

Trenco 818 Soundside Rd Edenton, NC 27932

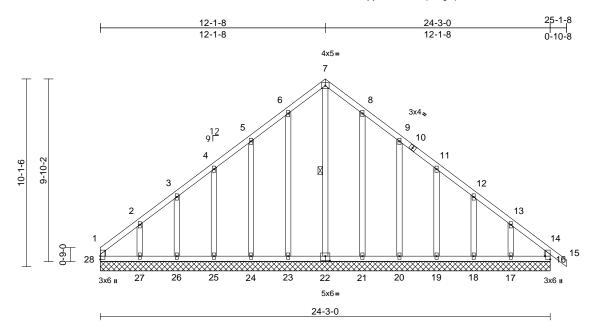
Re: Q2200849 Garman Homes - Forget Me Not A Roof

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carolina Structural Systems, LLC.

Pages or sheets covered by this seal: I54412940 thru I54412956

My license renewal date for the state of North Carolina is December 31, 2022.

North Carolina COA: C-0844


September 28,2022

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

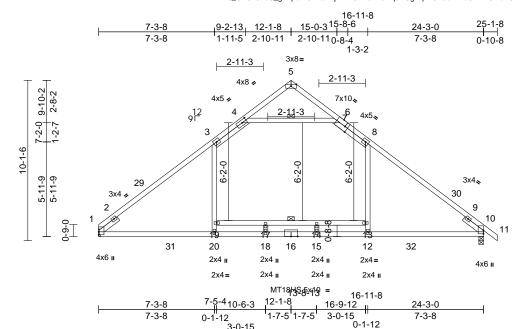
Job	Truss	Truss Type	Qty	Ply	Garman Homes - Forget Me Not A Roof	
Q2200849	A01	Common Supported Gable	1	1	Job Reference (optional)	154412940

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Tue Sep 27 08:48:53 ID:wWIRnnEMic_X1iQR_n6cClzEjkj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:62.1

Plate Offsets (X, Y): [16:Edge,0-3-	8], [22:0-3-0,0-3-0]											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015/7		CSI TC BC WB Matrix-AS	0.10 0.07 0.16	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 16	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 169 lb	GRIP 244/190
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 *Exce 2x4 SP No.3 Structural wood sh except end vertical Rigid ceiling directl 1 Row at midpt (size) 16=24-3 22=24-3 25=24-3 25=24-3 25=24-3 25=24-3 26=24-3 20=-34 (23=-17 (25=-30 (27=-60 (Max Grav 16=170 18=163 20=161 22=197 24=160	pt* 16-14:2x4 SP No.3 eathing directly applied s. y applied. 7-22 -0, 17=24-3-0, 18=24- -0, 20=24-3-0, 21=24- -0, 20=24-3-0, 21=24- -0, 20=24-3-0, 21=24- -0, 20=24-3-0, 27=24- -0 (LC 10) C 9), 17=-53 (LC 12), LC 12), 19=-29 (LC 12 LC 12), 21=-17 (LC 12 LC 12), 24=-33 (LC 12), LC 12), 24=-33 (LC 12), LC 12), 28=-53 (LC 10 (LC 1), 19=162 (LC 18), LC 18), 21=166 (LC 2) (LC 12), 25=164 (LC 1 (LC 1), 25=164 (LC 1)	BOT 3-0, NOT 3-0, 1) (3-0, 2) (1) 3-0, 2) (1) 1), (1), (2), (2)	ES Jubalanced his design. Wind: ASC Vasd=95m B=45ft; L=2 WWFRS (d 3-1-12, Ext to 15-1-8, E eft and righ exposed;C- reactions sl DOL=1.60 Truss desi poly. For s see Standa or consult of All plates a	Matrix-AS 27-28=-83/112, 2 25-26=-83/112, 2 20-21=-83/112, 2 20-21=-83/112, 2 20-21=-83/112, 2 20-21=-83/112, 1 16-17=-83/112, 1 7-22=-212/133, 1 4-25=-123/73, 3 8-21=-126/58, 9 12-18=-122/71, 1 d roof live loads h E 7-10; Vult=120r br, TCDL=6.0psf; 4ft; eave=2ft; Cal rectional) and C- error (2) 3-1-12 to xxterior (2) 15-1-8 t exposed; end V G for members an hown; Lumber DC gned for wind load tuds exposed to v rd Industry Gable ualified building c re 2x4 MT20 unle res continuous b	24-25=-83 21-23=-83 19-20=-83 17-18=-83 5-23=-126 26=-118/(20=-126// 13-17=-14 ave been mph (3-see BCDL=6. t. II; Exp BC C Corner 1 22-1-8, C C Corner 1 22-1-8, C C Corner 1 22-1-8, C C Corner 1 12-1-8, C C Corner 1 12-1-8, C C Corner 1 12-1-8, C C Corner 1 12-1-8, C C Corner 1 25-1-8 0L=1.60 pl ds in the p vind (norm End Deta designer a ss otherwi	(112, (112, (112, (112, (112, (112, (112, (112, (112, (12, (k/95, 22/73, pr 1-8 ver r uss v), ble, PI 1.	bea 28, upli 26, upli 18 11) Thia R8(12) Thia stru cho the LOAD (tring plat 2 lb upli ft at join 60 lb up ft at join and 53 ll s truss is rrnationa 02.10.2 a s truss d s t	te capa ft at joi t 24, 31 solifit at jt t 20, 22 b uplift t 20, 2	al connection (by able of withstandi int 16, 17 lb uplift 0 lb uplift at joint oint 27, 17 lb upli 9 lb uplift at joint at joint 17. Ined in accordand dential Code sec erenced standar requires that a m leathing be appli osum sheetrock l Indard	v others) of truss to ing 53 lb uplift at jo at joint 23, 33 lb 25, 21 lb uplift at jo ft at joint 21, 34 lb 19, 23 lb uplift at jo ce with the 2015 tions R502.11.1 an d ANSI/TPI 1. inimum of 7/16" ed directly to the to be applied directly to
FORCES TOP CHORD	(lb) - Maximum Cor Tension 1-28=-109/51, 1-2= 3-4=-106/78, 4-5=- 6-7=-207/226, 7-8= 9-11=-114/114, 11-	mpression/Maximum -137/123, 2-3=-116/91 114/114, 5-6=-165/17 -207/226, 8-9=-165/17 12=-78/56, 12-13=-88 -15=0/37, 14-16=-140/	7) (, 8) ⁻ ;, 8) ⁻ ;6, 9) ⁻ ;55, 9) ⁻	braced aga Gable studs This truss h chord live lo This truss on the botto 3-06-00 tall	fully sheathed fro inst lateral moven s spaced at 2-0-0 was been designed and nonconcurrer has been design m chord in all are by 2-00-00 wide any other member	nent (i.e. c oc. d for a 10. it with any ed for a liv eas where will fit bety	liagonal web) 0 psf bottom other live loa e load of 20.0 a rectangle	nds. Opsf		1111111	A A A A A A A A A A A A A A A A A A A	SEA 0363	EER.K

September 28,2022



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Forget Me Not A Roof				
Q2200849	A02	Common	5	1	Job Reference (optional)	154412941			

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Tue Sep 27 08:48:55 ID:9_GP528Ka8_g4TpuW6zktczEjkr-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [4:0-3-8,0-2-0], [7:0-2-4,Edge]

