2 SPF				
	5'	1				ິ ິ 3 1/2"
1	5'	ł				
Member In	formation			Reactions IIN	VPATTERNED Ib (Unlift)	
Type [.]	Girder	Application: FI	oor	Bra Direction	Live Dead	Snow Wind Const
Plies:	2	Design Method: A	SD	1 Vertical	650 755	
Moisture Con	dition: Dry	Building Code: IB	C/IRC 2015	2 Vertical	650 755	
Deflection LL	: 480	Load Sharing: N	D			5 5 5
Deflection TL	: 240	Deck: N	ot Checked			
Importance:	Normal - II					
Temperature:	Temp <= 100°F			_		
				Bearings		
				Bearing Leng	th Dir. Cap. React D/L lk	o Total Ld. Case Ld. Comb.
				1 - SPF 3.500	" Vert 27% 755 / 650	0 1405 L D+L
Analysis Re	sults			2 - SPF 3.500	" Vert 27% 755 / 650	0 1405 L D+L
Analysis	Actual Location	Allowed Capacity	Comb Case	7		
Moment	1449 ft-lb 2'6"	26999 ft-lb 0 054 (5%)	D+I I			
Unbraced	1449 ft-lb 2'6"	20546 ft-lb 0.071 (7%)	D+L L			
Shear	996 lb 3'6 1/2"	10453 lb 0.095 (10%) D+L L			
LL Defl inch	0.003 2'6"	0.114 (L/480) 0.028 (3%)	L L			
	(L/17407)					
TL Defl inch	0.007 (L/8054) 2'6"	0.227 (L/240) 0.030 (3%)	D+L L			
Design No	tes					
1 Provide su	pport to prevent lateral moveme	ent and rotation at the end be	earings. Lateral support			
2 Girders are	e required at the interior bearing e designed to be supported on t	as by the building code.				
3 Multiple pl	ies must be fastened together a	s per manufacturer's details.				
4 Top loads	must be supported equally by al	l plies.				
6 Bottom mu	be laterally braced at end bearin ist be laterally braced at end bearin	gs. arings.				
7 Lateral sle	nderness ratio based on single	oly width.				
ID	Load Type	Location Trib Width	Side Dead 0.9	Live 1 Sn	now 1.15 Wind 1.6 Const.	1.25 Comments
1	Uniform		Far Face 81 PLF	260 PLF	0 PLF 0 PLF 0	PLF F02
2	Uniform		Top 210 PLF	0 PLF	0 PLF 0 PLF 0	PLF wall
	Self Weight		11 PLF			
					Manufacture 1.6	Comtach Inc
Notes	chem	icals ng & Installation	 For flat roofs provide ponding 	proper drainage to prevent	Manufacturer Info	Lomtech, Inc. 1001 S. Reilly Road, Suite #639 Favetteville, NC
structural adequacy design criteria an	of this component based on the 1. LVL b d loadings shown. It is the 0.5.	eams must not be cut or drilled	ation		301 Merritt 7 Building, 2nd Floor	USA 28314
responsibility of the ensure the compo	customer and/or the contractor to nent suitability of the intended faster	ding installation requirements, mu ning details, beam strength values, and	lti-ply code		Norwalk, C1 06851 (800) 622-5850	910-864-TRUS
application, and to ve	rify the dimensions and loads. appro 3. Dama	aged Beams must not be used			www.metsawood.com/us	
1. Dry service condi 2. LVL not to be tre	tions, unless noted otherwise ated with fire retardant or corrosive	In assumes top edge is laterally restrained de lateral support at bearing points to displacement and arterian	avoid			соттесн
	latera	usplacement and rotation	This design is valie	d until 11/3/2024		

		С	lient:	Precision C	Custom Homes			Date	e:	10/3/202	2					Page 3 of 3
Tis	Design	P	roject:					Inpu	it by:	Hamptor	horty M	ks				
	Design	A	duress:					Proi	iect #:	J0922-48	360	eadow				
BM3	Kerto-S I VI	1 7	750" >	(14 0	00" 2-	Plv - P	AS	SED		Level: Level						
	2															
		- 1														
																\uparrow
															IVIVI	
	a ritte				and the second second										MA	1'2"
	And the second se	Contraction of the local sectors of the local secto	Contraction of the logical	-												
I SFF				2	SFF /											,
11		6'			1										1 1:	3 1/2"
1		6'			1											
Member In	formation						Rea	ctions	UNI	PATTERN	IED Ib	(Uplift)			
Type: Plies:	Girder 2		Applicati	on: //ethod:	Floor ASD		Brg	Direct	tion	Live		Dead	Sn	WO	Wind	Const
Moisture Cond	dition: Dry		Building	Code:	IBC/IRC 2015		2	Vertica	al	1900		658		0	0	0
Deflection LL:	480		Load Sh	aring:	No											
Deflection TL:	240 Normal - II		Deck:		Not Checked											
Temperature:	Temp <= 100°F															
							Bea	rings								
							Be	aring L	ength	n Dir.	Cap.	React D/L	. lb	Total	Ld. Case	Ld. Comb.
							$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$	SPF 3	3.500" 3.000"	Vert	49% 57%	658 / 18	900 874	2567	L I	D+L D+l
Analysis Re	sults										0					5.2
Analysis	Actual L	ocation A	llowed	Capacit	y Comb.	Case										
Moment	3312 ft-lb 3312 ft-lb	3' 1/4" 20	6999 ft-lb 7594 ft-lb	0.123 (12	2%) D+L 2%) D+l	L										
Shear	1745 lb	1'5 1/2" 10	0453 lb	0.167 (17	7%) D+L	L										
LL Defl inch	0.014 (L/4667)	3' 1/4" 0.	.140 (L/480) 0.103 (10	0%) L	L										
TL Defl inch	0.019 (L/3454)	3' 1/4" 0.	.279 (L/240) 0.069 (79	%) D+L	L										
Design Not	tes															
1 Provide su may also b	pport to prevent lateral e required at the interio	movement or bearings	and rotatior by the build	n at the end ing code.	I bearings. Late	ral support										
2 Girders are	e designed to be suppo	rted on the	bottom edg	e only.	ile											
4 Top loads r	nust be supported equ	ally by all pl	er manulac lies.	lurers dela	lis.											
5 Top must b 6 Bottom mu	e laterally braced at er	d bearings. t end bearir	nas													
7 Lateral sler	nderness ratio based o	n single ply	width.													
ID	Load Type	Lo	ocation -	Trib Width	Side	Dead 0.9		Live 1	Sno	w 1.15	Wind 1	.6 Cons	t. 1.25	Con	nments	
1	Uniform				Near Face	87 PLF	2	60 PLF		0 PLF	0 P	LF	0 PLF	F02		
2	Uniform				Тор	123 PLF	3	69 PLF		0 PLF	0 P	LF	0 PLF	F06		
	Self weight					11 PLF										
														0th.		
Notes Calculated Structured	Designs is responsible only of th	chemicals e Handling	& Installatio	n	6. For fla pondin	it roofs provide p g	proper dra	inage to pre	event	Metsä Wood	er into			Jorntech, I 1001 S. Re Fayetteville	iid. silly Road, Suite s a, NC	#639
structural adequacy design criteria and responsibility of the	of this component based on the d loadings shown. It is the customer and/or the contractor t	e 1. LVL beam e 2. Refer to	ns must not be cu manufacturer	t or drilled 's product in	formation					301 Merritt 7 Norwalk, CT	Building	, 2nd Floor		JSA 28314 910-864-T	RUS	
ensure the comport application, and to ver	ify the dimensions and loads.	d fastening approvals	details, beam s	trength values,	and code					(800) 622-58 www.metsav	350 vood.con	ı/us	F			
1. Dry service condit	ions, unless noted otherwise	 Damaged Design as Provide la 	Beams must not ssumes top edge ateral support a	be used is laterally restra t bearing points	ined to avoid										omt	
LVL not to be treat	ated with fire retardant or corrosiv	e lateral dis	placement and ro	otation	This	design is valid	l until 11	/3/2024							5111	COR

