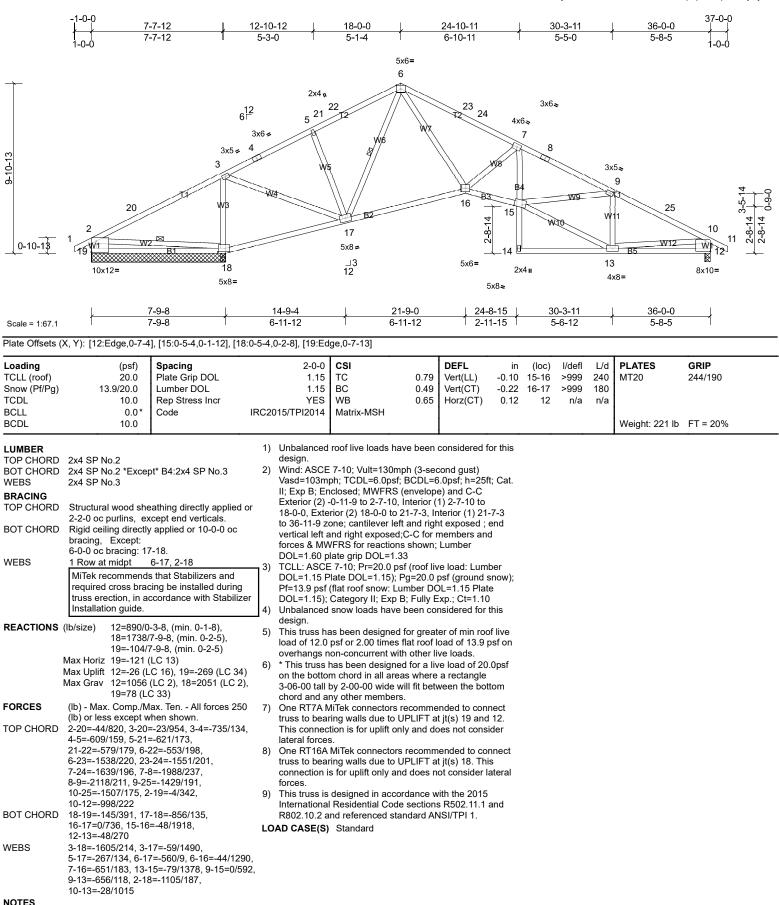
Snow (PUPig) 13.9/20.0 EQL Lumber DOL Rep Stress Incr 1.15 Code B C 0.50 Matrix-MSH Veri(CT) 0.04 21 n/a n/a BCL 0.0 ⁺ 10.0 Rep Stress Incr YES Wind: ASCE 7-10; Vult=130mph (3-second gust) Weight: 265 lb FT = 20% LUMBER TOP CHORD 2x4 SP No.2 Wind: ASCE 7-10; Vult=130mph (3-second gust) Weight: 265 lb FT = 20% VEESS 2x4 SP No.3 Structural wood sheathing diredly applied or 10-0-0 co brachg Structural wood sheathing diredly applied or 10-0-0 co brachg 163-0-10 2-17-3; Interior (1) 2-7-3 to 363-38, 39 Structural wood sheathing diredly applied or 10-0-0 co brachg Tuss designed for wind locatis in the plane of the truss only. For stude exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSITPI 1. Tuss designed for wind locatis in the plane of the truss only. For stude exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSITPI 1. Tuss designed for wind locatis in the plane of the truss only. For stude exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSITPI 1. Tuss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof loads. This truss has been designed for greater of min roof	lah	 _		T	(2.2			<u> </u>		1					
Control Part ALB S for ALB Sector Burley NUTCH Science Control (1993) Part ALB S for ALB Sector Burley NUTCH Science Control (1993) Part ALB S for ALB Sector Burley NUTCH Science Control (1993) Part ALB S for ALB Sector Burley NUTCH Science Control (1993) Part ALB S for ALB Sector Burley NUTCH Science Control (1993) Part ALB S for ALB Sector Burley NUTCH Science Control (1993) Part ALB S for ALB Sector Burley NUTCH Science Control (1993) Part ALB S for ALB Sector Burley NUTCH Science Control (1993) Part ALB S for ALB Sector Burley NUTCH Science Control (1993) Part ALB S for ALB Sector Burley NUTCH Science Control (1993) Part ALB S for ALB Sector Burley NUTCH Science Control (1993) Part ALB S for ALB Sector Burley NUTCH Science Control (1993) Part ALB S for ALB Sector Burley NUTCH Science Control (1993) Part ALB S for ALB Sector Burley NUTCH Science Control (1993) Part ALB S for ALB Sector Burley NUTCH Science Control (1993) Part ALB S for ALB Sector Burley NUTCH Science Control (1993) Part ALB S for ALB Sector Burley NUTCH Science Control (1993) Part ALB S for ALB Sector Burley NUTCH Science Control (1993) Part ALB S for ALB Sector Burley NUTCH Science Control (1993) Part ALB S for ALB Sector Burley NUTCH Science Control (1993) Part ALB S for ALB Sector Burley NUTCH Science Control (1993) Part ALB S for ALB Sector Burley NUTCH Science Control (1993) Part ALB S for ALB Sector Burley NUTCH Science Control (1993) Part ALB S for ALB Sector Burley NUTCH Science Control (1993) Part ALB S for ALB Sector Burley NUTCH Science Control (1993) Part ALB S for ALB Sect					•	Cable									
Interpretational Society Part Provide Links (Part Provide Links) (Par		-		Commo	on Structural										
Number Numer Numer Numer <td>Carter Compone</td> <td>nts - Sanford, Sanford,</td> <td>NC, user</td> <td></td> <td></td> <td>Run: 8.53 S Ma</td> <td>ar 28 2022 I</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td>•</td>	Carter Compone	nts - Sanford, Sanford,	NC, user			Run: 8.53 S Ma	ar 28 2022 I						•		•
Lunceting (p-1) (p-2) (p-1) (p-2)		-1-0-0		19	0.0		1	21	519	1	20 4 4		1 26.0.0	37-0-0	
Image: 12:01 Image: 12:01 <td< td=""><td></td><td><u>∤</u> 1-0-0</td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td>1-0-0</td><td></td></td<>		<u>∤</u> 1-0-0					1							1-0-0	
Image: 112-1 Image: 112-1 <td< td=""><td></td><td>100</td><td></td><td></td><td></td><td></td><td>5x6=</td><td></td><td></td><td></td><td></td><td></td><td></td><td>100</td><td></td></td<>		100					5x6=							100	
View 12: 25: b FT = 20% View 12: 25: b FT = 20	- ` -	-					12								
Under FUZL 10-10 21-00 23-00								13 Ta							
Provide Series 1 Provide Series				.1	2 8	343 ¹⁰			495	5 ^{3x8} ≈ 16					
FUNCTIONED 244 SP No.2 EXECUTIONE 245 SP NO.2 EXECUTIONE 24				P	7		ST8	ST9	STIO						
Linear 1 , 2019, 201	0-13			6						40		2	4x5×		
United and the state of the state	9-1		5	Th				Ab	39	N5 W	5 5	\sim			
Linearing 2			3 42	ST4	515			38 41					47	0.5	
LP-10-13 Control U		2				36	1035 4	x5 ;()4					W3	19	
Under Solution Solution	0	-10-13 1 341		6	B10 0			B2	¥⁄		<u> </u>	/	B3		
Joint J			33 32 31	<u>*************************************</u>	29 28 2	1 20									
12-9-12 14-1-12 21-5-3 28-6-13 36-0-0 Scale = 17.2.1 12-9-12 14-0 7-3-7 7-1-11 7-5-3 Loading TCLL (rod) (pd) 13.9200 Spacing Pale G p DOL Lumber DOL 10.0 Spacing Pale G p DOL Lumber DOL 10.0 15.9 CS 0.4 DEFL 10.0 in (no.) MdH MT20 244/190 None (NFP) BCLL 10.0 0.0 Cele RC2015TP12/01 BCL 10.0 0.0 Neg Stassistic						3201			5,5-	320-	3X:	-			
Solie = 172.1 12.9-12 24.9-3 24.9-3 24.9-3 34.0-9 Loading TCLL (rod) (psf) 13.92.00 Spacing Plate Grip DOL Limber DOL TCOL 12.9-12 14.4.0 7.3-7 7.1-11 7.5-3 Now (PIPs) TCDL (rod) 13.92.00 Plate Grip DOL Limber DOL TCOL 1.15 EC 0.04 Vert(L) 0.10 22.4-999 240 NT20 0.04 Plate Srip DOL TCOL 1.15 EC 0.05 Vert(L) 0.10 2.2-0-999 160 BCDL 0.01 Code RC201571421 MatrixMSH Weight 285 b FT = 20% WIMBER 2.44 SP No.2 Structural wood sheathing directly applied or 5-0-0 co purins, except end verticals. PE Enclosed M(HPS (service)) and C.2 1.15, DE Enclosed M(HPS (service)) and C.2 1.16, DE Enclose 1.00, DE Encl						585-									
Date of the second purpose Tuke Tuke Loading (psh) Spacing 2.4-0 DEFL in (noc) Mathematical and purpose		Ļ	12-9	-12	1	4-1-12	21-5-3		L	28-6-13	ŀ		36-0-0	ļ	
TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.45 Vert(CT) 0.10 22.24 >999 240 MTZ0 24/190 TCDL 0.00 Rep Stress inor VES WB 0.80 HeriC(T) 0.01 22.24 >999 240 MTZ0 24/4190 TCDL 0.00 Rep Stress inor VES WB 0.80 Heric(T) 0.01 22.24 >999 240 MTZ0 24/4190 BCDL 0.00 Rep Stress inor VES WES 24.4 SP No.2 Wind: ASCE 7-10; Vull=130mph (3-second gust) Weight: 265 lb FT = 20% UMMER 700 ChORD Structural wood sheathing directly applied or 50-40 op unins, except end wericles. ChORD Structural wood sheathing directly applied or 56-30 Structu	Scale = 1:72.1	1	12-9	-12	,	1 1-4-0	7-3-7		1	7-1-11	1		7-5-3	1	
TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.45 Vert(CT) 0.10 22.24 >999 240 MTZ0 24/190 TCDL 0.00 Rep Stress inor VES WB 0.80 HeriC(T) 0.01 22.24 >999 240 MTZ0 24/4190 TCDL 0.00 Rep Stress inor VES WB 0.80 Heric(T) 0.01 22.24 >999 240 MTZ0 24/4190 BCDL 0.00 Rep Stress inor VES WES 24.4 SP No.2 Wind: ASCE 7-10; Vull=130mph (3-second gust) Weight: 265 lb FT = 20% UMMER 700 ChORD Structural wood sheathing directly applied or 50-40 op unins, except end wericles. ChORD Structural wood sheathing directly applied or 56-30 Structu	Loading	(psf)	Spacing		2-0-0	CSI		DEFL		in (loc)	l/defl	L/d	PLATES	GRIP	
TCDL 0.0 Rep Stress Inor YES WB 0.80 Hor2(CT) 0.04 21 n/a Metrix-MSH LUMBER TOP CHORD 2x4 SP No.3 Weight: 285 tb FT = 20% DTO PCHORD 2x4 SP No.3 Weight: 285 tb FT = 20% WEBS 2x4 SP No.3 Weight: 285 tb FT = 20% TOP CHORD Structural wood sheathing directly applied or 10-0-00 cb Structural wood sheathing directly applied or 10	TCLL (roof)	20.0	Plate Grip DOL		1.15	TC		Vert(L	_L) -(0.10 22-24	>999	240			
BCDL 10.0 Weight: 265 lb FT = 20% LUMBER TOP CHORD 2x4 SP No.2 Wind: ASCE 7-10; Vull=130mph (3-scond gust) Weight: 265 lb FT = 20% UNDERS 2x4 SP No.2 Wind: ASCE 7-10; Vull=130mph (3-scond gust) Weight: 265 lb FT = 20% WEBS 2x4 SP No.2 Wind: ASCE 7-10; Vull=130mph (3-scond gust) Weight: 265 lb FT = 20% WEBS 2x4 SP No.2 Wind: ASCE 7-10; Vull=130mph (3-scond gust) Weight: 265 lb FT = 20% BRACING Structural wood sheathing directly applied or 10-0-0 c To 5-0 oc purlins, except end verticals. Structural wood sheathing directly applied or 10-0-0 c To 5-10 oc purlins, except end verticals. To 36-1149 czencs, intervert end reprises and right exposed; C-2 for members and right exposed; c-20 for members and roper solution (2) (1-10-1145 lb 22-10) (1-13) Truss designed for wind loads in the plane of the fructs, or or, intruss enders and right exposed; C-10; Pr=20.0 pf (roof live load: Limber DOL=1.15) Truss designed for wind loads in the plane of the face), see Standard Industry Gable End Details as applicable, or or orsult qualified building designer as p+rall wow loads have been considered for this design. REACTIONS All bearings 14-38. except 21=0-3-8 (N)- Max Hort 234 = -102(LC 1), 23, 23 accel 21=0-3-8 (b) - Max Comp, Max, Tan - All forces 250 (b) or less at joint(5) Max Grav All reaccinons 200 (b) or less at	TCDL		1						,						
LUMPER 24 SP No.2 TOP CHORD 24 SP No.2 BOT CHORD 24 SP No.2 WEBS 24 SP No.3 BRACING 20 Wind: ASCE 7-10; Vult=130mph (3-second gust) UNDER 24 SP No.3 BRACING 20 Vind: ASCE 7-10; Vult=130mph (3-second gust) OTP CHORD Structural wood sheathing directly applied or 10-0-0 comparing the second (2) 10-0, Exterior (2) </td <td></td> <td></td> <td>Code</td> <td>IRC20</td> <td>)15/TPI2014</td> <td>Matrix-MSH</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Weight: 265 lb</td> <td>FT = 20%</td> <td></td>			Code	IRC20)15/TPI2014	Matrix-MSH							Weight: 265 lb	FT = 20%	
TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3 BACIMO 2x4 SP No.3 TOP CHORD Structural wood sheathing directly applied or TOP-OFORD Structural wood sheathing directly applied or TOP-OFORD Structural wood sheathing directly applied or TOP-OFORD Structural wood sheathing directly applied or TOP-OFORD Structural wood sheathing directly applied or TOP-OFORD JOINTS 1 Brace at J(t): 35, 38, 39 MTek recommends that Stabilizers and intrus exection, in accordance with Stabilizers and intrus at a stabilizers and intrus at a stabilizers and intrus at a stabilizer intrus at a stabilizer intrus intrus at a stabilizer and intrus at a stabilizer intrus intrus intrus intrus intrus intrus intrus at a stabilizer intrus intrus intrus at a stabilizer at intrus intr			1			7.40.14.4-420					-		J		
WEES 2x4 SP No.3 DTHERS 2x4 SP No.3 DTHERS 2x4 SP No.3 DTHERS 2x4 SP No.3 DTHERS 2x4 SP No.3 DTOP CHORD Structural wood sheathing directly applied or 10-0-0 cc bracking. DINTS 1 Brace at Jt(s): 35. 35, 38, 39 30 MTER recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer OLL - 16 OL - 17.3, Preziot O brack organesed to wind (normal to the face), see Standard Industry Gable End Delates gas DDCI-1.15 Plate DL-115 Plate PL-115 Plate DL-115 Plate DL-115 Plate DL-115 Plate PL-115 Plate PL-		2x4 SP No.2		2)	Vasd=103mp	h; TCDL=6.0psf;	BCDL=6	.0psf; ł	h=25ft; C	at.					
 EACTIONS Leven tools EARACHIONS Structural wood sheathing directly applied or 10-0-0 oc bracing. JOINTS Structural wood sheathing directly applied or 10-0-0 oc bracing. JOINTS 1 Brace at J(ts): 35, 36, 38, 39 MITRE recommends that Stabilizers and required cross bracing be installed during truss erestion, in accordance with Stabilizer REACTIONS AI bearings 14-3.8. except 21=0-3-8 (b) - Max Hoiz 34=121 (LC 13) Max Upiff AII (D) (b) or less at pion(ts) 2(1, 28, 29, 30, 31 + 32, 33 except 27=-10) Max Grav AII reactions 250 (Ib or less at pion(ts) 2(1, 28, 29, 30, 31 + 32, 33 except 27=-105 (LC 29), 28=-930 (LC 2), 28=-930 (LC 2),	BOT CHORD WEBS				Exterior (2) -0)-11-9 to 2-7-10,	Interior (1	1) 2-7-1	10 to						
TOP CHORD Structural wood sheathing directly applied or 10-0-0 or bracing. Werncal ten and right exposed. // Color Members and forces shown; Lumber DOL=1.60 plate grip DOL=1.33 BOT CHORD Rigid ceiling directly applied or 10-0-0 or bracing. Solone or members and forces shown; Lumber DOL=1.60 plate grip DOL=1.33 JOINTS I Brace at U(s): 35, 36, 39 Truss designed for wind loads in the plane of the truss only. For studie exposed to wind loads in the plane of the truss one; Limber DOL=1.15; Plate DOL=2.10; Plate DOL=2.10; Plate Plate DOL=2.10; Plate	OTHERS	2x4 SP No.3			,	· · /	,	· ·							
b0-U oc pulmins, except end verticals. BOT CHORD Rigid ceiling applied to 10-0-0 oc bracing. JOINTS 1 Brace at Jt(s): 35, 36, 39 Mitte recommends that Stabilizer and required cross bracing be installed during truss erection, in accordance with Stabilizer installation guide. TOLI-160 [pate grip DOL-13] REACTIONS All bearings 14-3-8. except 21=0-3-8 (b) - Max Horiz 34=-121 (LC 13) (b) - Max Horiz 34=-121 (LC 13) (LC 20), 33=-102 (LC 15) (LC 15) Mar Grav All reactions 250 (b) or less at joint (s) 21-28, 29, 30, 31 except 27=-104 (LC 20), 33=-102 (LC 15) (b) - Max Horiz 34=-266 (LC 2) FORCES (b) - Max Comp/Max Ten All forces 250 (l) or less at joint (s) 21-77 (LC 2), 26=-390 (LC 2), 34=-266 (LC 2) (b) - Max Horiz 33, 24=-869/120, prior 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads. FORCES (b) - Max Comp/Max Ten All forces 250 (l) or less at joint (s) 24=-269/1024, 24=-28=-0/1084, 24	TOP CHORD			d or											
 JOINTS 1 Brace at Jt(s): 35, 36, 39 only. For stude seposed to wind (normal to the face), see standard fludustry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. MTek recommends that Stabilizer Installed during trusse rection, in accordance with Stabilizer Installed during trusse rection in accordance with other live loads. (b) - Max Corny, JNax. Ten All forces 250 (b) - Max Corp. JNax. Ten All forces 250 (b) - Max Corp. JNax. Ten All forces 250 (b) - Max Corp. JNax. Ten All forces 250 (b) - Max Corp. JNax. Ten All forces 250 (b) - Max Corp. JNax. Ten All forces 250 (c) CORD CASE(25, 17-22-24/383, 12-24-0/053, 12-22-39/1132 (c) COR RTIA MITK connectors recommended to connect truss to bearing walls due to UPLIFT at Jt(s) 27. This connection is for uplift only and does not consider lateral forces. (c) COR RTIA MITK connectors RECOMMEND ALS(J) 27. This truss is designed in ac	BOT CHORD			; 3)	DOL=1.60 pla	ate grip DOL=1.3	33								
 36. 38. 39 37. 30 38. 39 38. 39 39. 30 39. 30 30. 30 30. 31. 32. 32 30. 41. 30 30. 41. 30 31. 32. 33 32. 32. 32 32. 32. 32 32. 32. 32 33. 4266 (LC 2) 34. 4266 (LC 2) 41. 50 41. 50 42. 42. 40. 40. 30. 31. 32. 33 except 27:-104 41. 50 42. 42. 40. 40. 30. 31. 42. 42. 42. 42. 42. 42. 42. 42. 42. 42	JOINTS	•	5.	0)	only. For stu	ds exposed to w	ind (norm	al to th	e face),						
REACTIONS All bearings 14-3-8. except 21=0-3-8 (ib)- Max Horiz 34=-121 (LC 13) Max Uplit All uplift 100 (b) or less at join(s) 21, 28, 29, 30, 31 except 27=-104 (LC 20), 33=-102 (LC 15) >DCL=1.15 Plate DDL=1.15 Plate DDL=1.15 Plate DDL=1.15 Plate DDL=1.15 Plate DDL=1.15 Plate DDL=1.15 Plate DDL=1.15 Plate DDL=1.15 Plate DDL=1.15 Plate DDL=1.15 Plate DDL=1.15 Plat		36, 38, 39		—]	or consult qua	alified building de	esigner as	s per A	NSI/TPI	1.					
Installation guide.DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10REACTIONSAll bearings 14-3-8. except 21=0-3-8Uhbalanced snow loads have been considered for this(ib) - Max Horiz 34121 (LC 13) Max Uplift All uplift 100 (b) or less at joint(s) (s) 27, 28, 29, 30, 31, 32, 33 except 21=975 (LC 2), 28-930 (LC 2), 34+266 (LC 2)						· ·	``								
 FORCES (b) - Max Comp./Max. Ten All forces 250 (b) or less ext points (b) or less ext points (c) 21.92.92.93.03.13, 22.93.04 (c) 20.00 (c) 21.92.92.93.03.13, 22.33 except 21.90.93.13.23 except 21.90.13.13.13.13.13.13.13.13.13.13.13.13.13.			accordance with Stabi	ızer											
 (b) - Max Horiz 34=-121 (LC 13) Max Uplift All uplift 100 (lb) or less at joint(s) 21, 28, 29, 30, 31 except 27=-104 (LC 20), 33=-102 (LC 15) Max Grav All reactions 250 (lb) or less at joint 8 (s) 27, 28, 29, 30, 31, 22, 33 except 9 21=975 (LC 2), 26=930 (LC 2), 34=266 (LC 2) FORCES (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 17-18=-1233/171, 18-47=-306/118, 19-47=-380/102, 19-21=-366/182 BOT CHORD 26-27=0/134, 25-260/1084, 42-5=0/1084, 23-24=0/853, 22-48=0/853, 22-48=0/853, 21-22=-39/1132 WEBS 38-41=-1077/218, 38-39=-1023/155, 39-40=-979/139, 17-40=-983/146, 26-37=-323/93, 17-24=0/352, 17-22=-24/383, 12) NOTES NOTES 	REACTIONS	All bearings 14-3-8.	except 21=0-3-8	5)	Unbalanced s					;					
 21, 28, 29, 30, 31 except 27=-104 (LC 20), 33=-102 (LC 15) Max Grav All reactions 250 (lb) or less at joint (s) 27, 28, 29, 30, 31, 32, 33 except 9 21=975 (LC 2), 26=930 (LC 2), 34=266 (LC 2) FORCES (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 17-18=-1233/171, 18-47=-306/118, 19-47=-380/102, 19-21=-369/182 BOT CHORD 26-27=0/334, 25-26=0/1084, 24-25=0/1084, 21-22=-39/1132 WEBS 38-41=-1077/218, 38-39=-1023/155, 18-21=-1017/218, 38-39=-1023/155, 18-21=-1017/218, 38-39=-1023/155, 18-21=-1012/31, 26-41=-927/162 NOTES LOAD CASE(S) Standard 	• • •		· ,		This truss ha										
Max GravAll reactions 250 (lb) or less at joint (s) 27, 28, 29, 30, 31, 32, 33 except 21=975 (LC 2), 26=930 (LC 2), 34=266 (LC 2)9)Gable studs spaced at 2-0-0 oc.FORCES(lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown.* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.TOP CHORD17-18=-1233/171, 18-47=-306/118, 19-47=-380/102, 19-21=-369/18210) One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 34, 21, 28, 29, 30, 31, 32, 33, and 26. This connection is for uplift only and does not consider lateral forces.BOT CHORD26-27=0/334, 25-26=0/1084, 24-25=0/1084, 21-22=-39/113229, 30, 31, 32, 33, and 26. This connection is for uplift only and does not consider lateral forces.WEBS38-41=-1077/218, 38-39=-1023/155, 26-37=-323/93, 17-24=0/352, 17-22=-24/383, 18-21=-1012/31, 26-41=-927/16211) One RT16A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 27. This connection is for uplift only and does not consider lateral forces.NOTESNOTES12-21=-1012/31, 26-41=-927/1621) Unbalanced roof live loads have been considered for thisLOAD CASE(S) Standard		21, 28, 2	9, 30, 31 except 27=-	104	overhangs no	on-concurrent wit	th other liv	ve load	ls.						
21=975 (LC 2), 26=930 (LC 2), 34=266 (LC 2)on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.FORCES(lb) or less except when shown. (lb) or less except when shown.10) One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 34, 21, 28, 29, 30, 31, 32, 33, and 26. This connection is for uplift only and does not consider lateral forces.BOT CHORD26-27=0/334, 25-26=0/1084, 24-25=0/1084, 23-24=0/853, 23-48=0/853, 21-22=-39/1132One RT1A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 27. This connection is for uplift only and does not consider lateral forces.WEBS38-41=-1077/218, 38-39=-1023/155, 39-40=-979/139, 17-40=-983/146, 26-37=-323/93, 17-24=0/352, 17-22=-24/383, 18-21=-1012/31, 26-41=-927/16211) Unbalanced roof live loads have been considered for thisNOTESLOAD CASE(S)Standard		Max Grav All reacti	ons 250 (lb) or less at	joint a	Gable studs s	spaced at 2-0-0 o	DC.								
34=266 (LC 2) 3-06-00 tall by 2-00-00 wide will fit between the bottom FORCES (lb) - Max. Comp./Max. Ten All forces 250 ohord and any other members, with BCDL = 10.0psf. (lb) or less except when shown. 10) One RT7A MiTek connectors recommended to connect TOP CHORD 17-18=-1233/171, 18-47=-306/118, 19-47=-380/102, 19-21=-369/182 29, 30, 31, 32, 33, and 26. This connectors is for uplift BOT CHORD 26-27=0/334, 25-26=0/1084, 24-25=0/1084, 23-24=0/853, 23-48=0/853, 22-48=0/853, 21-22=-39/1132 10) One RT16A MiTek connectors recommended to connect WEBS 38-41=-1077/218, 38-39=-1023/155, 39-40=-979/139, 17-40=-983/146, 26-37=-323/93, 17-24=0/352, 17-22=-24/383, 18-21=-1012/31, 26-41=-927/162 11) One RT16A MiTek connectors recommended to connect NOTES 10) Unbalanced roof live loads have been considered for this 12) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.		21=975 ((LC 2), 26=930 (LC 2)			•				sf					
(b) or less except when shown.10) One RT7A MiTek connectors recommended to connectTOP CHORD17-18=-1233/171, 18-47=-306/118, 19-47=-380/102, 19-21=-369/18210) One RT7A MiTek connectors recommended to connectBOT CHORD26-27=0/334, 25-26=0/1084, 24-25=0/1084, 23-24=0/853, 22-48=0/853, 22-48=0/853, 21-22=-39/113229, 30, 31, 32, 33, and 26. This connection is for uplift only and does not consider lateral forces.WEBS38-41=-1077/218, 38-39=-1023/155, 39-40=-979/139, 17-40=-983/146, 26-37=-323/93, 17-24=0/352, 17-22=-24/383, 18-21=-1012/31, 26-41=-927/16210) One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 27. This connection is for uplift only and does not consider lateral forces.NOTES10) Unbalanced roof live loads have been considered for this10) One RT7A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 27. This connection is for uplift only and does not consider lateral forces.1) Unbalanced roof live loads have been considered for this12) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.1) Unbalanced roof live loads have been considered for thisLOAD CASE(S) Standard	FORCES			250	3-06-00 tall b	y 2-00-00 wide v	vill fit betv	veen th	ne bottom	า					
19-47=-380/102, 19-21=-369/18229, 30, 31, 32, 33, and 26. This connection is for uplift only and does not consider lateral forces.BOT CHORD26-27=0/334, 25-26=0/1084, 24-25=0/1084, 23-24=0/853, 23-48=0/853, 22-48=0/853, 21-22=-39/113229, 30, 31, 32, 33, and 26. This connection is for uplift only and does not consider lateral forces.WEBS38-41=-1077/218, 38-39=-1023/155, 39-40=-979/139, 17-40=-983/146, 26-37=-323/93, 17-24=0/352, 17-22=-24/383, 18-21=-1012/31, 26-41=-927/16210 Ne RT16A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 27. This connection is for uplift only and does not consider lateral forces.NOTES10 Noners12 This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.1) Unbalanced roof live loads have been considered for thisLOAD CASE(S) Standard		(lb) or less except v	when shown.) One RT7A M	Tek connectors	recomme	nded to	o connec						
23-24=0/853, 23-48=0/853, 22-48=0/853, 21-22=-39/1132 11) One RT16A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 27. This connection is for uplift only and does not consider lateral forces. 26-37=-323/93, 17-24=0/352, 17-22=-24/383, 18-21=-1012/31, 26-41=-927/162 11) One RT16A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 27. This connection is for uplift only and does not consider lateral forces. 26-37=-323/93, 17-24=0/352, 17-22=-24/383, 18-21=-1012/31, 26-41=-927/162 NOTES 1) Unbalanced roof live loads have been considered for this		19-47=-380/102, 19	9-21=-369/182	01	29, 30, 31, 32	2, 33, and 26. Th	is connec	tion is							
WEBS 38-41=-1077/218, 38-39=-1023/155, 39-40=-979/139, 17-40=-983/146, 26-37=-323/93, 17-24=0/352, 17-22=-24/383, 18-21=-1012/31, 26-41=-927/162 connection is for uplift only and does not consider lateral forces. NOTES 10 Unbalanced roof live loads have been considered for this LOAD CASE(S) Standard	DUT CHURD	23-24=0/853, 23-48			One RT16A N	liTek connectors	s recomm	ended		ect					
39-40=-979/139, 17-40=-983/146, 26-37=-323/93, 17-24=0/352, 17-22=-24/383, 18-21=-1012/31, 26-41=-927/162 forces. NOTES International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 1) Unbalanced roof live loads have been considered for this LOAD CASE(S) Standard	WEBS		38-39=-1023/155,							ral					
18-21=-1012/31, 26-41=-927/162 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 1) Unbalanced roof live loads have been considered for this LOAD CASE(S) Standard		39-40=-979/139, 1	7-40=-983/146,	/383. 12	forces.										
1) Unbalanced roof live loads have been considered for this LOAD CASE(S) Standard	NOTES			555, 12	International	Residential Code	e sections	R502.	.11.1 and	1					
design.	1) Unbalance	d roof live loads hav	e been considered fo	r this LO			anudiù AN	101/ I PI							
	design.														