Scale = 1:72.6

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP		
TCLL (roof)	20.0	Plate Grip DOL	1.00		TC	0.97	Vert(LL)	-0.67	()	>432	240	MT20	244/190		
TCDL	10.0	Lumber DOL	1.15		BC	0.98	Vert(CT)	-1.03		>282	180	MT18HS	244/190		
BCLL	0.0*	Rep Stress Incr	NO		WB	0.58	Horz(CT)	0.07	1	n/a	n/a		21.0.00		
BCDL	10.0	Code		5/TPI2014	Matrix-AS							Weight: 137 lb	FT = 20%		
.UMBER	· · · ·		2)	Wind: ASCE	7-10; Vult=120mp	h (3-seo	cond gust)								
FOP CHORD			,		; TCDL=6.0psf; B										
	6-8,3-4:2x4 SP No.2				ft; eave=4ft; Cat. I ectional) and C-C										
BOT CHORD	2x4 SP DSS *Except	t° 19-13:2x4 SP No.	2					R to							
NEBS SLIDER	2x4 SP No.3		No 2	3-0-0, Interior (1) 3-0-0 to 12-1-8, Exterior (2) 12-1-8 to 15-3-1, Interior (1) 15-3-1 to 25-1-8 zone; cantilever left											
BLIDER	Left 2x4 SP No.3 1 1-6-0	1-6-0, Right 2x4 SP	N0.3	and right exposed ; end vertical left and right											
	1-0-0		exposed;C-C for members and forces & MWFRS for												
	Structural wood sheathing directly applied. Rigid ceiling directly applied. Except:				wn; Lumber DOL:										
				DOL=1.60											
	6-0-0 oc bracing: 13-		3)	All plates are	MT20 plates unle	ss othei	wise indicate	ed.							
VEBS	0	-19 4-6	4)	All plates are	2x4 MT20 unless	otherwi	se indicated.								
			5)	This truss ha	s been designed f	or a 10.) psf bottom								
REACTIONS	. ,	nical, 10=0-3-8		chord live loa	ad nonconcurrent v	vith any	other live loa	ıds.							
	Max Horiz 1=-167 (L Max Grav 1=1337 (L	,	6)		as been designed			0psf							
	•		,21)		n chord in all areas		0								
ORCES	(Ib) - Maximum Com	pression/Maximum			y 2-00-00 wide wi										
TOP CHORD	Tension	200/02 4 5 0/220			y other members,			t.							
OP CHORD	1-3=-1839/0, 3-4=-12 5-6=-1/321, 6-8=-124	, , ,	7)		er(s) for truss to tru										
	10-11=0/32	49/00, 0-10=-1034/4	17, 8)		designed in accord Residential Code			nd							
OT CHORD	1-20=-45/1363, 18-2	0-0/1442			nd referenced stan			anu							
	15-18=0/1442. 12-15	,	9)		sign requires that								eres.		
	10-12=-38/1363, 17-	,	9)		od sheathing be a			ton					1111		
	14-17=-95/13, 13-14	,			2" gypsum sheetro							NITH CA	Roill		
VEBS	19-20=0/653, 3-19=0			the bottom c				y 10			15	A	Dellate		
												W THE	DA AN		

WEBS 19-20=0/653, 3-19=0/826, 12-13=0/638, 8-13=0/814, 4-6=-1662/104, 17-18=-140/10, 14-15=-133/13

NOTES

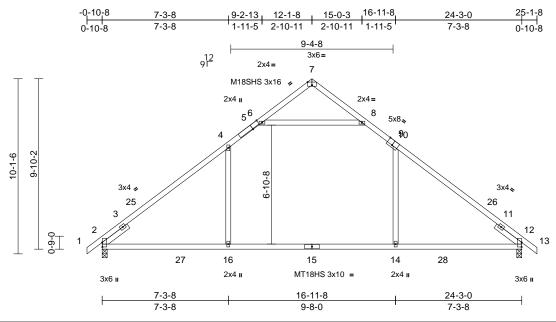
1) Unbalanced roof live loads have been considered for this design.

G (1111111) September 28,2022

SEAL

036322

Manuning.


Contraction of the

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Forget Me Not A Roof					
Q2200849	A03	Common	9	1	Job Reference (optional)	154412942				

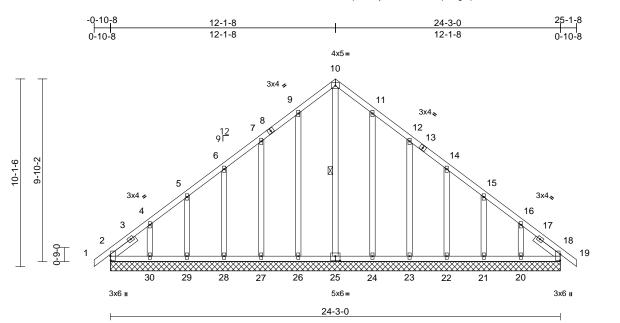
Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Tue Sep 27 08:48:55 ID:?P1Dr2p40ru6BNM7LVFGp0zEjUU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:66.6 Plate Offsets (X, Y): [2:0-3-2,0-0-3], [5:0-5-9,Edge], [7:0-3-0,Edge], [9:0-4-0,Edge], [12:0-3-2,0-0-3]

Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.00		CSI TC	0.85	DEFL Vert(LL)	in 0.50	(loc) 14-23	l/defl >492	L/d 240	PLATES M18SHS	GRIP 244/190
TCDL (1001)	20.0	Lumber DOL	1.00		BC	0.85	Vert(LL)	-0.59	14-23	>492 >388	240 180	MT20	244/190
BCLL	0.0*	Rep Stress Incr	YES		WB	0.90	Horz(CT)	0.09	2	>300 n/a	n/a	MT18HS	244/190
BCDL	10.0	Code		5/TPI2014	Matrix-AS	0.00	11012(C1)	0.09	2	11/a	n/a	Weight: 117 lb	FT = 20%
BODL	10.0	Coue	IKC201	3/1712014	Watth -AS							weight. 117 lb	FT = 2076
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP DSS *Excep 2x4 SP No.1 2x4 SP No.3 Left 2x4 SP No.3 No.3 1-10-2 Structural wood she Rigid ceiling directly (size) 2=0-3-8, - Max Horiz 2=170 (LC Max Uplift 2=-29 (LC Max Grav 2=1143 (I	6) d. 7) 8)	on the bottor 3-06-00 tall b chord and ar Provide mec bearing plate 2 and 29 lb u This truss is International R802.10.2 a This truss de structural wo chord and 1/	as been designed n chord in all area by 2-00-00 wide w y other members hanical connection e capable of withst uplift at joint 12. designed in accor Residential Code nd referenced stan sign requires that od sheathing be a 2" gypsum sheetr	as where ill fit betw , with BC n (by oth tanding 2 rdance w sections ndard AN t a minim applied d	a rectangle veen the bott DL = 10.0psi ers) of truss i 9 lb uplift at j ith the 2015 F R502.11.1 a ISI/TPI 1. um of 7/16"	om f. to joint and						
FORCES	(lb) - Maximum Com Tension	<i>,,</i>	,	the bottom c DAD CASE(S)									
TOP CHORD	1-2=0/32, 2-4=-1431 6-7=-8/209, 7-8=-7/2 10-12=-1431/77, 12-	206, 8-10=-969/145,											
BOT CHORD	2-16=-91/1062, 14-1 12-14=-86/1062	6=0/1062,											
WEBS	4-16=0/505, 10-14=	0/505, 6-8=-1230/17	6										
NOTES												mm	UIL.
this desigr 2) Wind: ASC	 Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; 										A	ORTH CA	ROUN
B=45ft; L=	24ft; eave=4ft; Cat. II;	Exp B; Enclosed;								4	UD.		Alle

Vasd=95mpn, TCDL=6.0psr, BCDL=6.0psr, h=25tr, B=45fr; L=24fr; eave=4fr; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 12-1-8, Exterior (2) 12-1-8 to 15-3-1, Interior (1) 15-3-1 to 25-1-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) All plates are MT20 plates unless otherwise indicated.

