

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 150_1910_D_Vo KB Home 150.1910.D Vo2

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by 84 Components - #2383.

Pages or sheets covered by this seal: I45987461 thru I45987501

My license renewal date for the state of North Carolina is December 31, 2021.

North Carolina COA: C-0844

May 6,2021

Sevier, Scott

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

- MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 4-1-14, Exterior(2R) 4-1-14 to 8-Interior(1) 8-4-13 to 10-2-10, Exterior(2R) 10-2-10 to 14-4-8, Interior(1) 14-4-8 to 15-3-0 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=16.5 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 5) Provide adequate drainage to prevent water ponding.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 7. This connection is for uplift only and does not consider lateral forces.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek Affi 818 Soundside Road

Edenton, NC 27932

May 6,2021

		14-4-	8						1
		14-4-	8						1
Plate Offsets (X,Y) [4:0-2-0,E	Edge], [10:0-2-0,Edge], [17:0-4-0,0-4-8]								
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 16.5/15.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2018/TPI2014	CSI. TC 0.05 BC 0.02 WB 0.03 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.00 -0.00 0.00	(loc) 12 13 12	l/defl n/r n/r n/a	L/d 120 120 n/a	PLATES MT20 Weight: 74 lb	GRIP 197/144 FT = 20%
LUMBER- TOP CHORD 2x4 SP No.2 or 2 BOT CHORD 2x6 SP No.2	2x4 SPF No.2	BI	RACING- DP CHORD	Structura 2-0-0 oc	al wood purlins	sheathin (6-0-0 m	g directly app ax.): 4-10.	plied or 6-0-0 oc purlir	ns, except

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

OTHERS 2x4 SP No.3

REACTIONS. All bearings 14-4-8.

(lb) - Max Horz 2=-46(LC 12)

- Max Uplift All uplift 100 lb or less at joint(s) 12, 17, 18, 19, 20, 16, 15, 14, 2
- Max Grav All reactions 250 lb or less at joint(s) 12, 17, 18, 19, 20, 16, 15, 14, 2

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) -0-10-8 to 2-1-8, Exterior(2N) 2-1-8 to 2-7-14, Corner(3R) 2-7-14 to 5-7-14, Exterior(2N) 5-7-14 to 11-8-10, Corner(3R) 11-8-10 to 14-8-10, Exterior(2N) 14-8-10 to 15-3-0 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=16.5 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 6) Provide adequate drainage to prevent water ponding.
- 7) Gable requires continuous bottom chord bearing.
- 8) Gable studs spaced at 2-0-0 oc.
- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

11) N/A

- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

TRENGINEERING BY AMITEK Affiliate 818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	KB Home 150.1910.D Vo2			
	10		1	_	14598	37465		
150_1910_D_VO	AG		'	2	Job Reference (optional)			
84 Components (Dunn),	Dunn, NC - 28334,		8.5	500 s Feb 3	23 2021 MiTek Industries, Inc. Wed May 5 17:51:10 2021 Page	2		
		ID:VMD62rz1yiHD_OqRtbnrlFztQ8K-UoSHk_IEIjp0XnBfF2Rqz8H7rxN_3z_Wo1itVxzJTuV						

13) Use Simpson Strong-Tie HHUS28-2 (22-10d Girder, 4-10d Truss) or equivalent at 10-5-12 from the left end to connect truss(es) to back face of bottom chord.

- 14) Fill all nail holes where hanger is in contact with lumber.
- 15) LGT2 Hurricane ties must have two studs in line below the truss.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-43, 3-6=-43, 1-5=-20

Concentrated Loads (lb)

Vert: 10=-1618(B) 11=-1544(B) 12=-1541(B) 13=-1608(B) 14=-1657(B) 15=-2133(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/ITPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	L	5-6-4	10-9-0			16-9-8	20-6-4	20 ₁ 8-0	27-3	3-0	
DI 1 011 1 0110		5-6-4	5-2-12			6-0-8	3-8-12	0-1-12	6-7	-0	
Plate Offsets (X,Y)	- [5:0-3-8,E	=dge], [6:0-4-0,0-1-9]									
LOADING (psf) TCLL (roof) Snow (Pf/Pg) 16.5/ TCDL BCLL BCDL	20.0 (15.0 10.0 0.0 * 10.0	SPACING- Plate Grip DOI Lumber DOL Rep Stress Inc Code IRC201:	2-0-0 - 1.15 1.15 r YES 8/TPI2014	CSI. TC BC WB Matri	0.72 0.52 0.64 x-S	DEFL. Vert(LL Vert(C Horz(C	in (loc)) -0.07 11-13 Г) -0.12 11-13 Т) 0.02 10	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 161 lb	GRIP 197/144 FT = 20%
LUMBER- TOP CHORD 2x4 BOT CHORD 2x4 WEBS 2x4 8-9: SLIDER Left	SP No.2 or 2 SP No.2 or 2 SP No.3 *Ex 2x6 SP No.2 2x4 SP or S	2x4 SPF No.2 2x4 SPF No.2 kcept* 2 3PF No.2 -t 3-2-15				BRACING- TOP CHORD BOT CHORD WEBS	Structural woo except end ve Rigid ceiling di 1 Row at midp	d sheathir rticals, and rectly app t	ng directly app 1 2-0-0 oc pur lied or 6-0-0 c 5-11	blied or 5-10-5 oc purlir lins (6-0-0 max.): 5-6. oc bracing.	s,
REACTIONS. (3 Max Max Max	size) 2=0-3 x Horz 2=15 x Uplift 2=-44 x Grav 2=87	3-8, 10=0-3-8 51(LC 11) 4(LC 14), 10=-18(LC 70(LC 26), 10=1538(L	15) C 3)								
FORCES.(lb) - MaTOP CHORD2BOT CHORD2WEBS4	ax. Comp./Ma 4=-1101/57, 14=-82/911, 13=-436/126	ax. Ten All forces 2 4-5=-746/85, 6-7=-29 13-14=-82/911, 11-1 3, 5-13=-5/525, 5-11=	50 (lb) or less exce 19/95, 7-8=-28/467 3=-66/566, 10-11= 572/38, 7-11=0/76	ept when sh -307/66, 9-1 9, 7-10=-12	own. 0=-307/66 ?72/64	3					
NOTES- 1) Unbalanced roof 2) Wind: ASCE 7-16 MWFRS (envelop 14-11-15, Interior & MWFRS for rea 3) TCLL: ASCE 7-11 DOL=1.15); Is=1. surcharge applied 4) This truss has be non-concurrent w 5) Provide adequate 6) This truss has be will fit between th 8) One H2.5A Simps- connection is for 9) This truss is designed referenced stand	live loads ha 5; Vult=120m be) gable end (1) 14-11-15 actions show 6; Pr=20.0 ps 0; Rough Ca d to all exposi- tion designed vith other live e drainage to e drainage to een designed been designed been designed been designed been designed been designed been designed been designed been designed action be to action be to action be to action be between be bottom che son Strong-T	ave been considered f hph (3-second gust) V d zone and C-C Exter is to 16-9-8, Exterior(2 is to 16-9-8, Exterior(2 is to 16-9-8, Exterior(2 is f (roof LL: Lum DOL- at B; Partially Exp.; Co sed surfaces with slop for greater of min roo e loads. b prevent water pondiat for a 10.0 psf bottom ed for a live load of 20 ord and any other me Fie connectors recom ad does not consider I ordance with the 2018 P1 1.	or this design. asd=95mph; TCDI ior(2E) -0-10-8 to 2 R) 16-9-8 to 21-0-7 plate grip DOL=1. =1.15 Plate DOL=1 e=1.0; Cs=1.00; Ct bes less than 0.500 of live load of 12.0 p chord live load no .0psf on the bottom mbers, with BCDL mended to connec ateral forces. International Resid	==6.0psf; B0 2-1-8, Interior 7, Interior(1) 60 (15); Pg=15 =1.10, Lu=5 /12 in accor psf or 1.00 t n concurrent n chord in a = 10.0psf. t truss to be dential Code	CDL=6.0ps r(1) 2-1-8 21-0-7 to 5.0 psf; Pf= 0-0-0; Min dance with imes flat ro t with any of ll areas wh aring walls a sections	sf; h=25ft; Cat. II; to 10-9-0, Exterio 27-0-4 zone;C-C =16.5 psf (Lum Di h. flat roof snow lo h IBC 1608.3.4. oof load of 11.6 p other live loads. here a rectangle 3 s due to UPLIFT a R502.11.1 and R	Exp B; Enclosed; r(2R) 10-9-0 to for members and DL=1.15 Plate ad governs. Rain sf on overhangs -6-0 tall by 2-0-0 at jt(s) 2 and 10. T 802.10.2 and	forces n wide 'his		SEAL 044925	

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek Affil 818 Soundside Road Edenton, NC 27932

referenced standard ANSI/TPI 1.