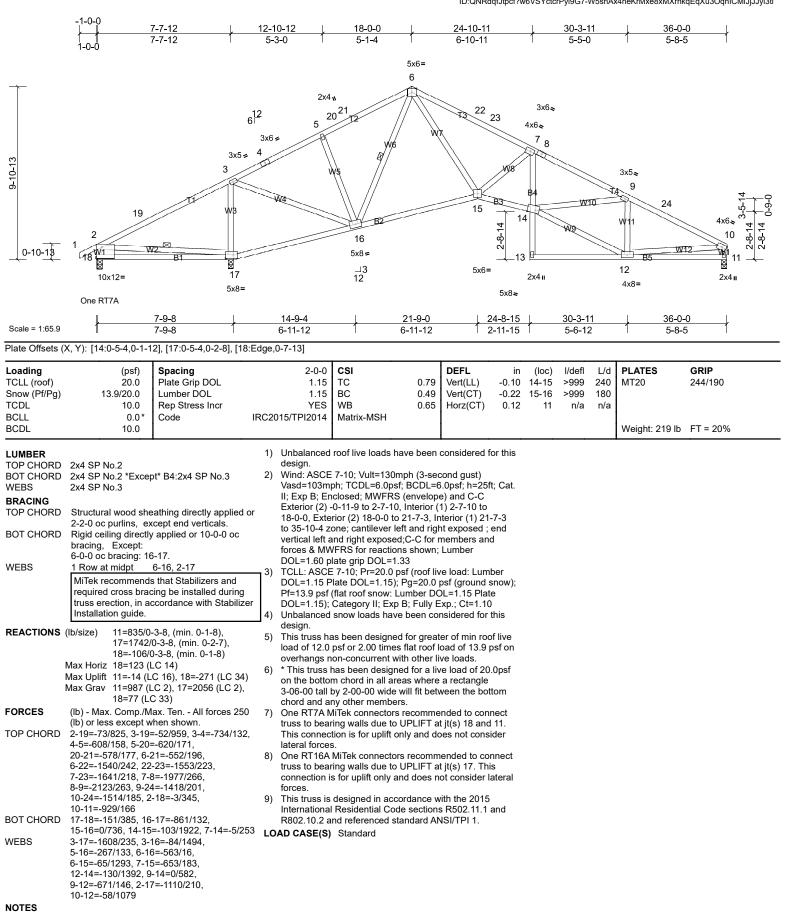
Job	Truss		Truss Type		Qty	Ply					
22080109	A02		Common		2	1	Job Refere	ence (optional)		
Carter Componer	nts - Sanford, Sanford, I	NC, user		Run: 8.53 S Mar	28 2022 F		ar 28 2022 MiTe	k Industries, Inc	. Tue Aug 23 16:53:		Page
						ID:486JC824	_ru7HjpDG_US	symyl9GT-W5sn	Ax4heKrMxe8xMXrr		
		-1-15	12-1-6	18-0-0		23-10-10	 	29-10-1		5-0-0	′-0-0
	1-0-0 6-	-1-15	5-11-7	5-10-10	I	5-10-10	ļ	5-11-7	6-	1-15 1-	-0-0
					5x6=						
<u> </u>					6						
9-10-13		4x5= 3	3x5= 61 ² 3x6= 4 7 7 7	20 21 20 12	W6	22 12	23 3x5≈ 7 7	3x6= 8	4x5 2 9		
0-10-13	10x12= 2 1	10-102 H3							V3 WZ		
<u> </u>			17 25 3x5=	26 16 3×6=	15 3x8=	14 27 3x6=	28	13 3x5=		ă	12
Scale = 1:64.9		9-0-12 9-0-12		<u>18-0-0</u> 8-11-4	-		<u>11-4</u> 1-4		<u>36-0-0</u> 9-0-12		
Plate Offsets ()	K, Y): [2:Edge,0-3-8]	, [10:Edge,0-3-8]									
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL	(psf) 20.0 13.9/20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MSH	0.67 0.98 0.55	. ,	in (loc) -0.23 15-17 -0.42 15-17 0.11 12	l/defl L/d >999 240 >999 180 n/a n/a	MT20	GRIP 244/190	
BCDL	10.0								Weight: 212 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.3 Structural wood shi 3-7-7 oc purling, e: Rigid ceiling directli bracing. 1 Row at midpt MiTek recommend required cross bra	eathing directly applie xcept end verticals. y applied or 2-2-0 oc <u>3-18, 9-12, 5-15, 7-</u> is that Stabilizers and cing be installed duri iccordance with Stabi	vasd=103m II; Exp B; Er Exterior (2) 18-0-0, Exte to 36-11-9 z vertical left a forces & MV DOL=1.60 p 3) TCLL: ASCI DOL=1.15 F Pf=13.9 psf DOL=1.15); 12 Hizer 4) Unbalanced design.	7-10; Vult=130mp ph; TCDL=6.0psf; hclosed; MWFRS (-0-11-9 to 2-7-10, I prior (2) 18-0-0 to 2 one; cantilever left and right exposed; VFRS for reactions plate grip DOL=1.3; 27-10; Pr=20.0 ps ² Plate DOL=1.15; P (flat roof snow: Lui Category II; Exp B snow loads have I as been designed f	BCDL=6. envelope nterior (1 1-7-3, Ini and righ C-C for m shown; I 3 f (roof live g=20.0 p mber DO ; Fully E: been con	Opsf, h=25ft;) and C-C) 2-7-10 to terior (1) 21-7 t exposed ; er nembers and Lumber e load: Lumbe sf (ground sn L=1.15 Plate kp; Ct=1.10 sidered for th	-3 id or ow); is				
FORCES	18=1262 Max Horiz 18=-121 Max Uplift 12=-5 (L0 Max Grav 12=1495	C 16), 18=-5 (LC 15) (LC 2), 18=1495 (LC Max. Ten All forces 2 vhen shown. 9=-459/135, -2035/294, -21=-1534/280, 22=-1508/299, 7-23=-1595/271, =-2162/264, 24=-543/117, 12=-461/195 17-25=-89/1725, -26=-89/1725, -15=-76/1725, 7-28=-76/1725, 2-13=-155/1959 18=-1816/156,	overhangs r 6) * This truss on the botto 22) 3-06-00 tall chord and a 7) One RT7A N truss to bea This connec lateral force 8) This truss is Internationa R802.10.2 a LOAD CASE(S)	designed in accor Residential Code and referenced star	n other live s where s where ill fit betw with BC ecommer PLIFT at y and do dance wi sections	e loads. e load of 20.0 a rectangle reen the botto DL = 10.0psf. nded to conne jt(s) 18 and 1 es not conside th the 2015 R502.11.1 ar	psf m ct 2. er				


