

Trenco 818 Soundside Rd Edenton, NC 27932

Re: GHAZAB Garman Homes - Azalea B Roof

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carolina Structural Systems, LLC.

Pages or sheets covered by this seal: I54290734 thru I54290757

My license renewal date for the state of North Carolina is December 31, 2022.

North Carolina COA: C-0844

September 21,2022

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Azalea B Roof	
GHAZAB	A01	Common Supported Gable	2	1	Job Reference (optional)	154290734

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Tue Sep 20 10:16:46 ID:C62DD1be73YP1J7KS27d0BzFmPN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:64.2

34-	1-

			-										-			
Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP		
TCLL (roof)		20.0	Plate Grip DOL	1.00		TC	0.08	Vert(LL)	n/a	-	n/a	999	MT20	244/190		
TCDL		10.0	Lumber DOL	1.15		BC	0.08	Vert(CT)	n/a	-	n/a	999	-			
BCLL		0.0*	Rep Stress Incr	YES		WB	0.12	Horz(CT)	0.01	22	n/a	n/a				
BCDL		10.0	Code	IRC201	5/TPI2014	Matrix-AS							Weight: 237 I	b FT = 20%	ó	
BCDL LUMBER TOP CHORD BOT CHORD OTHERS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No. 2x4 SP No. 2x4 SP No. Left 2x8 SP 1-6-0 Structural v Rigid ceilinn 1 Row at m (size) 2 Max Horiz 2 Max Uplift 2 Max Uplift 2 Max Grav 2 2 3 3 4 Max Grav 2 2 3 3 3 4 4 4 3 3 3 3 4 4 5 5 5 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	10.0 10.0 2 2 3 7 No.2 1 vood sheat g directly idpt 2=34-1-8, 5=34-1-8 32=	Code Code 1-6-0, Right 2x8 SP N athing directly applied applied. 12-32, 11-33, 13-31 22=34-1-8, 24=34-1- 3, 26=34-1-8, 31=34- 3, 30=34-1-8, 31=34- 3, 33=34-1-8, 38=34- 3, 37=34-1-8, 38=34- 3, 38=34-1-8, 38=34- 3, 38=34-1-8, 38=34- 3, 38=34-1-8, 38=34- 3, 38=34-1-8, 38=34- 3, 38=34-1-8, 38=34-	IRC201 IRC201 T(Io.2 d. B(-8, 1-8, 1-8, 1-8, W(1-8, W(1-8, W(1-8, W(1-8, W(1-8, W(1-8, V(1), V(V(V())) V()) V()) V())	5/TPI2014 OP CHORD OT CHORD TEBS OTES Unbalanced this design. Wind: ASCE Vasd=95mp B=45ft; L=3 MWFRS (di 2-6-7, Exter to 20-5-11, 1 cantilever le	Matrix-AS 1-2=0/23, 2-4=-125 5-6=-117/94, 6-7=- 9-10=-98/218, 10-1 11-12=-125/294, 12 13-14=-113/262, 14 15-17=-84/179, 17- 18-19=-83/96, 19-2 22-23=0/23 2-40=-26/83, 39-40 37-38=-26/83, 36-3 30-31=-26/83, 28-3 26-27=-26/83, 28-3 26-27=-26/83, 28-3 26-27=-26/83, 28-3 26-27=-26/83, 28-3 26-27=-26/83, 28-3 27-22-26/83, 28-3 27-26/83, 28-3 27-27-26/83, 28-3 27-27-26/83, 28-3 27-27-26/83, 28-3 27-27-26/83, 28-3 27-27-26/83, 28-3 27-27-26/83, 28-3 27-27-26/83, 28-3 27-27-26/83, 28-3 27-27-26/83, 28-3 27-27-26/84, 28-3 27-27-	/88, 4-5 110/137 1-113, 2-13=-11 1-15=-91 18=-77, 0=-92/6 =-26/83 3=-26/8 33=-26/8 33=-26/8 0=-26/8 33=-26/8 33=-120, 6=-120, 5=-109, 1-30=-11 27=-12, 25=-109 e been of h (3-sec CDL=6.1; ; Exp B Corner (-12, Co to 35-0 1 - end,	=-125/62, , 7-9=-103/17; 260, 25/296, 3/219, 139, 4, 20-22=-76/4 , 38-39=-26/8; 3, 34-36=-26/8; 3, 34-36=-26/8; 3, 34-36=-26/8; 3, 27-28=-26/8; 3, 27-28=-26/8; 3, 27-28=-26/8; 3, 27-28=-26/8; 3, 27-28=-26/8; 3, 27-28=-26/8; 3, 27-28=-26/8; 3, 27-28=-26/8; 5, 27-28=-26/8; 4/108, 66, 7-37=-120 66, 4-40=-162/7; 20/86,	40, 3, 33, 33, 33, 33, 129, 2	6) Gi 7) Th ch 8) * 1 on 3-h be 33 up 39 P P be 33 up 39 0 P r be 33 10 B e su 11) Th Int R 8 12) Th th th th th th	able studs is truss h ord live k his truss the bottc D6-00 tall ord and a ovide me aring plat , 23 lb up lift at join , 22 lb up lift at join , 23 lb up lift at join , 24 lb up lift at join , 25 lb up lift at join , 26 lb up lift at join , 27 lb up lift at join , 28 lb up lift at join , 29 lb up lift at join , 29 lb up lift at join , 29 lb up lift at join , 20 lb	s space las bee by 2-C by 2-C lift at j t 37, 2 t 30, 1 lift at j t 37, 2 t 30, 1 lift at j t 37, 2 t 30, 1 lift at j t 37, 2 s desig al Resi and rel lesign cood st	Weight: 237 I ed at 2-0-0 oc. en designed for nconcurrent wit een designed for drd in all areas in the members. all connection (able of withstan oint 34, 19 lb up 2 lb uplift at joir oint 26, 9 lb uplift chord at joint(s ind conced at joint(s ind at joint (s ind at joint (s) ind at join	a 10.0 psf bc h any other li or a live load of where a recta it between th by others) of ding 10 lb up Jlift at joint 36 it 38, 9 lb upli fift at joint 37 it 28, 19 lb upli fift at joint 37 it 28, 19 lb upli fit at joint 37 it 28, NSI/TPI provide full t) 22. nce with the : citions R502. ard ANSI/TPI lied directly t c be applied c	tom ve loads. of 20.0psf ngle e bottom truss to lift at joint ift at joint ift at joint ift at joint 1, 23 lb blift at joint and 49 lb bearing 2015 11.1 and 1. 7/16" o the top directly to	
FORCES	33=164 (LC 21), 34=160 (LC 1), 36=160 (LC 21), 37=159 (LC 1), 38=165 (LC 21), 39=140 (LC 1), 40=239 (LC 17), 41=202 (LC 18), 45=198 (LC 1) (lb) - Maximum Compression/Maximum Tension				right expose for reactions DOL=1.60 Truss desig only. For st see Standar or consult q All plates ar	eft and right exposed ; end vertical left and .ed;C-C for members and forces & MWFRS is shown; Lumber DOL=1.60 plate grip igned for wind loads in the plane of the truss studs exposed to wind (normal to the face), ard Industry Gable End Details as applicable, qualified building designer as per ANSI/TPI 1.					o 36322 is ie. 11. A. GILBER					

5) Gable requires continuous bottom chord bearing. A. GILL September 21,2022

Page: 1

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Azalea B Roof	15 400070 4	
GHAZAB	A01	Common Supported Gable 2		1	Job Reference (optional)	154290734	
Carolina Structural Systems, LLC	C, Ether, NC - 27247,	Run: 8.43 S Jan 6 2	022 Print: 8.4	130 S Jan 6	2022 MiTek Industries, Inc. Tue Sep 20 10:16:46	Page: 2	

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Tue Sep 20 10:16:46 ID:C62DD1be73YP1J7KS27d0BzFmPN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Azalea B Roof	
GHAZAB	A02	Common	1	1	Job Reference (optional)	154290735

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Tue Sep 20 10:16:49 ID:tf5tYuC7FRmmyWer5P?HmlzFmM?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:74.9

