

RE: J0423-1984 Lot 52 Williams Farms Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:

Customer: Project Name: J0423-1984 Lot/Block: Address: City:

Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014 Wind Code: ASCE 7-10 Roof Load: 40.0 psf Design Program: MiTek 20/20 8.4 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 33 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
110.							
1	151635558	A1GE	4/29/2022	21	151635578	PB2	4/29/2022
2	151635559	A2	4/29/2022	22	151635579	VA1	4/29/2022
3	151635560	A3	4/29/2022	23	151635580	VA2	4/29/2022
4	151635561	A4	4/29/2022	24	151635581	VA3	4/29/2022
5	151635562	A5	4/29/2022	25	151635582	VA4	4/29/2022
6	151635563	A6GE	4/29/2022	26	151635583	VA5	4/29/2022
7	151635564	B1GE	4/29/2022	27	151635584	VA6	4/29/2022
8	151635565	B2	4/29/2022	28	151635585	VA7	4/29/2022
9	151635566	B3	4/29/2022	29	151635586	VA8	4/29/2022
10	151635567	B4-GR	4/29/2022	30	151635587	VB1	4/29/2022
11	151635568	C1GE	4/29/2022	31	151635588	VB2	4/29/2022
12	151635569	C2	4/29/2022	32	151635589	VB3	4/29/2022
13	151635570	C3	4/29/2022	33	151635590	VB4	4/29/2022
14	151635571	D1GE	4/29/2022				
15	151635572	D2	4/29/2022				
16	151635573	M1GE	4/29/2022				
17	151635574	M2	4/29/2022				

4/29/2022

4/29/2022

4/29/2022

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision

based on the parameters provided by Comtech, Inc - Fayetteville.

М3

PB1

M4GE

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2023

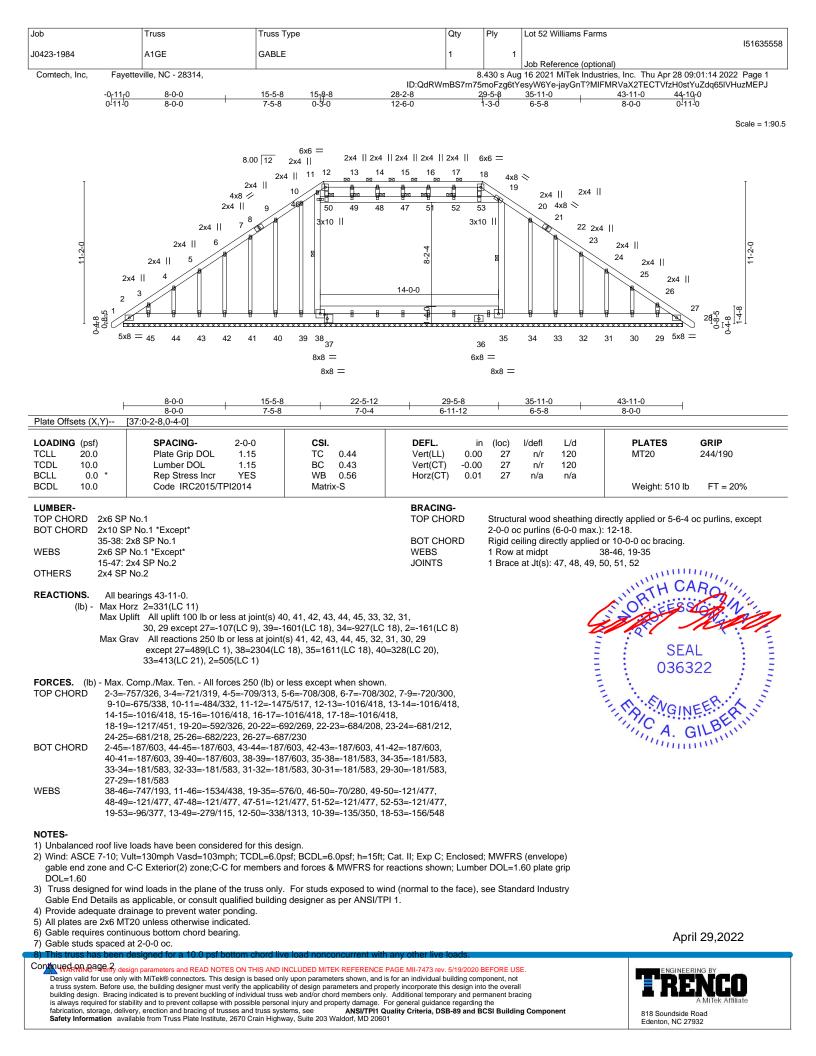
North Carolina COA: C-0844

151635575

151635576

151635577

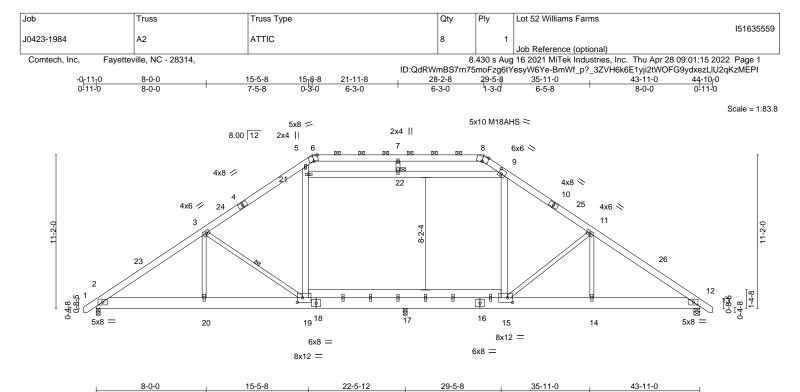
18


19

20

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Gilbert, Eric


Job	Truss	Truss Type	Qty	Ply	Lot 52 Williams Farms]
J0423-1984	A1GE	GABLE	1	1	151635558	
					Job Reference (optional)	
Comtech, Inc, Fayettev	ville, NC - 28314,		8.	430 s Aug	16 2021 MiTek Industries, Inc. Thu Apr 28 09:01:14 2022 Page 2	
		ID:QdRWn	nBS7rn75i	noFzq6tY	esyW6Ye-jayGnT?MIFMRVaX2TECTVfzH0stYuZdq65IVHuzMEPJ	

NOTES-

9) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

- 10) Ceiling dead load (10.0 psf) on member(s). 46-50, 49-50, 48-49, 47-48, 47-51, 51-52, 52-53, 19-53; Wall dead load (5.0 psf) on member(s). 38-46, 19-35
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 40, 41, 42, 43, 44, 45, 33, 32, 31, 30, 29 except (jt=lb) 27=107, 39=1601, 34=927, 2=161.
- 12) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 14) This truss has large uplift reaction(s) from gravity load case(s). Proper connection is required to secure truss against upward movement at the bearings. Building designer must provide for uplift reactions indicated.
- 15) Attic room checked for L/360 deflection.