Version 21.80.417 Powered by iStruct[™] Dataset: 22061001.1

RE: J0922-4860 Lot 40 Liberty Meadow Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:

Customer: Project Name: J0922-4860 Lot/Block: Address: City:

Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: N/A Roof Load: N/A psf Design Program: MiTek 20/20 8.4 Wind Speed: N/A mph Floor Load: 55.0 psf

This package includes 12 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date
1	152781612	F01	6/27/2022
2	152781613	F02	6/27/2022
3	152781614	F03	6/27/2022
4	152781615	F04	6/27/2022
5	152781616	F04A	6/27/2022
6	152781617	F05	6/27/2022
7	152781618	F06	6/27/2022
8	152781619	F06A	6/27/2022
9	152781620	F07	6/27/2022
10	152781621	FKW1	6/27/2022
11	152781622	FKW3	6/27/2022
12	152781623	FKW6	6/27/2022

The truss drawing(s) referenced above have been prepared by

Truss Engineering Co. under my direct supervision

based on the parameters provided by Comtech, Inc - Fayetteville.

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2022

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

			13-5-8			
Plate Offsets (X,Y)	[11:0-1-8,Edge], [12:0-1-8,Edge]		13-3-6			
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.42 BC 0.51 WB 0.31 Matrix-S	DEFL. ir Vert(LL) -0.12 Vert(CT) -0.15 Horz(CT) 0.03	n (loc) l/defl L/d 2 12-13 >999 480 3 12-13 >999 360 9 n/a n/a	PLATES MT20 Weight: 66 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF	P No.1(flat) No.1(flat) No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dire except end verticals. Rigid ceiling directly applied or	oc purlins,	

REACTIONS.	(size)	14=0-3-8, 9=0-3-8
	Max Grav	14=720(LC 1), 9=720(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-1533/0, 3-4=-2255/0, 4-5=-2255/0, 5-6=-2255/0, 6-7=-1533/0

BOT CHORD 13-14=0/1028, 12-13=0/2002, 11-12=0/2255, 10-11=0/2002, 9-10=0/1028

WEBS 2-14=-1217/0, 2-13=0/658, 3-13=-610/0, 3-12=0/546, 4-12=-260/0, 7-9=-1217/0, 7-10=0/658, 6-10=-610/0, 6-11=0/546, 5-11=-260/0

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x4 MT20 unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

4) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

			<u>12-10-8</u> 12-10-8			
Plate Offsets (X,Y)	[1:Edge,0-1-8], [11:0-1-8,Edge], [12:0-1-	8,Edge]				
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.38 BC 0.46 WB 0.31 Matrix-S	DEFL. in Vert(LL) -0.10 Vert(CT) -0.13 Horz(CT) 0.03	l (loc) l/defl L/d 12-13 >999 480 12-13 >999 360 9 n/a n/a	PLATES MT20 Weight: 65 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 S BOT CHORD 2x4 S WEBS 2x4 S	P No.1(flat) P No.1(flat) P No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dire except end verticals. Rigid ceiling directly applied or	ectly applied or 6-0-0 r 10-0-0 oc bracing.	oc purlins,

REACTIONS.	(size)	14=Mechanical, 9=Mechanical
	Max Grav	14=694(LC 1), 9=694(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1351/0, 3-4=-2060/0, 4-5=-2060/0, 5-6=-2060/0, 6-7=-1351/0

BOT CHORD 13-14=0/851, 12-13=0/1815, 11-12=0/2060, 10-11=0/1815, 9-10=0/851

WEBS 2-14=-1068/0, 2-13=0/650, 3-13=-605/0, 3-12=0/519, 7-9=-1068/0, 7-10=0/650, 6-10=-605/0, 6-11=0/519

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x4 MT20 unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Refer to girder(s) for truss to truss connections.

- 5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

			13-2-0			
Plate Offsets (X,Y)	[11:0-1-8,Edge], [12:0-1-8,Edge]		1020			
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCodeIRC2018/TPI2014	CSI. TC 0.43 BC 0.51 WB 0.32 Matrix-S	DEFL. ir Vert(LL) -0.12 Vert(CT) -0.15 Horz(CT) 0.03	n (loc) l/defl L/d 12-13 >999 480 12-13 >999 360 9 n/a n/a	PLATES MT20 Weight: 66 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF	P No.1(flat) P No.1(flat) P No.3(flat)	BRACING- TOP CHORD BOT CHORD	ctly applied or 6-0-0 10-0-0 oc bracing.	oc purlins,		

REACTIONS.	(size)	14=0-3-8, 9=Mechanical
	Max Grav	14=704(LC 1), 9=710(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1491/0, 3-4=-2156/0, 4-5=-2156/0, 5-6=-2156/0, 6-7=-1389/0

BOT CHORD 13-14=0/1003, 12-13=0/1938, 11-12=0/2156, 10-11=0/1875, 9-10=0/872

WEBS 2-14=-1188/0, 2-13=0/635, 3-13=-582/0, 3-12=0/504, 7-9=-1094/0, 7-10=0/672, 6-10=-633/0, 6-11=0/562, 5-11=-265/0

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x4 MT20 unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Refer to girder(s) for truss to truss connections.