Plate Offsets (X, Y): [2:0-4-0,0-6-1], [10:0-4-0,0-6-1]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 NO IRC201	5/TPI2014	CSI TC BC WB Matrix-AS	0.91 0.99 0.46	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.42 -0.80 0.13	(loc) 17-19 17-19 10	l/defl >967 >513 n/a	L/d 240 180 n/a	PLATES MT20 MT18HS Weight: 196 lb	GRIP 244/190 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD FORCES TOP CHORD BOT CHORD	2x4 SP No.1 *Exce 2x4 SP DSS *Exce 20-15:2x4 SP No.2 2x4 SP No.3 Left 2x6 SP No.2 1-6-0 Structural wood sh Rigid ceiling direct 6-0-0 oc bracing: 1 (size) 2=0-3-8, Max Horiz 2=-140 (Max Uplift 2=-21 (L Max Grav 2=1508 (lb) - Maximum Con Tension 1-2=0/23, 2-4=-227 6-8=-2136/79, 8-10 2-23=-68/2031, 21: 19-21=0/1582, 17-	pt* 1-5,7-11:2x4 SP D pt* 22-14:2x4 SP No.1 1-6-0, Right 2x6 SP N eathing directly applied y applied. Except: 5-20 10=0-3-8 LC 10) C 12), 10=-21 (LC 12) (LC 1), 10=1508 (LC 1 mpression/Maximum '1/92, 4-6=-2130/81, 1=-2268/88, 10-11=0/2 23=0/2074, 19=0/1582, 13-17=0/19	2) SSS , lo.2 d. 3) 4) 5) 6) 3 7) 3 8) 90	Wind: ASCE Vasd=95mph B=45ft; L=34 MWFRS (dir 2-6-7, Interio to 20-5-11, Ir left and right exposed;C-C reactions sho DOL=1.60 All plates are All plates are This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and ar Provide mec bearing plate 2 and 21 lb o This truss is	7-10; Vult=120mp ; TCDL=6.0psf; Br ft; eave=4ft; Cat. Il ectional) and C-C f r (1) 2-6-7 to 17-0- therior (1) 20-5-11 exposed; end ver c for members and own; Lumber DOL= e MT20 plates unle e 2x4 MT20 unless is been designed for a honconcurrent v has been designed n chord in all areas by 2-00-00 wide will y other members, hanical connections e capable of withsta uplift at joint 10. designed in accord	h (3-sec CDL=6.1 ; Exp B Exterior 12, Exterior 12, Exterior to 35-0- tical left forces a =1.60 pl ss other otherwi or a 10.4 with any for a liv s where I fit betw with BC (by oth anding 2 lance w	ond gust) opsf; h=29ft; Enclosed; (2) -0-10-8 tc prior (2) 17-00 J zone; canti and right & MWFRS fo ate grip wise indicated. b psf bottom other live loas e load of 20.1 a rectangle reen the bottt DL = 10.0ps ers) of truss i 1 lb uplift at j th the 2015	o -12 lever r ed. ads. Opsf om f. to joint						
WEBS NOTES 1) Unbalance this design	12-13=0/19/8, 10- 16-18=-90/0, 15-16 6-15=0/836, 13-15- 8-12=-115/38, 20-2 4-21=-418/163, 4-2 16-17=-79/0 ed roof live loads hav h	12=-5//1928, 18-20=-5 =-90/0 =0/713, 8-13=-415/165 1=0/699, 6-20=0/824, 3=-105/66, 18-19=-68 e been considered for	(0/0, 9) /0, LC	International R802.10.2 ar This truss de structural wo chord and 1/ the bottom cl DAD CASE(S)	Residential Code : nd referenced stan sign requires that : od sheathing be a 2" gypsum sheetro hord. Standard	sections dard AN a minim oplied d ck be a	R502.11.1 a ISI/TPI 1. um of 7/16" rectly to the oplied directly	top y to		M. Contraction	The second secon	SEA 0363		Non marine

NOTES

818 Soundside Road Edenton, NC 27932

GI Thum the September 21,2022

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Azalea B Roof	
GHAZAB	A03	Common	6	1	Job Reference (optional)	154290736

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Tue Sep 20 10:16:50 ID:rqbcwy6gkA?jIO_z9pJZVMzFmIF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:74.9

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)		20.0	Plate Grip DOL	1.00		TC	0.91	Vert(LL)	-0.42	16-18	>968	240	MT20	244/190	
TCDL		10.0	Lumber DOL	1.15		BC	0.99	Vert(CT)	-0.80	16-18	>513	180	MT18HS	244/190	
BCLL		0.0*	Rep Stress Incr	NO		WB	0.46	Horz(CT)	0.13	9	n/a	n/a			
BCDL		10.0	Code	IRC201	5/TPI2014	Matrix-AS							Weight: 194 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD	2x4 SP No. 2x4 SP DSS 19-14:2x4 SP 2x4 SP No. Left 2x6 SP 1-6-0 Structural w Rigid ceiling 6-0-0 oc bra	1 *Except S *Except SP No.2 3 No.2 1 wood shea g directly acing: 14	t* 1-4,6-10:2x4 SP E t* 21-13:2x4 SP No.* -6-0, Right 2x6 SP f athing directly applie applied. Except: -19	2) DSS 1, No.2 d. 3)	Wind: ASCE Vasd=95mpl B=45ft; L=34 MWFRS (dir 3-4-15, Inter 17-0-12 to 2 cantilever let right expose for reactions DOL=1.60 All plates are	7-10; Vult=120mp n; TCDL=6.0psf; B lift; eave=4ft; Cat. I ectional) and C-C ior (1) 3-4-15 to 17 0-5-11, Interior (1) it and right expose d;C-C for member shown; Lumber D	oh (3-sec BCDL=6.0 II; Exp B Exterior 7-0-12, E 20-5-11 od ; end v s and for POL=1.60 ess other	ond gust))psf; h=29ft; ; Enclosed; (2) 0-0-0 to xterior (2) to 35-0-0 zor rertical left an ces & MWFF) plate grip wise indicate	ne; d tS d.						
REACTIONS	(size) 1 Max Horiz 1 Max Uplift 9 Max Grav 1	= Mecha =-139 (L0 =-21 (LC =1455 (L	nical, 9=0-3-8 C 10) 12) .C 1), 9=1509 (LC 1)	4) 5) 6)	All plates are This truss ha chord live loa * This truss I on the bottor	2x4 MT20 unless as been designed f ad nonconcurrent nas been designed m chord in all area	s otherwi for a 10.0 with any d for a liv s where	se indicated.) psf bottom other live loa e load of 20.(a rectangle	ds.)psf						
FORCES	(lb) - Maxim Tension	num Com	pression/Maximum		3-06-00 tall I chord and a	by 2-00-00 wide wind other members.	ill fit betv with BC	veen the botto DL = 10.0psf	om						
TOP CHORD	1-3=-2276/5 7-9=-2269/8	58, 3-5=-2 87, 9-10=	2132/86, 5-7=-2138/ 0/23	79, 7) 8)	Refer to gird	er(s) for truss to tr hanical connection	uss conr 1 (by oth	ections. ers) of truss t	0						
BOT CHORD	1-22=-76/20 18-20=0/15 11-12=0/19 15-17=-90/0	036, 20-2 83, 16-18 79, 9-11= 0, 14-15=	2=0/2078, 3=0/1583, 12-16=0/1 =-57/1929, 17-19=-9 -90/0	583, 0/0, 9)	bearing plate 9. This truss is	e capable of withst designed in accor Residential Code	dance w	1 lb uplift at j	oint					11111	
WEBS	5-14=0/836 7-11=-115/5 3-20=-422/1 15-16=-79/0	5, 12-14=0 56, 19-20 164, 3-22 0)/713, 7-12=-415/163 =0/700, 5-19=0/826 =-102/41, 17-18=-68	5, , 10 3/0,	R802.10.2 a)) This truss de structural wo chord and 1/	nd referenced star esign requires that od sheathing be a 2" gypsum sheetro	a minim a pplied d ock be a	ISI/TPI 1. um of 7/16" rectly to the toplied directly	op / to		4	ALL AND	OPTH CA	ROU	2

1) Unbalanced roof live loads have been considered for this design.

LOAD CASE(S) Standard

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Azalea B Roof	
GHAZAB	A04	Common	5	1	Job Reference (optional)	154290737

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Tue Sep 20 10:16:50 ID:tf5tYuC7FRmmyWer5P?HmlzFmM?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Plate Offsets (X, Y): [2:0-3-0,0-6-9], [10:0-3-0,0-6-9]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2018	5/TPI2014	CSI TC BC WB Matrix-AS	0.96 0.93 0.34	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.37 -0.65 0.12	(loc) 13-15 13-15 10	l/defl >999 >633 n/a	L/d 240 180 n/a	PLATES MT20 MT18HS Weight: 181 lb	GRIP 244/190 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 *Excep 2x4 SP DSS *Excep 2x4 SP No.3 Left 2x6 SP No.2 1 1-6-0 Structural wood she Rigid ceiling directly (size) 2=0-3-8, 1 Max Horiz 2=-140 (L Max Uplift 2=-76 (LC Max Grav 2=1418 (L	t* 1-5,7-11:2x4 SP [t* 16-14:2x4 SP No. l-6-0, Right 2x6 SP athing directly applie applied. [0=0-3-8 C 10) : 12), 10=-76 (LC 12 .C 1), 10=1418 (LC	5) DSS No.2 6) ed. 7) 8) 1)	* This truss I on the bottor 3-06-00 tall I chord and an Provide mec bearing platt 2 and 76 lb of This truss is International R802.10.2 a This truss de structural wo chord and 1	nas been designe n chord in all are by 2-00-00 wide i hy other member hanical connecti e capable of with uplift at joint 10. designed in accor Residential Cod nd referenced sta sign requires that od sheathing be 2" gypsum shee hord	ed for a live as where will fit betw rs, with BC on (by oth standing 7 ordance wi le sections andard AN at a minimi applied di trock be ap	e load of 20.0 a rectangle een the bott DL = 10.0 psi ers) of truss i 6 lb uplift at j th the 2015 R502.11.1 a SI/TPI 1. um of 7/16" rectly to the i opplied directly	Opsf om f. to joint and top y to						
FORCES	(lb) - Maximum Com Tension	pression/Maximum	LC	DAD CASE(S)	Standard									
TOP CHORD	1-2=0/23, 2-4=-2114 6-8=-1853/193, 8-10	/131, 4-6=-1850/19 =-2110/132, 10-11=	5, ⊧0/23											
BOT CHORD	2-17=-86/1807, 15-1 13-15=0/1299, 12-1 10-12=-76/1785	7=-41/1827, 3=-47/1793,												
WEBS	6-13=-12/692, 8-13= 6-15=-15/671, 4-15=	-446/149, 8-12=-69/ -449/147, 4-17=-55/	/111, /123										111.	
NOTES 1) Unbalance this design 2) Wind: ASC Vasd=95n B=45ft; L=	ed roof live loads have n. CE 7-10; Vult=120mph nph; TCDL=6.0psf; BC -34ft; eave=4ft; Cat. II; directioned) and C C E	been considered for (3-second gust) DL=6.0psf; h=29ft; Exp B; Enclosed;	r							4	ALL A	WHTH CA		N

- Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=29ft; B=45ft; L=34ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) -0-10-8 to 2-6-7, Interior (1) 2-6-7 to 17-0-12, Exterior (2) 17-0-12 to 20-5-11, Interior (1) 20-5-11 to 35-0-0 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) All plates are MT20 plates unless otherwise indicated.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

SEAL 036322 MGINEEPHHAMMAN September 21,2022

> 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Azalea B Roof	
GHAZAB	B01	Common Supported Gable	1	1	Job Reference (optional)	154290738

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Tue Sep 20 10:16:51 ID:dfexAsVVXpTI_8N2buA2DJzFmcP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:46.1

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL * Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MR	0.15 0.09 0.27	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 10	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 83 lb	GRIP 244/190 FT = 20%
LUMBER2x4 SP No.22)Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=29ft; BCT CHORD 2x4 SP No.3WEBS2x4 SP No.3BrACING TOP CHORDStructural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.REACTIONS(size)10=11-9-0, 11=11-9-0, 15=11-9-0, 13=11-9-0, 14=11-9-0, 15=11-9-0, 16=11-9-0Tuss to studs exposed to wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.Max Grav10=12-51 (LC 12), 14=51 (LC 12), 12=75 (LC 18), 13=2284 (LC 12), 14=174 (LC 17), 15=219 (LC 12), 16=189 (LC 18)Structural wovement (i.e. diagonal web). <t< td=""><td></td></t<>													
TOP CHORD	(ib) - Maximum C Tension 2-16=-148/101, 1- 3-4=-108/155, 4-5 6-7=-110/157, 7-8 8-10=-143/99	-2=0/43, 2-3=-114/103, ;=-184/244, 5-6=-184/2 ;=-106/95, 8-9=0/43,	44, 10)	on the bottor 3-06-00 tall b chord and ar) Provide mec bearing plate 16, 74 lb upli	n chord in all area by 2-00-00 wide w by other members hanical connection capable of withst ft at joint 10, 51 lb	as where vill fit betv n (by oth tanding 8 o uplift at	a rectangle veen the botto ers) of truss to 0 lb uplift at jo joint 14. 85 lb	om D Dint			111	ORTH CA	ROLIN
BOT CHORD	15-16=-88/79, 14 12-13=-88/79, 11	-15=-88/79, 13-14=-88/ -12=-88/79, 10-11=-88/	79, 79	uplift at joint	15, 51 lb uplift at j	joint 12 a	nd 81 lb uplift	at		2	1×		2 Ale
WEBS	5-13=-288/147, 4 3-15=-157/119, 6 7-11=-155/119	-14=-147/103, -12=-147/103,	11)) This truss is International R802.10.2 ar	designed in accor Residential Code nd referenced star	rdance w sections ndard AN	ith the 2015 R502.11.1 a ISI/TPI 1.	nd				SEA 0363	L
NOTES 1) Unbalance this design	ed roof live loads ha n.	ve been considered for	LO	OAD CASE(S)	Standard							S RAIN	EEREK

GI minim September 21,2022

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Azalea B Roof	
GHAZAB	B02	Common Girder	1	2	Job Reference (optional)	154290739

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Tue Sep 20 10:16:51 ID:9PwNHcBZWPFUzXMSZEJHrDzFmAP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:48.7

Plate Offsets (X, Y): [1:0-3-7,Edge], [3:0-3-7,Edge], [4:Edge,0-3-8], [5:0-4-0,0-4-8], [6:0-4-0,0-4-8]

Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.00	CSI TC	0.55	DEFL Vert(LL)	in -0.03	(loc) 5-6	l/defl >999	L/d 240	PLATES MT20	GRIP 244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.68	Vert(CT)	-0.06	5-6	>999	180	MT18HS	244/190
BCLL	0.0*	Rep Stress Incr	NO	WB	0.51	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MS							Weight: 174 lb	FT = 20%

		o 2
BOT CHORD	2x4 SF N	0.2
WEBS	2x4 SP N	0.2 0.3 *Excent* 7-1 4-3:2x4 SP No 2
BRACING	ZATOT IN	
TODOLODD	<u>.</u>	
TOP CHORD	Structura	wood sheathing directly applied or
	5-10-4 oc	purlins, except end verticals.
BOT CHORD	Rigid ceil	ing directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(size)	4=0-3-8, 7=0-3-8
	Max Horiz	7=-149 (LC 6)
	Max Grav	4=4372 (LC 1), 7=5162 (LC 1)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-2=-351	1/0, 2-3=-3598/0, 1-7=-3246/0,
	3-4=-3300	0/0
BOT CHORD	6-7=-85/3	72, 5-6=0/1839, 4-5=0/350
WEBS	1-6=0/23	13, 3-5=0/2289, 2-6=0/2261,
	2-5=0/249	93
NOTEO		

NOTES

 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc. Bottom chords connected as follows: 2x6 - 2 rows

staggered at 0-6-0 oc. Web connected as follows: 2x4 - 1 row at 0-9-0 oc.

- All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- Unbalanced roof live loads have been considered for this design.

- 4) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=29ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 5) All plates are MT20 plates unless otherwise indicated.6) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
 Hanger(s) or other connection device(s) shall be
- 9) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1449 lb down at 0-1-12, 1442 lb down at 2-4-12, 1442 lb down at 4-4-12, 1442 lb down at 6-4-12, and 1442 lb down at 8-4-12, and 1442 lb down at 10-4-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

- 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.00
 - Uniform Loads (lb/ft)
 - Vert: 1-2=-60, 2-3=-60, 4-7=-20 Concentrated Loads (lb)
 - Vert: 7=-1442 (B), 8=-1435 (B), 9=-1435 (B), 10=-1435 (B), 11=-1435 (B), 12=-1435 (B)

Page: 1

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Azalea B Roof	
GHAZAB	C01	Monopitch Structural Gable	1	1	Job Reference (optional)	154290740

Run: 8,43 S Jan 6 2022 Print: 8,430 S Jan 6 2022 MiTek Industries, Inc. Tue Sep 20 10:16:51 ID:YSjQsDVxfEfmeJBykVoVoRzFmIR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

6-0-8

Page: 1

Scale = 1:29

Plate Offsets (X, Y): [2:0-0-5,Edge]

Loading FCLL (roof) FCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-AS	0.42 0.31 0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.04 -0.09 0.00	(loc) 4-9 4-9 2	l/defl >999 >807 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 22 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD 30T CHORD WEBS BRACING TOP CHORD 30T CHORD REACTIONS FORCES TOP CHORD 30T CHORD WEBS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she Rigid ceiling directly (size) 2=0-3-0, 4 Max Horiz 2=65 (LC Max Uplift 2=-25 (LC Max Grav 2=314 (LC (lb) - Maximum Com Tension 1-2=0/17, 2-3=-77/8- 2-4=-86/84 3-4=-150/84	athing directly applie applied. 4=0-1-8 12) 2 12), 4=-13 (LC 12) C 1), 4=217 (LC 1) apression/Maximum 4	6) 7) d. 8) 9) 10) LO	Bearing at jo using ANSI/ designer sho Provide mec bearing plate 2 and 13 lb u This truss is International R802.10.2 ar This truss de structural wo chord and 1/ the bottom c AD CASE(S)	int(s) 4 considers (TPI 1 angle to grain build verify capacity hanical connection a t joint(s) 4. hanical connection capable of withstup lift at joint 4. designed in accorr Residential Code nd referenced star sign requires that bod sheathing be a 2" gypsum sheetro hord. Standard	parallel t n formula of bearin n (by oth anding 2 dance w sections idard AN a minim pplied di pock be ap	o grain value a. Building ng surface. ers) of truss i s lb uplift at j th the 2015 R502.11.1 a SI/TPI 1. um of 7/16" rectly to the splied directly	to to joint and top y to						
NOTES I) Wind: AS Vasd=95r B=45ft; L: MWFRS (2-1-8, Inte and right	CE 7-10; Vult=120mph nph; TCDL=6.0psf; BC =24ft; eave=4ft; Cat. II; directional) and C-C E; rior (1) 2-1-8 to 5-10-1 exposed ; end vertical I	(3-second gust) DL=6.0psf; h=29ft; Exp B; Enclosed; xterior (2) -0-10-8 to 2 zone; cantilever lef left and right	ť									WILL CA	Rollin	

reactions shown; Lumber DOL=1.60 plate grip DOI = 1.602) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

exposed;C-C for members and forces & MWFRS for

- Gable studs spaced at 2-0-0 oc. 3) This truss has been designed for a 10.0 psf bottom 4)
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 5)
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

Job	Truss	Truss Type		Ply	Garman Homes - Azalea B Roof				
GHAZAB	C02	Monopitch	1	1	Job Reference (optional)	154290741			

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Tue Sep 20 10:16:52 ID:ZMPPrwxadoetQcnqC_RP6XzFmja-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:29