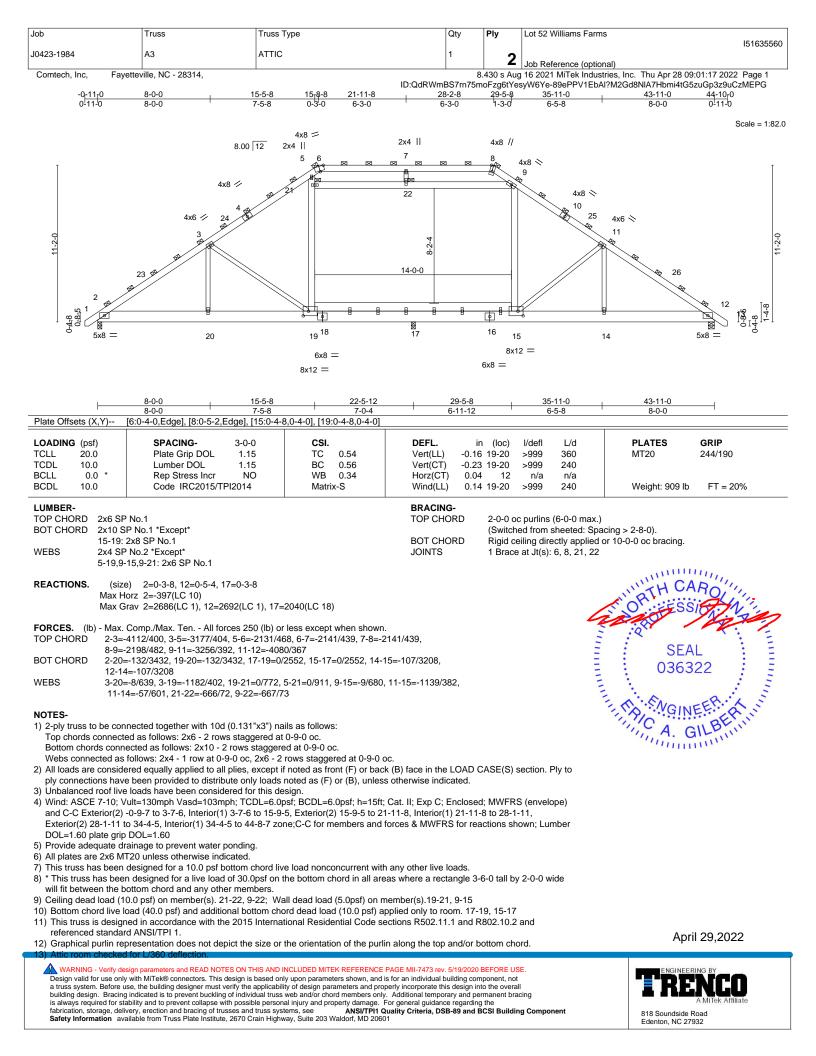
1	8-0-0	7-5-8	7-0-4	6-1	1-12		6-5	5-8 '	8-0-0	1
Plate Offsets (X,Y) [6	6:0-4-0,Edge], [8:0-5-0,Edge	e], [9:0-2-8,0-3-12], [15	:0-4-8,0-4-0], [19:0	0-4-8,0-4-0]						
LOADING (psf) ICCLL 20.0 ICCDL 10.0 3CLL 0.0 3CDL 10.0	Plate Grip DOL Lumber DOL	-0-0 CSI. 1.15 TC 1.15 BC YES WB 114 Matr	0.67 0.67 0.83	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	-0.21 -0.31 0.05	(loc) 19-20 19-20 12 19-20	l/defl >999 >864 n/a >999	L/d 360 240 n/a 240	PLATES MT20 M18AHS Weight: 455 lb	GRIP 244/190 186/179 FT = 20%
15-19: 2 VEBS 2x4 SP	No.1 P No.1 *Except* 2x8 SP No.1 No.2 *Except* 15,9-21: 2x6 SP No.1			BRACING- TOP CHOR BOT CHOR WEBS JOINTS	D	except 2-0-0 o Rigid c 1 Row	c purlins	(4-10-1 max. ectly applied o 3	rectly applied or 4-6-10): 6-8. or 10-0-0 oc bracing. i-19	oc purlins,
) 2=0-3-8, 12=0-5-4, 17=0 prz 2=265(LC 11) av 2=1791(LC 1), 12=1795(3)							
FOP CHORD 2-3=-2 8-9=-1	Comp./Max. Ten All forces 2741/267, 3-5=-2118/269, 5- 1466/321, 9-11=-2170/262, 1	6=-1421/312, 6-7=-142 11-12=-2720/245	28/293, 7-8=-1428	,						
12-14= WEBS 3-20=-	-88/2287, 19-20=-88/2287, 1 =-71/2138 -5/426, 3-19=-788/268, 19-2 =-38/401, 21-22=-442/48, 9-	1=0/514, 5-21=0/607,		,						
		<u></u> 110,10								

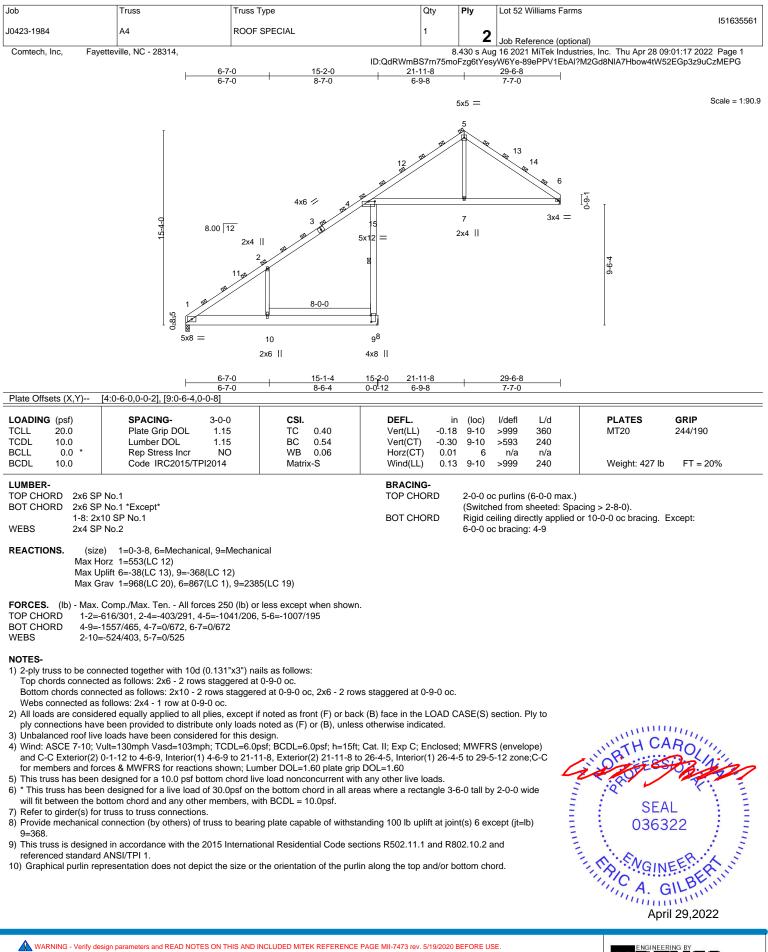
- NOTES-
- 1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-9-7 to 3-7-6, Interior(1) 3-7-6 to 15-9-5, Exterior(2) 15-9-5 to 21-11-8, Interior(1) 21-11-8 to 28-1-11, Exterior(2) 28-1-11 to 34-4-5, Interior(1) 34-4-5 to 44-8-7 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

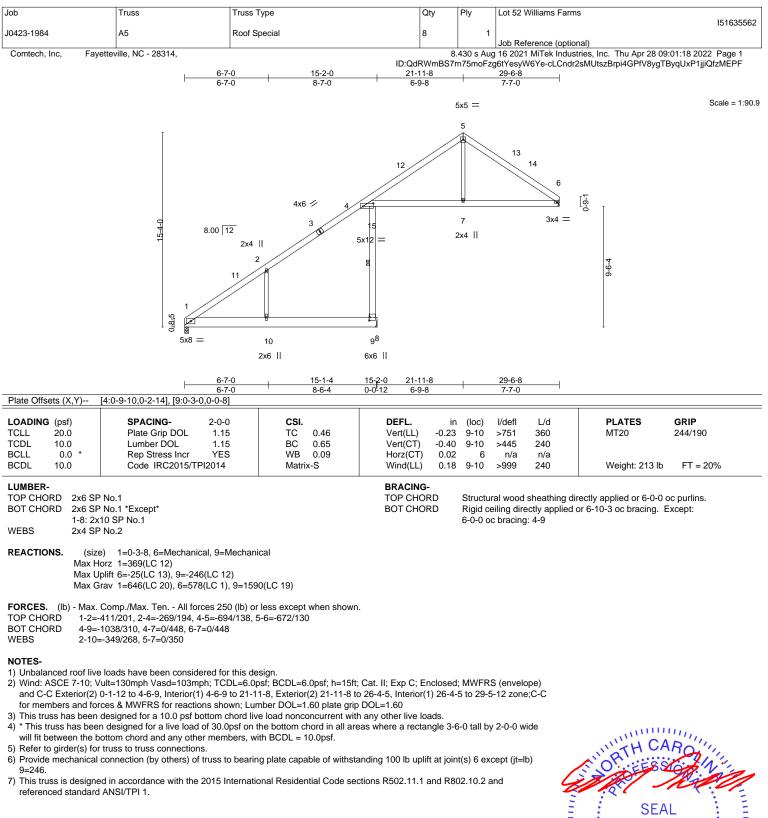
- 3) Provide adequate drainage to prevent water ponding.
- 4) All plates are MT20 plates unless otherwise indicated.
- 5) All plates are 2x6 MT20 unless otherwise indicated.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

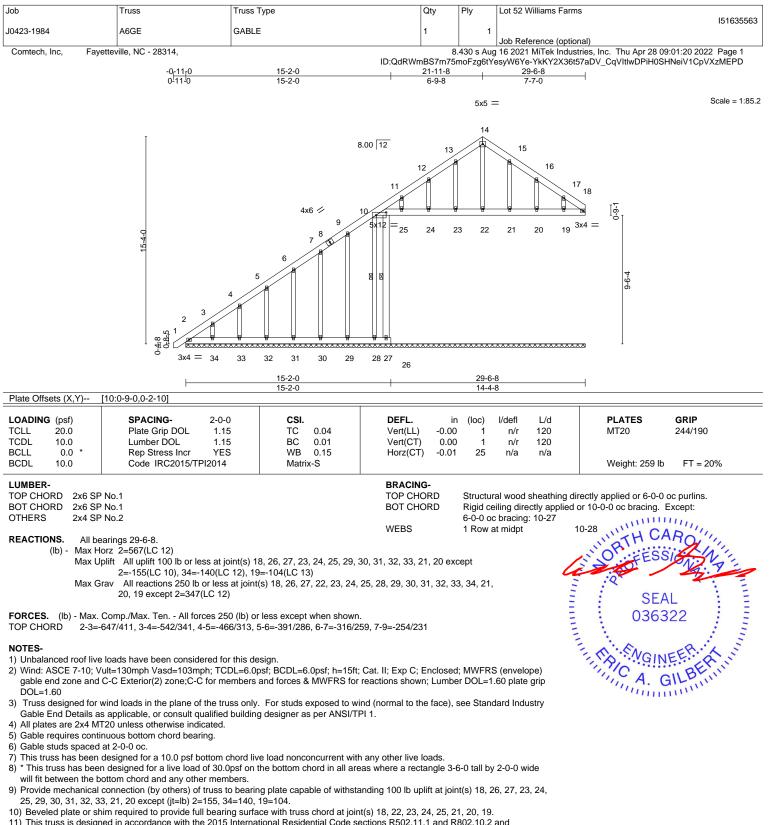
7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