Unbalanced roof live loads have been considered for this design.

Job	Truss	Truss Type	Qty	Ply	
22080109	A03	Roof Special	4	1	Job Reference (optional)
Carter Compone	ents - Sanford, Sanford, NC, user	Run: 8.53 S Mar 2			r 28 2022 MiTek Industries, Inc. Tue Aug 23 16:53:21 Page: 1
	-1-0-0		ID	:k51H8UWk	qraXi9VPPFRpnVyl9ZE-W5snAx4heKrMxe8xMXrnkqEsPuz9qprCMiJjJJyl3ti
			<u>23-10-10</u> 5-10-10	<u>}</u>	<u>29-10-1 36-0-0 5-11-7 6-1-15 5-11-7 6-1-15 5-11-7 5-10-7 5-10-7 </u>
	1-0-0	5x8=			1-0-0
	\uparrow	7 2x41			
		6 ¹² 6 ^{24²⁵}	26	27 ^{3x5}	
		3x6=		8	3x6 ~
	€1-01-6 4x5≠	3x5= 5 W7 W9	,		9 4x5 x
	4x5= 6 3 TA	B3	₩10	i wa	
	5x8 = 23	W5 W86		``	W12 W135
	0-10-13 1 1 5 0	19 1-0-0 18 W8			11
	2x4 _{II} 6x10=	3x5= $6x10=2x4u$ 16	B4 29	15	<u>B5</u> 14 0x − 10x12=
	2x4 II	5x8=		3x6	= 3x5=
	2x4∎ .⊒6.03				
	12 ⁻¹² 2-3-7 0-4-0				
	0^{-3-9}	լ 12-9-7 լ 18-0-0 լ	26-	10-4	↓ 36-0-0 ↓
	11 1 5-3-0 0-3-9 0-0-7	1 5-3-0 1 5-2-9 1	8-1	10-4	1 9-1-12 ¹
Scale = 1:83.2	1-11-7	0.0 2 0 0 2 01 120.0 4 6 0 4 01			
	(X, Y): [2:0-2-11,0-2-8], [13:Edge,0-3-8], [1				
Loading TCLL (roof)	(psf) Spacing 20.0 Plate Grip DOL	2-0-0 CSI 1.15 TC	0.67 Ver		in (loc) l/defl L/d PLATES GRIP 0.26 14-16 >999 240 MT20 244/190
Snow (Pf/Pg) TCDL	13.9/20.0 Lumber DOL 10.0 Rep Stress Incr	1.15 BC YES WB		. ,	0.49 14-16 >878 180 0.20 13 n/a n/a
BCLL BCDL	0.0* Code 10.0	IRC2015/TPI2014 Matrix-MSH			Weight: 234 lb FT = 20%
	10.0		 		· · · · · · · · · · · · · · · · · · ·
	2x4 SP No.2	 Unbalanced roof live loads have design. 			inis
BOT CHORD	2x4 SP No.2 *Except* B2:2x4 SP 2400F 2.0E, B3,F1:2x4 SP No.3	Vasd=103mph; TCDL=6.0psf; B	CDL=6.0pst	f; h=25ft; C	Cat.
WEBS	2x4 SP No.3 *Except* W2:2x4 SP 2400 2.0E	 II; Exp B; Enclosed; MWFRS (er Exterior (2) -0-11-9 to 2-7-10, Int 			
	Structural wood aboathing directly appli	18-0-0, Exterior (2) 18-0-0 to 21- to 36-11-9 zone; cantilever left a			
	Structural wood sheathing directly applie 2-5-7 oc purlins, except end verticals.	forces & MWERS for reactions s			
BOT CHORD	bracing.	 DOL=1.60 plate grip DOL=1.33 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live loa	ıd: Lumber	
WEBS	1 Row at midpt 10-13, 8-16 MiTek recommends that Stabilizers and	DOL=1.15 Plate DOL=1.15); Pg	=20.0 psf (g	ground sno	
	required cross bracing be installed duri truss erection, in accordance with Stabi	DOL=1.15); Category II; Exp B;	Fully Exp.; (Ct=1.10	s
	Installation guide.	design.			
REACTIONS	(lb/size) 13=1262/0-3-8, (min. 0-1-12), 21=1262/0-3-8, (min. 0-1-8)	 This truss has been designed fo load of 12.0 psf or 2.00 times fla 	t roof load o	of 13.9 psf	
	Max Horiz 21=-122 (LC 13) Max Uplift 13=-5 (LC 16), 21=-5 (LC 15)	overhangs non-concurrent with 6) * This truss has been designed f	or a live loa	d of 20.0p	sf
	Max Grav 13=1495 (LC 2), 21=1495 (LC		fit between	the botton	n
FORCES	(lb) - Max. Comp./Max. Ten All forces 2 (lb) or less except when shown.	7) Bearing at joint(s) 21 considers	parallel to g	rain value	
TOP CHORD	2-21=-1461/239, 2-23=-4093/329, 3-23=-4026/340, 3-4=-2849/309,	using ANSI/TPI 1 angle to grain designer should verify capacity of		•	
	4-5=-2251/286, 5-6=-2183/303, 6-24=-2241/373, 24-25=-2200/374,	 One RT7A MiTek connectors rec truss to bearing walls due to UP 	commended	I to connec	
	7-25=-2168/397, 7-26=-1509/302, 26-27=-1536/283, 8-27=-1597/274,	This connection is for uplift only lateral forces.			
	8-9=-2013/292, 9-10=-2159/263, 10-28=-459/135, 11-28=-544/117,	 9) This truss is designed in accordation in the second seco			4
BOT CHORD	11-13=-462/196 19-20=-241/2944, 18-19=-155/2529,	R802.10.2 and referenced stand			-
201 0110110	6-18=-338/170, 16-29=-76/1725,	LOAD CASE(S) Standard			
WERS	15-29=-76/1725, 14-15=-76/1725, 13-14=-155/1958	V00			
WEBS	2-20=-208/3552, 4-19=0/367, 4-18=-679 16-18=0/1288, 7-18=-188/1167, 7-40=-20/429, 40, 42=-4045(450	<i>"3</i> 0,			
	7-16=-36/439, 10-13=-1815/156, 8-16=-594/157, 8-14=0/382, 3-19=-469/9	97,			
NOTES	3-20=-7/881				

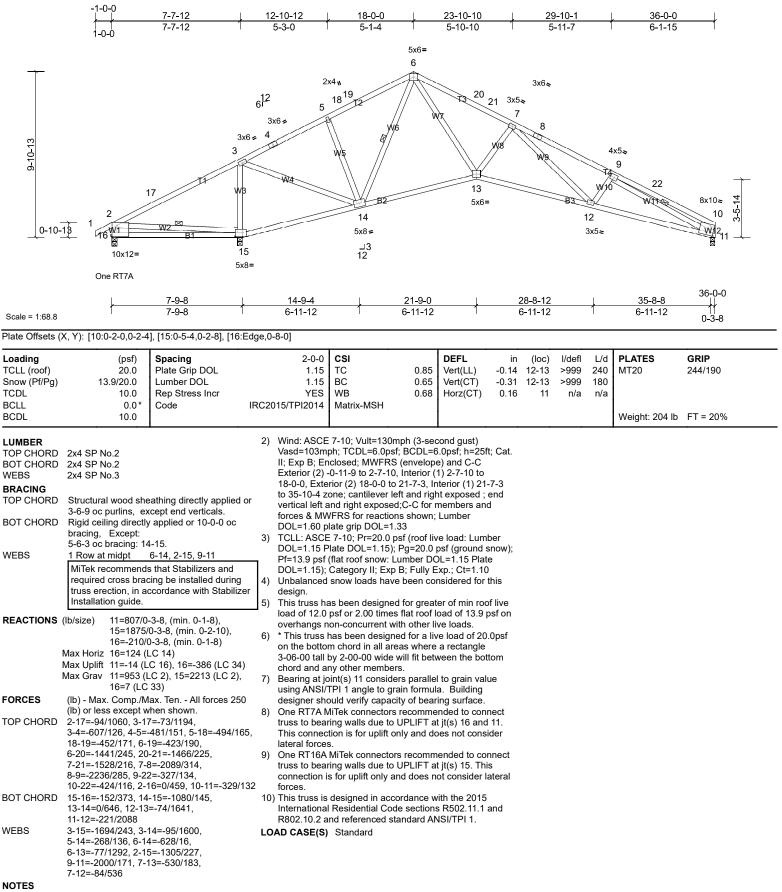
Job	Truss	Truss Type	Qty	Ply	
22080109	A04	Roof Special	1	1	Job Reference (optional)

ID:cD4MZcF6DmvrCB2ICLmCb8yl9GD-W5snAx4heKrMxe8xMXrnkqEqXu3OqnICMiJjJJyl3ti


Page: 1

Carter Components - Sanford, Sanford, NC, user

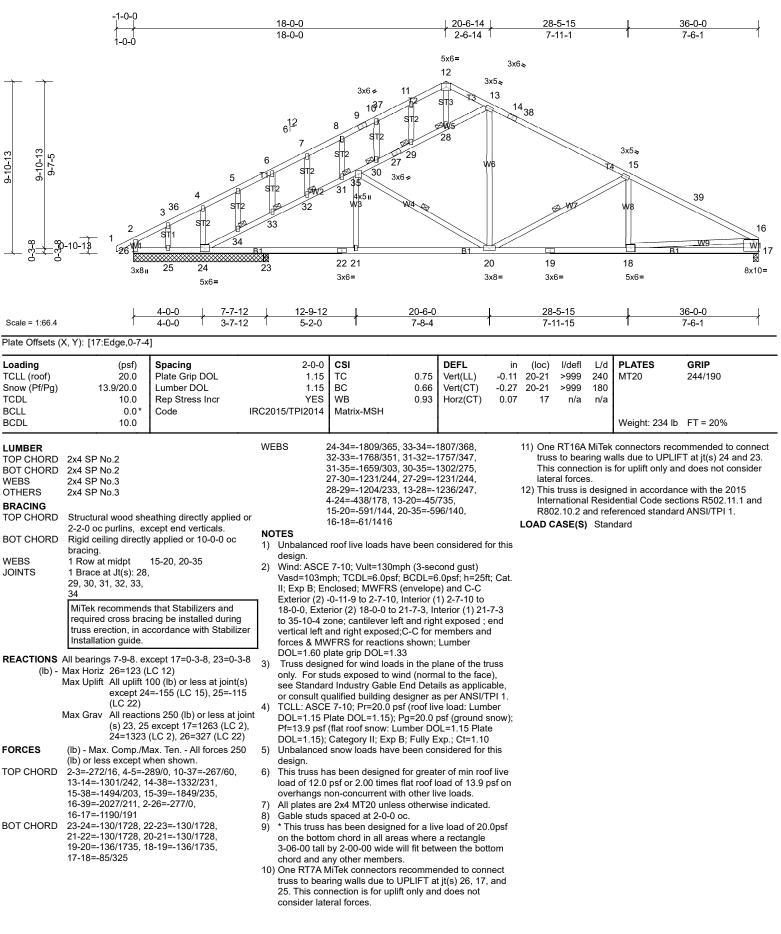
Job	Truss	Truss Type	Qty	Ply		
22080109	A05	Roof Special	2	1	Job Reference (optional)	
Carter Components - Sanford, S	Run: 8.53 S Mar 28	2022 Print:	8.530 S Mar	28 2022 MiTek Industries, Inc. Tue Aug 23 16:53:21	Page: 1	