SEAL 044925 MGINEEERING May 6,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss system. See **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MILIEK A 818 Soundside Road Edenton, NC 27932

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	KB Home 150.1910.D Vo2
150 1910 D VO	BE	GABLE	1	1	145987469
130_1910_D_VO		GABLE	1		Job Reference (optional)
84 Components (Dunn),	Dunn, NC - 28334,		8.5	500 s Feb 2	23 2021 MiTek Industries, Inc. Wed May 5 17:51:15 2021 Page 2
		ID:VM	1D62rz1yił	ID_OqRtb	nrlFztQ8K-qlFAnipNaFRJdY4c2b1?gC_xxy?WkLNFxJQeB8zJTuQ

11) N/A

12) N/A

13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 11.6/15.0 TCDL 10.0 BCLL 0.0 MCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2018/TPI2014	CSI. TC 0.50 BC 0.26 WB 0.47 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) 0.04 8-10 0.06 8-10 -0.01 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 305 lb	GRIP 197/144 FT = 20%
LOMBER-TOP CHORD2x4 SP No.2 orBOT CHORD2x8 SP No.2WEBS2x4 SP No.3	2x4 SPF No.2	BI TC BC	CHORD	Structural wood except end verti Rigid ceiling dire	sheathing cals. ectly appli	g directly app ed or 6-0-0 o	lied or 6-0-0 oc purlins oc bracing.	,
REACTIONS. (size) 2=0. Max Horz 2=2: Max Uplift 2=-6 Max Grav 2=8:	-3-8, 7=0-3-8 24(LC 45) 320(LC 38), 7=-1323(LC 37) 22(LC 55), 7=840(LC 55)							
FORCES. (lb) - Max. Comp./N TOP CHORD 2-3=-1047/16 BOT CHORD 2-10=-1275/8 WEBS 3-10=-869/23	Max. Ten All forces 250 (lb) or less exc 03, 3-5=-608/980, 5-6=-615/1053, 6-7=- 67, 8-10=-1275/867 5, 3-8=-510/606, 5-8=-1318/379, 6-8=-99	ept when shown. '43/940 90/535						
 NOTES- 1) 2-ply truss to be connected as foll Bottom chords connected as foll Bottom chords connected as follows: 2) All loads are considered equiply connections have been p 3) Unbalanced roof live loads h 4) Wind: ASCE 7-16; Vult=120T MWFRS (envelope) gable er 5) TCLL: ASCE 7-16; Pr=20.0 g DOL=1.15); Is=1.0; Rough C 6) This truss has been designer non-concurrent with other live 7) This truss has been designer will fit between the bottom ch 9) Two H2.5A Simpson Strong-connection is for uplift only an does not continued on page 2 	ogether with 10d (0.131"x3") nails as foll lows: 2x4 - 1 row at 0-9-0 oc. follows: 2x8 - 2 rows staggered at 0-9-0 2x4 - 1 row at 0-9-0 oc. ally applied to all plies, except if noted as rovided to distribute only loads noted as ave been considered for this design. nph (3-second gust) Vasd=95mph; TCD id zone; Lumber DOL=1.60 plate grip DC sis (roof LL: Lum DOL=1.15 Plate DOL= at B; Partially Exp.; Ce=1.0; Cs=1.00; Cf d for greater of min roof live load of 12.0 e loads. d for a 10.0 psf bottom chord live load no ed for a live load of 20.0psf on the bottor ord and any other members. Tie connectors recommended to connect tru consider lateral forces.	ows: oc. front (F) or back (B) face (F) or (B), unless otherwi .=6.0psf; BCDL=6.0psf; H)L=1.60 .15); Pg=15.0 psf; Pf=11 =1.10 psf or 1.00 times flat roof nconcurrent with any oth n chord in all areas where t truss to bearing walls due to	e in the LOAD CA ise indicated. n=25ft; Cat. II; Exp .6 psf (Lum DOL= load of 11.6 psf of er live loads. e a rectangle 3-6- ue to UPLIFT at jt(0 UPLIFT at jt(s) 7	SE(S) section. I o B; Enclosed; =1.15 Plate on overhangs 0 tall by 2-0-0 w (s) 2. This . This connectic	Ply to ride on is		SEAL 044925 May 6,20	
WARNING - Verify design parame Design valid for use only with MTef a truss system. Before use, the buil building design. Bracing indicated i is alwaye required for stability and t	eters and READ NOTES ON THIS AND INCLUDED A @ connectors. This design is based only upon para ding designer must verify the applicability of design s to prevent buckling of individual truss web and/or o prevent outlanse with possible personal injury area	ITEK REFERENCE PAGE MII-7 meters shown, and is for an ind parameters and properly incorp chord members only. Additiona property damage. Ecc appared	473 rev. 5/19/2020 BEF ividual building comport orate this design into the l temporary and perma guidance regarding the	FORE USE. nent, not he overall anent bracing				O fillate

818 Soundside Road Edenton, NC 27932

a duss system. Detailed use, the building designer must vering the application of design parameters and property incorporate inside use design into everal building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	KB Home 150.1910.D Vo2	
					14	15987470
150_1910_D_VO	BG	Common Girder	1	່ງ		
				_	Job Reference (optional)	
84 Components (Dunn),	Dunn, NC - 28334,		8.5	500 s Feb 2	23 2021 MiTek Industries, Inc. Wed May 5 17:51:17 2021 Pa	age 2
		ID:VM	1D62rz1yil	HD_OqRtb	nrlFztQ8K-n8NwCNqd6th1tsD?903Tld3LGmo9CCzXPdvlF1z	JTuO

11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

12) Use Simpson Strong-Tie LUS24 (4-10d Girder, 2-10d Truss, Single Ply Girder) or equivalent spaced at 8-0-0 oc max. starting at 8-0-0 from the left end to 20-1-8 to connect truss(es) to back face of bottom chord.

13) Use Simpson Strong-Tie LUS26 (4-10d Girder, 3-10d Truss, Single Ply Girder) or equivalent spaced at 2-0-0 oc max. starting at 10-0-0 from the left end to 14-0-0 to connect truss(es) to back face of bottom chord.

14) Fill all nail holes where hanger is in contact with lumber.

15) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.

16) LGT2 Hurricane ties must have two studs in line below the truss.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-5=-43, 5-6=-43, 2-7=-20

Concentrated Loads (lb)

Vert: 9=224(B) 8=171(B) 11=103(B) 12=126(B) 13=160(B) 14=200(B) 15=-130(B) 16=-130(B) 17=-136(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

REACTIONS. All bearings 8-0-0.

