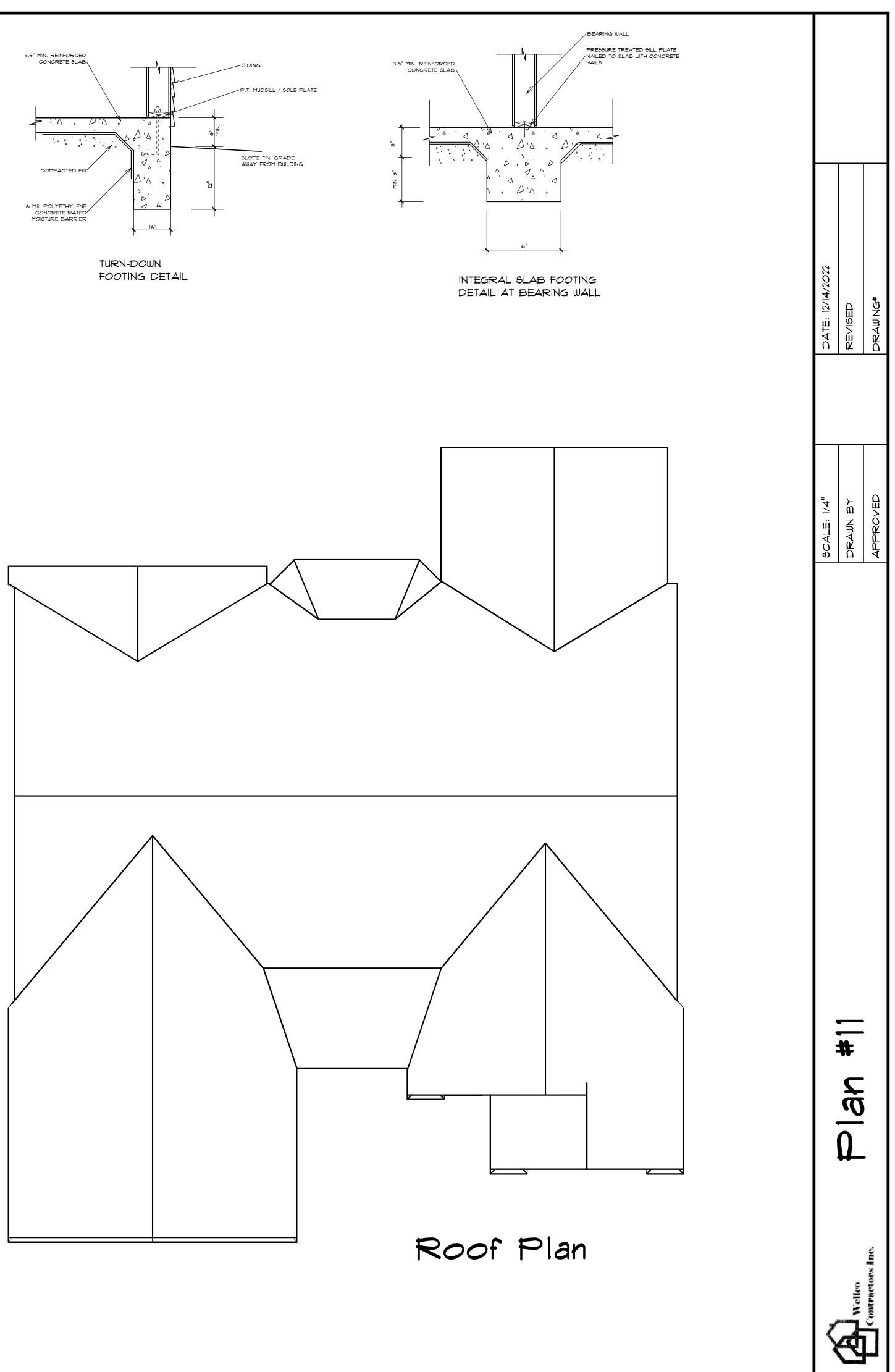
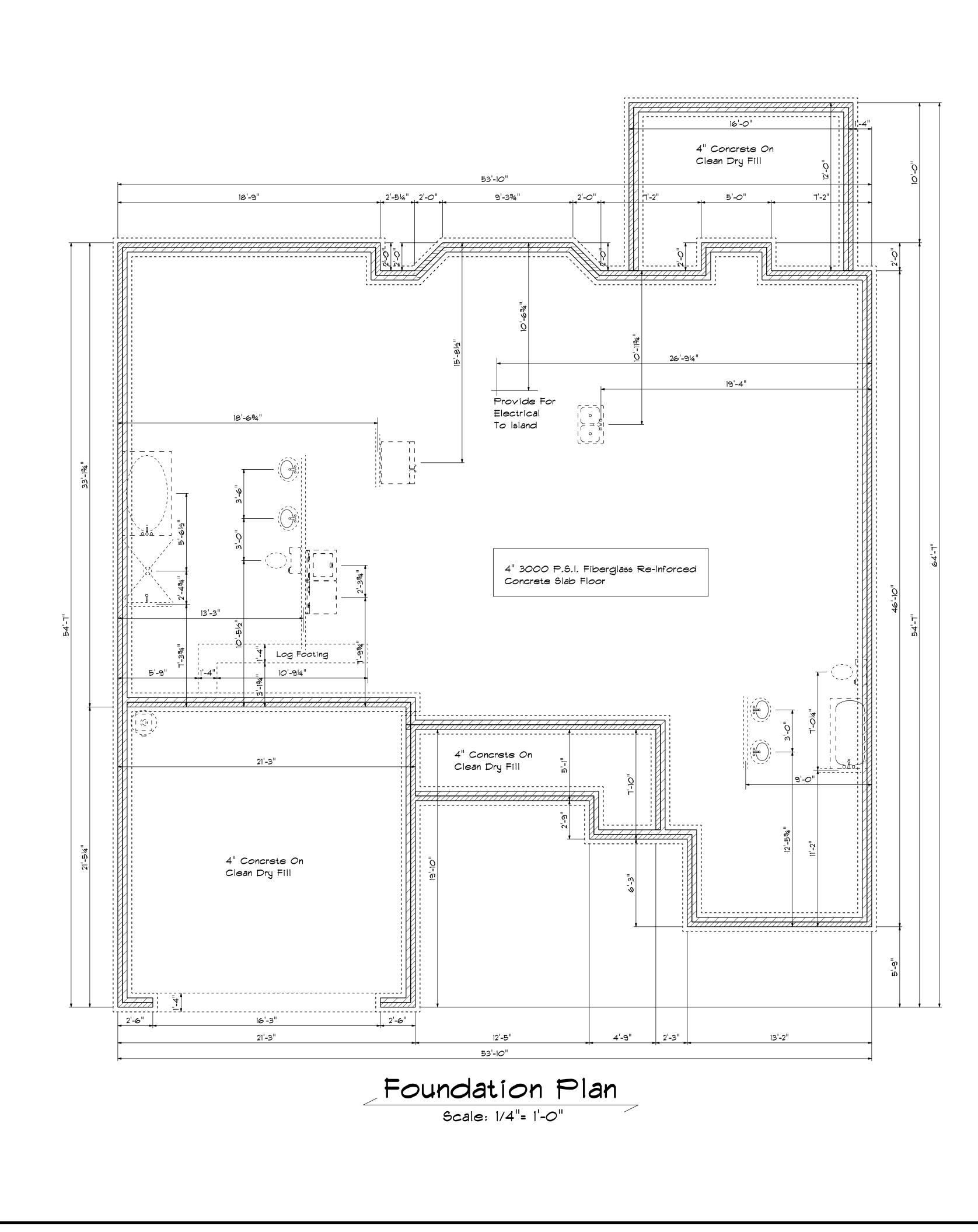
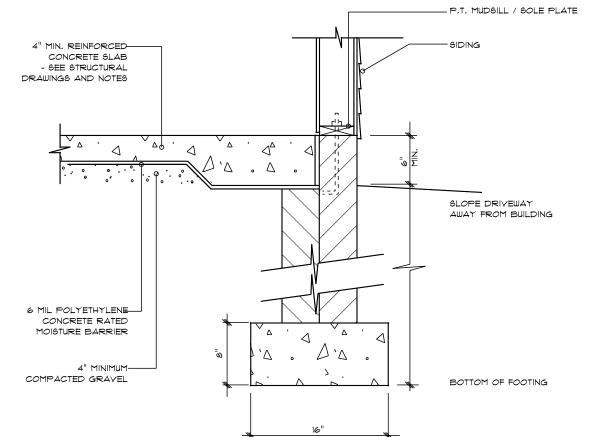
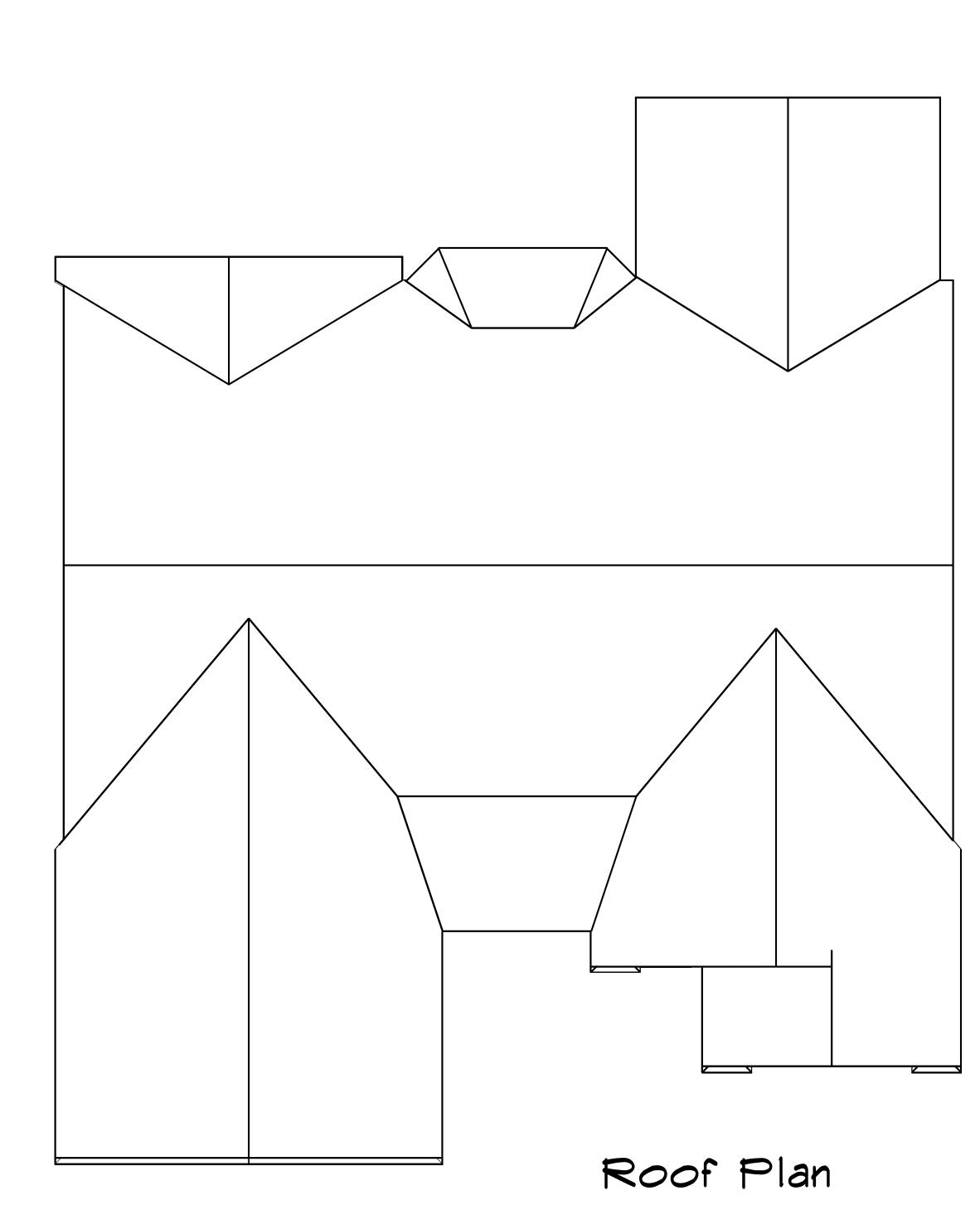
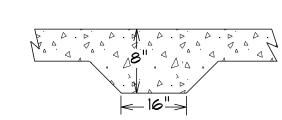

NOTICE TO CONTRACTOR Al construction must comply with current NC Building Codes and is subject to field inspection and verification. APPROVED Initied building only review Per Moder responsible for	DATE: 12/14/2022	REVISED	DRAWING#
APPCOV Pertit building rolly review Pertit building rolly rolly rolly Pertit building rolly rolly rolly Pertit building rolly rolly rolly Pertit building rolly rolly rolly Pertit building rolly rolly Pertit buil	SCALE: 1/4"	DRAWN BY	APPROVED
Image: state Image: state Image: state Image: state	5	Welles	Contractors Inc.



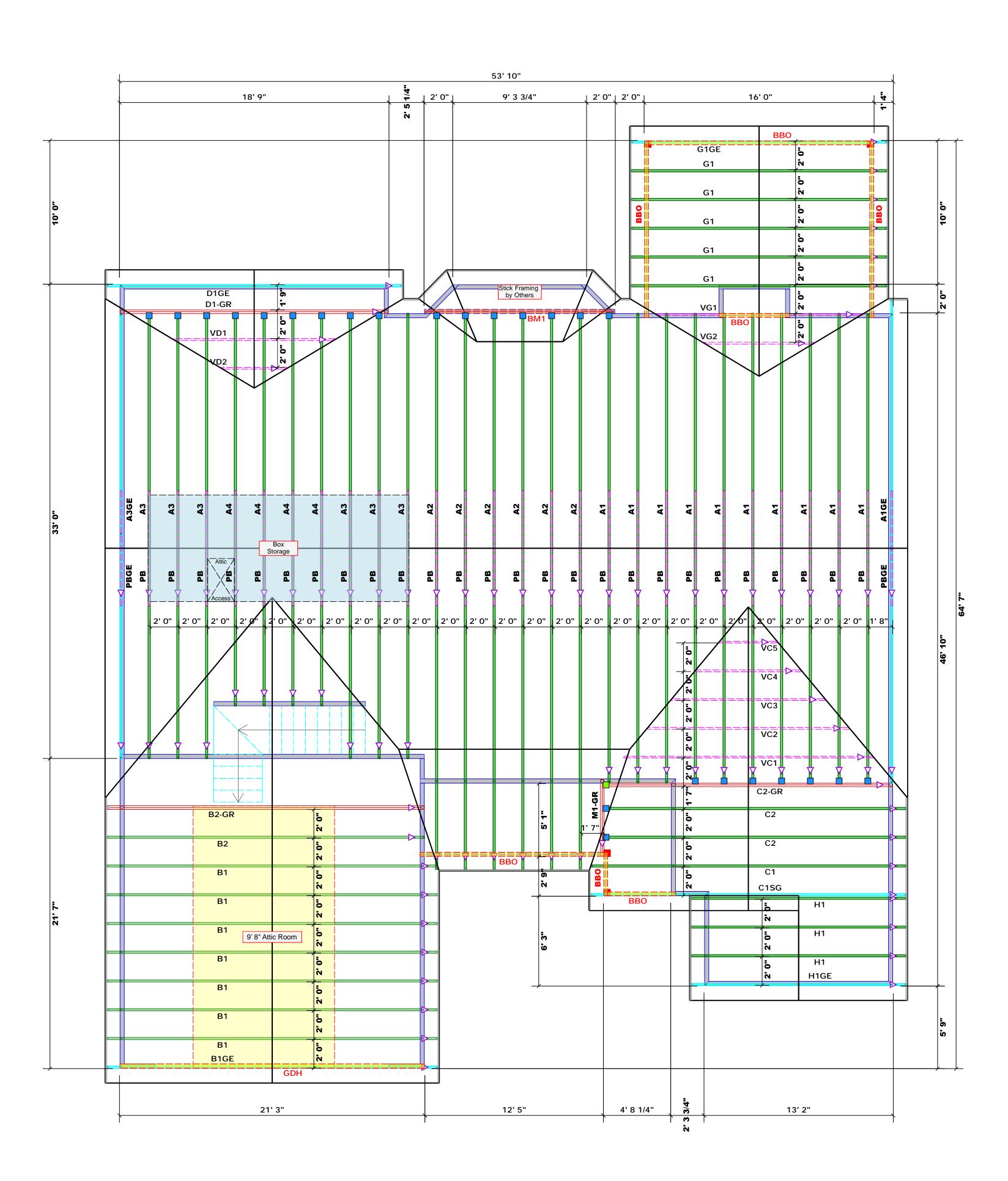


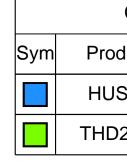


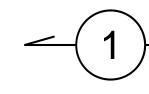





STEM WALL FOOTING DETAIL







Products								
PlotID	Length	Product	Plies	Net Qty				
BM1	14' 0"	1-3/4"x 11-7/8" LVL Kerto-S	2	2				
GDH	22' 0"	1-3/4"x 14" LVL Kerto-S	2	2				

