

Trenco 818 Soundside Rd Edenton, NC 27932

Re: P-7881-1 Yarbrough Front Load Crawl V4-Roof

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Peak Truss Builders, LLC(Closed).

Pages or sheets covered by this seal: I47059117 thru I47059132

My license renewal date for the state of North Carolina is December 31, 2021.

North Carolina COA: C-0844

July 20,2021

Liu, Xuegang IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	Yarbrough Front Load Crawl V4-Roof	
P-7881-1	CAP1	Piggyback	2	1	Job Reference (optional)	147059117

Run: 8,43 S Jun 2 2021 Print: 8,430 S Jun 2 2021 MiTek Industries, Inc. Mon Jul 19 10:31:23 ID:DrsBX0Oq7woTaVwr8bRefmzr75R-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

0		4	~
Scale	=	1:31	.8

oading	()	psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
FCLL (roof)	2	20.0	Plate Grip DOL	1.15		тс	0.07	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
FCDL	1	0.0	Lumber DOL	1.15		BC	0.06	Vert(CT)	n/a	-	n/a	999			
BCLL		0.0*	Rep Stress Incr	YES		WB	0.04	Horz(CT)	0.00	6	n/a	n/a			
BCDL	1	0.0	Code	IRC201	5/TPI2014	Matrix-MS							Weight: 45 lb	FT = 20%	
UMBER FOP CHORD SOT CHORD OTHERS BRACING FOP CHORD SOT CHORD	2x4 SP No.1 2x4 SP No.1 2x4 SP No.3 Structural woo 6-0-0 oc purlir Rigid ceiling d bracing.	od shea ns. directly :	athing directly applied	2) d or	Wind: ASCE Vasd=95mpl B=20ft; L=20 MWFRS (dir 3-3-11, Interio 9-0-4, Interio and right exp exposed;C-C reactions sho DOI =1.60	7-10; Vult=120 r; TCDL=6.0psf fit; eave=4ft; Ca ectional) and C- ior (1) 3-3-11 to r (1) 9-0-4 to 11 oosed ; end verti c for members a own; Lumber DC	mph (3-sec ; BCDL=6.0 t. II; Exp B; C Exterior 6-0-4, Exterior -8-12 zone ical left and nd forces & DL=1.60 pla	ond gust) Opsf; h=30ft; Enclosed; (2) 0-3-11 to erior (2) 6-0-4 ; cantilever lo right & MWFRS for ate grip	⊧to eft						
REACTIONS	(Ib/size) 2=1 8=2 10= 15= Max Horiz 2=-	152/10- 265/10- =265/10 =152/10 60 (LC	4-9, 6=152/10-4-9, 4-9, 9=61/10-4-9,)-4-9, 11=152/10-4-9)-4-9 9), 11=-60 (LC 9)	3)),	Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.										

- Max Uplift 2=-31 (LC 11), 6=-31 (LC 11), 8=-69 (LC 11), 10=-69 (LC 11), 6) 11=-31 (LC 11), 15=-31 (LC 11) Max Grav 2=152 (LC 1), 6=152 (LC 1), 8=265 (LC 1), 9=62 (LC 16), 10=265 (LC
- 1), 11=152 (LC 1), 15=152 (LC 1) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/16, 2-3=-66/45, 3-4=-83/71, 4-5=-82/71, 5-6=-51/31, 6-7=0/16 BOT CHORD 2-10=-18/44, 9-10=-18/44, 8-9=-18/44, 6-8=-18/44 WEBS 4-9=-53/7, 3-10=-180/89, 5-8=-180/89
- NOTES
- 1) Unbalanced roof live loads have been considered for this design.

- Gable requires continuous bottom chord bearing. 4)
- Gable studs spaced at 2-0-0 oc. 5)
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 31 lb uplift at joint 2, 31 lb uplift at joint 6, 69 lb uplift at joint 10, 69 lb uplift at joint 8, 31 lb uplift at joint 2 and 31 lb uplift at joint 6.
- See Standard Industry Piggyback Truss Connection 8) Detail for Connection to base truss as applicable, or consult qualified building designer.

LOAD CASE(S) Standard

July 20,2021

Job	Truss	Truss Type	Qty	Ply	Yarbrough Front Load Crawl V4-Roof	
P-7881-1	CAP2	Piggyback	25	1	Job Reference (optional)	l47059118

1)

2)

3)

Run: 8 43 S. Jun. 2 2021 Print: 8 430 S. Jun. 2 2021 MiTek Industries. Inc. Mon. Jul 19 10:31:25 ID:DrsBX0Oq7woTaVwr8bRefmzr75R-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Job	Truss	Truss Type	Qty	Ply	Yarbrough Front Load Crawl V4-Roof	
P-7881-1	T1	Piggyback Base	10	1	Job Reference (optional)	147059119

Run: 8,43 S Jun 2 2021 Print: 8,430 S Jun 2 2021 MiTek Industries, Inc. Mon Jul 19 10:31:25

Page: 1

ID:p7ueH_B6OocT?Q2CxHjoD4zr7C9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 46-8-0 8-9-6 16-9-12 22-10-3 28-10-4 36-10-10 45-8-0 1-0-0 8-9-6 8-0-6 6-0-7 6-0-1 8-0-6 8-9-6 5x5= 3x5= 5x5= 5 27628 7 7¹² 5x14 🎜 5x14👟 26 29 3⁴ 89

Scale = 1:83.5

Plate Offsets	(X, Y): [2:0·	3-0,0-0-11], [4:0-5-8,0-3-0], [5	:0-3-0,0-	2-4], [7	7:0-3-0,0-2-	4], [8:0-5-8,0-3-0	0], [10:0-3	-0,0-0-11]						
Loading TCLL (roof) TCDL BCLL BCDL		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2)15/TF	PI2014	CSI TC BC WB Matrix-MS	0.66 0.98 0.42	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.11 -0.24 0.06	(loc) 12-14 12-14 10	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 320 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD	2x4 SP N 2x6 SP N 2x4 SP N Structura 3-6-4 oc 2-0-0 oc Rigid ceil bracing. 1 Row at (lb/size) Max Horiz Max Uplift Max Grav (lb) - Max Tension 1-2=0/30, 5-6=-102 7-9=-117 2-20=-14 16-18=0/ 12-14=-11 5 = 40	o.1 o.2 *Excep o.3 wood she burlins, exc burlins, exc burlins, (5-1 ing directly midpt 2=1340/0 16=1160/ 2=-187 (L 2=-187 (L 2=-187 (L 16=-103 (2=-187 (L) 16=-103 (2=-121 (L) 16=-103 (2=-121 (L) 16=-103 (L) 2=-121 (L) 16=-103 (L) 2=-121 (L) 16=-103 (L) 16	ot* 17-15:2x10 SP N athing directly appli cept 0-11 max.): 5-7. • applied or 2-2-0 oc 6-18, 6-14, 9-14, 3- -3-8, 10=1273/0-3-8 0-3-8 C 9) C 11), 10=-206 (LC (LC 11) -C 1), 10=-206 (LC (LC 19) 10; 10; 20; 20; 20; 20; 20; 20; 20; 20; 20; 2	lo.2 ed or -18 3, : 11), 1), 1, =0/30	2) W V2 B= MM 3-16 (2 zo 2 zo 3-16 (2 zo 3-16) (2 zo 3-16)	ind: ASCE asd=95mph 220ft; L=46 WFRS (dire 6-13, Interii 5-9-12 to 23) 28-10-4 to one; cantile* one; cantile* MFRS for r ip DOL=1.6 rovide aded for the botton 06-00 tall b bord and an rovide mecl bord and an rovide mecl bord and an rovide mecl bord and an ovide mecl bord an ovide	7-10; Vult=120m n; TCDL=6.0psf; ft; eave=6ft; Cat ectional) and C-C or (1) 3-6-13 to 1 3-3-4, Interior (1) 5-35-3-12, Interior ver left and right osed;C-C for me reactions shown; 30 uate drainage to uas been designed n chord in all are by 2-00-00 wide to y other member hanical connecti to capable of withs to uplift at joint 10 rlin representatic tion of the purlin J. Standard	ph (3-sec BCDL=6. II; Exp B 2 Exterior 6-9-12, E 23-3-4 to r (1) 35-3 exposed mbers an Lumber I oprevent v ed for a liv as where vill fit betw s, with BC on (by oth standing 2 and 103 m does no along the	cond gust) ops; h=30ft; ; Enclosed; (2) -1-0-0 to xterior (2) 28-10-4, Ext. -12 to 46-8-0 ; end vertical d forces & DOL=1.60 pla water ponding e load of 20.0 a rectangle veen the botto DL = 10.0psf ers) of truss t b uplift at b uplift at b uplift at joir s top and/or	erior left tte J. Dpsf o nt size			A second s	TH CA	RO
NOTES 1) Unbalanc this desig	7-14=0/18 3-18=-83 red roof live l	34, 9-14=-8 5/221, 3-20 oads have	been considered fc	7,)r								and the second second		SEA 2822	L 28 EER