(lb) - Max Horz 2=65(LC 13)

Max Uplift All uplift 100 lb or less at joint(s) 2, 6, 10, 8

Max Grav All reactions 250 lb or less at joint(s) 2, 6, 9, 10, 8

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) -0-10-8 to 2-0-0, Exterior(2N) 2-0-0 to 4-0-0, Corner(3R) 4-0-0 to 7-0-0, Exterior(2N) 7-0-0 to 8-10-8 zone; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) N/A
- 11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 2.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

ł	8-3-0		14-6-8	16-0-10	22-11-5	24-0-0	31-4-3	31-11-6	39	9-9-0 42-2-	8
	8-3-0		6-3-8	1-6-2	6-10-11	1-0-11	7-4-3	0-7-3	7-	9-10 2-5-8	3
LOADING (ps	sf)	SPACING-	2-0-0	C	SI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
Snow (Pf/Pg)	20.0	Plate Grip DC	DL 1.15	т	0.56	Vert(LL)	-0.30 16-18	>999	240	MT20	197/144
	10.0/10.0	Lumber DOL	1.15	B	C 0.80	Vert(CT)	-0.61 16-18	>826	180		
BCLL	0.0 *	Rep Stress In	cr YES	W	B 0.92	Horz(CT) 0.15 12	n/a	n/a		
BCDL	10.0	Code IRC201	18/1PI2014	M	atrix-S					Weight: 285 lb	FI = 20%
LUMBER-						BRACING-					
TOP CHORD	2x6 SP No.2 *Ex	cept*				TOP CHORD	Structural woo	d sheathind	directly ap	plied or 3-0-12 oc purli	ns,
	1-4,10-11: 2x4 S	P No.2 or 2x4 SPF I	No.2				except end ver	ticals, and	2-0-0 oc pu	Irlins (3-2-14 max.): 4-1	0.
BOT CHORD	2x6 SP No.2					BOT CHORD	Rigid ceiling di	rectly appli	ed or 10-0-0	0 oc bracing.	
WEBS	2x4 SP No.3					WEBS	1 Row at midp	t .	5-20		
REACTIONS	(0:0) 0.01	0. 40 Machanical					2 Rows at 1/3	ots	9-13		
REACTIONS.	(SIZE) Z=0-3 Max Horz 2-11										
	Max Uplift 2=-62	2(LC 13), 12=-108(L	C 12)								
	Max Grav 2=17	39(LC 2), 12=1677(I	LC 40)								
FORCES. (It	o) - Max. Comp./M	ax. Ten All forces	250 (lb) or less	except when	shown.						
TOP CHORD	2-3=-3177/185	, 3-4=-3044/187, 4-5	0=-2673/179, 5	-7=-4362/362	, 7-9=-4362/3	362,					
	9-10=-921/73, 2-20200/274	0 18-20337/4225	16-18337/4	225 14-162	73/3360 13	-14273/3360					
WEBS	4-20=0/974.7-	16=-460/146. 9-14=	0/317.9-13=-2	738/245. 11-1	3=-92/1589.	5-18=0/306.					
	9-16=-92/1203	, 5-20=-1815/213	0,011,010 2			0 10 0/000,					
NOTES-											
1) Unbalanced	d roof live loads ha	ve been considered	for this design				vn D. Englaged				
	E 7-16; Vuil=12011 nvelope) gable en	ipn (3-second gust)	vasu=95mpn; vior(2E) _0_10-	1 CDL=6.0pSI; 8 to 2-1-8 Int	BCDL=6.0p	SI; N=25II; Cal. II; E to 8-3-0 Exterior(хр B; Enclosed; 2P) 8-3-0 to 12-4	5-15			
Interior(1) 1	2-5-15 to 39-9-0	Exterior(2E) 39-9-0 t	0.42-0-12 zone	C-C for mem	bers and for	ces & MWFRS for r	eactions shown	-10,			
Lumber DO	L=1.60 plate grip I	DOL=1.60	0 12 0 12 20110	,							
3) TCLL: ASC	E 7-16; Pr=20.0 ps	sf (roof LL: Lum DOL	_=1.15 Plate D	OL=1.15); Pg	=15.0 psf; Pf	=16.5 psf (Lum DO	L=1.15 Plate				
DOL=1.15);	; Is=1.0; Rough Ca	at B; Partially Exp.; C	Ce=1.0; Cs=1.0	0; Ct=1.10, Lu	u=50-0-0; Mir	n. flat roof snow loa	d governs. Rair	1		11'1 CAD'''	
surcharge a	applied to all expos	sed surfaces with slo	pes less than ().500/12 in ac	cordance wit	h IBC 1608.3.4.			11	TH UAHO	111 Startes
4) Unbalanced	d snow loads have	been considered for	r this design.	12.0 mof or 1.0	O time on flat	actional of 11 C act			a c	SHESSION.	11in
o) This truss n	rent with other live	lor greater of min to	or live load of	12.0 psi or 1.0	o times hat i	oor load of 11.6 psi	on overhangs		3E		Slow
6) Provide ade	equate drainage to	prevent water pond	ina.								
7) This truss h	as been designed	for a 10.0 psf bottor	n chord live loa	d nonconcurr	ent with any	other live loads.			E (*	OFAL	1 E -
8) * This truss	has been designe	d for a live load of 2	0.0psf on the b	ottom chord i	n all areas w	here a rectangle 3-6	6-0 tall by 2-0-0	wide	B 8	SEAL	- E -
will fit betwe	een the bottom cho	ord and any other me	embers.						z :	044925	: = = =
9) Refer to gir	der(s) for truss to t	russ connections.		lata	- f			11- \	E 4		1 3
10) Provide m	iecnanical connect	ion (by others) of tru	iss to bearing p	late capable	of withstandi	ng 100 ib uplift at jo	int(s) except (jt=	(di	3 3		1. 8
11) One H2 5/	A Simpson Strong	Tie connectors reco	mmended to c	onnect truss t	o bearing wa	IIs due to UPLIFT a	t it(s) 2. This		50	· NOINEER.	KS.
connection	n is for uplift only a	ind does not conside	er lateral forces						11	0	14.15
12) This truss	is designed in acc	ordance with the 20	18 Internationa	Residential	Code section	s R502.11.1 and R	802.10.2 and		11	TM SE	111
referenced	d standard ANSI/T	PI 1.								"Hummin	
13) Graphical	purlin representati	on does not depict t	he size or the c	prientation of t	he purlin alo	ng the top and/or be	ottom chord.			May 6,20)21

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

ŀ	2-3-0	0-2-12	. 10-11-0	12	5-7-1		20-4-13			51	-1-0	42-2-0	
	2-3-8 '	3-11-4	4-8-4	8	-8-1		8-9-14			8	-8-1	5-1-8	
LOADING (ps TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDI	sf) 20.0 16.5/15.0 10.0 0.0 10.0	*	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/T	2-0-0 1.15 1.15 YES PI2014	CSI. TC 0. BC 0. WB 0. Matrix-S	75 93 92	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.26 -0.47 0.13	(loc) 13-15 13-15 10	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 282 lb	GRIP 197/144 FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS REACTIONS.	2x4 SP N 6-8,4-6: 2 2x6 SP N 2x4 SP N (size) Max Hor Max Upl Max Gra	No.2 or 2 2x6 SP N No.2 No.3 10=M rz 2=13 ift 10=-6 av 10=18	x4 SPF No.2 *Except* No.2 echanical, 2=0-3-8 7(LC 16) i3(LC 12), 2=-30(LC 13 337(LC 3), 2=1880(LC 3) 3)		B T(B	RACING- OP CHORD OT CHORD /EBS	Structura except er Rigid ceil 2-2-0 oc 1 Row at 2 Rows a	l wood nd verti ing dire bracing midpt nidpt at 1/3 pr	sheathin cals, and ectly appl : 15-17. ts	g directly appl 2-0-0 oc purli ied or 10-0-0 o 5-13, 5-17 7-11	ied or 2-2-14 oc purlin ns (3-2-4 max.): 4-8. oc bracing, Except:	S,
FORCES. (III: TOP CHORD BOT CHORD WEBS	o) - Max. C 2-3=-33 8-9=-17 2-17=- 4-17=0	omp./Ma 344/144, 725/93, 9 163/2912 /1065, 5	ax. Ten All forces 250 3-4=-3146/143, 4-5=-2 3-10=-1784/80 2, 15-17=-230/3788, 13 -15=0/405, 5-13=-508/3	(lb) or less exc 763/140, 5-7=-3 -15=-230/3788, 33, 7-13=0/617,	ept when show 3388/220, 7-8=- 11-13=-201/33 7-11=-2182/17	n. 1526/98, 88 2, 8-11=0	/462,						

9-11=-65/1805. 5-17=-1250/175. 3-17=-356/163

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 10-11-0, Exterior(2R) 10-11-0 to 15-1-15, Interior(1) 15-1-15 to 37-1-0, Exterior(2R) 37-1-0 to 41-3-15, Interior(1) 41-3-15 to 42-0-12 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=16.5 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.