All Walls Shown Are Considered Load Bearing

Roof Area	= 3931.6 sq.ft.
Ridge Line	= 143.67 ft.
Hip Line	= 11.94 ft.
Horiz. OH	= 171.72 ft.
Raked OH	= 208.75 ft.
Decking	= 135 sheets

Dimension Notes
1. All exterior wall to wall dimensions are to
face of sheathing unless noted otherwise
2. All interior wall dimensions are to face of
frame wall unless noted otherwise
3. All exterior wall to truss dimensions are to
face of frame wall unless noted otherwise

Hatch Legend							
	Box Storage						
	Drop Beam						
	Flush Beam						

Conne	ctor Info	rmati	Nail Information			
duct	Manuf	Qty	Supported Member	Header	Truss	
S26	USP	25	NA	16d/3-1/2"	16d/3-1/2"	
026-2	USP	1	NA	16d/3-1/2"	10d/3"	

Truss Placement Plan

Scale: 1/4"=1'

	THIS IS These IL component for temps system truss su and coll For gen and BC: online (Bearing deemed requiren size and reaction 15000#. retained reaction Tables.	RUS eilly R Fayett Phone Fax: CATRUS uses of the second control of the provide the second control of the second of the provide the second control of the second of the sec	OF 8 SES oad In teville, e: (910 (910) S PLACEM designed incorporat f the build geach truss permanemic over a lot designed to ver a lot truss that a source designed to ver a lot designed to ver a lo	Lent DIA a sindividu dustri N.C. 2)) 864- 864-4 HENT DIA sindividu design desi	DOR EAN al Parl 28309 8787 444 GRAM ON al building a building a building bu	ILY. design at lividual the onsible and floor of the , walls, designer. BCSI-B1 kage or e re Code indation upport than II be y tttached I be
n SS	CI TY / CO. Clayton / Johnston	RESS Sugarberry Place	EL Roof	DATE REV. 11/30/22	DRAWN BY Jonathan Landry	SALES REP. Lenny Norris
-1/2" /3" Net Qty 2 2	Wellco Contractors	VAME Lot 148 Hidden Lakes ADDRESS	Plan 11 / 2GLF, CP MODEL	N/A	#	J1122-5849
= Indicates Left End of Truss (Reference Engineered Truss Drawing) Do NOT Erect Truss Backwards	NUW	AD CHA (BASED BER OF JA (BASED BER OF JA	ON TABLE	s R502 5(1 REQUIRED GIRDER BUY SANUS 0,58 1 2 3 0 4 0 5) & (b))	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Trenco RE: J1122-5849 818 Soundside Rd Lot 148 Hidden Lakes Edenton, NC 27932 Site Information: Customer: Wellco Contractors Project Name: J1122-5849 Lot/Block: 148 Model: Plan 11 Address: Sugarberry Place Subdivision: Hidden Lakes State: NC City: Clayton General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions): Design Code: IRC2015/TPI2014 Design Program: MiTek 20/20 8.4 Wind Code: ASCE 7-10 Wind Speed: 150 mph Roof Load: 40.0 psf Floor Load: N/A psf This package includes 32 individual, dated Truss Design Drawings and 0 Additional Drawings. No. Seal# Truss Name Date No. Seal# Truss Name Date 154232521 9/15/2022 154232541 M1-GR 9/15/2022 A1 21 1 2 154232522 A1GE PB 9/15/2022 22 154232542 9/15/2022 3 154232523 A2 9/15/2022 23 154232543 PBGE 9/15/2022 4 154232524 9/15/2022 154232544 VC1 9/15/2022 A3 24 5 154232525 A3GE 9/15/2022 25 154232545 VC2 9/15/2022 VC3 9/15/2022 6 154232526 A4 9/15/2022 26 154232546 7 154232527 Β1 9/15/2022 27 154232547 VC4 9/15/2022

28

29

30

31

32

154232548

154232549

154232550

154232551

154232552

9/15/2022

9/15/2022

9/15/2022

9/15/2022

9/15/2022

9/15/2022

9/15/2022

9/15/2022

9/15/2022

9/15/2022

9/15/2022 9/15/2022

9/15/2022

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision

B1GE

B2-GR

C1SG

C2-GR

D1-GR

D1GE

G1GE

B2

C1

C2

G1

H1 H1GE

based on the parameters provided by Comtech, Inc - Fayetteville.

Truss Design Engineer's Name: Gilbert, Eric

8

9

10

11

12 13

14

15

16

17

18

19

20

154232528

154232529

154232530

154232531

154232532

154232533

154232534

154232535

154232536

154232537

154232538

154232539

154232540

My license renewal date for the state of North Carolina is December 31, 2022 North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Gilbert, Eric

VC5

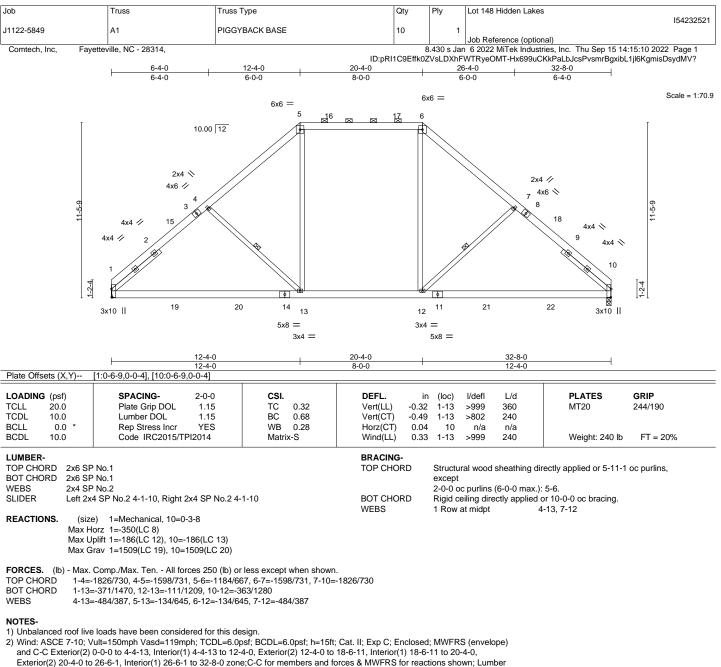
VD1

VD2

VG1

VG2

9/15/2022


9/15/2022

9/15/2022

9/15/2022

9/15/2022

September 15, 2022

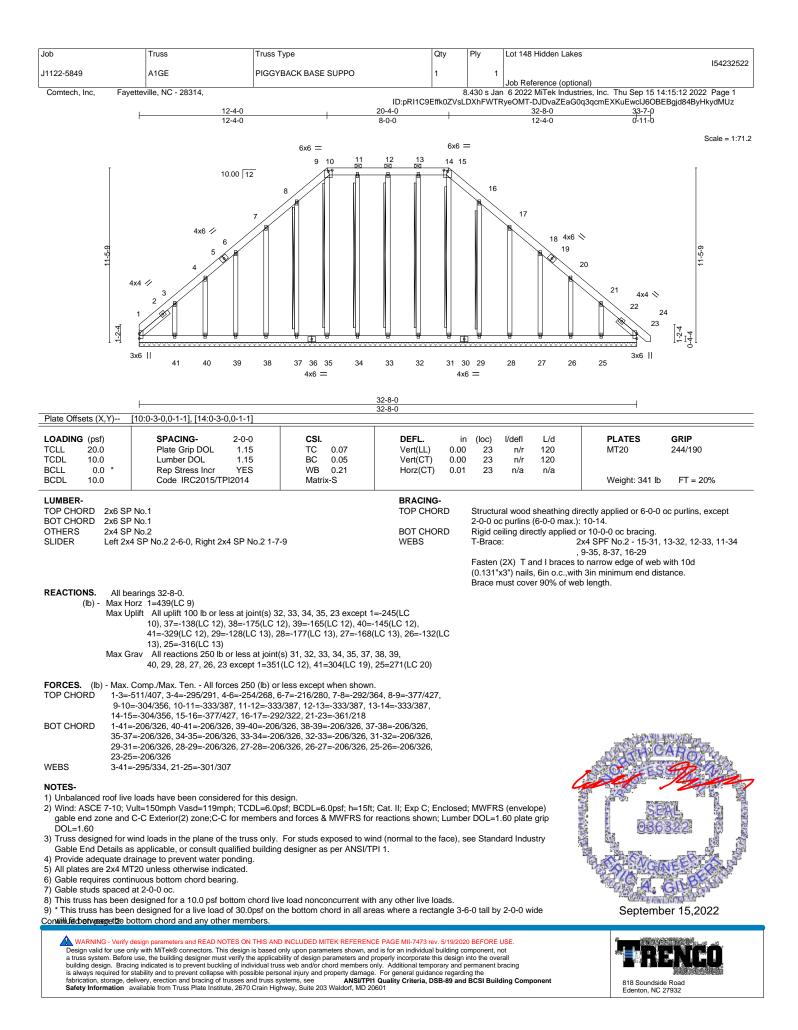
Exterior(2) 20-4-0 to 26-6-1, Interior(1) 26-6-1 to 32-8-0 zone;C-C for members and forces & MWFRS for reactions show DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Refer to girder(s) for truss to truss connections.

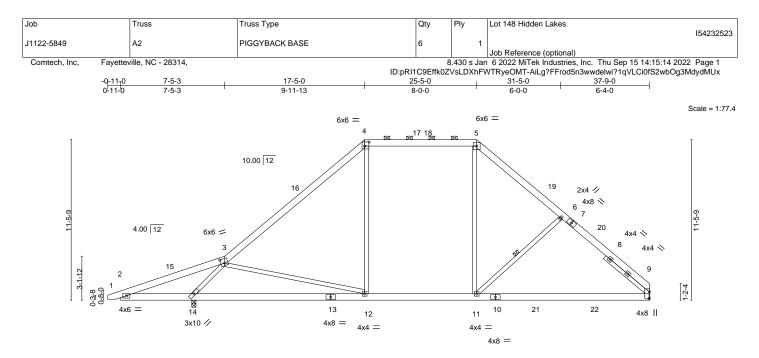

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=186, 10=186.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

ſ	Job	Truss	Truss Type	Qty Ply Lot 148 Hidden Lakes				
	J1122-5849	A1GE	PIGGYBACK BASE SUPPO	1	1	154232522		
						Job Reference (optional)		
	Comtech, Inc, Fayetteville, NC - 28314, 8.430 s Jan 6 2022 MiTek Industries, Inc. Thu Sep 15 14:15:13 2022 Page 2							
		ID:pRI1C9Effk0ZVsLDXhFWTRyeOMT-iVnlovEC1KywSmLR41PTSqlUsoXTw7zmMkxWpBydMU						

NOTES-


11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

12) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclings with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rerection and bracing of trusses and truss systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

¹⁰⁾ Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 32, 33, 34, 35, 23 except (jt=lb) 1=245, 37=138, 38=175 , 39=165, 40=145, 41=329, 29=128, 28=177, 27=168, 26=132, 25=316.

	5-2-12 5-2-12	17-5-0 12-2-4	25-5-0		37-9		ł
Plate Offsets (X,Y)	[3:0-3-4,0-3-12], [4:0-3-12,0)-3-8]					
LOADING (psf)	SPACING-	2-0-0 CSI .	DEFL. in	(loc) l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.15 TC 0.72	Vert(LL) -0.47	9-11 >845	360	MT20	244/190
TCDL 10.0	Lumber DOL	1.15 BC 0.74	Vert(CT) -0.66	9-11 >598	240		
BCLL 0.0 *	Rep Stress Incr	YES WB 0.73	Horz(CT) 0.03	9 n/a	n/a		
BCDL 10.0	Code IRC2015/TPI2	014 Matrix-S	Wind(LL) 0.43	9-11 >920	240	Weight: 267 lb	FT = 20%
LUMBER-			BRACING-				
TOP CHORD 2x6 SI	P No.1		TOP CHORD	Structural woo	d sheathing dir	rectly applied or 4-0-9 of	oc purlins, except
BOT CHORD 2x6 SI	P No.1			2-0-0 oc purlin	s (6-0-0 max.):	4-5.	. , .
WEBS 2x4 SI	P No.2		BOT CHORD	Rigid ceiling di	rectly applied of	or 10-0-0 oc bracing, I	Except:
SLIDER Right 2	2x4 SP No.2 4-1-10			6-0-0 oc bracir	ng: 2-14.	-	
			WEBS	1 Row at midp	t 6	5-11	
REACTIONS. (siz	e) 9=Mechanical, 14=0-3-	8					
Max H	Horz 14=356(LC 9)						

Max Uplift 9=-185(LC 13), 14=-308(LC 12) Max Grav 9=1450(LC 20), 14=1786(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- TOP CHORD 2-3=-1021/712, 3-4=-1523/524, 4-5=-1158/603, 5-6=-1485/657, 6-9=-1717/658
- BOT CHORD 2-14=-596/1024, 12-14=-374/1262, 11-12=-111/1128, 9-11=-294/1209
- WEBS 3-14=-2106/1400, 4-12=0/445, 5-11=-133/632, 6-11=-492/388, 3-12=-376/325

NOTES-

1) Unbalanced roof live loads have been considered for this design.

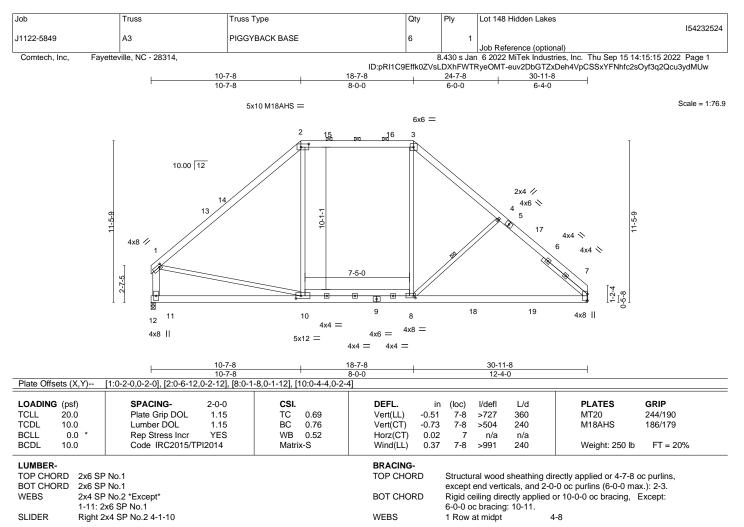
2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-7-9 to 3-9-4, Interior(1) 3-9-4 to 17-5-0, Exterior(2) 17-5-0 to 21-9-13, Interior(1) 21-9-13 to 25-5-0, Exterior(2) 25-5-0 to 29-9-13, Interior(1) 29-9-13 to 37-9-0 zone; cantilever left exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

Refer to girder(s) for truss to truss connections.


