

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 33066-33066A 66 BIRCHWOOD GROVE - ROOF

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by 84 Components - #2383.

Pages or sheets covered by this seal: I53559018 thru I53559038

My license renewal date for the state of North Carolina is December 31, 2022.

North Carolina COA: C-0844

August 10,2022

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

├ ──		12-0-0	24-4-	·0 ·0			36-4-0		
Plate Offsets (X,	Y) [10:0-5-0,	,0-4-8], [11:0-5-0,0-4-8]	12 4	0			12 0 0		
LOADING (psf) TCLL (roof) Snow (Pf/Pg) 11 TCDL BCLL BCDL	20.0 1.6/15.0 10.0 0.0 * 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.50 BC 0.78 WB 0.31 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.32 10-11 -0.47 10-11 0.07 8	l/defl >999 >928 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 232 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2 BOT CHORD 2 WEBS 2 7	2x6 SP No.2 2x6 SP No.2 2x4 SP No.2 *Ex 7-10,3-11: 2x4 S	ccept* 3P No.3	BI TC BC	RACING- DP CHORD DT CHORD	Structural wood Rigid ceiling dire	sheathing ectly applie	directly applie d or 10-0-0 oc	ed or 4-0-8 oc purlins c bracing.	
REACTIONS.	(size) 2=0-3 Max Horz 2=-13 Max Uplift 2=-93 Max Grav 2=14	3-8, 8=0-3-8 34(LC 21) 3(LC 16), 8=-93(LC 17) 90(LC 2), 8=1490(LC 2)							
FORCES. (lb) - TOP CHORD BOT CHORD WEBS	Max. Comp./M 2-3=-2552/170 2-11=-186/220 5-10=-90/922,	ax. Ten All forces 250 (lb) or less exc , 3-5=-2276/191, 5-7=-2276/191, 7-8=- 4, 10-11=0/1432, 8-10=-53/2204 7-10=-549/267, 5-11=-90/922, 3-11=-5	ept when shown. 2552/170 49/267						
NOTES- 1) Unbalanced ro 2) Wind: ASCE 7 gable end zon 36-11-14 zone reactions show 3) TCLL: ASCE 7 roof snow: Lur 4) Unbalanced so 5) This truss has non-concurren 6) This truss has	bof live loads ha 7-10; Vult=120m le and C-C Exte e; cantilever left wn; Lumber DOI 7-10; Pr=20.0 ps mber DOL=1.15 now loads have been designed t with other live been designed	we been considered for this design. ph Vasd=95mph; TCDL=6.0psf; BCDL rior(2) -0-7-14 to 2-4-2, Interior(1) 2-4-2 and right exposed ; end vertical left and L=1.60 plate grip DOL=1.60 sf (roof live load: Lumber DOL=1.15 Plate Plate DOL=1.15); Category II; Exp B; I been considered for this design. for greater of min roof live load of 12.0 loads. for a 10.0 psf bottom chord live load no	=6.0psf; h=30ft; Cat. II; E) 2 to 18-2-0, Exterior(2) 18- d right exposed;C-C for m the DOL=1.15); Pg=15.0 p Partially Exp.; Ct=1.10 psf or 1.00 times flat roof ponconcurrent with any oth	xp B; Enclosed; M -2-0 to 21-2-0, In embers and force osf (ground snow) load of 11.6 psf er live loads.	MWFRS (envelop terior(1) 21-2-0 t es & MWFRS for); Pf=11.6 psf (fla on overhangs	be) o at	NUMP.	TH CARO	

- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 8. This connection is for uplift only and does not consider lateral forces.
- 9) ATTIC SPACE SHOWN IS DESIGNED AS UNINHABITABLE.