8) Ceiling dead load (10.0 psf) on member(s). 21-22, 9-22; Wall dead load (5.0psf) on member(s).19-21, 9-15

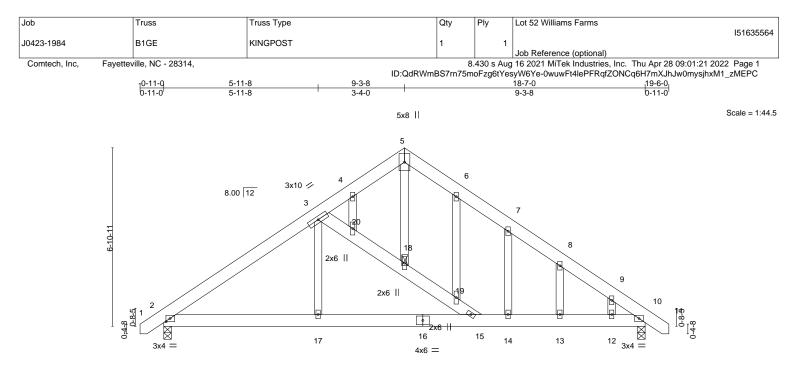

9) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 17-19, 15-17
 10) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.12) Attic room checked for L/360 deflection.





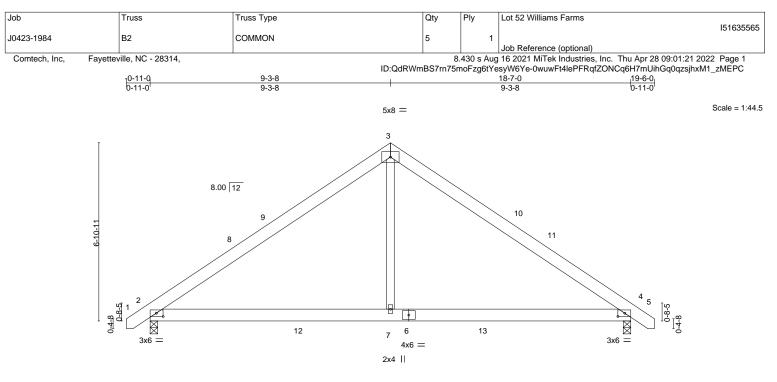
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

11) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

April 29,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss system. See **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



	5-11-8 5-11-8			8-7-0 2-7-8			
Plate Offsets (X,Y)	[2:0-1-13,0-1-8]						
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.25 BC 0.25 WB 0.40 Matrix-S	DEFL. in Vert(LL) -0.06 Vert(CT) -0.13 Horz(CT) 0.01 Wind(LL) 0.09	14 >999 15 >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 147 lb	GRIP 244/190 FT = 20%
			BRACING- TOP CHORD BOT CHORD JOINTS		ectly applied	rectly applied or 6-0-0 c or 10-0-0 oc bracing.	oc purlins.
Max H Max L	e) 2=0-3-8, 10=0-3-8 Horz 2=-201(LC 10) Jplift 2=-167(LC 12), 10=-167(LC 13) Grav 2=788(LC 1), 10=788(LC 1)						
TOP CHORD 2-3=	. Comp./Max. Ten All forces 250 (lb) c -974/236, 3-4=-710/286, 4-5=-794/333, 797/160, 9-10=-884/126						
BOT CHORD 2-17 10-1	/=-140/746, 15-17=-140/746, 14-15=-30 2=-30/616	/616, 13-14=-30/616, 12-1	3=-30/616,				
WEBS 18-2	0=-287/162, 5-18=-184/442, 3-17=0/30	2					
 Wind: ASCE 7-10; V gable end zone and DOL=1.60 All plates are 2x4 M This truss has been 5) * This truss has been will fit between the b 	e loads have been considered for this d Vult=130mph Vasd=103mph; TCDL=6.0 I C-C Exterior(2) zone;C-C for members T20 unless otherwise indicated. I designed for a 10.0 psf bottom chord li en designed for a live load of 30.0psf on bottom chord and any other members. I connection (by others) of truss to bear	Dpsf; BCDL=6.0psf; h=15ft and forces & MWFRS for ve load nonconcurrent wit the bottom chord in all are	reactions shown; Lumbe h any other live loads. eas where a rectangle 3-6	er DOL=1.60 plate 6-0 tall by 2-0-0 v	, vide	OR FESS	ROUTIN
	ed in accordance with the 2015 Internat	ional Residential Code se	ctions R502.11.1 and R80	02.10.2 and		: SEA	

7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

818 Soundside Road Edenton, NC 27932

			9-3-8 9-3-8					18-7-0 9-3-8			
Plate Offsets (X,Y)	[2:0-3-3,0-1-8], [4:0-3-3,0-	·1-8]									
LOADING (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.15	TC	0.41	Vert(LL)	-0.05	2-7	>999	360	MT20	244/190
TCDL 10.0	Lumber DOL	1.15	BC	0.39	Vert(CT)	-0.10	2-7	>999	240		
BCLL 0.0 *	Rep Stress Incr	YES	WB	0.14	Horz(CT)	0.01	4	n/a	n/a		
3CDL 10.0	Code IRC2015/TPI	12014	Matrix	-S	Wind(LL)	0.04	2-7	>999	240	Weight: 110 lb	FT = 20%

TOP CHORD

BOT CHORD

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.2

REACTIONS. (size) 4=0-3-8, 2=0-3-8 Max Horz 2=-161(LC 10) Max Uplift 4=-51(LC 13), 2=-51(LC 12) Max Grav 4=892(LC 20), 2=892(LC 19)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-1085/199, 3-4=-1085/199 BOT CHORD 2-7=0/819 4-7=0/819

BOT CHORD	2-7=0/819, 4-7=0/81
WEBS	3-7=0/624

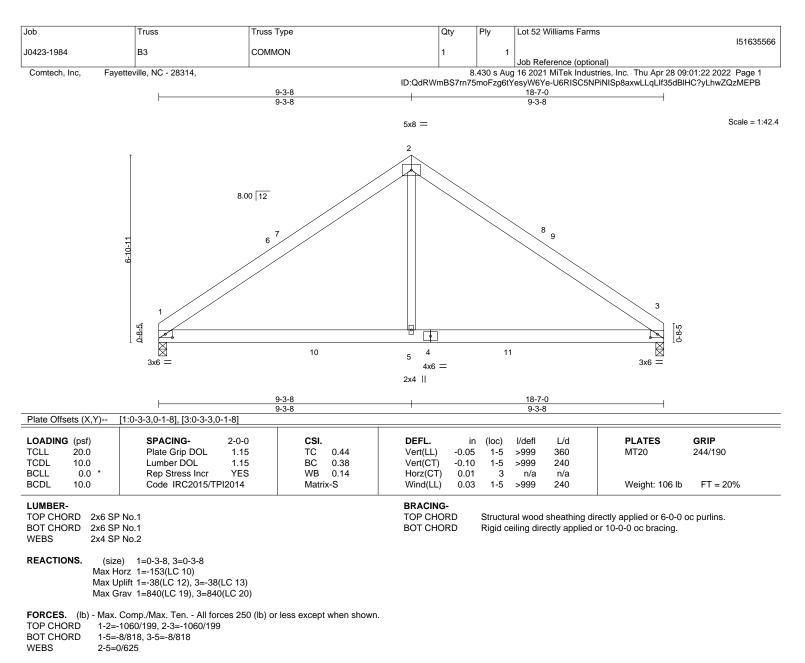
NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-9-7 to 3-7-6, Interior(1) 3-7-6 to 9-3-8, Exterior(2) 9-3-8 to 13-8-5, Interior(1) 13-8-5 to 19-4-7 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

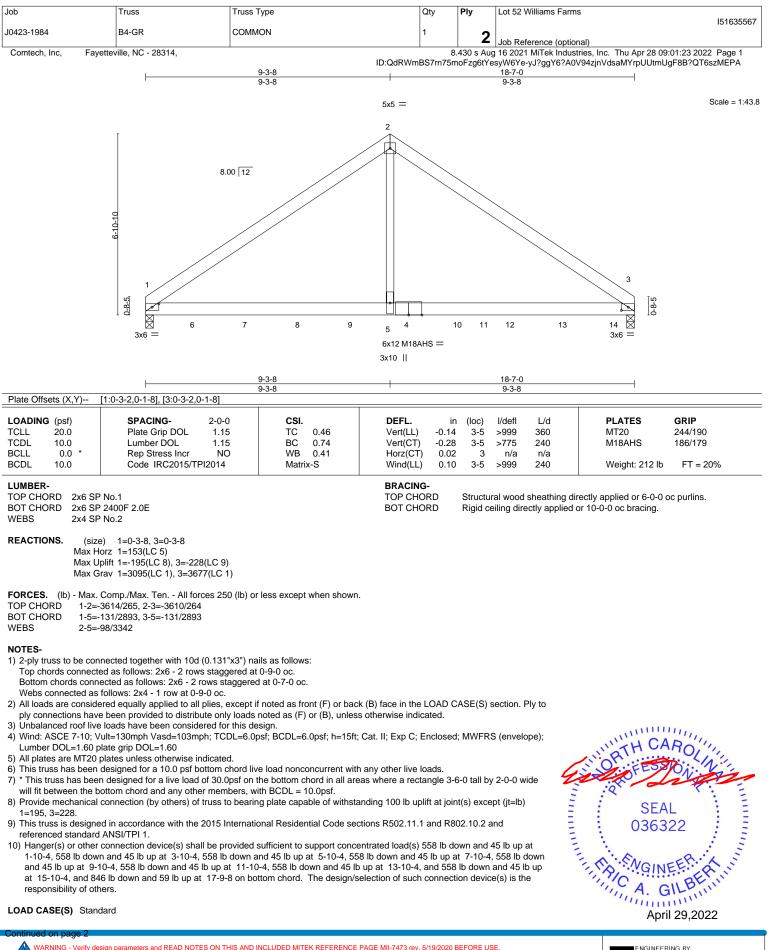
5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2.


