

RE: 80 FaNC

DRB GROUP - 80 FaNC

Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:

Customer: Project Name: 80 FaNC

Lot/Block: Model:
Address: Subdivision:
City: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Design Program: MiTek 20/20 8.5

Wind Code: ASCE 7-16 Wind Speed: 130 mph Roof Load: 40.0 psf Floor Load: N/A psf

This package includes 35 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	I51473173	A01	4/20/2022	21	I51473193	H01	4/20/2022
2	I51473174	A02	4/20/2022	22	I51473194	H02	4/20/2022
3	I51473175	B01	4/20/2022	23	I51473195	M01	4/20/2022
4	I51473176	B02	4/20/2022	24	I51473196	M02	4/20/2022
5	I51473177	C01	4/20/2022	25	I51473197	M03	4/20/2022
6	I51473178	C02	4/20/2022	26	I51473198	PB1	4/20/2022
7	I51473179	C03	4/20/2022	27	I51473199	PB2	4/20/2022
8	I51473180	C04	4/20/2022	28	I51473200	V1	4/20/2022
9	I51473181	C05	4/20/2022	29	I51473201	V2	4/20/2022
10	I51473182	D01	4/20/2022	30	I51473202	V3	4/20/2022
11	I51473183	D02	4/20/2022	31	I51473203	V4	4/20/2022
12	I51473184	D03	4/20/2022	32	I51473204	V5	4/20/2022
13	I51473185	E01	4/20/2022	33	I51473205	V6	4/20/2022
14	I51473186	E02	4/20/2022	34	I51473206	V7	4/20/2022
15	I51473187	E03	4/20/2022	35	I51473207	V8	4/20/2022
16	I51473188	F01	4/20/2022				
17	I51473189	F02	4/20/2022				
18	I51473190	F03	4/20/2022				
19	I51473191	G01	4/20/2022				

4/20/2022

The truss drawing(s) referenced above have been prepared by

Truss Engineering Co. under my direct supervision

based on the parameters provided by Carter Components (Sanford, NC)).

G02

Truss Design Engineer's Name: Gilbert, Eric

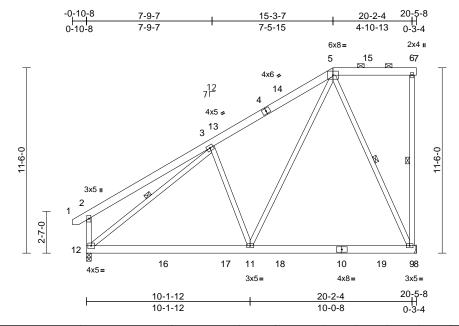
My license renewal date for the state of North Carolina is December 31, 2022

North Carolina COA: C-0844

151473192

20

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.



April 20, 2022

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 80 FaNC	
80 FaNC	A01	Piggyback Base	5	1	Job Reference (optional)	3173

Run: 8.53 S Apr 11 2022 Print: 8.530 S Apr 11 2022 MiTek Industries, Inc. Wed Apr 20 07:53:10 ID:7s9YZp8yTT6bkb8sXP_ligyEN4k-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:71.4

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.47	Vert(LL)	-0.15	9-11	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.64	Vert(CT)	-0.23	9-11	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.56	Horz(CT)	0.01	9	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 181 lb	FT = 20%

LUMBER

TOP CHORD 2x6 SP No.2 BOT CHORD 2x6 SP No.2

2x4 SP No.2 *Except* 12-2,12-3,11-3:2x4 SP WEBS

No 3

BRACING

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals, and

2-0-0 oc purlins (10-0-0 max.): 5-7.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

WEBS 1 Row at midpt 5-9, 3-12, 6-9

REACTIONS (lb/size) 9=822/ Mechanical, 12=851/0-3-8

Max Horiz 12=313 (LC 14)

Max Uplift 9=-164 (LC 14), 12=-27 (LC 14) Max Grav 9=968 (LC 40), 12=1075 (LC 40)

FORCES (lb) - Maximum Compression/Maximum

Tension

1-2=0/25, 2-3=-250/150, 3-5=-1023/117, TOP CHORD

5-6=0/0, 6-7=0/0, 2-12=-326/142

BOT CHORD 11-12=-265/908, 9-11=-90/351, 8-9=0/0 WEBS

5-9=-866/222, 3-12=-941/0, 3-11=-403/306,

5-11=-152/984, 6-9=-225/64

NOTES

- Unbalanced roof live loads have been considered for 1)
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-8-1 to 2-3-15. Interior (1) 2-3-15 to 12-3-7, Exterior(2R) 12-3-7 to 17-5-8, Exterior (2E) 17-5-8 to 20-5-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Refer to girder(s) for truss to truss connections.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 164 lb uplift at ioint 9.
- 11) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 12. This connection is for uplift only and does not consider lateral forces.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

April 20,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 80 FaNC	
80 FaNC	A02	Piggyback Base Structural Gable	1	1	Job Reference (optional)	151473174

Run: 8.53 S Apr 11 2022 Print: 8.530 S Apr 11 2022 MiTek Industries, Inc. Wed Apr 20 07:53:12 ID:uyiQOAflaNPen2Lx?DkcPXyEN44-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

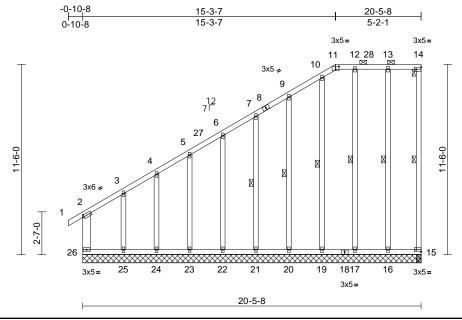


Plate Offsets (X, Y): [2:0-0-14,0-1-8], [11:0-2-8,0-2-1], [14:Edge,0-1-8], [15:Edge,0-1-8]

Loading	(psf)	Spacing	1-11-4	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.74	Vert(LL)	0.02	25-26	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.51	Vert(CT)	0.02	25-26	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.17	Horz(CT)	0.00	15	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MR								
BCDL	10.0										Weight: 193 lb	FT = 20%

LUMBER
TOP CHOE

Scale = 1:69.7

P CHORD 2x4 SP No 2 2x4 SP No.2 **BOT CHORD**

WEBS 2x4 SP No.2 *Except* 26-2:2x6 SP No.2 **OTHERS** 2x4 SP No.3 *Except* 16-13,17-12,19-10:2x4

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 11-14. Rigid ceiling directly applied or 10-0-0 oc

BOT CHORD bracing.

WFBS 14-15, 13-16, 12-17, 1 Row at midpt

10-19, 9-20, 7-21

REACTIONS (lb/size)

15=59/20-5-8, 16=161/20-5-8, 17=155/20-5-8, 19=156/20-5-8, 20=154/20-5-8, 21=155/20-5-8, 22=155/20-5-8, 23=155/20-5-8,

24=153/20-5-8, 25=162/20-5-8, 26=154/20-5-8

Max Horiz 26=395 (LC 13)

15=-37 (LC 11), 16=-60 (LC 10), 17=-63 (LC 11), 19=-37 (LC 11), 20=-56 (LC 14), 21=-49 (LC 14),

22=-43 (LC 14), 23=-74 (LC 14), 24=-18 (LC 10), 25=-514 (LC 11),

26=-266 (LC 12)

15=82 (LC 35), 16=225 (LC 35), Max Grav 17=208 (LC 35), 19=197 (LC 36),

20=217 (LC 36), 21=215 (LC 36), 22=209 (LC 36), 23=184 (LC 40), 24=203 (LC 25), 25=464 (LC 12),

26=533 (LC 11)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/32, 2-3=-400/259, 3-4=-227/144,

4-5=-239/152, 5-6=-217/139, 6-7=-207/136, 7-9=-193/132, 9-10=-185/168, 10-11=-164/170, 11-12=-156/173,

12-13=-156/173. 13-14=-156/173. 14-15=-139/136, 2-26=-351/170

BOT CHORD 25-26=-155/171, 24-25=-155/171,

23-24=-155/171, 22-23=-155/171, 21-22=-155/171, 20-21=-155/171, 19-20=-155/171, 17-19=-155/171,

16-17=-155/171, 15-16=-155/171 WFBS 13-16=-184/105, 12-17=-169/64,

10-19=-158/66, 9-20=-178/81, 7-21=-177/71, 6-22=-171/70, 5-23=-136/84, 4-24=-124/15,

3-25=-269/318

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8. Interior (1) 2-1-8 to 12-3-7, Exterior(2R) 12-3-7 to 17-3-12, Exterior (2E) 17-3-12 to 20-3-12 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this design.

- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding.
- All plates are 2x4 MT20 unless otherwise indicated. Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 13) N/A

14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Continued on page 2

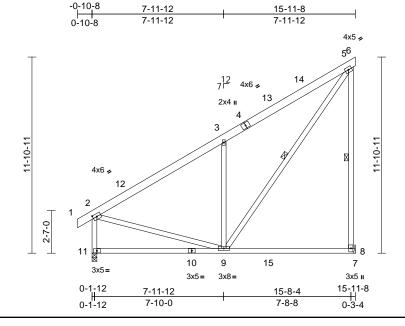
Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not

Design Valid to its 90 mly with win New Commencies. This design is based only upon for a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 80 FaNC	
80 FaNC	A02	Piggyback Base Structural Gable	1	1	Job Reference (optional)	51473174

Run: 8.53 S Apr 11 2022 Print: 8.530 S Apr 11 2022 MiTek Industries, Inc. Wed Apr 20 07:53:12 ID: uyiQOAflaNPen2Lx?DkcPXyEN44-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?ffcprofiles and the property of th


Page: 2

15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 80 FaNC	
80 FaNC	B01	Monopitch	7	1	Job Reference (optional)	51473175

Run: 8.53 S Apr 11 2022 Print: 8.530 S Apr 11 2022 MiTek Industries, Inc. Wed Apr 20 07:53:12 Page: 1

Scale = 1:69.8

Plate Offsets (X, Y): [2:0-2-14,0-2-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.50	Vert(LL)	-0.18	8-9	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.66	Vert(CT)	-0.26	8-9	>715	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.54	Horz(CT)	0.00	8	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 130 lb	FT = 20%

LUMBER

TOP CHORD 2x6 SP No 2 BOT CHORD 2x4 SP No.2

WEBS 2x4 SP No.3 *Except* 5-8,9-5:2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. **BOT CHORD** Rigid ceiling directly applied or 9-9-7 oc

bracing.

WEBS 1 Row at midpt 5-8.5-9

REACTIONS (lb/size) 8=642/ Mechanical, 11=685/0-3-8

Max Horiz 11=328 (LC 14) Max Uplift 8=-249 (LC 14)

Max Grav 8=867 (LC 5), 11=765 (LC 28)

FORCES

(lb) - Maximum Compression/Maximum

TOP CHORD

1-2=0/31, 2-3=-664/0, 3-5=-743/154,

5-6=-13/0, 5-8=-732/289, 2-11=-652/8

BOT CHORD 9-11=-350/215, 8-9=0/12, 7-8=0/0

WEBS 3-9=-618/346, 5-9=-339/978, 2-9=0/455

NOTES

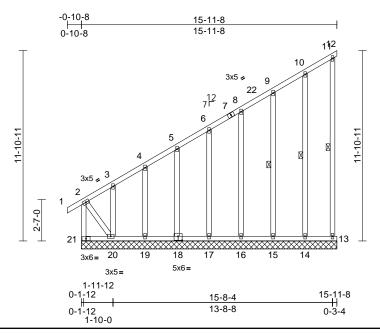
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 12-11-8, Exterior(2E) 12-11-8 to 15-11-8 zone; cantilever left exposed; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1 00: Ct=1 10
- Unbalanced snow loads have been considered for this design

- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Refer to girder(s) for truss to truss connections.
- Bearing at joint(s) 11 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 249 lb uplift at joint 8.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chorembers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rerection and bracing of trusses and truss systems, see


ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 80 FaNC	
80 FaNC	B02	Monopitch Supported Gable	1	1	Job Reference (optional)	151473176

Run: 8.53 S Apr 11 2022 Print: 8.530 S Apr 11 2022 MiTek Industries, Inc. Wed Apr 20 07:53:12 ID:2VuldpuPTjAcxEqRhVYSG2yEN?u-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:72

Plate Offsets (X, Y): [18:0-3-0,0-3-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.08	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.05	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.23	Horz(CT)	-0.02	12	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 146 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP No.2

WEBS 2x4 SP No.2 *Except* 2-20:2x4 SP No.3 **OTHERS** 2x4 SP No.3 *Except* 14-10:2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing, Except:

6-0-0 oc bracing: 20-21.

WEBS 1 Row at midpt 11-13, 9-15, 10-14

REACTIONS (lb/size)

12=16/15-11-8, 13=54/15-11-8, 14=162/15-11-8, 15=161/15-11-8, 16=160/15-11-8, 17=159/15-11-8,

18=159/15-11-8, 19=163/15-11-8, 20=145/15-11-8, 21=142/15-11-8

Max Horiz 21=327 (LC 14)

Max Uplift 12=-11 (LC 14), 13=-17 (LC 14), 14=-49 (LC 14), 15=-51 (LC 14), 16=-50 (LC 14), 17=-50 (LC 14),

18=-50 (LC 14), 19=-51 (LC 14), 20=-479 (LC 14), 21=-189 (LC 12)

Max Grav 12=26 (LC 21), 13=80 (LC 21), 14=241 (LC 21), 15=229 (LC 21),

16=167 (LC 21), 17=165 (LC 24), 18=166 (LC 24), 19=170 (LC 24), 20=310 (LC 12), 21=586 (LC 14)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 2-21=-722/343, 1-2=0/31, 2-3=-434/218, 3-4=-384/192, 4-5=-323/163, 5-6=-266/136, 6-8=-208/108, 8-9=-150/80, 9-10=-92/51, 10-11=-52/24, 11-12=-9/12, 11-13=-66/29

BOT CHORD 20-21=-478/218, 19-20=-1/2, 17-19=-1/2, 16-17=0/0, 15-16=0/0, 14-15=0/0, 13-14=0/0 **WEBS**

6-17=-127/91, 5-18=-125/90, 4-19=-131/98, 3-20=-110/76, 8-16=-127/91, 9-15=-190/92, 10-14=-201/91, 2-20=-352/776

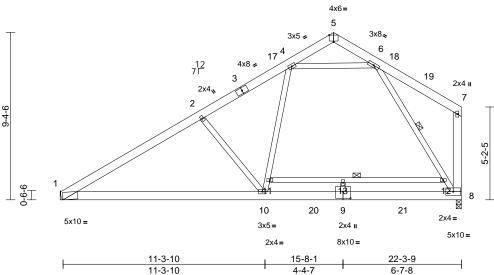
NOTES

- Wind: ASCE 7-16; Vult=130mph (3-second gust) 1) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 1-11-12, Exterior (2N) 1-11-12 to 15-11-8 zone; cantilever left exposed; end vertical left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- Gable studs spaced at 2-0-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

