

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 23050142-01

Ariam Ortiz-Roof - 1425

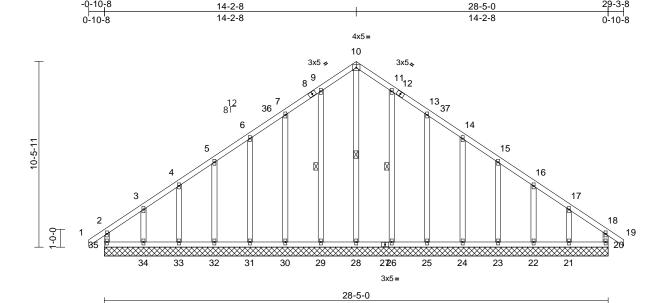
The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Sanford, NC)).

Pages or sheets covered by this seal: I58913301 thru I58913313

My license renewal date for the state of North Carolina is December 31, 2023.

North Carolina COA: C-0844

June 14,2023


Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	Ariam Ortiz-Roof - 1425	
23050142-01	A01	Common Supported Gable	2	1	Job Reference (optional)	I58913301

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Tue Jun 13 11:08:04 ID:j5?_Z6K8J0BDUHFnEWwBfpzBKNH-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale		4.	65
ocale	=	10	ซอ

Loading	(psf)	Spacing	1-11-4	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.17	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.09	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.19	Horz(CT)	0.01	20	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MR								
BCDL	10.0										Weight: 207 lb	FT = 20%

LUMBER	
TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.2
WEBS	2x4 SP No.3
OTHERS	2x4 SP No.3
BRACING	

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing.

WEBS	1 Row at	midpt 10-28, 9-29, 11-26
REACTIONS	(size)	20=28-5-0, 21=28-5-0, 22=28-5-0,
		23=28-5-0, 24=28-5-0, 25=28-5-0,
		26=28-5-0, 28=28-5-0, 29=28-5-0,
		30=28-5-0, 31=28-5-0, 32=28-5-0,
		33=28-5-0, 34=28-5-0, 35=28-5-0
	Max Horiz	35=255 (LC 13)
	Max Uplift	20=-63 (LC 11), 21=-124 (LC 15),

22=-38 (LC 15), 23=-61 (LC 15), 24=-54 (LC 15), 25=-62 (LC 15), 26=-46 (LC 15), 29=-47 (LC 14), 30=-62 (LC 14), 31=-54 (LC 14), 32=-61 (LC 14), 33=-36 (LC 14), 34=-135 (LC 14), 35=-101 (LC 10)

20=181 (LC 24), 21=210 (LC 25), Max Grav 22=156 (LC 22), 23=166 (LC 25), 24=163 (LC 29), 25=215 (LC 22), 26=250 (LC 22), 28=256 (LC 15), 29=250 (LC 21), 30=215 (LC 21), 31=163 (LC 24), 32=167 (LC 28), 33=156 (LC 21), 34=226 (LC 24),

35=211 (LC 25)

(lb) - Maximum Compression/Maximum Tension

2-35=-171/87, 1-2=0/33, 2-3=-177/166 3-4=-134/128, 4-5=-124/136, 5-6=-107/168, 6-7=-112/202, 7-9=-145/259, 9-10=-173/306, 10-11=-173/306, 11-13=-145/259, 13-14=-112/202, 14-15=-82/150, 15-16=-83/114, 16-17=-93/89,

17-18=-131/118, 18-19=0/33, 18-20=-147/56 BOT CHORD 34-35=-111/128, 33-34=-111/128, 32-33=-111/128, 31-32=-111/128, 30-31=-111/128. 29-30=-111/128. 28-29=-111/128, 26-28=-111/128, 25-26=-111/128, 24-25=-111/128, 23-24=-111/128, 22-23=-111/128, 21-22=-111/128, 20-21=-111/128

WEBS 10-28=-276/100, 9-29=-212/70, 7-30=-176/85, 6-31=-124/78, 5-32=-126/82, 4-33=-118/70, 3-34=-156/124, 11-26=-212/69, 13-25=-176/85,

14-24=-124/78, 15-23=-126/82, 16-22=-119/70, 17-21=-147/118

NOTES

TOP CHORD

- Unbalanced roof live loads have been considered for
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 2-2-8, Exterior(2N) 2-2-8 to 11-2-8, Corner(3R) 11-2-8 to 17-2-8, Exterior (2N) 17-2-8 to 26-2-8, Corner(3E) 26-2-8 to 29-3-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this desian.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

June 14,2023

Continued on page 2

FORCES

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

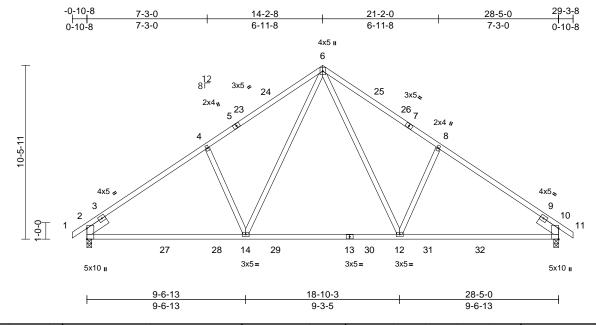
ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Ariam Ortiz-Roof - 1425	
23050142-01	A01	Common Supported Gable	2	1	Job Reference (optional)	