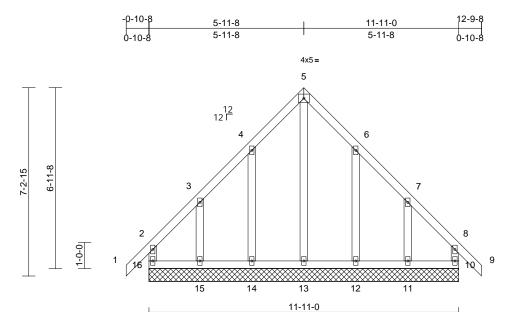

 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Forget Me Not A Roof	
Q2200849	A04	Common Supported Gable	1	1	Job Reference (optional)	154412943

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Tue Sep 27 08:48:56 ID:8XUh_NCDwANoU2eDb8pEzezEjSh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:62.1

Plate Offsets (X, Y):	[2:0-2-12,0-0-3], [18:0-3-14,0-0-3], [25:0-3-0,0-3-0]


			-	-	1								
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.00		TC	0.06	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.05	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES		WB	0.16	Horz(CT)	0.01	18	n/a	n/a		
BCDL	10.0	Code	IRC2015	/TPI2014	Matrix-AS							Weight: 175 lb	FT = 20%
	10.0 2x4 SP No.2 2x4 SP No.3 Left 2x4 SP No.3 Left 2x4 SP No.3 1-8-5 Structural wood sl Rigid ceiling direc 1 Row at midpt (size) 2=24-3 21=24-3 21=24-3 30=24-4 30=24-4 24=24-3 21=24-3 30=24-3 21=24-3 21=24-3 22=163 23=-33 26=-19 28=-29 30=-54 Max Grav 2=188 (20=182 22=163 24=165 26=166 28=163 30=192 35=157 (lb) - Maximum Co Tension	Code - 1-8-5, Right 2x4 SP I heathing directly applied 10-25 0, 18=24-3-0, 20=24-3 -0, 22=24-3-0, 23=24 -0, 25=24-3-0, 23=24 -0, 25=24-3-0, 23=24 -0, 25=24-3-0, 23=24 -0, 31=24-3-0, 35=24 LC 11), 31=170 (LC 1: (LC 12), 22=-29 (LC 1: (LC 12), 22=-29 (LC 1: (LC 12), 23=-23 (LC 1: (LC 12), 24=-19 (LC 1: (LC 12), 24=-19 (LC 1: (LC 12), 23=-23 (LC 1: (LC 12), 23=-23 (LC 1: (LC 12), 31=-19 (LC 1: (LC 18), 13=157 (LC 1: (LC 18), 23=162 (LC - (LC 18), 23=162 (LC - (LC 17), 25=164 (LC - (LC 17), 29=158 (LC - (LC 17), 31=188 (LC -	IRC2015 BO No.3 ed. we ed. 3-0, NO -3-0, 1) -3-0, 2) 1), -3-0, 2), 2), 2), 2), 2), 2), 2), 2), 2), 10, 3) 12), 3) 12), 3) 12), 17), 10, 4) 18), 4) 5) 6)	T CHORD T CHORD TES Unbalance this design Wind: ASC Vasd=95m B=45ft; L=; MWFRS (c 2-1-8, Ext 15-1-8, E	Matrix-AS 2-30=-91/138, 29- 28-29=-91/138, 27 28-29=-91/138, 22 23-24=-91/138, 22 23-24=-91/138, 22 23-24=-91/138, 22 23-24=-91/138, 22 21-22=-91/138, 22 21-22=-91/138, 22 21-22=-91/138, 22 21-22=-91/138, 22 10-25=-174/104, 52 4-30=-148/95, 11- 12-23=-125/78, 14 15-21=-120/69, 16 cd roof live loads have. CE C-7-10; Vult=120mj. ph; TCDL=6.0psf; E 24ft; eave=2ft; Cat. directional) and C-C cerior (2) 2-1-8 to 12- terior (2) 15-1-8 to 2 xposed; end vertica: -C for members and shown; Lumber DOL igned for wind loads studs exposed to wiard ard Industry Gable E qualified building de are 2x4 MT20 unless is spaced at 2-0-0 o has been designed load nonconcurrent	30=-91/ 7-28=-91 1-26=-91 2-23=-91 3-26=-12 8=-122/7 24=-125 1-22=-12 3-20=-14 we been ph (3-see 3CDL=6. II; Exp E Corner 1 1-8, Corn 5-1-8 zca al left and 5 forces ==1.60 pl s in the p nd (norm End Dett as otherw tom cho oc. for a 10. with any	I38, /138, /138, /138, /138, /138, 6/61, 73, 5-29=-120/ /61, 2/73, 9/95 considered for cond gust) 0psf; h=25ft; ; Enclosed; (3) -0-10-8 to her (3) 12-1-8 ine; cantilever d right & MWFRS for ate grip lane of the tru: hal to the face) ils as applicate s per ANSI/TP ise indicated. rd bearing. 0 psf bottom other live load	to left ss lee, le, l 1.	9) Pro bec 2, ' upl 30, upl 20 10) Thi Inte R8 11) Thi stru- cho the LOAD	ovide me aring pla 19 lb up ift at join 19 lb up ift at join and 19 l s truss is ernationa 02.10.2 s truss of uctural word and 2 bottom CASE(S	chanic te capa ift at joi t 28, 2: 1/ift at j i b uplift s desig al Resia and ref lesign 1 ood sh 1/2" gyr (chord.) Sta	al connection (by able of withstandi int 26, 33 lb uplift 3 lb uplift at joint 2 int 24, 33 lb uplif 3 lb uplift at joint 2 int 2, and 10 uplift at joint 2 int 2, and 10 uplift at joint 2 end in accordance dential Code sect erenced standarc requires that a mi eathing be applie bosum sheetrock to indard	others) of truss to ng 19 lb uplift at joint at joint 27, 29 lb 29, 54 lb uplift at joint t at joint 23, 29 lb 21, 54 lb uplift at joint e with the 2015 ions R502.11.1 and d ANSI/TPI 1. nimum of 7/16" ad directly to the top se applied directly to
		-105/80, 7-9=-139/142 -11=-181/193, 2-14=-88/80, 16=-88/48,	, 8)	on the bott 3-06-00 tal	s has been designed com chord in all area Il by 2-00-00 wide w any other members	as where vill fit betw	a rectangle	•				SEA 0363	ILBERTING
												September	28,2022

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Forget Me Not A Roof	
Q2200849	B01	Common Supported Gable	1	1	Job Reference (optional)	154412944

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Tue Sep 27 08:48:56 ID:9u9iqoJgbFPJw1cqXqlo7GzEjlv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