4) Unbalanced snow loads have been considered for this design.

- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 6) Provide adequate drainage to prevent water ponding.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 10.
 One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

ł	5-9-8	13-7-0	24-0-0		34-5-0		42-2-8	-
Plate Offsets (X,	Y) [4:0-4-0,Edge	e]	10-0-0		10-3-0		1-5-0	
LOADING (psf) TCLL (roof) Snow (Pf/Pg) 16 TCDL BCLL BCDL	20.0 3.5/15.0 10.0 0.0 * 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2018/TPI2014	CSI. TC 0.69 BC 0.89 WB 0.78 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.23 14-16 -0.41 14-16 0.10 11	l/defl L/d >999 240 >999 180 n/a n/a	PLATES MT20 Weight: 297 lb	GRIP 197/144 FT = 20%
LUMBER- TOP CHORD 2 1 BOT CHORD 2 WEBS 2 REACTIONS.	x6 SP No.2 *Excep -4: 2x4 SP No.2 or x6 SP No.2 x4 SP No.3 (size) 2=0-3-8, Max Horz 2=152(LI Max Uplift 2=-27(LC Max Grav 2=1885(I	ot* 2x4 SPF No.2 11=Mechanical C 16) C 16), 11=-17(LC 12) LC 3), 11=1850(LC 3)	E	BRACING- TOP CHORD BOT CHORD WEBS	Structural wood s except end vertica Rigid ceiling direc 1 Row at midpt	sheathing directly app als, and 2-0-0 oc pur xly applied or 10-0-0 6-16, 8-12	blied or 2-8-7 oc purlins lins (4-0-3 max.): 5-9. oc bracing.	i,
FORCES. (Ib) - TOP CHORD BOT CHORD WEBS	Max. Comp./Max. 2-3=-3499/80, 3-5 9-10=-2067/82, 10 2-18=-97/3034, 16 6-16=-701/148, 8- 3-16=-626/148	Ten All forces 250 (lb) or less exc =-2957/104, 5-6=-2571/128, 6-8=-3)-11=-1750/83 5-18=-97/3034, 14-16=-137/3002, 12 14=0/583, 8-12=-1352/142, 9-12=0/	ept when shown. 000/124, 8-9=-1774/106 2-14=-119/2734 /614, 10-12=-23/1887, 5), -16=0/956,				
NOTES- 1) Unbalanced ro 2) Wind: ASCE 7 MWFRS (enve 17-9-15, Interit forces & MWF 3) TCLL: ASCE 7 DOL=1.15); Is: surcharge app 4) Unbalanced sr 5) This truss has non-concurren 6) Provide adequ 7) This truss has 8) * This truss has will fit between 9) Refer to girder 10) Provide mect 11) One H2.5A S connection is 12) This truss is a referenced st 13) Graphical put	pof live loads have t -16; Vult=120mph i elope) gable end zo or(1) 17-9-15 to 34. RS for reactions sh -16; Pr=20.0 psf (r =1.0; Rough Cat B; lied to all exposed now loads have bee been designed for t with other live loa iate drainage to pre been designed for s been designed for a for uplift only and designed in accord tandard ANSI/TPI 1 rlin representation of	been considered for this design. (3-second gust) Vasd=95mph; TCD one and C-C Exterior(2E) -0-10-1 to -5-0, Exterior(2R) 34-5-0 to 38-7-15 nown; Lumber DOL=1.60 plate grip I oof LL: Lum DOL=1.15 Plate DOL= ; Partially Exp.; Ce=1.0; Cs=1.00; C surfaces with slopes less than 0.500 en considered for this design. greater of min roof live load of 12.0 ds. event water ponding. a 10.0 psf bottom chord live load nd or a live load of 20.0psf on the botton and any other members, with BCDL s connections. (by others) of truss to bearing plate connectors recommended to conne does not consider lateral forces. ance with the 2018 International Re L.	L=6.0psf; BCDL=6.0psf; 2-1-15, Interior(1) 2-1-1; , Interior(1) 38-7-15 to 4 DOL=1.60 1.15); Pg=15.0 psf; Pf=1 t=1.10, Lu=50-0-0; Min. 0/12 in accordance with psf or 1.00 times flat roo pnconcurrent with any of m chord in all areas whe = 10.0psf. capable of withstanding act truss to bearing walls sidential Code sections tation of the purlin along	; h=25ft; Cat. II; E: 5 to 13-7-0, Exteri 2-0-12 zone;C-C 1 16.5 psf (Lum DOI flat roof snow load IBC 1608.3.4. of load of 11.6 psf ther live loads. ere a rectangle 3-6 g 100 lb uplift at joi s due to UPLIFT a R502.11.1 and R8 g the top and/or bo	 kp B; Enclosed; or(2R) 13-7-0 to or members and a =1.15 Plate d governs. Rain on overhangs i-0 tall by 2-0-0 wide nt(s) 11. t jt(s) 2. This 302.10.2 and ottom chord. 	de	SEAL 044925 May 6,20	
WARNING - Ve Design valid for u	erify design parameters a ise only with MiTek® cor	and READ NOTES ON THIS AND INCLUDED I nnectors. This design is based only upon para	MITEK REFERENCE PAGE MII ameters shown, and is for an ir	I-7473 rev. 5/19/2020 B ndividual building comp	EFORE USE. onent, not		ENGINEERING BY	

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss we band/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems. see **ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

REACTIONS. (size) 2=0-3-8, 11=Mechanical Max Horz 2=173(LC 16) Max Uplift 2=-47(LC 16)

Max Grav 2=1923(LC 3), 11=1900(LC 3)

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 2-3=-3625/58, 3-5=-3568/133, 5-6=-2703/132, 6-7=-2373/141, 7-8=-1870/122, 8-9=-2141/119

 BOT CHORD
 2-18=-132/3141, 16-18=-82/2681, 14-16=-45/2518, 12-14=-45/2518, 11-12=-44/1505

WEBS 6-16=0/890, 7-16=-375/122, 7-14=0/372, 7-12=-983/101, 8-12=0/640, 9-12=0/660, 9-11=-2141/72, 5-16=-567/160, 3-18=-253/153, 5-18=-74/695

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 16-3-0, Exterior(2R) 16-3-0 to 20-5-15, Interior(1) 20-5-15 to 31-9-0, Exterior(2R) 31-9-0 to 35-11-15, Interior(1) 35-11-15 to 42-0-12 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=16.5 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.

4) Unbalanced snow loads have been considered for this design.

- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 6) Provide adequate drainage to prevent water ponding.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Refer to girder(s) for truss to truss connections.
- 10) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

