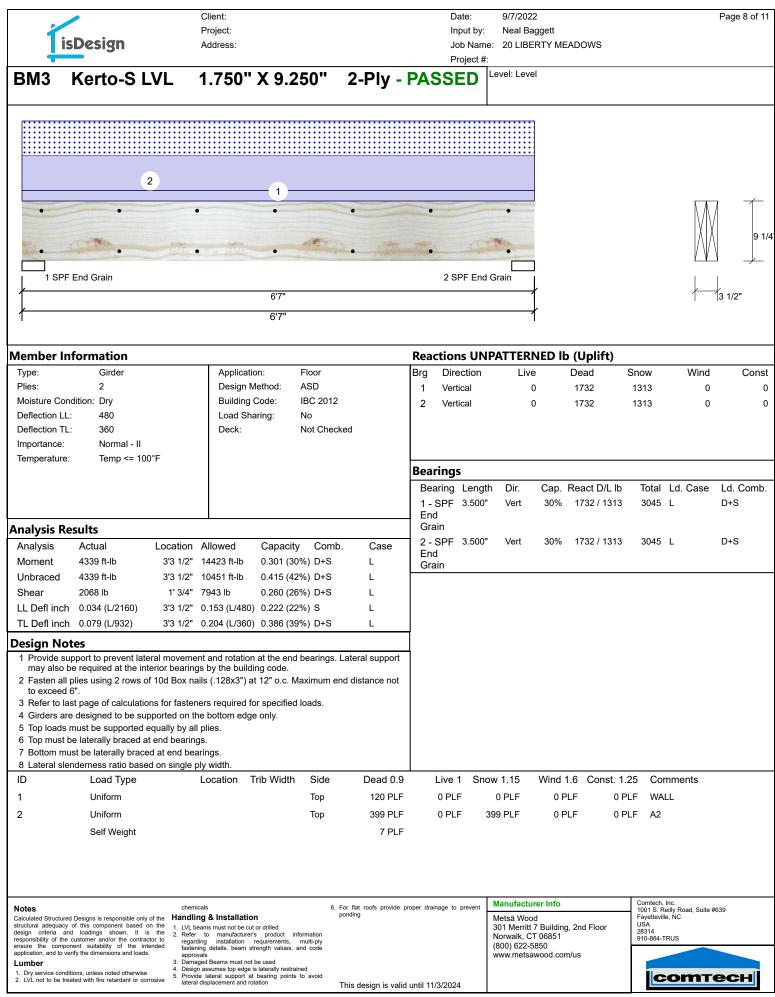

Lis	Design		Client: Project: Address:					Date: Input by Job Nai	9/7/2022 y: Neal Ba me: 20 LIBE	ggett	DOWS			Page 1 of ′
	Kerto-S L			(14 0	00" 3	-Ply - P		Project						
			150 /	14.0	00 3	-FIY - F	A3.	SED						
													1	
3									5		4			
					1						4			
1 SPF					att and	100			-		Ale et a	2 SPF		1'2"
/					20'4"	1								5 1/4"
<u>}</u>					20'4'	'							1	
/lember In	formation						Rea	ctions U	NPATTER	NED Ib	(Uplift)			
Туре:	Girder		Applicat		Floor		Brg	Direction			Dead	Snow	Wind	Con
Plies: Moisture Cond	3 dition: Dry		Design Building		ASD IBC 2012		1	Vertical Vertical	(2362 2362	976 976	0	
Deflection LL:	•		Load Sh		Yes			venticai	(2302	970	0	
Deflection TL:	360		Deck:		Not Checked	ł								
Importance:	Normal - II													
Temperature:	Temp <= 10	0°F					Baa							
								rings						
								aring Leng	•	•	leact D/L lt		al Ld. Case	Ld. Com
								SPF 3.50		43%	2362 / 976		57 L	D+S
analysis Re	sults						2 -	SPF 3.50	0" Vert	43%	2362 / 976	5 333	57 L	D+S
Analysis	Actual	Location	Allowed	Capacit	y Comb.	Case	٦							
Moment	9135 ft-lb		37907 ft-lb	0.241 (24	•	Uniform								
Unbraced	11538 ft-lb	10'2"	11541 ft-lb	1.000	D+S	L								
Shear	2628 lb	18'10 1/2"	18032 lb	(100%)	5%) D+S	L								
LL Defl inch	0.085 (L/2795)	10'2 1/16"				L								
	0.381 (L/627)	10'2 1/16"		, ,	,	L								
		102 1/10	0.002 (L/300) 0.374 (37	70) 013	L	┥							
Design Not							4							
may also b	oport to prevent late e required at the in plies using 3 rows o 5".	terior bearings	s by the build	ling code.	0									
	t page of calculatio		•		l loads.									
	designed to be su nust be supported			je only.										
	e laterally braced a			6" o.c.										
	st be laterally brace		•											
8 Lateral sler	I oad Type				Side	Dood 0.0			now 1 15	Wind 1	6 Const	1 25 0	`ommonto	
	Load Type	I	Location	Trib Width		Dead 0.9			now 1.15		6 Const.		Comments	
1	Uniform				Тор	120 PLF		0 PLF	0 PLF	0 PL			VALL	
2	Part. Uniform		0 to 5-4-8		Тор	49 PLF		0 PLF	49 PLF	0 PL		PLF J		
3	Tie-In			6-7-8	Тор	20 PSF		0 PSF	20 PSF	0 PS			TICK FRAMIN	G
4 ontinued on pa	Part. Uniform	14-11-8	to 20-4-0		Тор	49 PLF		0 PLF	49 PLF	0 PL	F 0	PLF J	2	
Notes		chemica	als		6. For	flat roofs provide p	proper dra	inage to prevent	Manufactu	er Info		Comte	ch, Inc. S. Reilly Road, Suite	#639
Calculated Structured	Designs is responsible only of this component based	of the Handlin	g & Installatio		pon			- ,	Metsä Woo		2nd Elect	Fayette USA	eville, NC	-003
design criteria and responsibility of the o	loadings shown. It i customer and/or the contra	is the 2. Refer	ams must not be co to manufacture ng installation	r's product ir					301 Merritt Norwalk, C	06851	∠na ⊢loor	28314	4-TRUS	
ensure the compon	ent suitability of the in ify the dimensions and loads	itended fastenin s. approva	ng details, beam : als	strength values,					(800) 622-5 www.metsa		us			
Lumber		 Damage Design 	ed Beams must no assumes top edge lateral support a	is laterally restra	ined									
 Dry service conditi 	ons, unless noted otherwood												COMT	

isDesign	Client: Project: Address:	I	nput by:	9/7/2022 Neal Baggett 20 LIBERTY MEADO\	WS	Page 2 o
3M1 Kerto-S LVL	1.750" X 14.000"		Project #: D	rel: Level		
3			•••	5		
	· · · · ·	1	• •		• • • • • • • • • • • • • • • • • • •	T
1 SPF	単の単一合	a and	- Carte		2 SPF	1'2"
, , ,		20'4" 20'4"				5 1/4"
ontinued from page 1						
D Load Type 5 Tie-In Self Weight	Location Trib Width Sid 14-11-8 to 20-4-0 6-7-8 Top			1.15 Wind 1.6 (PSF 0 PSF		mments CK FRAMING
otes loulated Structured Designs is responsible only of the uctural adequacy of this component based on the sign criteria and loadings shown. It is the sponsibility of the customer and/or the contractor to use the component suitability of the intended	1. LVL beams must not be cut or drilled 2. Refer to manufacturer's product information regarding installation requirements multi-plu		Me 30	tsä Wood 1 Merritt 7 Building, 2nd I nvalk, CT 06851 0) 622-5850	Fayettevil	eilly Road, Suite #639 le, NC

isDesign		Date: 9/7/2022 Page 3 of 1
isDesign	Project:	Input by: Neal Baggett
	Address:	Job Name: 20 LIBERTY MEADOWS
		Project #:
BM1 Kerto-S LV	L 1.750" X 14.00	00" 3-Ply - PASSED
	· · · · · ·	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
1 SPF		2 SPF
<u></u>		20'4" 5 1/4"
1		20'4"
Multi-Ply Analysis		
Fasten all plies using 3 rows 6".	of 10d Box nails (.128x3") a	at 12" o.c Nail from both sides. Maximum end distance not to exceed
	0.0 %	
	0.0 PLF	
	245.6 PLF	
	81.9 lb.	
	IV	
0	1 1/2"	
	3"	
Min. End Distance		
Load Combination	1.00	


Notes	chemicals	6. For flat roofs provide proper drainage to prevent	Manufacturer Info	Comtech, Inc. 1001 S. Reilly Road, Suite #639
Calculated Structured Designs is responsible only of the structural adequacy of this component based on the design criteria and loadings shown. It is the responsibility of the customer and/or the contractor to ensure the component suitability of the interded application, and to verify the dimensions and loads. Lumber 1. Dry service conditions, unless noted otherwise 2. LVL not to be treated with fire retardant or corrosive	I. LVL beams must not be cut or drilled Refer to manufacturer's product information regarding installation requirements, multi-ply fastening details, beam strength values, and code approvals Damaged Beams must not be used Design assumes top edge is laterally restrained Design assumes top edge is laterally restrained. Brownel lateral europort at bearing opinits to avoid	ponding This design is valid until 11/3/2024	Metsä Wood 301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851 (800) 622-5850 www.metsawood.com/us	Fayetteville, NC USA 228314 910-864-TRUS

	Client: Project:	Date: Input by	9/7/2022 r: Neal Baggett	Page 5 of 1
isDesign	Address:	Job Nar	me: 20 LIBERTY MEADOWS	
GDH Kerto-S LVL	1 750" X 16 000"	Project	#: Level: Level	
	. 1.750 X 10.000	2-1 Iy - 1 A00LD		
••••	• • • •		• • • • •	
• • •			• • •	· · 7
L				—;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1 SPF End Grain			2 SPF End	
]		16'7"		13 1/2"
1		16'7"		1
Multi-Ply Analysis				
	of 10d Box nails (.128x3") at 12"	o.c Maximum end distance	not to exceed 6".	
	.0 % .0 PLF			
eld Limit per Foot 24	45.6 PLF			
eld Limit per Fastener 8 eld Mode IV	1.9 lb.			
	1/2"			
lin. End Distance 3'				
oad Combination uration Factor 1	.00			
Notes Calculated Structured Designs is responsible only of this structural adequacy of this component based on the design criteria and loadings shown. It is the responsibility of the customer and/or the contractor to ensure the component suitability of the intended application, and to verify the dimensions and loads. Lumber	 LVL beams must not be cut or drilled Refer to manufacturer's product information regarding installation requirements multi-nly. 	 For flat roofs provide proper drainage to prevent ponding 	Manufacturer Info Metsä Wood 301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851 (800) 622-5850 www.metsawood.com/us	Comtech, Inc. 1001 S. Reilly Road, Suite #639 Fayetteville, NC USA 28314 910-864-TRUS
I. Dry service conditions, unless noted otherwise LVL not to be treated with fire retardant or corrosive	 Design assumes top edge is laterally restrained Brouide lateral support at bearing points to avoid 	This design is valid until 11/3/2024		соттесн
/ersion 21.80.417 Powered by iStruct™ Data	set: 22061001 1		1	

./	•		Client:				Date:	9/7/202					Page 6 of 1
Tis	Design		Project:				Input by:			ADOWS			
13	Design	F	Address:				Project #	e: 20 LIBE		ADUW5			
3M2	Kerto-S L	VL 1	l.750" X	9.250"	2-Ply -	PAS		Level: Leve	èl				
				1				•					9 1
				•	•	•		•]			<u> </u>	
	End Grain			21711			2 SPF End	Grain	ł				0.4/0"
ļ				6'7"					ł			Ι	3 1/2"
1				5'7"					I				
lember Inf			1			1	tions UN			-			
Type: Plies:	Girder 2		Application:	Floor d: ASD		Brg	Direction	Live			Snow	Wind	Cons
Plies: Moisture Cond			Design Metho Building Code			1	Vertical Vertical	267 267		912 912	0 0	0 0	(
Deflection LL:			Load Sharing			2	ventical	2070	J	912	0	0	(
Deflection TL:			Deck:	Not Checke	d								
mportance:	Normal - II												
Femperature:	Temp <= 100	°F				<u> </u>							
						Bear	ings						
							ring Lengt PF 3.500"		Cap. 35%	React D/L lb 912 / 2670	Total L 3582 L	_d. Case	Ld. Comb D+L
nalysis Re	sults					End Grai	n						
Analysis	Actual	Location A	Allowed Ca	pacity Comb.	Case		PF 3.500"	Vert	35%	912 / 2670	3582 L	-	D+L
Moment	5103 ft-lb	3'3 1/2" 1		07 (41%) D+L	L	End Grai	n						
Unbraced	5103 ft-lb	3'3 1/2" 9		514 (51%) D+L	L								
Shear	2431 lb	1' 3/4" 6	907 lb 0.3	52 (35%) D+L	L								
	0.069 (L/1063)).153 (L/480) 0.4		L								
	0.093 (L/792)).204 (L/360) 0.4		L								
esign Not	es]							
 may also be Fasten all p to exceed 6 Refer to lass Girders are Top loads n Top must be Bottom must 	port to prevent later required at the inte lies using 2 rows of ". t page of calculatior designed to be sup nust be supported e e laterally braced at st be laterally braced derness ratio based	erior bearings 10d Box nails as for fastene ported on the qually by all p end bearings d at end beari	by the building c s (.128x3") at 12" rs required for sp bottom edge onl lies. ngs.	ode. o.c. Maximum end ecified loads.									
ID	Load Type	L	ocation Trib	Vidth Side	Dead 0.9	L	ive 1 Sno	ow 1.15	Wind 1	.6 Const. 1.	25 Com	ments	
1	Uniform			Тор	270 PLF	81	1 PLF	0 PLF	0 P	LF 0 P	LF F2		
	Self Weight				7 PLF								
structural adequacy of design criteria and responsibility of the of ensure the compon- application, and to veri	Designs is responsible only of f this component based or loadings shown. It is ustomer and/or the contract ent suitability of the inte fy the dimensions and loads.	the 1. LVL bear the 2. Refer or to regarding nded fastening approval	g & Installation ms must not be cut or drill to manufacturer's pro g installation require g details, beam strength s	por ed iduct information ments, multi-ply values, and code	r flat roofs provide p nding	roper draina	age to prevent	Manufactu Metsä Woo 301 Merritt Norwalk, C (800) 622-5 www.metsa	d 7 Building T 06851 5850		Comtech, In 1001 S. Reili Fayetteville, USA 28314 910-864-TRI	ly Road, Suite # NC	639
structural adequacy of design criteria and responsibility of the co- ensure the compon- application, and to veri Lumber 1. Dry service condition	of this component based on loadings shown. It is ustomer and/or the contracte ent suitability of the inter	the 1. LVL beat the 2. Refer regardin fastening 3. Damage 4. Design a	ms must not be cut or dril to manufacturer's pro g installation require details, beam strength	iduct information ments, multi-ply values, and code d lily restrained ig points to avoid	nis design is valic	until 11/3	5/2024	301 Merritt Norwalk, C (800) 622-5	7 Building T 06851 5850		USA 28314 910-864-TRI		есн