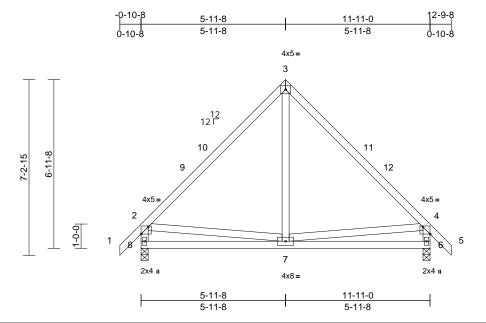
Page: 1

Scale = 1:44.3

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015/T	PI2014	CSI TC BC WB Matrix-MR	0.11 0.05 0.19	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 10	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 79 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 10=11-11	-0, 11=11-11-0,	2) \ E ior e 3) 0	Wind: ASCE /asd=95mpH 3=45ft; L=24 WWFRS (dirr I-11-8, Exter 3-11-8, Exter and right exp exposed;C-C reactions shc coCl=1.60 Truss desigr only. For stu	7-10; Vult=120m 7-10; Vult=120m 7; TCDL=6.0psf; ft; eave=2ft; Cat ectional) and C-C ior (2) 1-11-8 to ior (2) 8-11-8 to osed ; end vertici for members ar pwn; Lumber DO med for wind loac dis exposed to w d Industry Gable	BCDL=6. II; Exp B C Corner (5-11-8, C 12-9-8 zo cal left and forces a PL=1.60 pl ds in the p	Dpsf; h=25ft; ; Enclosed; 3) -0-10-8 to orner (3) 5-11 ne; cantilever I right & MWFRS for ate grip ane of the tru al to the face	left Iss						
$\begin{array}{c} 12{=}11{-}11{-}0,\ 13{=}11{-}11{-}0,\\ 14{=}11{-}11{-}0,\ 15{=}11{-}11{-}0,\\ 16{=}11{-}11{-}0,\\ 16{=}11{-}11{-}0\\ \text{Max Horiz} 16{=}153\ (\text{LC 11})\\ \text{Max Uplift} 10{=}{-}36\ (\text{LC 9}),\ 11{=}{-}67\ (\text{LC 12}),\\ 12{=}{-}43\ (\text{LC 12}),\ 14{=}{-}43\ (\text{LC 12}),\\ 15{=}{-}67\ (\text{LC 12}),\ 16{=}{-}45\ (\text{LC 8})\\ \text{Max Grav} 10{=}161\ (\text{LC 17}),\ 11{=}188\ (\text{LC 18}),\\ 12{=}178\ (\text{LC 18}),\ 13{=}208\ (\text{LC 12}),\\ 14{=}173\ (\text{LC 12}),\ 16{=}{-}45\ (\text{LC 12}),\\ 14{=}173\ (\text{LC 12}),\ 15{=}{-}17\ (\text{LC 12}),\ 12{=}{-}17\ (\text{LC 12}),\ 12{=}{-}{-}{-}{-}{-}{-}{-}{-}{-}{-}{-}{-}{-}$				or consult qu All plates are Gable require Fruss to be fu praced again Gable studs s Fhis truss ha	a industry Gable alified building d 2x4 MT20 unles es continuous bo ully sheathed fro st lateral movern spaced at 2-0-0 s been designed at nonconcurren	esigner as ss otherwi ottom chor m one fac nent (i.e. d oc. I for a 10.0								
FORCES	16=172 ((lb) - Maximum Con Tension	14=177 (LC 17), 15=193 (LC 17), 16=172 (LC 18) 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.											11111	
TOP CHORD	6-7=-97/114, 7-8=-9 8-10=-132/61	71/202, 5-6=-172/202 92/79, 8-9=0/43,	2, ít 1	bearing plate 16, 36 lb upli uplift at joint	hanical connection capable of with ft at joint 10, 43 15, 43 lb uplift at	standing 4 Ib uplift at	5 lb uplift at j joint 14, 67 lt	oint o		4	i	OPTH CA	ROW	×.
BOT CHORD	12-13=-72/77, 11-12 5-13=-230/130, 4-14 3-15=-157/122, 6-12		7 11) T I	nternational	designed in acco Residential Cod nd referenced sta	e sections	R502.11.1 a	nd				SEA 0363	L 22	Wall Hall Hall
NOTES	7-11=-159/121		LOA	D CASE(S)	Standard									1111
1) Unbalance	ed roof live loads have	been considered for									2	A. En.	Air .	-

 Unbalanced roof live loads have been considered for this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


September 28,2022

C

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Forget Me Not A Roof	
Q2200849	B02	Common	2	1	Job Reference (optional)	154412945

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Tue Sep 27 08:48:57 ID:Z0uhbRmutd43sjxxC5wT73zEjlK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:47.5

Plate Offsets (X, Y): [2:0-3-8,Edge], [4:0-3-8,Edge]

	(x, 1): [2:0 0 0,20g0],	[1.0 0 0,Edg0]				-						
Loading TCLL (roof) TCDL BCLL	(psf) 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.00 1.15 YES	CSI TC BC WB	0.58 0.31 0.11	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.05 0.00	(loc) 7-8 7-8 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0	Code	IRC2015/TPI201	4 Matrix-MS	_						Weight: 75 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing.	cept end verticals. applied or 10-0-0 o	bearing 8 and 2 6) This tru Interna ed or R802.1 LOAD CAS	mechanical connecti plate capable of with 9 lb uplift at joint 6. ss is designed in accr ional Residential Cod 0.2 and referenced st E(S) Standard	standing 2 ordance w le sections	29 lb uplift at ith the 2015 8 R502.11.1 a	joint				<u>.</u>	
REACTIONS	(size) 6=0-3-8, 8 Max Horiz 8=153 (LC Max Uplift 6=-29 (LC Max Grav 6=526 (LC	C 11) 5 12), 8=-29 (LC 12)	1									
FORCES	(lb) - Maximum Com Tension	pression/Maximum										
TOP CHORD BOT CHORD WEBS NOTES	1-2=0/43, 2-3=-451/ 4-5=0/43, 2-8=-475/ 7-8=-142/352, 6-7=- 3-7=0/249, 2-7=-158	111, 4-6=-475/111 117/313 /225, 4-7=-162/226										
,	ed roof live loads have	been considered fo	or									1111
Vasd=95n B=45ft; L= MWFRS (2-1-8, Inte 8-11-8, Int and right e exposed;0	CE 7-10; Vult=120mph mph; TCDL=6.0psf; BC =24ft; eave=4ft; Cat. II; (directional) and C-C E: erior (1) 2-1-8 to 5-11-8 terior (1) 8-11-8 to 12-6 exposed ; end vertical I C-C for members and fr shown; Lumber DOL=	DL=6.0psf; h=25ft; Exp B; Enclosed; xterior (2) -0-10-8 to , Exterior (2) 5-11-8 9-8 zone; cantilever eft and right prces & MWFRS for	3 to left								ORTEESS SEA 0363	• —
chord live 4) * This trus	has been designed for load nonconcurrent wi ss has been designed f ttom chord in all areas	th any other live loa or a live load of 20.0									NGIN C A C	EER. KINN

- and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


GI

11111111

September 28,2022

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Forget Me Not A Roof	
Q2200849	B03	Common Girder	1	2	Job Reference (optional)	154412946

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Tue Sep 27 08:48:57 ID:9_GP528Ka8_g4TpuW6zktczEjkr-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