3 S Mar 28 2022 Print: 8.530 S Mar 28 2022 Mi lek Industries, Inc. Tue Aug 23 16:53:21 Page: 1 ID:QNRdafJtpcf?w6VSYctcrPvI9G7-W5snAx4heKrMxe8xMXrnkaEaXu3OanICMiJiJJvl3ti

Job	Truss	Truss Type	Qty	Ply	
22080109	A06	Roof Special	6	1	Job Reference (optional)

ID:g6U1jkQXhNojVUhBa?YjiJyl9G_-_HQANG5JPdzCZoj7vFM0G2m_LIL8ZE3MbM2Hrlyl3th

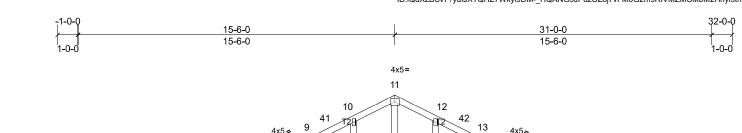
Page: 1

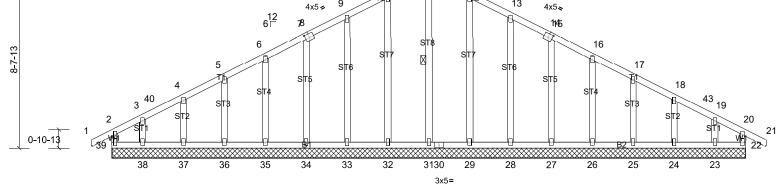


1) Unbalanced roof live loads have been considered for this design.

Carter Components - Sanford, Sanford, NC, user

Job	Truss	Truss Type	Qty	Ply		
22080109	A07	Common Structural Gable	1	1	Job Reference (optional)	
Carter Components - Sanford, S	anford, NC, user	Run: 8.53 S Mar 28	2022 Print:	3.530 S Mar	28 2022 MiTek Industries, Inc. Tue Aug 23 16:53:22	Page: 1


ID:Nrf5WbAnJ7U3KsrvfJ81hAvl9F1- HQANG5JPdzCZoi7vFM0G2m0vILzZA9MbM2Hrlvl3th



Job	Truss	Truss Type	Qty	Ply	
22080109	B01	Common Supported Gable	1	1	Job Reference (optional)

Carter Components - Sanford, Sanford, NC, user

Run: 8.53 S Mar 28 2022 Print: 8.530 S Mar 28 2022 MiTek Industries, Inc. Tue Aug 23 16:53:22 Page: 1 ID:IQdXzBSv7?yufJXTQHZ7Wkyl9DM-_HQANG5JPdzCZoj7vFM0G2m9RIVMZMCMbM2Hrlyl3th

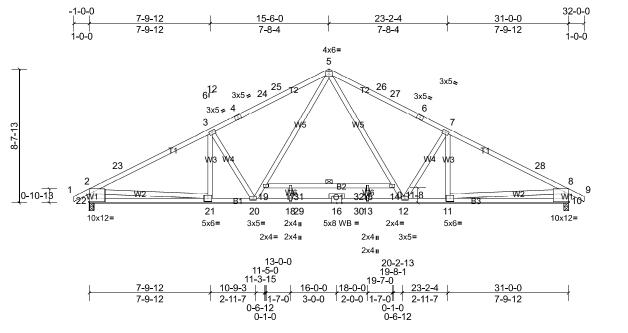
31-0-0

ł Plate Offsets (X, Y): [8:0-2-8,0-2-4], [14:0-2-8,0-2-4]

31-11-9 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber

DOL=1.60 plate grip DOL=1.33

Scale = 1:56.4


Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL	(psf) 20.0 13.9/20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	TC 0.14 BC 0.06	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 22	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0									Weight: 200 lb	FT = 20%
LUMBER FOP CHORD 30T CHORD WEBS DTHERS BRACING FOP CHORD 30T CHORD WEBS	6-0-0 oc purlins, ex Rigid ceiling directly bracing.	eathing directly applied ccept end verticals. / applied or 6-0-0 oc 11-31	only. For sti see Standar or consult q 4) TCLL: ASCE DOL=1.15 P f=13.9 psf DOL=1.15); 5) Unbalanced design. 6) This trus ha	ned for wind loads in the p uds exposed to wind (norm d Industry Gable End Deta ualified building designer a 57-10; Pr=20.0 psf (roof li Plate DOL=1.15); Pg=20.0 (flat roof snow: Lumber DU Category II; Exp B; Fully B snow loads have been co	nal to the face ails as applica is per ANSI/T ve load: Lumt psf (ground s DL=1.15 Plate Exp.; Ct=1.10 nsidered for t ter of min roo	e), able, PI 1. oer mow); e his f live					_
	MiTek recommends required cross brac	s that Stabilizers and cing be installed during ccordance with Stabiliz	overhangs n 7) All plates are 8) Gable requir 9) Truss to be	psf or 2.00 times flat roof ion-concurrent with other I e 2x4 MT20 unless otherw res continuous bottom cho fully sheathed from one fa	ive loads. rise indicated. rd bearing. ce or securely	/					
(lb) -	22, 23, 24 33, 34, 35 Max Grav All reactio (s) 22, 23	100 (lb) or less at joint(s 4, 25, 26, 27, 28, 29, 32 5, 36, 37, 38, 39	10) Gable studs 11) * This truss on the bottol 3-06-00 tall chord and an pint 12) Provide mee bearing plate	nst lateral movement (i.e. spaced at 2-0-0 oc. has been designed for a li m chord in all areas where by 2-00-00 wide will fit bet ny other members. chanical connection (by oth e capable of withstanding 2, 33, 34, 35, 36, 37, 38, 2	ve load of 20. a rectangle ween the bott ners) of truss 100 lb uplift a	0psf com to t joint					
ORCES	(lb) or less except w 9-41=-93/268, 10-4 10-11=-110/317, 11-	1=-84/274, -12=-110/311,	0 24, 23. 13) This truss is International	designed in accordance v I Residential Code section Ind referenced standard Al	vith the 2015 s R502.11.1 a						
design. 2) Wind: ASC Vasd=103i II; Exp B; E (3) -0-11-9 Corner (3)	E 7-10; Vult=130mpl nph; TCDL=6.0psf; B	e been considered for t n (3-second gust) 3CDL=6.0psf; h=25ft; C nvelope) and C-C Corr 2) 2-1-10 to 15-6-0,	at.	Standard							

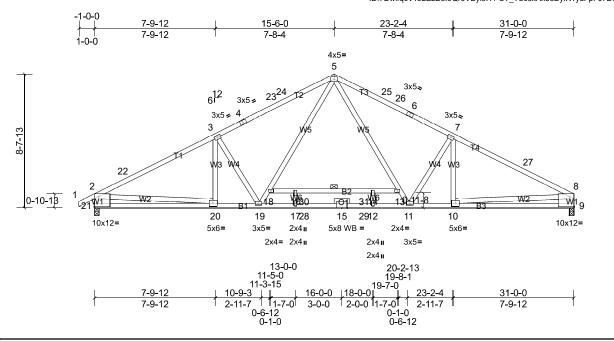
Job	Truss	Truss Type	Qty	Ply	
22080109	B02	Common	5	1	Job Reference (optional)

Carter Components - Sanford, Sanford, NC, user Run: 8.53 S Mar 28 2022 Print: 8.530 S Mar 28 2022 MiTek Industries, Inc. Tue Aug 23 16:53:22

ID:XRziRod3nb0s7boYLCNnAuyl9IJ-_HQANG5JPdzCZoj7vFM0G2myTIHIZFJMbM2Hrlyl3th

Page: 1

Scale = 1:74.5


Plate Offsets (X, Y): [10:Edge,0-7-13], [22:Edge,0-7-13]

MBER IP CHORD 2x4 SP 2400F 2.0E DT CHORD 2x4 SP 2400F 2.0E *Except* B2:2x4 SP No EBS 2x4 SP No.3 HERS 2x4 SP No.3 EACING IP CHORD Structural wood sheathing directly applied or 5-3-2 oc purlins, except end verticals. DT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. Except:	Vasd=10 .2 II; Exp B; Exterior (15-6-0, E to 31-11- vertical le forces &	SCE 7-10; Vult=130m Bimph; TCDL=6.0psf ; Enclosed; MWFRS (2) -0-11-9 to 2-1-10, Exterior (2) 15-6-0 to 9 zone; cantilever le eff and right exposed	; BCDL=6 (envelop , Interior (6.0psf; h=25f e) and C-C	ît; Cat.			
6-0-0 oc bracing: 14-19 MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilize Installation guide.	3) TCLL: AS DOL=1.1 Pf=13.9 p DOL=1.1 4) Unbaland design. 5) This truss	MWFRS for reaction 30 plate grip DOL=1. SCE 7-10; Pr=20.0 p 15 Plate DOL=1.15); psf (flat roof snow: L 15); Category II; Exp ced snow loads have s has been designed	I;C-C for r is shown; 33 Isf (roof liv Pg=20.0 umber DC B; Fully E been co d for great	titerior (1) 18 tt exposed ; members an Lumber ve load: Lum psf (ground : JL=1.15 Plat ixp.; Ct=1.10 nsidered for ver of min root	end d iber snow); te) this of live			
ACTIONS (Ib/size) 10=1278/0-3-8, (min. 0-1-8), 22=1278/0-3-8, (min. 0-1-8) Max Horiz 22=108 (LC 14) Max Grav 10=1480 (LC 2), 22=1480 (LC 2)	overhang 6) 200.0lb A from left	2.0 psf or 2.00 times gs non-concurrent wi AC unit load placed o end, supported at tw uss has been designed	ith other li on the bot o points,	ve loads. tom chord, 1 5-0-0 apart.	5-6-0			
RCES (Ib) - Max. Comp./Max. Ten All forces 250 (Ib) or less except when shown.	on the bo	ottom chord in all are tall by 2-00-00 wide	as where	a rectangle	•			
P CHORD 2-23=-2281/0, 3-23=-2095/0, 3-4=-2147/0, 4-24=-2065/0, 24-25=-2055/0, 5-25=-2045/0 5-26=-2045/0, 26-27=-2055/0, 6-27=-2065/0 6-7=-2147/0, 7-28=-2095/0, 8-28=-2281/0, 2-22=-1391/103, 8-10=-1391/103	chord an 0, 8) One RT7 0, truss to b	nd any other member 7A MiTek connectors bearing walls due to nection is for uplift or	s, with BC recomme UPLIFT a	CDL = 10.0ps ended to con t jt(s) 22 and	sf. inect d 10.			
T CHORD 21-22=-76/574, 20-21=0/1975, 18-20=0/146 18-29=0/1460, 16-29=0/1460, 16-30=0/1460 13-30=0/1460, 12-13=0/1460, 11-12=0/1945 10-11=-42/531	60, 9) This trus 0, Internatio 9, R802.10	is is designed in acco onal Residential Cod .2 and referenced sta	e sections	s R502.11.1				
EBS 2-21=0/1444, 8-11=0/1444, 5-14=0/878, 12-14=0/782, 19-20=0/782, 5-19=0/878, 3-20=-354/229, 7-12=-354/229	LOAD CASE	E(S) Standard						
ITES Unbalanced roof live loads have been considered for th	ic							

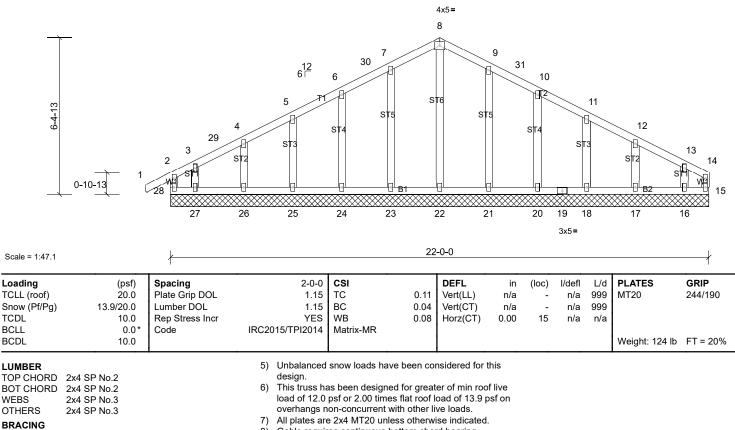
design.

Job	Truss	Truss Type	Qty	Ply		
22080109	B03	Common	2	1	Job Reference (optional)	
Carter Components - Sanford,	Sanford, NC, user	Run: 8.53 S Mar 28	2022 Print:	8.530 S Mar	28 2022 MiTek Industries, Inc. Tue Aug 23 16:53:23	Page: 1

Run: 8.53 S Mar 28 2022 Print: 8.530 S Mar 28 2022 MiTek Industries, Inc. Tue Aug 23 16:53:23 ID:7DwifqcVToLEzB3I9Qr0VByl9H1-ST_Ybc6xAx53BylKTyuFpFJ7Dii_IhoVq0oqNByl3tg

Scale = 1:74.5

Plate Offsets (X, Y): [9:Edge,0-7-13], [21:Edge,0-7-13]


LUMBER TOP CHORD2x4 SP 2400F 2.0E2)(Wind: ASCE 7-10; Vuli=130mpl(13-escond gust) Vas4-100mpl: TCDL=60.0pt B-CDL=6.0pt; B-CD	Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	IRC2015/TP	2-0-0 1.15 1.15 YES Pl2014	CSI TC BC WB Matrix-MSH	0.97 0.61 0.65	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 14-16 14-16 9	l/defl >999 >651 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 194 lb	GRIP 244/190 FT = 20%
	TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES	2x4 SP 2400F 2.0E 2x4 SP No.3 2x4 SP No.3 2x4 SP No.3 Structural wood she 5-0-6 oc purlins, ex Rigid ceiling directly bracing. Except: 6-0-0 oc bracing: 13 MiTek recommend: required cross brac truss erection, in at Installation guide. (lb/size) 9=1224/0 21=1279/ Max Horiz 21=109 (I Max Grav 9=1412 (I (lb) - Max. Comp./M (lb) or less except w 2-22=-2284/0, 3-22= 4-23=-2052/0, 23-22 5-25=-2044/0, 25-26 6-7=-2146/0, 7-27=: 2-21=-1393/102, 8-2 20-21=-83/566, 19-3 17-28=0/1470, 15-2 12-29=0/1470, 15-2 12-29=0/1470, 15-2 13=0/824, 1-13= 5-18=0/874, 3-19=-3 8-10=0/1561, 7-11=	Accept end verticals. y applied or 10-0-0 oc 3-18 is that Stabilizers and cordance with Stabilizer -3-8, (min. 0-1-8), 0-3-8, (min. 0-1-8) -C 12) -C 2), 21=1481 (LC 2) ax. Ten All forces 250 then shown. -2099/0, 3-4=-2140/0, 4=-2047/0, 5-24=-2037/0 5=-2052/0, 6-26=-2064/0 2194/0, 8-27=-2287/0, 5=-1324/51 20=0/1973, 17-19=0/147/0 8=0/1470, 15-29=0/147/0 2=0/1470, 10-11=0/1963 0/746, 18-19=0/738, 366/221, 2-20=0/1450, -376/222	Vasdi II; Ex Exter 15-6- to 30. vertic force: DOL= 3) TCLL DOL= 3) TCLL DOL= 4) Unba desig 5) This t load o overh 6) 200.0 from from from from from from from from	=103mj p B; En ior (2) - 0, Exte -10-4 zc al left as \$ & MW =1.60 p =1.60 p =1.15 P 3.9 psf =1.15 P 3.0 psf =1.15 Psf =1	bh; TCDL=6.0psf; E closed; MWFRS (0-11-9 to 2-1-10, In rior (2) 15-6-0 to 11 one; cantilever left and right exposed;(/FRS for reactions late grip DOL=1.33; 7-10; Pr=20.0 psf late DOL=1.15); Ps (flat roof snow: Lur Category II; Exp B snow loads have to as been designed f psf or 2.00 times fl on-concurrent with unit load placed on , supported at two has been designed m chord in all areas by 2-00-00 wide wi by other members, ITEk connectors re ing walls due to Uf tion is for uplift only a designed in accord Residential Code nd referenced stam	BCDL=6 envelop- nterior (3-7-3, Ir and right C-C for r shown; (roof liv g=20.0 nber DC ; Fully E been color or great at roof I other lit the bott points, for a liv s where Il fit betw with BC comme PLIFT a y and do dance w sections	:.0psf; h=25fi a) and C-C (1) 2-1-10 to tterior (1) 18- tterior (1) 18- tterio	-7-3 end d ber snow); e this of live osf on 5-6-0 .0psf tom if. nect 21. der					

design.