- 12) Bearing at joint(s) 21, 12 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 11 lb uplift at joint

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see


AMSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 80 FaNC	
80 FaNC	C01	Common	6	1	Job Reference (optional)	151473177

Run: 8.53 S Apr 11 2022 Print: 8.530 S Apr 11 2022 MiTek Industries, Inc. Wed Apr 20 07:53:13 ID:ecZulQRhcRtdtdrTWhmsqdyEMuk-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Scale = 1:64.5

Plate Offsets (X, Y): [5:0-3-0,Edge], [9:0-5-0,0-4-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.58	Vert(LL)	-0.21	10-16	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.51	Vert(CT)	-0.42	9-10	>625	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.56	Horz(CT)	0.02	8	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 178 lb	FT = 20%

LUMBER

TOP CHORD 2x6 SP 2400F 2.0E *Except* 1-3:2x6 SP

No.2

BOT CHORD 2x6 SP No.2

WEBS 2x4 SP No.3 *Except* 8-7:2x6 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or 5-1-14 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

WFBS 1 Row at midpt 6-8. 11-12

REACTIONS (lb/size) 1=933/ Mechanical, 8=1033/0-3-8

Max Horiz 1=267 (LC 13)

Max Uplift 1=-43 (LC 14) Max Grav 1=987 (LC 21), 8=1038 (LC 22)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-1472/42, 2-4=-1182/47, 4-5=-6/191,

5-6=-387/41, 6-7=-137/143, 7-8=-77/170

BOT CHORD 1-10=-89/1242, 8-10=0/680

WEBS 10-11=0/850, 4-11=0/880, 2-10=-705/234, 6-12=-1088/59, 8-12=-1128/49, 11-13=-52/0,

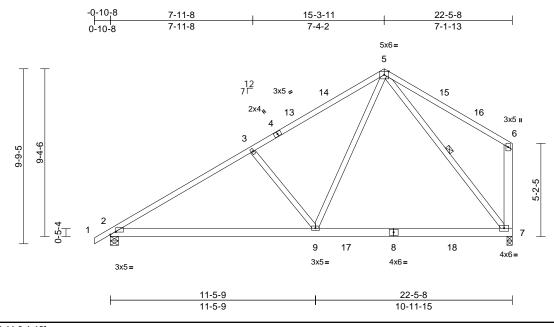
12-13=-52/0, 9-13=0/45, 4-6=-543/103

NOTES

- 1) Unbalanced roof live loads have been considered for
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-1-15 to 3-1-15, Interior (1) 3-1-15 to 12-3-11, Exterior(2R) 12-3-11 to 18-3-11 Interior (1) 18-3-11 to 19-2-12, Exterior(2E) 19-2-12 to 22-2-12 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 200.0lb AC unit load placed on the bottom chord, 16-8-8 from left end, supported at two points, 5-0-0 apart.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 43 lb uplift at joint
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.

LOAD CASE(S) Standard



Page: 1

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 80 FaNC	
80 FaNC	C02	Common	1	1	Job Reference (optional)	I51473178

Run: 8.53 S Apr 11 2022 Print: 8.530 S Apr 11 2022 MiTek Industries, Inc. Wed Apr 20 07:53:13 Page: 1

Scale = 1:64.4

Plate Offsets (X, Y): [2:0-3-11,0-1-12]

Loading	(psf)	Spacing	1-11-4	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.99	Vert(LL)	-0.16	7-9	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.72	Vert(CT)	-0.26	9-12	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.48	Horz(CT)	0.02	7	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 142 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 BOT CHORD 2x6 SP No.2

WEBS 2x4 SP No.3 *Except* 7-6:2x6 SP No.2,

7-5:2x4 SP No.2 BRACING

TOP CHORD Structural wood sheathing directly applied,

except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

WFBS 1 Row at midpt 5-7

REACTIONS (lb/size) 2=913/0-5-8, 7=860/0-3-8

Max Horiz 2=270 (LC 13)

Max Uplift 2=-108 (LC 14), 7=-76 (LC 14) Max Grav 2=1045 (LC 24), 7=1014 (LC 24)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/26, 2-3=-1384/160, 3-5=-1170/172,

5-6=-237/178. 6-7=-312/138 2-9=-187/1251, 7-9=-37/594

WEBS 5-7=-862/76, 5-9=-77/961, 3-9=-498/255

NOTES

BOT CHORD

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 12-3-11, Exterior(2R) 12-3-11 to 18-3-11, Interior (1) 18-3-11 to 19-2-12, Exterior(2E) 19-2-12 to 22-2-12 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

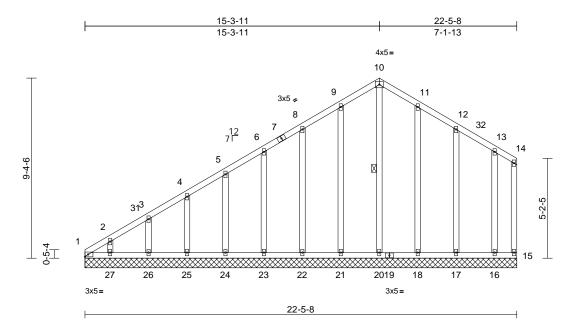
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at it(s) 2 and 7. This connection is for uplift only and does not consider lateral forces.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information


available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 80 FaNC	
80 FaNC	C03	Common Supported Gable	1	1	Job Reference (optional)	I51473179

Run: 8.53 S Apr 11 2022 Print: 8.530 S Apr 11 2022 MiTek Industries, Inc. Wed Apr 20 07:53:13 ID:88Z52mkxJJGu7aDx0X9tOCyEMqT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

|--|

Loading	(psf)	Spacing	1-11-4	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.25	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.08	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.25	Horiz(TL)	0.00	15	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 165 lb	FT = 20%

LUMBER
TOP CHOR

2x4 SP No.2 2x4 SP No.2 BOT CHORD 2x4 SP No.3 WEBS **OTHERS** 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins, except end verticals. **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc

bracing. WEBS

1 Row at midpt 10-20 1=34/22-5-8. 15=24/22-5-8.

REACTIONS (lb/size)

16=127/22-5-8, 17=160/22-5-8, 18=160/22-5-8, 20=144/22-5-8, 21=161/22-5-8, 22=154/22-5-8, 23=155/22-5-8, 24=155/22-5-8, 25=154/22-5-8, 26=158/22-5-8, 27=142/22-5-8, 28=34/22-5-8

Max Horiz 1=264 (LC 13), 28=264 (LC 13) Max Uplift 1=-97 (LC 12), 15=-21 (LC 14), 16=-36 (LC 15), 17=-55 (LC 15), 18=-46 (LC 15), 20=-46 (LC 13), 21=-47 (LC 14), 22=-51 (LC 14), 23=-48 (LC 14), 24=-49 (LC 14),

25=-49 (LC 14), 26=-46 (LC 14),

27=-69 (LC 14), 28=-97 (LC 12) 1=155 (LC 11), 15=42 (LC 24), 16=144 (LC 24), 17=225 (LC 21), 18=243 (LC 21), 20=179 (LC 27), 21=244 (LC 20), 22=222 (LC 20), 23=164 (LC 20), 24=161 (LC 23), 25=161 (LC 23), 26=162 (LC 23), 27=164 (LC 23), 28=155 (LC 11)

FORCES

(lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=-260/210, 2-3=-235/193, 3-4=-214/175, 4-5=-200/169, 5-6=-187/166, 6-8=-173/162,

8-9=-161/207, 9-10=-165/249, 10-11=-165/249, 11-12=-141/207, 12-13=-112/152, 13-14=-100/122,