- 5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

7) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek Affilia 818 Soundside Road Edenton, NC 27932

L	8-2-4		20-8-8							
	8-2-4	I			12-6-4		1			
Plate Offsets (X	,Y) [17:0-1-8,Edge], [18:0-1-8,Edge], [22:0	-1-8,Edge], [23:0-1-8,Edge]								
LOADING (psf TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.42 BC 0.46 WB 0.34 Matrix-S	DEFL. i Vert(LL) -0.00 Vert(CT) -0.12 Horz(CT) 0.02	n (loc) 9 16-17 2 16-17 2 15	l/defl L/d >999 480 >999 360 n/a n/a	PLATES MT20 Weight: 103 lb	GRIP 244/190 FT = 20%F, 11%E			
LUMBER- TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat) WEBS 2x4 SP No.3(flat) BRACING- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. REACTIONS. (size) 24=0-5-8, 20=0-3-8, 15=0-5-8 Max Grav 24=403(LC 3), 20=1256(LC 1), 15=640(LC 7) BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing.										
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-694/30, 3-4=-694/30, 4-5=-694/30, 5-6=0/704, 6-7=0/703, 7-8=-977/0, 8-9=-1777/0, 9-10=-1777/0, 10-12=-1777/0, 12-13=-1233/0 BOT CHORD 23-24=0/505, 22-23=-30/694, 20-22=-263/350, 19-20=-111/451, 18-19=0/1479, 17-18=0/1777, 16-17=0/1635, 15-16=0/787 WEBS 2-24=-595/0, 5-20=-788/0, 5-22=0/589, 4-22=-297/0, 7-20=-1110/0, 7-19=0/717, 8-19=-700/0, 13-15=-985/0, 13-16=0/581, 12-16=-522/0, 12-17=-32/331, 8-18=0/554, 9-18=-254/0										

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x4 MT20 unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

4) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

L		8-2-4		20-6-0						
		8-2-4	1			12-3-1	2			
Plate Of	fsets (X,Y)	[17:0-1-8,Edge], [18:0-1-8,Edge], [22:0	-1-8,Edge], [23:0-1-8,Edge	e]						
LOADIN TCLL TCDL BCLL BCDL	IG (psf) 40.0 10.0 0.0 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.43 BC 0.46 WB 0.33 Matrix-S	DEFL. ii Vert(LL) -0.09 Vert(CT) -0.12 Horz(CT) 0.02	n (loc) 9 16-17 2 16-17 2 15	l/defl >999 >999 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 101 lb	GRIP 244/190 FT = 20%F, 11%E	
LUMBER- TOP CHORD 2x4 SP No.1(flat) BRACING- TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat) TOP CHORD 2x4 SP No.1(flat) WEBS 2x4 SP No.3(flat) BOT CHORD 8DT CHORD 8D							oc purlins,			
REACTI	ONS. (s Max	ize) 24=0-5-8, 20=0-3-8, 15=0-3-0 Grav 24=405(LC 3), 20=1235(LC 1), 15=	=631(LC 7)							
FORCES	S. (lb) - Ma	x. Comp./Max. Ten All forces 250 (lb) o	r less except when shown							
TOP CH	ORD 2-3	=-703/9, 3-4=-703/9, 4-5=-703/9, 5-6=0/6	52, 6-7=0/651, 7-8=-980/0), 8-9=-1721/0,						
	9-1	0=-1721/0, 10-12=-1721/0, 12-13=-1210/	0							
BOT CH	ORD 23-	24=0/509, 22-23=-9/703, 20-22=-229/363	8, 19-20=-0/473, 18-19=0/ ²	1467,						
	17-	18=0/1721, 16-17=0/1601, 15-16=0/776								
WEBS	2-2	4=-599/0, 5-20=-785/0, 5-22=0/583, 4-22	=-295/0, 7-20=-1086/0, 7-	19=0/691,						
	8-1	9=-682/0, 13-15=-971/0, 13-16=0/566, 12	2-16=-508/0, 12-17=-27/32	24, 8-18=0/541,						

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x4 MT20 unless otherwise indicated.

9-18=-291/0

3) Plates checked for a plus or minus 1 degree rotation about its center.

4) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 40 Liberty Meadow			
J0922-4860	F05	Floor	1	1			152781617	
Comtech. Inc. Fav	etteville. NC - 28314.		8.	430 s Aug 1	Job Reference (optiona 16 2021 MiTek Industrie	l) es. Inc. Mon Jun 27 14	4:46:39 2022 Page 1	
, ···-, ···-,	,		ID:r?yi3DAbxF	Rr?CsKd7D	tDjMygInZ-SQH?vKkDy	9l9id6ZMnFs7CsxvVE	Euurh7REcPCIz22dU	
0-1-8	1.3.0 1.3.0 1.3.0	1.2.0 0.0.8 1.2.0			20.8		0.1.8	
H H				H	2-0-0		Scale = 1:34.4	
$\begin{array}{c}1 \\ 2 \\ 3 \\ 3 \\ 3 \\ 3 \\ 4 \\ 1 \end{array}$		3x4 3x4 $3x6 FP =$ $6 7 8 9$ $6 7 8 9$ $6 7 8 9$ $6 7 8 9$ $6 7 8 9$ $6 7 8 9$ $6 7 8 9$ $6 7 8 9$ $6 7 8 9$ $7 9$ $7 8 9$	= 3x4 = 10 10 21 21 20 3x4 = 3x6 FP =	11 19 3x4 =	12 18 3x4 =	3x4 = 13 •• 17 3x4 =	$3x4 =$ $14 \qquad 15 \qquad 30 \qquad 0 \\ \hline 0 \\ \hline$	
Plate Offsets (X,Y)	<u>5-9-0</u> 5-9-0 [18:0-1-8,Edge], [19:0-1-8,Edge	8-2-0 7-6-4 8-0-8 <u> 6-10-0 7₇1-8 7₇11-0₁ </u> 1-1-0 0-3-8 0/4-12' 0-4-12 0-1-8 0-1-8], [28:Edge,0-1-8]			20-8-8 12-6-8			
LOADING (psf)	SPACING- 2-0-) CSI.	DEFL. ir	(loc)	l/defl L/d	PLATES	GRIP	
TCLL 40.0 TCDL 10.0	Plate Grip DOL 1.0 Lumber DOL 1.0	D TC 0.37 D BC 0.45	Vert(LL) -0.10 Vert(CT) -0.12	17-18 17-18	>999 480 >999 360	MT20	244/190	
BCLL 0.0	Rep Stress Incr YE	S WB 0.30	Horz(CT) 0.03	16	n/a n/a	Weight: 97 lb	ET - 20%E 11%E	
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP WEBS 2x4 SP REACTIONS. All be (lb) - Max U Max G	BCDL 5.0 Code IRC2018/TPI2014 Matrix-S LUMBER- TOP CHORD 2x4 SP No.1(flat) BRACING- TOP CHORD TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD 2x4 SP No.1(flat) BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. WEBS 2x4 SP No.3(flat) BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS. All bearings 8-2-0 except (jt=length) 16=0-3-8. (lb) - Max Uplift All uplift 100 lb or less at joint(s) 23 Max (Gray. BOT CHORD							
FORCES. (lb) - Max. TOP CHORD 9-10= BOT CHORD 21-22 WEBS 9-22= 13-17	Comp./Max. Ten All forces 25 1283/0, 10-11=-2005/0, 11-12: 2=0/795, 19-21=0/1758, 18-19=(996/0, 9-21=0/636, 10-21=-61 (=-589/0, 13-18=0/492	0 (lb) or less except when shown 2005/0, 12-13=-2005/0, 13-14= //2005, 17-18=0/1780, 16-17=0/8 3/0, 10-19=0/513, 14-16=-1049/0	-1327/0 38 .14-17=0/637,					
NOTES- 1) Unbalanced floor liv. 2) All plates are 1.5x3 l 3) Plates checked for a 4) Provide mechanical 5) This truss is designer referenced standard 6) Recommend 2x6 str Strongbacks to be a 7) CAUTION, Do not end	a loads have been considered for MT20 unless otherwise indicate plus or minus 1 degree rotatior connection (by others) of truss t id in accordance with the 2018 I ANSI/TPI 1. ongbacks, on edge, spaced at 1 ttached to walls at their outer en rect truss backwards.	or this design. d. about its center. o bearing plate capable of withstanternational Residential Code sec 0-0-0 oc and fastened to each tr ds or restrained by other means.	anding 100 lb uplift at joir ctions R502.11.1 and R8 uss with 3-10d (0.131" X	nt(s) 23. 02.10.2 an 3") nails.	nd	IN ORTH CA	ROLIN	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

ł					18-1-8						
					18-1-8						1
Plate C	offsets (X,	Y)	[1:Edge,0-1-8], [18:0-1-8,Edge], [19:0-1	-8,Edge]							
LOADI TCLL TCDL BCLL BCDL	NG (psf) 40.0 10.0 0.0 5.0		SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode IRC2018/TPI2014	CSI. TC 0.38 BC 0.48 WB 0.53 Matrix-S	DEFL. Vert(LL) - Vert(CT) - Horz(CT)	in (lo 0.24 18- 0.33 18- 0.06	oc) -19 -19 14	l/defl >881 >641 n/a	L/d 480 360 n/a	PLATES MT20 M18AHS Weight: 92 lb	GRIP 244/190 186/179 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SP 2400F 2.0E(flat) BOT CHORD 2x4 SP 2400F 2.0E(flat) WEBS 2x4 SP No.3(flat)					BRACING- TOP CHORD BOT CHORD	Str exc Riç	ructura cept e gid cei	al wood Ind verti Iling dire	sheathing dire cals. ectly applied o	ectly applied or 6-0-0 r 10-0-0 oc bracing.	oc purlins,
REAC	TIONS.	(size Max G	e) 22=Mechanical, 14=0-3-8 rav 22=983(LC 1), 14=977(LC 1)								
FORCE	S. (lb) ·	Max.	Comp./Max. Ten All forces 250 (lb) or	less except when shown.							
TOP C	HORD	2-3=- 9-10=	2075/0, 3-4=-3469/0, 4-6=-3469/0, 6-7= 3469/0, 10-11=-3469/0, 11-12=-2075/	-4167/0, 7-8=-4167/0, 8-9)	=-4167/0,						
BOT C	HORD	21-22 14-1	2=0/1229, 20-21=0/2888, 19-20=0/3892 5=0/1228	, 18-19=0/4167, 16-18=0/3	892, 15-16=0/2889),					
WEBS		2-22=	-1541/0, 2-21=0/1102, 3-21=-1058/0, 3	-20=0/742, 12-14=-1538/0	, 12-15=0/1103,						

11-15=-1059/0, 11-16=0/741, 9-16=-539/0, 9-18=-56/690, 6-20=-539/0, 6-19=-56/690, 7-19=-319/0, 8-18=-319/0

NOTES-

- 1) Unbalanced floor live loads have been considered for this design.
- 2) All plates are MT20 plates unless otherwise indicated.
- 3) Plates checked for a plus or minus 1 degree rotation about its center.
- 4) Refer to girder(s) for truss to truss connections.
- 5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.
- Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 7) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