Job	Truss	Truss Type	Qty	Ply		
22080109	C01	Common Supported Gable	1	1	Job Reference (optional)	
Carter Components - Sanford, Sanford, NC, user Run: 8.53 S Mar 28 2022 Print: 8.530 S Mar 28 2022 MiTek Industries, Inc. Tue Aug 23 16:53:23					28 2022 MiTek Industries, Inc. Tue Aug 23 16:53:23	Page: 1

ID:SdmleQnrmHM2PS5fVSYS6Ryl9Cx-ST_Ybc6xAx53BylKTyuFpFJLgirvlqiVq0oqNByl3tg

- 8) Gable requires continuous bottom chord bearing.
- 9) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 10) Gable studs spaced at 2-0-0 oc.
- * This truss has been designed for a live load of 20.0psf 11) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint (s) 28, 15, 23, 24, 25, 26, 27, 21, 20, 18, 17, 16.
- 13) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- LOAD CASE(S) Standard Max Grav All reactions 250 (lb) or less at joint

FORCES NOTES

TCDL

BCLL

BCDL

TOP CHORD

BOT CHORD

bracing.

REACTIONS All bearings 22-0-0.

Installation guide.

(lb) - Max Horiz 28=85 (LC 12)

Unbalanced roof live loads have been considered for this 1) design.

(lb) or less except when shown.

26, 27, 28

Structural wood sheathing directly applied or

6-0-0 oc purlins, except end verticals.

Rigid ceiling directly applied or 6-0-0 oc

MiTek recommends that Stabilizers and

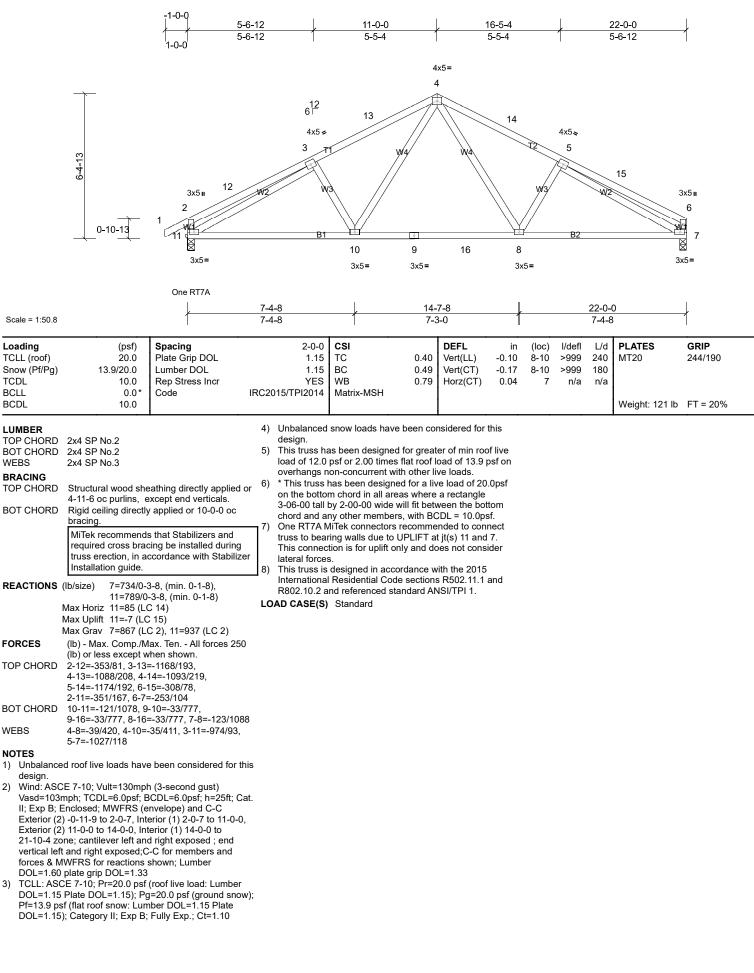
required cross bracing be installed during

Max Uplift All uplift 100 (lb) or less at joint(s)

24, 25, 26, 27, 28

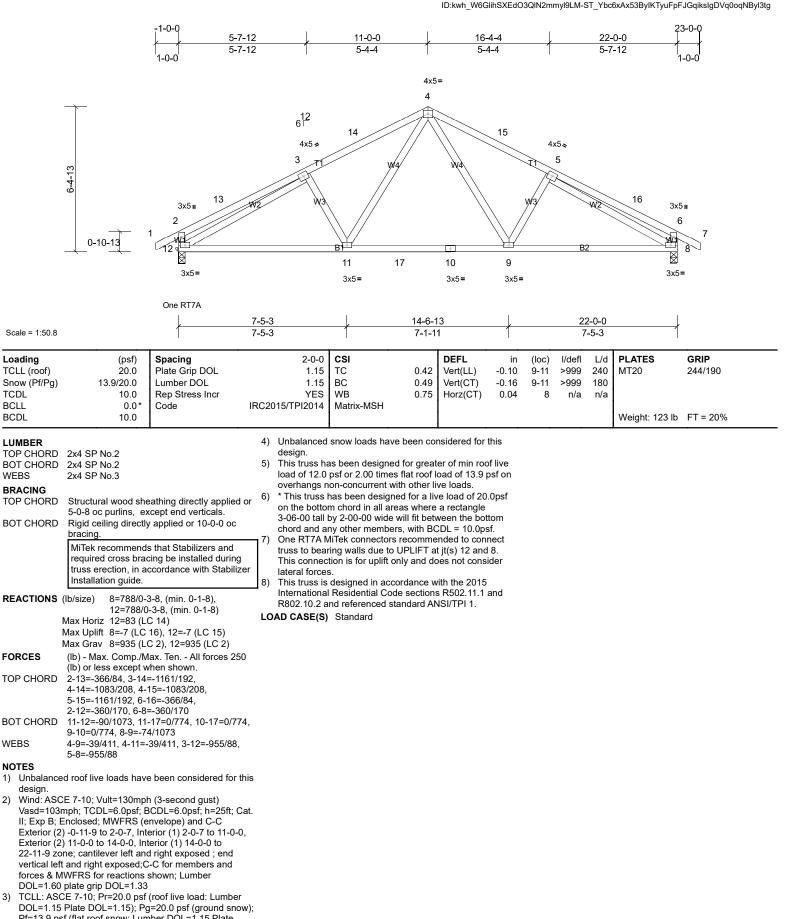
(lb) - Max. Comp./Max. Ten. - All forces 250

15, 16, 17, 18, 20, 21, 23, 24, 25,


(s) 15, 16, 17, 18, 20, 21, 22, 23,

truss erection, in accordance with Stabilizer

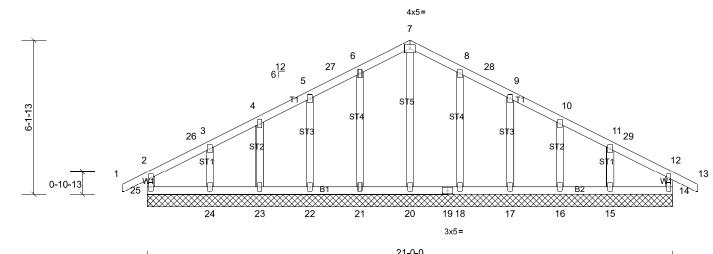
- Wind: ASCE 7-10; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Corner (3) -0-11-9 to 2-0-7, Exterior (2) 2-0-7 to 11-0-0, Corner (3) 11-0-0 to 14-0-0, Exterior (2) 14-0-0 to 21-10-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10


Job	Truss	Truss Type	Qty	Ply		
22080109	C02	Common	10	1	Job Reference (optional)	
Carter Components - Sanford, Sanford, NC, user Run: 8.53 S Mar 28 2022 Print: 8.530 S Mar 28 2022 MiTek Industries, Inc. Tue Aug 23 16:53:23						Page: 1

ID:paZeh7r_aq_LVD_dl?7dpUyl9Cs-ST_Ybc6xAx53BylKTyuFpFJG7ikslfbVq0oqNByl3tg

Job	Truss	Truss Type	Qty	Ply		
22080109	C03	Common	2	1	Job Reference (optional)	
Carter Components - Sanford, Sanford, NC, user Run: 8.53 S Mar 28 2022 Print: 8.530 S Mar 28 2022 MiTek Industries, Inc. Tue Aug 23 16:53:23					28 2022 MiTek Industries, Inc. Tue Aug 23 16:53:23	Page: 1

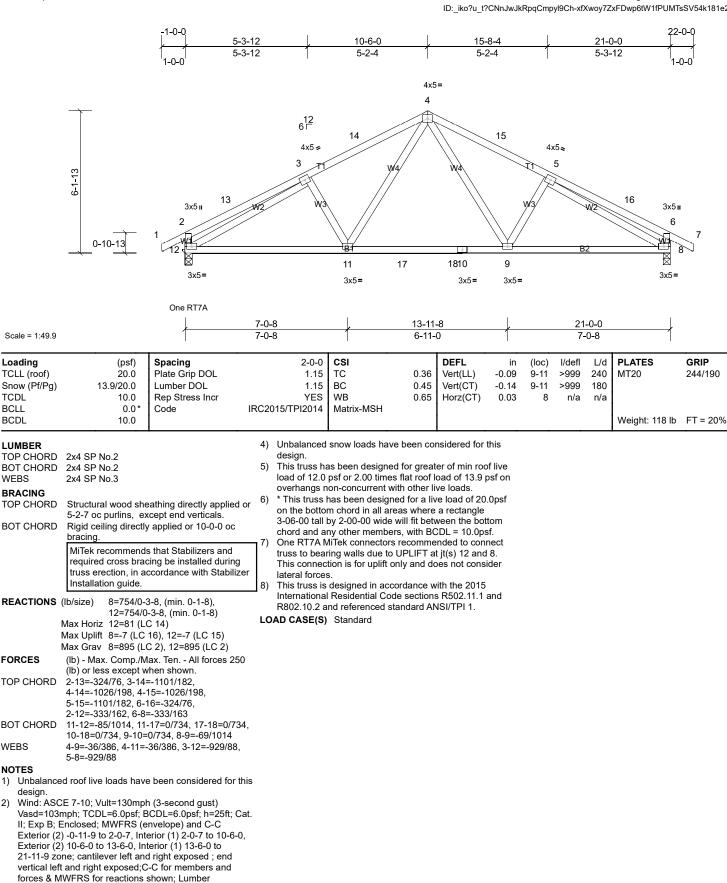
ID:kwh_W6GlihSXEdO3QlN2mmyl9LM-ST_Ybc6xAx53BylKTyuFpFJGqikslgDVq0oqNByl3tg



Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10

Job	Truss	Truss Type	Qty	Ply		
22080109	D01	Common Supported Gable	1	1	Job Reference (optional)	
Carter Components - Sanford, S	Sanford, NC, user	Run: 8.53 S Mar 28	2022 Print:	8.530 S Mar	28 2022 MiTek Industries, Inc. Tue Aug 23 16:53:23	Page: 1

ID:ekwvyBwkAgIUD8RmeGE13lyl9Cm-ST_Ybc6xAx53ByIKTyuFpFJLpir3IqiVq0oqNByl3tg



$C_{colo} = 1.46.4$		L		21-0	⊢ 0						L
Scale = 1:46.1		ſ									
Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC 0.10	DEFL Vert(LL)	in n/a	(loc) -	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190
Snow (Pf/Pg) TCDL	13.9/20.0 10.0	Lumber DOL Rep Stress Incr	1.15 YES	BC 0.03 WB 0.08	Vert(CT) Horz(CT)	n/a 0.00	- 14	n/a n/a	999 n/a		
BCLL	0.0*	Code	IRC2015/TPI2014	Matrix-MR	11012(01)	0.00	14	n/a	11/a		
BCDL	10.0									Weight: 116 lb	FT = 20%
REACTIONS	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. MiTek recommend: required cross brace	y applied or 6-0-0 oc s that Stabilizers and cing be installed during ccordance with Stabiliz	 design. 6) This truss he load of 12.0 overhangs r 7) All plates are 8) Gable requines 9) Truss to be braced agained by truss to be braced agained by the studes on the botton 3-06-00 tall chord and a 12) Provide meach bearing plate (s) 25, 14, 2 	snow loads have been co as been designed for great psf or 2.00 times flat roof ion-concurrent with other l e 2x4 MT20 unless otherw res continuous bottom cho fully sheathed from one fa nst lateral movement (i.e. spaced at 2-0-0 oc. has been designed for a li m chord in all areas where by 2-00-00 wide will fibe to y other members. chanical connection (by other e capable of withstanding 1, 22, 23, 24, 18, 17, 16, 7	ter of min roof oad of 13.9 ps ve loads. rd bearing. ce or securely diagonal web) ve load of 20.0 a rectangle ween the botto ners) of truss t 100 lb uplift at 5.	i live sf on Dpsf om					
	14, 15, 16 25 Max Grav All reactio	00 (lb) or less at joint(5, 17, 18, 21, 22, 23, 24 ons 250 (lb) or less at jo 5, 16, 17, 18, 20, 21, 22 5	^{s)} Internationa ^{4,} R802.10.2 a _{bint} LOAD CASE(S)	designed in accordance of Residential Code section ind referenced standard A Standard	s R502.11.1 a	ind					
FORCES	(lb) - Max. Comp./M (lb) or less except w	lax. Ten All forces 25 /hen shown.	0								
 design. 2) Wind: ASG Vasd=1037 II; Exp B; E (3) -0-11-9 (3) 10-6-0 cantilever I right expose for reaction DOL=1.33 3) Truss desi only. For s see Stands or consult 4) TCLL: ASC DOL=1.15 Pf=13.9 ps 	E 7-10; Vult=130mpt mph; TCDL=6.0psf; E Enclosed; MWFRS (e to 2-0-7, Exterior (2) to 13-6-0, Exterior (2) eft and right exposed sed;C-C for members is shown; Lumber DC igned for wind loads i studs exposed to wind ard Industry Gable Er qualified building des E 7-10; Pr=20.0 psf Plate DOL=1.15); Pg	CDL=6.0psf; h=25ft; C nvelope) and C-C Corr 2-0-7 to 10-6-0, Corne 3 (1) 13-6-0 to 21-11-9 zon 4 (1) 13-6-0 to 21-11-9 zon 5 (1) 13-6-0 to 21-11-9 zon 5 (1) 13-6-0 to 21-11-9 zon 6 (1) 13-6-0 to 21-11-9 zon 6 (1) 13-6-0 to 21-11-9 zon 6 (1) 13-6-0 to 21-11-9 zon 7 (2) 13-6-0 to 21-11-9 zon 7 (2) 20 (2) 20 (2) 20 (2) 20 (2) 20 (2) 20 (2) 20 (2) 20 (2) 20 (2) 20 (2) 2) 20 (2) 20	Cat. ner er se;								