ANGLIUM EGANG

Job	Truss	Truss Type	Qty	Ply	Yarbrough Front Load Crawl V4-Roof	
P-7881-1	T1GE	Piggyback Base Supported Gable	1	1	Job Reference (optional)	147059120

Run: 8.43 S Jun 2 2021 Print: 8.430 S Jun 2 2021 MiTek Industries, Inc. Mon Jul 19 10:31:26 ID:HJR0VKCk96kKcadOV?E1mlzr7C8-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

16-9-12 28-10-4 45-8-0 16-9-12 12-0-7 16-9-12 5x5= 5x5= 11 12 13 14 15 16 17 10 18 9 19 7<mark>12</mark> 8 20

Scale = 1:82.1

Plate Offsets (X, Y): [11:0-2-8.0-2-1]. [17:0-2-8.0-2-1]

	., ., .	,], []												
Loading TCLL (roof) TCDL BCLL BCDL		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	С: ТС ВС W М	SI C B atrix-MS	0.05 0.04 0.13	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 54	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 351 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP N 2x4 SP N 2x4 SP N Structural 6-0-0 oc p 2-0-0 oc p Rigid ceill bracing. 1 Row at (lb/size)	o.1 o.3 I wood sheapurlins, exc purlins, exc purlins (6-0 ing directly midpt 2=175/455	athing directly applied ept -0 max.): 11-17. applied or 10-0-0 oc 14-39, 13-40, 12-41, 11-42, 10-43, 15-38, 16-37, 17-36, 18-34 -8-0, 26=175/45-8-0,	d or	Max C	2=-7 (L) (LC 11) (LC 1	, 29=-41 , 31=-43 , 33=-45 , 33=-13 , 39=-19 , 41=-13 , 45=-45 , 47=-43 , 49=-41 , 51=-7 (I LC 20), 2 (LC 20), (LC 24),	-2 (LC 11), 22 (LC 11), 32=- (LC 11), 34=- (LC 11), 34=- (LC 11), 43=- (LC 11), 43=- (LC 11), 46=- (LC 11), 46=- (LC 11), 48=- (LC 11), 50=- - C 7), 54=-2 (226=175 (LC 1) 29=142 (LC 31=159 (LC	8=-50 43 42 40 -22 -22 40 42 442 43 50 (LC), 1), 1),	WEBS	IORD	2-50=- 48-49= 46-47= 43-45= 41-42= 39-40= 37-38= 34-36= 32-33= 30-31= 28-29= 14-39= 12-41= 10-43= 7-47=		96/142, :-96/142, :-96/142, :-96/142, :-96/141, :-96/141, :-96/142, :-96/142, :-96/142, :-96/142, :-96/142, :-96/142, :-119/46, :-108/14, 119/69, 8-46=-1 22/67, 5-49=-11	120/66, 11/64,
	Max Horiz	28=215/4 30=165/4 32=160/4 37=166/4 37=166/4 41=166/4 41=166/4 43=165/4 46=160/4 48=165/4 54=175/4 2=-187 (L	5-8-0, 31=159/45-8-0 5-8-0, 31=159/45-8-0 5-8-0, 38=159/45-8-0 5-8-0, 38=159/45-8-0 5-8-0, 40=159/45-8-0 5-8-0, 42=142/45-8-0 5-8-0, 42=142/45-8-0 5-8-0, 47=159/45-8-0 5-8-0, 49=142/45-8-0 5-8-0, 51=175/45-8-0 C 9), 51=-187 (LC 9)	FORCES TOP CHORD	(lb) - Tens 1-2= 5-6= 8-9= 10-1 12-1 14-1 16-1 18-1 20-2 23-2	32=160 34=165 37=168 39=160 41=168 43=165 50=217 54=175 Maximum Cc ision 0/30, 2-3=-14 -124/114, 6-7 -119/144, 9-1 1=-190/236, 1 3=-170/219, 1 5=-170/219, 1 9=-155/191, 1 1=-84/99, 21- 5=-69/47, 25-	(LC 24), (LC 24), (LC 23), (LC 1), 2 (LC 23), (LC 23), (LC 23), (LC 23), (LC 23), (LC 23), (LC 1) ompression 5/147, 3- =-112/10 0=-155/1 1-12=-17 3-14=-17 5-16=-17 7-18=-15 9-20=-1 ² 22=-50/5 26=-102/	33=159 (LC 36=143 (LC 36=159 (LC 2 42=148 (LC 45=159 (LC 2 47=159 (LC 51=182 (LC 51	1), 24), 23), 4), 19), 1), 1), 20), 99, /31, //30	NOTES	. antitutes .	3-50=- 16-37: 18-34: 20-32: 22-30: 25-28:	150/75, 15-38= =-128/38, 17-36= =-125/64, 19-33= =-120/66, 21-31= =-120/66, 21-31= =-120/75 =-150/75 SEA 2822	119/46, 103/14, 119/69, 120/67, 111/64,	Annannan ann

July 20,2021

Page: 1

46-8-0 1-0-0

Job	Truss	Truss Type	Qty	Ply	Yarbrough Front Load Crawl V4-Roof	
P-7881-1	T1GE	Piggyback Base Supported Gable	1	1	Job Reference (optional)	147059120

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-10; Vult=120mph (3-second gust) 2) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=20ft; L=46ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner (3) -1-0-0 to 3-6-13, Exterior (2) 3-6-13 to 16-9-12, Corner (3) 16-9-12 to 21-4-9, Exterior (2) 21-4-9 to 28-10-4, Corner (3) 28-10-4 to 33-5-1, Exterior (2) 33-5-1 to 46-8-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable. or consult qualified building designer as per ANSI/TPI 1.
- 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are 2x4 MT20 unless otherwise indicated.

Gable requires continuous bottom chord bearing. 6)

- Gable studs spaced at 2-0-0 oc. 7)
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to 9) bearing plate capable of withstanding 7 lb uplift at joint 2, 2 lb uplift at joint 26, 19 lb uplift at joint 39, 22 lb uplift at joint 40, 13 lb uplift at joint 41, 40 lb uplift at joint 43, 45 lb uplift at joint 45, 42 lb uplift at joint 46, 43 lb uplift at joint 47, 43 lb uplift at joint 48, 41 lb uplift at joint 49, 50 lb uplift at joint 50, 22 lb uplift at joint 38, 13 lb uplift at joint 37, 40 lb uplift at joint 34, 45 lb uplift at joint 33, 42 lb uplift at joint 32, 43 lb uplift at joint 31, 43 lb uplift at joint 30, 41 lb uplift at joint 29, 50 lb uplift at joint 28, 7 Ib uplift at joint 2 and 2 lb uplift at joint 26.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Run: 8.43 S. Jun. 2.2021 Print: 8.430 S. Jun. 2.2021 MiTek Industries. Inc. Mon. Jul 19.10:31:26 ID:HJR0VKCk96kKcadOV?E1mlzr7C8-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 2

Job	Truss	Truss Type	Qty	Ply	Yarbrough Front Load Crawl V4-Roof	
P-7881-1	T2	Piggyback Base	6	1	Job Reference (optional)	147059121

Run: 8.43 S Jun 2 2021 Print: 8.430 S Jun 2 2021 MiTek Industries, Inc. Mon Jul 19 10:31:26 ID:eHFvY1Gt_eNdjLVMIYqCTLzr7C3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:77.4