9-	6-15 18-11-0) 24-0-	0 29-1-0	35-3-12	38-5-2 42-2-8
9-1	6-15 9-4-1	5-1-0) 5-1-0	6-2-12	3-1-6 3-9-6
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 16.5/15.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.71 BC 0.83 WB 0.87 Matrix-S	DEFL. in (k Vert(LL) -0.22 15- Vert(CT) -0.38 15- Horz(CT) 0.09	bc) l/defl L/d 17 >999 240 17 >999 180 12 n/a n/a	PLATES MT20 GRIP 197/144 Weight: 290 lb FT = 20%
LUMBER- TOP CHORD 2x4 SP No.2 or BOT CHORD 2x6 SP No.2 WEBS 2x4 SP No.3 REACTIONS. (size) 2=0 Max Horz 2=1 Max Uplift 2=6 Max Grav 2=1	2x4 SPF No.2 -3-8, 12=Mechanical 92(LC 16) 35(LC 16), 12=-6(LC 17) 916(LC 3), 12=1890(LC 3)	BRJ TOF BOT WE	ACING- P CHORD Structural w except end C CHORD Rigid ceiling 3S 1 Row at m	rood sheathing directly a verticals, and 2-0-0 oc p g directly applied or 10-0- idpt 5-17, 7-	pplied or 2-7-5 oc purlins, urlins (3-9-12 max.): 6-8. -0 oc bracing. 17, 7-15
FORCES. (lb) Max. Comp./N TOP CHORD 2-3=-3478/12 8-10=-2136/1 BOT CHORD 2-19=-227/30 9-19=-300/16 WEBS 3-19=-300/16 8-15=0/677, 1	4ax. Ten All forces 250 (lb) or less exc 0, 3-5=-3256/104, 5-6=-2450/148, 6-7=-2 42, 10-11=-1515/64, 11-12=-1864/54 19, 17-19=-108/2594, 15-17=-10/2067, 1 3, 5-19=0/588, 5-17=-734/172, 6-17=0/8 .0-15=-12/378, 11-13=0/1652, 10-13=-88	ept when shown. 2121/158, 7-8=-1839/147, 3-15=-36/1681 14, 7-17=-148/259, 7-15=-{ 8/88	571/97,		
 NOTES- 1) Unbalanced roof live loads h 2) Wind: ASCE 7-16; Vult=120r MWFRS (envelope) gable er 23-1-15, Interior(1) 23-1-15 t forces & MWFRS for reaction 3) TCLL: ASCE 7-16; Pr=20.0 p DOL=1.15); Is=1.0; Rough C surcharge applied to all expo 4) Unbalanced snow loads have 5) This truss has been designer non-concurrent with other livv 6) Provide adequate drainage tr 7) This truss has been designer will fit between the bottom ch 9) Refer to girder(s) for truss to 10) Provide mechanical connect 11) One H2.5A Simpson Strong connection is for uplift only 12) This truss is designed in ac referenced standard ANSI/7 13) Graphical purlin representation 	ave been considered for this design. nph (3-second gust) Vasd=95mph; TCDI id zone and C-C Exterior(2E) -0-10-8 to 0 o 29-1-0, Exterior(2R) 29-1-0 to 33-3-15, is shown; Lumber DOL=1.60 plate grip ID ssf (roof LL: Lum DOL=1.15 Plate DOL=2 at B; Partially Exp.; Ce=1.0; Cs=1.00; Ct sed surfaces with slopes less than 0.500 e been considered for this design. d for greater of min roof live load of 12.0 e loads. o prevent water ponding. d for a 10.0 psf bottom chord live load nc ed for a live load of 20.0psf on the bottor rord and any other members, with BCDL truss connections. tion (by others) of truss to bearing plate j-Tie connectors recommended to conne and does not consider lateral forces. cordance with the 2018 International Re TPI 1. tion does not depict the size or the orien	L=6.0psf; BCDL=6.0psf; h= 2-1-8, Interior(1) 2-1-8 to 1: Interior(1) 33-3-15 to 42-0 DOL=1.60 1.15); Pg=15.0 psf; Pf=16.5 =1.10, Lu=50-0-0; Min. flat y/12 in accordance with IBC psf or 1.00 times flat roof lo enconcurrent with any other in chord in all areas where a = 10.0psf. capable of withstanding 10 ct truss to bearing walls du sidential Code sections R50 tation of the purlin along the	25ft; Cat. II; Exp B; Enclose 3-11-0, Exterior(2R) 18-11- -12 zone;C-C for members i psf (Lum DOL=1.15 Plate roof snow load governs. R 2 1608.3.4. vad of 11.6 psf on overhang live loads. a rectangle 3-6-0 tall by 2-0 0 Ib uplift at joint(s) 12. le to UPLIFT at jt(s) 2. This 02.11.1 and R802.10.2 and a top and/or bottom chord.	ed; 0 to and tain ps -0 wide	SEAL 044925

May 6,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	KB Home 150.1910.D Vo2			
			1	1	1	45987477		
130_1910_D_VO			'	'	Job Reference (optional)			
84 Components (Dunn),	Dunn, NC - 28334,		8.5	500 s Feb 2	23 2021 MiTek Industries, Inc. Wed May 5 17:51:32 2021 F	age 2		
		ID:VMD62rz1yiHD_OqRtbnrlFztQ8K-r0nbLW01ZUauAAtuXgr_snBp?pnfDuElrS12HfzJTu9						

12) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 1. This connection is for uplift only and does not consider lateral forces.

13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

15) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.

16) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-3=-43, 3-10=-53, 1-20=-20, 14-20=-20, 11-13=-20

Concentrated Loads (lb)

Vert: 20=-25(F) 2=-20(F) 18=-19(F) 4=-16(F) 12=-19(F) 9=-16(F) 21=-55(F) 22=-19(F) 23=-16(F) 25=-16(F) 25=-16(F) 27=-16(F) 28=-16(F) 29=-16(F) 30=-16(F) 31=-16(F) 33=-16(F) 33=-16(F) 35=-16(F) 35=-16(F) 36=-16(F) 37=-29(F) 38=-25(F) 39=-19(F) 40=-19(F) 41=-19(F) 42=-19(F) 43=-19(F) 43=-19(F) 44=-19(F) 45=-19(F) 46=-19(F) 47=-19(F) 48=-19(F) 49=-19(F) 50=-19(F) 51=-19(F) 52=-24(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	KB Home 150.1910.D Vo2	
					14	15987478
150_1910_D_VO	HG2	Half Hip Girder	1	່ງ		
				_	Job Reference (optional)	
84 Components (Dunn),	Dunn, NC - 28334,		8.5	500 s Feb 2	23 2021 MiTek Industries, Inc. Wed May 5 17:51:45 2021 Pa	age 2
			2rz1viHD		ztO8K-v/M/3/M/4v/AB/M/TD2EAMNova1uXD822DXmo_fr_hEDP	z ITtv

- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 16) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.

LOAD CASE(S) Standard

- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15
- Uniform Loads (plf)
- Vert: 1-3=-43, 3-10=-53, 2-11=-20
- Concentrated Loads (lb)

Vert: 10=-39(B) 11=-28(B) 17=-19(B) 19=-44(B) 20=-38(B) 21=-18(B) 22=-16(B) 23=-16(B) 25=-16(B) 26=-16(B) 27=-16(B) 29=-16(B) 30=-16(B) 31=-16(B) 32=-16(B) 33=-16(B) 33=-19(B) 33=-19(B) 33=-19(B) 33=-19(B) 33=-19(B) 33=-19(B) 35=-19(B) 35=-19(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

B18 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	KB Home 150.1910.D Vo2		
					145987479		
150_1910_D_VO	HV1	HALF HIP	1	1			
					Job Reference (optional)		
84 Components (Dunn),	Dunn, NC - 28334,	8.500 s Feb 23 2021 MiTek Industries, Inc. Wed May 5 17:51:47 2021 Page 2					
		ID:VMD62rz1yiHD_OqRtbnrlFztQ8K-uvBGVeBS15TmTTWmwJcVzyJNjsseEhJyIIALIIzJTtw					

- 12) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 1. This connection is for uplift only and does not consider lateral forces.
- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/ITPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	KB Home 150.1910.D Vo2
150 1010 D VO	11/2			1	145987480
150_1910_D_VO	nv2		'		Job Reference (optional)
84 Components (Dunn),	Dunn, NC - 28334,	8.500 s Feb 23 2021 MITek Industries, Inc. Wed May 5 17:51:49 2021 Page			
			ID:VMD62rz1yiHD_OqRtbnrlFztQ8K-rlI0vKDiZijUing91kez2NOhrfZyia6FmcfSMAzJTtu		

14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/ITPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Max Grav 1=856(LC 55), 11=77(LC 16), 13=2420(LC 2) **FORCES.** (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-2444/184, 2-4=-2202/141, 4-5=-1082/47, 5-6=-913/66, 6-8=-77/1269,

Max Uplift 1=-12(LC 16), 11=-439(LC 55), 13=-137(LC 13)

8-9=-74/1270, 10-11=-94/406 BOT CHORD 1-18=-317/2180, 17-18=-195/1888, 15-17=-58/410, 14-15=-58/410, 13-14=-2357/176,

8-14=-575/145 WEBS 4-18=-64/785, 4-17=-1185/182, 6-17=-122/904, 6-15=0/304, 6-14=-1834/91, 9-14=-1417/77, 9-12=-8/528, 10-12=-366/92

NOTES-

REACTIONS.