	Client:	Date:	9/7/2022	Page 7 of 11
isDesign	Project: Address:	Input by: Job Nam		
BM2 Kerto-S LVL	1 750" X Q 250"	Project # 2-Ply - PASSED	Level: Level	
DIVIZ REILO-3 LVL	1.750 A 9.250	2-PTy - PASSED		
•••	• •	• •	•	MM
	• •	• •	•	9 1/4
1 SPF End Grain		2 SPF End		
 	6'7"			3 1/2"
<i>†</i>	6'7"		ł	
Multi-Ply Analysis				
Fasten all plies using 2 rows of 100	d Box nails (.128x3") at 12"	o.c Maximum end distance n	ot to exceed 6".	
Capacity 0.0 % Load 0.0 PLF				
Yield Limit per Foot163.7 FYield Limit per Fastener81.9 lb.	PLF			
Yield Mode IV				
Edge Distance 1 1/2" Min. End Distance 3"				
Load Combination				
Duration Factor 1.00				
	nemicals	6. For flat roofs provide proper drainage to prevent	Manufacturer Info	Comtech, Inc. 1001 S. Reilly Road, Suite #639
Calculated Structured Designs is responsible only of the structural adequacy of this component based on the 1. LV	/L beams must not be cut or drilled	ponding	Metsä Wood 301 Merritt 7 Building, 2nd Floor	Fayetteville, NC USA 28314
responsibility of the customer and/or the contractor to ensure the component suitability of the intended fail	efer to manufacturer's product information garding installation requirements, multi-ply istening details, beam strength values, and code porrovale		Norwalk, CT 06851 (800) 622-5850 www.metsawood.com/us	910-864-TRUS
Lumber 3. Da 1. Dry service conditions, unless noted otherwise 5. Dr	pprovals amaged Beams must not be used esign assumes top edge is laterally restrained rovide lateral support at bearing points to avoid		www.metsawoou.com/us	
	teral displacement and rotation	This design is valid until 11/3/2024		соттесн

		Olicante		D-t-: 0/7/0000	
		Client: Project:		Date: 9/7/2022 Input by: Neal Baggett	Page 9 of 11
1 1	isDesign	Address:		Job Name: 20 LIBERTY MEADOWS	
│	130631311	Address.		Project #:	
BM3	Kerto-S LV	L 1.750" X 9.250"	2-Ply - PASS		
	•				
•	•	•	• •	•	N/N/I I
				7	X X 9 1/4
•	•	• •	• •	•¥	
1 S	SPF End Grain		2	SPF End Grain	
 		6'7"			3 1/2"
1 1		6'7"		Ĩ	
Multi-Ply	y Analysis				
-		f 10-1 Dec 1- (100 DW - 10-			
		of 10d Box nails (.128x3") at 12"	o.c Maximum end dist	ance not to exceed 6".	
Capacity Load		0 % 0 PLF			
Yield Limit p		63.7 PLF			
, Yield Limit p		1.9 lb.			
Yield Mode	١v				
Edge Distan		1/2"			
Min. End Dis Load Combi					
Duration Fac		.00			
Notes		chemicals	6. For flat roofs provide proper drainage	to prevent Manufacturer Info	Comtech, Inc. 1001 S. Reilly Road, Suite #639
Calculated Struc	ctured Designs is responsible only of the uacy of this component based on the	Handling & Installation 1. LVL beams must not be cut or drilled	ponding	Metsä Wood 301 Merritt 7 Building, 2nd Floor	1001 S. Reilly Road, Suite #639 Fayetteville, NC USA
design criteria responsibility of	and loadings shown. It is the f the customer and/or the contractor to	 2. Refer to manufacturer's product information regarding installation requirements multiply 		301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851	28314 910-864-TRUS
ensure the co	omponent suitability of the intended to verify the dimensions and loads.	fastening details, beam strength values, and code approvals		(800) 622-5850 www.metsawood.com/us	
Lumber		 Damaged Beams must not be used Design assumes top edge is laterally restrained 			
 Dry service of LVL not to b 	conditions, unless noted otherwise be treated with fire retardant or corrosive	5 Provide lateral support at bearing points to avoid	This design is valid until 11/3/20	24	сотесн
L			This design is valid until 11/3/20	2 4 -7	

2		Clier Proje					ate: put by:	9/7/2022 Neal Bag					Page 10 of
l i	isDesign	-	ress:				bb Name:		RTY MEAD	ows			
Ť							roject #:						
3M4	Kerto-S L\	VL 1.7	750" X 9	.250"	2-Ply -	PASSI	ED	evel: Level.					
					3								
	2		1										/
•	•	•			•	•	•					M	
S				al Braces		-						\mathbb{N}	9 1
	F End Grain		5'11"		2 S	PF End Grai						ļ	2 1/2"
<u> </u>			5'11"									I] 3 1/2"
							•						
	Information					Reaction				-	_		
Гуре: Plies:	Girder 2		Application: Design Method:	Floor ASD		Ŭ	ection	Live		ead 1787	Snow 1180	Wind 0	Cons
	ondition: Dry		Building Code:	IBC 2012		1 Vert 2 Vert		695 695		1787	1180	0	
Deflection L	•		Load Sharing:	No		Z ven	lical	095		101	1160	0	
Deflection T	TL: 360		Deck:	Not Check	ed								
nportance:	: Normal - II												
emperatur	e: Temp <= 100°	F											
						Bearing	s						
						Bearing	Length	Dir.	Cap. Re	eact D/L lb	Total L	d. Case	Ld. Comb
						1 - SPF	3.000"	Vert	36%	1787 / 1407	3194 L	-	D+0.75(L+
						End							
nalysis R	Results					Grain	0.000	Mant	0.00/	707 / 4 407	2404		D . 0 75/1 .
Analysis	Actual	Location Allo	wed Capa	city Comb	. Case	2 - SPF End	3.000"	Vert	36%	1787 / 1407	3194 L	-	D+0.75(L+
Noment	4145 ft-lb	2'11 1/2" 1442	23 ft-lb 0.287	(29%) D+0.75	ō(L+S) L	Grain							
Jnbraced	4145 ft-lb	2'11 1/2" 1102	27 ft-lb 0.376	(38%) D+0.75	5(L+S) L								
Shear	2097 lb	4'10 3/4" 7943	3 lb 0.264	(26%) D+0.75	5(L+S) L								
L Defl inc	ch 0.028 (L/2346)	2'11 1/2" 0.13	9 (L/480) 0.205	(20%) 0.75(L·	+S) L								
L Defl inc	ch 0.064 (L/1033)	2'11 1/2" 0.18	5 (L/360) 0.348	(35%) D+0.75	5(L+S) L								
esign No	otes					ĺ							
	support to prevent latera	al movement and	d rotation at the e	end bearings. I	_ateral support	1							
-	be required at the inter		-										
z Fasten a to exceed	Ill plies using 2 rows of 1 d 6".	TUO BOX halls (.1	128x3°) at 12° 0.0	. Maximum er	id distance not								
3 Refer to	last page of calculations	s for fasteners re	equired for specif	ied loads.									
	are designed to be supp												
	s must be supported eq t be laterally braced at e		i.										
-	nust be laterally braced	-	i.										
8 Lateral s	lenderness ratio based	on single ply wid	dth.										
D	Load Type	Loca	ation Trib Wid	th Side	Dead 0.9	Live	1 Snov	w 1.15	Wind 1.6	Const. 1.	25 Com	ments	
l	Uniform			Тор	120 PLF	0 PL	F	0 PLF	0 PLF	0 P	LF WALL		
2	Uniform			Тор	399 PLF	0 PL	F 39	99 PLF	0 PLF	0 P	LF A2		
3	Uniform			Тор	78 PLF	235 PL	F	0 PLF	0 PLF	0 P	LF F2		
	Self Weight			·	7 PLF								
	-												
					For flat roofs provide pi	oner drainere *-	prevent	Manufactur	er Info		Comtech, Inc	»	
1-4							DIEVENT		-		1001 S Poil		1000
alculated Structu	ured Designs is responsible only of	chemicals the Handling & I	nstallation		onding	oper drainage to	· -	Metsä Wood	ł		Fayetteville,	y Road, Suite	1039
alculated Structu ructural adequad esign criteria	cy of this component based on and loadings shown. It is	the Handling & I the 1. LVL beams muthe 2. Reference on the	ust not be cut or drilled	F		oper dramage to		301 Merritt 7	7 Building, 2	nd Floor	Fayetteville, USA 28314	NC	639
tructural adequad esign criteria	cy of this component based on and loadings shown. It is he customer and/or the contractor	the Handling & I i the 1. LVL beams mu 2. Refer to r regarding ir fastening deta		information s. multi-ply		oper dramage to		301 Merritt 7 Norwalk, CT (800) 622-58	7 Building, 2 ⁻ 06851 850		Fayetteville, USA	NC	1039
alculated Structu ructural adequad esign criteria	cy of this component based on and loadings shown. It is	the Handling & I the 1. LVL beams mu 2. Refer to r regarding in fastening det approvals 3. Damaged Bea	ust not be cut or drilled manufacturer's product nstallation requiremen	information s, multi-ply es, and code		open dramage to		301 Merritt 7 Norwalk, CT	7 Building, 2 ⁻ 06851 850		Fayetteville, USA 28314	NC	10.39

ŕ	isDesign	Client: Project: Address:			Date: Input by: Job Nam	9/7/2022 Neal Baggett e: 20 LIBERTY MEADOWS	Page 11 of 7
Ť			<u> </u>		Project #		
BM4	Kerto-S L	/L 1.750"	X 9.250"	2-Ply	- PASSED		
•	•	•	•	•	• •	1 1/2"	91
•	٠	•	•	•	• • -	<u> </u>	
	F End Grain			:	2 SPF End Grain	Λ	
		5'	11"				3 1/2"
ſ		5'	11"		1		
Multi-Ply	Analysis						
-	-	of 10d Box nails (.128x3") at 12" o	o.c Maximu	m end distance n	ot to exceed 6".	
Capacity Load		0.0 % 0.0 PLF					
Yield Limit pe	er Foot	163.7 PLF					
Yield Limit pe Yield Mode		81.9 lb. IV					
Edge Distanc	e	1 1/2"					
Min. End Dist Load Combin		3"					
Duration Fact		1.00					
						1	-
Notes		chemicals		 For flat roofs provid ponding 	e proper drainage to prevent	Manufacturer Info	Comtech, Inc. 1001 S. Reilly Road, Suite #639
structural adequa	ured Designs is responsible only of acy of this component based on and loadings shown. It is		it or drilled	,, y		Metsä Wood 301 Merritt 7 Building, 2nd Floor	Fayetteville, NC USA 28314
responsibility of the com	the customer and/or the contractor nponent suitability of the inter-	r to regarding installation	r's product information requirements, multi-ply strength values, and code			Norwalk, CT 06851 (800) 622-5850	910-864-TRUS
application, and to Lumber	o verify the dimensions and loads.	approvals 3. Damaged Beams must no	t be used			www.metsawood.com/us	
1. Dry service co	nditions, unless noted otherwise treated with fire retardant or corros	 Design assumes top edge Provide lateral support a lateral displacement and n 	t bearing points to avoid	This designs in	alid uptil 11/2/2024		соттесн
	117 Powered by iStruct™ D	aterar displacement and r		i nis design is va	alid until 11/3/2024		

RE: J0322-1317 Precision/20 Liberty Meadows/Harnett

Site Information:

Customer: Project Name: J0322-1317 Lot/Block: Address: City:

Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014 Wind Code: N/A Roof Load: N/A psf Design Program: MiTek 20/20 8.4 Wind Speed: N/A mph Floor Load: 55.0 psf

This package includes 10 individual, dated Truss Design Drawings and 0 Additional Drawings.

No. 1 2 3 4 5 6 7 8	Seal# I54046255 I54046256 I54046257 I54046258 I54046259 I54046260 I54046261 I54046262	Truss Name ET1 ET2 ET3 F1 F2 F3 F4 F5-GR	Date 9/7/2022 9/7/2022 9/7/2022 9/7/2022 9/7/2022 9/7/2022 9/7/2022 9/7/2022
		•••	
	101010201		0,1,2022

The truss drawing(s) referenced above have been prepared by

Truss Engineering Co. under my direct supervision

based on the parameters provided by Comtech, Inc - Fayetteville.