Plate Offsets (X, Y): [2:0-8-8,Edge], [4:0-5-8,0-3-0], [5:0-3-0,0-2-4], [7:0-3-0,0-1-12]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	;/TPI2014	CSI TC BC WB Matrix-MS	0.88 0.88 0.81	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.23 -0.43 0.09	(loc) 11-13 10-11 10	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS Weight: 280 lb	GRIP 244/190 187/143 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SP No.1 2x6 SP No.2 2x4 SP No.3 Structural wood she	Wind: ASCE Vasd=95mph B=20ft; L=42 MWFRS (dire 3-2-10, Interii 16-9-12 to 22	7-10; Vult=120m a; TCDL=6.0psf; ft; eave=5ft; Cat. ectional) and C-C or (1) 3-2-10 to 1 2-10-0, Interior (1	nph (3-sec BCDL=6.0 II; Exp B Exterior 6-9-12, E) 22-10-0	ond gust) Dpsf; h=30ft; Enclosed; (2) -1-0-0 to xterior (2) to 28-10-4,									
BOT CHORD	except end verticals (4-5-9 max.): 5-7. Rigid ceiling directly bracing.	tructural wood sheathing directly applied, xcept end verticals, and 2-0-0 oc purlins 4-5-9 max.): 5-7. tigid ceiling directly applied or 10-0-0 oc racing.				3, Interior id right ex ;C-C for n s shown;	(1) 34-9-13 t posed ; end nembers and Lumber	0						
WEBS	1 Row at midpt	6-13, 6-11, 8-10, 8-1 3-13	1, 3)	Provide adec	uate grip DOL=1.6	prevent v	vater ponding	g.						
REACTIONS	(lb/size) 2=1742/0- Max Horiz 2=212 (LC	-3-8, 10=1680/0-3-8 C 10)	4) All plates are 8, 10=1680/0-3-8 5) * This truss h 0) on the bottom			niess otnerwise indicated. led for a live load of 20.0psf reas where a rectangle								

3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. Provide mechanical connection (by others) of truss to

bearing plate capable of withstanding 242 lb uplift at

Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or

joint 2 and 207 lb uplift at joint 10.

	Max Uplift 2=-242 (LC 11), 10=-207 (LC 11)
	Max Grav 2=1742 (LC 1), 10=1731 (LC 20)
FORCES	(Ib) - Maximum Compression/Maximum Tension
TOP CHORD	1-2=0/30, 2-3=-2893/389, 3-5=-2177/373, 5-6=-1803/373, 6-7=-1676/339,
	7-8=-2013/343, 8-9=-262/100, 9-10=-256/97
BOT CHORD	2-15=-255/2477, 13-15=-255/2477,
	11-13=-93/1866, 10-11=-168/1590
WEBS	5-13=-36/717, 6-13=-243/85, 6-11=-485/111
	7-11=-37/684, 8-10=-1977/266,
	8-11=-68/222, 3-13=-775/219, 3-15=0/242

NOTES

 Unbalanced roof live loads have been considered for this design. SEAL 28228

July 20,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

6)

7)

bottom chord. LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	Yarbrough Front Load Crawl V4-Roof	
P-7881-1	T2A	Piggyback Base	6	1	Job Reference (optional)	147059122

Run: 8.43 S Jun 2 2021 Print: 8.430 S Jun 2 2021 MiTek Industries, Inc. Mon Jul 19 10:31:27 ID:iu797LEdS17vT1LzA7okOwzr7C5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:76.2

Plate Offsets (X, Y): [4:0-2-2,Edge], [5:0-3-0,0-2-4], [7:0-2-8,0-2-1]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.73 0.80 0.63	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.17 -0.38 0.04	(loc) 11-13 10-11 10	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 280 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SP No.1 2x6 SP No.2 2x4 SP No.3 Structural wood she 4-3-6 oc purlins, ex 2-0-0 oc purlins (5-3 Rigid ceiling directly	athing directly applied cept end verticals, and -7 max.): 5-7. applied or 10-0-0 oc	2) I or d	Wind: ASCE Vasd=95mph B=20ft; L=42 MWFRS (dirr 3-2-4, Interio to 22-10-0, Ir 28-10-4 to 34 cantilever left right exposed	7-10; Vult=120mp n; TCDL=6.0psf; B fft; eave=5ft; Cat. l ectional) and C-C r (1) 3-2-4 to 16-9 nterior (1) 32-4 to 16-9 nterior (1) 32-10-0 1-9-5, Interior (1) 3 t and right expose d;C-C for member	oh (3-sec GCDL=6.0 II; Exp B Exterior -12, Exterior -12, E	ond gust) Dpsf; h=30ft; Enclosed; (2) -1-0-0 to erior (2) 16-9- -4, Exterior (2) 41-9-0 zone; rertical left an ces & MWFF	-12 2) id &S						
WEBS	bracing, Except: 6-0-0 oc bracing: 2- 1 Row at midpt	15. 8-10, 6-13, 6-11, 3-15	5, 3) 4)	for reactions DOL=1.60 Provide adec * This truss h	shown; Lumber D quate drainage to has been designed	OL=1.60 prevent v d for a liv) plate grip vater ponding e load of 20.0	g. Opsf						
REACTIONS	(lb/size) 2=145/0-3 15=1850// Max Horiz 2=214 (LC Max Uplift 2=-45 (LC 15=-229 (Max Grav 2=168 (LC 15=1937	o-11 3-8, 10=1405/ Mechan 0-3-8 2 10) 2 11), 10=-173 (LC 11) LC 11) C 23), 10=1483 (LC 20 (LC 19)	nical, 5)), 6) 0), 7)	on the botton 3-06-00 tall b chord and an Refer to girde Provide mech bearing plate 2, 173 lb uplit Graphical pu	n chord in all area by 2-00-00 wide wi by other members, er(s) for truss to tr hanical connectior capable of withst ft at joint 10 and 2 rlin representatior	s where ill fit betw , with BC uss conr n (by oth anding 4 29 lb up n does no	a rectangle veen the botto DL = 10.0psf aections. ers) of truss t 5 lb uplift at j lift at joint 15. ot depict the s	om oint size						
FORCES	(lb) - Maximum Com Tension	pression/Maximum		or the orienta bottom chord	ation of the purlin a 1.	along the	top and/or					mmm	un.	
TOP CHORD	1-2=0/30, 2-3=-267/3 5-6=-1130/284, 6-7= 7-8=-1612/290, 8-9=	576, 3-5=-1410/271, 1328/292, 236/100, 9-10=-239/	LC 95	DAD CASE(S)	Standard						3	TH CA	ROUT	6
BOT CHORD	2-15=-340/119, 13-1 11-13=-50/1340, 10-	5=-85/712, -11=-124/1267									i k	100 AAA		
WEBS	5-13=0/371, 7-11=-1 6-13=-452/86, 6-11= 3-15=-1845/343, 8-1	2/467, 8-10=-1580/21 212/86, 3-13=0/627, 1=-111/177	12,									SEA 2822		
NOTES												2022	~ :	-

1) Unbalanced roof live loads have been considered for

this design.