(size)

Max Horz 1=200(LC 16)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 13-7-0, Exterior(2R) 13-7-0 to 17-9-15, Interior(1) 17-9-15 to 34-5-0, Exterior(2E) 34-5-0 to 36-5-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

1=0-3-8, 11=Mechanical, 13=(0-3-8 + H10A Simpson Strong-Tie) (req. 0-3-13)

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=16.5 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.

- 4) Unbalanced snow loads have been considered for this design
- 5) Provide adequate drainage to prevent water ponding.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

8) Refer to girder(s) for truss to truss connections.

9) Bearing at joint(s) 1, 13 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 11=439.

11) H10A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 13. This connection is for uplift only and does not consider lateral forces.

12) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 1. This Continueteriorage for uplift only and does not consider lateral forces.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	KB Home 150.1910.D Vo2		
						145987481	
150_1910_D_VO	HV3	HIP	1	1			
					Job Reference (optional)		
84 Components (Dunn),	Dunn, NC - 28334,	8.500 s Feb 23 2021 MiTek Industries, Inc. Wed May 5 17:51:51 2021 Page 2					
		ID:VMD62rz1yiHD_OqRtbnrlFztQ8K-ngQnK?Ey5JzCy5qX99gR8oT2gTE4AWoYDv8YR3zJTts					

13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign valid to less only with with the contractors. This besign is based only upon parameters and properly incorporate this design into the overall a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	KB Home 150.1910.D Vo2		
	1.0.74					145987482	
150_1910_D_VO	HV4	НР	1	1			
					Job Reference (optional)		
84 Components (Dunn),	Dunn, NC - 28334,	8.500 s Feb 23 2021 MiTek Industries, Inc. Wed May 5 17:51:53 2021 Page 2					
		ID:VMD62rz1yiHD_OqRtbnrlFztQ8K-j3YXlhGCdxDwBO_wGajvDDZNVHy7eR6rgDdfWyzJTtq					

13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	KB Home 150.1910.D Vo2		
					1459	987483	
150_1910_D_VO	HV5	HIP	1	1			
					Job Reference (optional)		
84 Components (Dunn),	Dunn, NC - 28334,	8.500 s Feb 23 2021 MiTek Industries, Inc. Wed May 5 17:51:55 2021 Page 2					
		ID:VMD62rz1yiHD_OqRtbnrlFztQ8K-fSgHANIT9YTdQi7IO?INIeepE4ee6H178X6maqzJTto					

- 12) H10A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 14. This connection is for uplift only and does not consider lateral forces.
- 13) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/ITPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 11.6/15.0 TCDL 10.0 BCLL 0.0 * BCDI 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.19 BC 0.15 WB 0.00 Matrix-R	DEFL. Vert(LL) -0.0 Vert(CT) -0.0 Horz(CT) 0.0	n (loc) 1 4-5 2 4-5 1 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 16 lb	GRIP 197/144 FT = 20%
LUMBER-		BF	ACING-					

TOP CHORD 2x4 SP No.2 or 2x4 SPF No.2 2x4 SP No.2 or 2x4 SPF No.2 BOT CHORD 2x6 SP No.2 WEBS

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 3-11-4 oc purlins, except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 5=0-3-8, 3=Mechanical, 4=Mechanical

Max Horz 5=96(LC 14)

Max Uplift 3=-54(LC 14) Max Grav 5=222(LC 2), 3=99(LC 26), 4=68(LC 5)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 3-10-8 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Plate Offsets (X,Y) [5:0-0-14	1,0-2-4]			
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 11.6/15.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2018/TPI2014	CSI. TC 0.19 BC 0.15 WB 0.00 Matrix-R	DEFL. in (loc) l/defl L/d PLATES Vert(LL) -0.01 4-5 >999 240 MT20 Vert(CT) -0.02 4-5 >999 180 Horz(CT) 0.01 3 n/a n/a	GRIP 197/144 Ib FT = 20%

LUMBER-		BRACING-	
TOP CHORD	2x4 SP No.2 or 2x4 SPF No.2	TOP CHORD	Structural wood sheathing directly applied or 3-11-4 oc purlins,
BOT CHORD	2x4 SP No.2 or 2x4 SPF No.2		except end verticals.
WEBS	2x6 SP No.2	BOT CHORD	Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. (size) 5=0-3-8, 3=Mechanical, 4=Mechanical

Max Horz 5=96(LC 14) Max Uplift 3=-54(LC 14)

Max Grav 5=222(LC 2), 3=100(LC 26), 4=68(LC 5)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 3-10-8 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system, see **ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

- Refer to girder(s) for truss to truss connections.
- Bearing at joint(s) 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4.
- 10) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 6. This connection is for uplift only and does not consider lateral forces.
- One MTS12 Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 5. This
 connection is for uplift only and does not consider lateral forces.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 14) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	KB Home 150.1910.D Vo2		
					145987487		
150_1910_D_VO	J4	Jack-Open Girder	1	1			
					Job Reference (optional)		
84 Components (Dunn),	Dunn, NC - 28334,	8.500 s Feb 23 2021 MiTek Industries, Inc. Wed May 5 17:51:59 2021 Page 2					
		ID:VMD62rz1yiHD_OqRtbnrlFztQ8K-YDvo0kLzDn_3vJR4drqJSUpa6h9u2Jkj394zjbzJTtk					

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-2=-43, 2-3=-43, 3-4=-53, 6-7=-20, 5-6=-20 Concentrated Loads (lb) Vert: 3=-3(B) 8=-16(B) 9=-1(B) 10=-4(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/ITPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss system. See **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	KB Home 150.1910.D Vo2		
					145987488		
150_1910_D_VO	J5	Jack-Open Girder	1	1			
					Job Reference (optional)		
84 Components (Dunn),	Dunn, NC - 28334,	8.500 s Feb 23 2021 MiTek Industries, Inc. Wed May 5 17:52:00 2021 Page 2					
		ID:VMD62rz1yiHD_OqRtbnrlFztQ8K-0PTAD4Lbz46wXT0GAYLY?hLmc5VGnmztHpqXF2zJTtj					

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-2=-43, 2-3=-43, 3-4=-53, 5-7=-20 Concentrated Loads (lb) Vert: 3=-4(F) 8=-12(F) 10=-3(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

 184	DE	D

TOP CHORD 2x4 SP No.2 or 2x4 SPF No.2 BOT CHORD 2x4 SP No.2 or 2x4 SPF No.2

BOT CHORD2x4 SP No.2 or 2x4 SPF No.2WEBS2x4 SP No.2 or 2x4 SPF No.2

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 3-11-4 oc purlins, except end verticals, and 2-0-0 oc purlins: 3-4. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 6=0-3-8, 4=Mechanical, 5=Mechanical

Max Horz 6=73(LC 14) Max Uplift 6=-8(LC 14), 4=-30(LC 14)

Max Grav 6=219(LC 2), 4=98(LC 2), 5=70(LC 5)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 2-9-0, Exterior(2E) 2-9-0 to 3-10-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=16.5 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 5) Provide adequate drainage to prevent water ponding.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4.
 One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 6. This
- connection is for uplift only and does not consider lateral forces. 11) One MTS12 Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 5. This
- connection is for uplift only and does not consider lateral forces.
 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

REACTIONS. (size) 3=Mechanical, 2=0-3-8, 4=Mechanical

Max Horz 2=44(LC 16)

Max Uplift 3=-24(LC 16), 2=-11(LC 16)

Max Grav 3=49(LC 23), 2=148(LC 23), 4=35(LC 7)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This
 connection is for uplift only and does not consider lateral forces.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss system. See **MSIVTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Plate Offsets (X,Y) [1:0-0-15	5,0-1-8]							
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 11.6/15.0 TCDL 10.0 PCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.07 BC 0.04 WB 0.00	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc -0.00 -0.00 1- -0.00	c) l/defl 1 >999 3 >999 2 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 197/144
BCDL 10.0	Code IRC2018/TPI2014	Matrix-P					Weight: 7 lb	FT = 20%
LUMBER-		BR	ACING-					

