

RE: 150.1773 A 150.1773 A with CP Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:

Customer: Project Name: 150.1773 A Lot/Block: Address: City:

Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7-16 Roof Load: 40.0 psf Design Program: MiTek 20/20 8.5 Wind Speed: 120 mph Floor Load: N/A psf

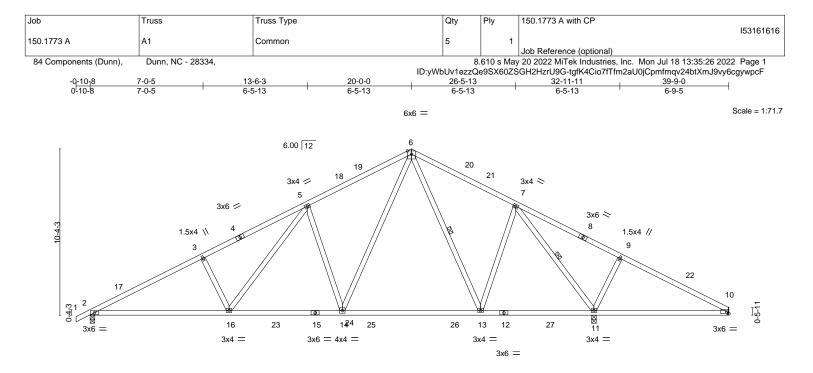
This package includes 19 individual, dated Truss Design Drawings and 0 Additional Drawings.

2 I53161617 A1A 3 I53161618 A1E 4 I53161619 A2 5 I53161620 A3 6 I53161621 A3E 7 I53161622 B1 8 I53161623 BE 9 I53161624 BG 10 I53161625 P10 11 I53161626 P10E	7/19/2022 7/19/2022 7/19/2022 7/19/2022 7/19/2022 7/19/2022 7/19/2022 7/19/2022 7/19/2022
12 I53161627 V1 13 I53161628 V2	7/19/2022 7/19/2022
14I53161629V315I53161630V416I53161631V517I53161632VP118I53161633VP219I53161634VP3	7/19/2022 7/19/2022 7/19/2022 7/19/2022 7/19/2022 7/19/2022

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision

based on the parameters provided by 84 Components - #2383.

Truss Design Engineer's Name: Gilbert, Eric


My license renewal date for the state of North Carolina is December 31, 2022

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Gilbert, Eric

	7-12 15- 7-12 7-0		24-3-10 8-7-4	<u>31-4-4</u> 7-0-10		<u>39-9-0</u> 8-4-12	1
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 11.6/15.0 TCDL 10.0 POLL 0.0	SPACING- 2-0-C Plate Grip DOL 1.15 Lumber DOL 1.14 Rep Stress Incr YES	5 TC 0.77 5 BC 0.86	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) l/de -0.24 13-14 >99 -0.41 13-14 >91 0.06 11 n/	9 240 2 180	PLATES MT20	GRIP 197/144
BCLL 0.0 * BCDL 10.0	Code IRC2018/TPI2014	Matrix-S				Weight: 214 lb	FT = 20%
	2×4 SPE No 2		BRACING-	Structural wood shoa	thing directly a	polied or 2.2.0 oc purling	

LUMBER-		BRACING-		
TOP CHORD	2x4 SP No.2 or 2x4 SPF No.2	TOP CHORD	Structural wood sheat	hing directly applied or 2-2-0 oc purlins.
BOT CHORD	2x4 SP No.1 *Except*	BOT CHORD	Rigid ceiling directly a	pplied or 10-0-0 oc bracing, Except:
	12-15: 2x4 SP No.2 or 2x4 SPF No.2		6-0-0 oc bracing: 10-1	1.
WEBS	2x4 SP No.3	WEBS	1 Row at midpt	6-13, 7-11
REACTIONS.	(size) 2=0-3-8 11=0-3-8 10=Mechanical			

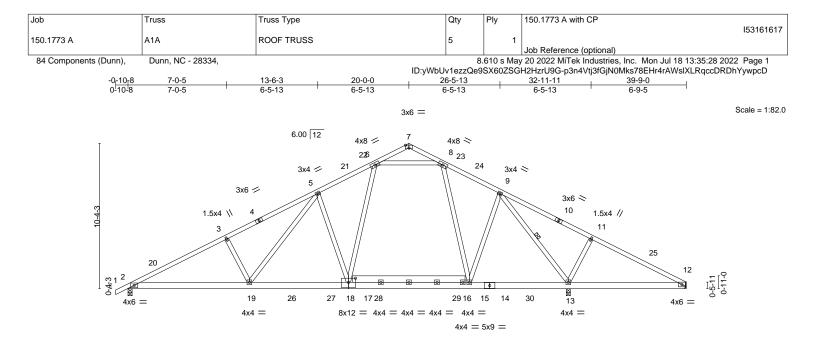
Max Hors: (322) 2=0-5-5, 1=0-5-5, 1=0-9000 (312000 Max Horz 2=146 (LC 16) Max Uplift 2=-74 (LC 16), 11=-54 (LC 17), 10=-49 (LC 36) Max Grav 2=1359 (LC 3), 11=2158 (LC 3), 10=156 (LC 37)

 BOT CHORD
 2-16=-176/2041, 14-16=-64/1498, 13-14=0/895, 11-13=0/596, 10-11=-377/63

 WEBS
 3-16=-361/165, 5-16=-69/713, 5-14=-664/202, 6-14=-107/1042, 6-13=-329/68, 7-13=0/625, 7-11=-1882/58, 9-11=-403/170

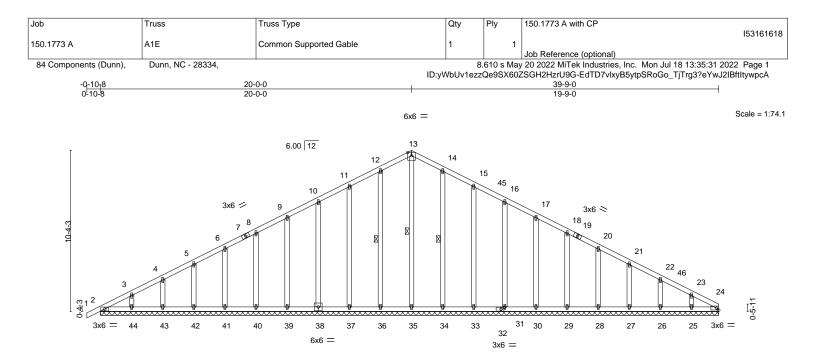
NOTES-

1) Unbalanced roof live loads have been considered for this design.


- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 20-0-0, Exterior(2R) 20-0-0 to 23-0-0, Interior(1) 23-0-0 to 39-8-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Refer to girder(s) for truss to truss connections.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 10.

10) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 11. This connection is for uplift only and does not consider lateral forces.

11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



818 Soundside Road Edenton, NC 27932

L	8-7-12 15-8-6	24-3-1		31-4-4		39-9-0		
Plate Offsets (X,Y) [7:0-3-0,E	8-7-12 7-0-10 Edge], [18:0-6-0,0-3-8]	8-7-4		7-0-10		8-4-12		
TCLL (roof) 20.0 Snow (Pf/Pg) 11.6/15.0 TCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15	CSI. TC 0.76 BC 0.95	DEFL. Vert(LL) Vert(CT)	in (loc) -0.34 18-19 -0.59 18-19	>632	L/d 240 180	PLATES MT20	GRIP 197/144
BCLL 0.0 * BCDL 10.0	Rep Stress Incr YES Code IRC2018/TPI2014	WB 0.71 Matrix-S	Horz(CT)	0.07 12	n/a	n/a	Weight: 266 lb	FT = 20%
LUMBER-		B	RACING-					
TOP CHORD 2x4 SP No.2 or 2 BOT CHORD 2x6 SP No.2 WEBS 2x4 SP No.3	2x4 SPF No.2	TC BC	OP CHORD OT CHORD	Structural wood Rigid ceiling dire 1 Row at midpt	0	2 1 1	d or 2-7-13 oc purlin pracing.	s.
Max Horz 2=14 Max Uplift 2=-1	3-8, 13=0-3-8, 12=Mechanical 7(LC 16) 12(LC 16), 13=-205(LC 17), 12=-95(L 01(LC 3), 13=1233(LC 40), 12=954(L							
TOP CHORD 2-3=-2929/212 11-12=-1596/2 BOT CHORD 2-19=-255/259	2, 18-19=-129/1958, 15-18=-58/1553	-1807/235, 9-11=-1543/31 13-15=-97/1596, 12-13=-2	,					
	, 5-19=-89/866, 5-18=-747/192, 6-18= , 11-13=-394/178, 6-8=-1394/194	-57/857, 8-15=-42/475,						
 2) Wind: ASCE 7-16; Vult=120m MWFRS (envelope) gable end Interior(1) 23-0-0 to 39-8-4 zo MWFRS for reactions shown; 3) TCLL: ASCE 7-16; Pr=20.0 ps DOL=1.15; Is=1.0; Rough Ca 4) Unbalanced snow loads have 5) This truss has been designed non-concurrent with other live 6) This truss has been designed 7) * This truss has been designed 10) One H2.5A Simpson Strong- connection is for uplift only a 11) This truss is designed in acc referenced standard ANSI/T 	for greater of min roof live load of 12. loads. for a 10.0 psf bottom chord live load i d for a live load of 20.0psf on the bott ord and any other members, with BCC russ connections. on (by others) of truss to bearing plate -Tie connectors recommended to com ind does not consider lateral forces. ordance with the 2018 International R	$_{\rm D}$ 2-1-8, Interior(1) 2-1-8 to end vertical left and right e 60 =1.15); Pg=15.0 psf; Pf=11 Ct=1.10 0 psf or 1.00 times flat roof nonconcurrent with any oth om chord in all areas when L = 10.0psf. capable of withstanding 10 nect truss to bearing walls	20-0-0, Exterior(xposed;C-C for n I.6 psf (Lum DOL f load of 11.6 psf er live loads. e a rectangle 3-6 D0 lb uplift at joint due to UPLIFT at	2R) 20-0-0 to 23 nembers and for =1.15 Plate on overhangs -0 tall by 2-0-0 w (s) 12. jt(s) 2 and 13. T	ces &	I DE CONTRACTOR	SEAL 036322	22

Plate Offsets (X,Y) [32:0-2-4	,0-1-8]	39-9-0						
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 11.6/15.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2018/TPI2014	CSI. TC 0.06 BC 0.03 WB 0.15 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.00 1 -0.00 1 0.01 24	n/r n/r	L/d 120 120 n/a	PLATES MT20 Weight: 270 lb	GRIP 197/144 FT = 20%
LUMBER- TOP CHORD 2x4 SP No.2 or 2 BOT CHORD 2x4 SP No.2 or 2		TC		Structural woo Rigid ceiling d		0 7 11	plied or 6-0-0 oc purlins) oc bracing.	S.

39-9-0

2x4 SPF No.2 OTHERS 2x4 SP No.3

WFBS

iling uy app 1 Row at midpt 13-35, 12-36, 14-34

REACTIONS. All bearings 39-9-0.

Max Horz 2=146(LC 16) (lb) -

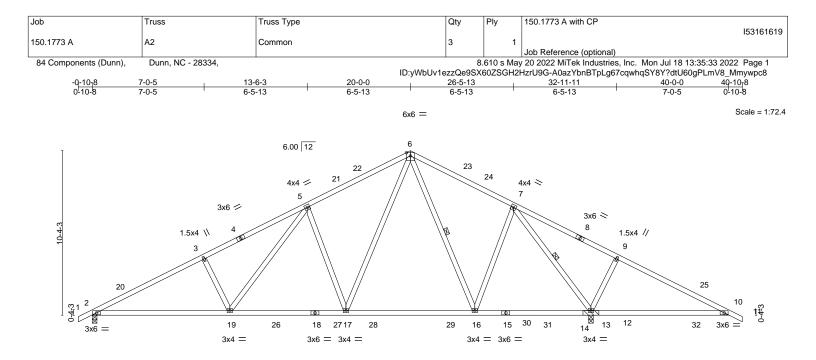
Max Uplift All uplift 100 lb or less at joint(s) 2, 36, 37, 38, 39, 40, 41, 42, 43, 44, 34, 33, 31, 30, 29, 28, 27, 26, 25

All reactions 250 lb or less at joint(s) 2, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 34, 33, 31, 30, Max Grav 29. 28. 27. 26. 25. 24

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.


- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) -0-10-8 to 2-0-0, Exterior(2N) 2-0-0 to 20-0-0, Corner(3R) 20-0-0 to 23-0-0, Exterior(2N) 23-0-0 to 39-9-0 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 7) All plates are 1.5x4 MT20 unless otherwise indicated.
- 8) Gable requires continuous bottom chord bearing.
- 9) Gable studs spaced at 2-0-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

12) n/a

13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

	8-7-		<u>15-11-6</u> 7-3-10		<u>24-0-1</u> 8-1-4	-		31-4-4 7-3-10			40-0-0 8-7-12	
LOADING (ps TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	20.0	SPACING- Plate Grip DC Lumber DOL Rep Stress In Code IRC201	1.15 cr YES	CSI TC BC WB Mat	0.80 0.80	DEFL. Vert(LL) Vert(CT) Horz(CT	in -0.19 -0.36 0.05	16-17	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 218 lb	GRIP 197/144 FT = 20%

LUMBER-		BRACING-		
TOP CHORD	2x4 SP No.2 or 2x4 SPF No.2	TOP CHORD	Structural wood sheath	ing directly applied or 2-6-7 oc purlins.
BOT CHORD	2x4 SP No.1 *Except*	BOT CHORD	Rigid ceiling directly ap	plied or 10-0-0 oc bracing, Except:
	15-18: 2x4 SP No.2 or 2x4 SPF No.2		6-0-0 oc bracing: 10-13	3.
WEBS	2x4 SP No.3	WEBS	1 Row at midpt	6-16, 7-13

REACTIONS. (size) 2=0-3-8, 13=(0-3-8 + bearing block) (req. 0-3-10) Max Horz 2=-141(LC 21) Max Uplift 2=-86(LC 16), 13=-94(LC 17) Max Grav 2=1323(LC 3), 13=2323(LC 3)

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 2-3=-2244/149, 3-5=-2111/188, 5-6=-1398/190, 6-7=-833/152, 7-9=-444/924, 9-10=-481/768

 BOT CHORD
 2-19=-193/1995, 17-19=-84/1443, 16-17=0/848, 13-16=0/499, 10-13=-601/474

 WEBS
 3-19=-362/165, 5-19=-65/727, 5-17=-664/200, 6-17=-104/1018, 6-16=-392/200, 7-16=-54/682, 7-13=-2058/336, 9-13=-405/169

NOTES-

1) 2x4 SP No.1 bearing block 12" long at jt. 13 attached to front face with 2 rows of 10d (0.131"x3") nails spaced 3" o.c. 8 Total fasteners. User Defined Bearing crushing capacity= 425psi.

2) Unbalanced roof live loads have been considered for this design.

3) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 20-0-0, Exterior(2R) 20-0-0 to 23-0-0, Interior(1) 23-0-0 to 40-10-8 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

5) Unbalanced snow loads have been considered for this design.

6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

9) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 13. This connection is for uplift only and does not consider lateral forces.
10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and

 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

July 19,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

AMITEK ATMILIATE B18 Soundside Road Edenton, NC 27932

L			20-0-0		-8-12					
	10	-3-4		9-8-12	9-	-8-12	I		10-3-4	1
LOADING (ps TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	20.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/	2-0-0 1.15 1.15 YES IPI2014	CSI. TC 0.77 BC 0.87 WB 0.62 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.31 12-14 -0.54 12-14 0.13 10	l/defl >999 >881 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 206 lb	GRIP 197/144 FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS	2x4 SP No.2 or 1 1-4,8-11: 2x4 SF 2x4 SP DSS *E 13-15: 2x4 SP N 2x4 SP No.3	kcept*			BOT CHORD	Structural wood Rigid ceiling dir 1 Row at midpt	ectly appl			
REACTIONS.	Max Horz 2=-1 Max Uplift 2=-7 Max Grav 2=17	5(LC 16), 10=-75(LC 17 799(LC 3), 10=1799(LC	3)					A LINE	ATH CARO	N
FORCES. (III TOP CHORD		lax. Ten All forces 25(7, 3-5=-3019/123, 5-6=-: 38			23,				SEAL	
BOT CHORD WEBS		15, 14-16=-65/2325, 12- 1, 7-14=-779/175, 7-12= 2			, 5-16=0/717,				036322	
2) Wind: ASCI MWFRS (er Interior(1) 2 & MWFRS (3) TCLL: ASC DOL=1.15);	E 7-16; Vult=120m nvelope) gable en 3-0-0 to 40-10-8 z for reactions show E 7-16; Pr=20.0 p ; Is=1.0; Rough Ca	ave been considered for hph (3-second gust) Vas d zone and C-C Exterio cone; cantilever left and nr; Lumber DOL=1.60 p sf (roof LL: Lum DOL=1 at B; Partially Exp.; Ce= been considered for th	sd=95mph; TCD r(2E) -0-10-8 to right exposed ; o late grip DOL=1 .15 Plate DOL= 1.0; Cs=1.00; Ct	2-1-8, Interior(1) 2-1-8 end vertical left and ric .60 1.15); Pg=15.0 psf; Pf=	to 20-0-0, Exterior(to exposed;C-C for	2R) 20-0-0 to 23 members and fo			C A. GILBE	R. I.

5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.

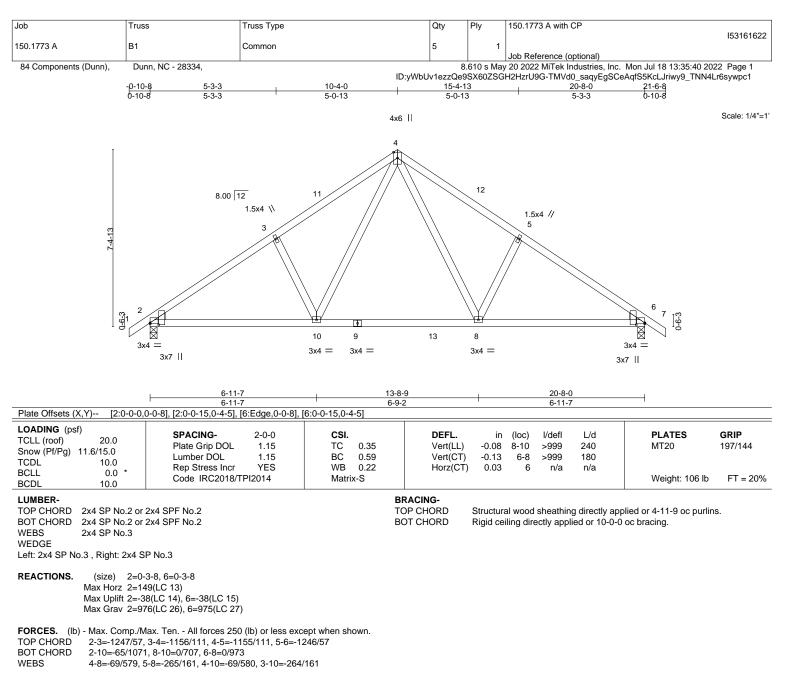

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

8) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 10. This connection is for uplift only and does not consider lateral forces.