TUEGANG July 20,2021

Page: 1

Job	Truss	Truss Type	Qty	Ply	Yarbrough Front Load Crawl V4-Roof	
P-7881-1	T2B	Piggyback Base	3	1	Job Reference (optional)	147059123

Run: 8,43 S Jun 2 2021 Print: 8,430 S Jun 2 2021 MiTek Industries, Inc. Mon Jul 19 10:31:28 ID:A4hXKhFFDLFm5Bw9kqJzw8zr7C4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

EGANG 1111 July 20,2021

818 Soundside Road Edenton, NC 27932

Scale = 1:76.2

Plate Offsets (X, Y): [4:0-2-2,Edge], [5:0-3-0,0-2-4], [7:0-2-8,0-2-1]

TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.68 Vert(L) -0.20 12.14 -999 24.0 MT20 244/190 BCLL 0.00 Rep Stress Incr YES BC 0.31 12.14 -999 10.0 BCDL 10.0 Code IRC2015/TPI2014 Wark-MS Wer(L) -0.20 11 n/a n/a BCDL 10.0 Code IRC2015/TPI2014 Wark-MS BC 0.31 12.14 >999 10.0 BCDL 10.0 Code IRC2015/TPI2014 Mark-MS Mark-MS Mark-MS Provide Stress Cond gust) Vasid-SSECE 10.0 N/a	Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCDL 10.0 Lumber DOL 1.15 BC 0.6 Vert(CT) -0.31 12-14 >999 180 BCDL 10.0 Rep Stress Int / YES Will watrix-MS Matrix-MS Weight: 284 lb FT = 20% LUMBER TOP CHORD 2x4 SP No.1 Matrix-MS Matrix-MS Weight: 284 lb FT = 20% UDWERS 2x4 SP No.3 Weight: 284 SP No.3 Weight: 284 lb FT = 20% BRACING TOP CHORD Structural wood sheathing directly applied or 4-10-50 cc Except: Vaad-Segned in (2) 1-0-01 to 3-2-0-01 to 3-0-0-01 to <	TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.65	Vert(LL)	-0.20	12-14	>999	240	MT20	244/190	
BCLL 0.0° Reg Stress incr YES WB 0.34 Horz(C1) 0.02 11 na n/a BCLL 10.0 Code IRC2015/TPI2014 Watrix-MS Horz(C1) 0.02 11 na n/a LUMBER 10.0 Code IRC2015/TPI2014 Matrix-MS Wash 0.34 Horz(C1) 0.02 11 na n/a DOP CHORD 2x4 SP No.1 BCC2015/TPI2014 Matrix-MS Wash 0.34 Horz(C1) 0.02 11 na n/a BOT CHORD 2x4 SP No.1 BCC2 Horz(C1) U/La Reaction Structural wood sheathing directly applied or not overtain age overtain	TCDL	10.0	Lumber DOL	1.15		BC	0.63	Vert(CT)	-0.31	12-14	>999	180			
BCDL 10.0 Code IRC2015/TPI2014 Matrix-MS Weight: 284 lb FT = 20% LUMBER TOP CHORD 2x4 SP No.1 324 SP No.2 324 SP No.3 324 SP No.2 SP No.2 <t< td=""><td>BCLL</td><td>0.0*</td><td>Rep Stress Incr</td><td>YES</td><td></td><td>WB</td><td>0.94</td><td>Horz(CT)</td><td>0.02</td><td>11</td><td>n/a</td><td>n/a</td><td></td><td></td><td></td></t<>	BCLL	0.0*	Rep Stress Incr	YES		WB	0.94	Horz(CT)	0.02	11	n/a	n/a			
LUMBER TOP CHORD BC TCHORD SC4 SP No.2 2:4 SP No.1 2:0 Wind: ASCE 7-10; Vult=120mph (3-second gust) Vad=95mph; TCDL-16, Dps; ECDL-46, Dps; h.=030t; B=200t.1-42t; teave=5t; 0.51; ECDL-06 to 3:2-4, Historic (2) -1-0-10 3-2-4, Historic (1) 3-2-4 Second verticals, and 2-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max); 5-7. Rigid celling diredty applied or 10-0-0 oc harding: 2-16. 2:10-0, Italicri (1) 32-4 Second vertical (2) 1-0-0 to 3-2-4, Histori (1) 32-4 Second vertical (2) 1-0-0 to 16-16-150 (LC 11), 16-16-160 (LC 11), 16-160 (LC 11	BCDL	10.0	Code	IRC2015	5/TPI2014	Matrix-MS							Weight: 284 lb	FT = 20%	
T TO GINES O WIT	LUMBER TOP CHORD BOT CHORD BBRACING TOP CHORD BOT CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design	2x4 SP No.1 2x6 SP No.2 2x4 SP No.3 Structural wood she 4-11-5 oc purlins, e 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 2- ⁻ 1 Row at midpt (lb/size) 2=216/0-3 16=1539/ Max Horiz 2=214 (LC Max Uplift 2=-53 (LC 16=-190 (Max Grav 2=224 (LC 16=-190 (Max Grav 2=224 (LC 16=-190 (Max Grav 2=224 (LC 16=-190 (Max Grav 2=224 (LC 16=-190 (1-2=0/30, 2-3=-248/, 5-6=-913/254, 6-7=- 8-9=-97/309, 9-10=- 2-16=-217/103, 14-1 12=14=-8/967, 11-12 5-14=0/246, 7-12=0/ 6-14=-170/82, 6-12= 8-11=-1453/273, 3-1 3-16=-1503/294 ed roof live loads have b.	athing directly applied xcept end verticals, a -0 max.): 5-7. applied or 10-0-0 oc 16. 6-14, 6-12, 8-11 3-8, 11=1645/0-3-8, 0-3-8 C 10) 2 (11), 11=-299 (LC 12 LC 11) C 23), 11=1645 (LC 1 (LC 19) apression/Maximum 436, 3-5=-1154/236, 776/237, 7-8=-978/22 47/36 6=-75/665, =:0/219, 10-11=-40/5 (213, 9-11=-230/142, -427/104, 8-12=0/77; 4=0/431, been considered for	2) d or nd 3) 4) 2), 5)), 6) 27, LC 4 5,	Wind: ASCE Vasd=95mph B=20ft; L=42i MWFRS (dire 3-2-4, Interior to 22-10-0, In 28-10-4 to 34 cantilever left right exposed for reactions : DOL=1.60 Provide adeq * This truss h on the bottorn 3-06-00 tall b chord and an Provide mech bearing plate 2, 299 lb uplif Graphical put or the orienta bottom chord	7-10; Vult=120mph ; TCDL=6.0psf; BC ft; eave=5ft; Cat. II; cetional) and C-C E r (1) 3-2-4 to 16-9-1 terior (1) 22-10-0 to -9-5, Interior (1) 34 and right exposed ;C-C for members shown; Lumber DC uate drainage to pr as been designed f o chord in all areas y 2-00-00 wide will y other members, v nanical connection capable of withstai it at joint 11 and 19 lin representation of tion of the purlin alo	(3-sec DL=6.(Exp B; xterior 2, Extec > 28-10 (9-9-5 to)-2-160 (by oth where fit betw with BC (by oth daing 5 0 lb up bloes no ong the	ond gust) ond gust) ps; h=30ft; Enclosed; Enclosed; (2) -1-0-0 to trior (2) 16-9- -4, Exterior (2 41-9-0 zone; ertical left ange ces & MWFR plate grip vater ponding e load of 20.0 a rectangle veen the botto DL = 10.0psf. ers) of truss tt alb uplift at joint 16. t depict the si top and/or	12 2) S m psf m pint ize				TH CA SEA 2822	ROUTER	

Job	Truss	Truss Type	Qty	Ply	Yarbrough Front Load Crawl V4-Roof	
P-7881-1	T2GE	Piggyback Base Supported Gable	1	1	Job Reference (optional)	147059124

Run: 8,43 S Jun 2 2021 Print: 8,430 S Jun 2 2021 MiTek Industries, Inc. Mon Jul 19 10:31:28 ID:EiZmv0E_hj?2stnndQHVrjzr7C6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:76.1

Plate Offsets (X, Y): [11:0-2-8,0-2-1], [17:0-2-8,0-2-1]