SEAL 036322 A. GILBERT

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

		12-0-0	24	-4-0				36	0-0-12	
Plate Offsets ()	X X) [6·0-4-0	Edge] [11:0-5-0 0-4-8] [14:0-5-0 0-4-8]	12	-4-0					1-0-12	
Fiale Oliseis (A	<u>, , , , , [0.0-4-0</u> ,									
LOADING (ps TCLL (roof) Snow (Pf/Pg)	f) 20.0 11.6/15.0	SPACING- 2-0-0 Plate Grip DOL 1.15	CSI. TC 0.62	DEFL. Vert(LL)	in -0.28	(loc) 2-14	l/defl >999	L/d 240	PLATES MT20	GRIP 244/190
TCDL BCLL BCDL	10.0 0.0 * 10.0	Rep Stress Incr YES Code IRC2015/TPI2014	WB 0.34 Matrix-S	Horz(CT)	-0.45 0.07	2-14 10	>962 n/a	n/a	Weight: 250 lb	FT = 20%
TOP CHORD BOT CHORD WEBS	2x6 SP No.2 2x6 SP No.2 2x4 SP No.2 *E 9-11,3-14: 2x4 \$	xcept* SP No.3	B TC BC W	EBS	Structural Rigid ceili 1 Row at i	wood s ing dire midpt	sheathing ctly appli	g directly ap ied or 10-0-0 5-7	oplied or 3-7-2 oc purlins 0 oc bracing.	
REACTIONS.	(size) 2=0- Max Horz 2=13 Max Uplift 2=-9 Max Grav 2=14	·3-8, 10=Mechanical 38(LC 16) ŀ4(LC 16), 10=-79(LC 17) ł83(LC 2), 10=1434(LC 2)								
FORCES. (Ib TOP CHORD) - Max. Comp./M 2-3=-2511/150 9-10=-2488/10	Max. Ten All forces 250 (lb) or less exc 6, 3-5=-2274/170, 5-6=-304/92, 6-7=-319 63	ept when shown.)/93, 7-9=-2258/177,							
BOT CHORD WEBS	2-14=-175/210 7-11=-57/775,	62, 11-14=-13/1703, 10-11=-53/2132 , 9-11=-533/264, 5-14=-58/802, 3-14=-56	64/263, 5-7=-1492/130							
NOTES- 1) Unbalanced 2) Wind: ASCE gable end zr 36-0-0 zone reactions sh 3) TCLL: ASCE roof snow: L 4) Unbalanced 5) This truss ha non-concurr 6) All plates an 7) This truss ha 8) * This truss ha 8) * This truss ha 9) Refer to ginc 10) Provide me 11) One H2.5A connection	roof live loads has 7-10; Vult=1200 one and C-C Extr (cantilever left all own; Lumber DC 7-10; Pr=20.0 p Lumber DOL=1.1 snow loads have as been designed has	ave been considered for this design. nph Vasd=95mph; TCDL=6.0psf; BCDL= erior(2) -0-7-14 to 2-4-2, Interior(1) 2-4-2 hd right exposed ; end vertical left and right JL=1.60 plate grip DOL=1.60 usf (roof live load: Lumber DOL=1.15 Plate 5 Plate DOL=1.15); Category II; Exp B; F a been considered for this design. d for greater of min roof live load of 12.0 e loads. so otherwise indicated. d for a live load of 20.0psf on the bottor ord and any other members, with BCDL truss connections. tion (by others) of truss to bearing plate I-Tie connectors recommended to conne and does not consider lateral forces.	=6.0psf; h=30ft; Cat. II; Ex to 18-2-0, Exterior(2) 18- ght exposed;C-C for mem te DOL=1.15); Pg=15.0 p Partially Exp.; Ct=1.10 psf or 1.00 times flat roof nconcurrent with any oth n chord in all areas where = 10.0psf. capable of withstanding 7 ct truss to bearing walls of	p B; Enclosed; M 2-0 to 21-2-0, Int ibers and forces & sf (ground snow) load of 11.6 psf c er live loads. e a rectangle 3-6- 9 lb uplift at joint due to UPLIFT at	IWFRS (e erior(1) 2' & MWFRS ; Pf=11.6 on overhal 0 tall by 2 10. jt(s) 2. Th	envelop 1-2-0 to S for psf (fla ngs 2-0-0 wi	e) t de		SEAL 036322	