Job	Truss	Truss Type	Qty	Ply		
22080109	D02	Common	7	1	Job Reference (optional)	
Carter Components - Sanford, Sanford, NC, user Run: 8.53 S Mar 28 2022 Print: 8.530 S Mar 28 2022 MiTek Industries, Inc. Tue Aug 23 16:53:24						Page: 1

ID:_iko?u_t?CNnJwJkRpqCmpyl9Ch-xfXwoy7ZxFDwp6tW1fPUMTsSV54k181e2gXNweyl3tf

TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 3) DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10

DOL=1.60 plate grip DOL=1.33

Loading

TCDL

BCLL

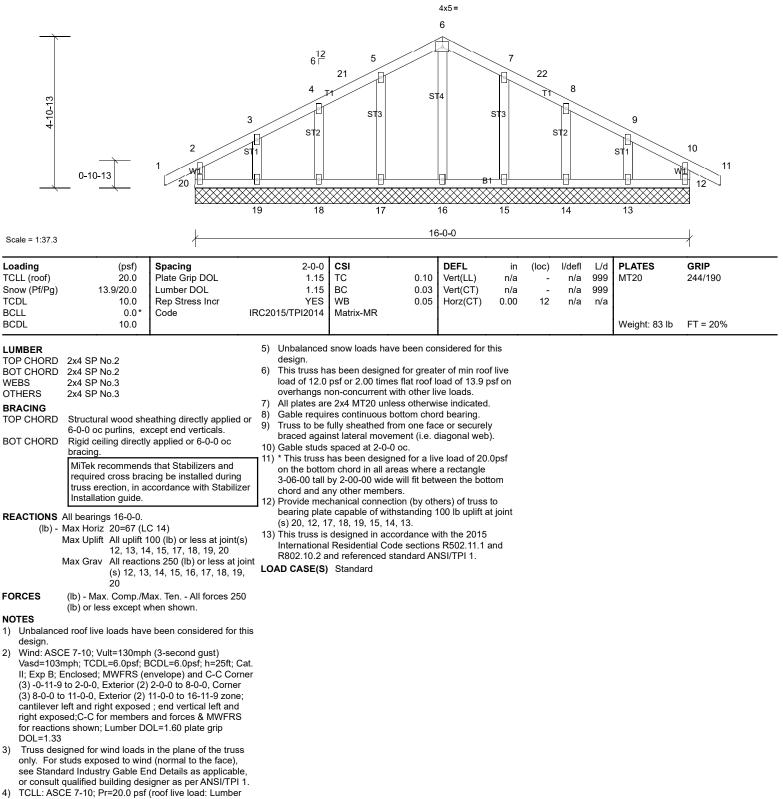
BCDL

WEBS

FORCES

WEBS

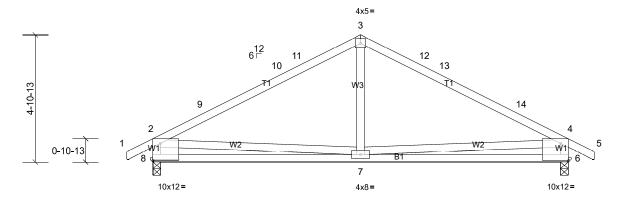
NOTES

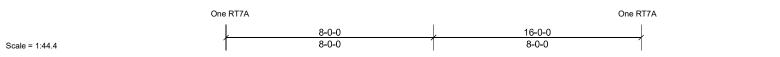

2)

Job	Truss	Truss Type	Qty	Ply	
22080109	E01	Common Supported Gable	1	1	Job Reference (optional)

Carter Components - Sanford, Sanford, NC, user

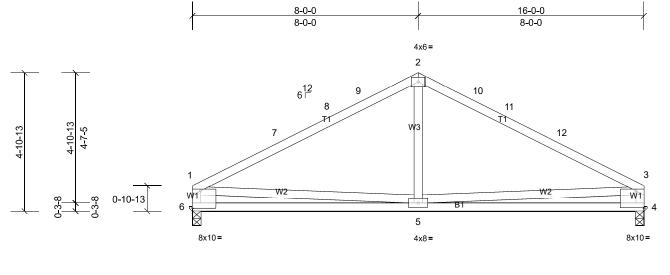
DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10 Run: 8.53 S Mar 28 2022 Print: 8.530 S Mar 28 2022 MiTek Industries, Inc. Tue Aug 23 16:53:24 Page: 1 ID:TzOtUUp9IP3_5W5?_oZN3MyI9Bc-xfXwoy7ZxFDwp6tW1fPUMTsWZ5B11IOe2gXNweyI3tf





Job	Truss	Truss Type	Qty	Ply		
22080109	E02	Common	5	1	Job Reference (optional)	
Carter Components - Sanford,	Run: 8.53 S Mar 28	2022 Print:	8.530 S Mar	28 2022 MiTek Industries, Inc. Tue Aug 23 16:53:24	Page: 1	

ID:iiRHNZwpdACjgvHj?BEVwFyl9BT-xfXwoy7ZxFDwp6tW1fPUMTsLd55C1HJe2gXNweyl3tf


Plate Offsets (X, Y): [6:Edge,0-7-13], [8:Edge,0-7-13]

], [0:==g0,0 : 10]							_			
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.80	Vert(LL)	-0.01	7	>999	240	MT20	244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15	BC	0.42	Vert(CT)	-0.09	7-8	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.12	Horz(CT)	0.01	6	n/a	n/a		
BCLL	0.0*	Code	IRC2015/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 84 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.3 *Excep 2.0E Structural wood she 5-6-4 oc purlins, ex Rigid ceiling directly bracing. MiTek recommends required cross brac truss erection, in ad	eathing directly applied cept end verticals. v applied or 10-0-0 oc s that Stabilizers and cing be installed during coordance with Stabilizer	DOL=1.15 F Pf=13.9 psf DOL=1.15); 4) Unbalanced design. 5) This truss for 6) * This truss on the botto 3-06-00 tall chord and a 27 7) One RT7A N	E 7-10; Pr=20.0 ps Plate DOL=1.15); P Plate DOL=1.15); P Category II; Exp B snow loads have I as been designed f psf or 2.00 times f ton-concurrent with has been designed m chord in all area by 2-00-00 wide w ny other members. MiTek connectors r	Pg=20.0 mber DC 3; Fully E been co for great flat roof I n other li d for a liv s where ill fit betv ecomme	osf (ground s DL=1.15 Plat xp.; Ct=1.10 nsidered for er of min roo oad of 13.9 ve loads. e load of 20 a rectangle veen the bot nded to con	snow); e this of live psf on .0psf .tom					
I	Installation guide. EACTIONS (lb/size) 6=585/0-3-8, (min. 0-1-8), 8=585/0-3-8, (min. 0-1-8) Max Horiz 8=67 (LC 14) Max Uplift 6=-8 (LC 16), 8=-8 (LC 15)			ring walls due to U s for uplift only and designed in accor I Residential Code	d does n dance w sections	ot consider I ith the 2015 s R502.11.1	ateral					
	Max Grav 6=695 (L0	C 2), 8=695 (LC 2)	LOAD CASE(S)	nd referenced star Standard	ndard Al	ISI/TPI 1.						
FORCES	(lb) - Max. Comp./M (lb) or less except w	ax. Ten All forces 250 hen shown.)()									
	2-9=-778/89, 9-10=- 3-11=-627/127, 3-12 12-13=-648/111, 13-	663/107, 10-11=-648/1 2=-627/127, .14=-663/107, 627/200, 4-6=-627/200 .170/547	,									
1) Unbalance	d roof live loads have	e been considered for th	nis									
Vasd=103r II; Exp B; E Exterior (2) Exterior (2) zone; canti and right e	nclosed; MWFRS (e) -0-11-9 to 2-0-7, Inte) 8-0-0 to 11-0-0, Inte lever left and right ex xposed;C-C for mem r reactions shown; Li	CDL=6.0psf; h=25ft; C nvelope) and C-C erior (1) 2-0-7 to 8-0-0, rior (1) 11-0-0 to 16-11- posed ; end vertical lef	9									

Job	Truss	Truss Type	Qty	Ply	
22080109	E03	Common	1	1	Job Reference (optional)

Carter Components - Sanford, Sanford, NC, user Run: 8.53 S Mar 28 2022 Print: 8.530 S Mar 28 2022 MiTek Industries, Inc. Tue Aug 23 16:53:24

S Mar 28 2022 Print: 8.530 S Mar 28 2022 MiTek Industries, Inc. Tue Aug 23 16:53:24 Page: 1 ID:blCDnkA_hdrkh7Omk66QHhyl9B8-xfXwoy7ZxFDwp6tW1fPUMTsJS55V1G9e2gXNweyl3tf

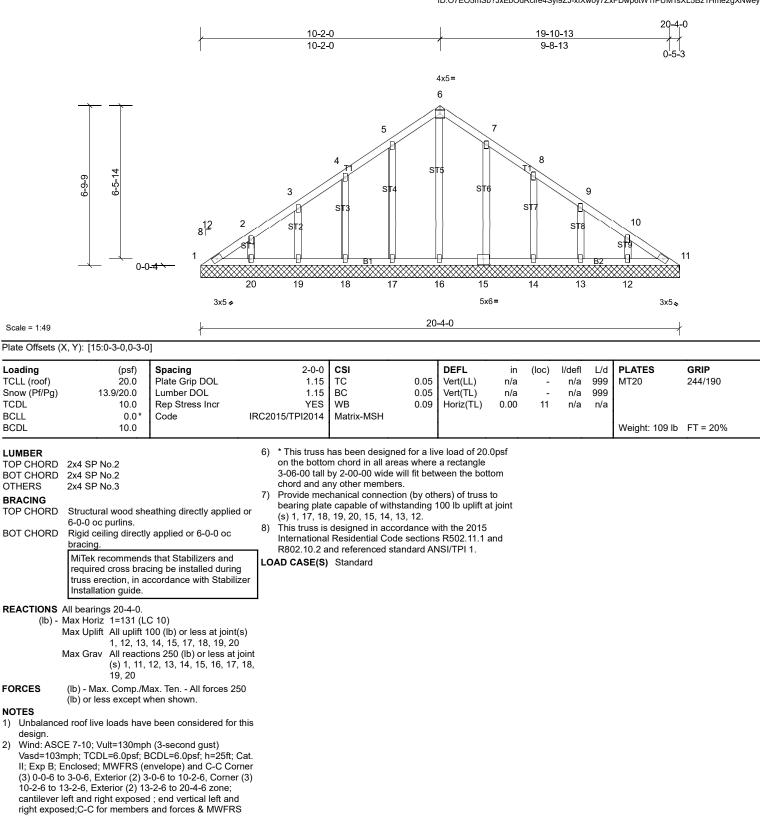


Plate Offsets (X, Y): [4:Edge,0-7-4], [6:Edge,0-7-4]

	, i). [4:Edge;0-7-4];	, [0:2090,0 1 1]											-
Loading	(psf)	Spacing		2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL		1.15	TC	0.94	Vert(LL)	-0.01	5	>999	240	MT20	244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL		1.15	BC	0.40	Vert(CT)	-0.09	5-6	>999	180		
TCDL	10.0	Rep Stress Incr		YES	WB	0.13	Horz(CT)	0.01	4	n/a	n/a		
BCLL	0.0*	Code	IRC2015/	TPI2014	Matrix-MSH								
BCDL	10.0											Weight: 81 lb	FT = 20%
	2x4 SP No.2 2x4 SP No.3 Structural wood she except end verticals Rigid ceiling directly bracing. MiTek recommends required cross brack	eathing directly applied, s. / applied or 10-0-0 oc s that Stabilizers and cing be installed during ccordance with Stabilize	de 5) * T on 3-(ch 6) Or tru co for 7) Th Int er R8	sign. This truss I the botton 06-00 tall I ord and an the RT7A M ress to bear nnection is ces. sis truss is truss is truss is truss and 02.10.2 a	snow loads have I has been designed in chord in all area by 2-00-00 wide wi by other members. liTek connectors re ing walls due to U s for uplift only and designed in accor Residential Code nd referenced star Standard	l for a liv s where ill fit betw ecomme PLIFT a l does n dance w sections	re load of 20 a rectangle veen the bot nded to com t jt(s) 6 and 4 ot consider la ith the 2015 s R502.11.1	.0psf tom nect 4. This ateral					
) 6=532/0-3 Max Horiz 6=-61 (LC			CASE(S)	Standard								
	Max Grav 4=628 (L0												
FORCES	(lb) - Max. Comp./M(lb) or less except w	lax. Ten All forces 250 /hen shown)										
	1-7=-785/108, 7-8=- 2-9=-625/134, 2-10= 10-11=-655/118, 11- 3-12=-785/108, 1-6=	-681/110, 8-9=-655/118 =-625/134, -12=-681/111, =-559/148, 3-4=-559/14											
	5-6=-118/378, 4-5=-												
WEBS	1-5=0/310, 3-5=0/3	10											
NOTES 1) Unbalance	d roof live loads have	e been considered for th	nis										
design.													
Vasd=103n II; Exp B; E Exterior (2) Exterior (2) zone; canti and right e MWFRS fo	nclosed; MWFRS (e) 0-1-12 to 3-1-12, Ini) 8-0-0 to 11-0-0, Inte lever left and right ex xposed;C-C for mem r reactions shown; L	3CDL=6.0psf; h=25ft; Ca nvelope) and C-C terior (1) 3-1-12 to 8-0-(rior (1) 11-0-0 to 15-10- (posed ; end vertical lef), 4										
DOL=1.15 Pf=13.9 ps	E 7-10; Pr=20.0 psf Plate DOL=1.15); Pg	(roof live load: Lumber g=20.0 psf (ground snov ber DOL=1.15 Plate Fully Exp.; Ct=1.10	v);										

Job	Truss	Truss Type	Qty	Ply		
22080109	VL01	Valley	1	1	Job Reference (optional)	
Carter Components - Sanford, S	Run: 8.53 S Mar 28	2022 Print:	8.530 S Mar	28 2022 MiTek Industries, Inc. Tue Aug 23 16:53:24	Page: 1	

ID:07E05mSb?JxEbOdRcire4Syl9ZJ-xfXwoy7ZxFDwp6tW1fPUMTsXL5Bz1Hme2gXNweyl3tf

cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33 TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber

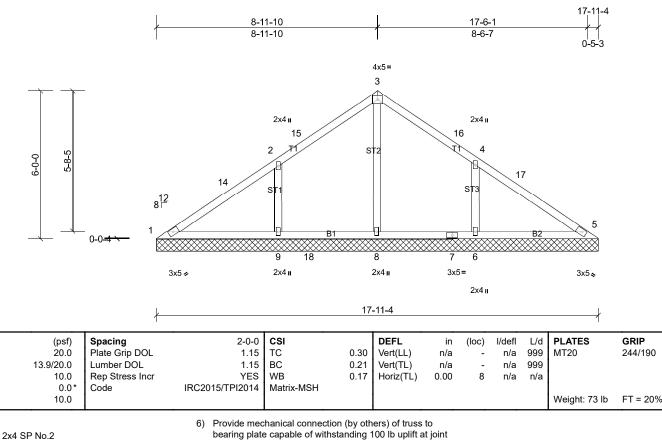
Loading

TCDL

BCLL

BCDL

NOTES


1)

2)

- 3) DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
- All plates are 2x4 MT20 unless otherwise indicated. 4)
- 5) Gable requires continuous bottom chord bearing.