			18-1-8				
Plate Offsets (X,Y)	[2:0-3-8,Edge], [4:0-2-12,Edge], [8:0-3-0 [26:0-3-0,Edge], [28:0-3-12,Edge], [33:E),Edge], [9:0-3-0,Edge], [′ idge,0-1-8]	13:0-3-12,Edge], [15:0-3	-8,Edge], [17:Edg	e,0-1-8], [22:0)-2-12,Edge], [25:0-3-0,Edge],	
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrNOCode IRC2018/TPI2014	CSI. TC 0.31 BC 0.71 WB 0.94 Matrix-S	DEFL. ir Vert(LL) -0.17 Vert(CT) -0.45 Horz(CT) 0.09	n (loc) l/defl 25-26 >999 525-26 >475 17 n/a	L/d 480 360 n/a	PLATES GRIP MT20 244/190 M18AHS 186/179 Weight: 141 lb FT = 20%	6F, 11%E
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF	2 2400F 2.0E(flat) 2 2400F 2.0E(flat) 2 No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood except end verti Rigid ceiling dire	sheathing dir cals. ectly applied c	ectly applied or 6-0-0 oc purlins, or 10-0-0 oc bracing.	
REACTIONS. (size Max G	e) 33=Mechanical, 17=0-3-8 irav 33=1877(LC 1), 17=1864(LC 1)						
FORCES. (lb) - Max. TOP CHORD 2-3=- 9-10= BOT CHORD 32-3: 25-2 18-13 WEBS 2-33= 7-28= 13-13	Comp./Max. Ten All forces 250 (lb) or 4395/0, 3-4=-4417/0, 4-5=-7551/0, 5-7= =-8958/0, 10-12=-7551/0, 12-13=-7551/0 3=0/2488, 31-32=0/2490, 30-31=0/5928, 6=0/8958, 24-25=0/8493, 22-24=0/8493 3=0/2482, 17-18=0/2481 =-3000/0, 2-31=0/2443, 3-31=-392/0, 4-3 =-1143/0, 7-26=0/928, 8-26=-390/0, 15-1 3=-1846/0, 13-22=0/1970, 12-22=-277/0	less except when shown -7551/0, 7-88958/0, 8-5 1, 13-14=-4419/0, 14-15=- 28-30=0/5930, 27-28=0/ , 20-22=0/5930, 19-20=0 11=-1847/0, 4-28=0/1970, 7=-2979/0, 15-19=0/2453 10-22=-1144/0, 10-25=0	-=-8958/0, -4395/0 8493, 26-27=0/8493, /5927, , 5-28=-277/0, 3, 14-19=-400/0, /928, 9-25=-390/0				
NOTES- 1) Unbalanced floor liv 2) All plates are MT20 3) All plates are 2x6 M 4) Plates checked for a 5) Refer to girder(s) for 6) This truss is designer referenced standard 7) Load case(s) 1, 2, 3 intended use of this 8) Recommend 2x6 str Strongbacks to be a 9) CAUTION, Do not e LOAD CASE(S) Stann 1) Dead + Floor Live (b Uniform Loads (plf) Vert: 17-33:	e loads have been considered for this de plates unless otherwise indicated. T20 unless otherwise indicated. a plus or minus 1 degree rotation about it r truss to truss connections. ed in accordance with the 2018 Internation I ANSI/TPI 1. , 4, 5, 6 has/have been modified. Buildin truss. rongbacks, on edge, spaced at 10-0-0 o ttached to walls at their outer ends or re- rect truss backwards. dard balanced): Lumber Increase=1.00, Plate =-10, 1-16=-200	sign. s center. onal Residential Code sed g designer must review lo c and fastened to each tr strained by other means. Increase=1.00	ctions R502.11.1 and R8 bads to verify that they a uss with 3-10d (0.131" X	02.10.2 and re correct for the 3") nails.	(Vinnin)	SEAL 036322	and a second second
2) Dead: Lumber Incre Uniform Loads (plf) Vert: 17-33:	ase=1.00, Plate Increase=1.00 =-10, 1-16=-200					June 27,2022	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek Atfilia 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qtv	Plv	Lot 40 Liberty Meadow
				,	
					152781619
10000 4000	FOCA	The second secon	4		
JU922-4860	FU6A	FIOOF	11	1	
					lob Reference (optional)
Comtech Inc Ea	ottovillo NC - 28314		8	130 c Aug	16 2021 MiTek Industries Inc. Mon. Jun 27 14:46:42 2022 Page 2
	/elleville, INC - 20314,		0.	430 S Aug	10 2021 WITCH INDUSTICS, INC. WON JUN 21 14.40.42 2022 Page 2

ID:r?yi3DAbxRr?CsKd7DtDjMygInZ-s?y8XLn5E4gkZ5r81voZlrUT2iBa51WZ7Cq3p4z22dR

LOAD CASE(S) Standard

- 3) 1st chase Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 17-33=-10, 1-9=-200, 9-16=-120
- 4) 2nd chase Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)
 - Vert: 17-33=-10, 1-8=-120, 8-16=-200
- 5) 3rd chase Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)
 - Vert: 17-33=-10, 1-9=-200, 9-16=-120
- 6) 4th chase Dead: Lumber Increase=1.00, Plate Increase=1.00
- Uniform Loads (plf)
 - Vert: 17-33=-10, 1-8=-120, 8-16=-200

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Max Grav 5=193(LC 1), 4=193(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Plates checked for a plus or minus 1 degree rotation about its center.

2) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

 Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply L	ot 40 Liberty Meadow		150704004
J0922-4860	FKW1	GABLE	1	1			152781621
Comtach Inc Equation	uillo NC - 28314		Q	130 s Aug 16	lob Reference (optional)	ne Mon lun 27.1/	1:46:43 2022 Page 1
Connech, inc, rayene	ville, NC - 20514,		ID:r?yi3DAbxRr	?CsKd7DtDj	MygInZ-KCWWIhnj?OobB	EQLbcKoH20hT6i	mqixjMsacLWz22dQ
							0 ₁ 18
							Scale = 1:22.3
1 2	3	4 5	6 7		8 9	10	11
23 🗖	•	• •	<u>e</u>		•		⊖ 24
							1-2-0
22 21	20	19 18	17 16	******	15 14	13	12
3x4							3x4 =
<u> </u>	2-8-0 4-0-0 1-4-0 1-4-0	<u>5-4-0 6-8-0</u> 1-4-0 1-4-0	8-0-0	<u>9-4-0</u> 1-4-0	<u> </u>	12-0-0	<u>13-5-8</u> 1-5-8
Plate Offsets (X,Y) [22	:Edge,0-1-8]		1				
LOADING (psf)	SPACING- 2-0-	0 CSI.	DEFL. ir	n (loc) l/	/defl L/d	PLATES	GRIP
TCLL 40.0 TCDL 10.0	Lumber DOL 1.0	0 IC 0.07 0 BC 0.01	Vert(LL) n/a	a -	n/a 999 n/a 999	MT20	244/190
BCLL 0.0 BCDL 5.0	Rep Stress Incr YES Code IRC2018/TPI2014	S WB 0.03 Matrix-R	Horz(CT) 0.00) 12	n/a n/a	Weight: 57 lb	FT = 20%F, 11%E
LUMBER-			BRACING-				
TOP CHORD 2x4 SP No BOT CHORD 2x4 SP No	.1(flat)		TOP CHORD	Structural	wood sheathing directly	applied or 6-0-0	oc purlins,
WEBS 2x4 SP No	.3(flat)		BOT CHORD	Rigid ceilir	ng directly applied or 10-	-0-0 oc bracing.	
UTTERS 2X4 SP NO	.S(liat)						