ATTIC SPACE SHOWN IS DESIGNED AS UNINHABITABLE.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	12-0-0	12	4-0			11-	0-12	
Plate Offsets (X,Y) [9:0-5-0	,0-4-8], [10:0-5-0,0-4-8]							
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 11.6/15.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.51 BC 0.78 WB 0.31 Matrix-S	DEFL. Vert(LL) -0. Vert(CT) -0. Horz(CT) 0.	in (loc) .32 9-10 .46 9-10 .07 8	l/defl >999 >927 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 228 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 SP No.2 BOT CHORD 2x6 SP No.2 WEBS 2x4 SP No.3 *E 5-10,5-9: 2x4 SP	Except* IP No.2	BR TO BO	ACING- P CHORD Struc T CHORD Rigid	ctural wood d ceiling dire	sheathing actly applie	। directly app ed or 10-0-0	blied or 3-11-0 oc purlin oc bracing.	S.
REACTIONS. (size) 2=0 Max Horz 2=1 Max Uplift 2=-1 Max Grav 2=1	-3-8, 8=Mechanical 38(LC 16) 94(LC 16), 8=-79(LC 17) 483(LC 2), 8=1434(LC 2)							
FORCES. (lb) - Max. Comp./l TOP CHORD 2-3=-2538/17 BOT CHORD 2-10=-191/21 WEBS 3-10=-550/26	Max. Ten All forces 250 (lb) or less exc 0, 3-5=-2262/191, 5-7=-2249/201, 7-8=-2 91, 9-10=0/1418, 8-9=-54/2150 7, 5-10=-90/923, 5-9=-96/910, 7-9=-527/	ept when shown. 2502/164 267						
 NOTES- 1) Unbalanced roof live loads h 2) Wind: ASCE 7-10; Vult=1200 gable end zone and C-C Ext 36-0-0 zone; cantilever left a reactions shown; Lumber DOI 3) TCLL: ASCE 7-10; Pr=20.0 J roof snow: Lumber DOL=1.1 4) Unbalanced snow loads hav 5) This truss has been designe non-concurrent with other liv 6) This truss has been designe will fit between the bottom cf 8) Refer to girder(s) for truss to 9) Provide mechanical connect 10) One H2.5A Simpson Strong connection is for uplift only 	ave been considered for this design. mph Vasd=95mph; TCDL=6.0psf; BCDL= erior(2) -0-7-14 to 2-4-2, Interior(1) 2-4-2 ind right exposed ; end vertical left and rig DL=1.60 plate grip DOL=1.60 osf (roof live load: Lumber DOL=1.15 Plate 5 Plate DOL=1.15); Category II; Exp B; F e been considered for this design. d for greater of min roof live load of 12.0 e loads. d for a 10.0 psf bottom chord live load no ed for a 10.0 psf bottom chord live load no ed for a live load of 20.0psf on the bottom nord and any other members, with BCDL truss connections. ion (by others) of truss to bearing plate c g-Tie connectors recommended to conne and does not consider lateral forces.	=6.0psf; h=30ft; Cat. II; Ex to 18-2-0, Exterior(2) 18-2 ght exposed;C-C for memi- te DOL=1.15); Pg=15.0 ps Partially Exp.; Ct=1.10 psf or 1.00 times flat roof I enconcurrent with any other n chord in all areas where = 10.0psf. apable of withstanding 79 with truss to bearing walls d	p B; Enclosed; MWFF 2-0 to 21-2-0, Interior(bers and forces & MW sf (ground snow); Pf=- load of 11.6 psf on ov er live loads. a rectangle 3-6-0 tall lb uplift at joint 8. lue to UPLIFT at jt(s) ;	RS (envelop (1) 21-2-0 to VFRS for 11.6 psf (fla verhangs I by 2-0-0 wi 2. This	e) o at ide		SEAL 036322	

- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 79 lb uplift at joint 8.
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