7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 9=185, 14=308.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

REACTIONS. (size) 11=0-3-8, 7=Mechanical Max Horz 11=-347(LC 8) Max Uplift 11=-157(LC 12), 7=-176(LC 13) Max Grav 11=1301(LC 2), 7=1394(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-1428/572, 2-3=-1066/623, 3-4=-1394/675, 4-7=-1629/675, 1-11=-1259/572

BOT CHORD 10-11=-421/549. 8-10=-113/1029. 7-8=-326/1149

1-10=-263/1036, 2-10=0/374, 3-8=-135/596, 4-8=-521/397 WEBS

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-4-4 to 4-9-1, Interior(1) 4-9-1 to 10-7-8, Exterior(2) 10-7-8 to 16-10-3, Interior(1) 16-10-3 to 18-7-8, Exterior(2) 18-7-8 to 24-9-9, Interior(1) 24-9-9 to 30-11-8 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

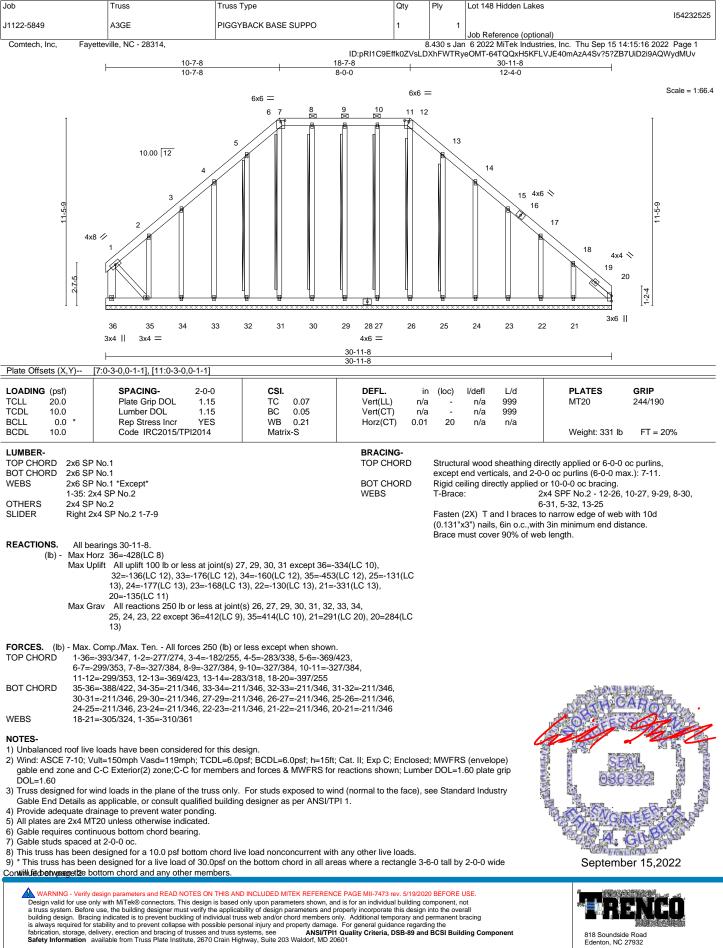
4) All plates are MT20 plates unless otherwise indicated.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 6) will fit between the bottom chord and any other members, with BCDL = 10.0psf.

Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 11=157.7=176.


9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

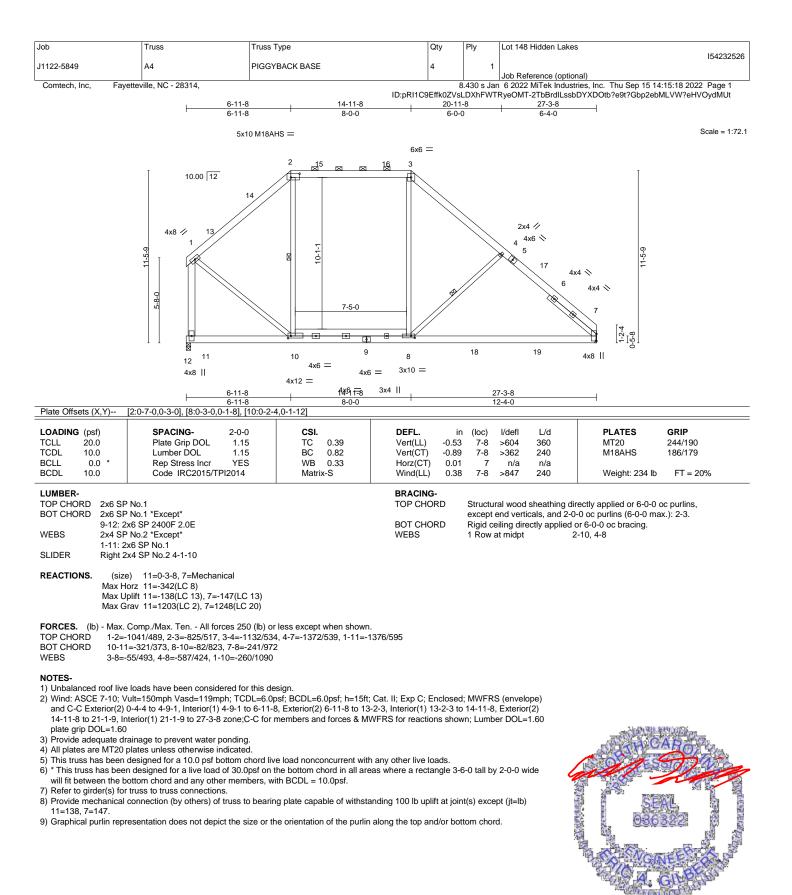
September 15,2022

🛕 WARNING - Verify design pa ameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This Adv Incubube unterpretence PARCE Mitrars and the advector of the advect

818 Soundside Road Edenton, NC 27932

Job		Truss	Truss Type	Qty	Ply	Lot 148 Hidden Lakes		
J1122-5849		A3GE	PIGGYBACK BASE SUPPO	1	1	154232525		
					-	Job Reference (optional)		
Comtech, Inc,	Comtech, Inc, Fayetteville, NC - 28314, 8.430 s Jan 6 2022 MiTek Industries, Inc. Thu Sep 15 14:15:17 2022 Page 2							
			ID:pRI1C9Effk0ZVsLDXhFWTRyeOMT-aH1odHHj5YTMwNeCJtUPdgSArPuQsxyMHMvjyyydMUu					

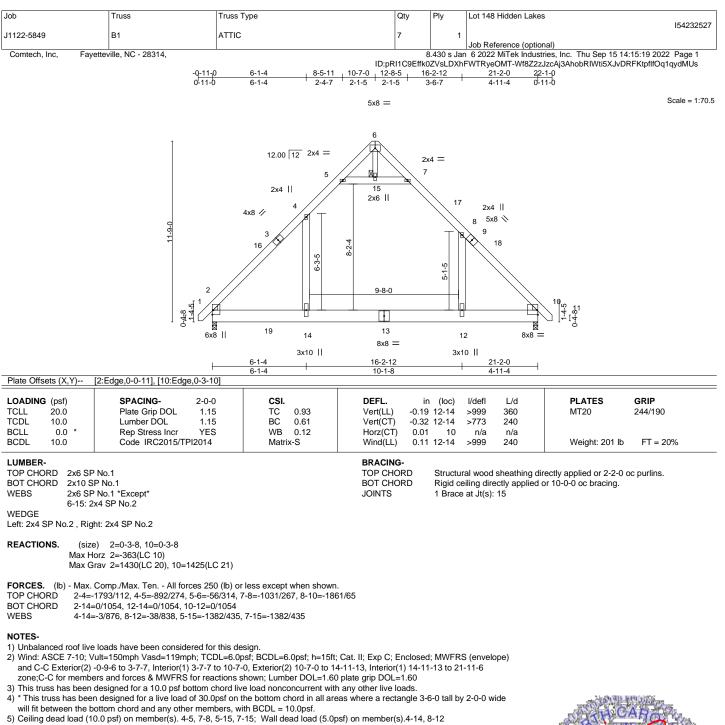
NOTES-


10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 27, 29, 30, 31 except (jt=lb) 36=334, 32=136, 33=176, 34=160, 35=453, 25=131, 24=177, 23=168, 22=130, 21=331, 20=135.

Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

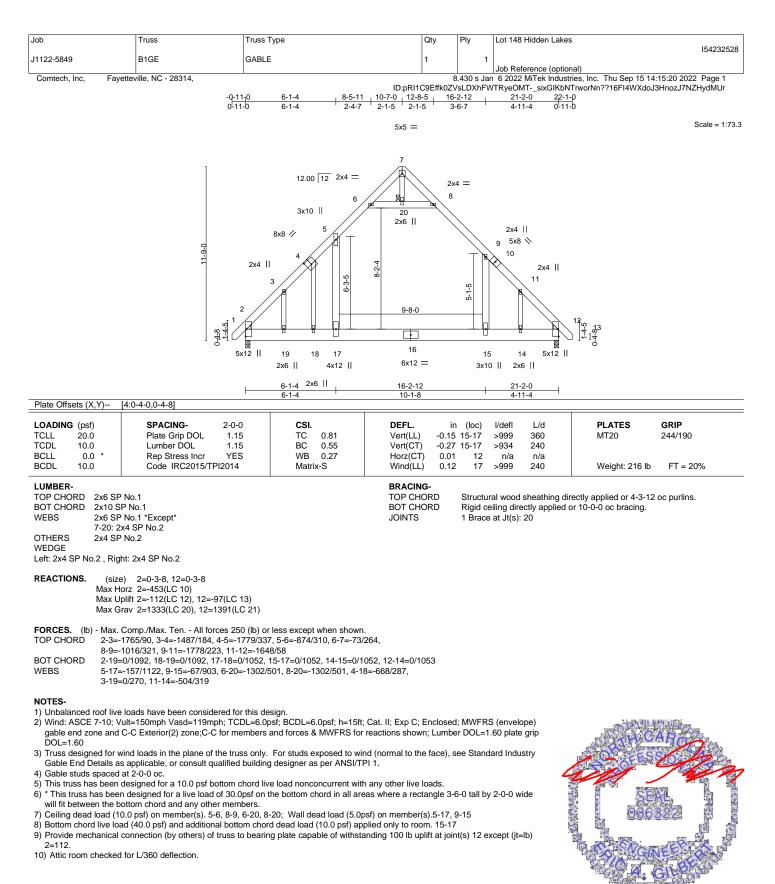
Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclings with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rerection and bracing of trusses and truss systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



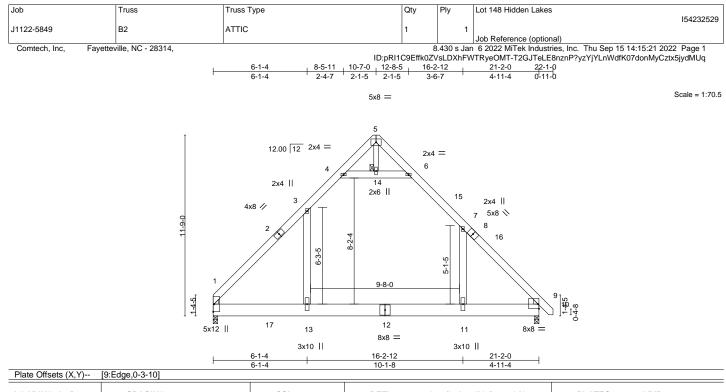
September 15,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oullapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


6) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 12-14

7) Attic room checked for L/360 deflection.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 September 15,2022



September 15,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOADING (psf) SPACING- 2-0-0 TCLL 20.0 Plate Grip DOL 1.15 TCDL 10.0 Lumber DOL 1.15 BCLL 0.0 * Rep Stress Incr YES BCDL 10.0 Code IRC2015/TPI2014 100	CSI. TC 0.93 BC 0.61 WB 0.12 Matrix-S	Vert(LL) -0.19 Vert(CT) -0.33 Horz(CT) 0.01	(loc) I/defl L/d 11-13 >999 360 11-13 >765 240 9 n/a n/a 11-13 >999 240	-	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 SP No.1 BOT CHORD 2x10 SP No.1 WEBS 2x6 SP No.1 *Except* 5-14: 2x4 SP No.2 WEDGE Left: 2x4 SP No.2 , Right: 2x4 SP No.2 REACTIONS. (size) 1=0-3-8, 9=0-3-8 Max Horz 1=-361(LC 8) Max Grav 1=1395(LC 21), 9=1425(LC 21)	BRACING- TOP CHORD BOT CHORD JOINTS	Structural wood sheathing dir Rigid ceiling directly applied o 1 Brace at Jt(s): 14		: purlins.	

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- TOP CHORD 1-3=-1776/90, 3-4=-895/282, 4-5=-59/319, 6-7=-1028/264, 7-9=-1866/68
- BOT CHORD 1-13=0/1055, 11-13=0/1055, 9-11=0/1055 WEBS
 - 3-13=-11/850, 7-11=-41/848, 4-14=-1397/454, 6-14=-1397/454

NOTES-

1) Unbalanced roof live loads have been considered for this design.

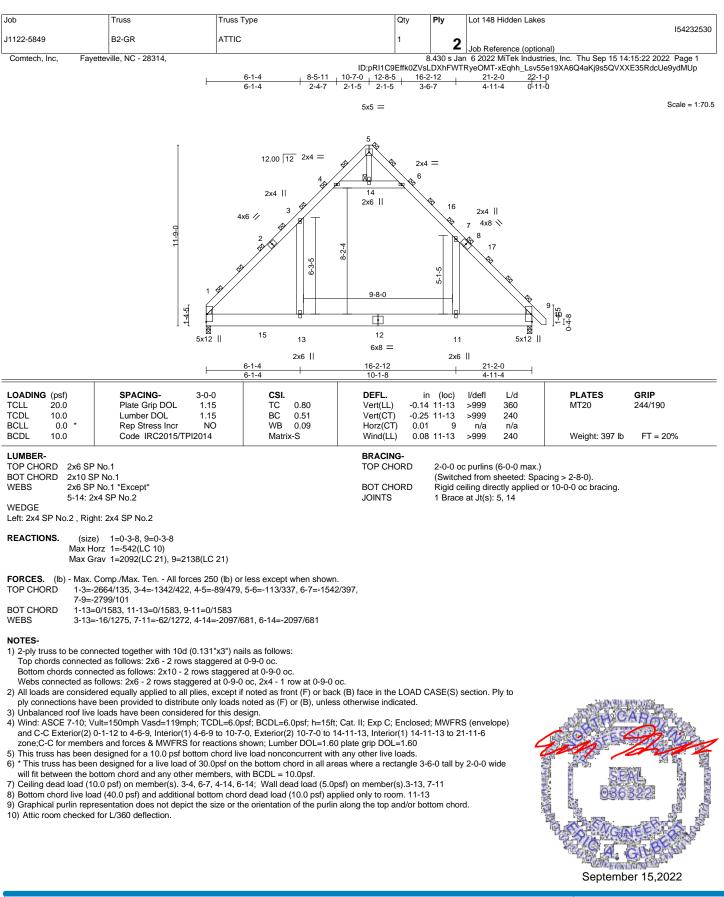
2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-1-12 to 4-6-9, Interior(1) 4-6-9 to 10-7-0, Exterior(2) 10-7-0 to 14-11-13, Interior(1) 14-11-13 to 21-11-6 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

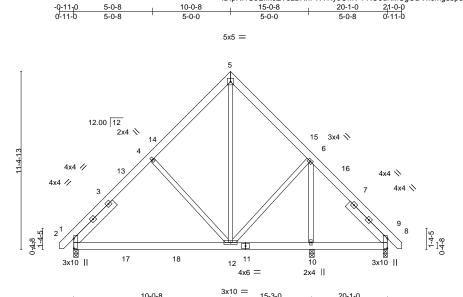
5) Ceiling dead load (10.0 psf) on member(s). 3-4, 6-7, 4-14, 6-14; Wall dead load (5.0psf) on member(s).3-13, 7-11

6) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 11-13


7) Attic room checked for L/360 deflection.