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Tue Jun 13 11:08:04 ID:j5?_Z6K8J0BDUHFnEWwBfpzBKNH-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 2

13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 101 lb uplift at joint 35, 63 lb uplift at joint 20, 47 lb uplift at joint 29, 62 lb uplift at joint 30, 54 lb uplift at joint 31, 61 lb uplift at joint 32, 36 lb uplift at joint 33, 135 lb uplift at joint 34, 46 lb uplift at joint 36, 18 lb uplift at joint 37, 18 lb uplift at joint 37, 18 lb uplift at joint 38, 18 l Ib uplift at joint 26, 62 lb uplift at joint 25, 54 lb uplift at joint 24, 61 lb uplift at joint 23, 38 lb uplift at joint 22 and 124 lb uplift at joint 21.


14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

-	lob	Truss	Truss Type	Qty	Ply	Ariam Ortiz-Roof - 1425	
2	23050142-01	A02	Common	6	1	Job Reference (optional)	

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Tue Jun 13 11:08:05 ID:BIZMmRLm4KJ45QqznERQC0zBKNG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:69.4

Loading	(psf)	Spacing	2-0-0	csı		DEFL	in	(loc)	I/defI	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.99	Vert(LL)	-0.28	12-14	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.86	Vert(CT)	-0.45	12-14	>762	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.34	Horz(CT)	0.09	10	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 153 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.1 **BOT CHORD** 2x4 SP No.1

WFBS 2x4 SP No.2 *Except* 12-8,14-4:2x4 SP No.3 SLIDER Left 2x6 SP No.2 -- 1-6-0, Right 2x6 SP No.2

-- 1-6-0

BRACING

TOP CHORD Structural wood sheathing directly applied. **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc

bracing

REACTIONS (size) 2=0-3-8, 10=0-3-8 Max Horiz 2=236 (LC 13)

Max Uplift 2=-112 (LC 14), 10=-112 (LC 15)

Max Grav 2=1393 (LC 24), 10=1393 (LC 25)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/29, 2-4=-1710/175, 4-6=-1600/255,

6-8=-1600/255, 8-10=-1710/175, 10-11=0/29

BOT CHORD 2-14=-256/1493, 12-14=0/1014, 10-12=-109/1338

WEBS 6-12=-155/801, 8-12=-400/269,

6-14=-155/801, 4-14=-400/269

NOTES

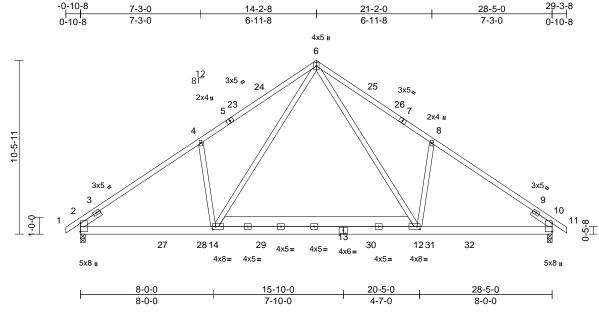
- Unbalanced roof live loads have been considered for this design
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 11-2-8, Exterior(2R) 11-2-8 to 17-2-8, Interior (1) 17-2-8 to 26-3-8, Exterior(2E) 26-3-8 to 29-3-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 10. This connection is for uplift only and does not consider lateral forces.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

June 14,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chorembers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rerection and bracing of trusses and truss systems, see

ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Ariam Ortiz-Roof - 1425	
23050142-01	A2H	Common	7	1	Job Reference (optional)	8913303

Run: 8 63 F. Feb 23 2023 Print: 8 630 F. Feb 23 2023 MiTek Industries. Inc. Wed. Jun 14 08:00:12 ID:BIZMmRLm4KJ45QqznERQC0zBKNG-nh53wVq6AMtQmz6J?0SVxr0asdyxGfVY94fqOdz6bLY Page: 1

Scale = 1:69.4 Plate Offsets (X, Y): [12:0-2-4,0-2-0], [14:0-2-4,0-2-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.99	Vert(LL)	-0.13	12-14	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.65	Vert(CT)	-0.22	12-14	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.51	Horz(CT)	0.05	10	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 211 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.1 *Except* 1-5.7-11:2x4 SP No.2 2x6 SP No.2 *Except* 14-12:2x8 SP 2400F **BOT CHORD**

2.0E

WEBS 2x4 SP No.2 *Except* 12-8,14-4:2x4 SP No.3 SLIDER Left 2x4 SP No.3 -- 1-6-0, Right 2x4 SP No.3

-- 1-6-0

BRACING TOP CHORD

Structural wood sheathing directly applied. **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (lb/size) 2=1189/0-3-8. 10=1189/0-3-8

Max Horiz 2=236 (LC 13)

Max Uplift 2=-113 (LC 14), 10=-113 (LC 15) Max Grav 2=1389 (LC 24), 10=1389 (LC 25)

FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-691/0, 3-4=-1744/163, 4-5=-1746/279,

5-23=-1680/290, 23-24=-1642/301, 6-24=-1636/321, 6-25=-1636/320, 25-26=-1643/300, 7-26=-1681/290,

7-8=-1746/279, 8-9=-1745/163, 9-10=-537/0

BOT CHORD 2-27=-249/1529, 27-28=-161/1529,

14-28=-161/1529, 14-29=-11/963, 13-29=-9/969, 13-30=-10/964, 12-30=-12/959, 12-31=-20/1373, 31-32=-20/1373, 10-32=-20/1373

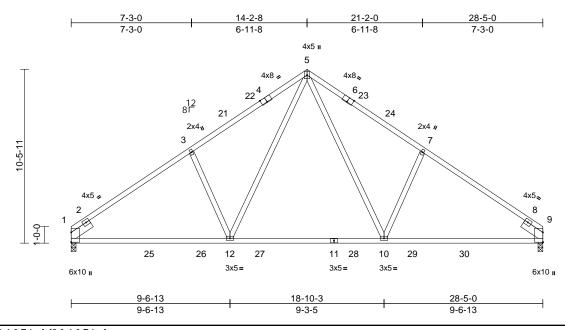
WEBS 6-12=-209/955, 8-12=-462/287, 6-14=-210/954, 4-14=-462/287

NOTES

Unbalanced roof live loads have been considered for 1) this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 11-2-8, Exterior(2R) 11-2-8 to 17-2-8, Interior (1) 17-2-8 to 26-3-8, Exterior(2E) 26-3-8 to 29-3-8 zone; cantilever left and right exposed; end vertical left and right exposed:C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- One RT4 MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 10. This connection is for uplift only and does not consider lateral forces.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Ariam Ortiz-Roof - 1425	
23050142-01	A04	Common	11	1	Job Reference (optional)	158913304

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Tue Jun 13 11:08:05 ID:43ptcpOH7YpVa28k04VMMszBKNC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:69.4

Plate Offsets (X, Y): [4:0-4-0,Edge], [6:0-4-0,Edge]

Loading	(psf)	Spacing	2-0-0	csı		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.99	Vert(LL)	-0.28	10-12	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.85	Vert(CT)	-0.44	10-12	>770	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.34	Horz(CT)	0.08	9	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 150 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 1 BOT CHORD 2x4 SP No.1

WEBS 2x4 SP No.2 *Except* 10-7,12-3:2x4 SP No.3 SLIDER Left 2x6 SP No.2 -- 1-6-0, Right 2x6 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied. **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc

REACTIONS (size) 1=0-3-8, 9=0-3-8

Max Horiz 1=222 (LC 11)

Max Uplift 1=-95 (LC 14), 9=-95 (LC 15)

Max Grav 1=1343 (LC 23), 9=1343 (LC 24)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD

1-3=-1714/175, 3-5=-1604/255, 5-7=-1604/255, 7-9=-1714/175

BOT CHORD 1-12=-260/1490, 10-12=-6/1009, 9-10=-121/1337

WEBS 5-10=-156/804, 7-10=-403/269,

5-12=-155/804, 3-12=-403/269

NOTES

- Unbalanced roof live loads have been considered for 1)
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 11-2-8, Exterior(2R) 11-2-8 to 17-2-8, Interior (1) 17-2-8 to 25-5-0, Exterior(2E) 25-5-0 to 28-5-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

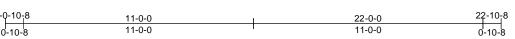
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.

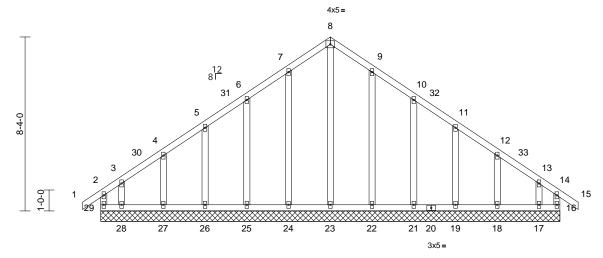
 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 1 and 9. This connection is for uplift only and does not consider lateral forces.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

June 14,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see


ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Ariam Ortiz-Roof - 1425	
23050142-01	B01	Common Supported Gable	1	1	Job Reference (optional)	58913305

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Tue Jun 13 11:08:06 ID:fU7lznLOqdRxjaP9LxyfkEzBKNF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:55.2

Loading	(psf)	Spacing	1-11-4	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.15	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.08	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.26	Horz(CT)	0.00	16	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MR							1	
BCDL	10.0										Weight: 145 lb	FT = 20%

LU	VII	DE	ĸ	
	_	\sim	. ~	_

2x4 SP No.2 TOP CHORD **BOT CHORD** 2x4 SP No.2 2x4 SP No 3 WFBS OTHERS 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size)

16=22-0-0, 17=22-0-0, 18=22-0-0, 19=22-0-0, 21=22-0-0, 22=22-0-0, 23=22-0-0, 24=22-0-0, 25=22-0-0, 26=22-0-0, 27=22-0-0, 28=22-0-0, 29=22-0-0