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 or 2x4 SPF No.2 BOT CHORD

2x4 SP No.2 or 2x4 SPF No.2

REACTIONS. (size) 1=0-3-8, 2=Mechanical, 3=Mechanical Max Horz 1=39(LC 16)

Max Uplift 2=-31(LC 16)

Max Grav 1=78(LC 2), 2=59(LC 2), 3=39(LC 7)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Bearing at joint(s) 1 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 2-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 or 2x4 SPF No.2 BOT CHORD 2x4 SP No.2 or 2x4 SPF No.2

REACTIONS. (size) 3=Mechanical, 2=0-3-8, 4=Mechanical

Max Horz 2=44(LC 16)

Max Uplift 3=-27(LC 16), 2=-13(LC 16) Max Grav 3=47(LC 23), 2=148(LC 23), 4=39(LC 7)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.
- 9) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This
- connection is for uplift only and does not consider lateral forces.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 2-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

1) Unbalanced roof live loads have been considered for this design.

 Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-4-11 to 3-4-11, Interior(1) 3-4-11 to 5-0-3, Exterior(2R) 5-0-3 to 8-0-3, Interior(1) 8-0-3 to 9-7-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate

- DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.

5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.

- 6) Gable requires continuous bottom chord bearing.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
- will fit between the bottom chord and any other members.
- 9) N/A

10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

11) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

		10-0-6						
		10-0-6						
Plate Offsets (X,Y) [3:0-2-0,E	dge], [5:0-2-0,Edge]							
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 16.5/15.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2018/TPI2014	CSI. TC 0.14 BC 0.16 WB 0.05 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) 0.00 7 0.00 7 0.00 6	l/defl n/r n/r n/a	L/d 120 120 n/a	PLATES MT20 Weight: 28 lb	GRIP 197/144 FT = 20%
LUMBER-		BRA	CING-					
TOP CHORD 2x4 SP No.2 or 2	2x4 SPF No.2	TOP	CHORD Str	ructural wood	sheathin	g directly app	blied or 6-0-0 oc purlin	s, except
BOT CHORD 2x4 SP No.2 or 2	2x4 SPF No.2		2-0	0-0 oc purlins	(6-0-0 ma	ax.): 3-5.		

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

2x4 SP No.2 or 2x4 SPF No.2 BOT CHORD WEBS 2x4 SP No.3

REACTIONS. (size) 2=8-1-12, 6=8-1-12, 8=8-1-12 Max Horz 2=-14(LC 21)

Max Uplift 2=-20(LC 16), 6=-21(LC 17), 8=-5(LC 13) Max Grav 2=215(LC 41), 6=215(LC 41), 8=342(LC 40)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-4-11 to 2-7-3, Exterior(2R) 2-7-3 to 6-10-2, Interior(1) 6-10-2 to 7-5-3, Exterior(2E) 7-5-3 to 9-7-12 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=16.5 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 6) Provide adequate drainage to prevent water ponding.
- 7) Gable requires continuous bottom chord bearing.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

10) N/A

- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

818 Soundside Road Edenton, NC 27932

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	KB Home 150.1910.D Vo2	
					145	5987495
150_1910_D_VO	T1	ROOF TRUSS	3	1		
					Job Reference (optional)	
84 Components (Dunn),	Dunn, NC - 28334,		8.5	500 s Feb 2	23 2021 MiTek Industries, Inc. Wed May 5 17:52:08 2021 Pa	ige 2
			ID62rz1viF	ID OaRth	nrIEzt08K-nvvCvnSd5Y6nLlidoeELl0KNa2KK2lf8W273mvXaz	/ ITth

13) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

16) ATTIC SPACE SHOWN IS DESIGNED AS UNINHABITABLE.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/ITPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	KB Home 150.1910.D Vo2			
150 1910 D VO	Τ2Δ	ROOF TRUSS	3	1	1459	387496		
130_1310_D_VO			5		Job Reference (optional)			
84 Components (Dunn),	Dunn, NC - 28334,	8.500 s Feb 23 2021 MiTek Industries, Inc. Wed May 5 17:52:11 2021 Page 2						
		ID:VMD62rz1yiHD_OqRtbnrlFztQ8K-BXdLXrUVOTUML9MNKM17x0IVPX4isW?Up1_c8vzJTtY						

- 10) H10A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 13. This connection is for uplift only and does not consider lateral forces.
- 11) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 14) ATTIC SPACE SHOWN IS DESIGNED AS UNINHABITABLE.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/ITPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	KB Home 150.1910.D Vo2			
150 1910 D VO	ТЗА	ROOF TRUSS	2	1		145987497		
100_1010_D_VO	10/1		2		Job Reference (optional)			
84 Components (Dunn),	Dunn, NC - 28334,	8.500 s Feb 23 2021 MiTek Industries, Inc. Wed May 5 17:52:13 2021 Page 2						
		ID:VMD62rz1yiHD_OqRtbnrlFztQ8K-8vl5yXVlw4l4bTVmRn4b1ROsdLncKQonHKTjDnzJTtW						

11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

13) ATTIC SPACE SHOWN IS DESIGNED AS UNINHABITABLE.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

ł	9-7-5	18-11-13	24-0-0	29-0-3	35-3-3	38-4-11	42-4-4 42-6-0 48-0-0	———————————————————————————————————————	
Plate Offse	ts (X,Y) [6:0-3-0,0	0-2-0], [8:0-3-0,0-2-0], [11:0-3-0,0-2-12]	5-0-5	5-0-3	0-3-0	3-1-6	3-11-9 0-1-12 3-0-0		
LOADING TCLL (roof) Snow (Pf/P TCDL BCLL BCLL BCDL	(psf) 20.0 g) 16.5/15.0 10.0 0.0 * 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.68 BC 0.82 WB 0.93 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.19 19-21 -0.35 19-21 0.09 14	l/defl L/d >999 240 >999 180 n/a n/a	PLATES MT20 Weight: 316	GRIP 197/144 Ib FT = 20%	
LUMBER- TOP CHOF BOT CHOF WEBS REACTION	 2x4 SP No.2 or 2 2x6 SP No.2 2x4 SP No.3 (size) 2=0-3 Max Horz 2=13 Max Uplift 2=-6i Max Grav 2=18 	2x4 SPF No.2 3-8, 14=(0-3-8 + H10A Simpson Strong-T 4(LC 16) 3(LC 16), 14=-63(LC 17) 94(LC 3), 14=2459(LC 3)	E T E V V	BRACING- FOP CHORD 3OT CHORD WEBS	Structural wood 2-0-0 oc purlins Rigid ceiling dire 1 Row at midpt	sheathing directi (3-10-11 max.): (ectly applied or 6 5-19	ly applied or 2-5-4 oc pur 6-8. -0-0 oc bracing. -, 7-19, 7-17	lins, except	
FORCES. TOP CHOF BOT CHOF WEBS	ORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. 'OP CHORD 2-3=-3428/121, 3-5=-3215/108, 5-6=-2361/151, 6-7=-2054/156, 7-8=-1774/154, 8-9=-2050/142, 9-11=-1383/81, 11-12=-105/614 3OT CHORD 2-21=-166/2972, 19-21=-57/2544, 17-19=0/1978, 15-17=0/1568, 12-14=-469/140 VEBS 3-21=-295/158, 5-21=0/622, 5-19=-772/171, 6-19=0/761, 7-19=-93/301, 7-17=-541/90, 8-17=0/635, 9-17=0/374, 11-15=0/1538, 11-14=-2309/124, 9-15=-938/92								
NOTES- 1) Unbalan 2) Wind: A: MWFRS 23-2-11, & MWFF 3) TCLL: A DOL=1.' surcharg 4) Unbalan 5) This trus non-com 6) Provide 9) H10A Si for uplift 10) One H2 connec 11) This tru referen 12) Graphi	ced roof live loads ha SCE 7-16; Vult=120m (envelope) gable end Interior(1) 23-2-11 to S for reactions show SCE 7-16; Pr=20.0 ps (5); Is=1.0; Rough Ca ge applied to all exposi- ced snow loads have s has been designed current with other live adequate drainage to s has been designed use has been designed tween the bottom cho- mpson Strong-Tie co- only and does not co- 2.5A Simpson Strong- tion is for uplift only a tos is designed in acc ced standard ANSI/T cal purlin representati	ve been considered for this design. ph (3-second gust) Vasd=95mph; TCDL d zone and C-C Exterior(2E) -0-10-8 to 2 y29-0-3, Exterior(2R) 29-0-3 to 33-3-2, Ir n; Lumber DOL=1.60 plate grip DOL=1.6 sf (roof LL: Lum DOL=1.15 Plate DOL=1.15 heat surfaces with slopes less than 0.500/ been considered for this design. for greater of min roof live load of 12.0 p loads. prevent water ponding. for a 10.0 psf bottom chord live load nor of dr a live load of 20.0psf on the bottom ord and any other members, with BCDL = nectors recommended to connect truss nsider lateral forces. Tie connectors recommended to connect und does not consider lateral forces. ordance with the 2018 International Resi PI 1. ion does not depict the size or the orienta	=6.0psf; BCDL=6.0psf; -1-8, Interior(1) 2-1-8 to terior(1) 33-3-2 to 48-1 0 15); Pg=15.0 psf; Pf=1 1.1.10, Lu=50-0-0; Min. 1 12 in accordance with sf or 1.00 times flat roc chord in all areas whe = 10.0psf. to bearing walls due to at truss to bearing walls dential Code sections is ation of the purlin along	; h=25ft; Cat. II; E) o 18-11-13, Exteri 10-8 zone;C-C for 6.5 psf (Lum DOL flat roof snow load IBC 1608.3.4. of load of 11.6 psf ther live loads. or a rectangle 3-6 o UPLIFT at jt(s) 1- s due to UPLIFT at R502.11.1 and R8 g the top and/or bo	xp B; Enclosed; or(2R) 18-11-13 i members and for _=1.15 Plate d governs. Rain on overhangs -0 tall by 2-0-0 w 4. This connectio t jt(s) 2. This 302.10.2 and ottom chord.	to rces ide n is	SEAL 044925 May 6,	2021	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