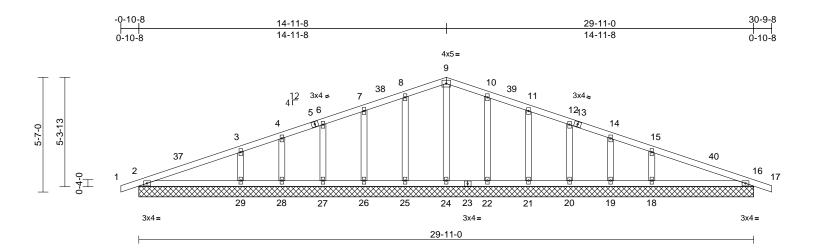
Scale = 1:50.9

Boald = Hoole														
Plate Offsets	(X, Y): [6:0-4-9,0-0-8]	, [7:0-3-7,0-1-0]												
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.00		TC	0.44	Vert(LL)	-0.05	6-7	>999	240	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15		BC	0.76	Vert(CT)	-0.09	6-7	>999	180			
BCLL	0.0*	Rep Stress Incr	NO		WB	0.56	Horz(CT)	0.01	5	n/a	n/a			
BCDL	10.0	Code	IRC201	5/TPI2014	Matrix-MS							Weight: 160 lb	FT = 20%	
LUMBER TOP CHORD			4)	Vasd=95mph	7-10; Vult=120mp n; TCDL=6.0psf; B ft; eave=4ft; Cat. I	SCDL=6.0	Dpsf; h=25ft;							
	2x6 SP No.2				ectional); cantileve			od ·						
WEBS SLIDER	2x4 SP No.3	1-6-0, Right 2x6 SP N			eft and right expos									
SLIDER	1-6-0	1-0-0, Right 2x0 SP h	NU.2	plate grip DC		oou, Lun		50						
BRACING	100		5)		s been designed f	for a 10.0) psf bottom							
TOP CHORD	Structural wood she	athing directly applie	d or		ad nonconcurrent									
	6-0-0 oc purlins.		6)		as been designed			0psf						
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc			n chord in all area									
	bracing.				by 2-00-00 wide wing other members.		een the bott	om						
REACTIONS	(size) 1=0-3-8,	5=0-3-8	7)		designed in accor		ith the 2015							
	Max Horiz 1=114 (L	,	,		Residential Code			and						
	Max Grav 1=3697 (LC 14), 5=3767 (LC 1	3)	R802.10.2 a	nd referenced star	ndard AN	ISI/TPI 1.							
FORCES	(lb) - Maximum Con	npression/Maximum	8)		other connection									
	Tension	047/0			icient to support c									
	1-3=-3848/0, 3-5=-3 1-7=0/2697, 6-7=0/2				-0-12, 1322 lb dov									
WEBS	3-7=0/2705, 3-6=0/2				-12, and 1322 lb d 0-0-12 on bottom			322						
NOTES	0, -0, 2, 00, 0-0-0/2	_,			such connection d									
	s to be connected toge	ther with 10d		responsibility										
	") nails as follows:		LC	DAD CASE(S)									111.	
	is connected as follow	s: 2x4 - 1 row at 0-9-0			of Live (balanced):	: Lumber	Increase=1.	15.				WHILL CA	Dalle	
OC.			,	Plate Increa				,			1	athor	10/11	1
Bottom ch	nords connected as fol	lows: 2x6 - 2 rows		Uniform Loa	ads (lb/ft)						1	OVEESS	TO V	11
	at 0-6-0 oc.			Vert: 1-3	=-60, 3-5=-60, 8-1	12=-20					25		1. 7	51
	nected as follows: 2x4			Concentrate	ed Loads (lb)							.2	-up	6.
	are considered equally				1046 (B), 6=-1046		⊧-1046 (B),			-		054	r 1	Ξ
	noted as front (F) or ba		AD	17=-1046	6 (B), 18=-1046 (B	3)				= =		SEA	•	Ξ.
	section. Ply to ply con to distribute only loads									=	:	0363	22 :	
	nerwise indicated.	noteu as (F) OF (D),									. j		:	
	ed roof live loads have	been considered for									1			1

 Unbalanced roof live loads have been considered for this design.

September 28,2022

G


C

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Forget Me Not A Roof	
Q2200849	C01	Common Supported Gable	1	1	Job Reference (optional)	154412947

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Tue Sep 27 08:48:57 ID:5xZJKvo4gLIN2Y0ydH25zOzEjrI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

ue Sep 27 08:48:57 Page: 1 VrCDoi7J4zJC?f

Scale = 1:56.1


Ocale = 1.50.1			-											
Loading	(psf)		2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.00		TC	0.22	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
TCDL	10.0		1.15		BC	0.19	Vert(CT)	n/a	-	n/a	999			
BCLL	0.0*	Rep Stress Incr	YES		WB	0.05	Horz(CT)	0.00	16	n/a	n/a			
BCDL	10.0	Code	IRC201	5/TPI2014	Matrix-AS							Weight: 143 lb	FT = 20%	
	Rigid ceiling directly (size) 2=29-11-(18=29-11 20=29-11 25=29-11 25=29-11 25=29-11 27=29-11 27=29-11 27=29-11 27=29-11 34=29-11 Max Horiz 2=-51 (LC 18=-12 (L 20=-7 (LC 28=-5 (LC 28=-5 (LC 30=-21 (L 28=-5 (LC 30=-21 (L 28=-5 (LC 30=-21 (L 28=-5 (LC 28=-5 (LC 30=-21 (L 28=-5 (LC 28=-5	0.16=29-11-0, -0, 19=29-11-0, -0, 21=29-11-0, -0, 26=29-11-0, -0, 26=29-11-0, -0, 30=29-11-0, -0, 30=29-11-0, -0, 30=29-11-0, -0, 30=29-11-0, -0, 30=29-11-0, -0, 30=29-11-0, -0 -10, 30=29-11-0, -0 -10, 30=29-11-0, -0 -10, 30=29-11-0, -0 -10, 30=29-11-0, -0 -10, 30=29-11-0, -0 -10, 30=29-11-0, -0 -10, 30=29-11-0, -0 -10, 30=29-11-0, -0 -10, 16=221 (LC 12), 12), 25=-5 (LC 12), 212), 29=-12 (LC 12), 212), 29=-12 (LC 12), 21, 16=226 (LC 1), -10, 22), 24=152 (LC 1), -10, 22), 24=152 (LC 1), -10, 21), 26=152 (LC 1), -10, 22), 24=33 (LC 1), -10, 22), 24=343 (LC 1), -10, 30=226 (LC 1), -10, 30=226 (LC 1),	W N 1) 2) 3) (4) 5) 6)	VEBS OTES Unbalanced this design. Wind: ASCE Vasd=95mpl B=45ft; L=30 MWFRS (dir 2-1-8, Exteri- to 17-11-8, E cantilever lefl right expose for reactions DOL=1.60 Truss desig only. For stu- see Standar- or consult qu- All plates are Gable studs This truss has chord live loa	2-29=-9/67, 28-29 26-27=-9/62, 25-21 22-24=-9/62, 21-21 19-20=-9/62, 18-11 9-24=-102(0, 8-25) 6-27=-136/63, 4-21 10-22=-128/101, 1 12-20=-136/63, 14 15-18=-269/120 roof live loads hav 7-10; Vult=120mp h; TCDL=6.0psf; B Jft; eave=2ft; Cat. I ectional) and C-C or (2) 2-1-8 to 14- Exterior (2) 17-11- ft and right expose d; C-C for member shown; Lumber D ned for wind loads uds exposed to wird d Industry Gable E ialified building de a 2x4 MT20 unless es continuous bott spaced at 2-0-0 o as been designed d nonconcurrent as been designed	6=-9/62, 2=-9/62, 9=-9/62, =-128/10 8=-52/35 1-21=-1 I-19=-52 /e been / bh (3-sec 3CDL=6, II); Exp B COrner (11-8, Co 8 to 30-9 d; end v 5 and fo 0DL=1.6(bin the p nd (norm ind Deta signer a: s otherwit tom chor c. for a 10.) with any	24-25=-9/62, 20-21=-9/62, 16-18=-9/62, 16-18=-9/62, 16-726=-116/, 3-29=-269/1 16/60, (35, considered for cond gust) Opsf; h=25ft; ; Enclosed; 3) -0-10-8 to rner (3) 14-11 -8 zone; reertical left and rces & MWFR D plate grip lane of the tru lat to the face) ils as applicat s per ANSI/TF se indicated. d bearing. D psf bottom other live load	-8 d S S S S S S S S S S S S S S S S S S	bea 2, 2 at jc b u 21, at jc 16. 10) This Inte R8(C 11) This stru cho the LOAD (ring pla in Ib upli joint 26, plift at jo 7 Ib upli joint 18, 2 s truss is rmationa J2.10.2 d is truss d	te capa ff at jo 7 lb up pint 29 pint 29 21 lb u s design to	able of withstand int 16, 5 lb uplift lift at joint 27, 5 , 5 lb uplift at join int 20, 5 lb uplift uplift at joint 2 an gned in accordar dential Code sed ferenced standa requires that a n neathing be appl psum sheetrock indard	AROUNT	oint lift 12 joint plift nt nd cop / to
FORCES	(lb) - Maximum Com Tension		0)	on the bottor	m chord in all area	s where	a rectangle			E		0363	322	H
TOP CHORD	1-2=0/17, 2-3=-77/49 4-6=-39/73, 6-7=-44				ny other members.			/11		-	-			1
		/100, 7-8=-52/126, 62/152, 10-11=-52/127	7.		-						21	N. ENG	-ERIA S	2
		4=-31/74, 14-15=-55/5									1	S. GIN	Et. A.S	
	15-16=-76/35, 16-17		,								1	C	BEN	
												A. C	JILLIN	
												· · · · · · · · · ·	inni,	