14-15=-83/95

BOT CHORD 1-27=-88/82, 26-27=-69/82, 25-26=-69/82, 24-25=-69/82, 23-24=-69/82, 22-23=-69/82,

21-22=-69/82, 20-21=-69/82, 18-20=-69/82, 17-18=-69/82, 16-17=-69/82, 15-16=-69/82 10-20=-190/84, 9-21=-205/70, 8-22=-183/76,

6-23=-126/72, 5-24=-123/72, 4-25=-122/72, 3-26=-125/78, 2-27=-115/80, 11-18=-205/70, 12-17=-185/87, 13-16=-102/74

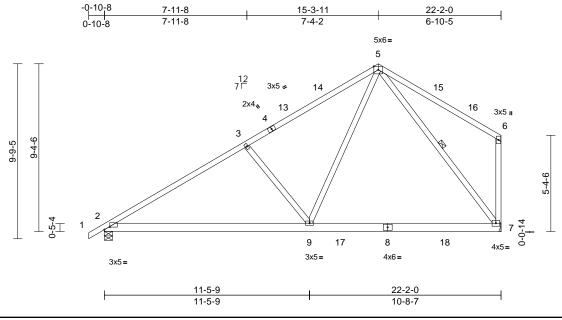
NOTES

WEBS

- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) 0-0-0 to 3-0-0, Exterior(2N) 3-0-0 to 12-3-11, Corner(3R) 12-3-11 to 18-3-11, Exterior(2N) 18-3-11 to 19-3-11, Corner(3E) 19-3-11 to 22-3-12 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.

- Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.


Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chorembers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

AMSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 80 FaNC	
80 FaNC	C04	Common	3	1	Job Reference (optional)	I51473180

Run: 8.53 S Apr 11 2022 Print: 8.530 S Apr 11 2022 MiTek Industries, Inc. Wed Apr 20 07:53:14 Page: 1

Scale = 1:64.4

Plate Offsets (X, Y): [2:0-3-11,0-1-12]

Loading	(psf)	Spacing	1-11-4	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	1.00	Vert(LL)	-0.17	7-9	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.72	Vert(CT)	-0.26	9-12	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.49	Horz(CT)	0.02	7	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 137 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2 BOT CHORD 2x6 SP No.2

WEBS 2x4 SP No.3 *Except* 7-5:2x4 SP No.2

BRACING

Structural wood sheathing directly applied, TOP CHORD

except end verticals. **BOT CHORD**

Rigid ceiling directly applied or 10-0-0 oc bracing.

WEBS 1 Row at midpt 5-7

REACTIONS (lb/size) 2=905/0-5-8, 7=852/ Mechanical

Max Horiz 2=272 (LC 13)

Max Uplift 2=-107 (LC 14), 7=-77 (LC 14)

Max Grav 2=1035 (LC 24), 7=1007 (LC 24)

FORCES (lb) - Maximum Compression/Maximum

TOP CHORD 1-2=0/26, 2-3=-1368/158, 3-5=-1154/171,

5-6=-200/176, 6-7=-284/135

BOT CHORD 2-9=-186/1235, 7-9=-40/577

WEBS

5-7=-886/74, 5-9=-77/966, 3-9=-497/255

NOTES

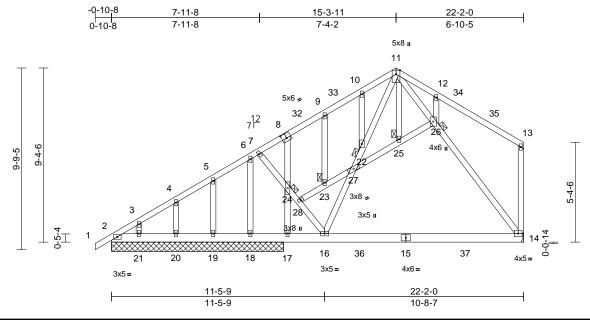
- Unbalanced roof live loads have been considered for
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 12-3-11, Exterior(2R) 12-3-11 to 18-3-11, Interior (1) 18-3-11 to 19-0-4, Exterior(2E) 19-0-4 to 22-0-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

- 4) Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 77 lb uplift at joint
- 10) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chorembers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see


AMSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 80 FaNC	
80 FaNC	C05	Common Structural Gable	1	1	Job Reference (optional)	51473181

Run: 8.53 S Apr 11 2022 Print: 8.530 S Apr 11 2022 MiTek Industries, Inc. Wed Apr 20 07:53:14 ID:U0FHqD_Q9yKq4uvqqoX5LvyEMrS-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:62

Plate Offsets (X, Y): [8:0-3-0,0-3-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.45	Vert(LL)	-0.17	14-16	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.58	Vert(CT)	-0.26	14-16	>672	180	1	
TCDL	10.0	Rep Stress Incr	YES	WB	0.49	Horz(CT)	0.00	14	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 188 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 BOT CHORD 2x6 SP No.2

WEBS 2x4 SP No.3 *Except* 14-11:2x4 SP No.2

OTHERS 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

JOINTS bracing.

JOINTS 1 Brace

NTS 1 Brace at Jt(s): 22, 23, 24, 25, 26

23, 24, 25, 26

REACTIONS (lb/size) 2=167/9-3-0, 14=593/ Mechanical,

18=713/9-3-0, 19=20/9-3-0, 20=200/9-3-0, 21=120/9-3-0,

29=167/9-3-0

Max Horiz 2=280 (LC 13), 29=280 (LC 13) Max Uplift 2=-34 (LC 10), 14=-49 (LC 15),

18=-85 (LC 14), 19=-42 (LC 22), 20=-61 (LC 14), 21=-40 (LC 14),

29=-34 (LC 10)

Max Grav 2=187 (LC 25), 14=732 (LC 6),

18=843 (LC 24), 19=87 (LC 36), 20=229 (LC 24), 21=162 (LC 24),

29=187 (LC 25)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/26, 2-3=-188/102, 3-4=-202/98,

4-5=-197/93, 5-6=-159/95, 6-7=-366/75, 7-9=-535/104, 9-10=-503/136, 10-11=-503/193, 11-12=-197/218,

12-13=-153/146, 13-14=-179/105 BOT CHORD 2-21=-110/130, 20-21=-110/130,

19-20=-110/130, 18-19=-110/130,

17-18=-110/130, 16-17=-110/130, 14-16=-65/340

WEBS

11-26=-369/63, 14-26=-515/56, 16-27=0/299, 22-27=-38/328, 11-22=-124/461, 7-24=0/571, 24-28=0/553, 16-28=0/541, 10-22=-215/94, 9-23=-120/52, 8-24=-298/79, 17-24=-364/50, 6-18=-647/51, 5-19=-85/73, 4-20=-139/77, 3-21=-104/62, 11-25=-1/3, 12-26=-398/164, 25-27=-220/98, 25-26=-221/99, 23-28=-131/81, 23-27=-119/142

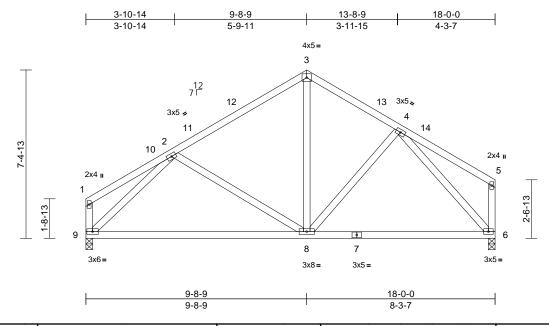
NOTES

- Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 12-3-10, Exterior(2R) 12-3-10 to 18-3-10, Interior (1) 18-3-10 to 19-0-4, Exterior(2E) 19-0-4 to 22-0-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 7) All plates are 2x4 MT20 unless otherwise indicated.
- 8) Gable studs spaced at 2-0-0 oc.

- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 11) Refer to girder(s) for truss to truss connections.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 49 lb uplift at joint 14.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not

Design valid for use only with MI lek® connectors. I his design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parenters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see


ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 80 FaNC	
80 FaNC	D01	Common	7	1	Job Reference (optional)	73182

Run: 8.53 S Apr 11 2022 Print: 8.530 S Apr 11 2022 MiTek Industries, Inc. Wed Apr 20 07:53:14 ID:Sr7tMDseeasrAjFdPspS7byEMp1-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale	= 1	:50	.7

Loading	(psf)	Spacing	2-0-0	csı		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.71	Vert(LL)	-0.19	8-9	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.81	Vert(CT)	-0.38	8-9	>557	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.57	Horz(CT)	0.02	6	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 108 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 WEBS

BRACING

TOP CHORD Structural wood sheathing directly applied or 4-10-14 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing. REACTIONS (lb/size)

6=708/0-3-8, 9=708/0-3-8 Max Horiz 9=193 (LC 11)

Max Uplift 6=-56 (LC 15), 9=-63 (LC 14) Max Grav 6=765 (LC 21), 9=769 (LC 20) (lb) - Maximum Compression/Maximum

FORCES Tension

TOP CHORD 1-2=-136/32, 2-3=-715/128, 3-4=-656/139,

4-5=-121/88, 5-6=-145/69, 1-9=-114/26 **BOT CHORD**

8-9=-125/665, 6-8=-49/532

WFBS 2-8=-198/175 3-8=-17/348 4-8=-92/134

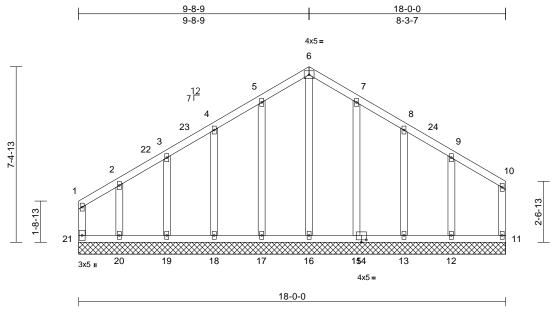
4-6=-768/56, 2-9=-868/139

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 2-1-7 to 5-1-7, Interior (1) 5-1-7 to 8-8-5, Exterior(2R) 8-8-5 to 14-8-5, Interior (1) 14-8-5 to 16-9-15, Exterior(2E) 16-9-15 to 19-9-15 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

- Unbalanced snow loads have been considered for this
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 6 and 9. This connection is for uplift only and does not consider lateral forces.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard


April 20,2022

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 80 FaNC	
80 FaNC	D02	Common Supported Gable	1	1	Job Reference (optional)	I51473183

Run: 8.53 S Apr 11 2022 Print: 8.530 S Apr 11 2022 MiTek Industries, Inc. Wed Apr 20 07:53:15 ID:91F41SBaltF?vsppU0onjlyEMoc-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:48.6 Plate Offsets (X, Y): [14:0-2-8,0-1-4]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.28	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.16	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.19	Horiz(TL)	0.00	11	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MR								
BCDL	10.0										Weight: 117 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP No 2 **WEBS** 2x4 SP No.3 **OTHERS** 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc

REACTIONS (lb/size)

11=78/18-0-0, 12=181/18-0-0, 13=154/18-0-0, 15=168/18-0-0, 16=144/18-0-0, 17=167/18-0-0, 18=158/18-0-0, 19=163/18-0-0, 20=152/18-0-0, 21=55/18-0-0 Max Horiz 21=193 (LC 11)

Max Uplift 11=-46 (LC 14), 12=-73 (LC 15), 13=-47 (LC 15), 15=-50 (LC 15),

17=-48 (LC 14), 18=-56 (LC 14), 19=-35 (LC 14), 20=-182 (LC 11),

21=-176 (LC 10)

Max Grav 11=105 (LC 23), 12=237 (LC 24), 13=221 (LC 21), 15=254 (LC 21), 16=167 (LC 26), 17=253 (LC 20),

18=226 (LC 20), 19=168 (LC 20), 20=281 (LC 23), 21=227 (LC 13)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-171/154, 2-3=-121/114, 3-4=-114/158, 4-5=-122/214, 5-6=-149/266, 6-7=-149/266,

7-8=-122/214, 8-9=-95/158, 9-10=-65/89,

10-11=-67/77, 1-21=-139/112 **BOT CHORD** 20-21=-63/58, 19-20=-63/58, 18-19=-63/58,

17-18=-63/58, 16-17=-63/58, 15-16=-63/58, 13-15=-63/58, 12-13=-63/58, 11-12=-63/58 WEBS

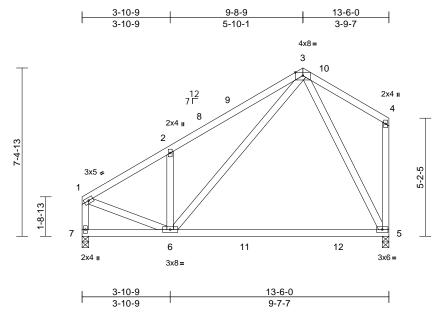
6-16=-199/60, 5-17=-213/78, 4-18=-186/88, 3-19=-127/88, 2-20=-177/112, 7-15=-213/78,

8-13=-182/89, 9-12=-164/112

NOTES

- Unbalanced roof live loads have been considered for 1) this design
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) 2-1-7 to 5-1-7, Exterior(2N) 5-1-7 to 8-8-5, Corner(3R) 8-8-5 to 14-8-5, Exterior(2N) 14-8-5 to 16-9-15, Corner(3E) 16-9-15 to 19-9-15 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- Gable studs spaced at 2-0-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

AMSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 80 FaNC	
80 FaNC	D03	Common	2	1	Job Reference (optional)	3184

Run: 8.53 S Apr 11 2022 Print: 8.530 S Apr 11 2022 MiTek Industries, Inc. Wed Apr 20 07:53:15 ID:ifG_WZnxWFZvvYeQQWhVIryEMnq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:50.7

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.70	Vert(LL)	-0.37	5-6	>425	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.97	Vert(CT)	-0.60	5-6	>265	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.52	Horz(CT)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 88 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 WEBS

BRACING

NOTES

TOP CHORD Structural wood sheathing directly applied or 5-3-15 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 2-2-0 oc

bracing.

REACTIONS (lb/size) 5=528/0-3-8, 7=528/0-3-8

Max Horiz 7=225 (LC 11)

Max Uplift 5=-63 (LC 14), 7=-47 (LC 14) Max Grav 5=647 (LC 23), 7=616 (LC 5)

FORCES (lb) - Maximum Compression/Maximum

Tension TOP CHORD

1-2=-706/95, 2-3=-792/232, 3-4=-153/144,

4-5=-185/106, 1-7=-645/70

BOT CHORD 6-7=-225/162, 5-6=-67/253

3-5=-450/87, 1-6=-10/667, 3-6=-135/653, WFBS

2-6=-417/215

Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 2-1-7 to 5-1-7, Interior (1) 5-1-7 to 8-8-5, Exterior(2R) 8-8-5 to 12-3-15, Exterior (2E) 12-3-15 to 15-3-15 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.

- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 7 and 5. This connection is for uplift only and does not consider lateral forces.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

April 20,2022

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 80 FaNC	
80 FaNC	E01	Monopitch	9	1	Job Reference (optional)	I51473185

Run: 8.53 S Apr 11 2022 Print: 8.530 S Apr 11 2022 MiTek Industries, Inc. Wed Apr 20 07:53:15 ID:ffZIL62A0Cf9NXbPWMZuymyEMmC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

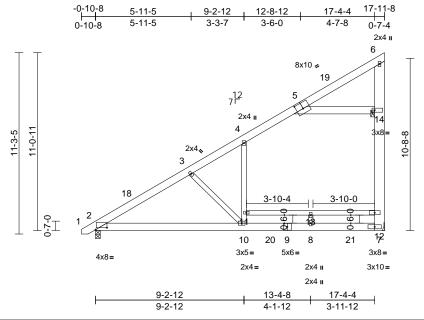


Plate Offsets (X, Y): [2:0-8-8,0-1-7], [5:0-5-0,0-4-8], [14:0-2-0,0-1-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.60	Vert(LL)	0.40	10-17	>529	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.71	Vert(CT)	-0.84	8-10	>253	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.96	Horz(CT)	0.01	7	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 163 lb	FT = 20%

LUMBER

Scale = 1:71.6

TOP CHORD 2x6 SP No.2 *Except* 1-5:2x6 SP 2400F

2.0E

BOT CHORD 2x6 SP No.2

WEBS 2x4 SP No.3 *Except* 5-14:2x6 SP No.2,

6-7:2x8 SP 2400F 2.0E

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

JOINTS 1 Brace at Jt(s): 14

REACTIONS 2=796/0-3-8, 7=857/ Mechanical (lb/size)

Max Horiz 2=390 (LC 14)

Max Uplift 7=-72 (LC 14)

Max Grav 2=821 (LC 21), 7=1018 (LC 21) (lb) - Maximum Compression/Maximum

FORCES

Tension

1-2=0/20, 2-3=-1111/0, 3-4=-748/0, TOP CHORD

4-6=-280/1076

BOT CHORD 2-10=-189/960, 8-10=-34/304, 7-8=-34/304 **WEBS** 3-10=-868/185, 10-11=0/793, 4-11=0/829,

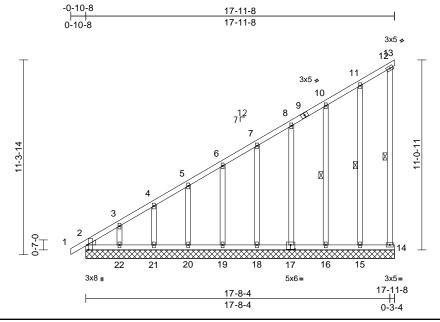
11-13=-29/76, 12-13=-29/76, 8-13=0/70, 5-14=-1241/201, 7-12=-823/184,

12-14=-789/193, 6-14=-713/181

NOTES

1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-8-1 to 2-3-15, Interior (1) 2-3-15 to 14-7-14, Exterior(2E) 14-7-14 to 17-7-14 zone; cantilever left exposed: end vertical left exposed: C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 200.0lb AC unit load placed on the bottom chord, 13-4-8 from left end, supported at two points, 5-0-0 apart.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 72 lb uplift at joint
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 80 FaNC	
80 FaNC	E02	Monopitch Supported Gable	1	1	Job Reference (optional)	I51473186

Run: 8.53 S Apr 11 2022 Print: 8.530 S Apr 11 2022 MiTek Industries, Inc. Wed Apr 20 07:53:15 ID:zAiMM0ntL8gs1V0uOudQFwyEMjz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:67

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.82	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.35	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.14	Horz(CT)	-0.01	13	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0	1									Weight: 138 lb	FT = 20%

L	U	M	В	E	F	₹

TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP No.2 **WEBS** 2x4 SP No.2 **OTHERS** 2x4 SP No.3 WEDGE Left: 2x4 SP No.3

BRACING

Structural wood sheathing directly applied or TOP CHORD

6-0-0 oc purlins, except end verticals. **BOT CHORD** Rigid ceiling directly applied or 6-0-0 oc

bracing.

WEBS 1 Row at midpt 12-14, 11-15, 10-16 REACTIONS (lb/size) 2=129/17-11-8, 13=14/17-11-8,

14=57/17-11-8, 15=162/17-11-8, 16=162/17-11-8, 17=160/17-11-8, 18=159/17-11-8, 19=160/17-11-8, 20=160/17-11-8, 21=160/17-11-8, 22=161/17-11-8, 23=129/17-11-8

Max Horiz 2=386 (LC 13), 23=386 (LC 13) Max Uplift 2=-74 (LC 10), 13=-138 (LC 14),

14=-269 (LC 13), 15=-71 (LC 14), 16=-44 (LC 14), 17=-54 (LC 14), 18=-50 (LC 14), 19=-50 (LC 14), 20=-54 (LC 14), 21=-37 (LC 14),

22=-109 (LC 14), 23=-74 (LC 10) Max Grav 2=226 (LC 25), 13=184 (LC 13), 14=237 (LC 10), 15=240 (LC 21), 16=236 (LC 21), 17=173 (LC 21), 18=167 (LC 24), 19=166 (LC 24),

20=168 (LC 24), 21=160 (LC 21), 22=197 (LC 24), 23=226 (LC 25)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/26, 2-3=-344/223, 3-4=-308/197,

4-5=-282/181, 5-6=-254/163, 6-7=-231/145, 7-8=-217/139, 8-10=-202/134, 10-11=-197/155, 11-12=-137/145,

12-13=-136/111. 12-14=-230/182 BOT CHORD 2-22=-189/187, 21-22=-153/187,

20-21=-153/187, 19-20=-153/187 18-19=-153/187, 16-18=-153/187, 15-16=-153/186, 14-15=-153/186

WERS 11-15=-200/85, 10-16=-196/110, 8-17=-133/82, 7-18=-127/86, 6-19=-126/85,

5-20=-127/86, 4-21=-125/82, 3-22=-134/105

NOTES

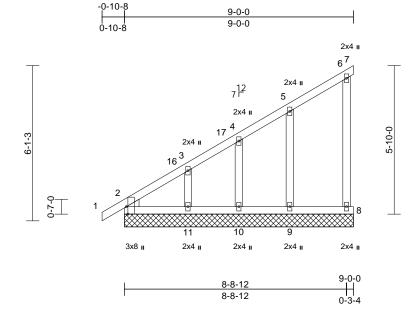
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 1-11-8, Exterior(2N) 1-11-8 to 17-11-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- All plates are 2x4 MT20 unless otherwise indicated.
- 7) Gable requires continuous bottom chord bearing.
- Gable studs spaced at 2-0-0 oc.

- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) Bearing at joint(s) 13 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 138 lb uplift at

April 20,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see


AMSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 80 FaNC	
80 FaNC	E03	Monopitch Supported Gable	1	1	Job Reference (optional)	I51473187

Run: 8.53 S Apr 11 2022 Print: 8.530 S Apr 11 2022 MiTek Industries, Inc. Wed Apr 20 07:53:16 ID:J7VFPjr0Agl98GvrASDby_yEMju-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:45.3

Plate Offsets (X, Y): [2:0-3-8,Edge]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.34	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.10	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.08	Horz(CT)	0.00	7	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 51 lb	FT = 20%

LUMBER

2x4 SP No.2 TOP CHORD BOT CHORD 2x4 SP No.2 **WEBS** 2x4 SP No.3 **OTHERS** 2x4 SP No.3 Left: 2x4 SP No.3 WEDGE

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc

BOT CHORD bracing.