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MTek® connectors. This down the seed only upon parameters show, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of truss systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Edenton, NC 27932

	1	10-0-0)	15-3-0	1	20-1-0			
	Г	10-0-8	3	5-2-8	1	4-10-0	1		
Plate Offsets (X,Y)	[2:0-7-9,0-0-2], [8:0-7-9,0-0-2]								
LOADING (psf)	SPACING- 2-0	D-0 CSI.		DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.	.15 TC	0.15	Vert(LL) -0.1	0 2-12	>999	360	MT20	244/190
TCDL 10.0	Lumber DOL 1.	.15 BC	0.35	Vert(CT) -0.1	6 2-12	>999	240		
BCLL 0.0 *	Rep Stress Incr Y	ES WB	0.59	Horz(CT) 0.0)1 8	n/a	n/a		

Matrix-S

н	LIM	BF	R.

10.0

BCDL

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No 2 Left 2x6 SP No.1 3-8-1, Right 2x6 SP No.1 3-6-7 SLIDER

BRACING-TOP CHORD BOT CHORD

Wind(LL)

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

Weight: 182 lb

FT = 20%

240

>999

0.01 8-10

REACTIONS. (size) 2=0-3-8, 10=0-3-8, 8=0-3-0 Max Horz 2=-346(LC 8)

Max Uplift 2=-105(LC 13), 10=-103(LC 12), 8=-61(LC 13) Max Grav 2=738(LC 20), 10=604(LC 1), 8=393(LC 1)

Code IRC2015/TPI2014

- FORCES. (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown.
- TOP CHORD 2-4=-705/314, 4-5=-640/375, 5-6=-644/386, 6-8=-326/182
- BOT CHORD 2-12=-202/592

NOTES-

1) Unbalanced roof live loads have been considered for this design

2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-9-6 to 3-7-7, Interior(1) 3-7-7 to 10-0-8, Exterior(2) 10-0-8 to 14-5-5, Interior(1) 14-5-5 to 20-10-6 zone; porch right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

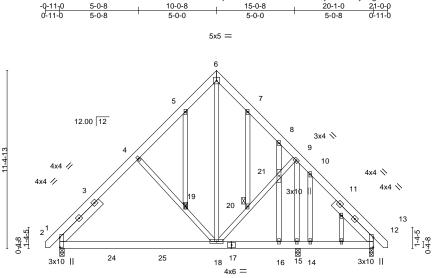
4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8 except (jt=lb) 2=105, 10=103.

Scale = 1:69.4

rameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. 🛕 WARNING - Verify design pai Design valid for use only with MiTek® connectors. This Adv Incubube unterpretence PARCE Mitrars and the advector of the advect

^{4-12=-446/361, 5-12=-296/526, 6-12=-59/305, 6-10=-624/244} WFBS



15-0-8

20-1-0

10-0-8

5-0-8

)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
(,Y)	[2:0-7-9,0-0-2], [12:0-7-9,	0-0-2]							
			10-0-8	5-2-8	1	4-10-0	1		
		1	10-0-8	3x10 = 15-3-0	1	20-1-0			
				4x6 =					

Vert(LL)

Vert(CT)

Horz(CT)

Wind(LL)

BRACING-TOP CHORD

BOT CHORD

JOINTS

-0.09 2-18

0.01 12-14

12

-0.15 2-18

0.01

>999

>999

>999

1 Brace at Jt(s): 19, 20

n/a

360

240

n/a

240

Rigid ceiling directly applied or 10-0-0 oc bracing.

MT20

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Weight: 219 lb

Plate Offsets (X,

LOADING (psf)

20.0

10.0

10.0

0.0

TCLL

TCDL

BCLL

BCDL

LUMBER-	
TOP CHORD	2x6 SP No.1
BOT CHORD	2x6 SP No.1
WEBS	2x4 SP No.2
OTHERS	2x4 SP No.2
SLIDER	Left 2x6 SP No.1 3-8-1, Right 2x6 SP No.1 3-6-7

REACTIONS. (size) 2=0-3-8, 15=0-3-8, 12=0-3-0 Max Horz 2=-433(LC 8) Max Uplift 2=-198(LC 12), 15=-313(LC 13), 12=-67(LC 9)

Plate Grip DOL

Rep Stress Incr

Code IRC2015/TPI2014

Lumber DOL

Max Grav 2=701(LC 19), 15=701(LC 1), 12=320(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown

TOP CHORD 2-4=-669/324, 4-5=-580/361, 5-6=-555/399, 6-7=-568/413, 7-8=-583/377, 8-9=-435/254

BOT CHORD 2-18=-276/620 WEBS

4-19=-434/438, 18-19=-455/461, 6-18=-344/492, 18-20=-77/402, 20-21=-65/392, 9-21=-74/391, 9-15=-371/101, 16-21=-257/178, 10-14=-300/233

1.15

1.15

YES

TC

BC

WB 0.68

Matrix-S

0.15

0.34

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch right exposed C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

All plates are 2x4 MT20 unless otherwise indicated.

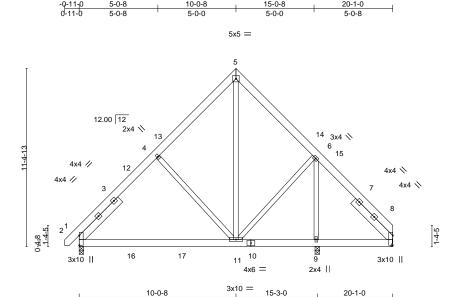
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 7) will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12 except (jt=lb) 2=198. 15=313.

244/190

FT = 20%

Scale = 1:69.4

🛕 WARNING - Verify design pa rameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This show include up and the reference Packet Mitra's dev. of value before Use. Design valid for use only with MiTek® connectors. This design is based only upon parameters show, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design is the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUTPH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


15-0-8

20-1-0

4-10-0

10-0-8

5-0-8

Plate Offsets (X,Y)-- [2:0-7-9,0-0-2], [8:0-7-9,0-0-2]

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.15	Vert(LL)	-0.10	2-11	>999	360	MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.35	Vert(CT)	-0.16	2-11	>999	240		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.61	Horz(CT)	0.01	8	n/a	n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL)	0.01	8-9	>999	240	Weight: 179 lb	FT = 20%

10-0-8

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No 2 SLIDER Left 2x6 SP No.1 3-8-1, Right 2x6 SP No.1 3-6-7

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 8=Mechanical, 2=0-3-8, 9=0-3-8 Max Horz 2=-347(LC 8)

Max Uplift 8=-46(LC 13), 2=-106(LC 13), 9=-101(LC 12) Max Grav 8=346(LC 1), 2=740(LC 20), 9=603(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-4=-707/314, 4-5=-642/375, 5-6=-646/393, 6-8=-319/190

BOT CHORD 2-11=-201/593

4-11=-446/361, 5-11=-306/529, 6-11=-62/303, 6-9=-620/243 WEBS

NOTES-

1) Unbalanced roof live loads have been considered for this design.

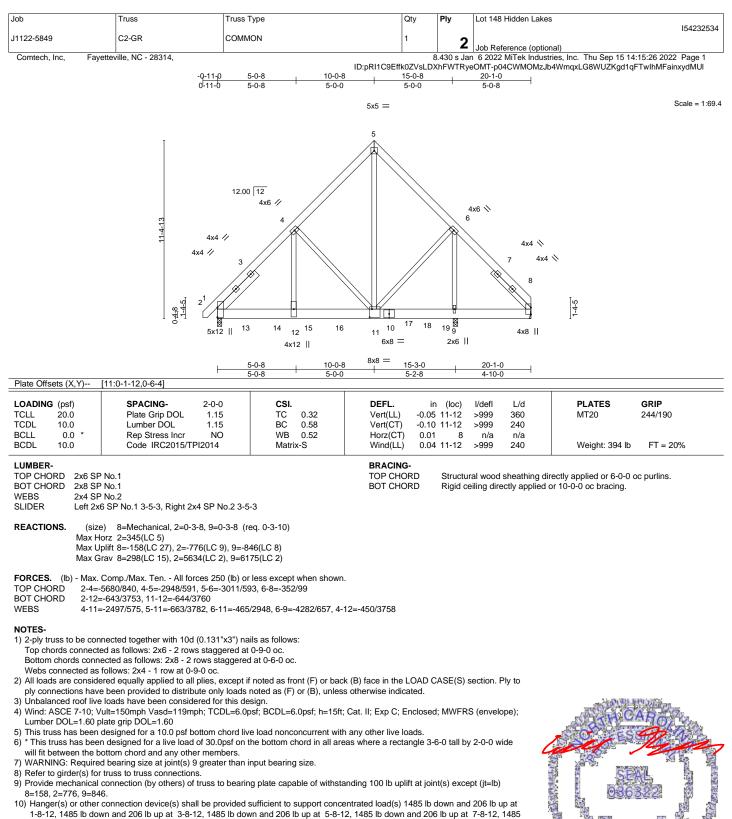
2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-9-6 to 3-7-7, Interior(1) 3-7-7 to 10-0-8, Exterior(2) 10-0-8 to 14-5-5, Interior(1) 14-5-5 to 20-1-0 zone; porch right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8 except (it=lb) 2=106.9=101.



Scale = 1:69.4

September 15,2022

🛕 WARNING - Verify design pa rameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MIT-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters show, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, crection and bracing of trusses and russ systems, see ANSUTPHI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

⁹⁾ Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 8=158, 2=776, 9=846.

10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1485 lb down and 206 lb up at 1-8-12, 1485 lb down and 206 lb up at 3-8-12, 1485 lb down and 206 lb up at 5-8-12, 1485 lb down and 206 lb up at 7-8-12, 1485 Ib down and 206 lb up at 9-8-12, and 1485 lb down and 206 lb up at 11-8-12, and 1485 lb down and 206 lb up at 13-8-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

Continued on page 2

🗥 WARNING - Verify design pa ameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This show include up and the reference Packet Mitra's dev. of value before Use. Design valid for use only with MiTek® connectors. This design is based only upon parameters show, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design is the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUTPH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

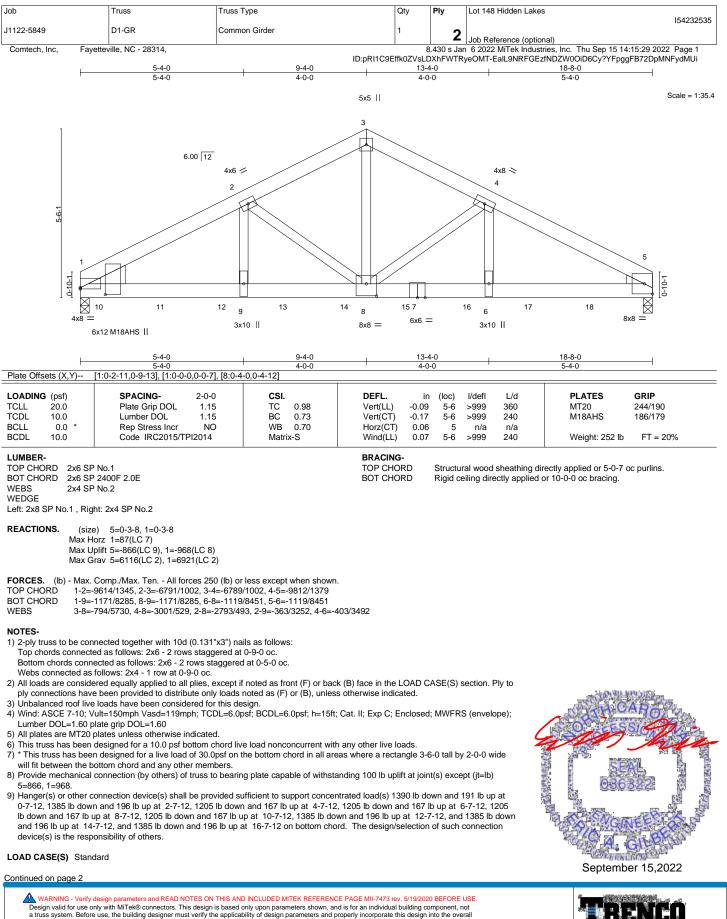
September 15,2022

Job		Truss	Truss Type	Qty	Ply	Lot 148 Hidden Lakes	
J1122-5849		C2-GR	COMMON	1		1542325	;34
31122-3043		02-01		, , , , , , , , , , , , , , , , , , ,	2	Job Reference (optional)	
Comtech, Inc,	Fayettevi	ille, NC - 28314,		8	8.430 s Jar	n 6 2022 MiTek Industries, Inc. Thu Sep 15 14:15:27 2022 Page 2	
				ID:pRI1C9Effk0Z\	/sLDXhFW	VTRyeOMT-HCdakiP_kdjx7wP7vzfl1ntqNRAUCNYqavKFJNydMUk	

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)


Vert: 1-5=-60, 5-8=-60, 2-8=-20

Concentrated Loads (lb)

Vert: 13=-1287(B) 14=-1287(B) 15=-1287(B) 16=-1287(B) 17=-1287(B) 18=-1287(B) 19=-1287(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclings with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rection and bracing of trusses systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

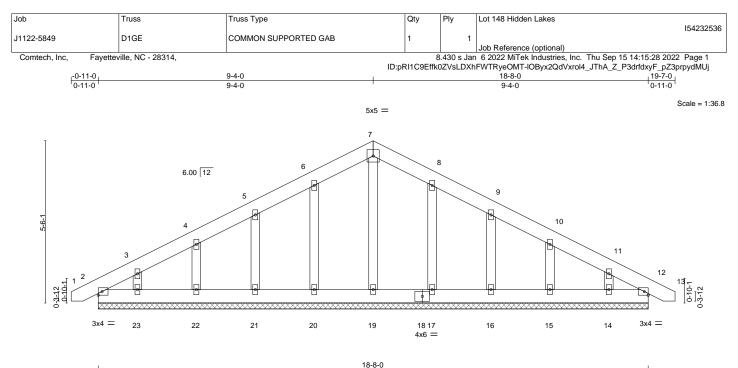
Design valid for use only with MiTek® connectors. This shot into CLUDEU MITER REFERENCE FAGE MIF #37 Rev. 519/2020 beForce USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent bucklings of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of truss systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job		Truss	Truss Type	Qty	Ply	Lot 148 Hidden Lakes	
J1122-5849		D1-GR	Common Girder	1	2		154232535
					_	Job Reference (optional)	
Comtech, In	c, Fayette	ville, NC - 28314,		8	.430 s Jar	6 2022 MiTek Industries,	Inc. Thu Sep 15 14:15:29 2022 Page 2
			ID:p	RI1C9Effk0ZVsLD	XhFWTR	eOMT-EalL9NRFGEzfND	ZW0OiD6Cy?YFpggFB72DpMNFydMUi

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15


Uniform Loads (plf)

Vert: 1-3=-60, 3-5=-60, 1-5=-20 Concentrated Loads (Ib)

Vert: 10=-1209(F) 11=-1204(F) 12=-1057(F) 13=-1057(F) 14=-1057(F) 15=-1057(F) 16=-1204(F) 17=-1204(F) 18=-1204(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclings with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rection and bracing of trusses systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	F					18-8-0						
LOADING	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.03	Vert(LL)	-0.00	12	n/r	120	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.01	Vert(CT)	-0.00	12	n/r	120		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.04	Horz(CT)	0.00	12	n/a	n/a		
BCDL	10.0	Code IRC2015/T	PI2014	Matri	x-S						Weight: 130 lb	FT = 20%

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 OTHERS 2x4 SP No.2

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 18-8-0. (lb) -Max Horz 2=-135(LC 13)

Max Uplift All uplift 100 lb or less at joint(s) 2, 17, 12 except 20=-101(LC 12), 21=-112(LC 12), 22=-111(LC 12), 23=-131(LC 12), 16=-114(LC 13), 15=-110(LC 13), 14=-120(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 2, 19, 20, 21, 22, 23, 17, 16, 15, 14, 12

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

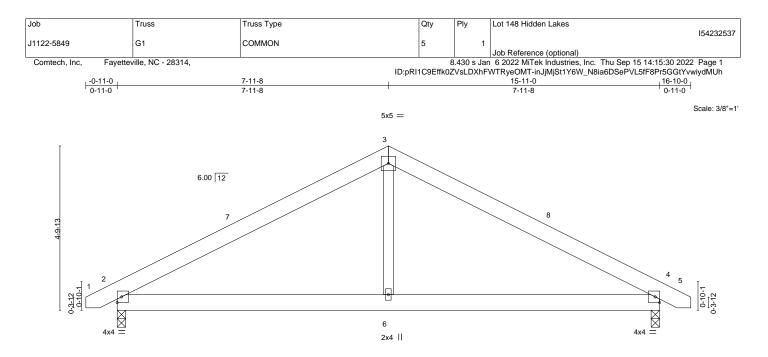
1) Unbalanced roof live loads have been considered for this design.

 Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing. 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 17, 12 except (jt=lb) 20=101, 21=112, 22=111, 23=131, 16=114, 15=110, 14=120.

10) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 2.

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This show include up and the reference Packet Mitra's dev. of value before Use. Design valid for use only with MiTek® connectors. This design is based only upon parameters show, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design is the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUTPH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

7-11-8 15-11-0 7-11-8 7-11-8 LOADING (psf) SPACING-CSL DEFL. PLATES GRIP 2-0-0 in (loc) l/defl I/d 0.29 244/190 20.0 Plate Grip DOL тс -0.02 >999 TCLL 1.15 Vert(LL) 360 MT20 2-6 TCDL BC 0.33 Vert(CT) 10.0 Lumber DOL 1.15 -0.05 2-6 >999 240 WB BCLL 0.0 Rep Stress Incr YES 0.09 Horz(CT) 0.01 n/a 4 n/a Code IRC2015/TPI2014 BCDL 10.0 Matrix-S Wind(LL) 0.02 2-6 >999 240 Weight: 90 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x6 SP No.1BOT CHORD2x6 SP No.1WEBS2x4 SP No.2

REACTIONS. (size) 2=0-3-0, 4=0-3-0 Max Horz 2=75(LC 11) Max Uplift 2=-130(LC 12), 4=-130(LC 13) Max Grav 2=677(LC 1), 4=677(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-856/382, 3-4=-856/378

BOT CHORD 2-6=-174/655, 4-6=-174/655 WEBS 3-6=0/380

NOTES-

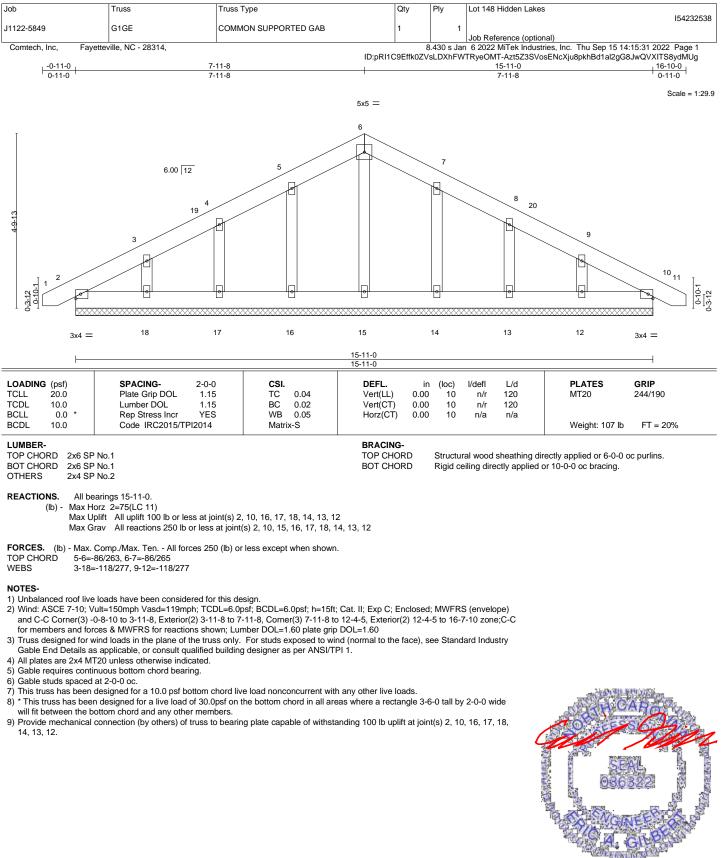
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-10 to 3-8-3, Interior(1) 3-8-3 to 7-11-8, Exterior(2) 7-11-8 to 12-4-5, Interior(1) 12-4-5 to 16-7-10 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

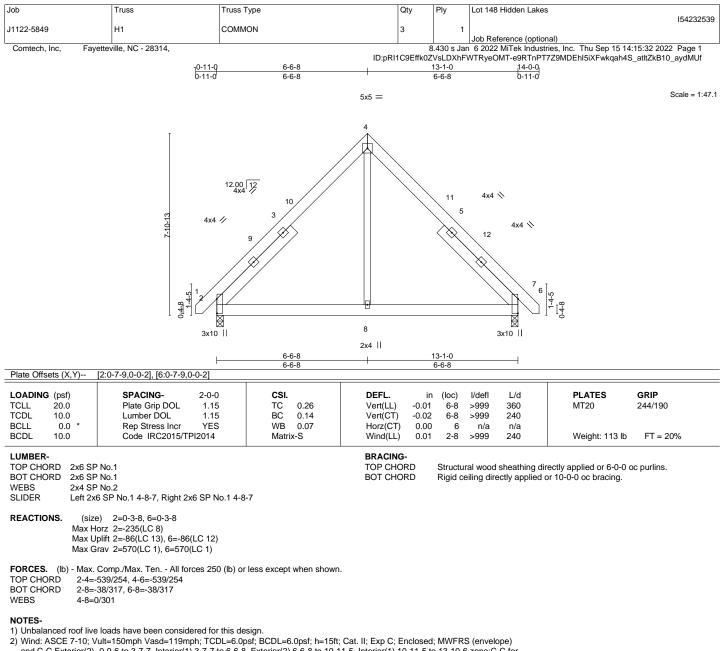
4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=130, 4=130.



Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oullapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

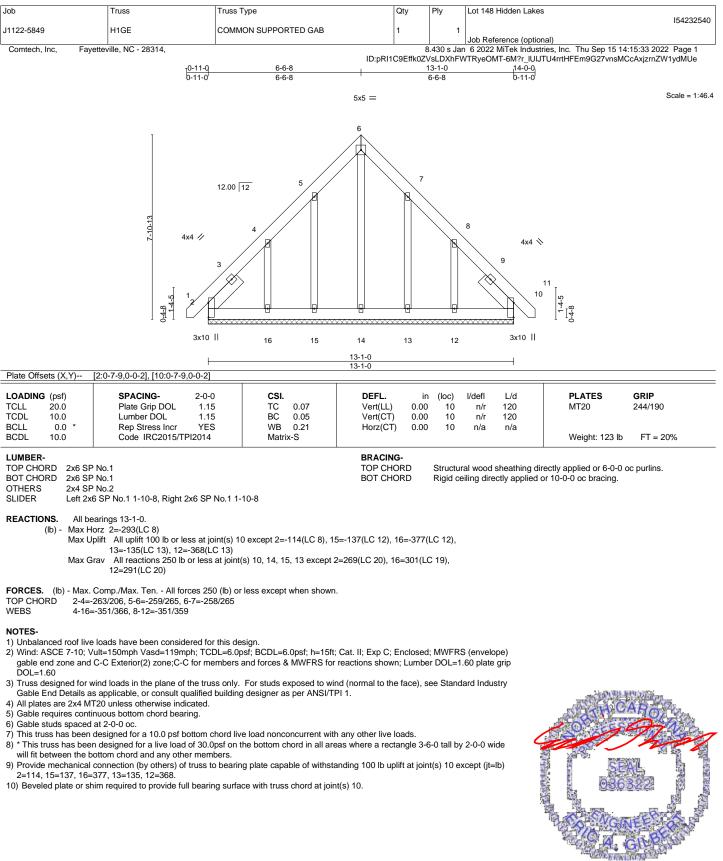
September 15,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 BIS Soundside Road Edenton, NC 27932

and C-C Exterior(2) -0-9-6 to 3-7-7, Interior(1) 3-7-7 to 6-6-8, Exterior(2) 6-6-8 to 10-11-5, Interior(1) 10-11-5 to 13-10-6 zone; C-C for

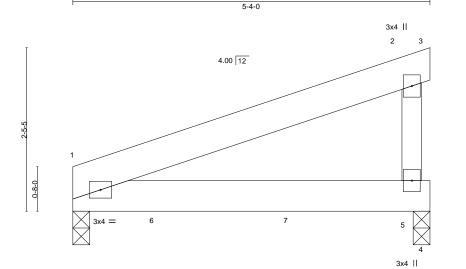
members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide


will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



September 15,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

5-4-0 5-4-0 LOADING (psf) SPACING-DEFL. PLATES 2-0-0 CSI. in (loc) l/defl I/d GRIP 20.0 Plate Grip DOL 0.08 -0.02 >999 244/190 TCLL TC Vert(LL) 360 1.15 1-5 MT20 TCDL BC Vert(CT) 10.0 Lumber DOL 1.15 0.26 -0.04 >999 240 1-5WB BCLL 0.0 Rep Stress Incr 0.00 Horz(CT) 0.00 NO n/a n/a BCDL 10.0 Code IRC2015/TPI2014 Matrix-P Wind(LL) 1-5 >999 240 Weight: 56 lb FT = 20% 0.02

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x6 SP No.1BOT CHORD2x6 SP No.1WEBS2x4 SP No.2

REACTIONS. (size) 1=0-3-0, 5=0-3-0 Max Horz 1=85(LC 4) Max Uplift 1=-136(LC 4), 5=-316(LC 4)

Max Grav 1=561(LC 1), 5=598(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) 2-ply truss to be connected together as follows:
- Top chords connected with 10d (0.131"x3") nails as follows: 2x6 2 rows staggered at 0-9-0 oc, 2x4 1 row at 0-9-0 oc. Bottom chords connected with 10d (0.131"x3") nails as follows: 2x6 - 2 rows staggered at 0-9-0 oc.
- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to
- Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); porch left exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=136, 5=316.

7) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 326 lb down and 66 lb up at 1-3-12, and 326 lb down and 66 lb up at 3-3-12, and 228 lb down and 172 lb up at 4-11-8 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

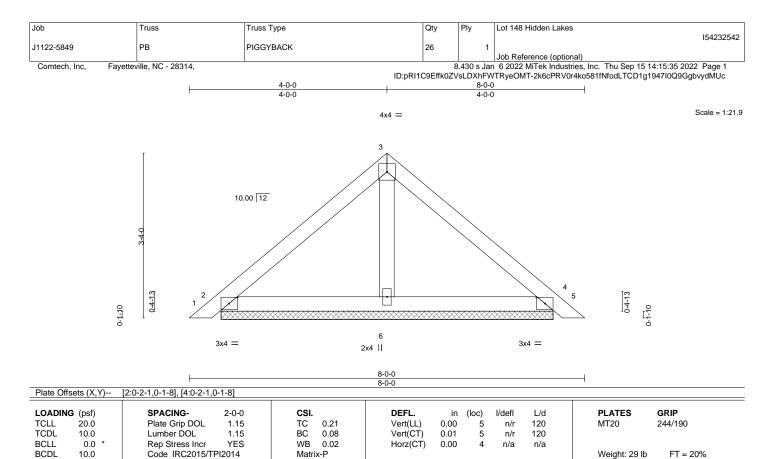
Uniform Loads (plf) Vert: 1-2=-60, 2-3=-20, 1-4=-20

Concentrated Loads (lb)

Vert: 5=-100(B) 6=-326(B) 7=-326(B)

Structural wood sheathing directly applied or 5-4-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.


except end verticals

Scale = 1:16.2

September 15,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BRACING-

TOP CHORD

BOT CHORD

н	IIMBER-	

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 OTHERS 2x4 SP No.2

REACTIONS. (size) 2=6-8-9, 4=6-8-9, 6=6-8-9

Max Horz 2=-100(LC 10)

Max Uplift 2=-56(LC 12), 4=-65(LC 13)

Max Grav 2=182(LC 1), 4=182(LC 1), 6=223(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

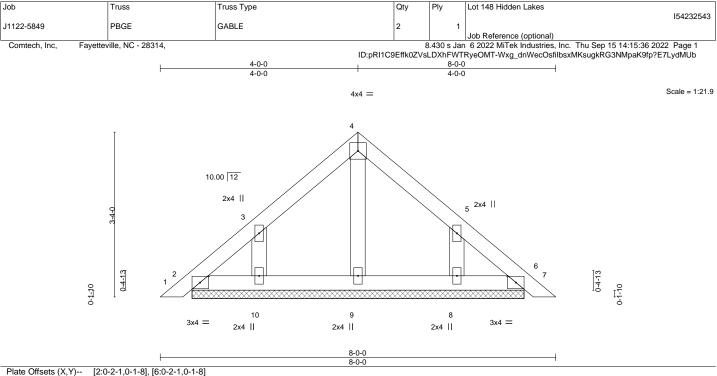
NOTES-

1) Unbalanced roof live loads have been considered for this design.

Wind: ASCF 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; b=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4

7) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.



Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

\lambda WARNING - Verify design par rameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MTek® connectors. This down the seed only upon parameters show, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of truss systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

OADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in	(loc) l/defl	L/d	PLATES GRIP
CLL 20.0	Plate Grip DOL 1.15	TC 0.05	Vert(LL) -0.00	6 n/r	120	MT20 244/190
CDL 10.0	Lumber DOL 1.15	BC 0.02	Vert(CT) 0.00	6 n/r	120	
CLL 0.0 *	Rep Stress Incr YES	WB 0.04	Horz(CT) 0.00	6 n/a	n/a	
CDL 10.0	Code IRC2015/TPI2014	Matrix-P				Weight: 32 lb FT = 20%

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 OTHERS 2x4 SP No.2 TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 6-8-9.

(lb) - Max Horz 2=-125(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 2, 6 except 10=-177(LC 12), 8=-176(LC 13) Max Grav All reactions 250 lb or less at joint(s) 2, 6, 9, 10, 8

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

 Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; bell=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Gable requires continuous bottom chord bearing.