9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

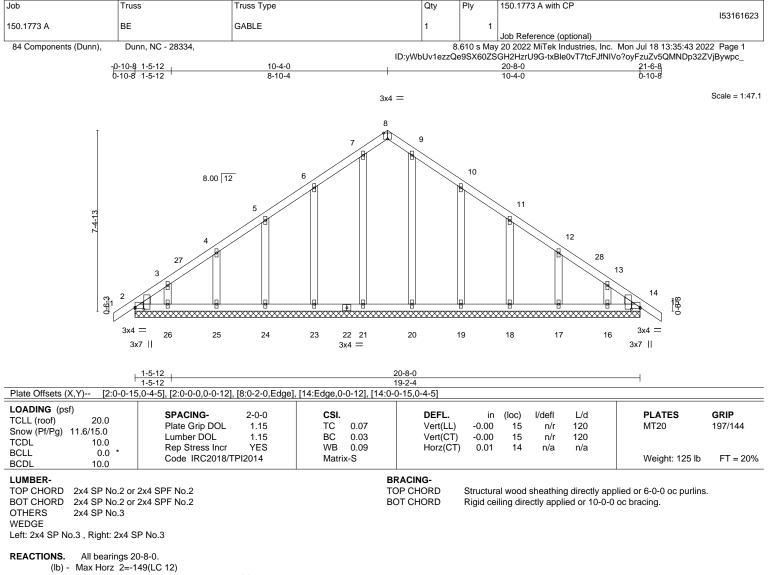
July 19,2022



		40-0- 40-0-						
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 11.6/15.0 TCDL 10.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.06 BC 0.03 WB 0.15	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.00 24 -0.00 24 0.01 24	n/r n/r	L/d 120 120 n/a	PLATES MT20	GRIP 197/144
BCDL 10.0	Code IRC2018/TPI2014	Matrix-S					Weight: 272 lb	FT = 20°
LUMBER- TOP CHORD 2x4 SP No.2 or BOT CHORD 2x4 SP No.2 or OTHERS 2x4 SP No.3		T B	OT CHORD	Structural woo Rigid ceiling d 1 Row at midp	rectly app	lied or 10-0-0	oplied or 6-0-0 oc purlins 0 oc bracing. 2-36, 14-34	5.
28, 2 Max Grav All 30, 2 FORCES. (Ib) - Max. Comp./N		36, 37, 38, 39, 40, 41, 4						
 2) Wind: ASCE 7-16; Vult=120n MWFRS (envelope) gable en Exterior(2N) 23-0-0 to 40-10- forces & MWFRS for reaction 3) Truss designed for wind load Gable End Details as applica 4) TCLL: ASCE 7-16; Pr=20.0 p DOL=1.15); Is=1.0; Rough C 	ave been considered for this design. nph (3-second gust) Vasd=95mph; TCD d zone and C-C Corner(3E) -0-10-8 to 2 8 zone; cantilever left and right exposed as shown; Lumber DOL=1.60 plate grip I s in the plane of the truss only. For stud ble, or consult qualified building designe isf (roof LL: Lum DOL=1.15 Plate DOL=: at B; Partially Exp.; Ce=1.0; Cs=1.00; Cf been considered for this design.	-0-0, Exterior(2N) 2-0-0 ; end vertical left and rig DOL=1.60 s exposed to wind (norm r as per ANSI/TPI 1. 1.15); Pg=15.0 psf; Pf=1	to 20-0-0, Corner(ght exposed;C-C f nal to the face), se	(3R) 20-0-0 to a or members ar	d		TH CARO	<i>u.</i>

- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 7) All plates are 1.5x4 MT20 unless otherwise indicated.
- 8) Gable requires continuous bottom chord bearing.
- 9) Gable studs spaced at 2-0-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 12) n/a
- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

ENGINEERING BY ERENCO AMITek Affiliate 818 Soundside Road Edenton, NC 27932


NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 10-4-0, Exterior(2R) 10-4-0 to 13-4-0, Interior(1) 13-4-0 to 21-6-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 6. This connection is for uplift only and does not consider lateral forces.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

ENGINEERING BY ENGINEERING BY A MITEK Affiliate 818 Soundside Road Edenton, NC 27932

 Max Uplift
 All uplift 100 lb or less at joint(s) 2, 23, 24, 25, 19, 18, 17, 14, 16, 26

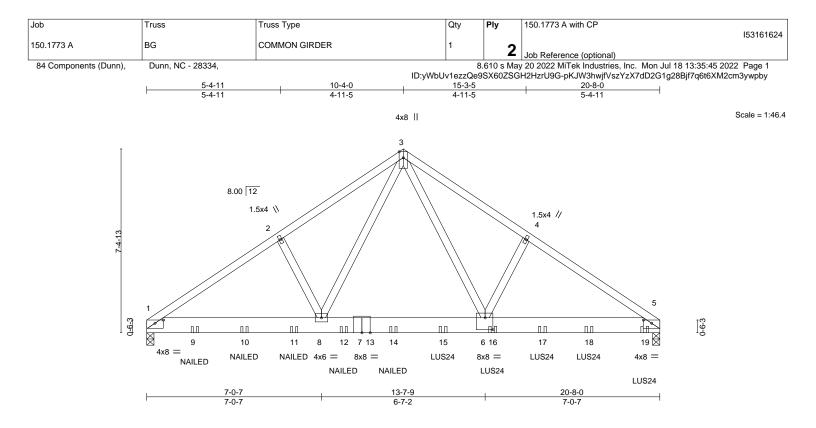
 Max Grav
 All reactions 250 lb or less at joint(s) 2, 20, 21, 23, 24, 25, 19, 18, 17, 14, 16, 26

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) -0-10-8 to 2-1-8, Exterior(2N) 2-1-8 to 10-4-0, Corner(3R) 10-4-0 to 13-4-0, Exterior(2N) 13-4-0 to 21-6-8 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 6) All plates are 1.5x4 MT20 unless otherwise indicated.
- 7) Gable requires continuous bottom chord bearing.
- 8) Gable studs spaced at 2-0-0 oc.
- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