6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

SEAL 036322 April 29,2022

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.



NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-1-12 to 4-6-9, Interior(1) 4-6-9 to 9-3-8, Exterior(2) 9-3-8 to 13-8-5, Interior(1) 13-8-5 to 18-5-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

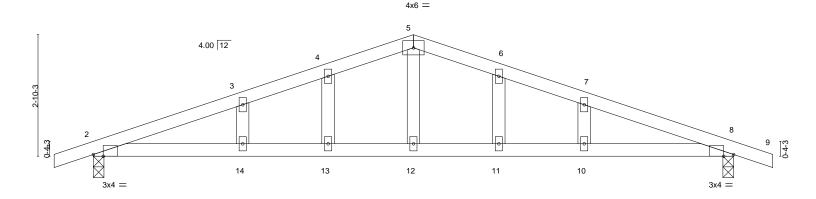
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 52 Williams Farms
					151635567
J0423-1984	B4-GR	COMMON	1	2	
					Job Reference (optional)
Comtech, Inc, Fayettev	ille, NC - 28314,		8	430 s Aug	16 2021 MiTek Industries, Inc. Thu Apr 28 09:01:23 2022 Page 2

ID:QdRWmBS7rn75moFzg6tYesyW6Ye-yJ?ggY6?A0V94zjnVdsaMYrpUUtmUgF8B?QT6szMEPA

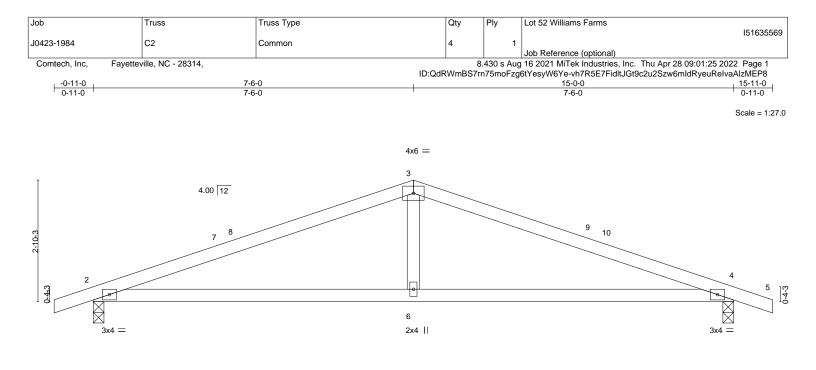

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15


Uniform Loads (plf) Vert: 1-2=-60, 2-3=-60, 1-3=-20

Concentrated Loads (lb) Vert: 4=-558(B) 6=-558(B) 7=-558(B) 8=-558(B) 9=-558(B) 10=-558(B) 12=-558(B) 13=-558(B) 14=-846(B)

Scale = 1:27.0



 	7-6-0 7-6-0					<u>-0-0</u> 6-0		
Plate Offsets (X,Y)	[2:0-2-13,Edge], [8:0-2-13,Edge]				1-	0-0		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.36 BC 0.62 WB 0.09 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in (loc) -0.12 10-11 -0.20 10-11 0.02 8 0.17 10	l/defl L >999 36 >892 24 n/a n/ >999 24	0 0 /a	PLATES MT20 Weight: 60 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP WEBS 2x4 SP OTHERS 2x4 SP	9 No.1 9 No.2		BRACING- TOP CHOR BOT CHOR	D Structu			ectly applied or 5-5-6 or 5-4-0 oc bracing.	oc purlins.
Max H Max U Max G	e) 2=0-3-0, 8=0-3-0 orz 2=57(LC 12) plift 2=-356(LC 8), 8=-356(LC 9) irav 2=652(LC 1), 8=652(LC 1) Comp./Max. Ten All forces 250 (lb) or	less except when shown				Q	IN OR THESE	AROLIN
7-8=- BOT CHORD 2-14=	.1124/1222, 3-4=-1065/1222, 4-5=-1056 .1124/1222 =-1081/1010, 13-14=-1081/1010, 12-13=	, ,	,			11111	SE/ 0363	• –
	1=-1081/1010, 8-10=-1081/1010 =-509/376					111	0300	
 Wind: ASCE 7-10; V gable end zone and Lumber DOL=1.60 p 	e loads have been considered for this de /ult=130mph Vasd=103mph; TCDL=6.0p C-C Exterior(2) zone; porch left and rigl late grip DOL=1.60 wind loads in the plane of the truss only.	osf; BCDL=6.0psf; h=15ft at exposed;C-C for memb	ers and forces & N	/WFRS for read	ctions shown;		SE/ 0363	IEER. KING
Gable End Details a	s applicable, or consult qualified building T20 unless otherwise indicated.							
6) This truss has been7) * This truss has been	designed for a 10.0 psf bottom chord liv n designed for a live load of 30.0psf on t				/ 2-0-0 wide			
8) Provide mechanical 2=356, 8=356.	connection (by others) of truss to bearing		0					
8) Provide mechanical 2=356, 8=356.	nottom chord and any other members. connection (by others) of truss to bearing and in accordance with the 2015 Internation		0					

9) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

April 29,2022

F		7-6-0 7-6-0							15-0-0 7-6-0		
_OADING (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
ICLL 20.0	Plate Grip DOL	1.15	тс	0.66	Vert(LL)	-0.06	4-6	>999	360	MT20	244/190
TCDL 10.0	Lumber DOL	1.15	BC	0.47	Vert(CT)	-0.15	4-6	>999	240		
BCLL 0.0	* Rep Stress Incr	YES	WB	0.08	Horz(CT)	0.02	4	n/a	n/a		
3CDL 10.0	Code IRC2015/TF	PI2014	Matrix	k-S	Wind(LL)	0.05	2-6	>999	240	Weight: 52 lb	FT = 20%

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD2x4 SP No.1BOT CHORD2x4 SP No.1WEBS2x4 SP No.2

REACTIONS. (size) 2=0-3-0, 4=0-3-0 Max Horz 2=34(LC 16) Max Uplift 2=-85(LC 8), 4=-85(LC 9) Max Grav 2=652(LC 1), 4=653(LC 1)

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 2-3=-1105/292, 3-4=-1105/292

 BOT CHORD
 2-6=-186/979, 4-6=-186/979

WEBS 3-6=0/357

NOTES-

1) Unbalanced roof live loads have been considered for this design.

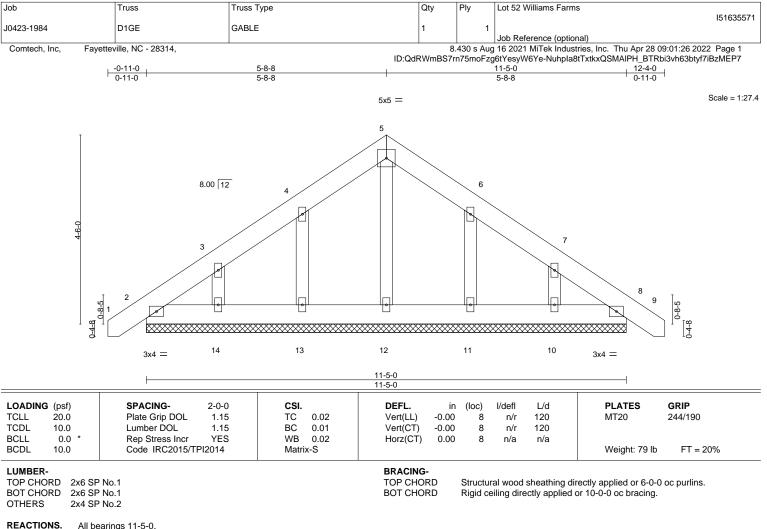
2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-11-0 to 3-5-13, Interior(1) 3-5-13 to 7-6-0, Exterior(2) 7-6-0 to 11-10-13, Interior(1) 11-10-13 to 15-11-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.