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(lo	c)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.15		TC	0.06	Vert(LL)	n/a		-	n/a	999	MT20	244/190
TCDL		10.0	Lumber DOL	1.15		BC	0.04	Vert(CT)	n/a		-	n/a	999		
BCLL		0.0*	Rep Stress Incr	YES		WB	0.13	Horz(CT)	0.00	2	25	n/a	n/a		
BCDL		10.0	Code	IRC2015/TPI2014		Matrix-MS								Weight: 338 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS	2x4 SP N 2x4 SP N 2x4 SP N 2x4 SP N Structura 6-0-0 oc 2-0-0 oc Rigid ceil bracing. 1 Row at	o.1 o.3 o.3 I wood shea purlins, exp purlins, exp purlins (6-0 ing directly midpt	athing directly applie cept end verticals, ar -0 max.): 11-17. applied or 10-0-0 oc 17-32, 16-33, 15-35, 14-36, 13-37, 12-38.	d or Id FORCES	Ma (I	ax Grav 2=200 (l 26=143 28=159 30=159 32=149 35=159 37=159 39=164 41=159 46=141 48=200 b) - Maximum Co	LC 20), 2 (LC 20), (LC 24), (LC 1), 3 (LC 24), (LC 23), (LC 24), (LC 24), (LC 1), 4 (LC 1), 4 (LC 1), 4 (LC 1), 4 (LC 20) mpressi	25=33 (LC 19) 27=166 (LC 29=160 (LC 2) 31=166 (LC 2) 33=167 (LC 2) 38=169 (LC 2) 40=165 (LC 2) 40=165 (LC 2) 40=165 (LC 2) 45=165 (LC 2) 47=220 (LC 1)), 1), 4), 23), 1), 24), 19), 3), 3), 9),	WEE NOT 1) (1) (2) (ES Unba this d Wind	alanced design. I: ASCE	17-32 15-35 13-37 11-39 9-41= 6-45= 18-31 20-29 22-27 roof li	=-109/37, 16-33 =-119/47, 14-36= =-119/47, 12-38= =-124/37, 10-40= -119/70, 8-42=-1 122/67, 5-46=-1 =-126/63, 19-30= =-120/66, 21-28= =-125/69, 23-26= ive loads have be ; Vult=120mph (3	127/37, 120/43, 129/38, 125/62, 20/66, 7-44120/67, 10/64, 3-47151/75, 119/70, 119/66, 103/66 een considered for 3-second gust)
			11-39, 10-40, 18-31		Ť	ension				2)	Vasd	l=95mp	h; TC	DL=6.0psf; BCDI	L=6.0psf; h=30ft;
REACTIONS	(Ib/size) Max Horiz Max Uplift	$\begin{array}{c} 2=168/41\\ 26=124/4\\ 28=159/4\\ 30=159/4\\ 32=148/4\\ 35=159/4\\ 37=159/4\\ 37=159/4\\ 41=159/4\\ 41=159/4\\ 44=159/4\\ 44=168/4\\ 2=216 (LC)\\ 2=-31 (LC)\\ 2=-31 (LC)\\ 2=-31 (LC)\\ 2=-31 (LC)\\ 2=-31 (LC)\\ 37=-23 (L)\\ 35=-23 (L)\\ 40=-38 (L)\\ 40=-38 (L)\\ 42=-42 (L)\\ 45=-43 (L)\\ 47=-49 (L)\\ 47=-49 (L)\\ 47=-49 (L)\\ 47=-49 (L)\\ 47=-49 (L)\\ 48=150/4\\ 48=100/4\\ 48=10$	$\begin{array}{l} 10-8,\ 25=22/41-10-8\\ 1-10-8,\ 27=166/41-10\\ 1-10-8,\ 29=160/41-10\\ 1-10-8,\ 33=166/41-10\\ 1-10-8,\ 33=166/41-10\\ 1-10-8,\ 33=166/41-10\\ 1-10-8,\ 42=160/41-10\\ 1-10-8,\ 42=160/41-10\\ 1-10-8,\ 42=160/41-10\\ 1-10-8,\ 42=160/41-10\\ 1-10-8,\ 42=160/41-10\\ 1-10-8,\ 42=160/41-10\\ 1-10-8,\ 42=160/41-10\\ 1-10-8,\ 42=160/41-10\\ 1-10-8,\ 42=160/41-10\\ 1-10-8,\ 42=160/41-10\\ 1-10-8,\ 42=160/41-10\\ 1-10-8,\ 42=160/41-10\\ 1-10-8,\ 42=160/41-10\\ 1-10-8,\ 42=160/41-10\\ 1-10-8,\ 42=160/41-10\\ 1-10-8,\ 42=160/41-10\\ 1-10-8,\ 42=160/41-10\\ 1-10-8,\ 42=43\ (LC\ 110)\\ 1-10,\ 42=43\ (LC\ 110)\\ 1-10,\ 44=-31\ (LC\ 110)\\ 1-10,\ 48=-31\ (LC\ 110)\\ 1-1$	TOP CHORI D-8, D-8, D-8, D-8, D-8, D-8, D-8, D-8, D-8, D-8, BOT CHORI 1), 1), 1), 1), 1), 1), 1), 1),	D 1 5 8 1 1 1 1 2 2 0 2 4 3 3 3 2 2	-2=0/30, 2-3=-200 -6=-178/150, 6-7= -9=-169/200, 9-10 0-11=-240/290, 1 2-13=-213/267, 1 4-15=-213/267, 1 6-17=-213/267, 1 8-19=-204/247, 11 0-21=-134/154, 2 2-23=-62/66, 23-2 -47=-36/42, 46-47 4-45=-36/42, 39-4 7-38=-36/42, 39-4 7-38=-36/42, 32-5 0-31=-36/42, 29-5 7-28=-36/42, 26-2)/182, 3- 167/13)=-205/2 1-12=-2 3-14=-2 3-14=-2 3-14=-2 -7-18=-2 9-20=-11 1-22=-9 24=-36/4 7=-36/42 14=-36/4 87=-36/4 87=-36/4 27=-36/4	5=-192/158, i6, 7-8=-155/1 47, 13/26, 13/26, 13/2	54, 19 2, 42, 42, 42, 42, 42, 42, 42,		B=20 MWF 3-2-4 to 200 28-10 zone; and r MWF MWF	offt; L=4; RS (dii), Exter -10-4, 1 -0-4 to 3 ; cantille ight ex cantille ight ex contille ight ex contille	2ft; ea rectior ior (2) Exterior ever le posed freacti 60	ve=2ft; Cat. II; E: nal) and C-C Corr 3-2-4 to 16-9-12 or (2) 20-10-4 to 1 4, Exterior (2) 32 ff and right expo (c-C for membeu ons shown: Lum H CA SEA 2822	xp B; Enclosed; ner (3) -1-0-0 to , Corner (3) 16-9-12 28-10-4, Corner (3) -10-4 to 41-8-12 sed ; end vertical left rs and forces & ber DOL=1.60 plate

July 20,2021

ntinued	on	page	2
A		1 3	

Co

Job	Truss	Truss Type	Qty	Ply	Yarbrough Front Load Crawl V4-Roof	
P-7881-1	T2GE	Piggyback Base Supported Gable	1	1	Job Reference (optional)	147059124

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 31 lb uplift at joint 2, 10 lb uplift at joint 33, 23 lb uplift at joint 35, 19 lb uplift at joint 36, 23 lb uplift at joint 37, 11 lb uplift at joint 38, 38 lb uplift at joint 40, 46 lb uplift at joint 41, 42 lb uplift at joint 42, 43 lb uplift at joint 44, 43 lb uplift at joint 45, 41 lb uplift at joint 46, 49 lb uplift at joint 47, 39 lb uplift at joint 31, 46 lb uplift at joint 30, 42 lb uplift at joint 29, 43 lb uplift at joint 28, 41 lb uplift at joint 27, 74 lb uplift at joint 26 and 31 lb uplift at joint 2.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Run: 8.43 S Jun 2 2021 Print: 8.430 S Jun 2 2021 MiTek Industries, Inc. Mon Jul 19 10:31:28 ID:EiZmv0E_hj?2stnndQHVrjzr7C6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

Job	Truss	Truss Type	Qty	Ply	Yarbrough Front Load Crawl V4-Roof	
P-7881-1	ТЗ	Common	2	1	Job Reference (optional)	147059125

Run: 8.43 S Jun 2 2021 Print: 8.430 S Jun 2 2021 MiTek Industries, Inc. Mon Jul 19 10:31:29 ID:6TpHINHVIyVUKV4YsFLR0Zzr7C2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.59	Vert(LL)	-0.22	8-10	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.53	Vert(CT)	-0.30	8-10	>718	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.46	Horz(CT)	0.01	7	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MS							Weight: 148 lb	FT = 20%
LUMBER			3) * This truss	has been desigr	ned for a liv	e load of 20.	.0psf					
TOP CHORD	2x4 SP No.1		on the botto	m chord in all ar	eas where	a rectangle						
BOT CHORD	2x4 SP No.1		3-06-00 tall	by 2-00-00 wide	will fit betw	veen the bott	tom					
WEBS	2x4 SP No.3 chord and any other members, with BCDL = 10.0psf.											
BRACING	4) Provide mechanical connection (by others) of truss to											

bearing plate capable of withstanding 43 lb uplift at joint

1, 175 lb uplift at joint 10 and 79 lb uplift at joint 7.