Max Horiz 29=206 (LC 13)

Max Uplift 16=-92 (LC 11), 17=-133 (LC 15), 18=-51 (LC 15), 19=-57 (LC 15), 21=-59 (LC 15), 22=-52 (LC 15), 24=-53 (LC 14), 25=-59 (LC 14), 26=-57 (LC 14), 27=-50 (LC 14),

28=-150 (LC 14), 29=-143 (LC 10) Max Grav 16=161 (LC 24), 17=164 (LC 13), 18=166 (LC 25), 19=163 (LC 25), 21=215 (LC 22), 22=251 (LC 22),

23=198 (LC 27), 24=251 (LC 21), 25=215 (LC 21), 26=164 (LC 24), 27=164 (LC 24), 28=199 (LC 12),

29=201 (LC 25) (lb) - Maximum Compression/Maximum

FORCES Tension

TOP CHORD 2-29=-153/100, 1-2=0/33, 2-3=-161/149, 3-4=-109/110, 4-5=-97/104, 5-6=-81/137, 6-7=-90/197, 7-8=-121/249, 8-9=-121/249 9-10=-90/197, 10-11=-58/137, 11-12=-63/83, 12-13=-72/76, 13-14=-118/101, 14-15=0/33,

14-16=-125/64

BOT CHORD 28-29=-92/112, 27-28=-92/112, 26-27=-92/112, 25-26=-92/112, 24-25=-92/112, 23-24=-92/112, 22-23=-92/112, 21-22=-92/112, 19-21=-92/112, 18-19=-92/112,

17-18=-92/112, 16-17=-92/112

8-23=-215/46, 7-24=-213/76, 6-25=-176/85, 5-26=-124/79, 4-27=-128/85, 3-28=-117/112, 9-22=-213/75. 10-21=-176/84 11-19=-124/79, 12-18=-129/84,

22-0-0

13-17=-104/103

NOTES

WEBS

- 1) Unbalanced roof live loads have been considered for this design
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 2-1-8, Exterior(2N) 2-1-8 to 8-0-0, Corner(3R) 8-0-0 to 14-0-0, Exterior(2N) 14-0-0 to 19-10-8, Corner(3E) 19-10-8 to 22-10-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads
- All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.

Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

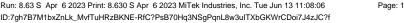
Page: 1

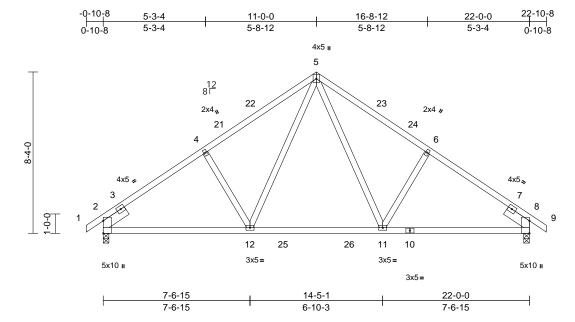
- 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 143 lb uplift at joint 29, 92 lb uplift at joint 16, 53 lb uplift at joint 24, 59 lb uplift at joint 25, 57 lb uplift at joint 26, 50 lb uplift at joint 27, 150 lb uplift at joint 28, 52 lb uplift at joint 22, 59 Ib uplift at joint 21, 57 lb uplift at joint 19, 51 lb uplift at joint 18 and 133 lb uplift at joint 17.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

June 14,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see


AMSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

ſ	Job	Truss	Truss Type	Qty	Ply	Ariam Ortiz-Roof - 1425	
	23050142-01	B02	Common	3	1	Job Reference (optional)	06

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Tue Jun 13 11:08:06

Scale = 1:59.5

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.86	Vert(LL)	-0.15	11-12	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.82	Vert(CT)	-0.23	11-12	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.21	Horz(CT)	0.06	8	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 121 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 WFBS 2x4 SP No 3

SLIDER Left 2x6 SP No.2 -- 1-6-0, Right 2x6 SP No.2

-- 1-6-0

BRACING

TOP CHORD Structural wood sheathing directly applied or

2-2-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 2=0-3-8, 8=0-3-8

Max Horiz 2=186 (LC 13)

Max Uplift 2=-90 (LC 14), 8=-90 (LC 15)

Max Grav 2=1045 (LC 24), 8=1045 (LC 25)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/29, 2-4=-1252/144, 4-5=-1148/192

5-6=-1148/192, 6-8=-1252/144, 8-9=0/29

BOT CHORD 2-12=-177/1076, 11-12=0/744, 8-11=-62/980 WEBS

5-11=-102/523, 5-12=-102/523,

4-12=-308/203, 6-11=-308/203

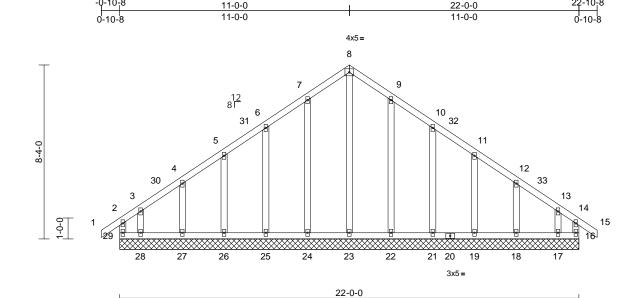
NOTES

- Unbalanced roof live loads have been considered for 1)
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 8-0-0, Exterior(2R) 8-0-0 to 14-0-0, Interior (1) 14-0-0 to 19-10-8, Exterior(2E) 19-10-8 to 22-10-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 8. This connection is for uplift only and does not consider lateral forces.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chorembers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rerection and bracing of trusses and truss systems, see

ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Ariam Ortiz-Roof - 1425	
23050142-01	C01	Common Supported Gable	1	1	Job Reference (optional)	I58913307

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Tue Jun 13 11:08:07 ID:7gh7B7M1bxZnLk_MvfTuHRzBKNE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scal	e =	1:55.2
------	-----	--------

Loading	(psf)	Spacing	1-11-4	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.15	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.08	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.26	Horz(CT)	0.00	16	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MR								
BCDL	10.0										Weight: 145 lb	FT = 20%

LUMBER
TOP CHORD

2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 WFBS 2x4 SP No 3 OTHERS 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing

REACTIONS (size) 16=22-0-0, 17=22-0-0, 18=22-0-0, 19=22-0-0, 21=22-0-0, 22=22-0-0, 23=22-0-0, 24=22-0-0, 25=22-0-0, 26=22-0-0, 27=22-0-0, 28=22-0-0,

29=22-0-0

Max Horiz 29=206 (LC 13)

Max Uplift 16=-92 (LC 11), 17=-133 (LC 15), 18=-51 (LC 15), 19=-57 (LC 15),

21=-59 (LC 15), 22=-52 (LC 15), 24=-53 (LC 14), 25=-59 (LC 14), 26=-57 (LC 14), 27=-50 (LC 14),

28=-150 (LC 14), 29=-143 (LC 10) Max Grav 16=161 (LC 24), 17=164 (LC 13), 18=166 (LC 25), 19=163 (LC 25),

21=215 (LC 22), 22=251 (LC 22), 23=198 (LC 27), 24=251 (LC 21), 25=215 (LC 21), 26=164 (LC 24), 27=164 (LC 24), 28=199 (LC 12),

29=201 (LC 25) **FORCES** (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 2-29=-153/100, 1-2=0/33, 2-3=-161/149, 3-4=-109/110, 4-5=-97/104, 5-6=-81/137, 6-7=-90/197, 7-8=-121/249, 8-9=-121/249 9-10=-90/197, 10-11=-58/137, 11-12=-63/83,

12-13=-72/76, 13-14=-118/101, 14-15=0/33, 14-16=-125/64

BOT CHORD 28-29=-92/112, 27-28=-92/112, 26-27=-92/112, 25-26=-92/112, 24-25=-92/112, 23-24=-92/112, 22-23=-92/112, 21-22=-92/112, 19-21=-92/112, 18-19=-92/112,

17-18=-92/112, 16-17=-92/112 8-23=-215/46, 7-24=-213/76, 6-25=-176/85, 5-26=-124/79, 4-27=-128/85, 3-28=-117/112, 9-22=-213/75. 10-21=-176/84

11-19=-124/79, 12-18=-129/84, 13-17=-104/103

NOTES

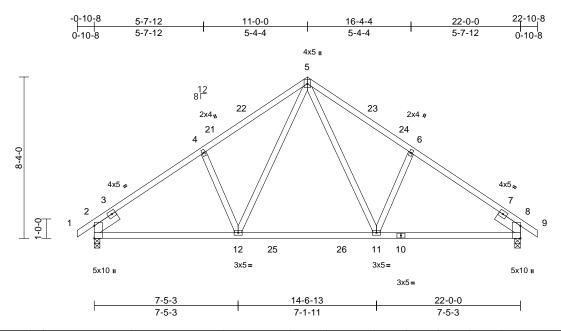
WEBS

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 2-1-8, Exterior(2N) 2-1-8 to 8-0-0, Corner(3R) 8-0-0 to 14-0-0, Exterior(2N) 14-0-0 to 19-10-8, Corner(3E) 19-10-8 to 22-10-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads
- All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.

- Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 143 lb uplift at joint 29, 92 lb uplift at joint 16, 53 lb uplift at joint 24, 59 lb uplift at joint 25, 57 lb uplift at joint 26, 50 lb uplift at joint 27, 150 lb uplift at joint 28, 52 lb uplift at joint 22, 59 Ib uplift at joint 21, 57 lb uplift at joint 19, 51 lb uplift at joint 18 and 133 lb uplift at joint 17.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.


Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chorembers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

AMSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Ariam Ortiz-Roof - 1425	
23050142-01	C02	Common	2	1	Job Reference (optional)	913308

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Tue Jun 13 11:08:07 ID:btFVOTNfMFheyuZYTM_7qfzBKND-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:59.5

Loading	(psf)	Spacing	2-0-0	csı		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.74	Vert(LL)	-0.16	11-12	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.79	Vert(CT)	-0.26	11-12	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.22	Horz(CT)	0.06	8	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 121 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 WFBS 2x4 SP No 3

SLIDER Left 2x6 SP No.2 -- 1-6-0, Right 2x6 SP No.2

-- 1-6-0

BRACING

TOP CHORD Structural wood sheathing directly applied or

3-6-3 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 2=0-3-8, 8=0-3-8

Max Horiz 2=-186 (LC 12)

Max Uplift 2=-90 (LC 14), 8=-90 (LC 15)

Max Grav 2=1046 (LC 24), 8=1046 (LC 29)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/29, 2-4=-1250/140, 4-5=-1166/204,

5-6=-1166/204, 6-8=-1250/140, 8-9=0/29

BOT CHORD 2-12=-182/1068, 11-12=0/742, 8-11=-67/974 WEBS 5-11=-121/556, 6-11=-317/207,

5-12=-121/556, 4-12=-317/207

NOTES

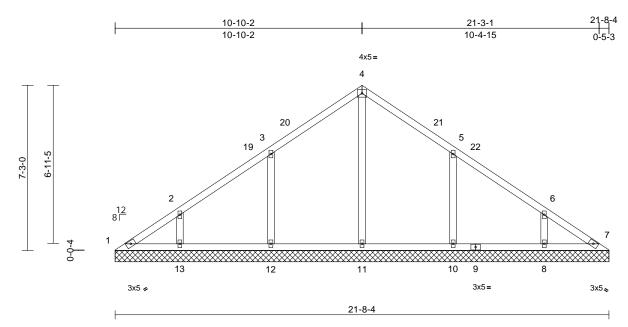
- Unbalanced roof live loads have been considered for 1)
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 8-0-0, Exterior(2R) 8-0-0 to 14-0-0, Interior (1) 14-0-0 to 19-10-8, Exterior(2E) 19-10-8 to 22-10-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 8. This connection is for uplift only and does not consider lateral forces.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chard members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Ariam Ortiz-Roof - 1425	
23050142-01	V01	Valley	2	1	Job Reference (optional)	

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Tue Jun 13 11:08:08 ID:btFVOTNfMFheyuZYTM_7qfzBKND-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Loading	(psf)	Spacing	1-11-4	csı		DEFL	in	(loc)	I/defI	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.31	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.17	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.31	Horiz(TL)	0.00	7	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 95 lb	FT = 20%

LUMBER

Scale = 1:50.6

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 OTHERS

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size)

1=21-8-4, 7=21-8-4, 8=21-8-4, 10=21-8-4, 11=21-8-4, 12=21-8-4,

13=21-8-4, 18=21-8-4

Max Horiz 1=161 (LC 11)

Max Uplift 1=-56 (LC 10), 8=-82 (LC 15),

10=-134 (LC 15), 12=-128 (LC 14),

13=-93 (LC 14)

Max Grav 1=87 (LC 24), 8=348 (LC 24),

10=461 (LC 6), 11=523 (LC 26),

12=470 (LC 5), 13=335 (LC 27)

FORCES (lb) - Maximum Compression/Maximum

Tension TOP CHORD

1-2=-138/238, 2-3=-100/228, 3-4=-73/231,

4-5=-73/217, 5-6=-7/175, 6-7=-44/145 **BOT CHORD** 1-13=-89/62, 12-13=-89/46, 11-12=-89/46,

10-11=-89/46, 8-10=-89/46, 7-8=-89/46 WEBS 4-11=-335/0, 3-12=-378/176, 2-13=-213/131,

5-10=-373/178, 6-8=-219/127

NOTES

1) Unbalanced roof live loads have been considered for this design.

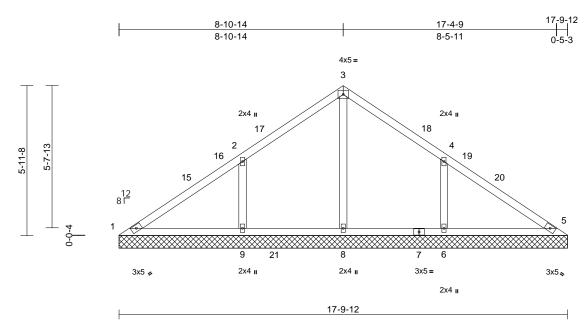
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-6 to 2-10-8, Interior (1) 2-10-8 to 7-10-8, Exterior(2R) 7-10-8 to 13-10-8, Interior (1) 13-10-8 to 18-3-4, Exterior(2E) 18-3-4 to 21-3-4 zone; cantilever left and right exposed; end vertical left and right exposed: C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate arip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc. 8)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 56 lb uplift at joint 1, 128 lb uplift at joint 12, 93 lb uplift at joint 13, 134 lb uplift at joint 10 and 82 lb uplift at joint 8.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

June 14,2023

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chorembers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rerection and bracing of trusses and truss systems, see

ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Ariam Ortiz-Roof - 1425	
23050142-01	V02	Valley	2	1	Job Reference (optional)	8913310

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Tue Jun 13 11:08:08 ID:btFVOTNfMFheyuZYTM_7qfzBKND-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:45.8

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.42	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.20	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.31	Horiz(TL)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 73 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 OTHERS