6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss system. See **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MITEK Atfiliate 818 Soundside Road

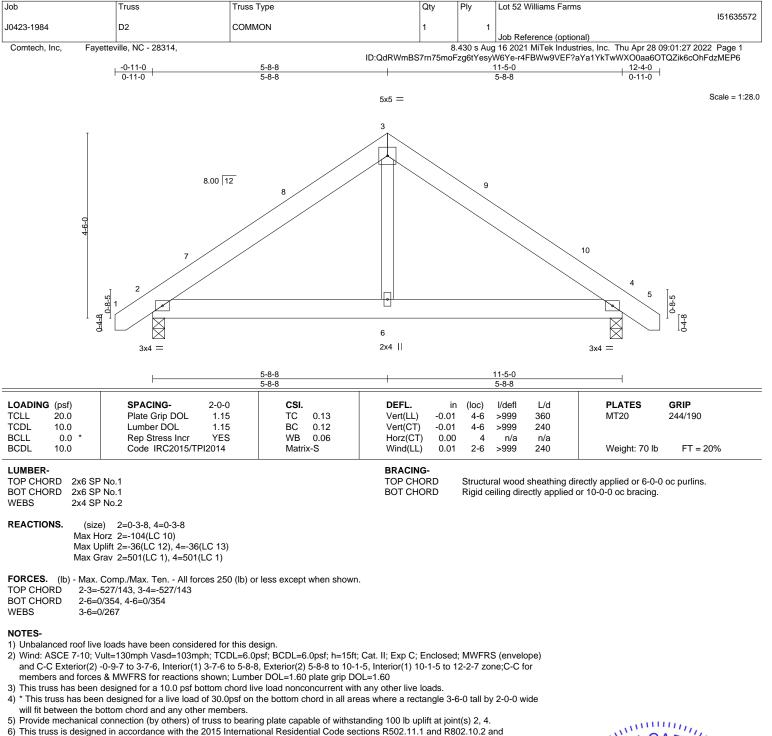
Edenton, NC 27932

All bearings 11-5-0.

Max Horz 2=-130(LC 10) (lb) -

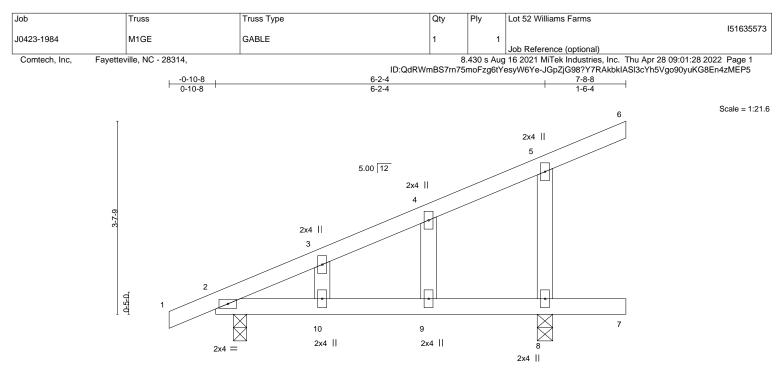
Max Uplift All uplift 100 lb or less at joint(s) 2, 8, 13, 14, 11, 10

Max Grav All reactions 250 lb or less at joint(s) 2, 8, 12, 13, 14, 11, 10


FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8, 13, 14, 11, 10.
- 10) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



referenced standard ANSI/TPI 1.

	0-4-0 0-4-0	<u>6-2-4</u> 5-10-4		-8-8 -6-4
LOADING (psf) TCLL 20.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15	CSI. DEFL. TC 0.34 Vert(LL) BC 0.37 Vert(CT)	in (loc) l/defl L/d -0.06 9-10 >999 360 -0.12 9-10 >615 240	PLATES GRIP MT20 244/190
BCLL 0.0 * BCDL 10.0	Rep Stress Incr YES Code IRC2015/TPI2014	WB 0.06 Horz(CT) Matrix-S Wind(LL)	0.00 n/a n/a 0.17 9-10 >438 240	Weight: 32 lb FT = 20%

BRACING-

BOT CHORD

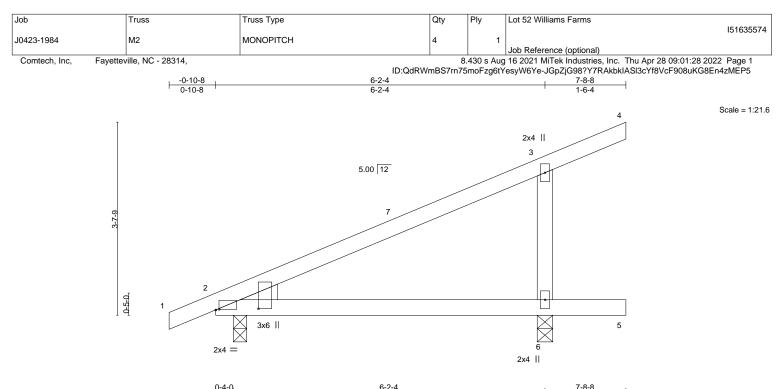
LUMBER-

TOP CHORD	2x4 SP No.1
BOT CHORD	2x4 SP No.1
WEBS	2x4 SP No.2
OTHERS	2x4 SP No.2

REACTIONS. (size) 2=0-3-0, 8=0-3-8 Max Horz 2=161(LC 12) Max Uplift 2=-108(LC 8), 8=-160(LC 9) Max Grav 2=292(LC 1), 8=374(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. WEBS 5-8=-246/343

NOTES-


- Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable studs spaced at 2-0-0 oc.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=108, 8=160.
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

			0.4.0			5 40 4					0.0	
			0-4-0			5-10-4				· · · · ·	6-4	
Plate Offse	ts (X,Y)	[2:0-0-12,0-0-2], [2:0-0-5,	0-9-10]									
LOADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.46	Vert(LL)	-0.06	2-6	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.59	Vert(CT)	-0.12	2-6	>604	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.05	Horz(CT)	0.00		n/a	n/a		
BCDL	10.0	Code IRC2015/TF	912014	Matrix	(-P	Wind(LL)	0.16	2-6	>469	240	Weight: 30 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

 TOP CHORD
 2x4 SP No.1

 BOT CHORD
 2x4 SP No.1

 WEBS
 2x4 SP No.2

 WEDGE
 Left: 2x4 SP No.2

REACTIONS. (size) 2=0-3-0, 6=0-3-8 Max Horz 2=111(LC 12)

Max Uplift 2=-78(LC 8), 6=-122(LC 9)

Max Grav 2=292(LC 1), 6=374(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 3-6=-280/276

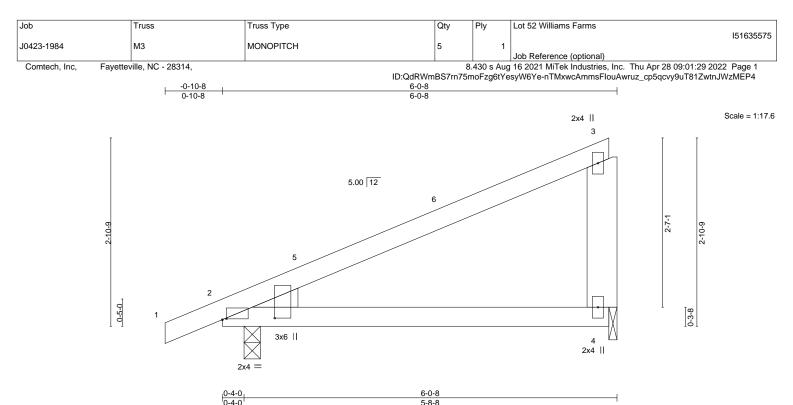
NOTES-

 Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-10-8 to 3-6-5, Interior(1) 3-6-5 to 7-8-8 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2 except (jt=lb) 6=122.


5) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

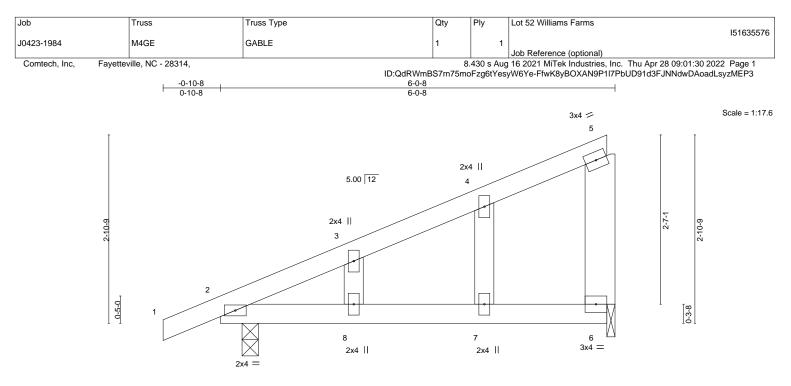
OADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	тс	0.48	Vert(LL)	-0.05	2-4	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.61	Vert(CT)	-0.11	2-4	>621	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00		n/a	n/a		
BCDL	10.0	Code IRC2015/TF	PI2014	Matrix	x-P	Wind(LL)	0.12	2-4	>560	240	Weight: 26 lb	FT = 20%