LOAD CASE(S) Standard

VVEDO	284 35 11	0.5
BRACING		
TOP CHORD	Structural	wood sheathing directly applied or
	5-10-10 o	c purlins.
BOT CHORD	Rigid ceili	ing directly applied or 10-0-0 oc
	bracing.	
WEBS	1 Row at	midpt 4-10
REACTIONS	(lb/size)	1=364/0-3-8, 7=651/0-3-8,
		10=1391/0-3-8
	Max Horiz	1=-157 (LC 9)
	Max Uplift	1=-43 (LC 11), 7=-79 (LC 11),
		10=-175 (LC 11)
	Max Grav	1=398 (LC 20), 7=654 (LC 21),
		10=1395 (LC 16)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-2=-366/	/74, 2-4=0/333, 4-6=-761/234,
	6-7=-844/	145
BOT CHORD	1-11=-34/	260, 10-11=-34/260, 8-10=-45/126,
	7-8=-47/6	75

WEBS 2-11=0/169, 2-10=-609/201, 4-10=-898/121, 4-8=-144/855, 6-8=-464/237

NOTES

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=20ft; L=30ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) 0-0-0 to 3-0-2, Interior (1) 3-0-2 to 15-0-8, Exterior (2) 15-0-8 to 18-0-10, Interior (1) 18-0-10 to 30-1-0 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

SEAL 28228

July 20,2021

Job	Truss	Truss Type	Qty	Ply	Yarbrough Front Load Crawl V4-Roof	
P-7881-1	T3GE	Common Supported Gable	1	1	Job Reference (optional)	147059126

Run: 8.43 S Jun 2 2021 Print: 8.430 S Jun 2 2021 MiTek Industries, Inc. Mon Jul 19 10:31:30 ID:6TpHINHVIyVUKV4YsFLR0Zzr7C2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Plate Offsets (X, Y): [4:0-2-8,0-3-0], [14:0-2-8,0-3-0]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc) l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.06	Vert(LL)	n/a		- n/a	999	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15		BC	0.06	Vert(CT)	n/a		- n/a	999			
BCLL	0.0*	Rep Stress Incr	YES		WB	0.14	Horz(CT)	0.00	16	6 n/a	n/a			
BCDL	10.0	Code	IRC201	5/TPI2014	Matrix-MS							Weight: 192 lb) FT = 20%	
			т			/120 2	5- 120/04		7) *	Thic trucc	bac b	oon dosignod fo	r a live load of	20 Opef
					1-2=0/30, 2-3=-120 5-608/74 6-70	5/102 7	·5=-120/94, /_8132/150		()	the bott	m chc	rd in all areas w	here a rectance	20.0psi 10
	2X4 SP NO.1			5	8-9-165/192 9-10	0/102, / 165/1	92		3	.06.00 tall	hv 2-0	0-00 wide will fi	t between the	hottom
	2X4 SP NO.1				10-11=-132/150	1-12=-9	5/102		cl	nord and a	anv oth	er members	between the i	bottom
DRACING	2X4 OF NU.3				2-13=-61/57 13-1	5=-76/3	3 15-16=-101	1/78	8) P	rovide me	chanic	al connection (h	v others) of tru	iss to
	0 (a dh far an alfan a dh e ann a lfar	a BO	OT CHORD	2-30=-75/113, 29-3	0=-75/1	13. 28-29=-78	3/115.	b	earing pla	te capa	able of withstan	ding 4 lb uplift :	at ioint
TOP CHORD	Structural wood snea	athing directly applie	a or =	2	27-28=-78/115. 26-	27=-78	/115.	,	2	35 lb upl	ift at io	int 25, 47 lb upli	ft at ioint 26. 4	1 lb
	6-0-0 oc puriins.	applied as 10,0,0 as		2	25-26=-78/115, 23-	25=-78	/115,		u	olift at join	t 27, 4	5 lb uplift at join	t 28, 38 lb uplif	t at joint
BUICHURD	kigia celling alrectly	applied of 10-0-0 od	;		22-23=-78/115, 21-	22=-78/	/115,		2	9, 53 lb up	olift at j	oint 30, 35 lb up	lift at joint 22,	47 lb
WEDO	1 Dow of midet	0.00			20-21=-78/115, 19-	20=-78/	/115,		u	olift at join	t 21, 4	1 lb uplift at join	i 20, 47 lb uplif	t at joint
		9-23			8-19=-78/115, 17-	18=-75/	/113,		1	9, 33 lb up	olift at j	oint 18, 68 lb up	lift at joint 17 a	and 4 lb
REACTIONS	(ID/SIZE) 2=185/30-	-1-0, 16=112/30-1-0,	`		6-17=-75/113				u	olift at join	t 2.			
	17=247/30)-1-0, 10=120/30-1-0	J, W	'EBS 9	9-23=-137/63, 8-25	=-127/5	9, 7-26=-120/	71,	LOAD	CASE(S) Sta	indard		
	21-160/3	0-1-0, 20=157/30-1-0	ג, ר	6	6-27=-119/65, 5-28	=-126/6	9, 4-29=-105/	62,						
	21=100/30)-1-0, 22=105/30-1-0	י, ר	3	3-30=-157/78, 10-2	2=-127/	/59,							
	26=160/30)-1-0,27=158/30-1-0	з, Э		1-21=-120/71, 12-	20=-11	9/65,							
	28=169/30	0-1-0. 29=134/30-1-0).	-	13-19=-127/70, 14-	18=-10	2/60,							
	30=228/30	0-1-0. 31=185/30-1-0).		15-17=-165/85									
	34=112/30	0-1-0) NO	OTES										
	Max Horiz 2=165 (LC	C 10), 31=165 (LC 10) 1)	Unbalanced	roof live loads have	e been o	considered for							
	Max Uplift 2=-4 (LC	11), 17=-68 (LC 11),	,	this design.										
	18=-33 (L	C 11), 19=-47 (LC 1	1), 2)	Wind: ASCE	7-10; Vult=120mp	h (3-sec	cond gust)							
	20=-41 (L	C 11), 21=-47 (LC 1	1),	Vasd=95mpl	; TCDL=6.0psf; B	CDL=6.0	Opsf; h=30ft;					111110	10 111	
	22=-35 (L	C 11), 25=-35 (LC 1	1),	B=20ft; L=30	ft; eave=2ft; Cat. I	; Exp B	; Enclosed;					THU	THO !!!	
	26=-47 (L	C 11), 27=-41 (LC 1	1),	MWFRS (dir	ectional) and C-C (Corner (3) -1-0-0 to				5	DY	site M	1.
	28=-45 (L	C 11), 29=-38 (LC 1	1),	2-0-2, Exterio	or (2) 2-0-2 to 15-0	-8, Corr	16F (3) 15-0-8	10			22	STOPE .	510N: -	12
	30=-53 (L	C 11), 31=-4 (LC 11))	18-0-10, EX		30-1-0	zone; cantilev	er			2	M	IN	1
	Max Grav 2=185 (LC	C 1), 16=112 (LC 1),		errand right	for mombors and	forcos l	and right						V V V	
	17=247 (L	.C 21), 18=126 (LC 1	1),	reactions sho		-1 60 pl	ate grin					SE/	AL E	
	19=171 (L	.C 21), 20=157 (LC 2	1),	DOI = 1.60		- 1.00 pi	ate grip			-		000		=
	21=160 (L	.C 1), 22=167 (LC 2	1), 20) 3)	Trues design	ed for wind loads i	n tha nl	and of the true					. 282	28 :	2
	23=161 (L	.C 11), 25=167 (LC 2	20), 3)	only For stu	ds exposed to win	d (norm	al to the face)	55			2	N		2
	20=160 (L	C 1), 27=158 (LC 1)), 1)	see Standard	l Industry Gable E	nd Deta	ils as applicab	, ole.			1	•	·	2
	20=109 (L 30-330 /I	.0 20), 29=134 (LC C 16) 31=185 (LC 4	1),	or consult au	alified building des	igner as	per ANSI/TP	1 1.			2	NGIN	FER	3
	30=230 (L 34-112 /I	C(1)	4)	All plates are	2x4 MT20 unless	otherwi	se indicated.				11	+/	1. V.	1
	(lh) Maximum Orac		5)	Gable require	es continuous botto	om chor	d bearing.					1, EGAL	NG L'IN	
FURGES	Tonsion	pression/iviaximum	6)	Gable studs	spaced at 2-0-0 oc							1111	in the second se	
	10151011		- /											