REACTIONS (lb/size)

2=146/9-0-0, 7=-9/9-0-0, 8=102/9-0-0, 9=188/9-0-0, 10=142/9-0-0, 11=197/9-0-0, 12=146/9-0-0

Max Horiz 2=199 (LC 13), 12=199 (LC 13)

Max Uplift 2=-17 (LC 10), 7=-47 (LC 10),

8=-77 (LC 13), 9=-62 (LC 14), 10=-37 (LC 14), 11=-88 (LC 14),

12=-17 (LC 10)

Max Grav 2=169 (LC 25), 7=59 (LC 13),

8=156 (LC 21), 9=279 (LC 21),

10=194 (LC 21), 11=219 (LC 24),

12=169 (LC 25)

(lb) - Maximum Compression/Maximum

Tension

1-2=0/26, 2-3=-162/112, 3-4=-129/83,

4-5=-118/76, 5-6=-96/83, 6-7=-47/34,

6-8=-136/78

2-11=-94/109, 10-11=-83/109, 9-10=-83/109,

BOT CHORD 8-9=-83/109

WEBS 4-10=-162/117, 3-11=-150/154, 5-9=-231/113

NOTES

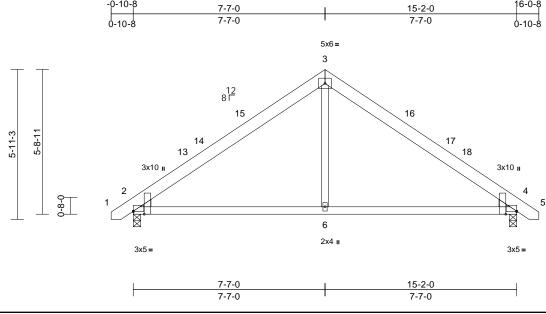
FORCES

TOP CHORD

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 2-1-8, Exterior(2N) 2-1-8 to 9-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads
- All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 47 lb uplift at joint

April 20,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chorembers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rerection and bracing of trusses and truss systems, see

ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 80 FaNC	
80 FaNC	F01	Common	6	1	I5147318 Job Reference (optional)	88

Run: 8.53 S Apr 11 2022 Print: 8.530 S Apr 11 2022 MiTek Industries, Inc. Wed Apr 20 07:53:16 ID:DKKz13pSYN8H07UkHE90r_yANSE-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:45.6

Plate Offsets (X, Y): [2:Edge,0-0-3], [2:0-1-6,Edge], [4:Edge,0-0-3], [4:0-1-6,Edge]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.53	Vert(LL)	-0.07	6-9	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.48	Vert(CT)	-0.13	6-9	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.12	Horz(CT)	0.02	2	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 79 lb	FT = 20%

LUMBER

TOP CHORD 2x6 SP No.2 **BOT CHORD** 2x4 SP No.2 **WEBS** 2x4 SP No.3 WEDGE Left: 2x4 SP No.3 Right: 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (lb/size) 2=648/0-3-8, 4=648/0-3-8

Max Horiz 2=-129 (LC 12)

Max Uplift 2=-65 (LC 14), 4=-65 (LC 15)

Max Grav 2=718 (LC 21), 4=718 (LC 22) (lb) - Maximum Compression/Maximum

FORCES Tension

TOP CHORD 1-2=0/23, 2-3=-731/123, 3-4=-731/123,

4-5=0/23

BOT CHORD 2-6=-73/518, 4-6=-22/518

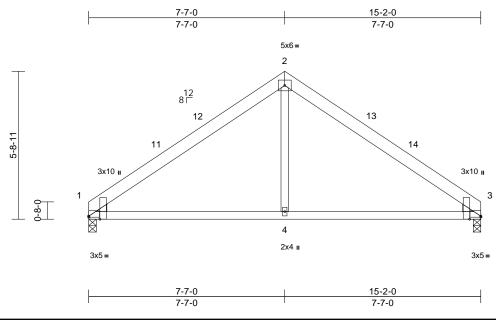
WEBS 3-6=0/310

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-8-3 to 2-3-13, Interior (1) 2-3-13 to 4-7-0, Exterior(2R) 4-7-0 to 10-7-0, Interior (1) 10-7-0 to 12-10-3, Exterior(2E) 12-10-3 to 15-10-3 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 4. This connection is for uplift only and does not consider lateral forces.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard


April 20,2022

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 80 FaNC	
80 FaNC	F02	Common	4	1	Job Reference (optional)	l51473189

Run: 8.53 S Apr 11 2022 Print: 8.530 S Apr 11 2022 MiTek Industries, Inc. Wed Apr 20 07:53:16 ID:_PtrrQKofHRJ2aiol2vsYryANRa-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:44.6

Plate Offsets (X, Y): [1:Edge,0-0-7], [1:0-1-6,Edge], [3:Edge,0-0-7], [3:0-1-6,Edge]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.53	Vert(LL)	-0.07	4-10	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.48	Vert(CT)	-0.13	4-10	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.12	Horz(CT)	0.02	1	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 75 lb	FT = 20%

LUMBER

TOP CHORD 2x6 SP No.2 BOT CHORD 2x4 SP No.2 **WEBS** 2x4 SP No.3 WEDGE Left: 2x4 SP No.3 Right: 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (lb/size) 1=607/0-3-8, 3=607/0-3-8

Max Horiz 1=-119 (LC 10)

Max Uplift 1=-51 (LC 14), 3=-51 (LC 15) Max Grav 1=677 (LC 20), 3=677 (LC 21)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-733/125, 2-3=-733/125 **BOT CHORD** 1-4=-92/520, 3-4=-51/520

WEBS 2-4=0/311

NOTES

- 1) Unbalanced roof live loads have been considered for
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 4-7-0, Exterior(2R) 4-7-0 to 10-7-0, Interior (1) 10-7-0 to 12-2-0, Exterior(2E) 12-2-0 to 15-2-0 zone; cantilever left and right exposed; end vertical left and right exposed:C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 1 and 3. This connection is for uplift only and does not consider lateral forces.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chorembers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rerection and bracing of trusses and truss systems, see

ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 80 FaNC	
80 FaNC	F03	Common Supported Gable	1	1	Job Reference (optional)	I51473190

Run: 8.53 S Apr 11 2022 Print: 8.530 S Apr 11 2022 MiTek Industries, Inc. Wed Apr 20 07:53:16 ID:pZE65TPZE7BTmV9y5J0Hn6yANRU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

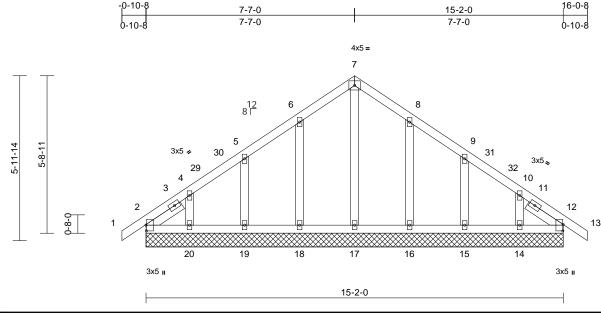


Plate Offsets (X, Y): [2:0-2-8,0-0-3], [12:0-2-13,0-0-3]

Loading	(psf)	Spacing	1-11-4	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.08	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.03	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.07	Horz(CT)	0.00	12	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH							1	
BCDL	10.0										Weight: 88 lb	FT = 20%

LUMBER

Scale = 1:41.9

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 **OTHERS** 2x4 SP No.3

SLIDER Left 2x4 SP No.3 -- 1-6-0, Right 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (lb/size) 2=127/15-2-0, 12=127/15-2-0, 14=131/15-2-0, 15=158/15-2-0,

16=160/15-2-0, 17=125/15-2-0, 18=160/15-2-0, 19=158/15-2-0, 20=131/15-2-0, 21=127/15-2-0,

25=127/15-2-0

Max Horiz 2=-128 (LC 12), 21=-128 (LC 12) Max Uplift 2=-34 (LC 10), 12=-2 (LC 11),

14=-71 (LC 15), 15=-55 (LC 15), 16=-58 (LC 15), 18=-59 (LC 14), 19=-54 (LC 14), 20=-78 (LC 14),

21=-34 (LC 10), 25=-2 (LC 11) Max Grav 2=139 (LC 25), 12=129 (LC 22), 14=150 (LC 25), 15=219 (LC 22), 16=251 (LC 22), 17=146 (LC 27),

18=251 (LC 21), 19=219 (LC 21), 20=158 (LC 24), 21=139 (LC 25),

25=129 (LC 22)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD

1-2=0/28, 2-4=-105/97, 4-5=-91/72, 5-6=-81/87, 6-7=-82/154, 7-8=-82/154,

8-9=-72/87, 9-10=-58/31, 10-12=-71/49, 12-13=0/28

BOT CHORD

17-18=-41/115, 16-17=-41/115, 15-16=-41/115, 14-15=-41/115,

12-14=-41/115 **WEBS** 7-17=-108/6, 6-18=-212/99, 5-19=-180/103.