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2022

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Gilbert, Eric

September 07, 2022

Trenco 818 Soundside Rd Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Precision/20 Liberty M	laadows/Harnott	
300	11035	Truss Type	Qty	r iy	Frecision/20 Liberty w	leauows/Harriett	154046255
J0322-1317	ET1	GABLE	1	1			
Comtech, Inc, Faye	teville, NC - 28314,			8 430 s Ja	Job Reference (option 6 2022 MiTek Indust	ial) ries, Inc. Tue Sep 613:	53:48 2022 Page 1
	20014,					Ys93k7FNuRIYmTkauW0	
0-1-8							0- <mark>1</mark> -8
							Scale = 1:33.7
					3x6 FP =		
1 2	3 4 5	6 7 8	9 10	11	12 13 1	4 15 1	6 17
95				2	<u>P</u>		
95							36 0-7-1
34 33	32 31 30	29 28 27 26	25 24	23	22 2	1 20 1	9 18
3x4 =		3x6 FP =					3x4 =
<u> </u>		6-8-0 + 8-0-0 + 9-4-0 + 1-4-0 + 1-4-0 + 1-4-0 +	<u>10-8-0 12-0-0 </u> 1-4-0 1-4-0	13-4-0 1-4-0	<u>14-8-0 16-0-0</u> <u>1-4-0 1-4-0</u>	<u> 17-4-0 18-8-0</u> 1-4-0 1-4-0	<u>20-3-0</u> <u>1-7-0</u>
LOADING (psf)	SPACING- 2-0-			n (loc)	l/defl L/d		GRIP
TCLL 40.0 TCDL 10.0	Plate Grip DOL 1.0 Lumber DOL 1.0		Vert(LL) n/a Vert(CT) n/a		n/a 999 n/a 999	MT20 2	244/190
BCLL 0.0 BCDL 5.0	Rep Stress Incr YES Code IRC2015/TPI2014		Horz(CT) 0.00		n/a n/a	Weight: 84 lb	FT = 20%F, 11%E
			BRACING- TOP CHORD BOT CHORD	except e	al wood sheathing dir nd verticals. Iling directly applied c	ectly applied or 6-0-0 o or 10-0-0 oc bracing.	c purlins,
	rings 20-3-0. av All reactions 250 lb or less 19	at joint(s) 34, 18, 33, 32, 31, 30, 2	28, 27, 26, 25, 24, 23, 2	2, 21, 20,			

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Precision/20 Liberty Me	adows/Harnett	
J0322-1317	ET2	GABLE	1	1			154046256
Comtech, Inc, Fayette	eville, NC - 28314,			9 420 0 1	Job Reference (optiona an 6 2022 MiTek Industrie		2:52:40.2022 . Dogo 1
Contech, Inc, Fayett	eville, NC - 26314,		ID:TBflsx8xnbO8g		KzS70A-wa29SP6CJAHw		
			12.1 Blioxoxilb@oq	. 4/ 12 O g 0 0			
							0 ₁ 18
							Scale = 1:21.5
3x4							
1 2	3	4 5	6	7	8	9	10 11
	0	0	•	•	0	•	• •
1-2-0							1-2-0
				Ц			
	•	<u> </u>	•	•	•	•	
22 21	20	19 18	17	16	15	14	13 12
3x4							3x4 =
1-4-0	2-8-0 4-0-0	5-4-0 6-8	8-0 8-0-0	0	-4-0 10-8-0	12-0-0	13-0-8
1-4-0	1-4-0 1-4-0	1-4-0 1-4			-4-0 1-4-0	1-4-0	1-0-8
	Edge,0-1-8], [22:Edge,0-1-8]						
	004.000					DI 4750	
LOADING (psf)	SPACING- 2-0-			in (loc)	l/defl L/d	PLATES	GRIP
TCLL 40.0 TCDL 10.0	Plate Grip DOL 1.0 Lumber DOL 1.0		Vert(LL) n. Vert(CT) n.	/a - /a -	n/a 999 n/a 999	MT20	244/190
BCLL 0.0	Rep Stress Incr YES		Horz(CT) 0.0		n/a 999		
			1012(01) 0.0	12	1/a 1/a		

LUMBER-	
TOP CHORD	2x4 SP No.1(flat)
BOT CHORD	2x4 SP No.1(flat)
WEBS	2x4 SP No.3(flat)
OTHERS	2x4 SP No.3(flat)

5.0

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

Weight: 56 lb

FT = 20%F, 11%E

REACTIONS. All bearings 13-0-8.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 22, 12, 21, 20, 19, 18, 17, 16, 15, 14, 13

Matrix-R

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

BCDL

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

Code IRC2015/TPI2014

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

7) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	Truss	Truss Type	Qty	Ply	Precision/20 Liberty	Meadows/Harnett	
)322-1317	ET3	GABLE	1	1			154046257
					Job Reference (optic		
Comtech, Inc, Fay	yetteville, NC - 28314,		DuTDflow@wahC				13:53:50 2022 Page 1 tKtsgn90VPPxuwygKf?
			ID. I DIISXOXIIDG	ιοη ή ΑΕυί	JOCK2570A-OMCAGK70	40Ph2QPhiloshorupx	
0- <u>1</u> -8							0- <mark>1</mark> -8
							Scale = 1:35
					FP=		
1 2	3 4 5	6 7 8	9 10	11 1	2 13 14	15 16	17 18
g7 □				e –	<u>* e e</u>		38
							38
36 35	34 33 32		27 26	25	24 23	22 21	20 19
3x4 =	01 00 02	3x6 FP =	2. 20	20	2. 20		3x4 =
0.44 —							0,44 —
1-4-0 2-	8-0 4-0-0 5-4-0		-8-0 12-0-0 13-4-				0-0-0 21-3-8
	4-0 1-4-0 1-4-0	<u>1-4-0 1-4-0 1-4-0 1-</u>	4-0 1-4-0 1-4-	0 1-4	-0 1-4-0 1-4	<u>4-0 ' 1-4-0 ' 1</u>	-4-0 1-3-8
1-4-0 1-		2-0-0 CSI.				PLATES	GRIP
0ADING (psf) CLL 40.0	SPACING- 2 Plate Grip DOL	2-0-0 CSI. 1.00 TC 0.06	DEFL. Vert(LL) n/	in (loc)	l/defl L/d n/a 999		
0ADING (psf) CLL 40.0 CDL 10.0	SPACING- 2 Plate Grip DOL Lumber DOL	2-0-0 CSI. 1.00 TC 0.06 1.00 BC 0.01	DEFL. i Vert(LL) n/ Vert(CT) n/	in (loc) ′a - ′a -	l/defl L/d n/a 999 n/a 999	PLATES	GRIP
1-4-0 1- DADING (psf) CLL 40.0 CDL 10.0 CLL 0.0	SPACING- 2 Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 CSI. 1.00 TC 0.06 1.00 BC 0.01 YES WB 0.03	DEFL. Vert(LL) n/	in (loc) ′a - ′a -	l/defl L/d n/a 999	PLATES MT20	GRIP 244/190
1-4-0 1- OADING (psf) CLL 40.0 CDL 10.0 10.0	SPACING- 2 Plate Grip DOL Lumber DOL	2-0-0 CSI. 1.00 TC 0.06 1.00 BC 0.01 YES WB 0.03	DEFL. i Vert(LL) n/ Vert(CT) n/	in (loc) ′a - ′a -	l/defl L/d n/a 999 n/a 999	PLATES	GRIP 244/190
I-4-0 1- OADING (psf) CLL 40.0 CDL 10.0 CLL 0.0 CDL 5.0 UMBER-	SPACING- 2 Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TPI20	2-0-0 CSI. 1.00 TC 0.06 1.00 BC 0.01 YES WB 0.03	DEFL. i Vert(LL) n/ Vert(CT) n/ Horz(CT) 0.0 BRACING-	in (loc) ′a - ′a - 0 19	l/defi L/d n/a 999 n/a 999 n/a n/a	PLATES MT20 Weight: 88 lk	GRIP 244/190 FT = 20%F, 11%I
1-4-0 1- OADING (psf) CLL 40.0 CDL 10.0 CLL 0.0 CDL 5.0 UMBER- OP CHORD 2x4 SI	SPACING- 2 Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TPI20	2-0-0 CSI. 1.00 TC 0.06 1.00 BC 0.01 YES WB 0.03	DEFL. i Vert(LL) n/ Vert(CT) n/ Horz(CT) 0.0	in (loc) ′a - ′a - 0 19 Structu	l/defl L/d n/a 999 n/a 999 n/a n/a ral wood sheathing di	PLATES MT20 Weight: 88 lk	GRIP 244/190 FT = 20%F, 11%I
1-4-0 1- OADING (psf) CLL 40.0 CDL 10.0 CLL 0.0 CDL 5.0 UMBER- DP CHORD 2x4 SI OT CHORD 2x4 SI SI OT CHORD 2x4 SI	SPACING- 2 Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TPI20 P No.1(flat) P No.1(flat)	2-0-0 CSI. 1.00 TC 0.06 1.00 BC 0.01 YES WB 0.03	DEFL. i Vert(LL) n/ Vert(CT) n/ Horz(CT) 0.0 BRACING- TOP CHORD	in (loc) /a - /a - 0 19 Structu except	l/defi L/d n/a 999 n/a 999 n/a n/a ral wood sheathing di end verticals.	PLATES MT20 Weight: 88 lk	GRIP 244/190 FT = 20%F, 11% -0 oc purlins,
1-4-0 1- OADING (psf) CLL 40.0 CDL 10.0 CLL 0.0 CDL 5.0 UMBER- OP CHORD 2x4 SI OP CHORD 2x4 SI SI CHORD 2x4 SI	SPACING- 2 Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TPI20 P No.1(flat) P No.3(flat) P No.3(flat)	2-0-0 CSI. 1.00 TC 0.06 1.00 BC 0.01 YES WB 0.03	DEFL. i Vert(LL) n/ Vert(CT) n/ Horz(CT) 0.0 BRACING-	in (loc) /a - /a - 0 19 Structu except	l/defl L/d n/a 999 n/a 999 n/a n/a ral wood sheathing di	PLATES MT20 Weight: 88 lk	GRIP 244/190 FT = 20%F, 11% -0 oc purlins,
1-4-0 1- OADING (psf) CLL 40.0 CDL 10.0 CLL 0.0 CDL 5.0 UMBER- OP CHORD 2x4 SI OP CHORD 2x4 SI SI THERS 2x4 SI	SPACING- 2 Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TPI20 P No.1(flat) P No.1(flat)	2-0-0 CSI. 1.00 TC 0.06 1.00 BC 0.01 YES WB 0.03	DEFL. i Vert(LL) n/ Vert(CT) n/ Horz(CT) 0.0 BRACING- TOP CHORD	in (loc) /a - /a - 0 19 Structu except	l/defi L/d n/a 999 n/a 999 n/a n/a ral wood sheathing di end verticals.	PLATES MT20 Weight: 88 lk	GRIP 244/190 FT = 20%F, 11%

21, 20

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

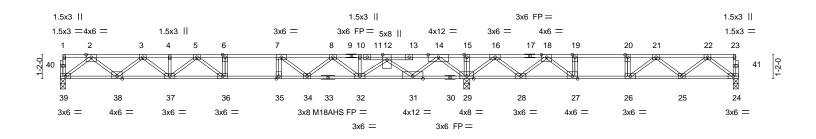
2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

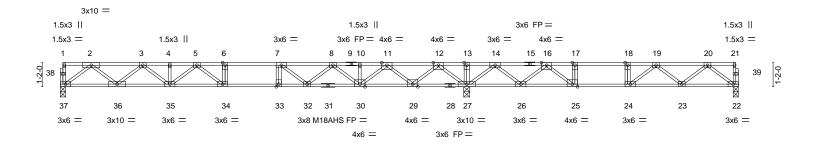
5) Gable studs spaced at 1-4-0 oc.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.


Strongbacks to be attached to walls at their outer ends or restrained by other means.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Precision/20 Liberty Meadows/Harnett	
					154046258	
J0322-1317	F1	Floor	1	1		
					Job Reference (optional)	
Comtech, Inc, Fayetteville, NC - 28314, 8.430 s Jan 6 2022 MiTek Industries, Inc. Tue Sep 6 13:53:52 2022 Page 1						
		ID:T	Bflsx8xnb	Q8q?qAEL	Jg6cKzS70A-K9kI5Q94b5fVCkY87HpUwJu3C8QZISrlyju2xpygKez	
0-1-8						
<mark>1-3-0</mark>	<u>⊢</u> 2	2-4-4			2-3-12 0-1-8 Scale = 1:55.9	