-

TRENCO A MITek Atfiliate 818 Soundside Road Edenton, NC 27932

LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 11.6/15.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.04 BC 0.11 WB 0.00	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCLL 0.0 * BCDL 10.0	Code IRC2018/TPI2014	Matrix-P		0.00	U	n/a		Weight: 9 lb	FT = 20%
LUMBER-		BR	ACING-						

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.3 BOT CHORD 2x4 SP No.3

REACTIONS. (size) 1=3-3-12, 3=3-3-12 Max Horz 1=-16(LC 10) Max Uplift 1=-3(LC 14), 3=-3(LC 15) Max Grav 1=96(LC 2), 3=96(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate
- DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) N/A

8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 3-4-8 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Max Uplift 1=-20(LC 14), 3=-26(LC 15)

Max Grav 1=153(LC 2), 3=153(LC 2), 4=265(LC 2)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-5-12 to 3-5-12, Interior(1) 3-5-12 to 4-0-10, Exterior(2R) 4-0-10 to 7-0-10 , Interior(1) 7-0-10 to 7-7-7 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
- will fit between the bottom chord and any other members.
- 7) N/A
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	0-0-6	5-0-1	4			I		
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 11.6/15.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.13 BC 0.07 WB 0.02 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc n/a - n/a - 0.00 :) l/defl n/a n/a 3 n/a	L/d 999 999 n/a	PLATES MT20 Weight: 17 lb	GRIP 244/190 FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.3 BOT CHORD 2x4 SP No.3 OTHERS 2x4 SP No.3

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 5-1-4 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 1=5-0-8, 3=5-0-8, 4=5-0-8 Max Horz 1=-28(LC 10) Max Uplift 1=-11(LC 14), 3=-15(LC 15) Max Grav 1=89(LC 2), 3=89(LC 2), 4=154(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=15.0 psf; Pf=11.6 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
- will fit between the bottom chord and any other members.
- 7) N/A
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

RE: 150_1910_D KB 10x10 8pi Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:

Customer: Project Name: 150_1910_D Lot/Block: Address: City:

Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014 Wind Code: ASCE 7-10 Roof Load: 40.0 psf Design Program: MiTek 20/20 8.4 Wind Speed: 115 mph Floor Load: N/A psf

This package includes 5 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date
1	143213654	P10	11/23/2020
2	143213655	P10E	11/23/2020
3	143213656	VP1	11/23/2020
4	143213657	VP2	11/23/2020
5	143213658	VP3	11/23/2020

The truss drawing(s) referenced above have been prepared by

into the overall building design per ANSI/TPI 1, Chapter 2.

Truss Engineering Co. under my direct supervision based on the parameters provided by 84 Components - #2383. Truss Design Engineer's Name: Sevier, Scott My license renewal date for the state of North Carolina is December 31, 2020. North Carolina COA: C-0844 IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer

should verify applicability of design parameters and properly incorporate these designs

4) This truss has been designed for greater of min roof live load of 12.0 pst or 1.00 times flat roof load of 11.6 pst on overhangs non-concurrent with other live loads.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) One RT7A USP connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 6. This connection is for uplift only and does not consider lateral forces.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSIVTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord any other members.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oullapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BRACING-

TOP CHORD

BOT CHORD

REACT	IONS.
	(16)

OTHERS

BCLL

BCDL

LUMBER-

BOT CHORD

IONS. All bearings 10-3-0. (Ib) - Max Horz 1=-60(LC 12)

0.0

10.0

2x4 SP No.3

2x4 SP No.3

TOP CHORD 2x4 SP No.3

Max Uplift All uplift 100 lb or less at joint(s) 7, 6

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=255(LC 25), 6=254(LC 26)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

Code IRC2015/TPI2014

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-5-12 to 3-5-12, Interior(1) 3-5-12 to 5-1-8, Exterior(2) 5-1-8 to 8-1-8, Interior(1) 8-1-8 to 9-9-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Matrix-S

- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=15.0 psf (ground snow); Pf=11.6 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

FT = 20%

Weight: 36 lb

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	0-0-0	1-2-1	J						
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 11.6/15.0 TCDL 10.0 PCU 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.31 BC 0.17 WB 0.03	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P						Weight: 25 lb	FT = 20%
LUMBER-		BR	ACING-						

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.3 2x4 SP No.3 BOT CHORD OTHERS

2x4 SP No.3

REACTIONS. 1=7-2-4, 3=7-2-4, 4=7-2-4 (size) Max Horz 1=-41(LC 12) Max Uplift 1=-15(LC 14), 3=-21(LC 15) Max Grav 1=135(LC 2), 3=135(LC 2), 4=234(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=15.0 psf (ground snow); Pf=11.6 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 6) will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE ARXING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MILER KEERENCE PAGE MIL-7475 fev. or 19/2/20/ DEFORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

COLOR WALKER EAL 4925 40000 October 15,2020

BRACING-

TOP CHORD

BOT CHORD

BCLL

BCDL

LUMBER-

OTHERS

TOP CHORD

BOT CHORD

REACTIONS.

Max Horz 1=-21(LC 10) Max Uplift 1=-8(LC 14), 3=-11(LC 15) Max Grav 1=70(LC 2), 3=70(LC 2), 4=122(LC 2)

1=4-2-4, 3=4-2-4, 4=4-2-4

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

Code IRC2015/TPI2014

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Matrix-P

- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=15.0 psf (ground snow); Pf=11.6 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 4) Gable requires continuous bottom chord bearing.

0.0

10.0

2x4 SP No.3

2x4 SP No.3

2x4 SP No.3

(size)

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

Weight: 13 lb

Structural wood sheathing directly applied or 4-3-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

FT = 20%

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