Job	Truss	Truss Type	Qty	Ply		
22080109	VL02	Valley	1	1	Job Reference (optional)	
Carter Components - Sanford,	Run: 8.53 S Mar 28	2022 Print:	8.530 S Mar	28 2022 MiTek Industries, Inc. Tue Aug 23 16:53:24	Page: 1	

ID:07EO5mSb?JxEbOdRcire4Syl9ZJ-xfXwoy7ZxFDwp6tW1fPUMTsTR58U1GWe2gXNweyl3tf

This truss is designed in accordance with the $2015\,$

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

(s) 9. 6.

LOAD CASE(S) Standard

7)

LOWIDER	
TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.2
OTHERS	2x4 SP No.3
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	6-0-0 oc purlins.
BOT CHORD	
	bracing.
	MiTek recommends that Stabilizers and
	required cross bracing be installed during
	truss erection, in accordance with Stabilizer
	Installation guide.
REACTIONS	All bearings 17-11-4.
	Max Horiz 1=115 (LC 10)
(u) -	Max Uplift All uplift 100 (lb) or less at joint(s)
	6.9
	Max Grav All reactions 250 (lb) or less at joint
	(s) 1, 5 except 6=460 (LC 25),
	8=442 (LC 24), 9=469 (LC 24)
FORCES	(lb) - Max. Comp./Max. Ten All forces 250
	(lb) or less except when shown.
WEBS	3-8=-273/0. 2-9=-314/156. 4-6=-306/156
NOTES	
	ed roof live loads have been considered for this
design.	
	CE 7-10; Vult=130mph (3-second gust)
	Smph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.
	Enclosed: MWERS (envelope) and C-C

Scale = 1:46.8

Loading

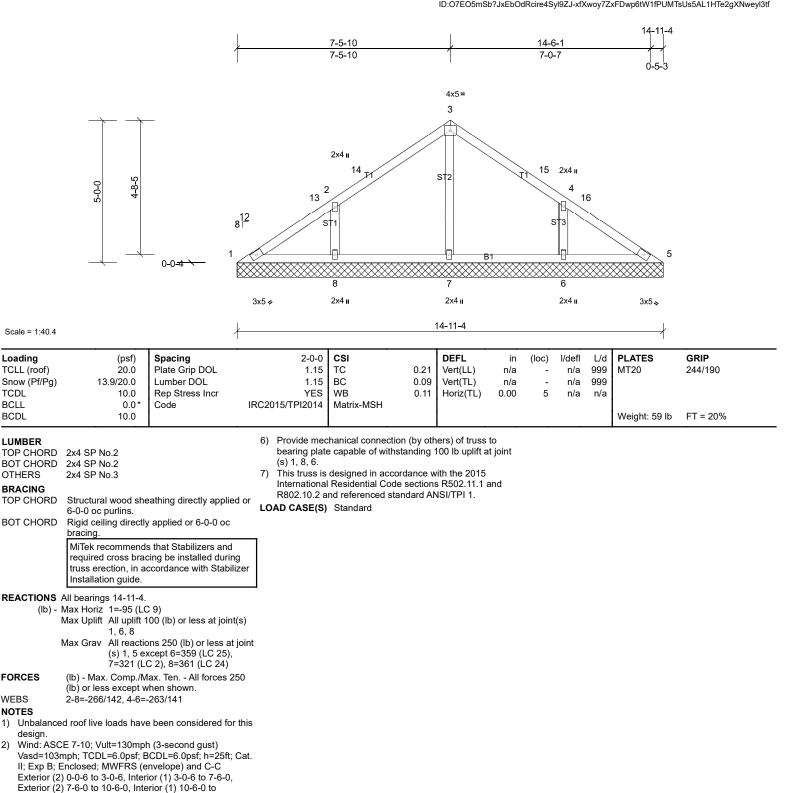
TCDL

BCLL

BCDL

LUMBER

TCLL (roof)


Snow (Pf/Pg)

II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior (2) 0-0-6 to 3-0-6, Interior (1) 3-0-6 to 9-0-0, Exterior (2) 9-0-0 to 12-0-0, Interior (1) 12-0-0 to 17-6-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 3) DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10 4) Gable requires continuous bottom chord bearing.
- * This truss has been designed for a live load of 20.0psf 5) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

Job	Truss	Truss Type	Qty	Ply		
22080109	VL03	Valley	1	1	Job Reference (optional)	
Carter Components - Sanford, S	Run: 8.53 S Mar 28	2022 Print:	8.530 S Mar	28 2022 MiTek Industries, Inc. Tue Aug 23 16:53:24	Page: 1	

ID:07E05mSb?JxEbOdRcire4Syl9ZJ-xfXwoy7ZxFDwp6tW1fPUMTsUs5AL1HTe2gXNweyl3tf

vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33 TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber 3) DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (ground snow); Pf=13.9 psf (flat roof snow: Lumber DOL=1.15 Plate

14-11-10 zone; cantilever left and right exposed ; end

DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10

Loading

TCDL

BCLL

BCDL

LUMBER

OTHERS

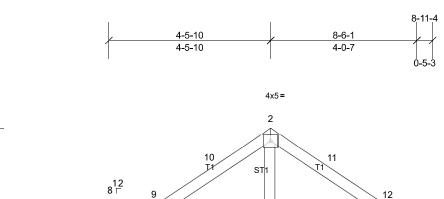
FORCES

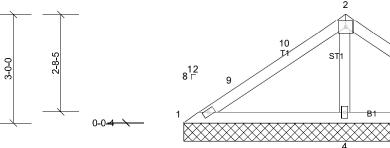
WEBS

2)

NOTES

- Gable requires continuous bottom chord bearing. 4)
- * This truss has been designed for a live load of 20.0psf 5) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.


Job	Truss	ı [Truss Type		Qty	Ply				
22080109	VL04	N	/alley		1	1	Job Referen	ce (optional)		
Carter Compone	nts - Sanford, Sanford, N	IC, user		Run: 8.53 S Mar 28			28 2022 MiTek	Industries, Inc.	Tue Aug 23 16:53:	25 Page: 1 IsVJ5AL1IOe2gXNweyl3tf
				<u>5-11-10</u> 5-11-10			<u>11-6-1</u> 5-6-7		11-11-4 	
	4-0-0	0-0 -4	8 ¹² 2 1ST	2x4 II 13 14 13 14 13 14 13 14 13 14 14 13 14 14 14 14 14 14 14 14 14 14	ST	4x5= 3 		14 2x4 II 4 5T0 6 2v4 II	5	
			3x5 ≉ 2	2X4 II		2X4 II		2x4 II	3x5 👟	
Scale = 1:36.4			+		11-	11-4				
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	BC	0.09 Ve	rt(LL) rt(TL)	in (loc) n/a - n/a - 0.00 5	l/defl L/d n/a 999 n/a 999 n/a n/a	PLATES MT20 Weight: 45 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. MiTek recommends required cross brac	eathing directly applied / applied or 10-0-0 oc s that Stabilizers and cordance with Stabiliz	or bearing plate (s) 1, 8, 6. 7) This truss is International R802.10.2 a LOAD CASE(S)	hanical connection (b capable of withstan designed in accordar Residential Code se nd referenced standa Standard	ding 100 l nce with th ctions R5	b uplift at jo ne 2015 02.11.1 and				
	Max Uplift All uplift 1 1, 6, 8 Max Grav All reactio (s) 1, 5 ex	00 (lb) or less at joint(s ons 250 (lb) or less at jo kcept 6=307 (LC 25),	,							
FORCES	(lb) - Max. Comp./M	C 2), 8=312 (LC 24) lax. Ten All forces 250	0							
 design. 2) Wind: ASC Vasd=1033 II; Exp B; E Exterior (2 Exterior (2 Zone; cant and right e MWFRS fc grip DOL= 3) TCLL: ASC DOL=1.15 Pf=13.9 ps DOL=1.15 4) Gable requings 5) * This trust on the bott 3-06-00 tai 	CE 7-10; Vult=130mpf mph; TCDL=6.0psf; E Enclosed; MWFRS (e 0 -00 to 3-0-6, Inter 0 -0-0 to 9-0-0, Inter ilever left and right ex exposed;C-C for mem or reactions shown; L 1.33 CE 7-10; Pr=20.0 psf Plate DOL=1.15); Pg of (flat roof snow: Lun); Category II; Exp B; uires continuous botto s has been designed tom chord in all areas	-254/156 a been considered for the n (3-second gust) BCDL=6.0psf; h=25ft; C invelope) and C-C ior (1) 3-0-6 to 6-0-0, ior (1) 9-0-0 to 11-11-10 (posed ; end vertical lef bers and forces & umber DOL=1.60 plate (roof live load: Lumber g=20.0 psf (ground snow- ber DOL=1.15 Plate Fully Exp.; Ct=1.10 om chord bearing. for a live load of 20.0ps	at.) ft w);							


Job	Truss	Truss Type	Qty	Ply		
22080109	VL05	Valley	1	1	Job Reference (optional)	
Carter Components - Sanford,	Run: 8.53 S Mar 28	2022 Print:	8.530 S Mar	28 2022 MiTek Industries, Inc. Tue Aug 23 16:53:25	Page: 1	

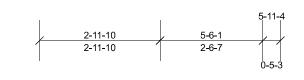
ID:fryb8wDsh9f7ztuv4wkkWjyl9GF-Ps5I?I7BiYLnQGRibNwjugOeqVUFmkjoHKHxS4yl3te

3

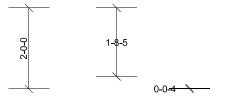
2x4 💊

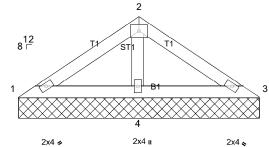
2x4 II

8-11-4


Scale = 1:31.8

Scale = 1:31.8			1								1	
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MP	0.26 0.24 0.11	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 31 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.3 Structural wood she 8-11-4 oc purlins. Rigid ceiling directly bracing. MiTek recommends required cross brac	eathing directly applied v applied or 6-0-0 oc s that Stabilizers and cing be installed during ccordance with Stabiliz	5) * This truss on the botto 3-06-00 tall chord and a 0 Provide mec bearing plat 1, 23 lb uplif 7) This truss is International R802.10.2 a	m chord in all arr by 2-00-00 wide ny other membe chanical connect e capable of with t at joint 3 and 1 designed in acc Residential Coo nd referenced st	ed for a liv eas where will fit betw rs. ion (by oth standing 2 3 lb uplift a cordance w de sections	e load of 20.(a rectangle veen the botto ers) of truss t 26 lb uplift at j at joint 4. ith the 2015 5 R502.11.1 a	om to joint					
I	3=25/8-11 4=560/8-7 Max Horiz 1=-56 (LC Max Uplift 1=-26 (LC 4=-13 (LC Max Grav 1=63 (LC	29), 3=-23 (LC 28),	562									
BOT CHORD WEBS NOTES 1) Unbalance	(lb) or less except w 9-10=-77/268, 2-10= 11-12=-75/261 1-4=-269/132, 3-4=- 2-4=-490/160	=-77/311, 2-11=-74/304	ŀ,									
Vasd=103r II; Exp B; E Exterior (2) Zone; canti and right e MWFRS fo grip DOL= 3) TCLL: ASC DOL=1.15 Pf=13.9 ps	inclosed; MWFRS (e 0-0-6 to 3-0-6, Interi 4-6-0 to 7-6-0, Interi lever left and right ex xposed;C-C for mem r reactions shown; Li 1.33 E 7-10; Pr=20.0 psf Plate DOL=1.15); Pg	iCDL=6.0psf; h=25ft; C nvelope) and C-C ior (1) 3-0-6 to 4-6-0, ior (1) 7-6-0 to 8-11-10 yoosed ; end vertical le bers and forces & umber DOL=1.60 plate (roof live load: Lumber a=20.0 psf (ground sno aber DOL=1.15 Plate	ft									


Job	Truss	Truss Type	Qty	Ply	
22080109	VL06	Valley	1	1	Job Reference (optional)

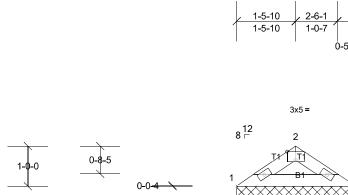

Carter Components - Sanford, Sanford, NC, user

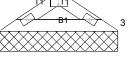
Run: 8.53 S Mar 28 2022 Print: 8.530 S Mar 28 2022 MiTek Industries, Inc. Tue Aug 23 16:53:25 Page: 1 ID:u57sF8GN1nkk1CQ6e4k339yl9B1-Ps5l?I7BiYLnQGRibNwjugOhJVWHmleoHKHxS4yl3te

5-11-4

Scale = 1:28.4

Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC	0.10	DEFL Vert(LL)	in n/a	(loc)	l/defl	L/d 999	PLATES MT20	GRIP 244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15	BC	0.10	Vert(LL)	n/a n/a	-	n/a n/a	999 999	WI120	244/190
TCDL	10.0/20.0	Rep Stress Incr	YES	WB	0.05	Horiz(TL)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC2015/TPI2014	Matrix-MP	0.00	110112(12)	0.00	0	n/a	n/a		
BCDL	10.0										Weight: 20 lb	FT = 20%
LUMBER	· · · · ·	-	7) This truss is									
TOP CHORD				Residential Co			and					
BOT CHORD				nd referenced s	tandard AN	ISI/TPI 1.						
OTHERS	2x4 SP No.3		LOAD CASE(S)	Standard								
BRACING TOP CHORD		eathing directly applied	d or									
BOT CHORD		applied or 6-0-0 oc										
	bracing.											
		s that Stabilizers and sing be installed during	a									
		ccordance with Stabili										
	Installation guide.											
Ν	3=45/5-1 4=316/5- Max Horiz 1=-36 (LC Max Uplift 3=-3 (LC Max Grav 1=66 (LC (LC 2)	14) 28), 3=69 (LC 29), 4=										
FORCES	(lb) - Max. Comp./M (lb) or less except w	ax. Ten All forces 25 /hen shown.	50									
NOTES												
	d roof live loads have	e been considered for	this									
design.	E 7-10; Vult=130mpl	(2)										
Vasd=103n II; Exp B; E Exterior (2) vertical left forces & M	nph; TCDL=6.0psf; E nclosed; MWFRS (e zone; cantilever left and right exposed;C WFRS for reactions	CDL=6.0psf; h=25ft; (nvelope) and C-C and right exposed ; e -C for members and										
	plate grip DOL=1.33											
DOL=1.15		(roof live load: Lumbe =20.0 psf (ground sno										
DOL=1.15)	; Category II; Exp B; ires continuous botto	Fully Exp.; Ct=1.10										


- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 5) 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 3 lb uplift at joint 3. 6)


Job	Truss	Truss Type	Qty	Ply	
22080109	VL07	Valley	1	1	Job Reference (optional)

Carter Components - Sanford, Sanford, NC, user

Run: 8.53 S Mar 28 2022 Print: 8.530 S Mar 28 2022 MiTek Industries, Inc. Tue Aug 23 16:53:25 Page: 1 ID:qUFdgpHdZO_SHWaUmVmX8ayl9B?-Ps5I?I7BiYLnQGRibNwjugOiyVX3mlQoHKHxS4yl3te