	19-8-12 19-8-12				<u>32-11-0</u> 13-2-4					
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr NO Code IRC2015/TPI2014	CSI. TC 0.90 BC 0.63 WB 0.91 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.30 35-36 -0.40 35-36 0.06 29	>794 4 >588 3	/d 80 60 n/a	PLATES MT20 M18AHS Weight: 171 lb	GRIP 244/190 186/179 FT = 20%F, 11%E		
BOT CHORD 2x4 SI	P 2400F 2.0E(flat) P 2400F 2.0E(flat) P No.3(flat)		BRACING- TOP CHOF BOT CHOF	RD Structu except	end verticals		applied or 6-0-0 o D-0 oc bracing.	oc purlins,		
Max U	te) 39=0-3-0, 29=0-3-8, 24=0-3-0 Jplift 24=-19(LC 3) Grav 39=996(LC 10), 29=2477(LC 1), 24	=575(LC 4)								
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-2122/0, 3-4=-3562/0, 4-5=-3562/0, 5-6=-4322/0, 6-7=-4322/0, 7-8=-3933/0, 8-10=-2881/0, 10-12=-2889/0, 12-14=-675/26, 14-15=0/3175, 15-16=0/3175,										
16-18=-12/1785, 18-19=-1342/734, 19-20=-1342/734, 20-21=-1342/734, 21-22=-1089/108 BOT CHORD 38-39=0/1252, 37-38=0/2958, 36-37=0/4008, 35-36=0/4322, 34-35=0/4322, 32-34=0/3557, 31-32=0/2195, 29-31=-1288/0, 28-29=-2155/0, 27-28=-1356/702, 26-27=-734/1342, 25-296(4):29-24, 28-42/705										
WEBS 2-39 12-3 6-36 22-2	25-26=-286/1388, 24-25=-42/705 WEBS 2-39=-1569/0, 2-38=0/1132, 3-38=-1088/0, 3-37=0/771, 14-29=-2368/0, 14-31=0/1920, 12-31=-1974/0, 12-32=0/919, 8-32=-898/0, 8-34=0/586, 5-37=-569/0, 5-36=-12/676, 6-36=-294/0, 7-34=-741/0, 16-29=-1459/0, 16-28=0/1007, 18-28=-1102/0, 22-24=-882/54, 22-25=-86/499, 21-25=-390/232, 21-26=-562/0, 18-27=0/1258, 19-27=-533/0									
 All plates are MT20 All plates are 3x4 M Plates checked for a Provide mechanical Recommend 2x6 st Strongbacks to be a CAUTION, Do not e Hanger(s) or other o chord. The design/ 	ve loads have been considered for this d plates unless otherwise indicated. IT20 unless otherwise indicated. a plus or minus 1 degree rotation about i l connection (by others) of truss to bearir rongbacks, on edge, spaced at 10-0-0 c attached to walls at their outer ends or re erect truss backwards. connection device(s) shall be provided s selection of such connection device(s) is (S) section, loads applied to the face of t	ts center. Ig plate capable of withsta ic and fastened to each tr strained by other means. ufficient to support concer the responsibility of othe	uss with 3-10d (0. ntrated load(s) 413 rs.	131" X 3") nails			NOFES SE 036	AL		
Uniform Loads (plf)	balanced): Lumber Increase=1.00, Plate 9=-10, 1-23=-100 s (lb)	Increase=1.00				Comments of the		CILDEN		

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job		Truss	Truss Type	Qty	Ply	Precision/20 Liberty Meadows/Harnett
10000 4047		-		-		154046259
J0322-1317		F2	Floor	5	1	
						Job Reference (optional)
Comtech, Inc,	Fayettev	ville, NC - 28314,		8	8.430 s J	an 6 2022 MiTek Industries, Inc. Tue Sep 6 13:53:54 2022 Page 1
ID:TBflsx8xnbQ8q?qAEUg6cKzS70A-GYr2W6AK7ivDS2iXFiry0k_Tlx5ImQibP1N90hygKe						
0.1.9						
0-1-8						

HI 1-3-0 -1-8 Scale = 1:55.9

	14-7-4 14-7-4		19-8-12 5-1-8	<u>32-11-0</u> 13-2-4			
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.70 BC 0.65 WB 0.70 Matrix-S	DEFL. ir Vert(LL) -0.27 Vert(CT) -0.38 Horz(CT) 0.05	34 >858 480 34 >627 360	PLATES MT20 M18AHS Weight: 167 lb	GRIP 244/190 186/179 FT = 20%F, 11%E	
BOT CHORD 2x4 SF	2 2400F 2.0E(flat) 2 2400F 2.0E(flat) 2 No.3(flat)	BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dir except end verticals. Rigid ceiling directly applied o	,	oc purlins,		

REACTIONS. (size) 37=0-3-0, 27=0-3-8, 22=0-3-0 Max Grav 37=953(LC 10), 27=2150(LC 1), 22=621(LC 4)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

 FORCES
 (ii) - Max. Comp./max. Ten. - Air forces 250 (ib) of ress except when shown.

 TOP CHORD
 2-3=-2014/0, 3-4=-3356/0, 4-5=-3356/0, 5-6=-3950/0, 6-7=-3950/0, 7-8=-3454/0, 8-10=-2300/0, 10-11=-2300/0, 11-12=-379/347, 12-13=-0/2735, 13-14=0/2735, 14-16=-486/1427, 16-17=-1633/515, 17-18=-1633/515, 18-19=-1633/515, 19-20=-1198/26

 BOT CHORD
 36-37=0/1196, 35-36=0/2803, 34-35=0/3743, 33-34=0/3950, 32-33=0/3950, 30-32=0/3014, 29-30=-29/1454, 27-29=-1220/0, 26-27=-1763/0, 25-26=-1049/1109, 24-25=-515/1633, 23-24=-155/1563, 22-23=0/765

 WISDO
 0.52

WEBS 2-37=-1497/0, 2-36=0/1065, 3-36=-1027/0, 3-35=0/705, 12-27=-1900/0, 12-29=0/1468, 11-29=-1445/0, 11-30=0/1128, 8-30=-947/0, 8-32=0/684, 5-35=-495/0, 5-34=-175/543, 7-32=-902/0, 14-27=-1409/0, 14-26=0/960, 16-26=-1036/0, 20-22=-957/0, 20-23=-38/563, 19-23=-475/168, 19-24=-452/87, 16-25=0/1148, 17-25=-491/0

NOTES-

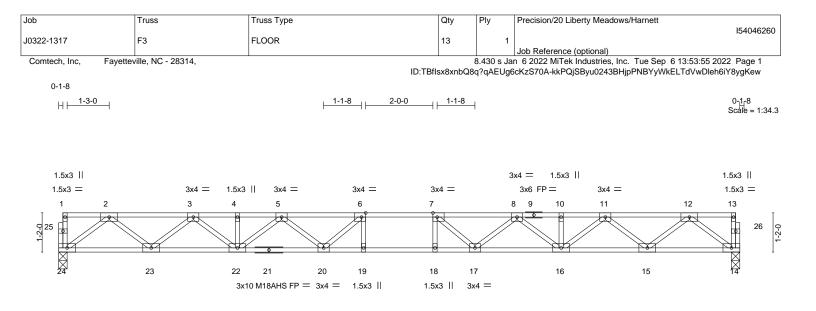
1) Unbalanced floor live loads have been considered for this design.

2) All plates are MT20 plates unless otherwise indicated.

3) All plates are 3x4 MT20 unless otherwise indicated.

4) Plates checked for a plus or minus 1 degree rotation about its center.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.


Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	20-3-0								
Plate Offsets (X,Y)	[6:0-1-8,Edge], [7:0-1-8,Edge]		20-3-0					· · · · · · · · · · · · · · · · · · ·	
LOADING (psf) TCLL 40.0	SPACING- 1-7-3 Plate Grip DOL 1.00	CSI. TC 0.27		in (loc) -0.30 18-19	l/defl >801	L/d 480	PLATES MT20	GRIP 244/190	
TCDL 10.0 BCLL 0.0 BCDL 5.0	Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	BC 0.55 WB 0.49 Matrix-S		-0.41 18-19 0.07 14	>581 n/a	360 n/a	M18AHS Weight: 102 lb	186/179 FT = 20%F, 11%E	
BOT CHORD 2x4 SI	P 2400F 2.0E(flat) P 2400F 2.0E(flat) P No.3(flat) e) 24=0-3-0, 14=0-3-0	BRACING- TOP CHORD BOT CHORD	except	Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.					
Max C	Grav 24=874(LC 1), 14=874(LC 1)								
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-1894/0, 3-4=-3231/0, 4-5=-3231/0, 5-6=-3966/0, 6-7=-4188/0, 7-8=-3966/0, 8-10=-3231/0, 10-11=-3231/0, 11-12=-1894/0									
16-1	BOT CHORD 23-24=0/1104, 22-23=0/2656, 20-22=0/3714, 19-20=0/4188, 18-19=0/4188, 17-18=0/4188, 16-17=0/3714, 15-16=0/2656, 14-15=0/1104								

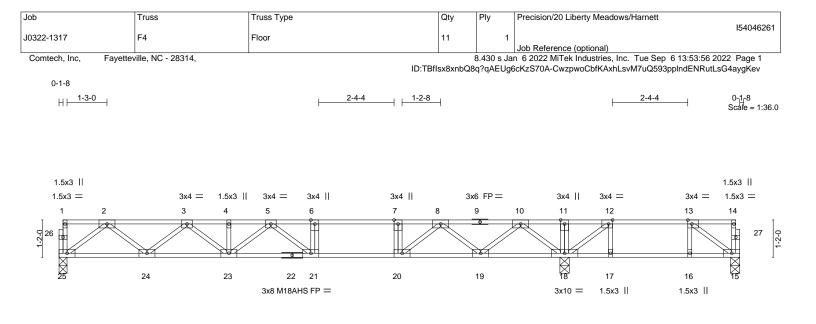
11-15=-993/0, 11-16=0/734, 5-22=-617/0, 5-20=0/453, 8-16=-617/0, 8-17=0/453, 7-17=-555/72, 6-20=-555/72

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are MT20 plates unless otherwise indicated.

3) All plates are 3x6 MT20 unless otherwise indicated.


4) Plates checked for a plus or minus 1 degree rotation about its center.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Plate Offsets (X,Y)	[12:0-1-8,Edge], [13:0-1-8,Edge]	15-9-12 15-9-12			21-3-8 5-5-12	
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.67 BC 0.62 WB 0.49 Matrix-S	Vert(LL) -0.20	n (loc) l/defl L/d 5 21-23 >724 480 5 21-23 >535 360 4 15 n/a n/a	PLATES MT20 M18AHS Weight: 108 lb	GRIP 244/190 186/179 FT = 20%F, 11%E
BOT CHORD 2x4 SF	 2400F 2.0E(flat) 2400F 2.0E(flat) No.3(flat) 		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing except end verticals. Rigid ceiling directly applie		oc purlins,

REACTIONS. (size) 25=0-3-0, 18=0-3-8, 15=0-3-8 Max Grav 25=837(LC 10), 18=1251(LC 9), 15=267(LC 4)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-1720/0, 3-4=-2792/0, 4-5=-2792/0, 5-6=-2928/0, 6-7=-2928/0, 7-8=-2928/0, 8-10=-1500/0, 10-11=0/406, 11-12=0/406, 12-13=-283/78 BOT CHORD 24-25=0/1041, 23-24=0/2381, 21-23=0/3024, 20-21=0/2928, 19-20=0/2225, 18-19=0/810,

 17-18=-78/283, 16-17=-78/283, 15-16=-78/283

 WEBS
 2-25=-1303/0, 2-24=0/883, 3-24=-861/0, 3-23=0/525, 5-23=-296/0, 5-21=-310/289,

7-20=-456/0, 10-18=-1382/0, 10-19=0/910, 8-19=-962/0, 12-18=-670/0, 13-15=-346/99, 8-20=0/1032

NOTES-

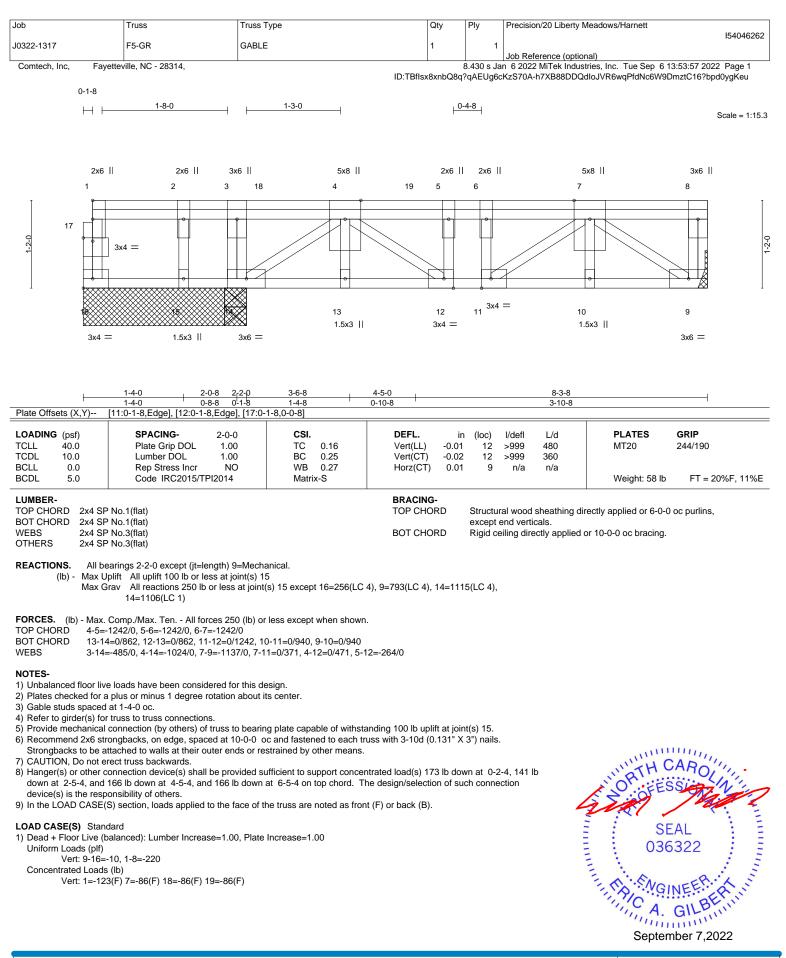
1) Unbalanced floor live loads have been considered for this design.

2) All plates are MT20 plates unless otherwise indicated.

3) All plates are 3x6 MT20 unless otherwise indicated.

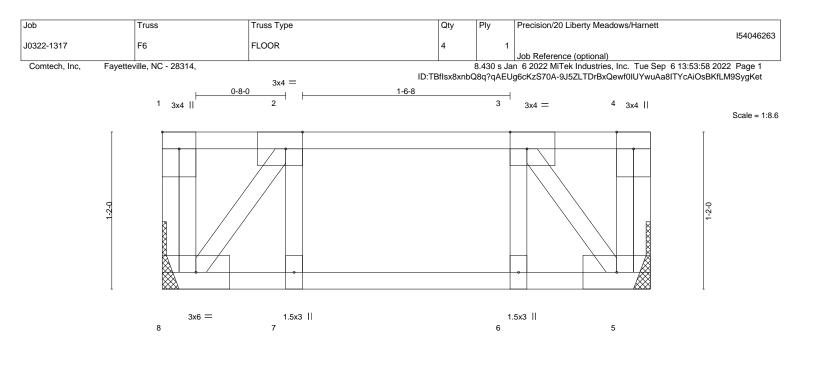
4) Plates checked for a plus or minus 1 degree rotation about its center.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.


Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss system. See **MSIVTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Edenton, NC 27932

						5-1-0						
		l.				3-7-8					ļ	
Plate Offs	sets (X,Y)	[1:Edge,0-1-8], [2:0-1-8,E	Edge], [3:0-1-8	8,Edge]								
LOADING	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.08	Vert(LL)	-0.00	7	>999	480	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.04	Vert(CT)	-0.00	7	>999	360		
BCLL	0.0	Rep Stress Incr	YES	WB	0.05	Horz(CT)	0.00	5	n/a	n/a		
BCDL	5.0	Code IRC2015/TF	PI2014	Matrix	(-S						Weight: 22 lb	FT = 20%F, 11%E
LUMBER TOP CHO BOT CHO		P No.1(flat) P No.1(flat)				BRACING- TOP CHOF	D		ral wood end verti	•	rectly applied or 3-7-8	oc purlins,

3-7-8

BOT CHORD

_

F WEBS 2x4 SP No.3(flat)

REACTIONS. (size) 5=Mechanical, 8=Mechanical Max Grav 5=186(LC 1), 8=186(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

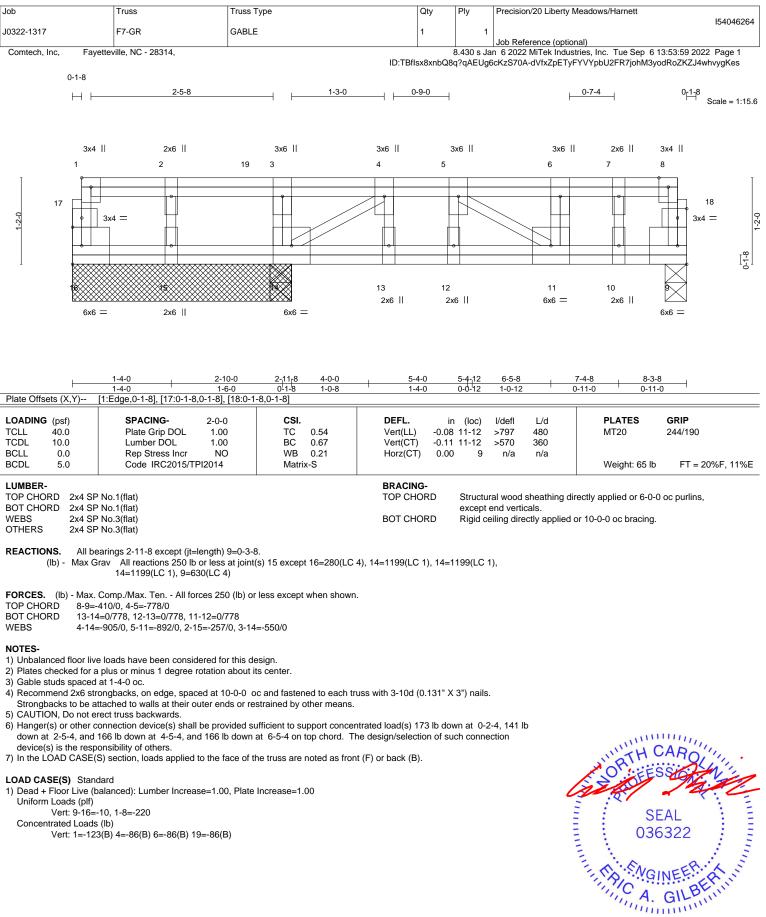
1) Unbalanced floor live loads have been considered for this design.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Refer to girder(s) for truss to truss connections.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.



3x6 =

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

September 7,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

RE: J0322-1316

Trenco 818 Soundside Rd Edenton, NC 27932

Truss Name

VA5

VA6

VA7

Date

9/7/2022

9/7/2022

9/7/2022

Precision/20 Liberty Meadows/Harnett
Site Information:

Customer: Project Name: J0322-1316 Lot/Block: Address: City:

Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

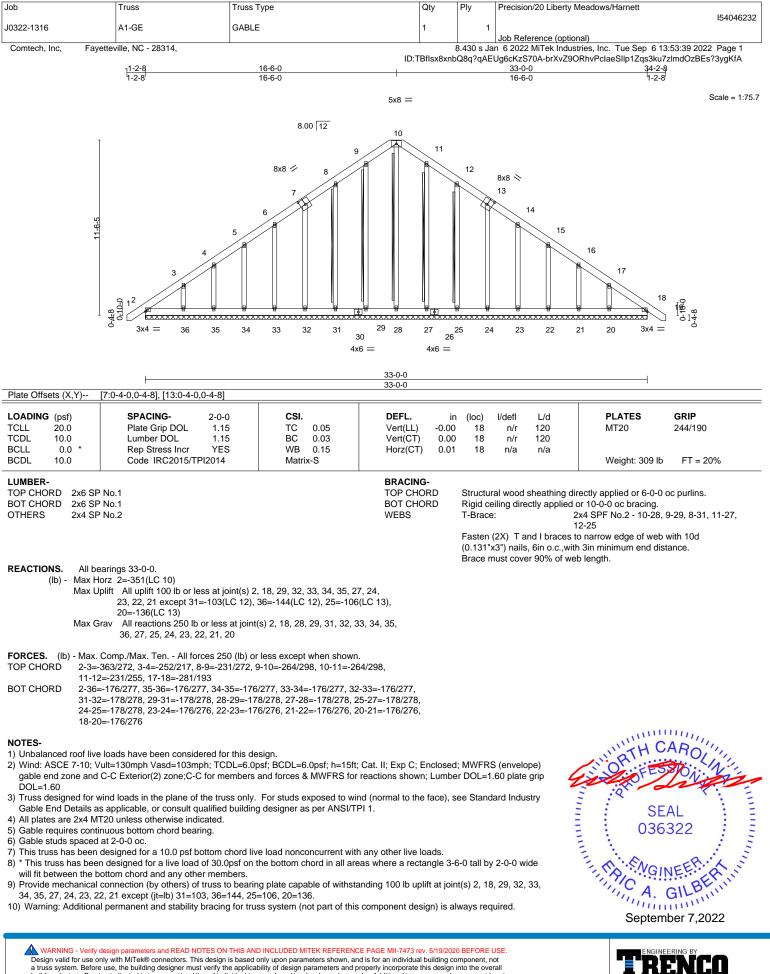
Design Code: IRC2015/TPI2014 Wind Code: ASCE 7-10 Roof Load: 40.0 psf Design Program: MiTek 20/20 8.4 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 23 individual, dated Truss Design Drawings and 0 Additional Drawings.

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision

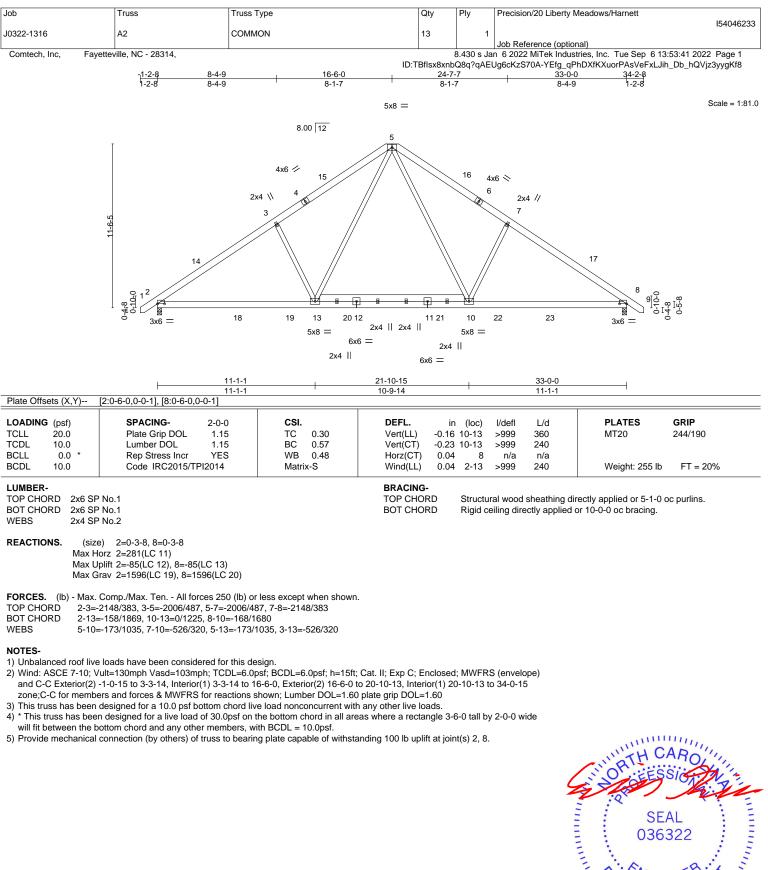
based on the parameters provided by Comtech, Inc - Fayetteville.

Truss Design Engineer's Name: Gilbert, Eric


My license renewal date for the state of North Carolina is December 31, 2022

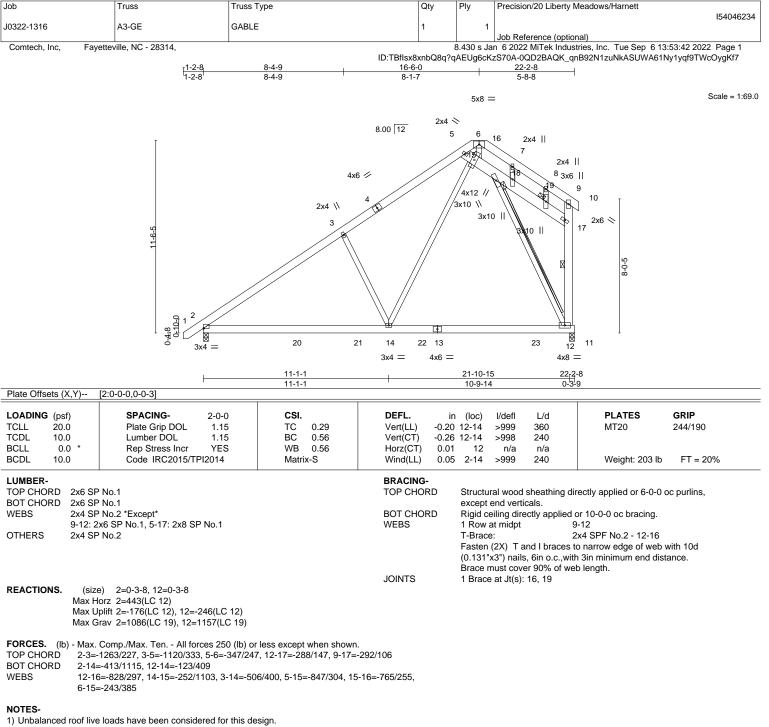
North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

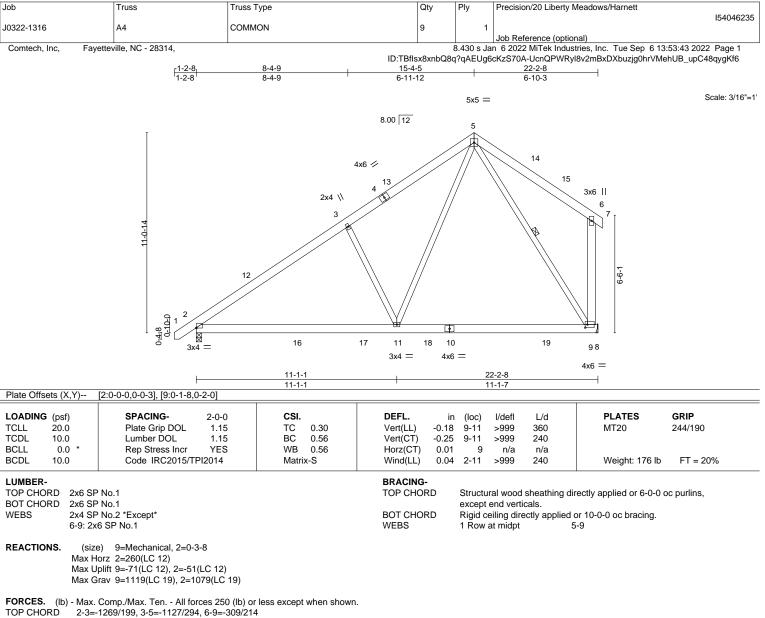


Gilbert, Eric

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable studs spaced at 2-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=176, 12=246.
- 8) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **AnSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

- BOT CHORD 2-11=-244/1093, 9-11=-58/497
- WEBS 3-11=-518/305, 5-9=-829/101, 5-11=-143/1064

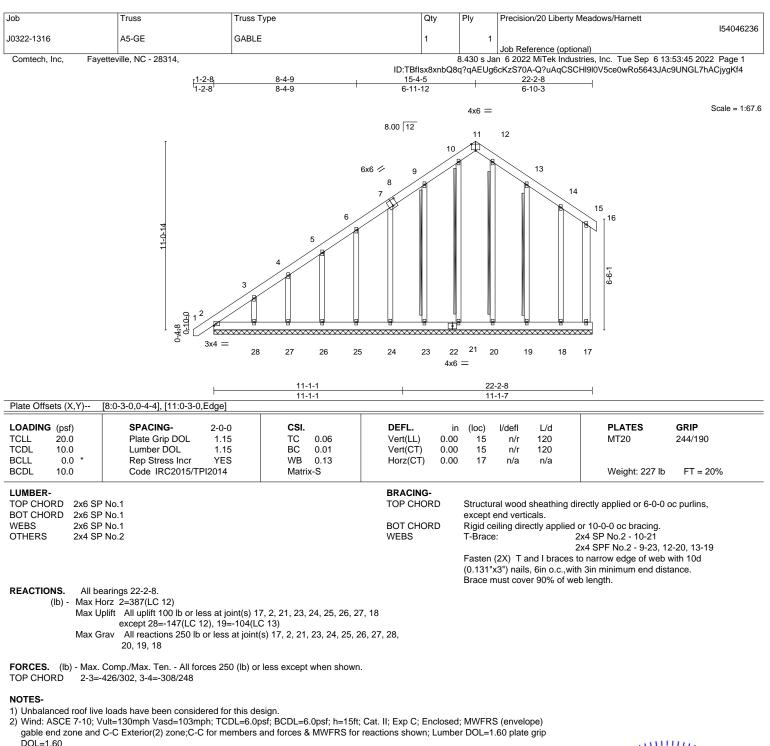
NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-0-15 to 3-3-14, Interior(1) 3-3-14 to 15-4-5, Exterior(2) 15-4-5 to 19-9-2, Interior(1) 19-9-2 to 22-5-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.