Plate Offsets (X, Y): [2:0-0-5,Edge]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.00	TC	0.42	Vert(LL)	-0.04	4-9	>999	240	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15	BC	0.31	Vert(CT)	-0.09	4-9	>806	180			
BCLL	0.0*	Rep Stress Incr	YES	WB	0.04	Horz(CT)	0.01	3	n/a	n/a			
BCDL	10.0	Code	IRC2015/TPI201	4 Matrix-AS							Weight: 22 lb	FT = 20%	
LUMBER			6) This tr	uss is designed in acc	ordance wi	ith the 2015							
TOP CHORD	2x4 SP No.2		Interna	tional Residential Coc	le sections	R502.11.1 a	and						
BOT CHORD	2x4 SP No.2		R802.1	0.2 and referenced st	andard AN	ISI/TPI 1.							
WEBS	2x4 SP No.3		This trees	uss design requires the	at a minim	um of 7/16"							
BRACING			structu	ral wood sheathing be	applied di	rectly to the	top						
TOP CHORD	Structural wood she	athing directly applie	ed. chord a	and 1/2" gypsum shee	trock be a	oplied directl	y to						
BOT CHORD	Rigid ceiling directly	applied.	the bot	tom chord.									
REACTIONS	(size) 2=0-3-0	3=0-1-8	LOAD CAS	SE(S) Standard									
	Max Horiz 2=65 (I C	12)											
	Max Uplift 2=-25 (LC	C 12). 3=-13 (LC 12)											
	Max Grav 2=314 (L0	C 1), 3=217 (LC 1)											
FORCES	(lb) - Maximum Com	npression/Maximum											
	Tension												
TOP CHORD	1-2=0/17, 2-3=-77/8	4											
BOT CHORD	2-4=-86/84												
WEBS	3-4=0/100												
NOTES													
1) Wind: AS	CE 7-10; Vult=120mph	n (3-second gust)											
Vasd=95r	nph; TCDL=6.0psf; BC	DL=6.0psf; h=29ft;											
B=45ft; L=	=24ft; eave=4ft; Cat. II;	Exp B; Enclosed;											
MWFRS (directional) and C-C E	Exterior (2) -0-10-8 to											
2-1-8, Inte	erior (1) 2-1-8 to 5-10-1	12 zone; cantilever le	ft								minin	unin,	
and right	exposed ; end vertical	left and right									"TH CA	Rolly	
exposed;0	C-C for members and f	forces & MWFRS for								S	R	24/11/2	
reactions	shown; Lumber DOL=	1.60 plate grip								25	U. FESS	Dr. Vis	
DOL=1.60	, , , , , , , , , , , , , , , , , , , ,	100 (1 "							6	à	ep /	and the second	7
 I his truss 	has been designed to	r a 10.0 psr bottom	4.0								2	- K 1 - 3	
		for a live lead of 20.0	JS.								CEA	1 1 1	
3) This trus	s has been designed i	ior a live load of 20.0	ipsi						=	:	SEA	- : :	
3_06_00 +	all by 2-00-00 wide will	fit between the botto	m						1	:	0363	22 : =	
chord and	an by 2-00-00 wide will	III DEIWEEIT IIIE DUILU	/11						-	2		- ; :	
4) Provide m	echanical connection	(by others) of truss to	n							2		1 5	
bearing pl	late at joint(s) 3.		~							2.1	N. ENO	-ERIX S	
5) Provide m	echanical connection	(by others) of truss to	2							1	S, GIN	Et. A.N	
bearing pl	ate capable of withsta	nding 25 lb uplift at ic	- pint							1	C A	IL BEIN	
		5 <u>5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5</u>									1. A (-		

- Provide mechanical connection (by others) of truss to 4) bearing plate at joint(s) 3.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 25 lb uplift at joint 2 and 13 lb uplift at joint 3. 5)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

GI "Innin September 21,2022

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Azalea B Roof	
GHAZAB	C03	Half Hip	6	1	Job Reference (optional)	154290742

4-6-0

-0-10-8

Carolina Structural Systems, LLC, Ether, NC - 27247,

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Tue Sep 20 10:16:52 ID:Cd9t6qWutUZavkPtJC99SozFni5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:31.6

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MP	0.21 0.15 0.02	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.01 -0.02 0.00	(loc) 7-12 7-12 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 26 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 BRACING Structural wood sheathing directly applied or or oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 4-7, 4-5. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (size) 2=0-3-0, 3= Mechanical, 6=0-3-8 Max Horiz Max Uplit 2=257 (LC 2), Max Grav 2=257 (LC 2), 5=174 (LC 1), 6=174 (LC 1) FORCES (lb) - Maximum Compression/Maximum				Refer to girde Provide mech bearing plate 2. This truss is of International R802.10.2 ar Load case(s) designer mus correct for the 0) Graphical pu or the orienta bottom chord) Gap betweer diagonal or v	er(s) for truss to tru- hanical connection capable of withsta designed in accord Residential Code dreferenced stan 1 has/have been st review loads to v e intended use of tr rlin representation tition of the purlin a l. n inside of top choi ertical web shall n	uss conr (by oth anding 2 dance w sections idard AN modified verify that this trust does no along the rd bearing ot excee	ections. ers) of truss 6 lb uplift at scalar state at scalar state scalar state at they are scalar state at the scalar state a	to joint and size					
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Com Tension 1-2=0/17, 2-3=-70/8/ 4-5=-51/30, 5-6=-18/ 2-7=-88/83, 6-7=-13/	LC 1) 92,	Dead + Roc Plate Increa Uniform Loa Vert: 1-14 Drag: 4-7	Standard of Live (balanced): ase=1.00 ads (lb/ft) 4=-61, 3-14=-173, '30, 3-4=-50	Lumber 4-5=-17	Increase=1. 0, 6-8=-20	15,						
WEBS NOTES	5-7=-43/63			Diag. 4-7	=-30, 3-4=-30								
 Unbalance this design Wind: ASC Vasd=95m B=45ft; L= MWFRS (i 2-1-8, Inte right exposi for membe Lumber Di Provide ac This truss chord live * This truss on the bot 3-06-00 ta chord and 	ad roof live loads have h. CE 7-10; Vult=120mph hph; TCDL=6.0psf; BC 24ft; eave=4ft; Cat. II; directional) and C-C E: rior (1) 2-1-8 to 6-2-4 a sed; end vertical left a ers and forces & MWFI 0L=1.60 plate grip DO 0L=1.60 plate grip do load nonconcurrent wi s has been designed for load nonconcurrent wi s has been designed for tom chord in all areas I by 2-00-00 wide will any other members.	been considered for (3-second gust) DL=6.0psf; h=29ft; Exp B; Enclosed; xterior (2) -0-10-8 to zone; cantilever left ar ind right exposed;C-C RS for reactions show DL=1.60 event water ponding. r a 10.0 psf bottom th any other live loads or a live load of 20.0p where a rectangle fit between the bottom	nd m; s. sf									SEA 0363	

September 21,2022

/	WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.
	Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
	a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
	building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
	is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
	fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component
	Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Azalea B Roof	
GHAZAB	C04	Monopitch	2	1	Job Reference (optional)	154290743

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Tue Sep 20 10:16:52 ID:pCZxbxUNvC8UfLvZCK6WsvzFmZr-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:28.8

TCLL (roof) TCDL BCLL BCDL	(psi) 20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015/TPI2	2014	TC BC WB Matrix-AS	0.37 0.23 0.00	Vert(LL) Vert(CT) Horz(CT)	-0.02 -0.04 0.00	(IOC) 4-9 4-9 4	>999 >999 >999 n/a	240 180 n/a	MT20 Weight: 22 lb	244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood she Rigid ceiling directly (size) 2=0-3-0, 4 Max Horiz 2=105 (LC Max Uplift 2=-18 (LC Max Grav 2=314 (LC	athing directly applied applied. 4=0-1-8 C 12) 2 12), 4=-20 (LC 12) C 1), 4=-217 (LC 1)	7) This Inte R80 8) This stru cho the LOAD C	s truss is mational 02.10.2 ar s truss de ictural wo rd and 1/ bottom cl CASE(S)	designed in accor Residential Code nd referenced star sign requires that od sheathing be a 2" gypsum sheetro hord. Standard	dance w sections ndard AN a minim pplied d ock be a	ith the 2015 5 R502.11.1 a ISI/TPI 1. um of 7/16" irectly to the t pplied directly	nd op ⁄ to					
FORCES	(lb) - Maximum Com Tension 1-2=0/17 2-3=-169/	84 3-4=-137/97											
TOP CHORD 1-2=0/17, 2-3=-169/84, 3-4=-137/97 BOT CHORD 2-4=-80/124 NOTES 1) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=29ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 5-10-12 zone; cantilever left and right expressed; and under the driver left													
exposed;C reactions s DOL=1.60 2) This truss I	-C for members and f hown; Lumber DOL=	orces & MWFRS for 1.60 plate grip									JA.	TH CA	Rollin

- This truss has been designed for a 10.0 pst bottom chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 18 lb uplift at joint 2 and 20 lb uplift at joint 4.

SEAL 036322 September 21,2022

> ENGINEERING BY EREENIGO A MITek Atfiliate 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Azalea B Roof	
GHAZAB	D01	Common Supported Gable	1	1	Job Reference (optional)	154290744

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Tue Sep 20 10:16:53 ID:zheYZKvqpfK6f4C?vLiPz4zFmWj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:43