2-11-4

2-11-4

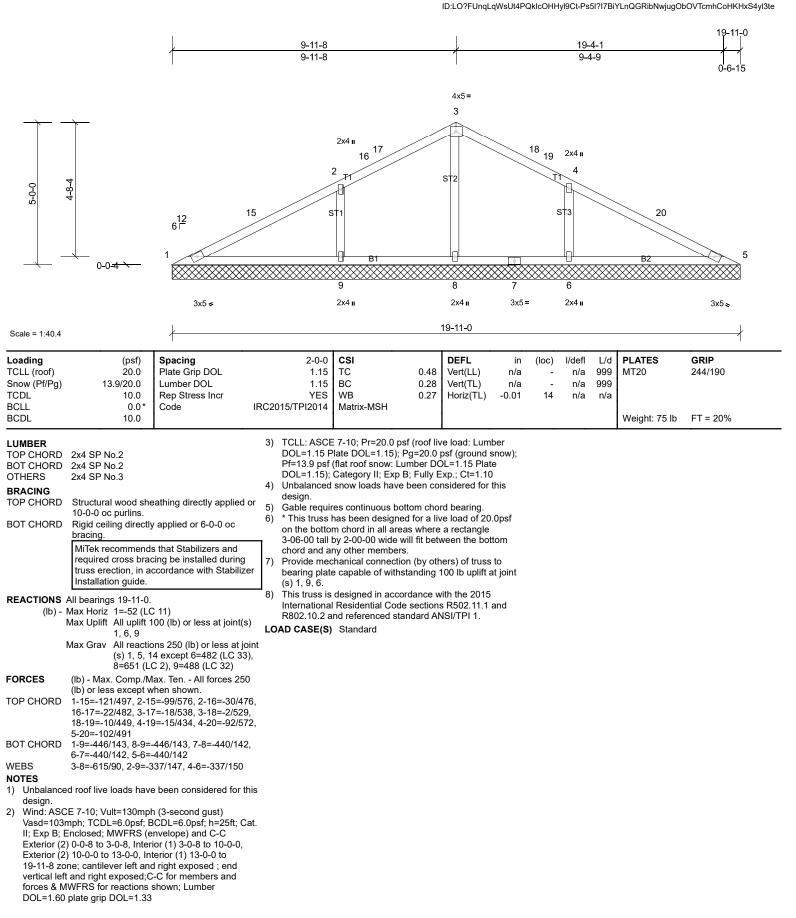
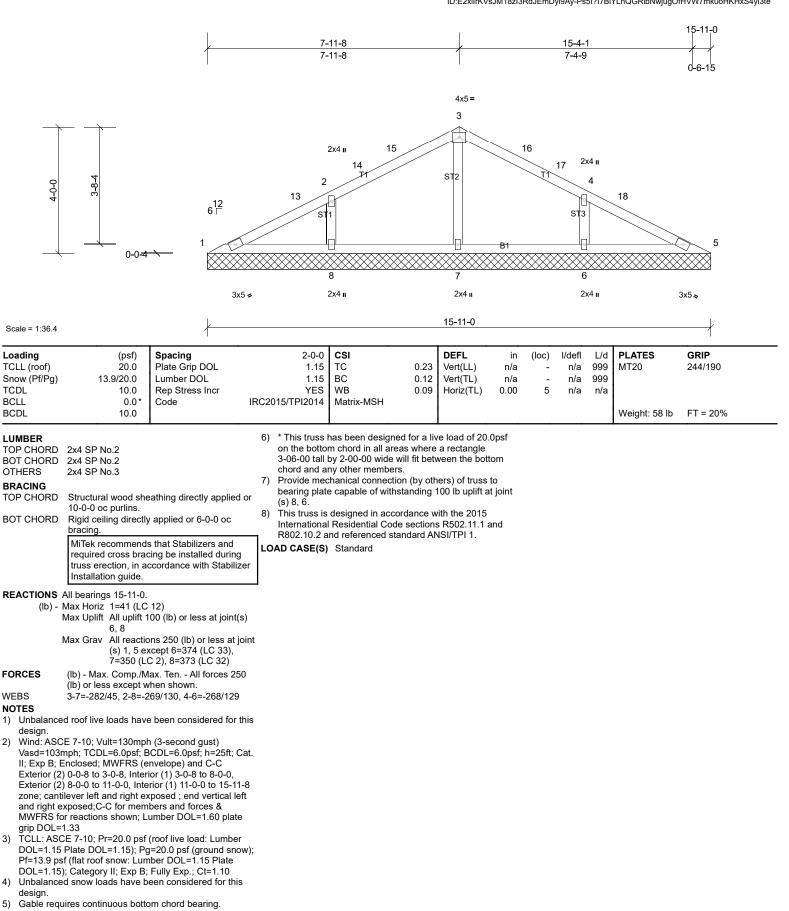
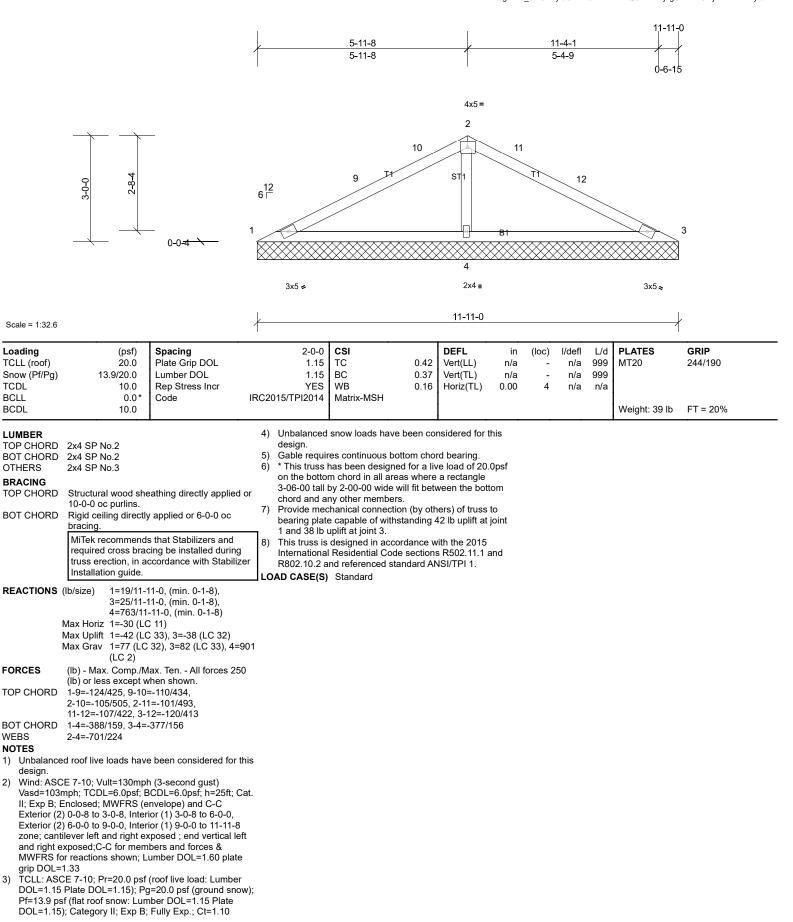

Scale = 1:28.7

Plate Offsets (X	(, Y): [2:0-2-8,Edge]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL	(psf) 20.0 13.9/20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	BC WB	0.06 0.06 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0* 10.0	Code	IRC2015/TPI2014	Matrix-MP							Weight: 8 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD				!		L						
	2-11-4 oc purlins.	eathing directly applied y applied or 10-0-0 oc	or									
	required cross bra	s that Stabilizers and cing be installed during ccordance with Stabiliz	er									
FORCES		lax. Ten All forces 250)									
NOTES 1) Unbalanced design. 2) Wind: ASCI Vasd=103m II; Exp B; E Exterior (2) vertical left forces & MV DOL=1.60 p	d roof live loads hav E 7-10; Vult=130mp Iph; TCDL=6.0psf; E nclosed; MWFRS (e zone; cantilever left and right exposed;C WFRS for reactions blate grip DOL=1.33	e been considered for t h (3-second gust) 3CDL=6.0psf; h=25ft; C envelope) and C-C : and right exposed ; en -C for members and shown; Lumber	at.									
DOL=1.15	Plate DOL=1.15); Pg	(roof live load: Lumber g=20.0 psf (ground snown ber DOL=1.15 Plate	w);									

- Pf=13.9 ps (flat roof snow: Lumber DOL=1.15) Plate DOL=1.15); Category II; Exp B; Fully Exp.; Ct=1.10
 Gable requires continuous bottom chord bearing.
 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tail by 2-00-00 wide will fit between the bottom chord and any other members.
 This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- R802.10.2 and referenced standard ANSI/TPI 1.


LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply		
22080109	VL08	Valley	1	1	Job Reference (optional)	
Carter Components - Sanford, S	Run: 8.53 S Mar 28	2022 Print:	8.530 S Mar	28 2022 MiTek Industries, Inc. Tue Aug 23 16:53:25	Page: 1	


Job	Truss	Truss Type	Qty	Ply		
22080109	VL09	Valley	1	1	Job Reference (optional)	
Carter Components - Sanford, S	Run: 8.53 S Mar 28	2022 Print:	8.530 S Mar	28 2022 MiTek Industries, Inc. Tue Aug 23 16:53:25	Page: 1	

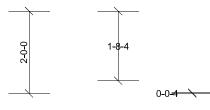
ID:E2xIIrKVsJM18zI3RdJEmDyl9Ay-Ps5I?I7BiYLnQGRibNwjugOfHVW7mk0oHKHxS4yl3te

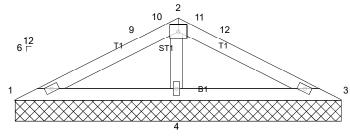
	Job	Truss	Truss Type	Qty	Ply		
	22080109	VL10	Valley	2	1	Job Reference (optional)	
Carter Components - Sanford, Sanford, NC, user			Run: 8.53 S Mar 28	2022 Print:	3.530 S Mar	28 2022 MiTek Industries, Inc. Tue Aug 23 16:53:25	Page: 1

ID:BwwfVPPuw3gsuL6 0I1UA5yl9G?-Ps5I?I7BiYLnQGRibNwjugOcKVSCmjxoHKHxS4yl3te

1)

2)


3)

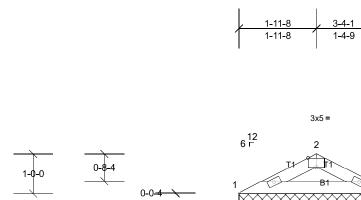

Job	Truss	Truss Type	Qty	Ply		
22080109	VL11	Valley	2	1	Job Reference (optional)	
Carter Components - Sanford,	Run: 8.53 S Mar 28	2022 Print:	8.530 S Mar	28 2022 MiTek Industries, Inc. Tue Aug 23 16:53:25	Page: 1	

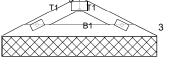
Page: 1 ID:b0keLYOegr_KEIB1EAvPTGyl9At-Ps5I?I7BiYLnQGRibNwjugOg3VV1mkKoHKHxS4yl3te

2x4 ≤

2x4 👟

Scale = 1:28				/		7	7-11-0					
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MP	0.18 0.19 0.07	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 25 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 7-11-0 oc purlins. Rigid ceiling directly bracing. MiTek recommenda required cross brack truss erection, in a Installation guide.	eathing directly applied of applied or 6-0-0 oc s that Stabilizers and cing be installed during ccordance with Stabilize	3-06-00 tall chord and a 7) Provide mec bearing plat and 6 lb upi 8) This truss is International R802.10.2 a LOAD CASE(S)	m chord in all a by 2-00-00 wide ny other memb chanical connect e capable of with ft at joint 3. designed in ac Residential Co nd referenced s	reas where e will fit betw ers. ction (by oth thstanding 2 cordance w ode sections	a rectangle veen the bott ers) of truss ? Ib uplift at jo ith the 2015 \$ R502.11.1 a	om to bint 1					-
	3=48/7-1 4=446/7- Max Horiz 1=-20 (LC Max Uplift 1=-2 (LC Max Grav 1=78 (LC (LC 2)	I-0, (min. 0-1-8), 11-0, (min. 0-1-8) 2 11) 15), 3=-6 (LC 16) 32), 3=82 (LC 33), 4=5 lax. Ten All forces 250										
 NOTES 1) Unbalance design. 2) Wind: ASC Vasd=103r II; Exp B; E Exterior (2) Exterior (2) Zone; canti and right e MWFRS fo grip DOL=1.33) TCLL: ASC DOL=1.15 Pf=13.9 ps DOL=1.15) 4) Unbalance design. 	d roof live loads have E 7-10; Vult=130mpl nph; TCDL=6.0psf; E inclosed; MWFRS (e 0-0-8 to 3-0-8, Inter 14-0-0 to 6-9-3, Inter lever left and right e) xposed;C-C for mem r reactions shown; L 1.33 E 7-10; Pr=20.0 psf Plate DOL=1.15); Pg (flat roof snow: Lun ; Category II; Exp B;	CDL=6.0psf; h=25ft; Ca nvelope) and C-C ior (1) 3-0-8 to 4-0-0, ior (1) 6-9-3 to 7-11-8 (posed ; end vertical lef bers and forces & umber DOL=1.60 plate (roof live load: Lumber j=20.0 psf (ground snov ber DOL=1.15 Plate Fully Exp.; Ct=1.10 een considered for this	at.									


Job	Truss	Truss Type	Qty	Ply	
22080109	VL12	Valley	2	1	Job Reference (optional)


Carter Components - Sanford, Sanford, NC, user

Run: 8.53 S Mar 28 2022 Print: 8.530 S Mar 28 2022 MiTek Industries, Inc. Tue Aug 23 16:53:25 Page: 1 ID:Tn_9BwR9k4VljMUoT0_Ld6yl9Ap-Ps5l?l7BiYLnQGRibNwjugOhAVWHmlQoHKHxS4yl3te

3-11-0

0-6-15

2x4 👟

3-11-0

2x4 ≠

Scale = 1:29.1

Plate Offsets (X, Y): [2:0-2-8,Edge]

		-										
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	тс	0.11	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15	BC	0.11	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC2015/TPI2014	Matrix-MP	0.00		0.00	Ũ				
BCDL	10.0	Code	11(02013/11/12014	Wath A-Wil							Weight: 10 lb	FT = 20%
DODL	10.0	-									Weight. To ib	1 1 - 20 %
LUMBER			This truss is	designed in acco	ordance w	ith the 2015						
TOP CHORD	2x4 SP No.2			Residential Cod			and					
BOT CHORD				nd referenced st								
	2X4 OF NU.2		LOAD CASE(S)		and and it is							
BRACING	<u>.</u>		. ,	Stanuaru								
TOP CHORD		eathing directly applied	or									
	3-11-0 oc purlins.											
BOT CHORD		y applied or 10-0-0 oc										
	bracing.											
	MiTek recommend	s that Stabilizers and										
	required cross bra	cing be installed during										
	truss erection, in a	ccordance with Stabiliz	er									
	Installation guide.											
DEACTIONS	(1. /	44.0.(: 0.4.0)										
REACTIONS		11-0, (min. 0-1-8),										
		11-0, (min. 0-1-8)										
	Max Horiz 1=-9 (LC											
	Max Grav 1=157 (L	<i>,,</i> (<i>, ,</i>										
FORCES		lax. Ten All forces 25	0									
	(lb) or less except v	vhen shown.										
TOP CHORD	1-2=-271/114											
NOTES												
	d roof live loads hav	e been considered for t	his									
design.												
	E 7-10; Vult=130mp											
		3CDL=6.0psf; h=25ft; C	Cat.									
	Enclosed; MWFRS (e											
		and right exposed ; er	ıd									
		C-C for members and										
	WFRS for reactions											
	plate grip DOL=1.33											
		(roof live load: Lumber										
		g=20.0 psf (ground sno	w);									
		nber DOL=1.15 Plate										
); Category II; Exp B;											
	d snow loads have b	een considered for this	6									
design.												

6) Gable requires continuous bottom chord bearing.
6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and area the provide rest. chord and any other members.