5) Gable studs spaced at 2-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6 except (jt=lb) 10=177, 8=176.

9) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

\lambda WARNING - Verify design par rameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This show include up and the reference Packet Mitra's dev. of value before Use. Design valid for use only with MiTek® connectors. This design is based only upon parameters show, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design is the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUTPH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.26 BC 0.18 WB 0.18 Matrix-S	DEFL. ir Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.00	a - n/a 9 a - n/a 9	L/d 999 999 n/a	PLATES MT20 Weight: 85 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP OTHERS 2x4 SP	' No.1		BRACING- TOP CHORD BOT CHORD WEBS	Structural wood she Rigid ceiling directly 1 Row at midpt		Ŭ	oc purlins.

REACTIONS. All bearings 17-4-4.

(lb) - Max Horz 1=-267(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 1, 5 except 9=-320(LC 12), 6=-320(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 8=427(LC 22), 9=582(LC 19), 6=582(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-250/238, 3-4=-250/238

WEBS 2-9=-569/466, 4-6=-569/466

NOTES-

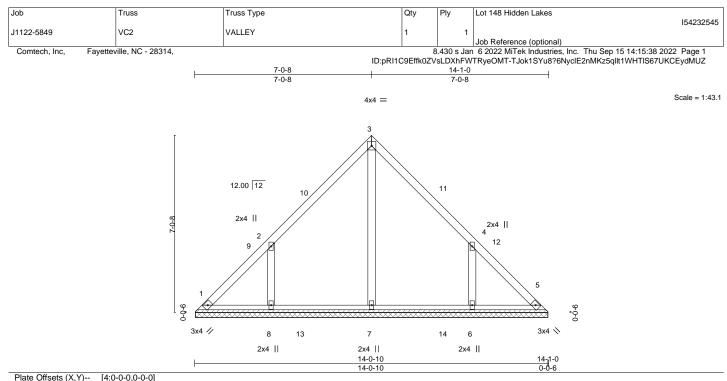
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-4-4 to 4-8-8, Interior(1) 4-8-8 to 8-8-8, Exterior(2) 8-8-8 to 13-1-5, Interior(1) 13-1-5 to 17-0-12 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide


will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 9=320, 6=320.

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This show include up and the reference Packet Mitra's dev. of value before Use. Design valid for use only with MiTek® connectors. This design is based only upon parameters show, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design is the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUTPH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

OADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc	l/defl	L/d	PLATES GRIP
CLL 20.0	Plate Grip DOL 1.15	TC 0.18	Vert(LL)	n/a -	n/a	999	MT20 244/190
CDL 10.0	Lumber DOL 1.15	BC 0.17	Vert(CT)	n/a -	n/a	999	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.11	Horz(CT)	0.00	5 n/a	n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	. ,				Weight: 66 lb FT = 20%

TOP CHORD

BOT CHORD

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 OTHERS 2x4 SP No.2

REACTIONS. All bearings 14-0-4.

(lb) - Max Horz 1=214(LC 9)

Max Uplift All uplift 100 lb or less at joint(s) 1, 5 except 8=-257(LC 12), 6=-257(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=408(LC 19), 8=439(LC 19), 6=438(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 2-8=-468/408, 4-6=-468/408

NOTES-

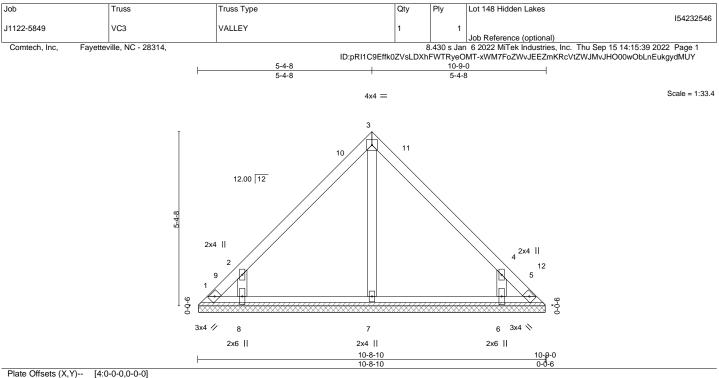
 Unbalanced roof live loads have been considered for this design.
Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-4-4 to 4-9-0, Interior(1) 4-9-0 to 7-0-8, Exterior(2) 7-0-8 to 11-5-5, Interior(1) 11-5-5 to 13-8-12 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=257.6=257.



Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This show include up and the reference Packet Mitra's dev. of value before Use. Design valid for use only with MiTek® connectors. This design is based only upon parameters show, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design is the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUTPH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

OADING (psf) "CLL 20.0 "CDL 10.0 3CLL 0.0 * 3CDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2015/TPI2014	CSI. TC 0.19 BC 0.09 WB 0.08 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 47 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP	No.1		BRACING- TOP CHOR	D	Structu	ral wood	sheathing di	rectly applied or 6-0-0	oc purlins.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

BOT CHORD 2x4 SP No.1 2x4 SP No.1 OTHERS 2x4 SP No.2

REACTIONS. All bearings 10-8-4.

(lb) - Max Horz 1=-160(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) except 1=-148(LC 10), 5=-121(LC 11), 8=-259(LC 12), 6=-259(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 1, 5, 7 except 8=391(LC 19), 6=391(LC 20)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

WEBS

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2-8=-493/461, 4-6=-493/461

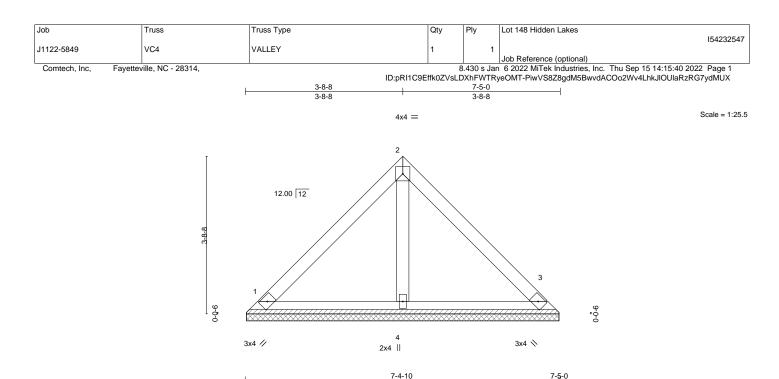
2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-4-4 to 4-9-0, Interior(1) 4-9-0 to 5-4-8, Exterior(2) 5-4-8 to 9-9-5, Interior(1) 9-9-5 to 10-4-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 148 lb uplift at joint 1, 121 lb uplift at joint 5, 259 lb uplift at joint 8 and 259 lb uplift at joint 6.



September 15,2022

Design valid for use only with MiTek® connectors. This show include up and the reference Packet Mitra's dev. of value before Use. Design valid for use only with MiTek® connectors. This design is based only upon parameters show, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design is the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUTPH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

			r			7-4-10				0-0-6		
LOADIN		SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.24	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.08	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.03	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code IRC2015/TP	12014	Matri	x-P						Weight: 30 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 OTHERS 2x4 SP No.2 BRACING-TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 1=7-4-4, 3=7-4-4, 4=7-4-4 Max Horz 1=-107(LC 8) Max Uplift 1=-53(LC 13), 3=-53(LC 13)

Max Grav 1=164(LC 1), 3=163(LC 1), 4=210(LC 1)

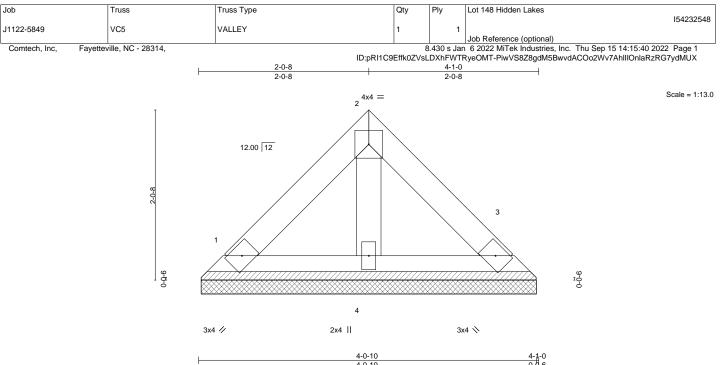
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.


 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 53 lb uplift at joint 1 and 53 lb uplift at joint 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclidal truss evel and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, rerection and bracing of trusses shaft muss systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

						4-0-10				0-0-	0	
LOADING	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.06	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.02	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.01	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code IRC2015/TF	PI2014	Matri	x-P						Weight: 15 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 OTHERS 2x4 SP No.2

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 4-1-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 1=4-0-4, 3=4-0-4, 4=4-0-4 Max Horz 1=-54(LC 10)

Max Uplift 1=-27(LC 13), 3=-27(LC 13)

Max Grav 1=82(LC 1), 3=82(LC 1), 4=106(LC 1)

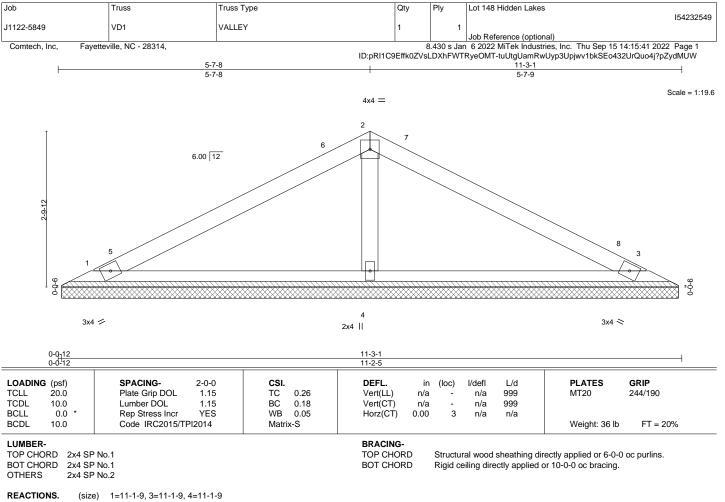
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design

2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.


 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 27 lb uplift at joint 1 and 27 lb uplift at joint 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclidal truss evel and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, rerection and bracing of trusses shaft muss systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

ACTIONS. (SIZE) 1=11-1-9, 3=11-1-9, 4=11-1-9 Max Horz 1=-43(LC 8) Max Uplift 1=-50(LC 12), 3=-57(LC 13), 4=-44(LC 12) Max Grav 1=184(LC 23), 3=184(LC 24), 4=431(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 2-4=-285/264

NOTES-

1) Unbalanced roof live loads have been considered for this design.

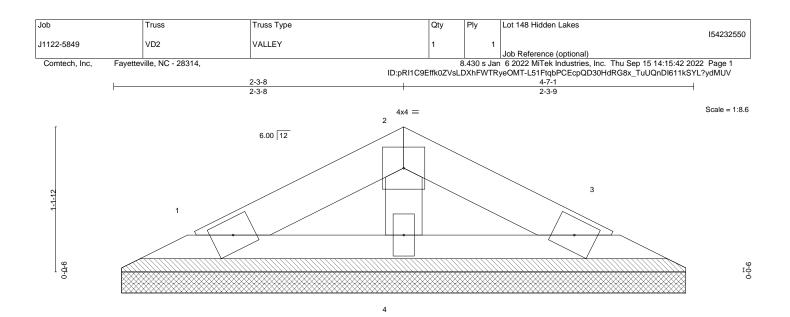
2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-7-13 to 5-0-10, Interior(1) 5-0-10 to 5-7-8, Exterior(2) 5-7-8 to 10-0-5, Interior(1) 10-0-5 to 10-7-4 zone; C-C for

members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide


will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 50 lb uplift at joint 1, 57 lb uplift at joint 3 and 44 lb uplift at joint 4.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design in the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oullapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

3x4 💋

2x4 ||

	2-3-8							4-7-1 2-3-9		
SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	
Plate Grip DOL Lumber DOL	1.15 1.15	TC BC	0.04 0.02	Vert(LL) Vert(CT)	n/a n/a	-	n/a n/a	999 999	MT20	2
Rep Stress Incr Code IRC2015/TP	YES 912014	WB Matri:	0.02 x-P	Horz(CT)	0.00	3	n/a	n/a	Weight: 13 lb	,

LUMBER-

TCLL TCDL

BCLL

BCDL

LOADING (psf)

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 WEBS 2x4 SP No.2

20.0

10.0

0.0

10.0

0-0-12

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 4-7-1 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

3x4 📚

REACTIONS. (size) 1=4-5-9, 3=4-5-9, 4=4-5-9 Max Horz 1=-15(LC 10) Max Uplift 1=-20(LC 12), 3=-23(LC 13), 4=-6(LC 12) Max Grav 1=67(LC 1), 3=67(LC 1), 4=128(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

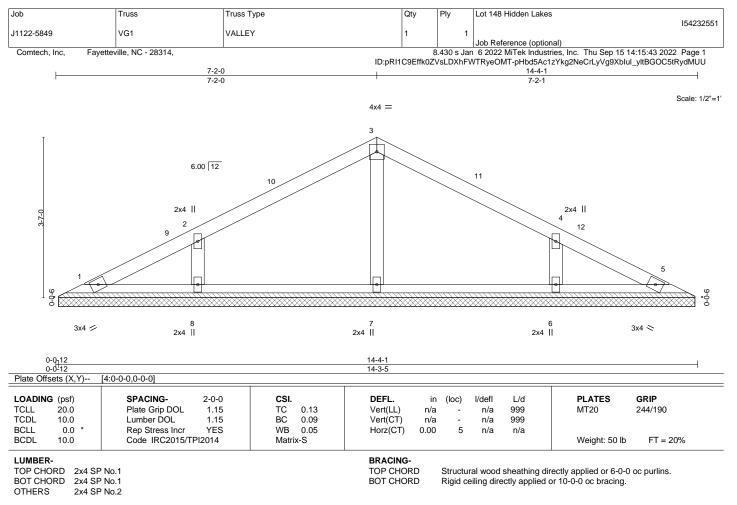
1) Unbalanced roof live loads have been considered for this design

2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psr bottom chord live load nonconcurrent with any other live loads.
5) * This truss has been designed for a live load of 30.0psr on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members. 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 20 lb uplift at joint 1, 23 lb uplift at joint 3 and 6 lb uplift at joint 4.


GRIP

244/190

FT = 20%

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MTek® connectors. This down the seed only upon parameters show, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of truss systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

REACTIONS. All bearings 14-2-9.

(lb) - Max Horz 1=57(LC 9)

Max Uplift All uplift 100 lb or less at joint(s) 1, 5 except 8=-125(LC 12), 6=-125(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=282(LC 1), 8=313(LC 23), 6=313(LC 24)

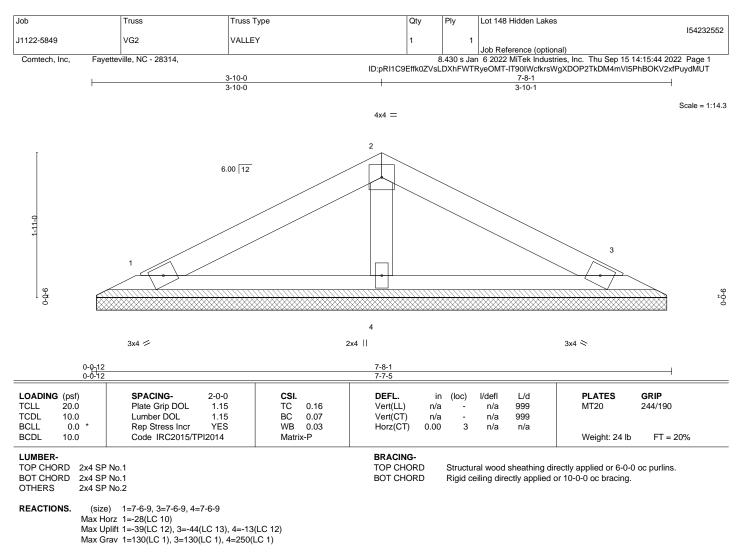
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 2-8=-240/282, 4-6=-240/282

NOTES-

 Unbalanced roof live loads have been considered for this design.
Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-7-13 to 5-0-10, Interior(1) 5-0-10 to 7-2-0, Exterior(2) 7-2-0 to 11-6-13, Interior(1) 11-6-13 to 13-8-4 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=125. 6=125.