BRACING

TOP CHORD Structural wood sheathing directly applied or

10-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size) 1=17-9-12, 5=17-9-12, 6=17-9-12, 8=17-9-12, 9=17-9-12, 14=17-9-12

Max Horiz 1=135 (LC 11)

1=-43 (LC 34), 6=-150 (LC 15), Max Uplift

9=-155 (LC 14)

1=94 (LC 33), 5=1 (LC 24), 6=540 Max Grav

(LC 6), 8=640 (LC 23), 9=540 (LC 5), 14=1 (LC 24)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-101/393, 2-3=0/328, 3-4=0/331,

4-5=-128/352

1-9=-248/86, 8-9=-248/77, 6-8=-248/77,

5-6=-248/77

3-8=-493/0. 2-9=-420/189. 4-6=-418/188

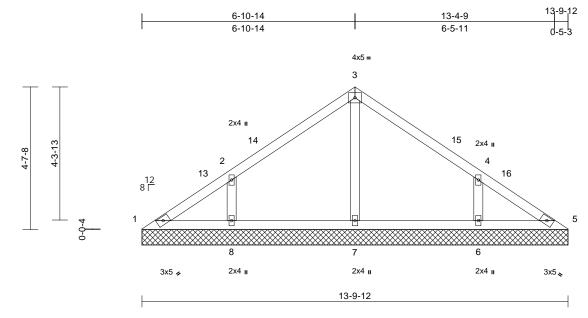
WEBS NOTES

BOT CHORD

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-6 to 3-0-6, Interior (1) 3-0-6 to 5-11-4, Exterior(2R) 5-11-4 to 11-11-4, Interior (1) 11-11-4 to 14-10-2, Exterior(2E) 14-10-2 to 17-10-2 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this 5) design.
- Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 43 lb uplift at joint 1, 155 lb uplift at joint 9 and 150 lb uplift at joint 6.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard



June 14,2023

Job	Truss	Truss Type	Qty	Ply	Ariam Ortiz-Roof - 1425	
23050142-01	V03	Valley	2	1	ાઇ Job Reference (optional)	58913311

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Tue Jun 13 11:08:08 Page: 1

	Scale	=	1:37.	3
-				

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.29	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.11	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.09	Horiz(TL)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 54 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 **OTHERS**

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size) 1=13-9-12, 5=13-9-12, 6=13-9-12, 7=13-9-12, 8=13-9-12

Max Horiz 1=-104 (LC 10)

Max Uplift 1=-12 (LC 15), 6=-115 (LC 15),

8=-117 (LC 14)

1=95 (LC 24), 5=83 (LC 1), 6=455 Max Grav (LC 21), 7=304 (LC 20), 8=455 (LC

FORCES (lb) - Maximum Compression/Maximum

Tension TOP CHORD 1-2=-128/103, 2-3=-148/99, 3-4=-148/93,

4-5=-100/73 **BOT CHORD**

1-8=-40/107, 7-8=-40/64, 6-7=-40/64, 5-6=-40/80

WEBS

3-7=-222/10, 2-8=-385/159, 4-6=-385/158

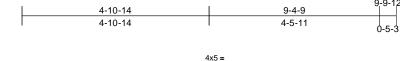
NOTES

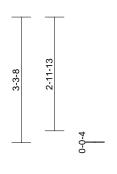
- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-6 to 2-11-4, Interior (1) 2-11-4 to 3-11-4, Exterior(2R) 3-11-4 to 9-11-4, Interior (1) 9-11-4 to 10-10-2, Exterior(2E) 10-10-2 to 13-10-2 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

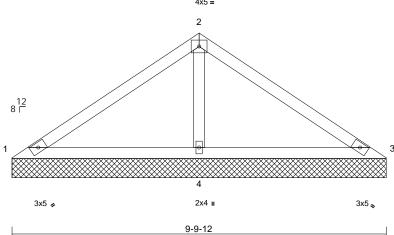
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this 5) design.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 12 lb uplift at joint 1, 117 lb uplift at joint 8 and 115 lb uplift at joint 6.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

June 14,2023


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see


ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



Job	Truss	Truss Type	Qty	Ply	Ariam Ortiz-Roof - 1425	
23050142-01	V04	Valley	2	1	Job Reference (optional)	913312

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Tue Jun 13 11:08:09 Page: 1

Scale = 1:30.2

Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC	0.44	DEFL Vert(LL)	in n/a	(loc)	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190
Snow (Pf) TCDL	20.0 10.0	Lumber DOL Rep Stress Incr	1.15 YES	BC WB	0.42 0.15	Vert(TL) Horiz(TL)	n/a 0.00	-	n/a	999 n/a	111120	211/100
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH	0.15	HOIIZ(TL)	0.00	4	n/a	II/a		
BCDL	10.0										Weight: 35 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 **OTHERS**

BRACING

TOP CHORD Structural wood sheathing directly applied or

9-9-12 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size) 1=9-9-12, 3=9-9-12, 4=9-9-12

Max Horiz 1=73 (LC 11)

Max Uplift 1=-50 (LC 21), 3=-50 (LC 20),

4=-82 (LC 14)

Max Grav 1=120 (LC 20), 3=120 (LC 21),

4=778 (LC 21)