5) Refer to girder(s) for truss to truss connections.

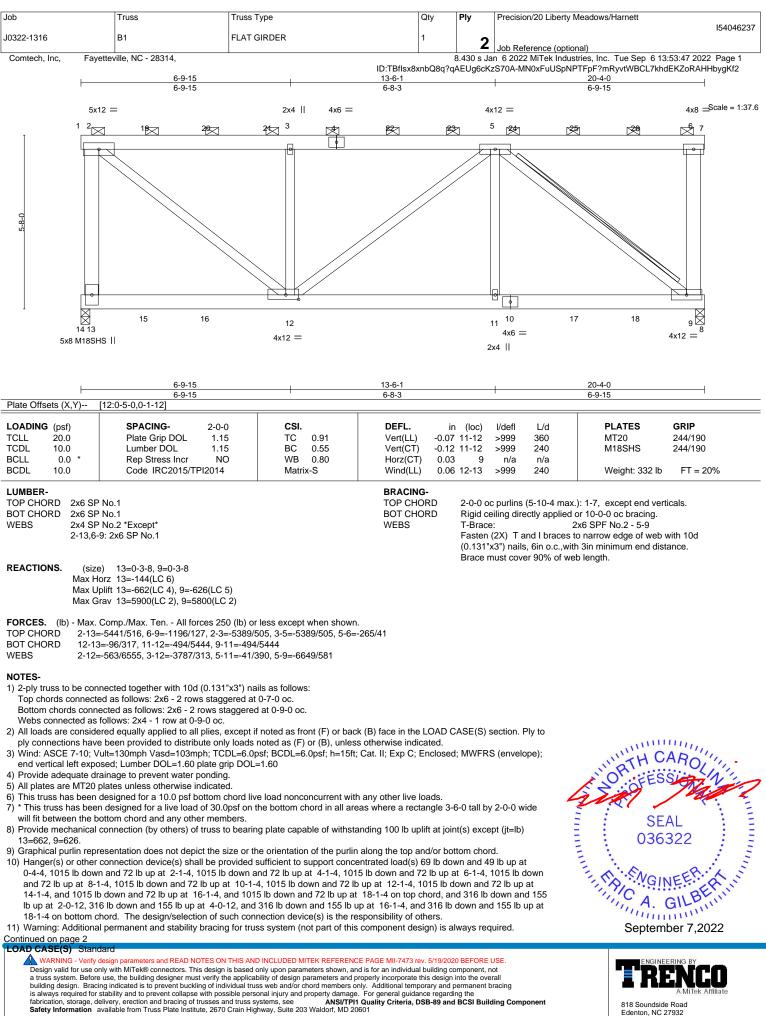
6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 9, 2.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 17, 2, 21, 23, 24, 25, 26, 27, 18 except (jt=lb) 28=147, 19=104.

10) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

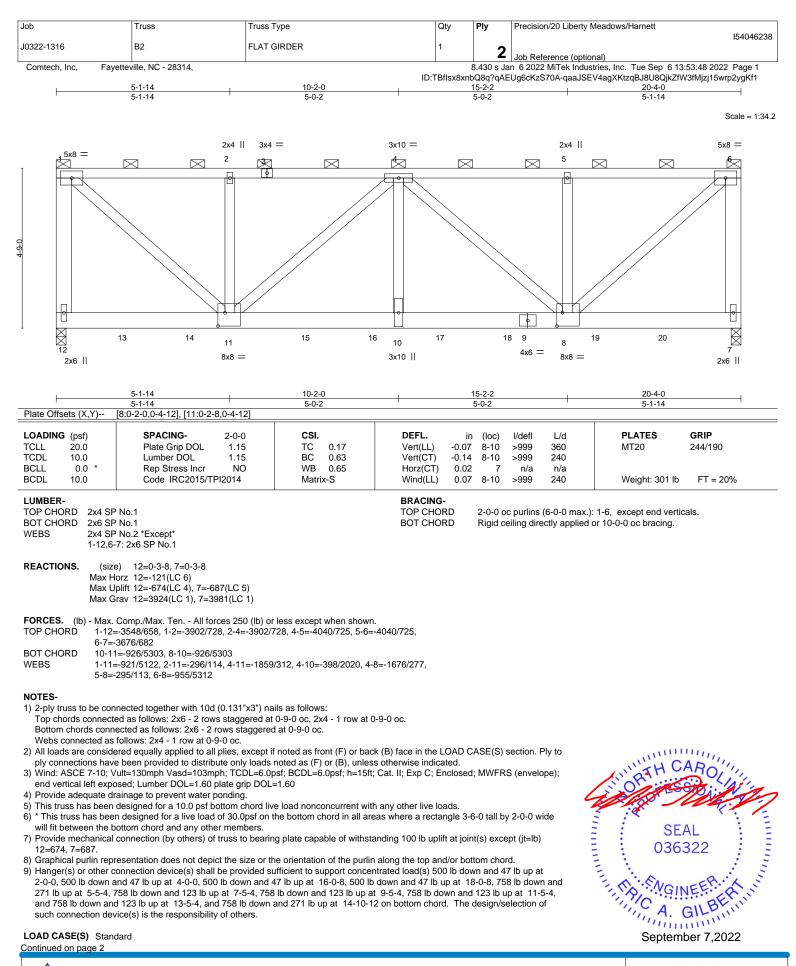
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Edenton, NC 27932

Job)	Truss	Truss Type	Qty	Ply	Precision/20 Liberty Meadows/Harnett
						154046237
J03	22-1316	B1	FLAT GIRDER	1	2	
						Job Reference (optional)
C	omtech, Inc, Fayettev	rille, NC - 28314,			8.430 s Ja	n 6 2022 MiTek Industries, Inc. Tue Sep 6 13:53:47 2022 Page 2

30 s Jan 6 2022 MiTek Industries, Inc. Tue Sep 6 13:53:47 2022 Page 2 ID:TBflsx8xnbQ8q?qAEUg6cKzS70A-MN0xFuUSpNPTFpF?mRyvtWBCL7khdEKZoRAHHbygKf2

LOAD CASE(S) Standard


1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 8-14=-20, 1-2=-60, 2-6=-60, 6-7=-60

Concentrated Loads (lb) Vert: 2=-65 4=-850(F) 15=-316(B) 16=-316(B) 17=-316(B) 18=-316(B) 19=-850(F) 20=-850(F) 21=-850(F) 22=-850(F) 23=-850(F) 24=-850(F) 25=-850(F) 26=-850(F) 26=-850(F

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

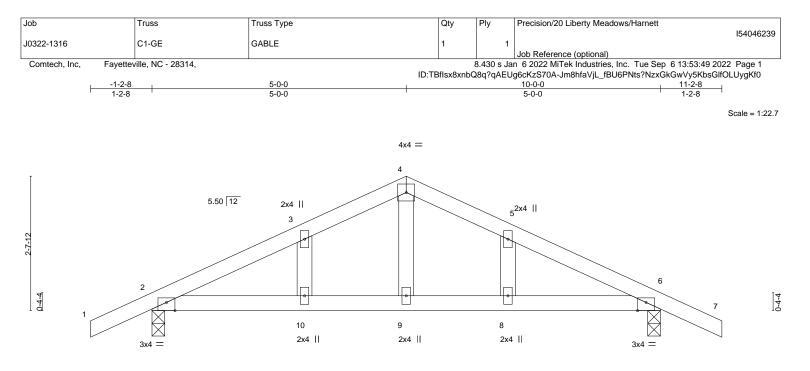
818 Soundside Road Edenton, NC 27932

Job		Truss	Truss Type	Qty	Ply	Precision/20 Liberty Meadows/Harnett
						154046238
J0322-13	16	B2	FLAT GIRDER	1	ົ	
					Z	Job Reference (optional)
Comtec	h, Inc, Fayettev	rille, NC - 28314,		-	8.430 s Ja	n 6 2022 MiTek Industries, Inc. Tue Sep 6 13:53:48 2022 Page 2

8.430 s Jan 6 2022 MiTek Industries, Inc. Tue Sep 6 13:53:48 2022 Page 2 ID:TBflsx8xnbQ8q?qAEUg6cKzS70A-qaaJSEV4agXKtzqBJ8U8QjkZfW3fMjzj15wrp2ygKf1

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15


Uniform Loads (plf) Vert: 1-6=-60, 7-12=-20

Concentrated Loads (lb)

Vert: 11=-758(B) 8=-758(B) 13=-441(F) 14=-441(F) 15=-758(B) 16=-758(B) 17=-758(B) 18=-758(B) 19=-441(F) 20=-441(F) 15=-758(B) 16=-758(B) 18=-758(B) 18=-758(B) 19=-441(F) 15=-758(B) 16=-758(B) 18=-758(B) 18=-75

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Plate Offsets (X,Y)		-0-0			10-0-0 5-0-0			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.18 BC 0.24 WB 0.05 Matrix-S	Vert(CT) - Horz(CT)	-0.02 -0.04 6 0.01	loc) l/defl 8 >999 6-8 >999 6 n/a 6-8 >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 42 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 WEBS 2x4 SP No.2 OTHERS 2x4 SP No.2		BRACING- TOP CHORD BOT CHORD		Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 8-8-0 oc bracing.				
Max U	e) 2=0-3-0, 6=0-3-0 lorz 2=-58(LC 13) lplift 2=-154(LC 8), 6=-154(LC 9) Grav 2=470(LC 1), 6=470(LC 1)							
TOP CHORD 2-3=	Comp./Max. Ten All forces 250 (lb) o -555/635, 3-4=-500/660, 4-5=-500/660, -470/453 9-10=-479/453 8-9=-479/45	5-6=-555/635						

BOT CHORD 2-10=-479/453, 9-10=-479/453, 8-9=-479/453, 6-8=-479/453

WEBS 4-9=-334/207

NOTES-

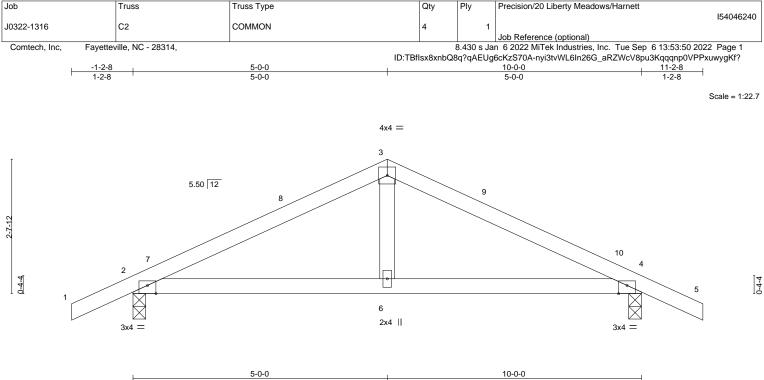
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Gable studs spaced at 2-0-0 oc.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=154, 6=154.

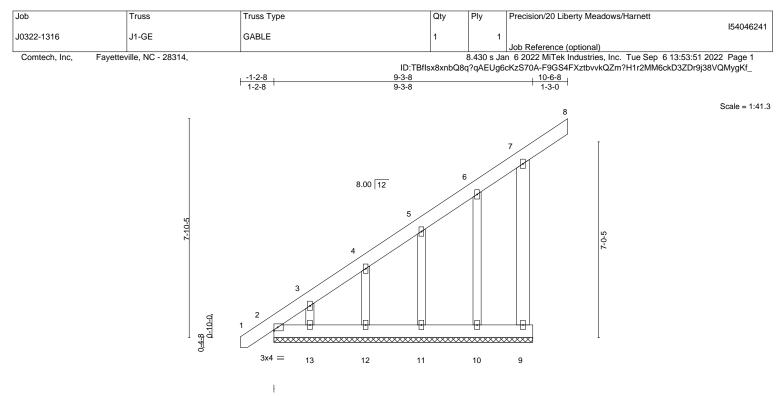
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

		5-0-0				
Plate Offsets (X,Y)	[2:0-2-0,Edge], [4:0-2-0,Edge]					
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.24 BC 0.20 WB 0.05 Matrix-S	DEFL. in Vert(LL) -0.01 Vert(CT) -0.03 Horz(CT) 0.01 Wind(LL) 0.04	4-6 >999 360 4-6 >999 240 4 n/a n/a	PLATES MT20 Weight: 39 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF	' No.1		BRACING- TOP CHORD BOT CHORD		ning directly applied or 6-0-0 oplied or 9-1-1 oc bracing.	oc purlins.
Max H Max U	a) 2=0-3-0, 4=0-3-0 orz 2=-34(LC 13) plift 2=-114(LC 8), 4=-114(LC 9) rav 2=470(LC 1), 4=470(LC 1)					
TOP CHORD 2-3=- BOT CHORD 2-6=-	Comp./Max. Ten All forces 250 (lb) of 554/617, 3-4=-554/617 448/442, 4-6=-448/442 302/232	less except when shown.				