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing2Plate Grip DOL2Lumber DOL2Rep Stress Incr2Code1	2-0-0 1.00 1.15 YES RC2015	5/TPI2014	CSI TC BC WB Matrix-AS	0.11 0.07 0.14	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 9	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 79 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she except end verticals Rigid ceiling directly (size) 9=12-9-0, 12=12-9-1 15=12-9-1 15=12-9-1 Max Horiz 15=-141 (Max Uplift 9=-48 (LC 11=-31 (L 14=-58 (L Max Grav 9=181 (LC) 11=-160 (I 15=164 (I	athing directly applied, , , 10=12-9-0, 11=12-9-0, , 13=12-9-0, 14=12-9-0, , 13=12-9-0, 14=12-9-0, , 12(, 10) , 12), 10=-65 (LC 12), , C 12), 13=-33 (LC 12), , C 12), 15=-22 (LC 8) C 17), 10=208 (LC 18), , LC 22), 12=193 (LC 12) , C 21), 14=229 (LC 17) , LC 18)	2) 5, 3) 4) 5) 6) , 7) , 8)	Wind: ASCE Vasd=95mpf B=45ft; L=24 MWFRS (dim 3-1-12, Exteri 9-4-8, Exteri and right exp exposed;C-C reactions sho DOL=1.60 Truss design only. For stu see Standard or consult qu All plates are Gable requin Truss to be f braced again Gable studs This truss ha	7-10; Vult=120 h; TCDL=6.0psf ift; eave=2ft; Ca ectional) and C- rior (2) 3-1-12 tc or (2) 9-4-8 to 1 bosed; end vert c for members a bown; Lumber DC hed for wind loa ids exposed to b d Industry Gable calified building (e 2x4 MT20 unle es continuous b ully sheathed fr ist lateral mover spaced at 2-0-0 is been designed	mph (3-sec ; BCDL=6.0 t. II; Exp B C Corner (0 6-4-8, Co 0 6-4-8, Co ical left and nd forces & DL=1.60 pli ds in the pl wind (norm e End Deta designer as designer as designe	cond gust) Dpsf; h=29ft; ; Enclosed; 3) 0-1-12 to rner (3) 6-4-8 ; cantilever lei f right & MWFRS for ate grip lane of the tru al to the face) ils as applicat s per ANSI/TF se indicated. d bearing. e or securely iagonal web).	to ft sss), ble, PI 1.	 13) Har provident down of s other other	nger(s) c vided su vn at 0- uch con ers. ne LOAE ne truss CASE(S ead + Ro tate Incre- niform Lo Vert: 1- Vert: 15	or other fficient 1-12 or nectior O CASI are no) Star oof Live case=1 bads (II 4=-60, ted Loc =-38 (I	connection devit to support conc bottom chord. a device(s) is the E(S) section, load ted as front (F) c indard (balanced): Lur .00 b/ft) 4-7=-60, 7-8=-60 ads (lb) F)	ce(s) shall be antrated load(s) : The design/selec responsibility of ds applied to the r back (B). nber Increase=1.), 9-15=-20
FORCES	(lb) - Maximum Com Tension 1-15=-94/45, 1-2=-9 3-4=-170/191, 4-5=- 6-7=-103/62, 7-8=0/	npression/Maximum 9/72, 2-3=-119/129, 170/191, 5-6=-119/128, 39, 7-9=-145/87	9)	* This truss h on the bottor 3-06-00 tall b chord and ar	has been design n chord in all ar by 2-00-00 wide ny other membe	ed for a liv eas where will fit betw rs.	e load of 20.0 a rectangle veen the botto)psf om				WING CA	Politi
BOT CHORD	14-15=-67/75, 13-14 11-12=-67/75, 10-11	4=-67/75, 12-13=-67/75, 1=-67/75, 9-10=-67/75	, 10	bearing plate 15, 48 lb upli	capable of with ft at joint 9, 33 I	nstanding 2 b uplift at jo	2 lb uplift at jo int 13, 58 lb	oint		6		PESS	DA N
WEBS	4-12=-187/104, 3-13 2-14=-161/110, 5-11	s=-122/75, 1=-126/76, 6-10=-150/1	10	uplift at joint joint 10.	14, 31 lb uplift a	at joint 11 a	na 65 lb uplift	tat		<i>V</i>		12	and y

- NOTES
- 1) Unbalanced roof live loads have been considered for this design.
- joint 10.
- 11) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- September 21,2022 818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

38 lb ction

Page: 1

- face
- .15,

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Azalea B Roof	
GHAZAB	D02	Common	2	1	Job Reference (optional)	154290745

Run: 8.43 \$ Jan 6 2022 Print: 8.430 \$ Jan 6 2022 MiTek Industries, Inc. Tue Sep 20 10:16:53 ID:rjPUzW9?s6_7gJl2eFaKKVzFmWO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

L

Plate Offsets (X, Y): [1:0-2-12,0-1-8], [3:0-2-12,0-1-8]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-AS	0.62 0.32 0.09	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.06 0.00	(loc) 6-7 6-7 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 75 lb	GRIP 244/190 FT = 20%
UMBER FOP CHORD 30T CHORD VEBS 3RACING FOP CHORD 30T CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shee except end verticals. Rigid ceiling directly (size) 5=0-3-8, 7 Max Horiz 7=-141 (LI Max Uplift 5=-47 (LC Max Grav 5=562 (LC	athing directly applie applied. 7=0-3-8 C 10) : 12), 7=-19 (LC 12) C 1), 7=496 (LC 1)	5) 6) d, 7) LC	Provide mec bearing plate 7 and 47 lb u This truss is International R802.10.2 ar This truss de structural wo chord and 1/ the bottom cl DAD CASE(S)	hanical connecti e capable of with plift at joint 5. designed in acco Residential Cod nd referenced sta sign requires that od sheathing be 2" gypsum sheet hord. Standard	on (by oth standing 1 ordance w le sections andard AN at a minim applied di trock be ap	ers) of truss i 9 lb uplift at j 16 kb e 2015 R502.11.1 at ISI/TPI 1. um of 7/16" rectly to the oplied directly	to joint and top y to					
ORCES	(lb) - Maximum Com Tension	pression/Maximum											
OP CHORD	1-2=-479/79, 2-3=-48 1-7=-437/78, 3-5=-50	85/82, 3-4=0/39, 03/112											
		4/000											

 BOT CHORD
 6-7=-88/262, 5-6=-54/223

 WEBS
 2-6=0/237, 1-6=-32/175, 3-6=-60/177

NOTES

 Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=29ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) 0-1-12 to 3-1-12, Interior (1) 3-1-12 to 6-4-8, Exterior (2) 6-4-8 to 9-4-8, Interior (1) 9-4-8 to 13-7-8 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Page: 1

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Azalea B Roof	
GHAZAB	D03	Roof Special	17	1	Job Reference (optional)	154290746

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Tue Sep 20 10:16:53 ID:ZwYhekUxVPNIPTsEjQZgwCzFmVz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale	=	1:45.1	

Plate Offsets (X, Y): [4:Edge,0-1-8]

L oading TCLL (roof) TCDL 3CLL 3CDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-AS	0.50 0.45 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.05 -0.11 0.00	(loc) 4-5 4-5 4	l/defl >999 >686 n/a	L/d 240 180 n/a	PLATES MT20 MT18HS Weight: 34 lb	GRIP 244/190 244/190 FT = 20%	
CUL LUMBER TOP CHORD SOT CHORD WEBS DTHERS BRACING TOP CHORD SOT CHOR	10.0 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood shea except end verticals. Rigid ceiling directly (size) 4=0-3-8, 5 Max Horiz 5=-220 (Li Max Grav 4=341 (LC (Ib) - Maximum Com 1-2=-225/197, 2-3=0 1-5=-274/190 4-5=-218/260 SE 7-10; Vult=120mph ph; TCDL=6.0psf; BC 24ft; eave=4ft; Cat. II; directional) and C-C Est therior (1) 10-6-11 to 13 -C for members and for shown; Lumber DOL=1	Code athing directly applied. 5=0-1-8 C 10) 12), 5=-69 (LC 8) C 17), 5=292 (LC 8) pression/Maximum //43, 2-4=-294/107, (3-second gust) DL=6.0psf; h=29ft; Exp B; Enclosed; xterior (2) 6-3-12 to 3-6-0 zone; cantileve cal left and right press & MWFRS for I.60 plate grip	r	FTPI2014 Provide mecl bearing plate Provide mecl bearing plate and 69 lb upl This truss is International R802.10.2 ar This truss de structural wo chord and 1/2 the bottom cl	Matrix-AS hanical connection at joint(s) 5. hanical connection capable of withsta ift at joint 5. designed in accord Residential Codes and referenced stan sign requires that i od sheathing be ap " gypsum sheetro ord. Standard	a (by othe anding 4 dance wi sections dard AN a minim pplied di ock be ap	ers) of truss i lb uplift at jo th the 2015 R502.11.1 a ISI/TPI 1. um of 7/16" rectly to the oplied directly	to to int 4 and top y to		4		Weight: 34 lb	FT = 20%	
 All plates a This truss chord live * This truss on the bott 3-06-00 ta 	are MT20 plates unless has been designed for load nonconcurrent wi s has been designed fo om chord in all areas Il by 2-00-00 wide will	s otherwise indicated a 10.0 psf bottom th any other live load or a live load of 20.0p where a rectangle fit between the bottor	s. osf m							THE WAY		SEA 0363	L 22	

- chord and any other members.
- Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Azalea B Roof	
GHAZAB	D04	Common	4	1	Job Reference (optional)	154290747

Run: 8,43 S Jan 6 2022 Print: 8,430 S Jan 6 2022 MiTek Industries, Inc. Tue Sep 20 10:16:53 ID:Gr8Tk9cC9Uetc?d9JWk0KJzFmVp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale - 1:53 9

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.00	тс	0.29	Vert(LL)	-0.08	8-10	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.61	Vert(CT)	-0.17	7-8	>999	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.39	Horz(CT)	0.01	7	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-AS							Weight: 109 lb	FT = 20%

TOP CHORD 2x4 SP No.2

BOT CHORD	2x4 SP N	0.2
WEBS	2x4 SP N	o.3 *Except* 10-1,7-5:2x4 SP No.2
BRACING		
TOP CHORD	Structural	l wood sheathing directly applied,
	except en	nd verticals.
BOT CHORD	Rigid ceili	ing directly applied.
REACTIONS	(size)	7=0-3-8, 10=0-3-8
	Max Horiz	10=-173 (LC 10)