September 28,2022

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Forget Me Not A Roof	
Q2200849	C02	Common	6	1	Job Reference (optional)	154412948

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Tue Sep 27 08:48:58 ID:TG?LDhtXU?dcrNvFuAfBcNzEjqL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:56.1

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.00		TC	0.76	Vert(LL)	-0.27	10-12	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.78	Vert(CT)	-0.53	10-12	>675	180	MT18HS	244/190
BCLL	0.0*	Rep Stress Incr	YES		WB	0.36	Horz(CT)	0.10	8	n/a	n/a		
BCDL	10.0	Code	IRC2015	5/TPI2014	Matrix-AS							Weight: 125 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.1 2x4 SP No.3 Structural wood she Rigid ceiling directly	3=0-3-8 11) 2 12), 8=-31 (LC 12)	8)	bearing plate 2 and 31 lb This truss is International R802.10.2 a This truss de structural we		standing 3 ordance w le sections andard AN at a minim applied d	th b uplift at j th the 2015 R502.11.1 a ISI/TPI 1. um of 7/16" irectly to the	joint and top					
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD	1-2=0/17, 2-3=-2893 5-7=-2577/135, 7-8=	8/160, 3-5=-2603/144 2946/170, 8-9=0/17	,										
BOT CHORD	2-12=-88/2708, 10-1 8-10=-109/2764	2=-30/1798,											

WEBS

1) Unbalanced roof live loads have been considered for this design.

3-12=-516/130

5-10=0/835, 7-10=-555/140, 5-12=0/881,

- 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=30ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 14-11-8, Exterior (2) 14-11-8 to 17-11-8, Interior (1) 17-11-8 to 30-9-8 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) All plates are MT20 plates unless otherwise indicated.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

SEAL 036322 September 28,2022

Page: 1

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Forget Me Not A Roof	
Q2200849	D01	Common	2	1	Job Reference (optional)	154412949

-0-10-81-1-00-10-81-1-0

Carolina Structural Systems, LLC, Ether, NC - 27247,

0-11-8

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Tue Sep 27 08:48:58 ID:jvnc5oWz0H41xzf6sOsr?3zEk6u-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

 $4 \frac{12}{1}$

2x4 =

Scale = 1:25

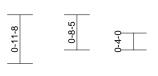
Loading TCLL (roof) TCDL BCLL BCDL LUMBER TOP CHORD 2	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.00 1.15		CSI TC	0.06	DEFL Vert(LL)	in n/a	(loc)	l/defl	L/d	PLATES	GRIP
		Code	YES IRC2015	/TPI2014	BC WB Matrix-MP	0.01 0.00	Vert(CT) Horz(CT)	n/a 0.00	- 4	n/a n/a n/a	999 999 n/a	MT20 Weight: 5 lb	244/190 FT = 20%
BRACING TOP CHORD S BOT CHORD F E REACTIONS (si Ma Ma Ma	ax Horiz 2=20 (LC ax Uplift 2=-30 (LC ax Grav 2=117 (LC	applied or 10-0-0 oc 3=1-1-0, 4=1-1-0, 5= 12), 5=20 (LC 12) 12), 5=-30 (LC 12) 2 1), 3=15 (LC 1), 4= 117 (LC 1)	8) d or 9) : 1-1-0 LO	bearing plate 2 and 30 lb u Beveled plate surface with t This truss is o International	or shim required russ chord at join designed in accord Residential Code id referenced star	to provie to provie t(s) 2, 5. dance wi sections	0 lb uplift at jo de full bearing th the 2015 R502.11.1 a	oint D					
T TOP CHORD 1	Tension 1-2=0/17, 2-3=-23/9 2-4=-6/17	pression/maximum											
Vasd=95mph B=45ft; L=24 MWFRS (dire cantilever left right exposed for reactions DOL=1.60	7-10; Vult=120mph n; TCDL=6.0psf; BCI ft; eave=2ft; Cat. II; ectional) and C-C Cr t and right exposed d;C-C for members a shown; Lumber DO	DL=6.0psf; h=25ft; Exp B; Enclosed; orner (3) zone; ; end vertical left and and forces & MWFR L=1.60 plate grip	S								and a	NITH CA	ROUTIN
only. For stu see Standard	ned for wind loads in Ids exposed to wind d Industry Gable End Ialified building desig	(normal to the face) d Details as applicab	, ole,							4	i,	CEA	
 Gable require Gable studs s This truss has chord live loa * This truss h on the bottom 	ess continuous bottor spaced at 2-0-0 oc. Is been designed for ad nonconcurrent with as been designed for n chord in all areas to by 2-00-00 wide will for y other members.	n chord bearing. a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle	ds. psf								A A A A A A A A A A A A A A A A A A A		EER. KIN

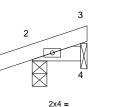
September 28,2022

ENGINEERING BY EREPLICA A MITER ATMIATE 818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component
Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Forget Me Not A Roof	
Q2200849	D02	Monopitch	3	1	Job Reference (optional)	154412950


1


Carolina Structural Systems, LLC, Ether, NC - 27247,

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Tue Sep 27 08:48:58 ID:8N8jiW_VHmSjaj_Z?02SynzEk5_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

0-11-8

12 4 Г

Scale = 1:22.7

Scale = 1.22.7												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.00	тс	0.05	Vert(LL)	0.00	(.00)	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.01	Vert(CT)	0.00	7	>999	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	2	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MP	0.00	11012(01)	0.00	-	n/a	n/a	Weight: 5 lb	FT = 20%
		1		1		· · · ·						
LUMBER TOP CHORD BOT CHORD			Ínternationa	s designed in acco al Residential Coc and referenced st	le sections	s R502.11.1 a	ind					
BRACING			•) Stanuaru								
TOP CHORD	Structural wood she 1-1-0 oc purlins.	atning directly applie										
BOT CHORD		applied or 10-0-0 o	C									
REACTIONS		: 12) C 12)										
FORCES	(lb) - Maximum Com Tension	npression/Maximum										
TOP CHORD												
BOT CHORD	,											
NOTES												
1) Wind: ASC Vasd=95n B=45ft; L= MWFRS (cantilever right expo for reactio DOL=1.60		CDL=6.0psf; h=25ft; Exp B; Enclosed; xterior (2) zone; ; end vertical left an and forces & MWFR DL=1.60 plate grip									WITH CA	NRO/ 11/1
	has been designed fo									~	ONTESE	All.
	load nonconcurrent w								/	SE	in	Mi Sit
on the bot 3-06-00 ta	ss has been designed f ttom chord in all areas all by 2-00-00 wide will I any other members.	where a rectangle									SEA	L
4) Provide m	hechanical connection late at joint(s) 3.	(by others) of truss t	0								0363	22
5) Provide m	ate capable of withsta								11111111111		NGIN	EERA
6) Beveled p	plate or shim required to ith truss chord at joint(3							11	C A. C	ILBERT
											Sentembe	r 28 2022