REACTIONS. All bearings 13-5-8.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 22, 12, 21, 20, 19, 18, 17, 16, 15, 14, 13

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 7) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

8) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

1-6		T		T					0.	DI	1 - 4 4	40 Lib anti - M						
JOD		Truss		Truss 1	/pe				Qty	Piy	Lot 4	40 Liberty Me	eadow				1527	81622
J0922-4860		FKW3		GABLE					1	1	1							
Comtech Inc	Favotto	/illo_NC - 2831	4						8	 130 c Au	Job I	Reference (optional)	Inc. Mon	lup 27.1	1.16.13	022 Page	<u>1</u>
Connech, Inc,	Fayelle	ville, NC - 2031	4,					ID:r	o. yi3DAbxF?	430 S Au Rr?CsKd7	7DtDjMy	ygInZ-KCW	VIhnj?Oo	bBEQLbc	KoH20ig	4.40.43 2 SikqixjMs	acLWz220	iQ
0 ₁ 1 ₁ 8																	0 ₁ 1	3 ¹ 8
1.1																	1	1
																	Scale =	= 1:21.1
1	2	3		4		5		6		7		8		9		10	11	
•	•		•	•		•		•		•		0		•		•	•	I
23			H	H		H		H		H		H		H		H	- Fh	24
																	•	c
1														Ц				Ī
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			~~~~~~		~~~~~~		~~~~~~				~~~~~		~~~~~			l
	~~~~~		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		******		******		*****	******	*****		******	***	******			
22	21	2	0	19		18		17		16		15		14		13	12	_
3x4 —																	3x4 -	_
1-4-0	I	2-8-0	4-0-0		5-4-0	1	6-8-0	1	8-0-0		9-4-0	1	10-8-0		12-0-0	, 1	2-10-0	
1-4-0		1-4-0	1-4-0		1-4-0		1-4-0	1	1-4-0	1	1-4-0		1-4-0	1	1-4-0		0-10-0	
LOADING (psf)		SPACING	2-0-0		CSI.			DEFL.	ir	(loc)	l/def	fl L/d		PLAT	ES	GRIP		
TCLL 40.0		Plate Grip	DOL 1.00		TC	0.06		Vert(LL	.) n/a	-	n/a	a 999		MT20	-	244/19	0	
TCDL 10.0		Lumber DO	DL 1.00		BC	0.01		Vert(C1	T) n/a	-	n/a	a 999						
BCLL 0.0		Rep Stress	Incr YES		WB	0.03		Horz(C	T) 0.00	12	n/a	a n/a		Woiał	at: 55 lb	FT	- 20%F	11% ⊑
BODL 5.0		COUE IRC.	2010/1712014		watr	17-17								weigr	11. 55 10	ГІ	= 20% r ,	1170E
LUMBER-								BRACI	NG-									

TOP CHORD 2x4 SP No.1(flat) 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.3(flat) WFBS OTHERS 2x4 SP No.3(flat)

TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 12-10-0.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 22, 12, 21, 20, 19, 18, 17, 16, 15, 14, 13

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

- 3) Gable requires continuous bottom chord bearing.
- 4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

7) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

3x4 =

3x4 =

3x6 =

3x4 ||

3x6 FP = 3x6 =

3x4 ||

	6-11-0	1	14-3-0		18-1-8			
	6-11-0		7-4-0		3-10-8			
Plate Offsets (X,Y)	[20:0-1-8,Edge], [21:0-1-8,Edge], [28:E	dge,0-1-8j						
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrNOCode IRC2018/TPI2014	CSI. TC 0.30 BC 0.31 WB 0.30 Matrix-S	DEFL. in Vert(LL) -0.02 Vert(CT) -0.04 Horz(CT) 0.01	(loc) l/defl L/d 21 >999 480 21 >999 360 16 n/a n/a	PLATES GRIP MT20 244/190 Weight: 84 lb FT = 20%F, 11%E			
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF	P No.1(flat) P No.1(flat) P No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathir except end verticals. Rigid ceiling directly app	ng directly applied or 6-0-0 oc purlins, blied or 10-0-0 oc bracing.			
REACTIONS. All be (lb) - Max U Max G	earings 7-0-8 except (jt=length) 16=4-0- lplift All uplift 100 lb or less at joint(s) 2 frav All reactions 250 lb or less at joint 1)	0, 19=4-0-0, 18=4-0-0, 17= 4 (s) 28, 16, 27, 26, 25, 18,	=4-0-0. 17, 24 except 19=882(L0	C 4), 22=877(LC				
FORCES. (lb) - Max. TOP CHORD 7-8= BOT CHORD 21-22 WEBS 7-22	Comp./Max. Ten All forces 250 (lb) o -1254/0, 8-9=-1254/0, 9-11=-1254/0 2=0/794, 20-21=0/1254, 19-20=0/791 =-996/0, 7-21=0/619, 8-21=-350/0, 11-1	r less except when shown. 9=-990/0, 11-20=0/622, 9-	20=-351/0					
NOTES- 1) Unbalanced floor liv 2) All plates are 1.5x3 3) Plates checked for a 4) Provide mechanical 5) This truss is designed referenced standarc 6) Load case(s) 1, 2, 3 35, 36, 37, 38, 39, 4 intended use of this 7) Recommend 2x6 str Strongbacks to be a 8) CAUTION, Do not e	e loads have been considered for this d MT20 unless otherwise indicated. a plus or minus 1 degree rotation about connection (by others) of truss to beari ed in accordance with the 2018 Internati ANSI/TPI 1. , 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, .0, 41, 42 has/have been modified. Build truss. rongbacks, on edge, spaced at 10-0-0 of ttached to walls at their outer ends or re rect truss backwards.	esign. Its center. Ig plate capable of withsta onal Residential Code sec 16, 17, 18, 19, 20, 21, 22, 1 ling designer must review boc and fastened to each tru- istrained by other means.	unding 100 lb uplift at joir tions R502.11.1 and R8/ 23, 24, 25, 26, 27, 28, 29 loads to verify that they a uss with 3-10d (0.131" X	ut(s) 24. 02.10.2 and 9, 30, 31, 32, 33, 34, are correct for the 3") nails.	HTH CARO			
LOAD CASE(S) Stan 1) Dead + Floor Live (I Uniform Loads (plf) Vert: 16-28 2) Dead: Lumber Incre Uniform Loads (plf) Vert: 16-28 3) 1st Dead + Floor Liv	dard palanced): Lumber Increase=1.00, Plate =-10, 1-6=-100, 6-12=-200, 12-15=-100 ase=1.00, Plate Increase=1.00 =-10, 1-6=-100, 6-12=-200, 12-15=-100 re (unbalanced): Lumber Increase=1.00	Increase=1.00			SEAL 036322			
Uniform Loads (plf) Vert: 16-28	=-10, 1-6=-100, 6-12=-120, 12-15=-20				June 27,2022			

AMIEk Affiliate B18 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 40 Liberty Meadow	
					1527816	23
J0922-4860	FKW6	Floor	1	1		
					Job Reference (optional)	
Comtech, Inc, Fayette	ville, NC - 28314,		8.4	430 s Aug	16 2021 MiTek Industries, Inc. Mon Jun 27 14:46:45 2022 Page 2	

8.430 s Aug 16 2021 MiTek Industries, Inc. Mon Jun 27 14:46:45 2022 Page 2 ID:r?yi3DAbxRr?CsKd7DtDjMygInZ-HaeG9NpzX?2IQYaji1MGNT6_QwKcIYH0qA3jQPz22dO

LOAD CASE(S) Standard
4) 2nd Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00
Uniform Loads (plf)
Vert: 16-28=-10, 1-6=-20, 6-12=-200, 12-15=-100