July 20,2021

Page: 1

Job	Truss	Truss Type	Qty	Ply	Yarbrough Front Load Crawl V4-Roof	
P-7881-1	T4GRD	Monopitch Girder	1	3	Job Reference (optional)	147059127

6-5-0

6-5-0

Peak Truss Builders, LLC (Closed), New Hill, NC - 27562,

Run: 8.43 S Jun 2 2021 Print: 8.430 S Jun 2 2021 MiTek Industries, Inc. Mon Jul 19 10:31:30 ID:t?IJR6NWsPVLIjh4KxUJKFzr7Bw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

12-1-0

5-8-0

Page: 1

Scale = 1:54.6

Plate Offsets (X, Y): [1:0-2-3,0-1-8]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2015/TPI2014	CSI TC BC WB Matrix-MS	0.49 0.98 0.73	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.09 -0.17 0.02	(loc) 5-7 5-7 4	l/defl >999 >826 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 220 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD SO COLONAL SO COLONAL S	2x4 SP No.1 2x6 SP No.1 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, e.x. Rigid ceiling directly bracing. b/size) 1=4798/0- 1ax Horiz 1=218 (LC 1ax Uplift 1=-607 (L 1ax Grav 1=5018 (L (Ib) - Maximum Com Tension 1-2=-5937/680, 2-3= 1-5=-606/4846, 4-5= 2-4=-5781/812, 2-5= b be connected toget nails as follows: connected as follows: ds connected as follows: ds connected as follows: ds connected as follows: considered equally ed as front (F) or bar ction. Ply to ply conr distribute only loads wise indicated. i7-10; Vult=120mph h; TCDL=6.0psf; BC D/ft; eave=4ft; Cat. II; rectional); cantilever left and right expose DL=1.60	athing directly applie cept end verticals. applied or 10-0-0 oc -3-8, 4=4467/0-3-8 C 1), 4=-619 (LC 7) C 12), 4=4714 (LC 1 pression/Maximum -194/63, 3-4=-105/6- -606/4846 -624/5494 ther with 10d s: 2x4 - 1 row at 0-9-0 ows: 2x6 - 3 rows 1 row at 0-9-0 oc. applied to all plies, ck (B) face in the LO nections have been noted as (F) or (B), (3-second gust) DL=6.0psf; h=30ft; Exp B; Enclosed; left and right expose- d; Lumber DOL=1.60	 4) * This trus on the bott 3-06-00 ta chord and 5) Provide m bearing pla joint 1 and 6) Use USP I nails into 1 starting at truss(es) truss(es) truss(es) truss(es) 1) Dead + F Plate Incident 10 Plate Incident 10	s has been designed om chord in all area I by 2-00-00 wide wi any other members. echanical connection the capable of withst 619 lb uplift at joint 4US26 (With 14-16d russ) or equivalent s 0-8-12 from the left of back face of bottom holes where hanger 5) Standard oof Live (balanced): ease=1.15 .oads (lb/ft) -3=-60, 1-4=-20 ated Loads (lb) =-1387 (B), 8=-1385 (B), 11=-1385 (B)	I for a liv s where II fit betw h (by oth anding 6 4. nails int spaced a end to 10 n chord. Lumber (B), 9=-), 12=-1	e load of 20.0 a rectangle veen the bottu ers) of truss t i07 lb uplift at o Girder & 6- it 2-0-0 oc ma D-8-12 to con itact with lum Increase=1. 1385 (B), 385 (B)	Opsf om to t nect lber. 15,			A A A A A A A A A A A A A A A A A A A	SEA 2822 TUEGAN		

Job	Truss	Truss Type	Qty	Ply	Yarbrough Front Load Crawl V4-Roof	
P-7881-1	V1	Valley	1	1	Job Reference (optional)	147059128

Run: 8.43 S Jun 2 2021 Print: 8.430 S Jun 2 2021 MiTek Industries, Inc. Mon Jul 19 10:31:31 ID:PbTSaFFz9yMg8p0emyfUiCzqojR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.33	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.22	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES		WB	0.36	Horiz(TL)	-0.01	13	n/a	n/a		
BCDL	10.0	Code	IRC201	5/TPI2014	Matrix-MS							Weight: 79 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.1 2x4 SP No.1 2x4 SP No.3 Structural wood sl 10-0-0 oc purlins. Rigid ceiling direc bracing. (lb/size) 1=-1/19 6=480/ 8=479/ Max Horiz 1=-102 Max Uplift 1=-96 (8=-130 Max Grav 1=94 (L (LC 17) 16) 13.	neathing directly applie dy applied or 6-0-0 oc -11-10, 5=1/19-11-10, 9-11-10, 7=639/19-11 9-11-10, 13=1/19-11- (LC 9) C 21), 6=-128 (LC 11, (LC 11) C 20), 5=1 (LC 1), 6=50 -7=691 (LC 17), 8=50	3) d or 5) (10, 7) 0 L 0 L 01 0 L 01	 Truss design only. For stu see Standard or consult qu Gable requir Gable studs This truss h on the bottor 3-06-00 tall b chord and ar Provide mec bearing plate 1, 130 lb upli 	ted for wind loads ds exposed to w d Industry Gable ialified building d es continuous bo spaced at 4-0-0 n chord in all are by 2-00-00 wide w ny other member hanical connection e capable of withs fit at joint 8 and 1 Standard	s in the pl ind (norm End Deta esigner a ttom chor oc. d for a liv as where vill fit betv s, with BC on (by oth standing \$ 28 lb upli	ane of the tru ial to the face ils as applica s per ANSI/Ti d bearing. re load of 20.0 a rectangle veen the bott CDL = 10.0ps 20 ftruss to 26 lb uplift at j ft at joint 6.	ss), ble, PI 1. Opsf om f. to oint					
FORCES	(lb) - Maximum Co Tension	mpression/Maximum											
TOP CHORD	1-2=-97/522, 2-3= 4-5=-120/521	0/475, 3-4=0/474,											un.
BOT CHORD	1-7=-374/97, 6-7=	-372/96, 5-6=-392/108										WHY CA	Rollin
WEBS	3-7=-605/0, 2-8=-3	342/171, 4-6=-339/171									~	ATT	
NOTES 1) Unbalance this design 2) Wind: ASC Vasd=95m B=20ft; L=: MWFRS (c 3-0-7, Inter 13-0-4, Intr and right e exposed;C reactions s DOL=1.60	d roof live loads hav E 7-10; Vult=120m ph; TCDL=6.0psf; E 20ft; eave=4ft; Cat. directional) and C-C rior (1) 3-0-7 to 10-0 erior (1) 13-0-4 to 21 xposed ; end vertic: -C for members and shown; Lumber DOL	ve been considered for CDL=6.0psf; h=30ft; ICDL=6.0psf; h=30ft;	o eft								in and the second	SEA 2822 HUEGAN	EER.