- Max Uplift 7=-19 (LC 12) Max Grav 7=785 (LC 1), 10=713 (LC 1) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-266/62, 2-3=-604/102, 3-4=-603/99, 4-5=-286/87, 5-6=0/43, 1-10=-248/48, 5-7=-313/97
- BOT CHORD 8-10=0/533, 7-8=0/487 WEBS 3-8=-49/444, 4-8=-181/112, 2-8=-186/110,
- 2-10=-540/12, 4-7=-538/0 NOTES
- Unbalanced roof live loads have been considered for 1) this design
- Wind: ASCE 7-10; Vult=120mph (3-second gust) 2) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=29ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) 0-1-12 to 3-1-12, Interior (1) 3-1-12 to 8-5-8, Exterior (2) 8-5-8 to 11-5-8, Interior (1) 11-5-8 to 17-9-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 4) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

- bearing plate capable of withstanding 19 lb uplift at joint 7
- 6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- This truss design requires that a minimum of 7/16" 7) structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Azalea B Roof	
GHAZAB	D05	Common	2	1	Job Reference (optional)	154290748

Run: 8,43 S Jan 6 2022 Print: 8,430 S Jan 6 2022 MiTek Industries, Inc. Tue Sep 20 10:16:54 ID:oSANEFCZNrxnchSmE0ekLszFmV1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:53.9

Plate Offsets (X, Y): [2:0-3-4,0-1-12], [4:0-3-4,0-1-12], [6:Edge,0-1-8], [7:0-4-0,0-3-0]

Loading ICLL (roof) ICDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-AS	0.72 0.59 0.13	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.08 -0.17 0.01	(loc) 6-7 6-7 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 100 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD 30T CHORD WEBS 3RACING TOP CHORD 30T CHORD WEBS REACTIONS FORCES TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Except Structural wood sheat except end verticals. Rigid ceiling directly 1 Row at midpt (size) 6=0-3-8, 8 Max Horiz 8=-178 (L0 Max Upliff 6=-53 (LC Max Grav 6=-726 (LC (lb) - Maximum Com Tension 1-2=0/39, 2-3=-664/2	t* 8-2,6-4:2x4 SP No. applied. 2-7, 4-7 ≩=0-3-8 C 10) 12), 8=-53 (LC 12) C 1), 8=726 (LC 1) pression/Maximum 90, 3-4=-686/90,	5) 2 6) ^{I,} 7) LC	Provide mec bearing plate 8 and 53 lb u This truss is International R802.10.2 ar This truss de structural wo chord and 1/ the bottom cl DAD CASE(S)	hanical connect e capable of with uplift at joint 6. designed in acc Residential Coc nd referenced si sign requires th od sheathing be 2" gypsum shee hord. Standard	ion (by othe standing 5 cordance wi de sections tandard AN at a minim e applied di strock be ap	ers) of truss 3 lb uplift at th the 2015 R502.11.1 a SI/TPI 1. um of 7/16" rectly to the oplied directl	to joint and top y to						

49/119, 4-6=-649/119 BOT CHORD 6-8=-147/493 WEBS 3-7=0/343, 2-7=-137/211, 4-7=-144/212

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-10; Vult=120mph (3-second gust) 2) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=29ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 8-5-8, Exterior (2) 8-5-8 to 11-5-8, Interior (1) 11-5-8 to 17-9-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 3) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 4) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Azalea B Roof	
GHAZAB	D06	Common Supported Gable	1	1	Job Reference (optional)	154290749

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Tue Sep 20 10:16:54 ID:d9aUdxhfy7_6PqWSaQM6zIzFmUP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Plate Offsets (X, Y): [16:0-3-0,0-3-0]

				-											
Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)		20.0	Plate Grip DOL	1.00		TC	0.14	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
TCDL		10.0	Lumber DOL	1.15		BC	0.09	Vert(CT)	n/a	-	n/a	999			
BCLL		0.0*	Rep Stress Incr	YES		WB	0.32	Horz(CT)	0.00	12	n/a	n/a			
BCDL		10.0	Code	IRC2015	5/TPI2014	Matrix-AS							Weight: 116 lb	FT = 20%	
LUMBER TOP CHORD	2x4 SP N	p.2		1)	Unbalanced I this design.	roof live loads have	been o	considered for		LOAD	CASE(S)	Sta	ndard		
BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No 2x4 SP No 2x4 SP No Structural except en Rigid ceili (size)	0.2 0.3 0.3 wood she d verticals ng directly 12=16-11	athing directly applied applied. -0. 13=16-11-0.	2) d,	Wind: ASCE Vasd=95mph B=45ft; L=24 MWFRS (dire 2-1-8, Exterio 11-5-8, Exterio 11-5-8, Exterio and right exp exposed;C-C	7-10; Vult=120mph ; TCDL=6.0psf; BC ft; eave=2ft; Cat. II; actional) and C-C C or (2) 2-1-8 to 8-5-8 ior (2) 11-5-8 to 17- osed ; end vertical for members and f	(3-sec DL=6.0 Exp B orner (, Corne -9-8 zo left and orces 8	ond gust))psf; h=29ft; Enclosed; 3) -0-10-8 to rr (3) 8-5-8 to ne; cantilever I right & MWFRS for	left						
REACTIONS	(size) Max Horiz Max Uplift Max Grav	12=16-11 14=16-11 16=16-11 20=16-11 20=-178 (12=-44 (L 17=-32 (L 17=-32 (L 12=189 (L 14=156 (L 18=156 (L 18=156 (L	-0, 13=16-11-0, -0, 17=16-11-0, -0, 17=16-11-0, -0, 17=16-11-0, -0 LC 10) C 12), 13=-65 (LC 12 C 12), 15=-32 (LC 12 C 12), 18=-43 (LC 12 C 12), 20=-52 (LC 8) .C 17), 13=226 (LC 1 .C 1), 15=175 (LC 18 .C 12), 17=176 (LC 17 C 18)	3) 2), 4) 2), 5) 2), 6) 8), 7), 7), 8) 7), 9)	reactions sho DOL=1.60 Truss design only. For stu see Standarc or consult qu. All plates are Gable require Truss to be ft braced again Gable studs s This truss ha chord live loa * This truss h	wn; Lumber DOL= ted for wind loads in ds exposed to wind l Industry Gable En alified building desi 2x4 MT20 unless of sc continuous botto ully sheathed from of st lateral movemen spaced at 2-0-0 oc. s been designed fo d nonconcurrent wi as been designed f	1.60 pla n the pla d Deta gner as otherwi m chor one fac t (i.e. d r a 10.0 th any for a liv	ate grip ane of the tru al to the face) Is as applicate s per ANSI/TP se indicated. d bearing. e or securely iagonal web). 0 psf bottom other live loac e load of 20.0	ss ole, ol 1. ds. psf						
FORCES	(lb) - Max Tension	imum Com	pression/Maximum		on the bottom 3-06-00 tall b	n chord in all areas y 2-00-00 wide will	where fit betv	a rectangle een the botto	m			(r)	ORIESS	AN"	
TOP CHORD	2-20=-159 3-4=-104/ 6-7=-210/ 9-10=-111	9/80, 1-2=0 118, 4-5=- 246, 7-8=- I/85, 10-11	//39, 2-3=-122/100, 160/188, 5-6=-210/24 159/187, 8-9=-105/11 =0/39, 10-12=-150/76	10) 16, 19, 8) Provide mech bearing plate 20, 44 lb uplit	tanical connection capable of withstar tat joint 12, 32 lb u 18, 65 lb unlift at joi	(by oth nding 5 Iplift at	ers) of truss to 2 lb uplift at jo joint 17, 43 lb	o pint			Z	SEA		
BOT CHORD	19-20=-83 15-17=-83 12-13=-83	3/85, 18-19 3/85, 14-15 3/85	=-83/85, 17-18=-83/8 =-83/85, 13-14=-83/8	35, ^{35,} 11	15, 43 lb uplit This truss is a International	It at joint 14 and 65 designed in accorda Residential Code s	Ib uplif ance w ections	t at joint 13. th the 2015 R502.11.1 at	nd		1111		0363	22	nn,
WEBS	6-16=-256 3-19=-159 9-13=-156	6/154, 5-17 9/104, 7-15 6/103	/=-133/69, 4-18=-127 =-132/68, 8-14=-126	/85, /85, 12	R802.10.2 ar) This truss de structural wo	nd referenced stand sign requires that a od sheathing be ap	lard AN minim plied di	ISI/TPI 1. um of 7/16" rectly to the to	ор		S		A C NGINE	EREALIN	
NOTES					chord and 1/2 the bottom ch	2" gypsum sheetroo	k be a	oplied directly	to				A. G	IL IIIII	

September 21,2022

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Azalea B Roof	
GHAZAB	E01	Monopitch Supported Gable	1	1	Job Reference (optional)	154290750

5-9-0

-0-10-8

Carolina Structural Systems, LLC, Ether, NC - 27247,

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Tue Sep 20 10:16:54 ID:Sr?c1cAIXQ0QCzZ8wp4VbjzFmTn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:27.8