11) n/a

12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

ENGINEERING BY REPACO A MITCH Affiliate

818 Soundside Road Edenton, NC 27932

Plate Offsets (X,Y) [1:0-4-0,0	0-1-9], [5:0-4-0,0-1-9], [6:0-3-12,0-5-12]							
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 11.6/15.0 TCDL 10.0 PCUL 20.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO	CSI. TC 0.44 BC 0.47 WB 0.78	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.08 5-6 -0.15 5-6 0.02 5	>999 >999	L/d 240 180 n/a	PLATES MT20	GRIP 197/144
BCLL 0.0 * BCDL 10.0	Code IRC2018/TPI2014	Matrix-S					Weight: 267 lb	FT = 20%
LUMBER- TOP CHORD 2x4 SP No.2 or : BOT CHORD 2x8 SP No.2 *E: 5-7: 2x8 SP DS WEBS 2x4 SP No.3	ĸcept* S	T				ng directly appl lied or 10-0-0	lied or 5-2-5 oc purlins oc bracing.	
Max Horz 1=-1 Max Uplift 1=-2	3-8, 5=(0-3-8 + TBE4 Simpson Strong-1 39(LC 40) 46(LC 10), 5=-475(LC 11) 234(LC 2), 5=4518(LC 3)	īe) (req. 0-3-9)						
TOP CHORD 1-2=-3404/389 BOT CHORD 1-8=-348/2740	lax. Ten All forces 250 (lb) or less exc 9, 2-3=-3277/446, 3-4=-4798/591, 4-5=- 9, 6-8=-203/2307, 5-6=-381/3999 8, 4-6=-282/192, 3-8=-179/951, 2-8=-28	907/534						
 Top chords connected as follows: 2 All loads are considered equaply connections have been pr Unbalanced roof live loads hat Wind: ASCE 7-16; Vult=120m MWFRS (envelope) gable engrip DOL=1.60 TCLL: ASCE 7-16; Pr=20.0 p DOL=1.15); Is=1.0; Rough Ca This truss has been designed will fit between the bottom chw TBE4 Simpson Strong-Tie cofor uplift only and does not co One H2.5A Simpson Strong-Tie 	follows: 2x8 - 2 rows staggered at 0-5-0 2x4 - 1 row at 0-9-0 oc. ally applied to all plies, except if noted as rovided to distribute only loads noted as ave been considered for this design. nph (3-second gust) Vasd=95mph; TCD d zone; cantilever left and right exposed sf (roof LL: Lum DOL=1.15 Plate DOL= at B; Partially Exp.; Ce=1.0; Cs=1.00; Ci I for a 10.0 psf bottom chord live load no ed for a live load of 20.0psf on the botton ord and any other members, with BCDL nnectors recommended to connect trus:	oc. a front (F) or back (B) fac (F) or (B), unless otherw L=6.0psf; BCDL=6.0psf; ; end vertical left and rig 1.15); Pg=15.0 psf; Pf=1 =1.10 nconcurrent with any ot n chord in all areas whe = 10.0psf. s to bearing walls due to	vise indicated. h=25ft; Cat. II; Exp ght exposed; Lumb 1.6 psf (Lum DOL= her live loads. re a rectangle 3-6-1 UPLIFT at jt(s) 5.	b B; Enclosed; per DOL=1.60 =1.15 Plate 0 tall by 2-0-0 This connectio	plate wide	THE REAL PROPERTY OF THE PROPE	SEAL 036322	22
WARNING - Verify design parame Design valid for use only with MITek a truss system. Before use, the buil building design. Bracing indicated i is always required for stability and tr fabrication, storage, delivery, erectic	ters and READ NOTES ON THIS AND INCLUDED (a) connectors. This design is based only upon par- ding designer must verify the applicability of design s to prevent buckling of individual truss web and/or o prevent collapse with possible personal injury and n and bracing of trusses and truss systems, see Truss Plate Institute, 2670 Crain Highway, Suite 2	ameters shown, and is for an ir parameters and properly inco chord members only. Addition property damage. For geners ANSI/TPI1 Quality Cr	ndividual building compo rporate this design into t nal temporary and perma	onent, not the overall anent bracing ie	ponent		ENGINEERING BY AMITEK AT 818 Soundside Road Edenton, NC 27932	D

Job	Truss	Truss Type	Qty	Ply	150.1773 A with CP
					153161624
150.1773 A	BG	COMMON GIRDER	1	2	
				-	Job Reference (optional)
84 Components (Du	nn), Dunn, NC - 28334,		8	8.610 s May	/ 20 2022 MiTek Industries, Inc. Mon Jul 18 13:35:46 2022 Page 2
			ID:vWbUv1ezzQe95	X60ZSGH	2HzrU9G-IWtuH1xLOo_gA76KBwZVatbJx6?MZZ7EI0oA.IWvwpbx

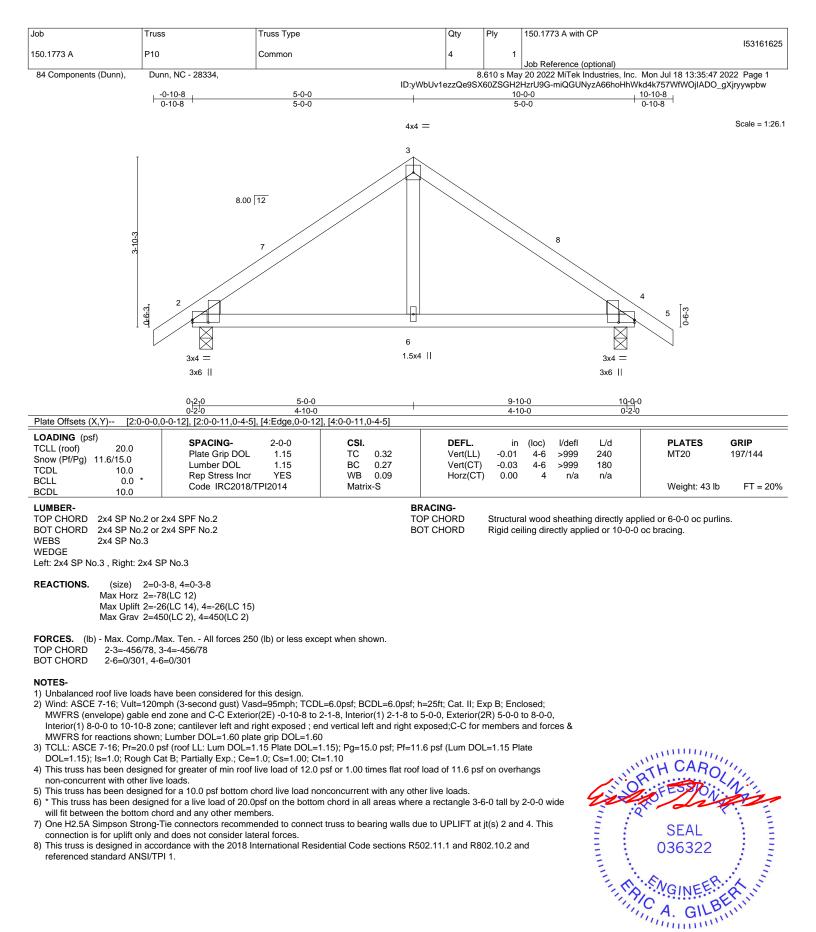
NOTES-

10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

11) Use Simpson Strong-Tie LUS24 (4-SD9112 Girder, 2-SD9212 Truss, Single Ply Girder) or equivalent spaced at 2-3-0 oc max. starting at 11-11-4 from the left end to 20-0-12 to connect truss(es) to front face of bottom chord.