🛕 WARNING - Verify design pa rameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This show include up and the reference Packet Mitra's dev. of value before Use. Design valid for use only with MiTek® connectors. This design is based only upon parameters show, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design is the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUTPH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

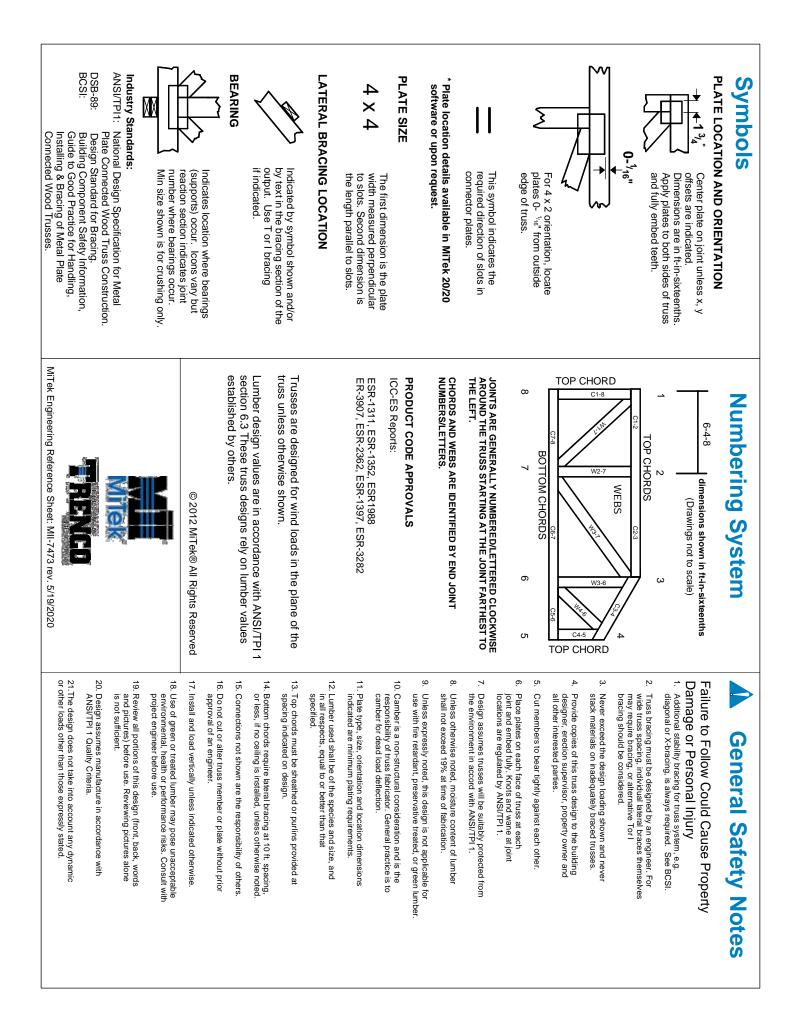
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

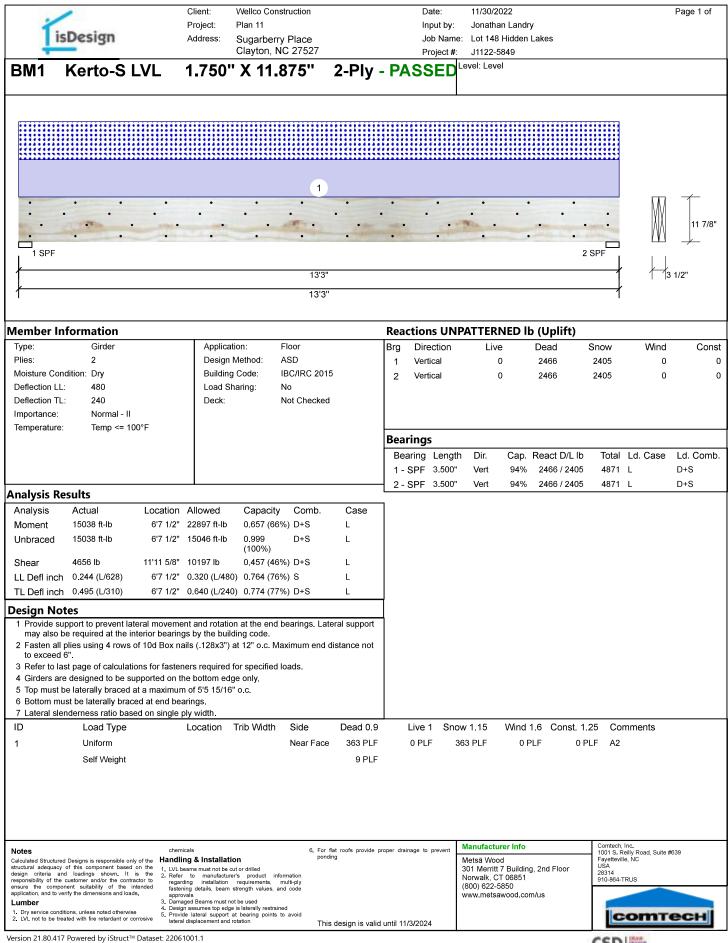
NOTES-

1) Unbalanced roof live loads have been considered for this design

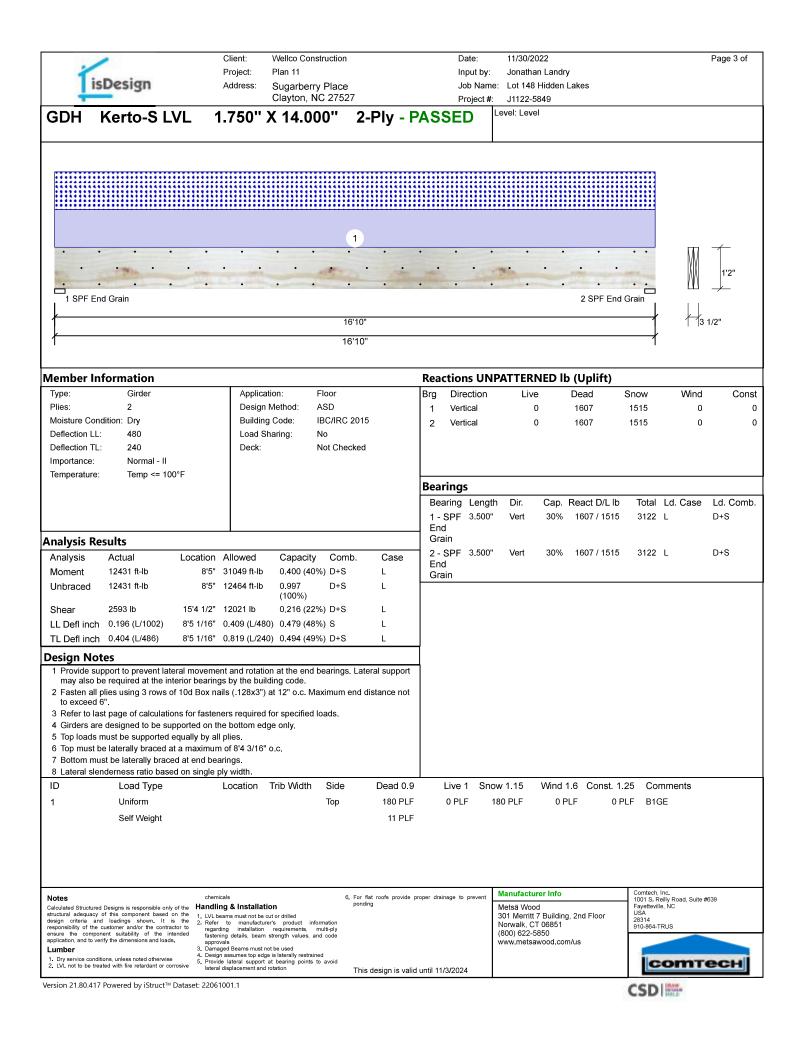
2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.


 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclidal truss evel and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, rerection and bracing of trusses shaft muss systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



CSD

isD	esign	Client: Project: Address:	Wellco Construction Plan 11 Sugarberry Place Clayton, NC 275	e	Date: Input by: Job Nam Project #	e: Lot 148 Hidden Lakes	Page 2 of
BM1 K	erto-S LVL	_ 1.750'	' X 11.875		- PASSED		
	• •	•••	•••	•	•••	• •	
	•••	•••	•	•••	•••	•••	
1 SPF				40101			
 				13'3" 13'3"			1 1/2"
Multi-Ply Ana Fasten all plies	-	10d Box nails (.128x3") at 12"	o.c Maximum	end distance n	ot to exceed 6".	
Capacity Load	36	.4 % 3.0 PLF					
Yield Limit per Foot Yield Limit per Faste	ener 94	6.5 PLF .1 lb.					
Yield Mode Edge Distance	IV 1 1	/2"					
Min. End Distance Load Combination	3" D+	S					
Duration Factor	1.1	5					
Notes		chemicals		6. For flat roofs provide p	proper drainage to prevent	Manufacturer Info	Comtech, Inc. 1001 S. Reilly Road, Suite #639
Calculated Structured Desi structural adequacy of thi	igns is responsible only of the is component based on the adings shown. It is the	Handling & Installati	on ut or drilled	ponding		Metsä Wood 301 Merritt 7 Building, 2nd Flo	Fayetteville, NC
responsibility of the custor	mer and/or the contractor to suitability of the intended	fastening details, beam	er's product information requirements, multi-ply strength values, and code			Norwalk, CT 06851 (800) 622-5850	910-864-TRUS
Lumber 1. Dry service conditions,	unless noted otherwise	approvals 3. Damaged Beams must n 4. Design assumes top edg 5. Provide lateral support	e is laterally restrained			www.metsawood.com/us	соттесн
2. LVL not to be treated v	with fire retardant or corrosive	lateral displacement and	rotation	This design is valid	l until 11/3/2024		CONTECH

Version 21.80.417 Powered by iStruct™ Dataset: 22061001.1

CSD

isDesign	Client: Wellco Constructi Project: Plan 11 Address: Sugarberry Pla Clayton, NC 27	Input by Ce Job Nan	ne: Lot 148 Hidden Lakes	Page 4 of
GDH Kerto-S LVL	1.750" X 14.000"		Level: Level	
1 SPF End Grain	· · · · ·	· · · · ·	2 SPF End (
		16'10"		3 1/2"
1		16'10"		
	% PLF 5.6 PLF 9 lb. /2"	' o.c Maximum end distance r	not to exceed 6".	
structural adequacy of this component based on the design criteria and loadings shown. It is the responsibility of the customer and/or the contractor to ensure the component suitability of the intended application, and to verify the dimensions and loads. Lumber	chemicals Handling & Installation 1. LVL beams must not be cut or drilled 2. Refer to manufacturer's product information regarding installation requirements, multi-ply fastening details, beam strength values, and code approvals 3. Damaged Beams must not be used 4. Design assumes top edge is laterally restrained 5. Provide lateral support at bearing points to avoid lateral displacement and rotation		Manufacturer Info Metsä Wood 301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851 (800) 622-5850 www.metsawood.com/us	Comtech, Inc. 1001 S. Reilly Road, Suite #639 Fayetteville, NC USA 28314 910-864-TRUS

Version 21.80.417 Powered by iStruct™ Dataset: 22061001.1

CSD

Fayetteville, N.C. 28309 (910) 864-TRUS

			JOBSITE PHONE #	(910) 263-0276	SAL	ES AREA	David Landry
	Wellco Contractors, Inc.	JOB NAME:L	ot 148 Hidden Lakes		LOT # 148	SUBDIV: Hidder	Lakes
SOL	PO Box 766	MODEL:Roof	TAG: Pla	n 11 / 2GLF, CP	JOB CATE	GORY: B & S - Build	l and Ship
Б НО	Spring Lake, NC 28390 (910) 436-3131	DELIVERY INS	TRUCTIONS:				
инна но	Wellco Contractors Sugarberry Place Clayton, NC 27527	SPECIAL INST Copied from Lot	RUCTIONS: 135 Hidden Lakes (J1122-56;	25)		PLAN SE	AL DATE: N/A
							BY DATE

11

11

//

11/23/22

Johnston

Jason Wellons

Jason Wellons

REQ. QUOTE DATE

ORDER DATE

ORDERED BY

COUNTY

DELIVERY DATE

DATE OF INVOICE

SUPERINTENDANT

DATE BUILDING DEPARTMENT OVERHANG INFO HEEL HEIGHT 00-04-05 REQ. ENGINEERING QUOTE JL 11/30/22 **REQ. LAYOUTS** END CUT RETURN LAYOUT JL 11/30/22 Roof Order 11/30/22 1 CUTTING JL PLUMB GABLE STUDS 16 IN. OC JOBSITE JOBSITE 1 LOADING STRESS INCR. TCLL-TCDL-BCLL-BCDL **ROOF TRUSSES** ROOF TRUSS SPACING: 24.0 IN. O.C. (TYP.) INFORMATION 20.0,10.0,0.0,10.0 1.15 QTY PITCH TYPE BASE LUMBER OVERHANG PROFILE REACTIONS PLY ID O/A TOP BOT TOP BOT LEFT RIGHT PIGGYBACK 32-08-00 Joint 10 Joint 1 A1 32-08-00 2 X 6 2 X 6 10 10.00 0.00 1509.2 lbs. 1509.2 lbs. 106 2 lbc 106 2 lbc

									-186.3 lbs.	-186.3 lbs.			
1	10.00	0.00	PIGGYBACK A1GE	32-08-00 32-08-00	2 X 6	2 X 6		00-11-00	Joint 1 351.1 lbs. -245.2 lbs.	Joint 23 247.9 lbs. -78.3 lbs.	Joint 25 270.6 lbs. -316.1 lbs.	Joint 26 180.9 lbs. -132.0 lbs.	Joint 27 199.5 lbs. -167.8 lbs.
6	4.00	0.00	PIGGYBACK A2	37-09-00 37-09-00	2 X 6	2 X 6	00-11-00		Joint 9 1383.2 lbs. -184.5 lbs.	Joint 15 1785.7 lbs. -308.4 lbs.			
6	10.00	0.00	PIGGYBACK A3	30-11-08 30-11-08	2 X 6	2 X 6			Joint 7 1328.7 lbs. -175.8 lbs.	Joint 12 1280.9 lbs. -157.3 lbs.			
1	10.00	0.00	PIGGYBACK A3GE	30-11-08 30-11-08	2 X 6	2 X 6			Joint 20 287.7 lbs. -136.7 lbs.	Joint 21 281.5 lbs. -310.3 lbs.	Joint 22 184.8 lbs. -146.2 lbs.	Joint 23 198.7 lbs. -164.9 lbs.	Joint 24 200.7 lbs. -176.6 lbs.
4	10.00	0.00	PIGGYBACK A4	27-03-08 27-03-08	2 X 6	2 X 6			Joint 7 1185.3 lbs. -147.3 lbs.	Joint 12 1180.1 lbs. -137.7 lbs.			
7	12.00	0.00	ATTIC B1	21-02-00 21-02-00	2 X 6	2 X 10	00-11-00	00-11-00	Joint 2 1430.0 lbs. 42.2 lbs.	Joint 10 1424.7 lbs. 57.1 lbs.			
1	12.00	0.00	GABLE B1GE	21-02-00 21-02-00	2 X 6	2 X 10	00-11-00	00-11-00	Joint 2 1333.1 lbs. -111.5 lbs.	Joint 12 1390.9 lbs. -96.7 lbs.			
1	12.00	0.00	ATTIC B2	21-02-00 21-02-00	2 X 6	2 X 10		00-11-00	Joint 1 1394.6 lbs. 50.6 lbs.	Joint 9 1425.4 lbs. 56.9 lbs.			
1 2 Ply	12.00	0.00	ATTIC B2-GR	21-02-00 21-02-00	2 X 6	2 X 10		00-11-00	Joint 1 1683.9 lbs. -32.0 lbs.	Joint 3 179.4 lbs. -32.0 lbs.	Joint 4 230.4 lbs. 30.4 lbs.	Joint 9 2138.1 lbs. 85.3 lbs.	