5) 3rd unbalanced Dead: Lumber Increase=1.00, Plate Increase=1.00
Vert: 16-28=-10 1-6=-100 6-12=-120 12-15=-20
6) 4th unbalanced Dead: Lumber Increase=1.00, Plate Increase=1.00
Uniform Loads (plf)
Vert: 16-28=-10, 1-6=-20, 6-12=-200, 12-15=-100
7) 1st chase Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00
Uniform Loads (plf)
Vert: 16-28=-10, 1-b=-100, 6-12=-200, 12-15=-100 9) 2nd chase Dead , Elect Live (unbelanced): Lumber Increase-1.00, Plate Increase-1.00
Uniform Loads (olf)
Vert: 16-28=-10. 1-6=-100. 6-12=-200. 12-15=-100
9) 3rd chase Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00
Uniform Loads (plf)
Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100
10) 4th chase Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00
Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100
Iniform Loads (off)
Vert: 16-28=-10 1-6=-100 6-12=-200 12-15=-100
12) 6th chase Dead + Floor Live (unbalanced): Lumber Increase=1.00. Plate Increase=1.00
Uniform Loads (plf)
Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100
13) 7th chase Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00
Uniform Loads (plf)
Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100
14) 8th chase Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00
Vert: 16-28=-10 1-6=-100 6-12=-200 12-15=-100
15) 9th chase Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00
Uniform Loads (plf)
Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100
16) 10th chase Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00
Uniform Loads (plf)
Vert: 16-28=-10, 1-b=-100, 6-12=-200, 12-15=-100
Iniform Loads (off)
Vert: 16-28=-10, 1-6=-100, 6-9=-200, 9-12=-120, 12-15=-100
18) 12th chase Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00
Uniform Loads (plf)
Vert: 16-28=-10, 1-6=-100, 6-8=-120, 8-12=-200, 12-15=-100
19) 13th chase Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00
Vert: 16-28=-10, 1-b=-100, 6-12=-200, 12-15=-100 20) 14th chase Dead + Eloor Live (unbalanced): Lumber Increase 1 00 Plate Increase 1 00
Liniform Loads (olf)
Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100
21) 15th chase Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00
Uniform Loads (plf)
Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100
22) 16th chase Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00
Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100
Liniform Loads (off)
Vert: 16-28=-10 1-6=-100 6-12=-200 12-15=-100
24) 18th chase Dead + Floor Live (unbalanced): Lumber Increase=1.00. Plate Increase=1.00
Uniform Loads (plf)
Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100
25) 19th chase Dead: Lumber Increase=1.00, Plate Increase=1.00
Uniform Loads (plf)
Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100
201 ZUII Chase Dead: Lumber Increase=1.00, Plate Increase=1.00
Vert 16-28=-10 1-6=-100 6-12200 12-15100
27) 21st chase Dead: Lumber Increase=1.00. Plate Increase=1.00
Uniform Loads (plf)
Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100
28) 22nd chase Dead: Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf)

Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job		Truss	Truss Type	Qty	Ply	Lot 40 Liberty Meadow	
							152781623
J0922-4860		FKW6	Floor	1	1		
						Job Reference (optional)	
Comtech, Inc,	Fayettev	ille, NC - 28314,		8.4	430 s Aug	16 2021 MiTek Industries, Inc. Mon Jun 27 14:46:45 2022	Page 3
	-		ID:r?y	i3DAbxRr3	CsKd7DtE	DjMygInZ-HaeG9NpzX?2IQYaji1MGNT6_QwKcIYH0qA3jQI	Pz22dO

LOAD CASE(S) Standard

- 29) 23rd chase Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)
- Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100 30) 24th chase Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)
- Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100 31) 25th chase Dead: Lumber Increase=1.00, Plate Increase=1.00
- Uniform Loads (plf) Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100
- 32) 26th chase Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100
- 33) 27th chase Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)
- Vert: 10-28=-10, 1-6=-100, 6-12=-200, 12-15=-100 34) 28th chase Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)
- Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100
- 35) 29th chase Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)
- Vert: 16-28=-10, 1-6=-100, 6-9=-200, 9-12=-120, 12-15=-100 36) 30th chase Dead: Lumber Increase=1.00, Plate Increase=1.00
- Uniform Loads (plf) Vert: 16-28=-10, 1-6=-100, 6-8=-120, 8-12=-200, 12-15=-100 37) 31st chase Dead: Lumber Increase=1.00, Plate Increase=1.00
- Uniform Loads (plf) Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100
- 38) 32nd chase Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)
- Vert: 10-28=-10, 1-6=-100, 6-12=-200, 12-15=-100 39) 33rd chase Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)
- Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100 40) 34th chase Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)
- Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100
- 41) 35th chase Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)
- Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100 42) 36th chase Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)

Vert: 16-28=-10, 1-6=-100, 6-12=-200, 12-15=-100

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

RE: J0922-4859 Lot 40 Liberty Meadow

City:

Trenco 818 Soundside Rd Edenton, NC 27932

Site Information: Customer: Project Name: J0922-4859 Lot/Block: Address:

Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7-16 Roof Load: 40.0 psf

Design Program: MiTek 20/20 8.4 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 29 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	152879055	A1	7/4/2022	21	152879075	PB1GE	7/4/2022
2	152879056	A1GE	7/4/2022	22	152879076	PB2	7/4/2022
3	152879057	A2	7/4/2022	23	152879077	PB2GE	7/4/2022