818 Soundside Road Edenton, NC 27932

GI The Grant

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

				36-0-1	2						
Plate Offsets ()	X.Y) [2:0-3-8.]	Edgel. [29:0-3-0.0-3-0]		36-0-1	2					•	
LOADING (pst TCLL (roof) Snow (Pf/Pg) TCDL BCLL	f) 20.0 11.6/15.0 10.0 0.0 *	SPACING- 2- Plate Grip DOL 1 Lumber DOL 1 Rep Stress Incr Y	0-0 CSI. 15 TC 15 BC ES WB	0.07 0.06 0.11	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.00 0.00 0.01	(loc) 1 1 23	l/defl n/r n/r n/a	L/d 120 120 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0	Code IRC2015/TPI201	14 Matri	x-S						Weight: 239 lb	FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS OTHERS WEDGE Left: 2x4 SP No	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 *E 12-32,11-33,10- 0.3	xcept* 34,9-35,13-31,14-30,15-29: 2	x4 SP No.2	B T(B(W	RACING- DP CHORD DT CHORD EBS	Structura except er Rigid ceil 1 Row at	l wood nd vertig ing dire midpt	sheathin cals. ctly appli	g directly appl ied or 10-0-0 (12-32, 11-3	ied or 6-0-0 oc purlins oc bracing. 33, 13-31	,
REACTIONS.	All bearings 30	6-0-12.									

(lb) - Max Horz 2=147(LC 16)

Max Uplift All uplift 100 lb or less at joint(s) 2, 33, 34, 35, 37, 38, 39, 40, 41,

31, 30, 29, 28, 27, 26, 25, 24

Max Grav All reactions 250 lb or less at joint(s) 23, 2, 32, 33, 34, 35, 37, 38, 39, 40, 41, 31, 30, 29, 28, 27, 26, 25, 24

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 11-12=-98/267, 12-13=-98/269

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-10-8 to 2-2-0, Exterior(2) 2-2-0 to 18-2-0, Corner(3) 18-2-0 to 21-2-0, Exterior(2) 21-2-0 to 35-11-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=15.0 psf (ground snow); Pf=11.6 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 7) All plates are 1.5x4 MT20 unless otherwise indicated.
- 8) Gable requires continuous bottom chord bearing.
- 9) Gable studs spaced at 2-0-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

12) N/A

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

¹³⁾ Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 2.

- 2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-10-8 to 2-1-8, Exterior(2) 2-1-8 to 9-6-0, Corner(3) 9-6-0 to 12-6-0, Exterior(2) 12-6-0 to 19-10-8 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=15.0 psf (ground snow); Pf=11.6 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 6) All plates are 1.5x4 MT20 unless otherwise indicated.
- 7) Gable requires continuous bottom chord bearing.
- 8) Gable studs spaced at 2-0-0 oc.
- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

11) N/A

12) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 2.

ENGINEERING BY A MI Tek Affiliate 818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ocllapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qtv	Plv	66 BIRCHWOOD GROVE - ROOF	
				,		153559023
33066-33066A	BG	COMMON GIRDER	1	_		100000020
		Common Circle Liv	l.	2	Job Reference (optional)	
84 Components (Dunn).	Dunn. NC - 28334.			8.610 s Ju	1 18 2022 MiTek Industries, Inc. Tue Aug. 9 09:18:59 2022	Page 2
••••••••••••••••••••••••••••••••••••••	,	ID:byj	?x6A9z5_	_viqm_kAq	hrzC2Gy-cSuvdLXimE0YZopoJfbmyfMUGUwLpnmcCT30	rmypdlg

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-43, 3-5=-43, 1-5=-20

Concentrated Loads (lb)

Vert: 8=-1111(B) 9=-1114(B) 10=-1111(B) 11=-1111(B) 12=-1111(B) 13=-1111(B) 14=-1111(B) 15=-1111(B) 16=-1111(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