Plate Offsets (X, Y): [2:0-1-8,0-0-4]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015/TPI	2014	CSI TC BC WB Matrix-AS	0.13 0.09 0.06	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 28 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Left 2x6 SP No.2 Structural wood she except end verticals Rigid ceiling directly (size) 2=5-9.0, 6 Max Horiz 2=74 (LC Max Uplift 2=-22 (LC 8=-22 (LC Max Grav 2=183 (LC (LC 1), 8=	1-6-0 athing directly applied. 6=5-9-0, 7=5-9-0, 8={ 11), 8=74 (LC 11) ; 12), 7=-27 (LC 12), ; 12) C 1), 6=23 (LC 1), 7= =183 (LC 1)	5) Thi chu chu 6) * T on 3-C chu 7) Prc d, 2,2 d, 2,2 d, 2,3 ber 2,5 d, 2,5 ber 2, 2,5 ber 2, 2,5 ber 2, 2,5 ber 2, 2,5 ber 2,	is truss ha ord live loa his truss h the bottom bord and an ovide mecl aring plate 27 lb uplift s truss is ernational 02.10.2 ar is truss de uctural wo ord and 1/2 bottom ct CASE(S)	s been designed for d nonconcurrent w as been designed in chord in all areas y 2-00-00 wide will y other members. nanical connection capable of withsta at joint 7 and 22 lb designed in accord Residential Codes and referenced stand sign requires that a od sheathing be ap 2" gypsum sheetro nord. Standard	or a 10.0 vith any for a liv s where I fit betw (by oth anding 2 o uplift a lance w sections dard AN a minim oplied di ck be ap	b) psf bottom other live load e load of 20.00 a rectangle veen the botto ers) of truss tr 2 lb uplift at jc t joint 2. th the 2015 R502.11.1 at ISI/TPI 1. um of 7/16" rectly to the tr oplied directly	ds. opsf om obint nd op y to					
FORCES	(lb) - Maximum Com Tension 1-2=0/17, 2-4=-119/	pression/Maximum 79, 4-5=-47/47,											
BOT CHORD WEBS NOTES 1) Wind: AS Vasd=95r B=45ft; L: MWFRS 0 2-1-8, Ext right export for memb Lumber D	5-5=-23/40 2-7=-37/49, 6-7=-37, 4-7=-204/211 CE 7-10; Vult=120mph mph; TCDL=6.0psf; BC =24ft; eave=2ft; Cat. II; (directional) and C-C C terior (2) 2-1-8 to 5-7-4 sed ; end vertical left a ers and forces & MWFI DOL=1.60 plate grip DO	/49 (3-second gust) DL=6.0psf; h=29ft; Exp B; Enclosed; orner (3) -0-10-8 to zone; cantilever left a ind right exposed;C-C RS for reactions show DL=1.60	and C vn;							Wannun		SEA 0363	
 Truss de only. For see Stand or consult Gable rec Gable stu 	signed for wind loads ir studs exposed to wind dard Industry Gable Env t qualified building desig quires continuous bottor dds spaced at 2-0-0 oc.	n the plane of the trus I (normal to the face), d Details as applicab gner as per ANSI/TPI m chord bearing.	ss le, l 1.							5		A. G.	E.E.R. KINN

- or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 3)
- 4) Gable studs spaced at 2-0-0 oc.

818 Soundside Road Edenton, NC 27932

September 21,2022

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Azalea B Roof	
GHAZAB	E02	Monopitch	7	1	Job Reference (optional)	154290751

Run: 8,43 S Jan 6 2022 Print: 8,430 S Jan 6 2022 MiTek Industries, Inc. Tue Sep 20 10:16:55 ID:Df03G9UQe6Atip_xuZ0M6?zFmTO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:30.6

Plate Offsets (X, Y): [2:0-4-5,0-0-4]

Loading TCLL (roof) TCDL 3CLL 3CDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-AS	0.38 0.24 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.04 0.01	(loc) 5-8 5-8 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 26 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD 30T CHORD DTHERS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Left 2x6 SP No.2 1 Structural wood she Rigid ceiling directly (size) 2=0-3-8, 5 Max Horiz 2=110 (LC Max Uplift 2=-12 (LC Max Grav 2=281 (LC (lb) - Maximum Com	1-6-0 athing directly applie applied. 5=0-1-0 C 12) S 8), 5=-31 (LC 12) C 1), 5=220 (LC 1) pression/Maximum	6) 7) d. 8) LC	Provide mec bearing plate 2 and 31 lb u This truss is International R802.10.2 ar This truss de structural wo chord and 1/ the bottom c	hanical connect e capable of with uplift at joint 5. designed in acc Residential Co nd referenced s esign requires th ood sheathing b 2" gypsum shee hord. Standard	tion (by othe hstanding 1 cordance wi de sections standard AN nat a minimu e applied di etrock be ap	ers) of truss 2 lb uplift at th the 2015 R502.11.1 a SI/TPI 1. um of 7/16" rectly to the pplied directl	to joint and top ly to						
TOP CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=95n B=45ft; L=	Tension 1-2=0/17, 2-4=-149/3 2-5=-162/166 CE 7-10; Vult=120mph nph; TCDL=6.0psf; BC =24ft; eave=4ft; Cat. II;	31, 4-5=-138/102 (3-second gust) DL=6.0psf; h=29ft; Exp B; Enclosed;												

- MWFRS (directional) and C-C Exterior (2) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 5-7-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- Provide mechanical connection (by others) of truss to 5) bearing plate at joint(s) 5.

C VIIIIIIIIIIII SEAL 036322 G (1111111) September 21,2022

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Azalea B Roof	
GHAZAB	V01	Valley	1	1	Job Reference (optional)	154290752

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Tue Sep 20 10:16:55 ID:X52Q0pOT_8dECLDMnqsyepzFmSD-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

1-0-121-10-11-0-120-9-5

2x4 🎣 2x4 💊

2-1-8

Scale = 1:24.2

Plate Offsets (X, Y): [2:0-2-0,Edge]

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.00	TC	0.03	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.05	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MP							Weight: 6 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 Structural wood she 2-1-8 oc purlins. Rigid ceiling directly bracing. (size) 1=2-1-8, Max Horiz 1=-17 (LC Max Uplift 1=-3 (LC Max Grav 1=85 (LC	eathing directly applied applied or 10-0-0 oc 3=2-1-8 C 10) 12), 3=-3 (LC 12) 1), 3=85 (LC 1)	 7) * This trus on the bot 3-06-00 ta chord and 8) Provide m bearing pl and 3 lb u 9) This truss Internation R802.10.2 LOAD CASE(s has been designed om chord in all areas I by 2-00-00 wide wi any other members. echanical connectior ate capable of withst offat joint 3. is designed in accorr al Residential Code and referenced star 5) Standard	I for a liv s where ill fit betw h (by oth anding 3 dance w sections ndard AN	e load of 20.0 a rectangle veen the botto ers) of truss t I b uplift at joi ith the 2015 R502.11.1 a ISI/TPI 1.	Dpsf om o int 1 nd					
FORCES	(lb) - Maximum Con Tension	npression/Maximum										
TOP CHORD BOT CHORD	1-2=-97/15, 2-3=-97 1-3=-2/69	/15										
NOTES 1) Unbalance this design 2) Wind: ASC Vasd=95m B=45ft; L=2 MWFRS (d cantilever right expos for reactior DOL=1.60 3) Truss desi only. For s see Standa or consult (4) Gable requ 5) Gable stud 6) This truss f chord live	ed roof live loads have CE 7-10; Vult=120mpf pph; TCDL=6.0psf; BC 24ft; eave=4ft; Cat. II; directional) and C-C E left and right exposed sed;C-C for members and shown; Lumber DC igned for wind loads i studs exposed to winc ard Industry Gable En qualified building desi uires continuous botto is spaced at 6-0-0 oc. has been designed fo load nonconcurrent w	been considered for (3-second gust) (DL=6.0psf; h=29ft; Exp B; Enclosed; xterior (2) zone; ; end vertical left and and forces & MWFRS 0L=1.60 plate grip n the plane of the trus d normal to the face), d Details as applicab gner as per ANSI/TPI m chord bearing. r a 10.0 psf bottom ith any other live load	1 S Ie, I 1.						Contraction of the second seco		SEA 0363	EER-R

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

GI 11111111 September 21,2022

F

В

- 2
- 3

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Azalea B Roof	
GHAZAB	V02	Valley	1	1	Job Reference (optional)	154290753

2-0-12

Carolina Structural Systems, LLC, Ether, NC - 27247,

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Tue Sep 20 10:16:55 ID:Iv2sGMh95qmhiBd9lapp94zFmRq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3-10-1

Page: 1

-- Fi ?f

Scale = 1:26.3

Plate Offsets (X, Y): [2:0-2-0,Edge]

Loading ICLL (roof) ICDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015/	/TPI2014	CSI TC BC WB Matrix-AS	0.11 0.17 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 14 lb	GRIP 244/190 FT = 20%
LUMBER FOP CHORD 30T CHORD BRACING FOP CHORD 30T CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 Structural wood she Rigid ceiling directly (size) 1=4-1-8,3 Max Horiz 1=37 (LC Max Uplift 1=-6 (LC Max Grav 1=165 (LC	athing directly applic applied. 3=4-1-8 11) 12), 3=-6 (LC 12) C 1), 3=165 (LC 1)	8) 9) ed. 10)	Provide mect bearing plate and 6 lb uplif This truss is International R802.10.2 ar This truss de structural wo chord and 1/2 the bottom cl	hanical connectic capable of withs t at joint 3. designed in acco Residential Code nd referenced sta sign requires tha od sheathing be 2" gypsum sheet hord.	on (by othestanding 6 ordance wi e sections andard AN t a minim applied di rock be ap	ers) of truss t Ib uplift at jo th the 2015 R502.11.1 a ISI/TPI 1. um of 7/16" rectly to the to pplied directly	int 1 ind iop / to					
FORCES	(lb) - Maximum Com Tension 1-2=-206/31, 2-3=-2 1-3=-12/148	pression/Maximum 06/31	20,	AD CASE(S)	Standard								
VOTES Unbalance this desig Wind: AS Vasd=95i B=45ft; L MWFRS cantilever right expo for reactic	ed roof live loads have n. CE 7-10; Vult=120mph mph; TCDL=6.0psf; BC =24ft; eave=4ft; Cat. II; (directional) and C-C E: left and right exposed sed;C-C for members a ns shown; Lumber DO	been considered fo (3-second gust) DL=6.0psf; h=29ft; Exp B; Enclosed; xterior (2) zone; ; end vertical left an and forces & MWFR L=1.60 plate grip	r d IS									WITH CA	ROLIN

 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Gable requires continuous bottom chord bearing.