4	152879058	A2A	7/4/2022	24	152879078	VC1	7/4/2022
5	152879059	A2GE	7/4/2022	25	152879079	VC2	7/4/2022
6	152879060	B1	7/4/2022	26	152879080	VG1	7/4/2022
7	152879061	B1GE	7/4/2022	27	152879081	VG2	7/4/2022
8	152879062	C1	7/4/2022	28	152879082	VG3	7/4/2022
9	152879063	C1GE	7/4/2022	29	152879083	VG4	7/4/2022
10	152879064	D1	7/4/2022				
11	152879065	D1GE	7/4/2022				
12	152879066	G1	7/4/2022				
13	152879067	G1GE	7/4/2022				
14	152879068	G1GRD	7/4/2022				
15	152879069	H1GE	7/4/2022				
16	152879070	K1	7/4/2022				
17	152879071	K1GE	7/4/2022				
18	152879072	K2	7/4/2022				
19	152879073	K3	7/4/2022				
20	152879074	PB1	7/4/2022				

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision

based on the parameters provided by Comtech, Inc - Fayetteville.

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2022

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Gilbert, Eric

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 80 lb uplift at joint 2 and 80 lb uplift at joint 8.

6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss system. See **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

ENGINEERING BY REENCED A MiTek Affiliate 818 Soundside Road

Edenton, NC 27932

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8.

 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss system. See **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

 TOP CHORD
 2x6 SP No.1

 BOT CHORD
 2x6 SP No.1

 WEBS
 2x4 SP No.2 *Except*

 12-13: 2x6 SP No.1

REACTIONS. (size) 2=0-3-8, 8=Mechanical Max Horz 2=252(LC 9) Max Uplift 2=-80(LC 12), 8=-61(LC 13) Max Grav 2=1537(LC 19), 8=1464(LC 20)

- FORCES. (Ib) Max. Comp./Max. Ten. All forces 250 (Ib) or less except when shown.
- TOP CHORD 2-3=-2046/345, 3-5=-1921/435, 5-7=-1904/439, 7-8=-2030/347
- BOT CHORD 2-11=-192/1789, 9-11=0/1159, 8-9=-177/1594
- WEBS 5-9=-162/986, 7-9=-420/294, 5-11=-163/1017, 3-11=-448/295

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -1-1-7 to 3-3-6, Interior(1) 3-3-6 to 14-11-8, Exterior(2R) 14-11-8 to 19-4-5, Interior(1) 19-4-5 to 29-6-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Refer to girder(s) for truss to truss connections.

- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek Affili 818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

GILU.... July 4,2022

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; Gable Roof; Common Truss; MWFRS (envelope) gable end zone and C-C Corner(3E) -1-1-7 to 3-3-6, Exterior(2N) 3-3-6 to 11-9-0, Corner(3R) 11-9-0 to 16-1-13, Exterior(2N) 16-1-13 to 24-7-7 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 14, 23, 24, 25, 26, 27, 21, 19, 18, 17, 16.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss system. See **MSIVTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.10) Attic room checked for L/360 deflection.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Lot 40 Liberty Meadow
J0922-4859	C1GE	GABLE	1	1	152879063
					Job Reference (optional)
Comtech, Inc, Fayet	eville, NC - 28314,			8.430 s A	ug 16 2021 MiTek Industries, Inc. Fri Jul 1 10:09:29 2022 Page 2
		ID:r?yi3DA	AbxRr?Csl	Kd7DtDjM	/gInZ-s9NVwC5DkyAZOmEIANDoOLDmWgSAnhpydc?I3Hz0TDK

NOTES-

13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
 14) Attic room checked for L/360 deflection.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

ENGINEERING BY EREENCED AMITEK Affiliate 818 Soundside Road Edention, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss system. See **MSIVTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 40 Liberty Meadow
	0/075				152879068
J0922-4859	G1GRD	Common Girder	1	2	lob Reference (entional)
					Job Kelerence (optional)
Comtech, Inc, Fayettev	rille, NC - 28314,			8.430 s A	Aug 16 2021 MiTek Industries, Inc. Fri Jul 1 10:09:34 2022 Page 2

ID:r?yi3DAbxRr?CsKd7DtDjMygInZ-D6BOzw9MYVosUX7Gzxpz5Owb5h8QSrPhnui3IUz0TDF

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-3=-60, 3-5=-60, 1-5=-20 Concentrated Loads (lb)

Vert: 7=-1155(B) 9=-1155(B) 10=-1155(B) 11=-1155(B) 12=-1155(B) 14=-1155(B) 16=-1155(B) 17=-1155(B) 18=-1155(B) 19=-1157(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss system. See **MSIVTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek A 818 Soundside Road Edenton, NC 27932

July 4,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

GILU.... July 4,2022

July 4,2022

REACTIONS. (size) 2=5-8-8, 4=5-8-8, 6=5-8-8 Max Horz 2=-77(LC 10)

Max Holz 2=-77(LC 10)Max Uplift 2=-27(LC 13), 4=-31(LC 13)

Max Grav 2=162(LC 1), 4=162(LC 1), 6=177(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

ENGINEERING BY EREENCO A MITEK Affiliate 818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.
 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 at
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

- 2) Wild: ASCE 7-16, Ville 150mpn (Ssecond gust) Vasue 105mpn, 1CDL=0.0psi, bCDL=0.0psi, n=15it, Cat. II, Exp C, Enclosed Gable Roof; Common Truss; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Gable requires continuous bottom chord bearing.

- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5 except (jt=lb)
- 1=120, 2=177, 4=154.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss system. See **MSIVTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Max Uplift 1=-16(LC 12), 3=-19(LC 13)

Max Grav 1=103(LC 1), 3=103(LC 1), 4=199(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

V2020 BEFORE USE. Ig component, not sign into the overall and permanent bracing parding the and BCSI Building Component 818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Max Grav 1=158(LC 1), 3=158(LC 1), 4=266(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek Affilia 818 Soundside Road Edenton, NC 27932

Max Uplift 1=-11(LC 12), 3=-14(LC 13)

Max Grav 1=71(LC 1), 3=71(LC 1), 4=120(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