10) N/A

11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 2.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **MSI/TFI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Plate Offsets (X,Y) [5:0-4-1	1,0-2-0], [6:0-6-0,0-1-8], [7:0-6-0,0-5-8], [8:0-5-8,0-1-8]						
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 11.6/15.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrNOCodeIRC2015/TPI2014	CSI. TC 0.30 BC 0.38 WB 0.94 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.04 7 -0.08 6-7 0.02 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 162 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP No.2 BOT CHORD 2x8 SP DSS WEBS 2x4 SP No.3		BF TC BC	RACING- DP CHORD Str DT CHORD Rig	ructural wood igid ceiling dire	sheathing e	directly applie d or 10-0-0 oc	ed or 4-9-2 oc purlins c bracing.	
REACTIONS. (size) 1=0 Max Horz 1=-5 Max Uplift 1=-2 Max Grav 1=4	-3-8, 5=0-5-8 90(LC 29) 260(LC 10), 5=-329(LC 11) 182(LC 2), 5=5249(LC 2)							
FORCES. (b) Max. Comp./k TOP CHORD 1-2=-5743/36 BOT CHORD 1-8=-302/450 WEBS 3-7=-293/455	Aax. Ten All forces 250 (lb) or less exc 1, 2-3=-4331/313, 3-4=-4331/313, 4-5=-6 4, 7-8=-302/4504, 6-7=-288/5069, 5-6=-2 1, 4-7=-1899/188, 4-6=-129/2444, 2-7=-	ept when shown. 6387/404 288/5069 1184/141, 2-8=-82/1686						
 NOTES- 1) 2-ply truss to be connected to Top chords connected as foll Bottom chords connected as Webs connected as follows: 2) All loads are considered equiply connections have been p 3) Unbalanced roof live loads h 4) Wind: ASCE 7-10; Vult=120r gable end zone; cantilever le 5) TCLL: ASCE 7-10; Vult=120r groof snow: Lumber DDL=1.1; 6) This truss has been designed 7) * Dis truss has been designed 8) One H2.5A Simpson Strong-Tie HU 8) Use Simpson Strong-Tie HU 8) Use Simpson Strong-Tie HU 	ogether with 10d (0.131"x3") nails as foll ows: 2x4 - 1 row at 0-9-0 oc. follows: 2x8 - 2 rows staggered at 0-5-0 2x4 - 1 row at 0-9-0 oc. ally applied to all plies, except if noted as rovided to distribute only loads noted as ave been considered for this design. nph Vasd=95mph; TCDL=6.0psf; BCDL= ft and right exposed ; end vertical left an ssf (roof live load: Lumber DOL=1.15 Pla 5 Plate DOL=1.15); Category II; Exp B; F d for a 10.0 psf bottom chord live load no ed for a live load of 20.0psf on the bottor ford and any other members. Tie connectors recommended to connec nd does not consider lateral forces. S26 (14-10d Girder, 4-10d Truss) or equ s(es) to back face of bottom chord.	ows: oc. 6 front (F) or back (B) face (F) or (B), unless otherwi =6.0psf; h=30ft; Cat. II; Ex d right exposed; Lumber I te DOL=1.15); Pg=15.0 p Partially Exp.; Ct=1.10 nconcurrent with any othen n chord in all areas where t truss to bearing walls du ivalent spaced at 2-0-0 or	e in the LOAD CASE se indicated. φ B; Enclosed; MW DOL=1.60 plate grip sf (ground snow); P er live loads. e a rectangle 3-6-0 t ue to UPLIFT at jt(s) c max. starting at 2-	E(S) section. I /FRS (envelop p DOL=1.60 Pf=11.6 psf (fla tall by 2-0-0 w) 1 and 5. This -0-12 from the	Ply to De) at ride S	The second se	SEAL 036322	A A A A A A A A A A A A A A A A A A A

10) Fill all nail holes where hanger is in contact with lumber.

COAD GASE(S) geStandard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek Affil 818 Soundside Road Edenton, NC 27932

August 10,2022

Job	Truss	Truss Type	Qty	Ply	66 BIRCHWOOD GROVE - ROOF	
						153559025
33066-33066A	CG	Common Girder	1	2		
				_	Job Reference (optional)	
84 Components (Dunn),	Dunn, NC - 28334,			8.610 s Ju	1 18 2022 MiTek Industries, Inc. Tue Aug 9 09:19:02 2022	Page 2
		ID:byj?	?x6A9z5_	viqm_kAq	hrzC2Gy-01a1FNZb29O7QGYN_n8TZH_7Si_a0602uRH2	S5ypdId

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-43, 3-5=-43, 1-5=-20

Concentrated Loads (lb)