12) Fill all nail holes where hanger is in contact with lumber.

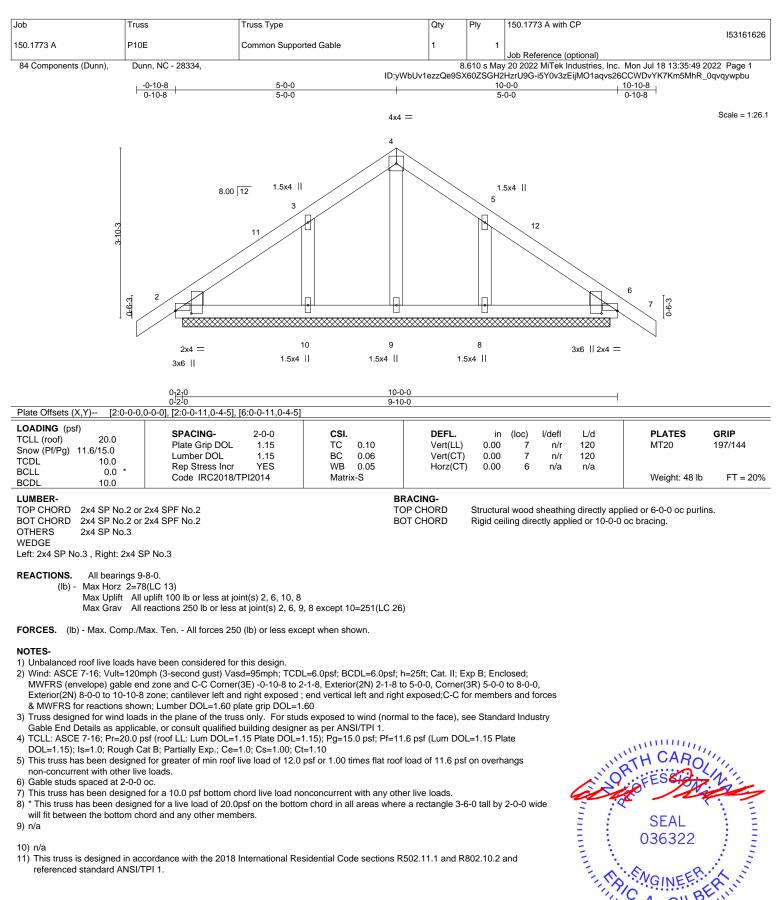
13) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.


LOAD CASE(S) Standard 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

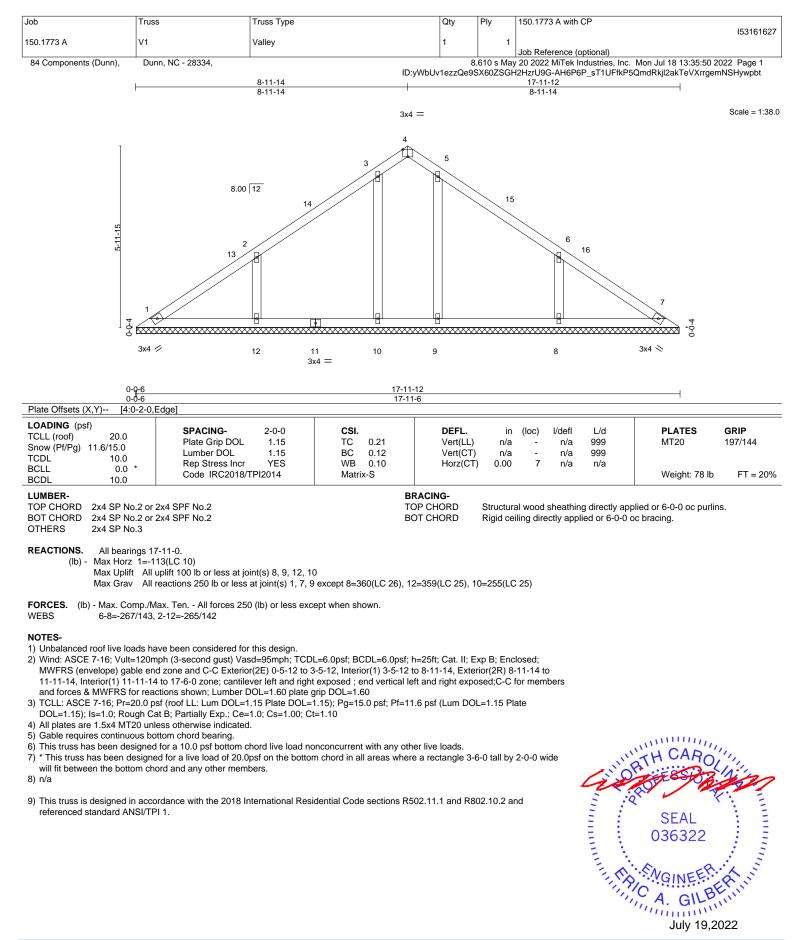
Vert: 1-3=-43, 3-5=-43, 1-5=-20 Concentrated Loads (lb)

Vert: 9=-64(F) 10=-64(F) 11=-64(F) 12=-64(F) 14=-64(F) 15=-719(F) 16=-719(F) 17=-719(F) 18=-719(F) 19=-725(F)