FORCES (lb) - Maximum Compression/Maximum

Tension

1-2=-105/398, 2-3=-105/398

TOP CHORD 1-4=-233/148, 3-4=-233/148 **BOT CHORD**

WEBS 2-4=-601/221

NOTES

- Unbalanced roof live loads have been considered for 1) this design
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-6 to 3-0-6, Exterior(2R) 3-0-6 to 6-10-2, Exterior(2E) 6-10-2 to 9-10-2 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

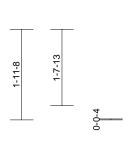
 * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 50 lb uplift at joint 1, 50 lb uplift at joint 3 and 82 lb uplift at joint 4.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

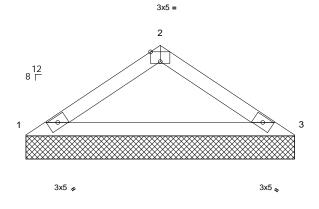
LOAD CASE(S) Standard

June 14,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chorembers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rerection and bracing of trusses and truss systems, see


ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



Job	Truss	Truss Type	Qty	Ply	Ariam Ortiz-Roof - 1425	
23050142-01	V05	Valley	2	1	Job Reference (optional)	I58913313

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Tue Jun 13 11:08:09 ID:43ptcpOH7YpVa28k04VMMszBKNC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

5-9-12

Scale = 1:24.9

Plate Offsets (X, Y): [2:0-2-8,Edge]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	тс	0.27	Vert(LL)	n/a		n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.21	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.01	3	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 17 lb	FT = 20%

LUMBER

2x4 SP No.2 TOP CHORD BOT CHORD 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or

5-9-12 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 1=5-9-12, 3=5-9-12

Max Horiz 1=42 (LC 13)

Max Uplift 1=-21 (LC 14), 3=-21 (LC 15) Max Grav 1=281 (LC 20), 3=281 (LC 21)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-430/141, 2-3=-430/141

BOT CHORD 1-3=-105/345

NOTES

- Unbalanced roof live loads have been considered for 1)
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- Gable requires continuous bottom chord bearing.

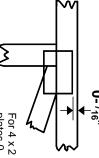
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 21 lb uplift at joint 1 and 21 lb uplift at joint 3.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chorembers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rerection and bracing of trusses and truss systems, see

ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



Symbols

PLATE LOCATION AND ORIENTATION

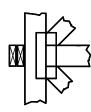
offsets are indicated. Center plate on joint unless x, y and fully embed teeth Apply plates to both sides of truss Dimensions are in ft-in-sixteenths

edge of truss. plates 0- 1/16" from outside For 4 x 2 orientation, locate

connector plates. required direction of slots in This symbol indicates the

* Plate location details available in MiTek 20/20 software or upon request.

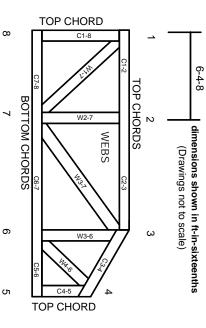
PLATE SIZE


to slots. Second dimension is the length parallel to slots. width measured perpendicular The first dimension is the plate

LATERAL BRACING LOCATION

by text in the bracing section of the output. Use T or I bracing if indicated. ndicated by symbol shown and/or

BEARING


Min size shown is for crushing only number where bearings occur. reaction section indicates joint (supports) occur. Icons vary but Indicates location where bearings

Industry Standards:

National Design Specification for Metal Building Component Safety Information Installing & Bracing of Metal Plate Connected Wood Trusses. Guide to Good Practice for Handling Design Standard for Bracing. Plate Connected Wood Truss Construction.

DSB-89: ANSI/TPI1:

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

PRODUCT CODE APPROVALS

ICC-ES Reports:

ESR-1311, ESR-1352, ESR1988 ER-3907, ESR-2362, ESR-1397, ESR-3282

truss unless otherwise shown. Trusses are designed for wind loads in the plane of the

established by others. section 6.3 These truss designs rely on lumber values Lumber design values are in accordance with ANSI/TPI 1

© 2012 MiTek® All Rights Reserved

MiTek Engineering Reference Sheet: MII-7473 rev. 5/19/2020

General Safety Notes

Damage or Personal Injury Failure to Follow Could Cause Property

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI
- Ņ Truss bracing must be designed by an engineer. For bracing should be considered. may require bracing, or alternative Tor I wide truss spacing, individual lateral braces themselves
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.

ω

designer, erection supervisor, property owner and all other interested parties. Provide copies of this truss design to the building

4.

- Cut members to bear tightly against each other
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.

ტ. Ö

- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication

φ.

- 9 Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- Camber is a non-structural consideration and is the camber for dead load deflection. responsibility of truss fabricator. General practice is to
- Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that
- 13. Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted
- Connections not shown are the responsibility of others
- Do not cut or alter truss member or plate without prior approval of an engineer
- 17. Install and load vertically unless indicated otherwise.
- 18. Use of green or treated lumber may pose unacceptable project engineer before use. environmental, health or performance risks. Consult with
- Review all portions of this design (front, back, words is not sufficient. and pictures) before use. Reviewing pictures alone
- Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.