TOP CHORD OP CHORD 2x4 SP No 1 2x4 SP No.1 BOT CHORD WFBS 2x6 SP No.1 BOT CHORD WEDGE

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

Left: 2x4 SP No.2

REACTIONS. (size) 2=0-3-0, 4=0-1-8 Max Horz 2=89(LC 12) Max Uplift 2=-79(LC 8), 4=-77(LC 9) Max Grav 2=293(LC 1), 4=222(LC 1)


FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-10-8 to 3-6-5, Interior(1) 3-6-5 to 5-9-12 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

	<mark>0-4-0</mark> 		6-0-8 5-8-8				I	
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. ir	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.23	Vert(LL) -0.03	7-8	>999	360	MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.30	Vert(CT) -0.06	7-8	>999	240		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.01	Horz(CT) -0.00	6	n/a	n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL) 0.08	7-8	>878	240	Weight: 29 lb	FT = 20%

TOP CHORD

BOT CHORD

LUMBER-	
---------	--

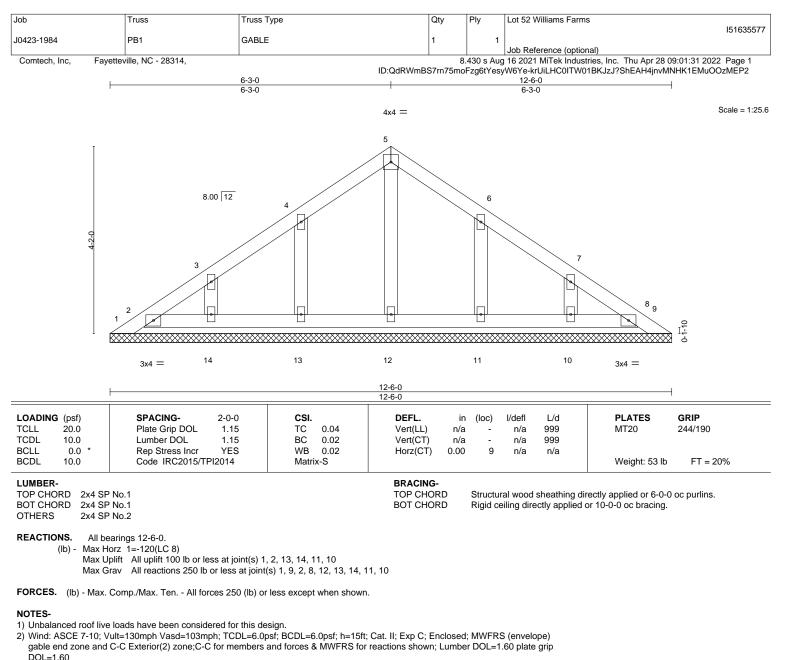
TOP CHORD	2x4 SP No.1
BOT CHORD	2x4 SP No.1
WEBS	2x6 SP No.1
OTHERS	2x4 SP No.2

REACTIONS. (size) 2=0-3-0, 6=0-1-8 Max Horz 2=129(LC 12) Max Uplift 2=-113(LC 8), 6=-107(LC 8) Max Grav 2=293(LC 1), 6=222(LC 1)

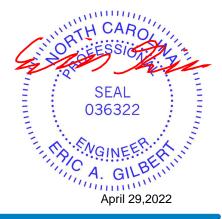
FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

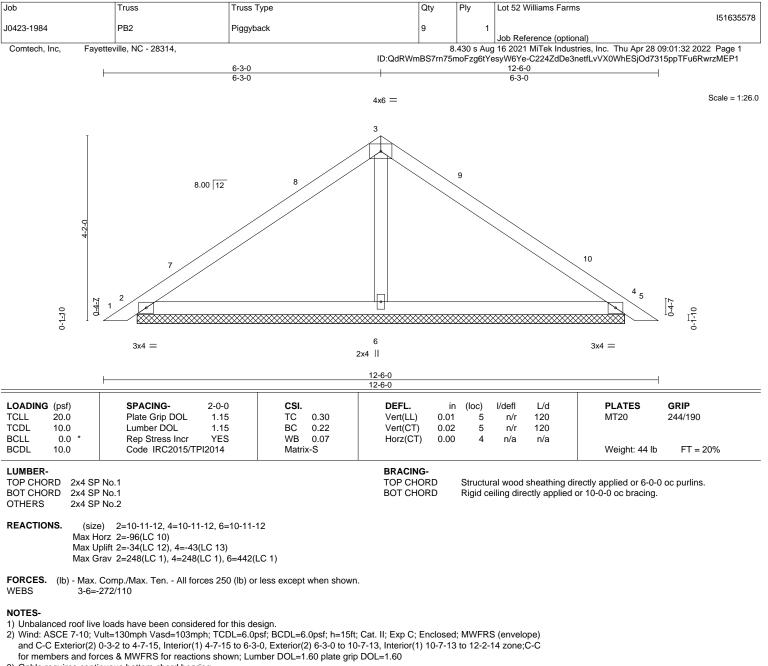
- 1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable studs spaced at 2-0-0 oc.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Bearing at joint(s) 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 6.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=113. 6=107.
- 9) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



Structural wood sheathing directly applied or 6-0-0 oc purlins,


Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

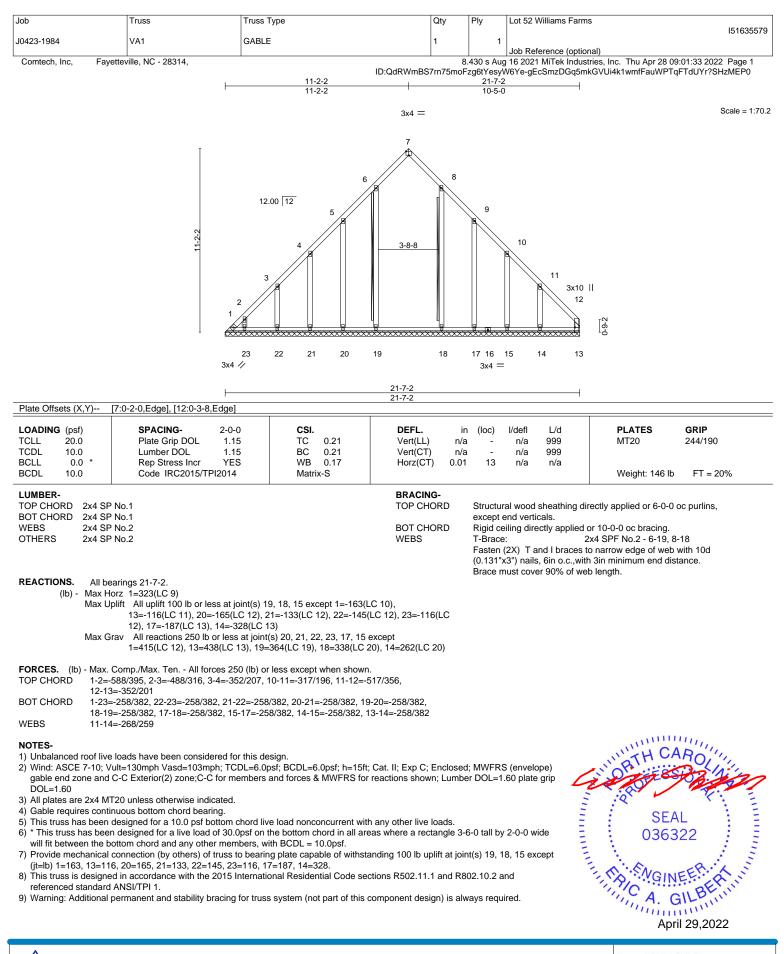


- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 2, 13, 14, 11, 10.
- 10) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

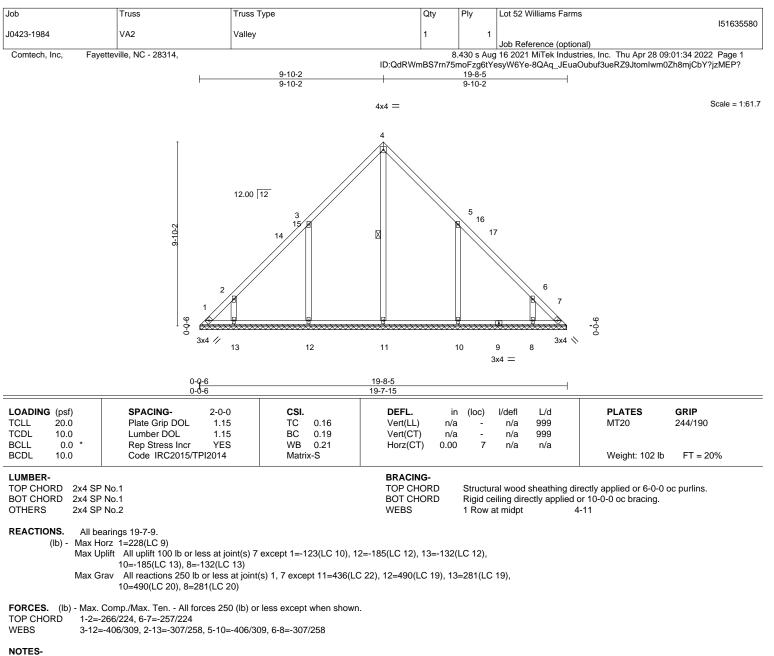
3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.