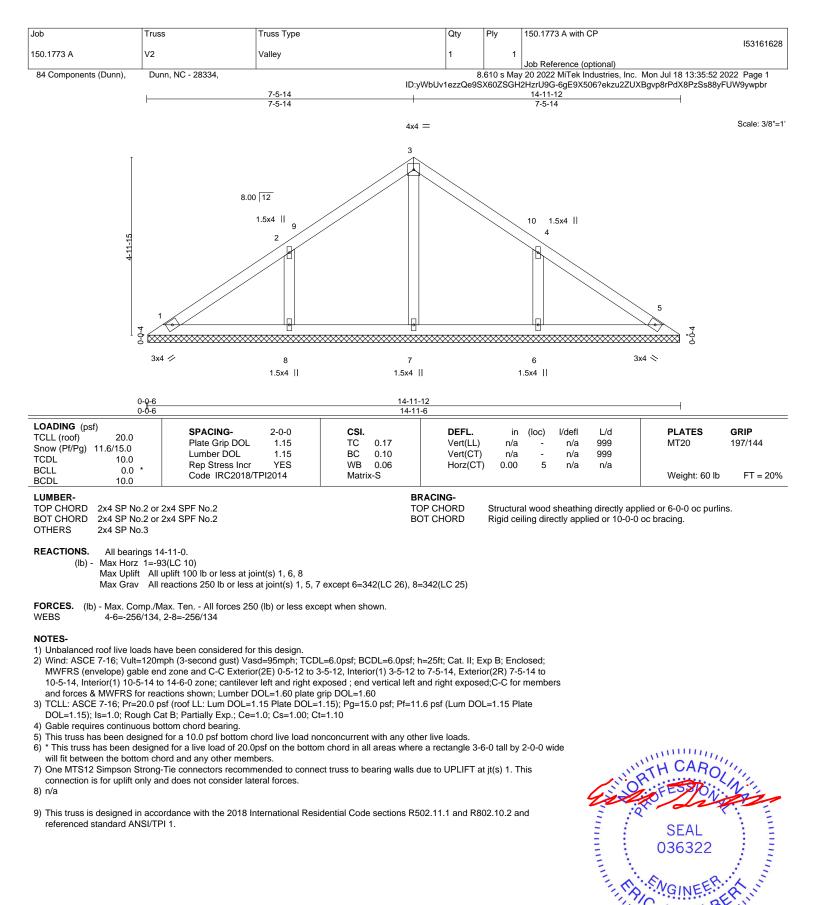
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

July 19,2022



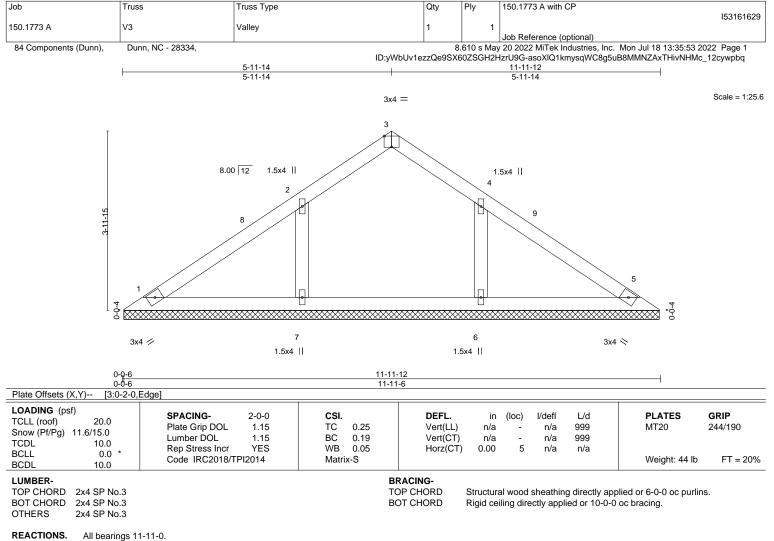
10) n/a

11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


818 Soundside Road Edenton, NC 27932

RE USE. nt, not overall

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


818 Soundside Road Edenton, NC 27932

TRENGINEERING BY A MiTek Atfiliate

July 19,2022

(lb) -

Max Horz 1=-73(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 6, 7 Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 6=309(LC 26), 7=311(LC 25)

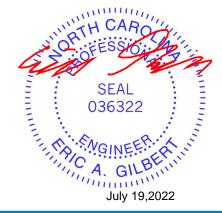
FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

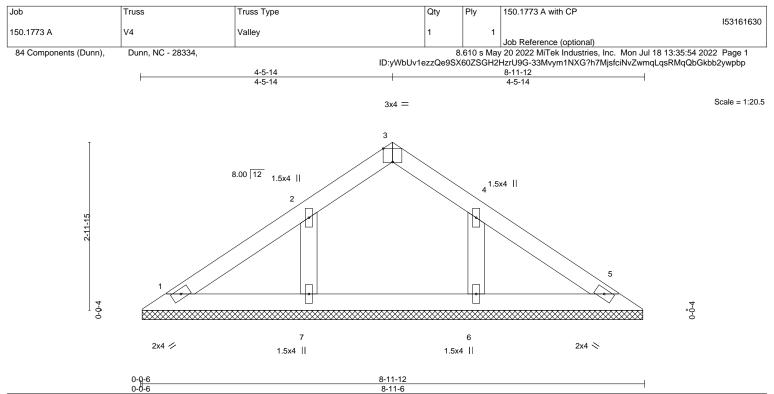
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-5-12 to 3-5-12, Interior(1) 3-5-12 to 5-11-14, Exterior(2R) 5-11-14 to 8-11-14, Interior(1) 8-11-14 to 11-6-0 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10


4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) n/a

8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

818 Soundside Road Edenton, NC 27932

Plate Offsets (X,Y) [3:0-2-0,E	dge]							
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 11.6/15.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2018/TPI2014	CSI. TC 0.13 BC 0.11 WB 0.03 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	n/a	c) l/defl - n/a - n/a 5 n/a	L/d 999 999 n/a	PLATES MT20 Weight: 32 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP No.3 BOT CHORD 2x4 SP No.3		TO		Structural wo Rigid ceiling o			blied or 6-0-0 oc purlir oc bracing.	IS.

REACTIONS. All bearings 8-11-0.

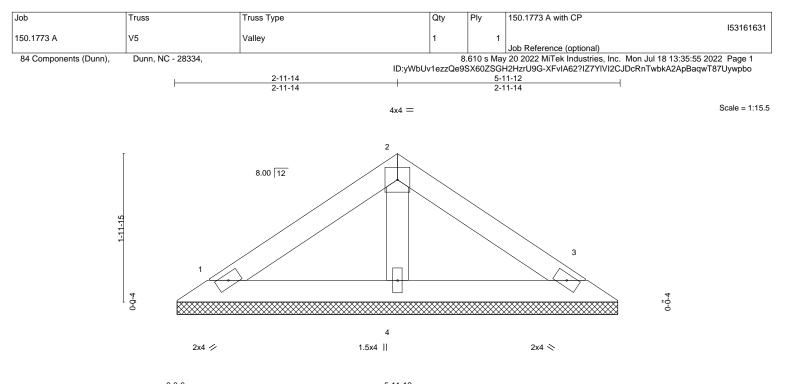
(lb) - Max Horz 1=53(LC 13)

2x4 SP No.3

Max Uplift All uplift 100 lb or less at joint(s) 6, 7

Max Grav All reactions 250 lb or less at joint(s) 1, 5, 6, 7

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.