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-2-8 to 3-2-5, Interior(1) 3-2-5 to 5-0-0, Exterior(2) 5-0-0 to 9-4-13, Interior(1) 9-4-13 to 11-2-8 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=114, 4=114.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.06	Vert(LL)	0.00	8	n/r	120	MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.01	Vert(CT)	0.00	7	n/r	120		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.07	Horz(CT)	0.00	9	n/a	n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S						Weight: 86 lb	FT = 20%

LUMBER-

 TOP CHORD
 2x6 SP No.1

 BOT CHORD
 2x6 SP No.1

 WEBS
 2x6 SP No.1

 OTHERS
 2x4 SP No.2

BRACING-TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. All bearings 9-3-8.

(lb) - Max Horz 2=353(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 2, 10, 11, 12 except 9=-140(LC 12), 13=-139(LC 12) Max Grav All reactions 250 lb or less at joint(s) 9, 2, 10, 11, 12, 13

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

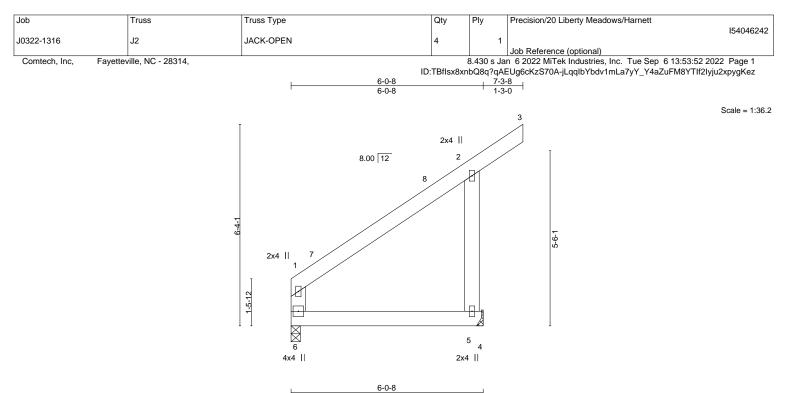
TOP CHORD 2-3=-469/347, 3-4=-364/265, 4-5=-280/197, 7-9=-208/253

NOTES-

 Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- 3) All plates are 2x4 MT20 unless otherwise indicated.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 10, 11, 12 except (jt=lb) 9=140, 13=139.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

					6-0-8						
LOADIN	G (psf)	SPACING- 2-0-0) CS	I.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL 1.15	б ТС	0.19	Vert(LL)	-0.01	5-6	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL 1.15	5 BC	0.13	Vert(CT)	-0.02	5-6	>999	240		
BCLL	0.0 *	Rep Stress Incr YES	S WB	0.07	Horz(CT)	0.00		n/a	n/a		
BCDL	10.0	Code IRC2015/TPI2014	Mat	trix-S	Wind(LL)	0.01	5-6	>999	240	Weight: 47 lb	FT = 20%

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WEBS

2x6 SP No.1

- REACTIONS. (size) 6=0-3-8, 5=Mechanical Max Horz 6=146(LC 12) Max Uplift 5=-135(LC 12) Max Grav 6=204(LC 1), 5=359(LC 19)
- FORCES. (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown. WEBS 2-5=-347/349

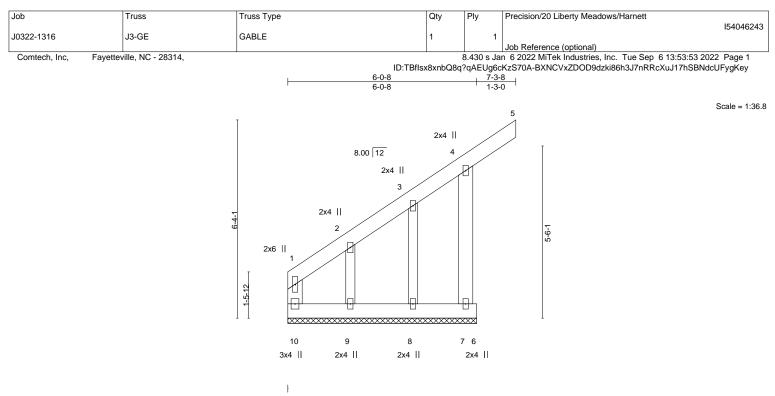
NOTES-

1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-2-12 to 4-7-9, Interior(1) 4-7-9 to 7-3-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 5=135.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2015/TPI2014	CSI. TC 0.09 BC 0.09 WB 0.04 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 5 4	l/defl n/r n/r n/a	L/d 120 120 n/a	PLATES MT20 Weight: 55 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 SP No.1				RD	Structu	ral wood	sheathing di	rectly applied or 6-0-0	oc purlins.

BOT CHORD	2x6 SP No.1
WEBS	2x6 SP No.1
OTHERS	2x4 SP No.2

TOP CHORD

BOT CHORD

al wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 6-0-8.

(lb) - Max Horz 10=213(LC 12)

Max Uplift All uplift 100 lb or less at joint(s) 10, 6, 8 except 9=-295(LC 12), 7=-156(LC 12) Max Grav All reactions 250 lb or less at joint(s) 6, 9, 8, 7 except 10=278(LC 12)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 1-2=-343/240

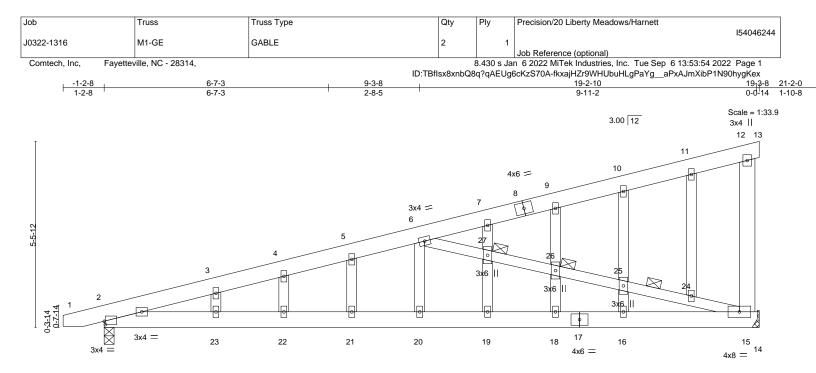
WEBS 4-7=-222/278

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).


5) Gable studs spaced at 2-0-0 oc.

- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 10, 6, 8 except (jt=lb) 9=295, 7=156.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

L	7-1-6		9-3-8		19-3-8					
	7-1-6		2-2-2		10-0-0)	1			
Plate Offsets (X,Y)	[2:0-0-6,0-1-3]									
LOADING (psf) ITCLL 20.0 ITCDL 10.0 ITCDL 0.0 *	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYES	CSI. TC 0.21 BC 0.36 WB 0.25	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) l/d -0.08 18 >99 -0.16 18-19 >99 0.03 15 r	99 360	PLATES MT20	GRIP 244/190			
SCDL 10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL)	0.09 18 >9	99 240	Weight: 145 lb	FT = 20%			
LUMBER- TOP CHORD 2x6 SF BOT CHORD 2x6 SF		1	BRACING TOP CHO		0	ectly applied or 5-9-12	oc purlins,			
12-15:	P No.2 *Except* : 2x6 SP No.1		BOT CHO WEBS	1 Row at m	idpt 1	r 9-8-5 oc bracing. 5-26				
OTHERS 2x4 SF	P No.2		JOINTS	1 Brace at	Jt(s): 26, 27					

REACTIONS. (size) 15=Mechanical, 2=0-3-8 Max Horz 2=236(LC 8) Max Uplift 15=-251(LC 12), 2=-238(LC 8) Max Grav 15=778(LC 1), 2=816(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1744/443, 3-4=-1682/466, 4-5=-1666/484, 5-6=-1642/503

- BOT CHORD
 2-23=-642/1617, 22-23=-642/1617, 21-22=-642/1617, 20-21=-642/1617, 19-20=-642/1617, 18-19=-642/1617, 15-16=-642/1617

 WEBS
 6-20=-106/362, 6-27=-1611/641, 26-27=-1576/627, 25-26=-1580/630, 24-25=-1587/631,
- WEBS 6-20=-106/302, 6-27=-1611/641, 26-27=-1576/627, 25-26=-1580/630, 24-25=-1587/631 15-24=-1621/646

NOTES-

 Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

All plates are 2x4 MT20 unless otherwise indicated.

4) Gable studs spaced at 2-0-0 oc.

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


7) Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 15=251, 2=238.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Wind(LL)

BRACING-

TOP CHORD

BOT CHORD

WEBS

2-10

0.06

>999

except end verticals.

1 Row at midpt

240

Rigid ceiling directly applied or 10-0-0 oc bracing.

Structural wood sheathing directly applied or 5-5-8 oc purlins,

3-8

Weight: 122 lb

FT = 20%

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

Code IRC2015/TPI2014

TOP CHORD 2-3=-1758/239, 5-8=-268/189

BOT CHORD 2-10=-383/1636, 8-10=-383/1636

2x6 SP No 1

2x4 SP No.2 *Except*

Max Horz 2=165(LC 8)

(size) 8=Mechanical, 2=0-3-8

Max Uplift 8=-103(LC 12), 2=-98(LC 8) Max Grav 8=778(LC 1), 2=816(LC 1)

5-8: 2x6 SP No.1

WEBS 3-10=0/418, 3-8=-1601/364

NOTES-

BCDL

WEBS

LUMBER-

BOT CHORD

REACTIONS.

10.0

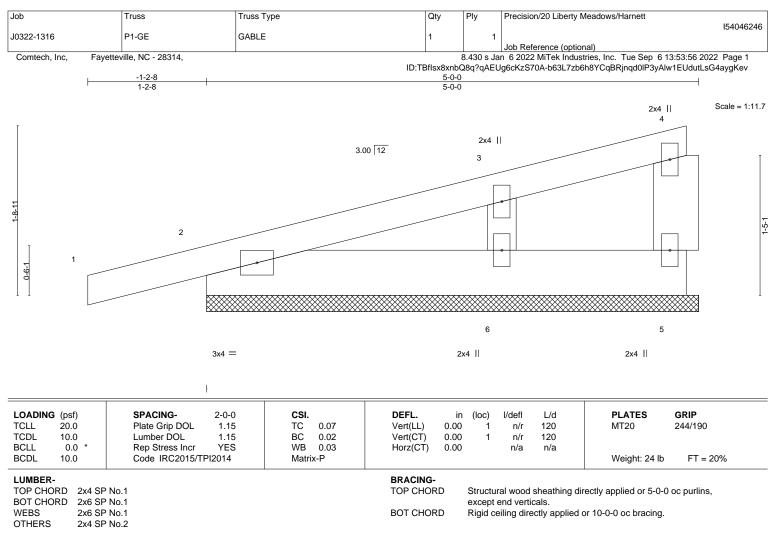
TOP CHORD 2x6 SP No.1

 Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-10-15 to 3-5-14, Interior(1) 3-5-14 to 19-3-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Matrix-S

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

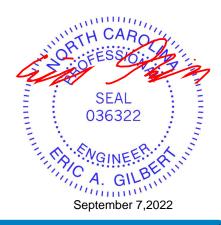

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2 except (jt=lb) 8=103.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

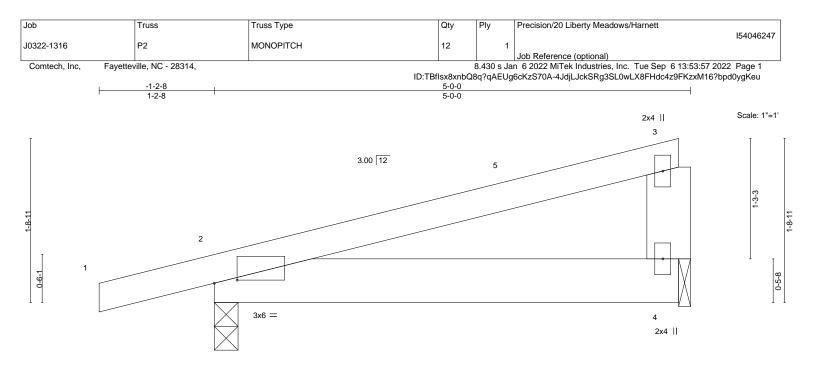
REACTIONS. (size) 5=5-0-0, 2=5-0-0, 6=5-0-0

Max Horz 2=73(LC 8) Max Uplift 5=-17(LC 8), 2=-92(LC 8), 6=-71(LC 12) Max Grav 5=40(LC 1), 2=189(LC 1), 6=225(LC 1)


FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.


3) Gable requires continuous bottom chord bearing.

- 4) Gable studs spaced at 2-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 2, 6.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss system. See **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Plate Offsets (X,Y)	[2:0-2-14,0-0-6]						1	
OADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loo) l/defl	L/d	PLATES	GRIP
CLL 20.0	Plate Grip DOL 1.15	TC 0.26	Vert(LL) -(0.01 2-	4 >999	360	MT20	244/190
CDL 10.0	Lumber DOL 1.15	BC 0.08	Vert(CT) -	0.01 2-	4 >999	240		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT)	0.00	n/a	n/a		
3CDL 10.0	Code IRC2015/TPI2014	Matrix-P	Wind(LL)	0.01 2-	4 >999	240	Weight: 23 lb	FT = 20%

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No 1 BOT CHORD 2x6 SP No.1 WEBS 2x6 SP No.1

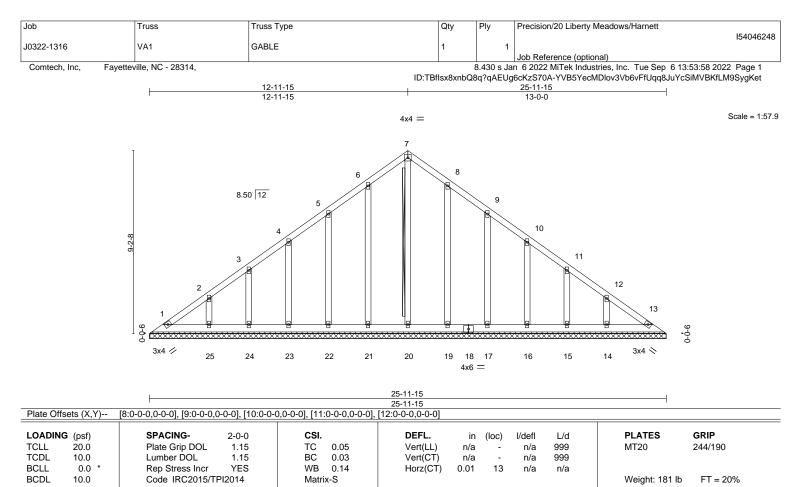
REACTIONS. (size) 2=0-3-0, 4=0-1-8 Max Horz 2=51(LC 8)

Max Uplift 2=-121(LC 8), 4=-71(LC 8) Max Grav 2=277(LC 1), 4=174(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-2-8 to 3-2-5, Interior(1) 3-2-5 to 4-9-4 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 2=121.