September 28,2022

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Forget Me Not A Roof	
Q2200849	E01	Monopitch	3	1	Job Reference (optional)	154412951

2-0-4

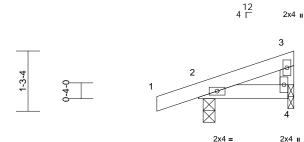
2-0-4

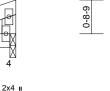
-0-10-8

0-10-8

Carolina Structural Systems, LLC, Ether, NC - 27247.

Run: 8,43 S Jan 6 2022 Print: 8,430 S Jan 6 2022 MiTek Industries, Inc. Tue Sep 27 08:48:58 ID:ywQsDuyInSpa_b8zw7rDU2zEjvP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


Page: 1


\cap SEAL

036322


GI 11111111 September 28,2022 VIIIIIIIIIII

Variation

е-с-

Scale = 1:24.4

DOL=1.60

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MR	0.05 0.03 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 7 7 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 8 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood she 2-0-4 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-0, 4 Max Horiz 2=-23 (LC Max Grav 2=140 (LC	applied or 10-0-0 or 4=0-1-8 12) : 12)	LC	bearing plate 2. This truss is International	hanical connect e capable of with designed in acc Residential Coo nd referenced si Standard	nstanding 2 cordance w de sections	23 lb uplift at ith the 2015 s R502.11.1 a	joint					
FORCES TOP CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=95m	(lb) - Maximum Com Tension 1-2=0/17, 2-3=-32/7, 2-4=-20/32 CE 7-10; Vult=120mph nph; TCDL=6.0psf; BC	pression/Maximum 3-4=-36/26 (3-second gust) DL=6.0psf; h=25ft;											
MWFRS (24ft; eave=4ft; Cat. II; directional) and C-C E: left and right exposed	xterior (2) zone;	d										10

for reactions shown; Lumber DOL=1.60 plate grip This truss has been designed for a 10.0 psf bottom 2) chord live load nonconcurrent with any other live loads.

right exposed;C-C for members and forces & MWFRS

- * This truss has been designed for a live load of 20.0psf 3) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- Provide mechanical connection (by others) of truss to 5) bearing plate at joint(s) 4.

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Forget Me Not A Roof	
Q2200849	E02	Monopitch Supported Gable	1	1	Job Reference (optional)	154412952

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Tue Sep 27 08:48:59 ID:bzdzABvAyvBltpF07aF2n?zEjvU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2-0-4

2-0-4

Page: 1

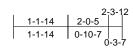
-0-10-8

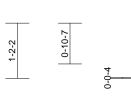
0-10-8

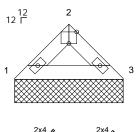
2x4 🛛

2-0-4

2x4 =


Scale = 1:21.4


Scale = 1:21.4											
Loading (psf) TCLL (roof) 20.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MP	0.06 0.03 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 8 lb	GRIP 244/190 FT = 20%
Max Horiz 2=23 (LC Max Uplift 2=-28 (LC Max Grav 2=140 (LC (LC 1)	expt end verticals. applied or 10-0-0 oc 4=1-11-0, 5=1-11-0 11), 5=23 (LC 11) 12), 5=-28 (LC 12) 21), 4=66 (LC 1), 5=1	d or LOAD CASE(S	ichanical connection te capable of withs uplift at joint 2. s designed in acco al Residential Code and referenced stat) Standard	rdance w	8 lb uplift at jo ith the 2015 . R502.11.1 at	bint					
 FORCES (Ib) - Maximum Comp Tension TOP CHORD 1-2=0/17, 2-3=-28/20 BOT CHORD 2-4=-14/17 NOTES 1) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCI B=45ft; L=24ft; eave=2ft; Cat. II; I MWFRS (directional) and C-C Coc cantilever left and right exposed; right exposed; C-C for members a for reactions shown; Lumber DOI DOL=1.60 2) Truss designed for wind loads in only. For studs exposed to wind see Standard Industry Gable Enco or consult qualified building desig 3) Gable studs spaced at 2-0-0 oc. 4) This truss has been designed for chord live load nonconcurrent wit 5) * This truss has been designed for on the bottom chord in all areas w 3-06-00 tall by 2-00-00 wide will f chord and any other members. 	(3-second gust) DL=6.0psf; h=25ft; Exp B; Enclosed; orner (3) zone; end vertical left and and forces & MWFRS L=1.60 plate grip the plane of the trus (normal to the face), d Details as applicabl ner as per ANSI/TPI a 10.0 psf bottom th any other live loads or a live load of 20.0p where a rectangle	s e, 1. s. sf						Contraction of the second seco		Serverse	EEP A



Job	Truss	Truss Type	Qty	Ply	Garman Homes - Forget Me Not A Roof	
Q2200849	V01	Valley	1	1	Job Reference (optional)	154412953

Run: 8,43 S Jan 6 2022 Print: 8,430 S Jan 6 2022 MiTek Industries, Inc. Tue Sep 27 08:48:59 ID:BruzPXSygYWYx8wvSJ5MnBzEjw3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

3x4 =

2x4 💊

2-3-12

Scale = 1:24.6

Plate Offsets (X, Y): [2:0-2-0,Edge]

	(X, T). [2.0-2-0,Euge]											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015/TPI20	CSI TC BC WB 14 Matrix-MP	0.04 0.06 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 7 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 Structural wood she 2-3-12 oc purlins. Rigid ceiling directly bracing. (size) 1=2-3-12, Max Horiz 1=19 (LC Max Uplift 1=-1 (LC	applied or 10-0-0 or 3=2-3-12 11) 12), 3=-1 (LC 12)	7) * This on the 3-06- chord ed or 8) Provi- bearin and 1 c 9) This t Intern R802	truss has been designe e bottom chord in all are 00 tall by 2-00-00 wide and any other member de mechanical connecti ng plate capable of with 1b uplift at joint 3. russ is designed in acco ational Residential Cod .10.2 and referenced str USE(S) Standard	eas where will fit betw 's. on (by oth standing 1 ordance w le sections	a rectangle veen the botto ers) of truss t Ib uplift at jo ith the 2015 5 R502.11.1 a	om to int 1					
, this desigr	1-3=-3/76 ed roof live loads have	pression/Maximum 07/17 been considered for	r									
B=45ft; L= MWFRS (cantilever right expos for reaction DOL=1.60 3) Truss des only. For	signed for wind loads ir studs exposed to wind	Exp B; Enclosed; xterior (2) zone; ; end vertical left and and forces & MWFR uL=1.60 plate grip in the plane of the tru (normal to the face)	S ss						4		ATH CA	
or consult4) Gable required5) Gable studies6) This truss	lard Industry Gable En qualified building desig uires continuous botto ds spaced at 6-0-0 oc. has been designed for load nonconcurrent wi	gner as per ANSI/TF m chord bearing. r a 10.0 psf bottom	PI 1.						1110	A A A A A A A A A A A A A A A A A A A	0363	• -

GI Ginnin . September 28,2022

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Forget Me Not A Roof	
Q2200849	V02	Valley	1	1	Job Reference (optional)	154412954

2-7-14

2-7-14

Carolina Structural Systems, LLC, Ether, NC - 27247.