NOTES-

OTHERS

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-5-12 to 3-5-12, Interior(1) 3-5-12 to 4-5-14, Exterior(2R) 4-5-14 to 7-5-14, Interior(1) 7-5-14 to 8-6-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
- will fit between the bottom chord and any other members.
- 7) n/a
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

	0- <u>0-6</u> 0-0-6	<u> </u>					4	
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 11.6/15.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.19 BC 0.11 WB 0.03 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (le n/a n/a 0.00	loc) l/defi - n/a - n/a 3 n/a	999	PLATES MT20 Weight: 20 lb	GRIP 244/190 FT = 20%
LUMBER-		BR	ACING-					

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.3 BOT CHORD 2x4 SP No.3 2x4 SP No.3 OTHERS

REACTIONS. (size) 1=5-11-0, 3=5-11-0, 4=5-11-0

Max Horz 1=-33(LC 10)

Max Uplift 1=-14(LC 14), 3=-18(LC 15)

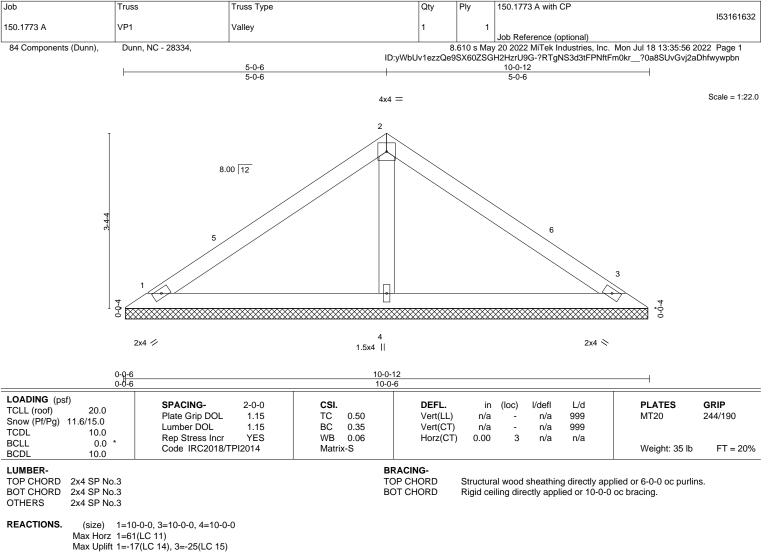
Max Grav 1=107(LC 2), 3=107(LC 2), 4=186(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

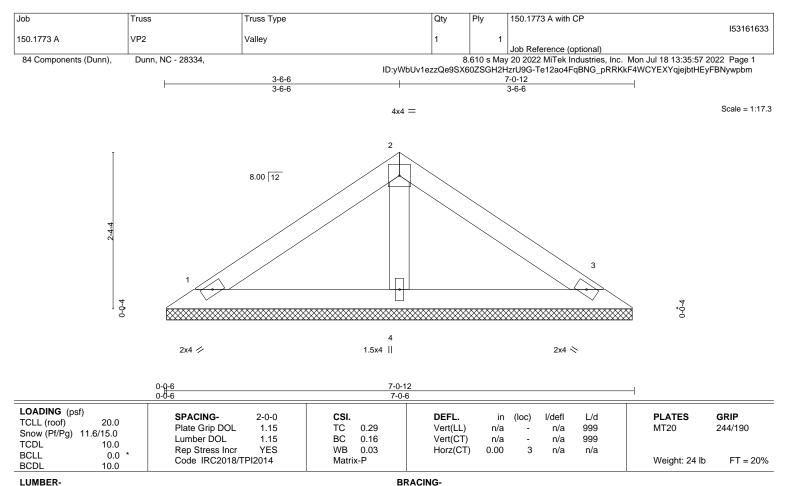

- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
- will fit between the bottom chord and any other members.
- 7) n/a
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

818 Soundside Road Edenton, NC 27932

Structural wood sheathing directly applied or 5-11-12 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Max Grav 1=178(LC 2), 3=178(LC 2), 4=373(LC 2)


FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-5-12 to 3-5-12, Interior(1) 3-5-12 to 5-0-6, Exterior(2R) 5-0-6 to 8-0-6, Interior(1) 8-0-6 to 9-7-0 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) n/a
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.3 BOT CHORD 2x4 SP No.3 2x4 SP No.3 OTHERS

REACTIONS. (size) 1=7-0-0, 3=7-0-0, 4=7-0-0

Max Horz 1=-41(LC 10)

Max Uplift 1=-17(LC 14), 3=-22(LC 15)

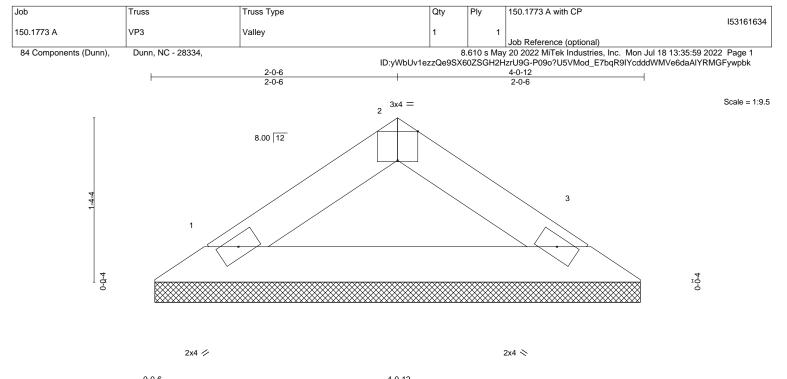
Max Grav 1=131(LC 2), 3=131(LC 2), 4=227(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
- will fit between the bottom chord and any other members.
- 7) n/a
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

818 Soundside Road Edenton, NC 27932

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

0-0-6 0-0-6		4-0-12				1		
		4-0-6						
Plate Offsets (X,Y) [2:0-2-0,E	Edge]							
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 11.6/15.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.07 BC 0.19 WB 0.00	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (lc n/a n/a 0.00	oc) l/defl - n/a - n/a 3 n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCLL 0.0	Code IRC2018/TPI2014	Matrix-P					Weight: 12 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

BCDL

TOP CHORD 2x4 SP No 3

BOT CHORD 2x4 SP No.3

REACTIONS. (size) 1=4-0-0, 3=4-0-0

10.0

Max Horz 1=-21(LC 10) Max Uplift 1=-4(LC 14), 3=-4(LC 15)

Max Grav 1=124(LC 2), 3=124(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

7) n/a

8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 4-0-12 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