Structural wood sheathing directly applied or 5-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOWIDER-	
TOP CHORD	2x4 SP No.1
BOT CHORD	2x6 SP No.1
OTHERS	2x4 SP No.2

BRACING-TOP CHORD BOT CHORD WEBS

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing. T-Brace: 2x4 SPF No.2 - 7-20 Fasten (2X) T and I braces to narrow edge of web with 10d (0.131"x3") nails, 6in o.c., with 3in minimum end distance. Brace must cover 90% of web length.

REACTIONS. All bearings 25-11-15. (lb) - Max Horz 1=-264(LC 8

Max Horz 1=-264(LC 8) Max Uplift All uplift 100 lb or less at joint(s) 1, 13, 21, 22, 23, 24, 19, 17, 16, 15 except 25=-126(LC 12), 14=-124(LC 13)

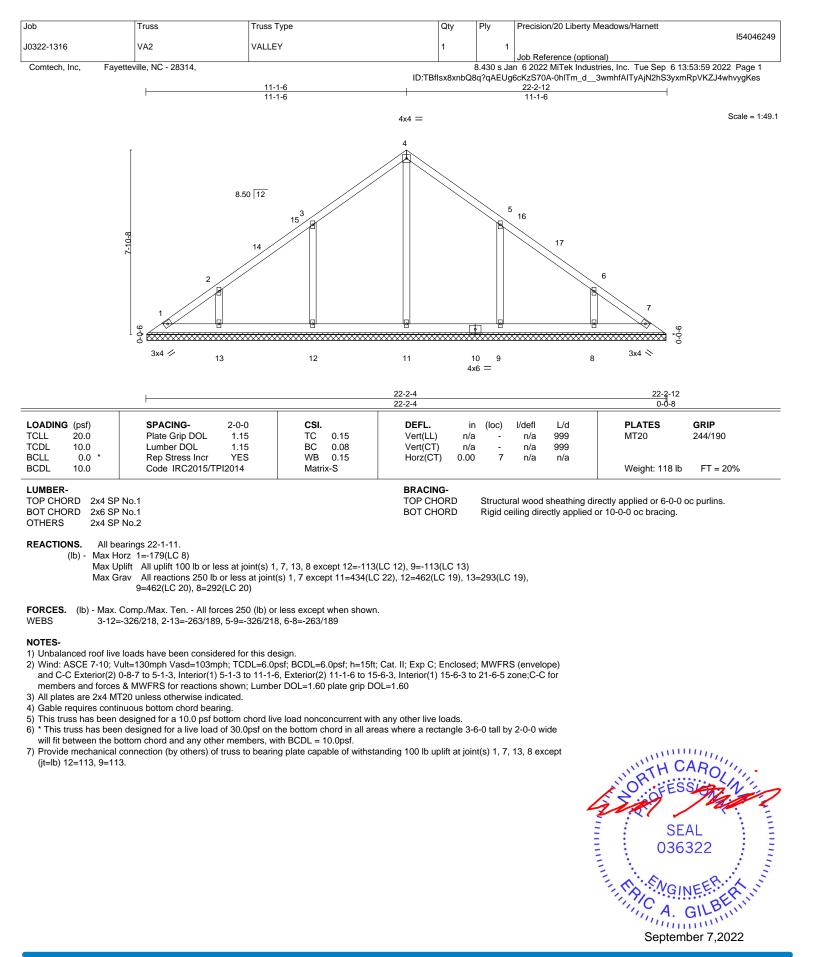
Max Grav All reactions 250 lb or less at joint(s) 1, 13, 20, 21, 22, 23, 24, 25, 19, 17, 16, 15, 14

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

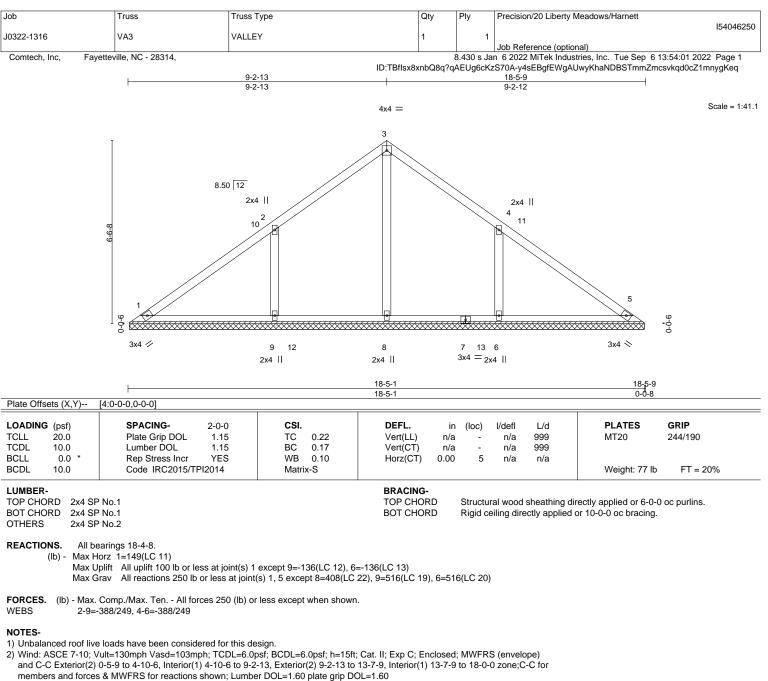
TOP CHORD 1-2=-286/197

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) All plates are 2x4 MT20 unless otherwise indicated.


4) Gable requires continuous bottom chord bearing.

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 13, 21, 22, 23,
- 24, 19, 17, 16, 15 except (jt=lb) 25=126, 14=124.
- 8) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

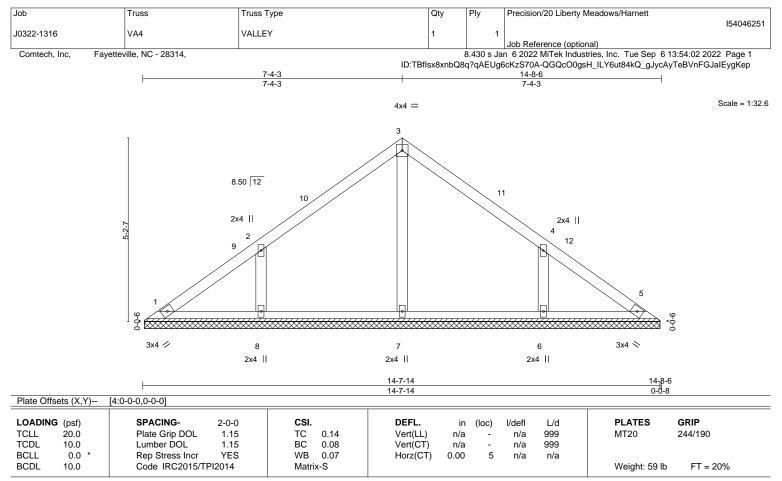


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 9=136, 6=136.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LUMBER-

TOP CHORD2x4 SP No.1BOT CHORD2x4 SP No.1OTHERS2x4 SP No.2

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 14-7-5.

(lb) - Max Horz 1=-117(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 1 except 8=-108(LC 12), 6=-107(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=252(LC 1), 8=351(LC 19), 6=351(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 2-8=-305/211, 4-6=-305/211

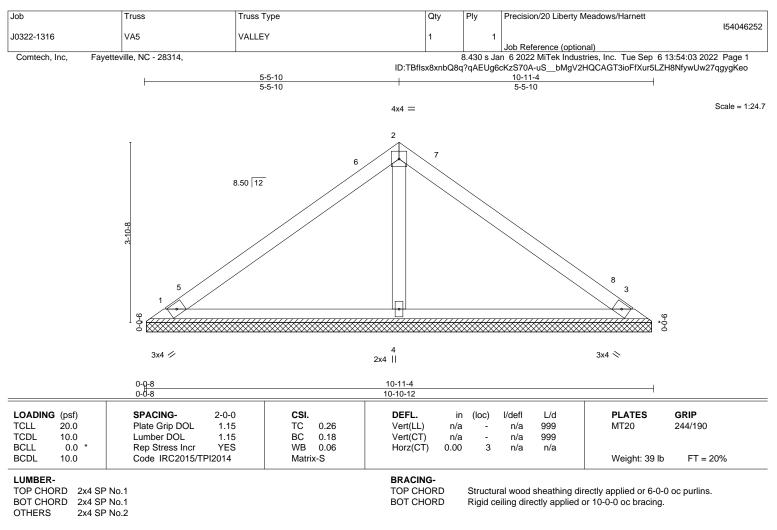
NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-5-9 to 4-10-6, Interior(1) 4-10-6 to 7-4-3, Exterior(2) 7-4-3 to 11-9-0, Interior(1) 11-9-0 to 14-2-13 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 8=108, 6=107.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss system. See **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

REACTIONS. (size) 1=10-10-3, 3=10-10-3, 4=10-10-3 Max Horz 1=-85(LC 8) Max Uplift 1=-25(LC 12), 3=-33(LC 13) Max Grav 1=202(LC 1), 3=203(LC 1), 4=395(LC 1)

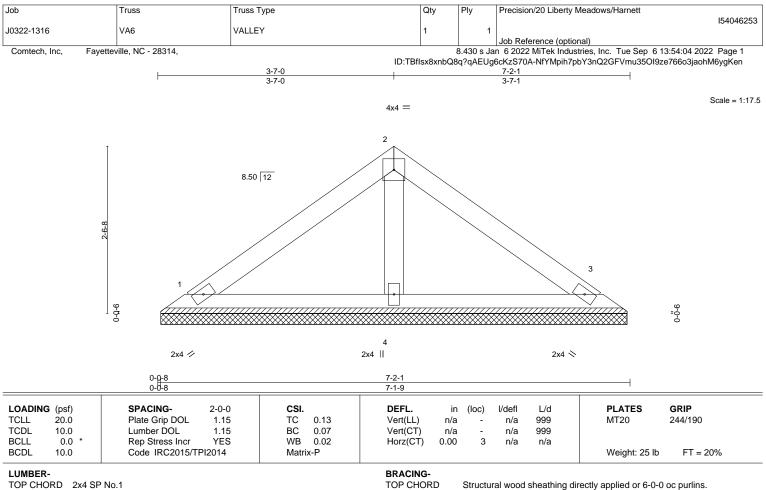
FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-5-9 to 4-10-6, Interior(1) 4-10-6 to 5-5-10, Exterior(2) 5-5-10 to 9-10-7, Interior(1) 9-10-7 to 10-5-11 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

6) Non Standard bearing condition. Review required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss system. See **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

I OP CHORD2x4 SP No.1BOT CHORD2x4 SP No.1OTHERS2x4 SP No.2

REACTIONS. (size) 1=7-1-0, 3=7-1-0, 4=7-1-0 Max Horz 1=-53(LC 10)

Max Uplift 1=-22(LC 12), 3=-27(LC 13) Max Grav 1=138(LC 1), 3=138(LC 1), 4=223(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

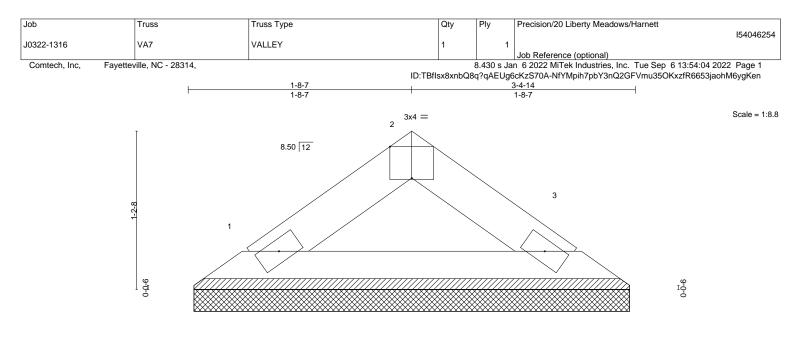
NOTES

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.6) Non Standard bearing condition. Review required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

2x4 1/

2x4 📎

Structural wood sheathing directly applied or 3-4-14 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

	0-0-8 0-0-8				<u>3-4-14</u> 3-4-6						
Plate Offsets (X,Y)	[2:0-2-0,Edge]		-							-	
LOADING (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.15	тс	0.02	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL 10.0	Lumber DOL	1.15	BC	0.05	Vert(CT)	n/a	-	n/a	999		
BCLL 0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL 10.0	Code IRC2015/TF	PI2014	Matrix	k-P						Weight: 10 lb	FT = 20%

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1

REACTIONS. (size) 1=3-3-13, 3=3-3-13 Max Horz 1=-21(LC 10) Max Uplift 1=-5(LC 12), 3=-5(LC 13) Max Grav 1=99(LC 1), 3=99(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