- 5) Gable studs spaced at 6-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

SEAL 036322 September 21,2022

> ENGINEERING BY ERENCO A MITEK Affiliate 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Azalea B Roof				
GHAZAB	V03	Valley	1	1	Job Reference (optional)	154290754			

Run: 8,43 S Jan 6 2022 Print: 8,430 S Jan 6 2022 MiTek Industries, Inc. Tue Sep 20 10:16:55 ID:q_0wdquBKInQderEhx5ZoSzFmRa-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:29.3

					-									
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-AS	0.11 0.19 0.06	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 24 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood sheat Rigid ceiling directly (size) 1=6-1-8, 3 Max Horiz 1=57 (LC Max Uplift 4=-46 (LC Max Grav 1=68 (LC 1) (LC 1)	athing directly applie applied. =6-1-8, 4=6-1-8 11) 12) 21), 3=68 (LC 22), 4	7) 8) ed. 9) 4=390	 * This truss h on the bottor 3-06-00 tall h chord and ar Provide mec bearing plate 4. This truss is International R802.10.2 ar D) This truss de structural wo 	has been designe n chord in all area by 2-00-00 wide w hy other members hanical connection capable of withs designed in accoor Residential Code and referenced sta sign requires that od sheathing be a	d for a liv as where vill fit betw s. on (by oth tanding 4 rdance w e sections indard AN t a minim applied di	e load of 20.0 a rectangle veen the botto ers) of truss t 6 lb uplift at j ith the 2015 R502.11.1 a ISI/TPI 1. um of 7/16" rectly to the t	Dpsf om oint und						
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-2=-55/132, 2-3=-55 1-4=-114/85, 3-4=-1 2-4=-263/88	pression/Maximum 5/128 14/85	L	the bottom c OAD CASE(S)	hord. Standard			/ 10						

NOTES

1) Unbalanced roof live loads have been considered for this design.

Wind: ASCE 7-10; Vult=120mph (3-second gust) 2) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=29ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Gable requires continuous bottom chord bearing.

Gable studs spaced at 6-0-0 oc. 5)

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

ORTH CHIMAN CONTRACT WWWWWWWW SEAL 036322 G 11111111 September 21,2022

mining

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Azalea B Roof	
GHAZAB	V04	Valley	1	1	Job Reference (optional)	154290755

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Tue Sep 20 10:16:56 ID:UHIS8w1jVRIj3UmYOSJNI_zFmRO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:33.4

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.00		TC	0.22	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15		BC	0.34	Vert(TL)	n/a	-	n/a	999			
BCLL	0.0*	Rep Stress Incr	YES		WB	0.13	Horiz(TL)	0.00	3	n/a	n/a			
BCDL	10.0	Code	IRC201	5/TPI2014	Matrix-MP							Weight: 33 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 8-1-8 oc purlins. Rigid ceiling directly bracing. (size) 1=8-1-8, 1 Max Horiz 1=-77 (LC Max Uplift 1=-18 (LC	athing directly appli applied or 6-0-0 oc 3=8-1-8, 4=8-1-8 2 10) 2 22), 3=-18 (LC 21)	6) 7) ed or 8) 9)	This truss ha chord live loa * This truss h on the bottom 3-06-00 tall b chord and ar Provide mech bearing plate 1, 18 lb uplift This truss is International R802.10.2 ar	s been designed ad nonconcurrent has been designed in chord in all are by 2-00-00 wide v hy other member hanical connection capable of with at joint 3 and 93 designed in accor Residential Code ind referenced sta	I for a 10.0 t with any ed for a live as where will fit betw s. on (by othe standing 1 i lb uplift a ordance wi e sections andard AN	b) psf bottom other live loa e load of 20.0 a rectangle een the botto ers) of truss t 8 lb uplift at j t joint 4. th the 2015 R502.11.1 a SI/TPI 1.	nds. Opsf om to oint						
FORCES TOP CHORD BOT CHORD WEBS NOTES	4=-93 (LC Max Grav 1=63 (LC (LC 1) (lb) - Maximum Com Tension 1-2=-91/225, 2-3=-9 1-4=-195/129, 3-4=- 2-4=-431/154	2 12) 21), 3=63 (LC 22), npression/Maximum 1/225 195/129	L1 4=590	DAD CASE(S)	Standard									
 Unbalance this design 	ed root live loads have	been considered fo	r										(T.)	
	l.													

- 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=29ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) 0-0-4 to 3-0-4, Interior (1) 3-0-4 to 4-1-0, Exterior (2) 4-1-0 to 7-1-0, Interior (1) 7-1-0 to 8-1-12 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 6-0-0 oc.

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Azalea B Roof	
GHAZAB	V05	Valley	1	1	Job Reference (optional)	154290756

Run: 8,43 S Jan 6 2022 Print: 8,430 S Jan 6 2022 MiTek Industries, Inc. Tue Sep 20 10:16:56 ID:nvCXA8JmspKJxAb9oVI?G2zFmR0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:39.3

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.00		TC	0.31	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL		10.0	Lumber DOL	1.15		BC	0.47	Vert(TL)	n/a	-	n/a	999		
BCLL		0.0*	Rep Stress Incr	YES		WB	0.26	Horiz(TL)	0.01	3	n/a	n/a		
BCDL		10.0	Code	IRC20	15/TPI2014	Matrix-MS							Weight: 42 lb	FT = 20%
LUMBER TOP CHORD	2x4 SP No	.2		(This truss hat chord live load 	s been designed ad nonconcurren	d for a 10.0 t with any) psf bottom other live loa	ıds.					
BOT CHORD	2x4 SP No	.3		-	7) * This truss h	as been designe	ed for a liv	e load of 20.0	Opsf					
OTHERS	2x4 SP No	.3			on the bottor	n chord in all are	as where	a rectangle						
BRACING					3-06-00 tall t	by 2-00-00 wide \		veen the bott	om					
TOP CHORD	Structural 10-0-0 oc	wood she purlins.	athing directly applie	ed or	Provide mechanical connection (by others) of truss to heaving alter a state activity of trust to be a state and the state and the state alter and the state alter activity of the state alter									
BOT CHORD	Rigid ceilir bracing.	ng directly	applied or 6-0-0 oc		1, 33 lb uplift	at joint 3 and 11	standing a 18 lb uplift	at joint 4.	oint					
REACTIONS	(size) Max Horiz Max Uplift	1=10-1-8, 1=-97 (LC 1=-33 (LC	3=10-1-8, 4=10-1-8 10) 22), 3=-33 (LC 21),	, <u>,</u>	 I his truss is International R802.10.2 ai 	designed in acco Residential Cod nd referenced sta	e sections andard AN	ith the 2015 R502.11.1 a ISI/TPI 1.	Ind					
	Max Grav	4=-118 (L 1=68 (LC (LC 1)	C 12) 21), 3=68 (LC 22), 4	4=761	LOAD CASE(S)	Stanuaru								
FORCES	(lb) - Maxi Tension	mum Com	pression/Maximum											
TOP CHORD	1-2=-120/3	314, 2-3=-	120/314											
BOT CHORD	1-4=-237/141, 3-4=-237/141													
WEBS	2-4=-584/	192												

NOTES

Unbalanced roof live loads have been considered for 1) this design.

- Wind: ASCE 7-10; Vult=120mph (3-second gust) 2) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=29ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) 0-0-4 to 3-0-4, Interior (1) 3-0-4 to 5-1-0, Exterior (2) 5-1-0 to 8-1-0, Interior (1) 8-1-0 to 10-1-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 4)
- Gable studs spaced at 6-0-0 oc. 5)
 - WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Garman Homes - Azalea B Roof	
GHAZAB	V06	Valley	1	1	Job Reference (optional)	154290757

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Tue Sep 20 10:16:56 ID:UeNa_31UY?fmYmttoLJEvzFmQ3-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:43.6

L oading TCLL (roof) TCDL 3CLL 3CDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.46 0.39 0.49	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 50 lb	GRIP 244/190 FT = 20%	
LUMBER FOP CHORD 30T CHORD OTHERS 3RACING FOP CHORD 30T CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 10-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=12-1-8 Max Horiz 1=-117 (L Max Uplift 1=-67 (LC 4=-174 (L Max Grav 1=69 (LC (LC 1)	eathing directly applied applied or 6-0-0 oc , 3=12-1-8, 4=12-1-8 ,C 10) C 22), 3=-67 (LC 21), C 12) 12), 3=69 (LC 12), 4:	6) 7) ^{d or} 8) 9) LC	This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and an Provide mecl bearing plate 1, 67 lb uplift This truss is International R802.10.2 ar	s been designed f ad nonconcurrent v has been designed in chord in all areas by 2-00-00 wide wi by other members. hanical connection capable of withst at joint 3 and 174 designed in accorr Residential Code nd referenced star Standard	for a 10.0 with any s where Il fit betw h (by oth- anding 6 Ib uplift dance wi sections ndard AN) psf bottom other live loa e load of 20.1 a rectangle reen the bott ers) of truss i 7 lb uplift at j at joint 4. th the 2015 R502.11.1 a SI/TPI 1.	ads. Opsf om to joint and						

FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-176/428, 2-3=-175/428

BOT CHORD 1-4=-325/177, 3-4=-325/177 WEBS 2-4=-774/251

NOTES

 Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=29ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) 0-0-4 to 3-0-4, Interior (1) 3-0-4 to 6-1-0, Exterior (2) 6-1-0 to 9-1-0, Interior (1) 9-1-0 to 12-1-12 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 6-0-0 oc.