Vert: 7=-1111(B) 9=-1111(B) 10=-1111(B) 11=-1111(B) 12=-1111(B) 13=-1111(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 11.6/15.0 TCDL 10.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IPC2045/TPI0014	CSI. TC 0.41 BC 0.30 WB 0.00	DEFL. in Vert(LL) -0.01 Vert(CT) -0.03 Horz(CT) 0.00	(loc) l/d 2-4 >99 2-4 >99 r	efl L/d 99 240 99 180 n/a n/a	PLATES MT20	GRIP 244/190
BCDL 10.0	Code IRC2015/1912014	Matrix-P				weight: To ib	F1 = 20%
		BE					

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x4 SP No.3BOT CHORD2x4 SP No.3WEBS2x4 SP No.3

REACTIONS. (size) 2=0-3-8, 4=0-1-8

Max Horz 2=57(LC 12) Max Uplift 2=-47(LC 12), 4=-23(LC 16) Max Grav 2=224(LC 2), 4=147(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

ł

NOTES-

- Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 4-0-4 zone; cantilever left exposed; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=15.0 psf (ground snow); Pf=11.6 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 9) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 4. This connection is for uplift only and does not consider lateral forces.

Structural wood sheathing directly applied or 4-2-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

		4-2-0						
	1	4-2-0						
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 11.6/15.0 TCDL 10.0 BCDL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2015/TPI2014	CSI. TC 0.48 BC 0.30 WB 0.00 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.01 1-3 -0.03 1-3 0.00	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 14 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP No.3		BR/ TOI	ACING- P CHORD S	Structural wood	sheathin	g directly app	olied or 4-2-0 oc purlir	۱S,

BOT CHORD

except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD 2x4 SP No.3 BOT CHORD 2x4 SP No.3 2x4 SP No.3 WFBS

REACTIONS. (size) 1=0-3-8, 3=0-1-8

Max Horz 1=45(LC 12) Max Uplift 1=-9(LC 12), 3=-25(LC 12)

Max Grav 1=155(LC 2), 3=155(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 4-0-4 zone; cantilever left exposed ; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=15.0 psf (ground snow); Pf=11.6 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Bearing at joint(s) 3 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 3.
- 8) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 1 and 3. This connection is for uplift only and does not consider lateral forces.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BOT CHORD

TOP CHORD 2x4 SP No.3

BOT CHORD 2x4 SP No.3 2x4 SP No.3 WFBS

REACTIONS. (size) 5=4-2-0, 2=4-2-0, 6=4-2-0

Max Horz 2=57(LC 12) Max Uplift 5=-10(LC 12), 2=-31(LC 12), 6=-27(LC 16)

Max Grav 5=56(LC 2), 2=134(LC 2), 6=185(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-10-8 to 2-2-0, Exterior(2) 2-2-0 to 4-0-4 zone; cantilever left exposed ; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=15.0 psf (ground snow); Pf=11.6 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

818 Soundside Road Edenton, NC 27932

Structural wood sheathing directly applied or 4-2-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	0 <u>116</u> 4-0 0-1-63-1	- <u>13</u> 1-7	4-8-1		<u>7-1</u> 3-3	1-8 -7		
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 11.6/15.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2015/TPI2014	CSI. TC 0.38 BC 0.43 WB 0.05 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) 0.05 2-6 -0.05 2-6 0.00 5	l/defl >999 2 >999 7 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 30 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP No.2 *E: 3-4: 2x4 SP No.	xcept* 3	BR TO	ACING- P CHORD	Structural wood except end verti	sheathing d cals.	irectly applied of	r 6-0-0 oc purlin	IS,

 3-4: 2x4 SP No.3
 except end verticals.

 BOT CHORD
 2x4 SP No.2

 WEBS
 2x4 SP No.3 *Except*

 4-5: 2x6 SP No.2

 REACTIONS.
 (size) 2=0-5-4, 5=0-3-8

DNS. (size) 2=0-5-4, 5=0-3-8 Max Horz 2=51(LC 16) Max Uplift 2=-82(LC 12), 5=-53(LC 12) Max Grav 2=371(LC 2), 5=296(LC 2)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-353/260, 3-4=-335/278

BOT CHORD 2-6=-214/268, 5-6=-214/268

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 4-8-1, Exterior(2) 4-8-1 to 7-8-12 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=15.0 psf (ground snow); Pf=11.6 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10

4) Unbalanced snow loads have been considered for this design.