TCDL

BCLL

BCDL

1)

2)

3)

5)

Run: 8,43 S Jan 6 2022 Print: 8,430 S Jan 6 2022 MiTek Industries, Inc. Tue Sep 27 08:48:59 ID:b91hTIHAzEIXG_sDeNr4DEzEjwH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-0-5

2-4-7

Page: 1

GRIP

244/190

FT = 20%

3x4 = 2 2-4-7 2-8-2 12 12 ∟ 3 1 2x4 💊 2x4 5-3-12 Scale = 1:27.8 Plate Offsets (X, Y): [2:0-2-0,Edge] Loading Spacing 2-0-0 CSI DEFL l/defl L/d PLATES (psf) in (loc) TCLL (roof) 20.0 Plate Grip DOL 1.00 тс 0.19 Vert(LL) n/a 999 MT20 n/a 10.0 Lumber DOL 1.15 BC 0.29 Vert(TL) n/a n/a 999 0.0* Rep Stress Incr YES WB 0.00 Horiz(TL) 3 0.01 n/a n/a 10.0 Code IRC2015/TPI2014 Matrix-MP Weight: 18 lb LUMBER 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle TOP CHORD 2x4 SP No.2 3-06-00 tall by 2-00-00 wide will fit between the bottom 2x4 SP No.3 BOT CHORD chord and any other members. BRACING Provide mechanical connection (by others) of truss to 8) TOP CHORD Structural wood sheathing directly applied or bearing plate capable of withstanding 2 lb uplift at joint 1 5-3-12 oc purlins. and 2 lb uplift at joint 3. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc This truss is designed in accordance with the 2015 9) bracing. International Residential Code sections R502.11.1 and REACTIONS (size) 1=5-3-12, 3=5-3-12 R802.10.2 and referenced standard ANSI/TPI 1. Max Horiz 1=47 (LC 11) LOAD CASE(S) Standard Max Uplift 1=-2 (LC 12), 3=-2 (LC 12) Max Grav 1=212 (LC 1), 3=212 (LC 1) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-272/40, 2-3=-272/40 BOT CHORD 1-3=-17/195 NOTES Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOI = 1.60Truss designed for wind loads in the plane of the truss annum. only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable 036322 or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. Gable studs spaced at 6-0-0 oc.

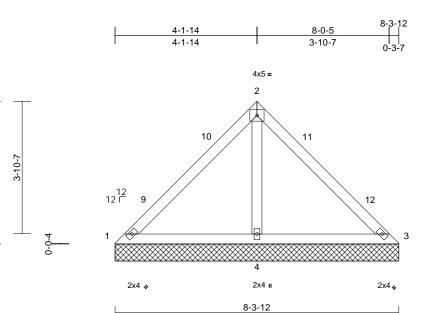
6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

818 Soundside Road

Edenton, NC 27932

G mmm September 28,2022

SEAL


1111111111

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall a duss system by design. Bracing indicated is to prevent buckling of individual russ web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual russ web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual russ web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and russ systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Forget Me Not A Roof	
Q2200849	V03	Valley	1	1	Job Reference (optional)	154412955

4-2-2

Run: 8,43 S Jan 6 2022 Print: 8,430 S Jan 6 2022 MiTek Industries, Inc. Tue Sep 27 08:48:59 ID:TNDLAUwM10_nfNZSt3I2?wzEjwl-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

..... 1.22 7

Scale = 1:33.7										
Loading (psf) TCLL (roof) 20.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Plate Grip DOL 1.0 Lumber DOL 1.1 Rep Stress Incr YE	15	CSI TC 0.21 BC 0.34 WB 0.14 Matrix-AS	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 34 lb	GRIP 244/190 FT = 20%
BOT CHORD Rigid ceiling directly REACTIONS (size) 1=8-3-12, Max Horiz 1=76 (LC Max Uplift 1=-16 (LC 4=-68 (LC	3=8-3-12, 4=8-3-12 11) 22), 3=-16 (LC 21), 12) 21), 3=67 (LC 22), 4=597 pression/Maximum 9/227 195/129 been considered for	on the bottom 3-06-00 tall by chord and any 8) Provide mech bearing plate 1, 16 lb uplift 9) This truss is of International I R802.10.2 an 10) This truss des		a rectangle ween the botto le lb uplift at ju at joint 4. with the 2015 s R502.11.1 a NSI/TPI 1. uum of 7/16" iirectly to the t	o o oint nd					

Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) 0-0-4 to 3-0-4, Interior (1) 3-0-4 to 4-2-2, Exterior (2) 4-2-2 to 7-2-2, Interior (1) 7-2-2 to 8-4-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

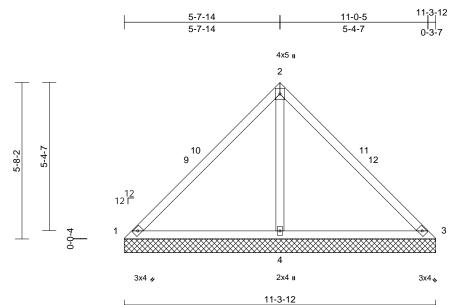
3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing.

4)

5) Gable studs spaced at 6-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

ORTH Wannanan WILLING THE SEAL 036322 GI 11111111 September 28,2022


MILLING

Page: 1

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Forget Me Not A Roof	
Q2200849	V04	Valley	1	1	Job Reference (optional)	154412956

Run: 8,43 S Jan 6 2022 Print: 8,430 S Jan 6 2022 MiTek Industries, Inc. Tue Sep 27 08:49:00 ID:?w8XOKi3GUiLVcB_qI_qG7zEjx1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:41.8

Scale = 1.41.0												
Loading TCLL (roof) TCDL BCLL	(psf) 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.00 1.15 YES	CSI TC BC WB	0.33 0.48 0.36	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
	10.0	Code	7) * This truss	Matrix-AS	<i>,</i>						Weight: 47 lb	FT = 20%
TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	Rigid ceiling directly	2, 3=11-3-12, 4=11-3 2, 11) 2, 22), 3=-33 (LC 21), 2, 12) 21), 3=80 (LC 22), 4	d. 9) This truss is netranairad R802.10.2 a 10) This truss is netranairad R802.10.2 a 10) This truss d structural wo	n chord in all areas by 2-00-00 wide wil by other members. thanical connection e capable of withsta t at joint 3 and 90 lk designed in accord Residential Code s nd referenced stan- ssign requires that a bod sheathing be ap (2" gypsum sheetro hord.	where I fit betw (by oth anding 3 o uplift a lance w sections dard AN a minim oplied d	a rectangle veen the bottwers) of truss t 3 lb uplift at j t joint 4. ith the 2015 R502.11.1 a ISI/TPI 1. um of 7/16"	om oont oint ind					
TOP CHORD	Tension 1-2=-121/343, 2-3=-	121/343	(-)									

BOT CHORD 1-4=-250/142, 3-4=-250/142 WEBS 2-4=-654/202

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-10; Vult=120mph (3-second gust) 2) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) 0-0-4 to 3-0-4, Interior (1) 3-0-4 to 5-8-2, Exterior (2) 5-8-2 to 8-8-2, Interior (1) 8-8-2 to 11-4-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) Gable requires continuous bottom chord bearing.
- Gable studs spaced at 6-0-0 oc. 5)
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

Page: 1