DATE11/30/22 PAGE 1

ORDER #

QUOTE #

INVOICE #

SALES REP

TERMS

CUSTOMER ACCT #

CUSTOMER PO #

J1122-5849

000006558

Net 10 Days

Lenny Norris

- N.Q.I	ity kood industrial furk T.O. box 40400	8	000111		Connistent				Hot to Dayo
Fay	vetteville, N.C. 28309 (910) 864-TRUS		SUPERINTENDANT		Jason Wellons	Jason Wellons		S REP	Lenny Norris
			JOBSITE PHONE	#	(910) 263-0276		SALE	S AREA	David Landry
	Wellco Contractors, Inc.	JOB NAME:	Lot 148 Hidden Lake	s		LOT #	1 48	SUBDIV: Hidden	Lakes
SOLD	PO Box 766	MODEL:Roo	f TAG	3: Pla	n 11 / 2GLF, CP	JOB C	ATEG	ORY: B & S - Build	and Ship
D HO	Spring Lake, NC 28390 (910) 436-3131	DELIVERY INS	STRUCTIONS:						
SHHP HO	Wellco Contractors Sugarberry Place Clayton, NC 27527	SPECIAL INST Copied from Lo	RUCTIONS: t 135 Hidden Lakes (J11	22-56	25)			PLAN SE	AL DATE:

REQ. QUOTE DATE

ORDER DATE

ORDERED BY

COUNTY

DELIVERY DATE

DATE OF INVOICE

11

11

//

11/23/22

Johnston

Jason Wellons

ΒY DATE BUILDING DEPARTMENT OVERHANG INFO HEEL HEIGHT 00-04-05 REQ. LAYOUTS REQ. ENGINEERING QUOTE JL 11/30/22 END CUT RETURN LAYOUT JL 11/30/22 Roof Order 11/30/22 1 CUTTING JL PLUMB GABLE STUDS 16 IN. OC JOBSITE 1 JOBSITE

ROOF T	ROOF TRUSSES					TCLL-TCDL-BCLL-BCDL STRESS INCR. 20.0,10.0,0.0,10.0 1.15				OF TRUSS S	.)			
					, ,	<u>,</u>		1.15				ζ.	,	
PROFILE	QTY PLY	TOP	BOT	TYPE ID	BASE O/A		BOT	OVER	HANG RIGHT	REACTIO	NS			
	1	12.00	0.00	COMMON C1	20-01-00			00-11-00		Joint 2 738.4 lbs. -105.3 lbs.	Joint 8 393.1 lbs. -61.0 lbs.	Joint 10 604.4 lbs. -103.4 lbs.		
	1	12.00	0.00	GABLE C1SG	20-01-00 20-01-00	2 X 6	2 X 6	00-11-00	00-11-00	Joint 2 701.4 lbs. -198.1 lbs.	Joint 12 319.9 lbs. -67.3 lbs.	Joint 15 701.2 lbs. -313.0 lbs.		
	2	12.00	0.00	COMMON C2	20-01-00 20-01-00	2 X 6	2 X 6	00-11-00		Joint 2 739.9 lbs. -106.5 lbs.	Joint 8 346.4 lbs. -45.9 lbs.	Joint 9 603.0 lbs. -101.2 lbs.		
	1 2 Ply	12.00	0.00	COMMON C2-GR	20-01-00 20-01-00	2 X 6	2 X 8	00-11-00		Joint 2 5633.7 lbs. -776.2 lbs.	Joint 8 297.7 lbs. -158.0 lbs.	Joint 9 6175.5 lbs. -846.2 lbs.		
	1 2 Ply	6.00	0.00	COMMON D1-GR	18-08-00 18-08-00	2 X 6	2 X 6			Joint 1 6559.5 lbs. -968.4 lbs.	Joint 5 5794.8 lbs. -865.7 lbs.			
	1	6.00	0.00	COMMON D1GE	18-08-00 18-08-00	2 X 6	2 X 6	00-11-00	00-11-00	Joint 2 176.5 lbs. -51.3 lbs.	Joint 3 65.2 lbs. -27.8 lbs.	Joint 4 51.6 lbs. 15.5 lbs.	Joint 12 108.5 lbs. -16.4 lbs.	Joint 14 128.5 lbs. -119.5 lbs.
	5	6.00	0.00	COMMON G1	15-11-00 15-11-00	2 X 6	2 X 6	00-11-00	00-11-00	Joint 2 677.2 lbs. -130.3 lbs.	Joint 4 677.2 lbs. -130.3 lbs.			
	1	6.00	0.00	COMMON G1GE	15-11-00 15-11-00	2 X 6	2 X 6	00-11-00	00-11-00	Joint 2 128.6 lbs. -28.5 lbs.	Joint 10 128.6 lbs. -11.1 lbs.	Joint 12 163.5 lbs. -75.8 lbs.	Joint 13 158.9 lbs. -62.7 lbs.	Joint 14 166.2 lbs. -55.5 lbs.
	3	12.00	0.00	COMMON H1	13-01-00 13-01-00	2 X 6	2 X 6	00-11-00	00-11-00	Joint 2 570.1 lbs. -86.1 lbs.	Joint 6 570.1 lbs. -86.1 lbs.			
	1	12.00	0.00	COMMON H1GE	13-01-00 13-01-00	2 X 6	2 X 6	00-11-00	00-11-00	Joint 2 265.9 lbs. -106.0 lbs.	Joint 10 228.3 lbs. -55.7 lbs.	Joint 12 284.7 lbs. -358.6 lbs.	Joint 13 190.7 lbs. -148.2 lbs.	Joint 14 205.2 lbs. 15.3 lbs.

000006558

Net 10 Days

ORDER #

QUOTE #

INVOICE #

TERMS

CUSTOMER ACCT #

CUSTOMER PO #

N/A

Fayetteville, N.C. 283	309 (910) 864-TRUS	S

			JOBSITE PHONE #	(910) 263-0276	S/	ALES AREA	David Landry
Γ	Wellco Contractors, Inc.	JOB NAME:L	₋ot 148 Hidden Lakes		LOT # 14	48 SUBDIV: Hidder	n Lakes
	PO Box 766	MODEL:Roof	f TAG: Pla	n 11 / 2GLF, CP	JOB CAT	EGORY: B & S - Build	d and Ship
	Spring Lake, NC 28390 (910) 436-3131	DELIVERY INS	TRUCTIONS:				
	Wellco Contractors Sugarberry Place Clayton, NC 27527	SPECIAL INST Copied from Lot	RUCTIONS: 135 Hidden Lakes (J1122-56	25)		PLAN SE	EAL DATE: N/A

11

//

//

11/23/22

Johnston

Jason Wellons

Jason Wellons

REQ. QUOTE DATE

ORDER DATE

ORDERED BY

COUNTY

DELIVERY DATE

DATE OF INVOICE

SUPERINTENDANT

													1 6/ 11 1		
														BY	DATE
BUILDING DEPARTMENT	OVERH/	ANG INFO	HEEL HEIGHT	00-04-05	R	EQ.	LAYOUTS		REQ	. ENG	GINEERING		QUOTE	JL	11/30/22
Roof Order	END CUT	RETURN											LAYOUT	JL	11/30/22
	PLUMB		GABLE STUDS	16 IN. OC			JOBSITE	1			JOBSITE	1	CUTTING	JL	11/30/22
ROOF TRUSSES			TCLL-TCDL-BCLL-BCDL	STRESS INC	R.	F	ROOF TRU	ss	SPAC	ING	24.0 IN. O	.C.	(TYP.)		
		JRMATIO	20.0,10.0,0.0,10.0	1.15									· · · ·		

	QTY	PIT	СН	TYPE	BASE	_			RHANG	1				
PROFILE	PLY	ТОР	вот	ID	O/A		BOT	LEFT	RIGHT	REACTIO	NS			
	1 2 Ply	4.00	0.00	MONOPITCH	05-04-00 05-04-00			LEFT	KIGITI	Joint 1 560.8 lbs. -135.7 lbs.	Joint 5 597.7 lbs. -315.7 lbs.			
	26	10.00	0.00	PIGGYBACK PB	06-08-09 06-08-09	2 X 4	2 X 4			Joint 2 182.0 lbs. -55.7 lbs.	Joint 4 182.0 lbs. -64.8 lbs.	Joint 6 222.9 lbs. 8.2 lbs.		
	2	10.00	0.00	GABLE PBGE	06-08-09 06-08-09	2 X 4	2 X 4			Joint 2 91.4 lbs. -34.4 lbs.	Joint 6 78.2 lbs. -11.8 lbs.	Joint 8 200.7 lbs. -175.6 lbs.	Joint 9 119.0 lbs. 23.5 lbs.	Joint 10 202.0 lbs. -176.8 lbs.
	1	12.00	0.00	VALLEY VC1	17-04-04 17-04-04	2 X 4	2 X 4			Joint 1 221.1 lbs. -47.6 lbs.	Joint 5 188.1 lbs. -3.7 lbs.	Joint 6 581.8 lbs. -319.6 lbs.	Joint 8 427.1 lbs. 58.3 lbs.	Joint 9 582.2 lbs. -319.8 lbs.
	1	12.00	0.00	VALLEY VC2	14-00-04 14-00-04	2 X 4	2 X 4			Joint 1 161.8 lbs. -57.0 lbs.	Joint 5 135.3 lbs. -21.8 lbs.	Joint 6 438.4 lbs. -257.1 lbs.	Joint 7 407.6 lbs. 52.7 lbs.	Joint 8 438.8 lbs. -257.2 lbs.
	1	12.00	0.00	VALLEY VC3	10-08-04 10-08-04	2 X 4	2 X 4			Joint 1 164.7 lbs. -147.6 lbs.	Joint 5 151.7 lbs. -121.3 lbs.	Joint 6 390.9 lbs. -258.9 lbs.	Joint 7 220.3 lbs. 43.5 lbs.	Joint 8 391.0 lbs. -258.8 lbs.
	1	12.00	0.00	VALLEY VC4	07-04-04 07-04-04	2 X 4	2 X 4			Joint 1 163.5 lbs. -53.0 lbs.	Joint 3 163.5 lbs. -53.0 lbs.	Joint 4 210.0 lbs. 11.8 lbs.		
_	1	12.00	0.00	VALLEY VC5	04-00-04 04-00-04	2 X 4	2 X 4			Joint 1 82.3 lbs. -26.7 lbs.	Joint 3 82.3 lbs. -26.7 lbs.	Joint 4 105.7 lbs. 6.0 lbs.		
	1	6.00	0.00	VALLEY VD1	11-01-09 11-01-09	2 X 4	2 X 4			Joint 1 184.1 lbs. -49.5 lbs.	Joint 3 184.1 lbs. -57.0 lbs.	Joint 4 431.0 lbs. -44.1 lbs.		
	1	6.00	0.00	VALLEY VD2	04-05-09 04-05-09	2 X 4	2 X 4			Joint 1 67.0 lbs. -20.3 lbs.	Joint 3 67.1 lbs. -22.9 lbs.	Joint 4 128.5 lbs. -6.4 lbs.		

DATE11/30/22 PAGE 3

J1122-5849

000006558

Net 10 Days

Lenny Norris David Landry

ORDER #

QUOTE #

INVOICE #

SALES REP

TERMS

CUSTOMER ACCT #

CUSTOMER PO #

Rei	ly Road Industrial Park P.O. Box 40408		COUNTY	Johnston	Т	ERMS	Net 10 Days			
Fay	etteville, N.C. 28309 (910) 864-TRUS		SUPERINTENDANT	Jason Wellons		SALES REP	Lenny Norris			
			JOBSITE PHONE #	(910) 263-0276	S	ALES AREA	David La	andry		
	Wellco Contractors, Inc.	JOB NAME:L	ot 148 Hidden Lakes		LOT # 148 SUBDIV: Hidden Lakes					
S O L	PO Box 766	MODEL:Roof	TAG: Pla	n 11 / 2GLF, CP	JOB CA	TEGORY: B & S - Buil	I and Ship			
D HO	Spring Lake, NC 28390 (910) 436-3131	DELIVERY INS	TRUCTIONS:							
SH	Wellco Contractors									
Ĩ	Sugarberry Place	SPECIAL INST Copied from Lot	RUCTIONS: 135 Hidden Lakes (J1122-56)							
ŏ	Clayton, NC 27527			,				: N/A		
						FLAN SL	BY	DATE		

11

11

//

11/23/22

Jason Wellons

REQ. QUOTE DATE

ORDER DATE

ORDERED BY

DELIVERY DATE

DATE OF INVOICE

BUILDING DEPARTMENT OVERHANG INFO			HEEL HEIGHT	00-04-05	00-04-05 REQ. LAYOUTS				REQ. ENGINEERING				QUOTE	JL	11/30/22
Roof Order	END CUT	RETURN											LAYOUT	JL	11/30/22
	PLUMB		GABLE STUDS	16 IN. OC			JOBSITE	1			JOBSITE	1	CUTTING	JL	11/30/22

ROOF T	RUS	SES		DADING FORMATION	TCLL-TCDL-B0 20.0,10.0,0		LESS INCR.	RO	OF TRUSS S	PACING:24.0	IN. O.C. (TYP	.)	
PROFILE	QTY PLY	PIT TOP	BOT	TYPE ID	BASE O/A	IBER BOT	OVER	HANG RIGHT	REACTIO	NS			
	1	6.00	0.00	VALLEY VG1	14-02-09 14-02-09	2 X 4			Joint 1 74.1 lbs. -11.4 lbs.	Joint 5 74.1 lbs. -1.6 lbs.	Joint 6 312.8 lbs. -125.2 lbs.	Joint 7 282.3 lbs. 6.8 lbs.	Joint 8 312.8 lbs. -125.4 lbs.
	1	6.00	0.00	VALLEY VG2	07-06-09 07-06-09	2 X 4			Joint 1 129.8 lbs. -39.4 lbs.	Joint 3 129.8 lbs. -44.2 lbs.	Joint 4 249.7 lbs. -12.8 lbs.		

ITEMS

QTY	ITEM TYPE	SIZE	LENGTH FT-IN-16	PART NUMBER	NOTES
25	Hangers, USP	HUS 26			SIMPSON (HUS26)
2	LVL Beams (Sized)	LVL, 1-3/4" x 11-7/8" (S)	14-00-00		BM1
2	LVL Beams (Sized)	LVL, 1-3/4" x 14" (S)	22-00-00		GDH
1	Hangers, USP	THD26-2			SIMPSON (HHUS26-2)

DATE11/30/22 PAGE 4 J1122-5849

000006558

ORDER #

QUOTE #

INVOICE #

CUSTOMER ACCT #

CUSTOMER PO #