5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs non-concurrent with other live loads.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

8) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 5. This connection is for uplift only and does not consider lateral forces.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

├ ──		9-4-0						
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 11.6/15.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code JPC2015/TPI2014	CSI. TC 0.08 BC 0.05 WB 0.05 Matrix S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) 0.00 6 0.00 7 0.00 6	l/defl n/r n/r n/a	L/d 120 120 n/a	PLATES MT20	GRIP 244/190
BCDL10.0LUMBER- TOP CHORD2x4 SP No.2		BR/ TOI	ACING- P CHORD S	tructural wood	sheathin	g directly app	blied or 6-0-0 oc purlin	I I = 20%

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2OTHERS2x4 SP No.3

REACTIONS. All bearings 9-4-0.

(lb) - Max Horz 2=-33(LC 17)

Max Uplift All uplift 100 lb or less at joint(s) 2, 6, 10, 8

Max Grav All reactions 250 lb or less at joint(s) 2, 6, 9, 10, 8

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-10-8 to 2-1-8, Exterior(2) 2-1-8 to 4-8-0, Corner(3) 4-8-0 to 7-8-0, Exterior(2) 7-8-0 to 10-2-8 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=15.0 psf (ground snow); Pf=11.6 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 11.6 psf on overhangs
- non-concurrent with other live loads.
- 7) Gable requires continuous bottom chord bearing.
- 8) Gable studs spaced at 2-0-0 oc.
- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x4 SP No.3BOT CHORD2x4 SP No.2OTHERS2x4 SP No.3

REACTIONS. (size) 1=9-4-12, 3=9-4-12, 4=9-4-12

Max Horz 1=59(LC 13)

Max Uplift 1=-19(LC 14), 3=-27(LC 15)

Max Grav 1=165(LC 2), 3=165(LC 2), 4=345(LC 2)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-5-12 to 3-5-12, Interior(1) 3-5-12 to 4-8-6, Exterior(2) 4-8-6 to 7-8-6, Interior(1) 7-8-6 to 8-11-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=15.0 psf (ground snow); Pf=11.6 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

		0.1.1	•					
		6-4-12					7	
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 11.6/15.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.23 BC 0.08 WB 0.03 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc n/a n/a 0.00) l/defl - n/a - n/a 3 n/a	L/d 999 999 n/a	PLATES MT20 Weight: 21 lb	GRIP 244/190 FT = 20%
LUMBER-		BR	ACING-					

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.3 BOT CHORD 2x4 SP No.2 2x4 SP No.3 OTHERS

REACTIONS. (size) 1=6-4-12, 3=6-4-12, 4=6-4-12

Max Horz 1=-38(LC 10) Max Uplift 1=-17(LC 14), 3=-22(LC 15)

Max Grav 1=117(LC 2), 3=117(LC 2), 4=201(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=15.0 psf (ground snow); Pf=11.6 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

2x4 ⁄

2x4 📎

3-4-12 Plate Offsets (X,Y)--[2:0-3-0,Edge] LOADING (psf) SPACING-2-0-0 CSI. DEFL. in (loc) l/defl L/d PLATES GRIP TCLL (roof) 20.0 Plate Grip DOL 1.15 тс 0.04 Vert(LL) n/a n/a 999 MT20 244/190 Snow (Pf/Pg) 11.6/15.0 Lumber DOL вс 1.15 0.12 Vert(CT) n/a n/a 999 TCDL 10.0 WB 0.00 Rep Stress Incr YES Horz(CT) 0.00 3 n/a n/a BCLL 0.0 Code IRC2015/TPI2014 Matrix-P Weight: 9 lb FT = 20% BCDL 10.0 LUMBER-BRACING-TOP CHORD 2x4 SP No.3 TOP CHORD Structural wood sheathing directly applied or 3-4-12 oc purlins. 2x4 SP No.3 BOT CHORD BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

3-4-12

REACTIONS. (size) 1=3-4-12, 3=3-4-12 Max Horz 1=-17(LC 10) Max Uplift 1=-5(LC 14), 3=-5(LC 15)

Max Uplift 1=-5(LC 14), 3=-5(LC 15 Max Grav 1=97(LC 2), 3=97(LC 2)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=15.0 psf (ground snow); Pf=11.6 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10

4) Gable requires continuous bottom chord bearing.