Job	Truss	Truss Type	Qty	Ply	Yarbrough Front Load Crawl V4-Roof	
P-7881-1	V2	Valley	1	1	Job Reference (optional)	147059129

Loading

TCDI

BCLL

TCLL (roof)

this design

DOL=1.60

2)

Run: 8,43 S Jun 2 2021 Print: 8,430 S Jun 2 2021 MiTek Industries, Inc. Mon Jul 19 10:31:31 ID:PbTSaFFz9yMg8p0emyfUiCzqojR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

0.11

Horiz(TL)

0.00

5

n/a n/a

Weight: 61 lb

FT = 20%

BCDL		10.0	Code	IRC	2015	/TPI2014	Matrix-MS	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP N 2x4 SP N 2x4 SP N Structural 6-0-0 oc p Rigid ceill bracing. (Ib/size) Max Horiz Max Uplift Max Grav	o.1 o.1 o.3 I wood shea ourlins. ing directly 1=95/15-1 6=370/15- 8=370/15- 1=-81 (LC 6=-97 (LC 1=100 (LC 6=376 (LC 8=376 (LC	athing directly app applied or 6-0-0 o 1-10, 5=95/15-11. 11-10, 7=347/15- 11-10 9) 11), 8=-97 (LC 1 2 20), 5=100 (LC 2 2 21), 7=347 (LC 1	lied or rc -10, 11-10, 1) 21), 1),	3) 4) 5) 6) 7) LO	Truss design only. For stu see Standard or consult qua Gable require Gable studs s * This truss h on the bottom 3-06-00 tall b chord and an Provide mecf bearing plate 8 and 97 lb u AD CASE(S)	ed for wind loads in the pl ds exposed to wind (norm Industry Gable End Deta alified building designer as se continuous bottom chor spaced at 4-0-0 oc. as been designed for a liv o chord in all areas where y 2-00-00 wide will fit betw y other members. nanical connection (by oth capable of withstanding S plift at joint 6. Standard	ane of the truss al to the face), ils as applicable, s per ANSI/TPI 1. d bearing. e load of 20.0psf a rectangle veen the bottom ers) of truss to 17 lb uplift at joint
FORCES	(lb) - Max Tension	imum Com	pression/Maximur	n				
TOP CHORD	1-2=-128/ 4-5=-128/	/155, 2-3=- [.] /131	17/123, 3-4=-17/12	20,				
BOT CHORD	1-8=-95/1 5-6=-95/1	20, 7-8=-95 05	5/60, 6-7=-95/60,					
WEBS	3-7=-279/	15, 2-8=-27	70/134, 4-6=-270/	134				
NOTES								
1) Unbalance	ed roof live l	oads have	been considered f	for				

Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=20ft; L=20ft; eave=4ft; Cat. II; Exp B; Enclosed;

MWFRS (directional) and C-C Exterior (2) 0-0-7 to 3-0-7, Interior (1) 3-0-7 to 8-0-4, Exterior (2) 8-0-4 to 11-0-4, Interior (1) 11-0-4 to 16-0-1 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip

0.0*

Rep Stress Incr

YES

WB

"munninger The second se SEAL

July 20,2021

Job	Truss	Truss Type	Qty	Ply	Yarbrough Front Load Crawl V4-Roof	
P-7881-1	V3	Valley	1	1	Job Reference (optional)	147059130

Loading

TCDI

BCLL

BCDL

LUMBER

OTHERS

BRACING

FORCES

WEBS

NOTES

2)

TCLL (roof)

Run: 8.43 S Jun 2 2021 Print: 8.430 S Jun 2 2021 MiTek Industries, Inc. Mon Jul 19 10:31:31

Page: 1

Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face). see Standard Industry Gable End Details as applicable. or consult qualified building designer as per ANSI/TPI 1.

Gable requires continuous bottom chord bearing. 4)

July 20,2021

ANG

Job	Truss	Truss Type	Qty	Ply	Yarbrough Front Load Crawl V4-Roof		
P-7881-1	V4	Valley	1	1	Job Reference (optional)	147059131	

Run: 8,43 S Jun 2 2021 Print: 8,430 S Jun 2 2021 MiTek Industries, Inc. Mon Jul 19 10:31:32 ID:PbTSaFFz9yMg8p0emyfUiCzqojR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

7-11-10

Page: 1

Scale = 1:26.4

Loading FCLL (roof) FCDL BCLL BCDL		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MP	0.14 0.14 0.08	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 26 lb	GRIP 244/190 FT = 20%	
LUMBER FOP CHORD BOT CHORD DTHERS BRACING FOP CHORD BOT CHORD	2x4 SP No. 2x4 SP No. 2x4 SP No. Structural v 7-11-10 oc Rigid ceilin bracing.	1 1 3 wood shea purlins. g directly	athing directly applie applied or 6-0-0 oc	5) 6) _{rd or} 7) L(Gable studs * This truss h on the botton 3-06-00 tall b chord and an Provide mecl bearing plate 1, 5 lb uplift a DAD CASE(S)	spaced at 4-0-0 in as been designed in chord in all are by 2-00-00 wide to y other member; hanical connection capable of with at joint 3 and 81 l Standard	oc. as where will fit betw s. on (by oth- standing 5 b uplift at	e load of 20. a rectangle reen the both ers) of truss t Ib uplift at jo joint 4.	Opsf om to vint						
REACTIONS	(Ib/size) 1 Max Horiz 1 Max Uplift 1 (Max Grav 1	1=46/7-11 4=545/7-1 1=-39 (LC 1=-5 (LC 2 (LC 11) 1=75 (LC 2	-10, 3=46/7-11-10, 1-10 9) 21), 3=-5 (LC 20), 4= 20), 3=75 (LC 21), 4	81 -=545											

(LC 1) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-71/248, 2-3=-71/248 BOT CHORD 1-4=-195/77, 3-4=-195/77

WEBS

NOTES

1) Unbalanced roof live loads have been considered for this design.

2-4=-385/89

- 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=20ft; L=20ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) 0-0-7 to 3-0-7, Interior (1) 3-0-7 to 4-0-4, Exterior (2) 4-0-4 to 6-11-9, Interior (1) 6-11-9 to 8-0-1 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.

"Innonanting" The second se SEAL 28228 GANG 1111

July 20,2021

Job	Truss	Truss Type	Qty	Ply	Yarbrough Front Load Crawl V4-Roof		
P-7881-1	V5	Valley	1	1	Job Reference (optional)	147059132	

12 7 Г

0-10-7

1-2-2

Peak Truss Builders, LLC (Closed), New Hill, NC - 27562,

Run: 8,43 S Jun 2 2021 Print: 8,430 S Jun 2 2021 MiTek Industries, Inc. Mon Jul 19 10:31:32 ID:uo0robGbwGVXlybqJfAjFPzqojQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3x4 =

2

3-5-11

1-5-14

3

PLATES

Weight: 11 lb

MT20

GRIP

244/190

FT = 20%

1-11-13

1-11-13

2x4 🍬 2x4 🔊 3-11-10 Plate Offsets (X, Y): [2:0-2-0,Edge] Spacing 2-0-0 CSI DEFL in l/defl L/d (psf) (loc) 20.0 Plate Grip DOL 1.15 тс 0.09 Vert(LL) n/a 999 n/a 10.0 Lumber DOL 1.15 BC 0.07 Vert(TL) n/a n/a 999 0.0* Rep Stress Incr YES WB Horiz(TL) 0.00 3 0.00 n/a n/a 10.0 Code IRC2015/TPI2014 Matrix-MP 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 20 lb uplift at joint 1 and 20 lb uplift at joint 3. LOAD CASE(S) Standard Structural wood sheathing directly applied or 3-11-10 oc purlins. Rigid ceiling directly applied or 10-0-0 oc 1=159/3-11-10, 3=159/3-11-10 Max Horiz 1=18 (LC 10) Max Uplift 1=-20 (LC 11), 3=-20 (LC 11) (Ib) - Maximum Compression/Maximum 1-2=-253/40, 2-3=-253/40

BOT CHORD NOTES

FORCES

Scale = 1:22.7

Loading

TCDL

BCLL

BCDL

LUMBER

TOP CHORD

BOT CHORD BRACING

TOP CHORD

BOT CHORD

REACTIONS

TOP CHORD

2x4 SP No.1

2x4 SP No.1

bracing.

Tension

1-3=-26/212

(lb/size)

TCLL (roof)

Unbalanced roof live loads have been considered for 1) this design

- Wind: ASCE 7-10; Vult=120mph (3-second gust) 2) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=20ft; L=20ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed:C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Gable requires continuous bottom chord bearing. 4) Gable studs spaced at 4-0-0 oc. 5)

- * This truss has been designed for a live load of 20.0psf 6) on the bottom chord in all areas where a rectangle
- 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

Connection of the second The second se SEAL