7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


 See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

1) Unbalanced roof live loads have been considered for this design.

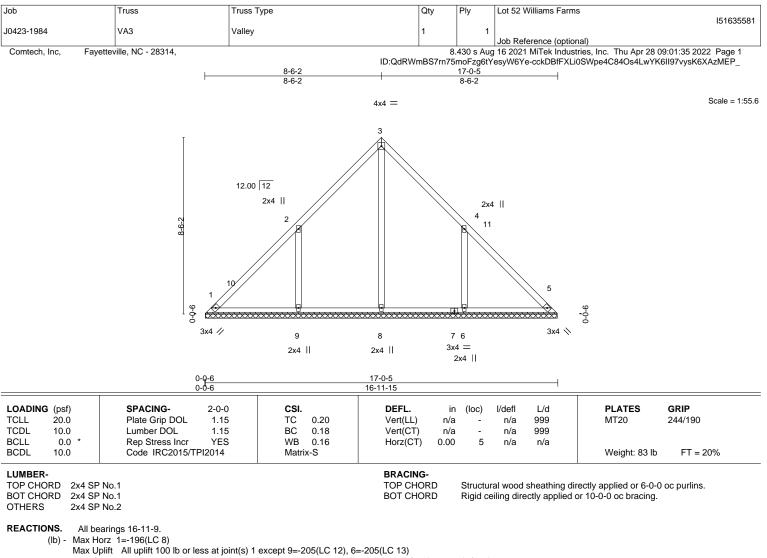
2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-4-4 to 4-9-0, Interior(1) 4-9-0 to 9-10-2, Exterior(2) 9-10-2 to 14-2-15, Interior(1) 14-2-15 to 19-4-1 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) All plates are 2x4 MT20 unless otherwise indicated.

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide


will fit between the bottom chord and any other members, with BCDL = 10.0psf.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7 except (jt=lb) 1=123, 12=185, 13=132, 10=185, 8=132.

8) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 8=416(LC 22), 9=532(LC 19), 6=532(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 2-9=-441/329, 4-6=-441/329

NOTES-

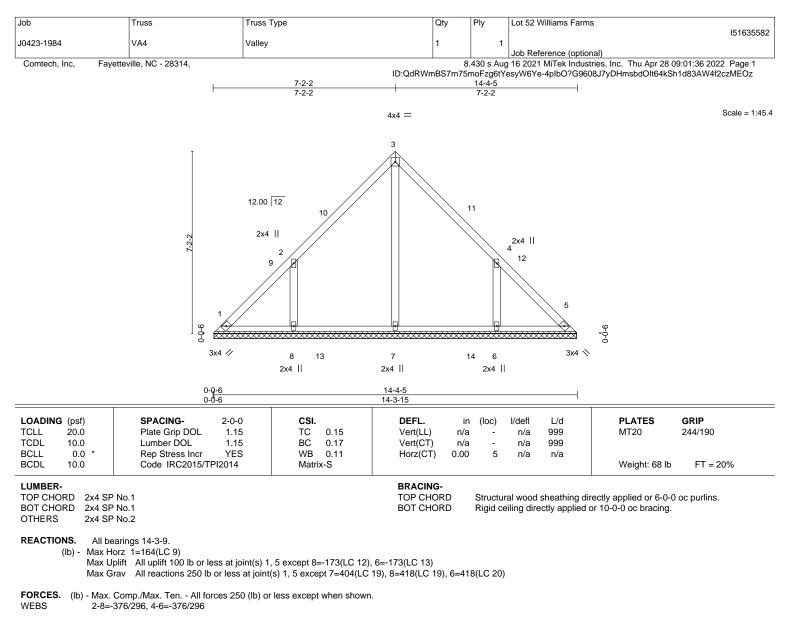
1) Unbalanced roof live loads have been considered for this design

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-4-4 to 4-6-2, Interior(1) 4-6-2 to 8-6-2, Exterior(2) 8-6-2 to 12-10-15, Interior(1) 12-10-15 to 16-8-1 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 9=205, 6=205.

7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MLIEK Affili 818 Soundside Road Edenton, NC 27932

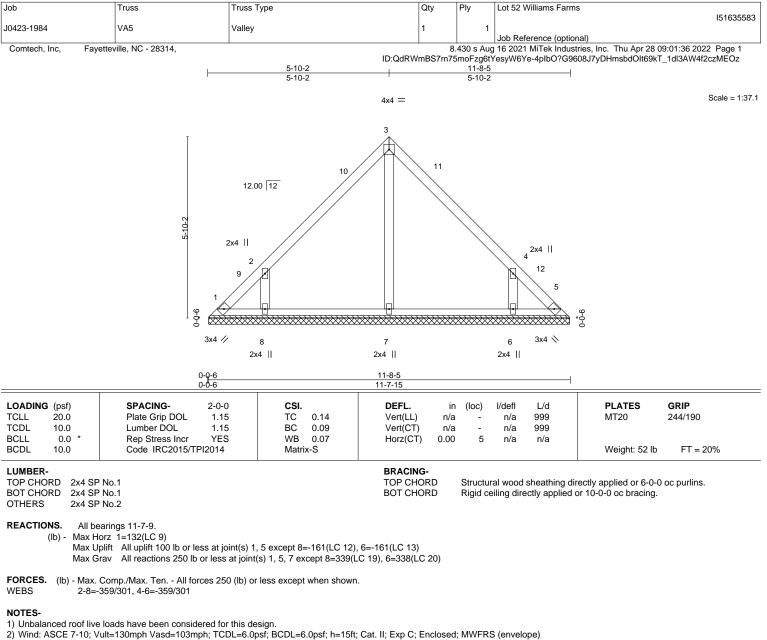
NOTES-

1) Unbalanced roof live loads have been considered for this design

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-4-4 to 4-9-0, Interior(1) 4-9-0 to 7-2-2, Exterior(2) 7-2-2 to 11-6-15, Interior(1) 11-6-15 to 14-0-1 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=173, 6=173.

7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

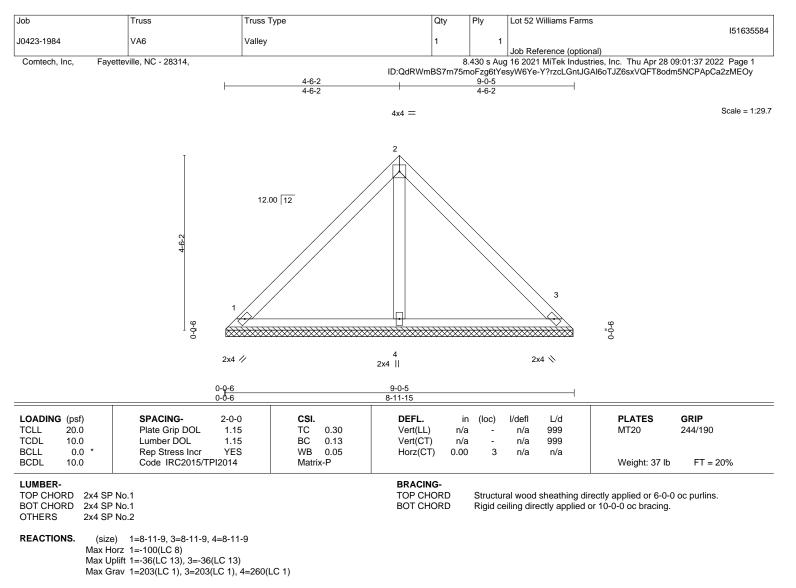
2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-4-4 to 4-9-0, Interior(1) 4-9-0 to 5-10-2, Exterior(2) 5-10-2 to 10-2-15, Interior(1) 10-2-15 to 11-4-1 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=161.

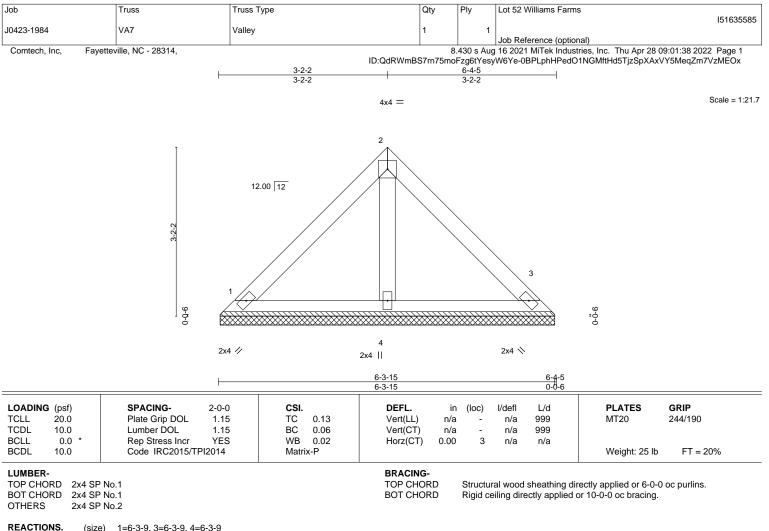

7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MITEK Affilia 818 Soundside Road

Edenton, NC 27932

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.


NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)
- and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek Affilia 818 Soundside Road Edenton, NC 27932

(size) 1=6-3-9, 3=6-3-9, 4=6-3-9

Max Horz 1=-68(LC 8)

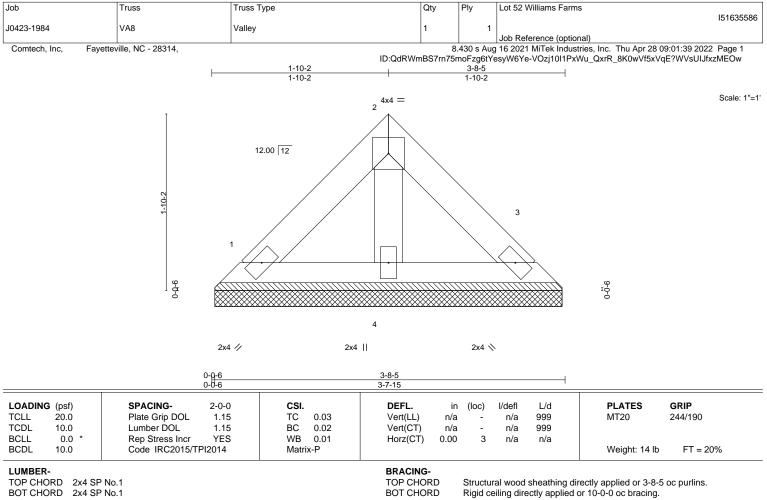
Max Uplift 1=-25(LC 13), 3=-25(LC 13)

Max Grav 1=138(LC 1), 3=138(LC 1), 4=177(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.


2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

2x4 SP No.2 OTHERS

REACTIONS. (size) 1=3-7-9, 3=3-7-9, 4=3-7-9

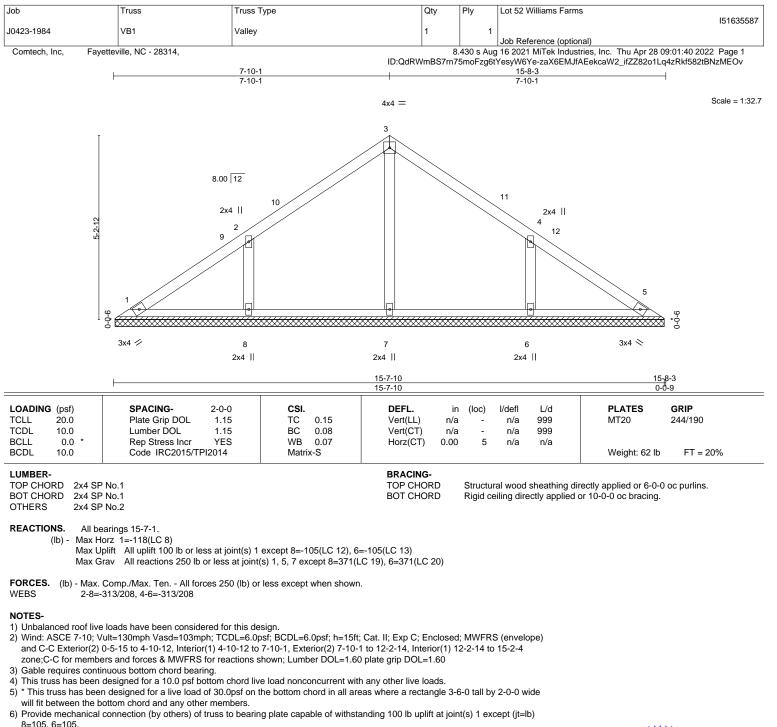
Max Horz 1=-36(LC 8)

Max Uplift 1=-13(LC 13), 3=-13(LC 13)

Max Grav 1=73(LC 1), 3=73(LC 1), 4=93(LC 1)

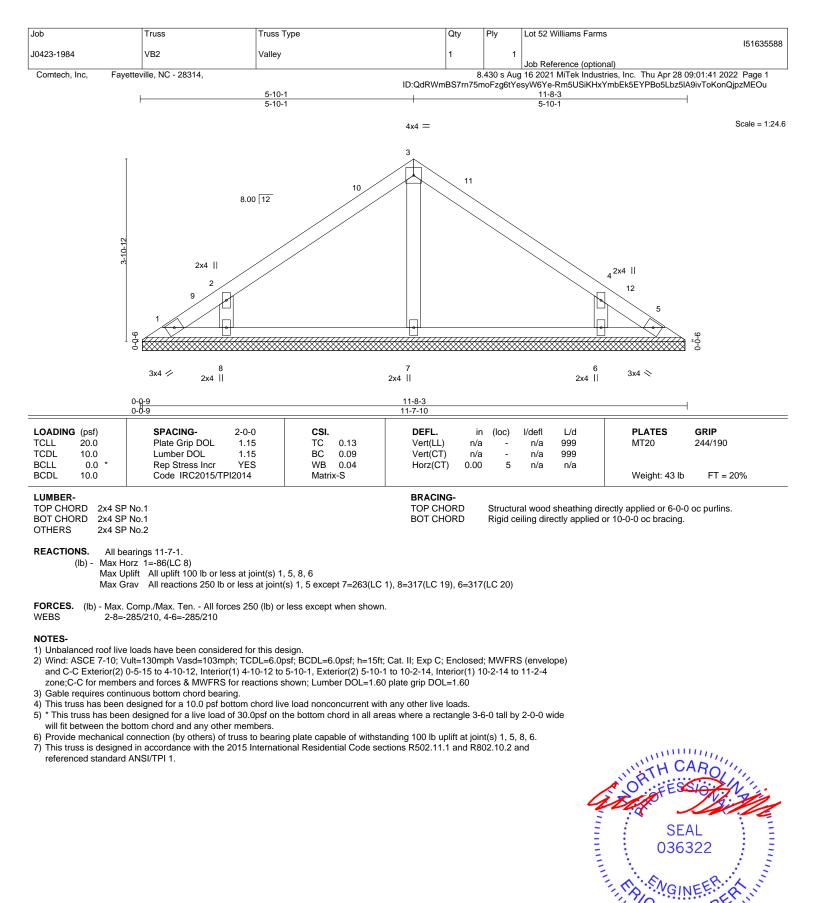
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

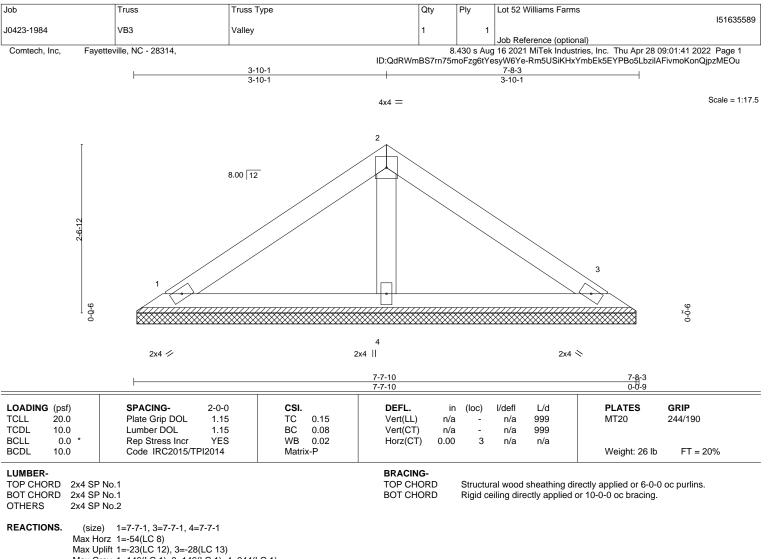

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

- and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

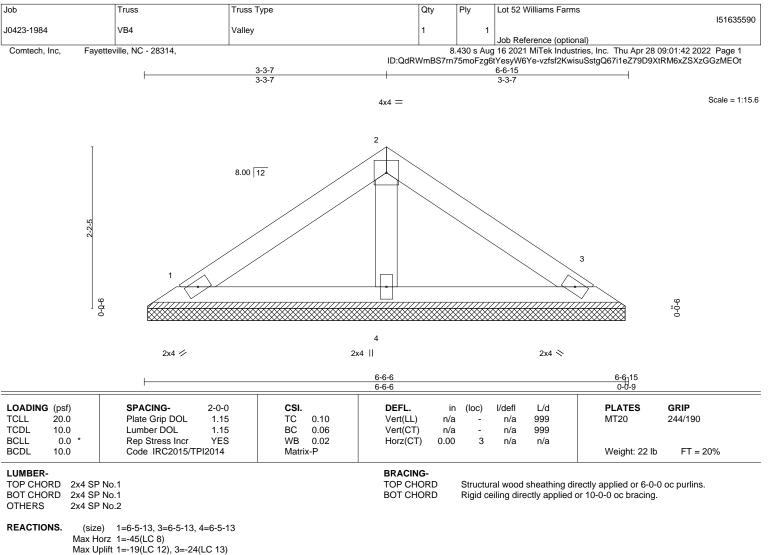


 This trues is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



April 29,2022

Max Grav 1=146(LC 1), 3=146(LC 1), 4=244(LC 1)


FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)
- and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Max Grav 1=122(LC 1), 3=122(LC 1), 4=204(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)
- and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Gable requires continuous bottom chord bearing.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