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

REACTIONS. All bearings 16-3-12.

(lb) - Max Horz 1=-108(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 1 except 6=-114(LC 15), 8=-111(LC 14)

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=261(LC 2), 6=372(LC 26), 8=376(LC 25)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 4-6=-284/159, 2-8=-283/159

NOTES-

Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-5-12 to 3-5-12, Interior(1) 3-5-12 to 8-1-14, Exterior(2) 8-1-14 to 11-1-14, Interior(1) 11-1-14 to 15-10-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=15.0 psf (ground snow); Pf=11.6 psf (flat

roof snow: Lumber DOL=1.15 Plate DOL=1.15; Category II; Exp B; Partially Exp.; Ct=1.10

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

¹⁾ Unbalanced roof live loads have been considered for this design.

REACTIONS. All bearings 13-3-12.

(lb) - Max Horz 1=-87(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 1, 6, 8

Max Grav All reactions 250 lb or less at joint(s) 1, 5, 7 except 6=317(LC 26), 8=318(LC 25)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-5-12 to 3-5-12, Interior(1) 3-5-12 to 6-7-14, Exterior(2) 6-7-14 to 9-7-14, Interior(1) 9-7-14 to 12-10-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=15.0 psf (ground snow); Pf=11.6 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10

4) Gable requires continuous bottom chord bearing.

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

REACTIONS. All bearings 10-3-12.

(lb) - Max Horz 1=-66(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 7, 6

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=260(LC 25), 6=259(LC 26)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) 0-5-12 to 3-5-12, Interior(1) 3-5-12 to 5-1-14, Exterior(2) 5-1-14 to 8-1-14, Interior(1) 8-1-14 to 9-10-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=15.0 psf (ground snow); Pf=11.6 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

7-3-12									
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 11.6/15.0 TCDL 10.0 DOLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.32 BC 0.10 WB 0.03	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL 0.0 *	Code IRC2015/TPI2014	Matrix-P	- (-)					Weight: 25 lb	FT = 20%
LUMBER-		BF	ACING-						

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.3 BOT CHORD 2x4 SP No.2 2x4 SP No.3 OTHERS

REACTIONS. (size) 1=7-3-12, 3=7-3-12, 4=7-3-12 Max Horz 1=-45(LC 10)

Max Uplift 1=-20(LC 14), 3=-26(LC 15)

Max Grav 1=136(LC 2), 3=136(LC 2), 4=235(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=15.0 psf (ground snow); Pf=11.6 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10

4) Gable requires continuous bottom chord bearing.

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

2x4 🥢

2x4 📎

Rigid ceiling directly applied or 10-0-0 oc bracing.

		4-3-1	2					
Plate Offsets (X,Y) [2:0-3-0,E	dge]							
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 11.6/15.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.08 BC 0.23 WB 0.00 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) n/a - n/a - 0.00 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 12 lb	GRIP 244/190 FT = 20%
		BF	RACING-	Structurel wood	aboothin	a directly on	aliad or 4.2.12 op pur	ino

BOT CHORD

4-3-12

BOT CHORD 2x4 SP No.3

REACTIONS. (size) 1=4-3-12, 3=4-3-12 Max Horz 1=-24(LC 10) Max Uplift 1=-6(LC 14), 3=-6(LC 15)

Max Uplift 1=-6(LC 14), 3=-6(LC 15) Max Grav 1=134(LC 2), 3=134(LC 2)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 TCLL: ASCE 7-10; Pr=20.0 psf (roof live load: Lumber DOL=1.15 Plate DOL=1.15); Pg=15.0 psf (ground snow); Pf=11.6 psf (flat roof snow: Lumber DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10

4) Gable requires continuous bottom chord bearing.

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