4-20=-117/110, 8-16=-212/99. 9-15=-180/103, 10-14=-111/110

NOTES

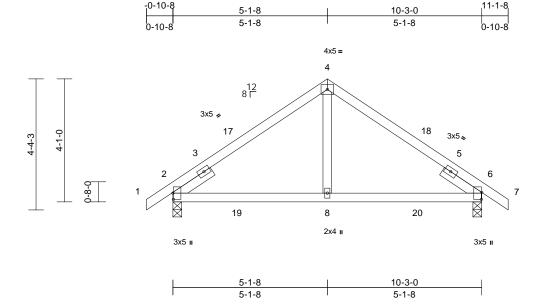
- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 2-1-8, Exterior(2N) 2-1-8 to 4-7-0, Corner(3R) 4-7-0 to 10-7-0, Exterior(2N) 10-7-0 to 13-0-8, Corner(3E) 13-0-8 to 16-0-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 2-0-0 oc.

- 2-20=-41/115, 19-20=-41/115, 18-19=-41/115, 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 - * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
 - 12) N/A
 - 13) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 12, 25.
 - 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

April 20,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not


a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 80 FaNC	
80 FaNC	G01	Common	5	1	Job Reference (optional)	1473191

Run: 8.53 S Apr 11 2022 Print: 8.530 S Apr 11 2022 MiTek Industries, Inc. Wed Apr 20 07:53:17 ID:vqLYLW?otz3ApQzY?OTtXxyEMjg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:38.2

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.46	Vert(LL)	-0.04	8-15	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.39	Vert(CT)	-0.05	8-15	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.09	Horz(CT)	0.02	2	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 47 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 **WEBS** 2x4 SP No.3

SLIDER Left 2x4 SP No.3 -- 1-6-0, Right 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (lb/size) 2=463/0-3-8, 6=463/0-3-8

Max Horiz 2=94 (LC 13)

Max Uplift 2=-51 (LC 14), 6=-51 (LC 15)

Max Grav 2=566 (LC 21), 6=566 (LC 22)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/29, 2-4=-453/425, 4-6=-453/425,

6-7=0/29

2-8=-230/340, 6-8=-230/340 **BOT CHORD**

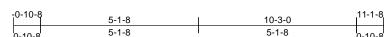
WEBS 4-8=-302/221

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Exterior(2R) 2-1-8 to 8-1-8, Exterior(2E) 8-1-8 to 11-1-8 zone; cantilever left and right exposed; end vertical left and right exposed; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

- 4) Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 6. This connection is for uplift only and does not consider lateral forces.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not


a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 80 FaNC	
80 FaNC	G02	Common Supported Gable	1	1	Job Reference (optional)	l51473192

Run: 8.53 S Apr 11 2022 Print: 8.530 S Apr 11 2022 MiTek Industries, Inc. Wed Apr 20 07:53:17 ID:NHRL7gD4dVLczBL?2Ao6FjyEMjO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:37.4

Plate Offsets (X, Y):	[2:0-2-8,0-0-3],	[8:0-2-8,0-2-11]
-----------------------	------------------	------------------

Loading	(psf)	Spacing	1-11-4	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.09	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.03	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.05	Horz(CT)	0.00	8	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 55 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 OTHERS 2x4 SP No.3

SLIDER Left 2x4 SP No.3 -- 1-2-5, Right 2x4 SP No.3

-- 1-2-5

BRACING TOP CHORD S

OP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (lb/size) 2=113/10-3-0, 8=113/10-3-0, 10=107/10-3-0, 11=167/10-3-0,

10=107/10-3-0, 11=167/10-3-0, 12=122/10-3-0, 13=167/10-3-0, 14=107/10-3-0, 15=113/10-3-0,

19=113/10-3-0

Max Horiz 2=-91 (LC 12), 15=-91 (LC 12)

Max Uplift 2=-27 (LC 10), 8=-3 (LC 11), 10=-58 (LC 15), 11=-61 (LC 15), 13=-62 (LC 14), 14=-63 (LC 14),

15=-27 (LC 10), 19=-3 (LC 11) Max Grav 2=114 (LC 25), 8=114 (LC 22),

10=169 (LC 22), 11=258 (LC 22), 12=130 (LC 21), 13=258 (LC 21), 14=169 (LC 21), 15=114 (LC 25),

19=114 (LC 22)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/28, 2-3=-45/54, 3-4=-73/51,

4-5=-83/126, 5-6=-83/126, 6-7=-71/40,

7-8=-45/53, 8-9=0/28 BOT CHORD 2-14=-27/101, 13-14=-27/101,

12-13=-27/101, 11-12=-27/101,

10-11=-27/101, 8-10=-27/101 5-12=-92/0, 4-13=-218/132, 3-14=-137/122,

6-11=-218/132, 7-10=-137/122

WEBS NOTES

- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 2-1-8, Corner(3R) 2-1-8 to 8-1-8, Corner(3E) 8-1-8 to 11-1-8 zone; cantilever left and right exposed; end vertical left and right exposed; c-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 7) Gable requires continuous bottom chord bearing.
- 8) Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) N/A

12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

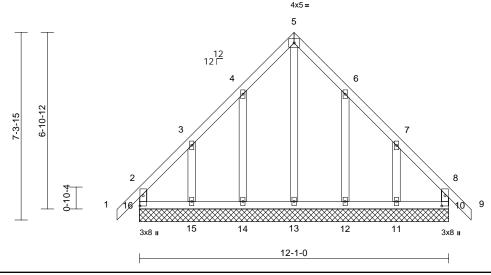
Page: 1

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not

Design valid for use only with Mil lewe connectors. Inits besign is based only upon planarheters shown, and is for an individual abunding component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 80 FaNC	
80 FaNC	H01	Common Supported Gable	1	1	Job Reference (optional)	51473193

Run: 8.53 S Apr 11 2022 Print: 8.530 S Apr 11 2022 MiTek Industries, Inc. Wed Apr 20 07:53:17 ID:CRocOjIrDL5mi6p9PQuWV_yEMjI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale - 1:4

Plate Offsets (X, Y): [10:0-4-12,0-1-8], [16:0-4-12,0-1-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.11	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.07	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.20	Horz(CT)	0.00	10	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MR								
BCDL	10.0										Weight: 78 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 OTHERS 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (lb/size)

10=147/12-1-0, 11=146/12-1-0, 12=170/12-1-0, 13=140/12-1-0, 14=170/12-1-0, 15=146/12-1-0,

16=147/12-1-0 Max Horiz 16=-185 (LC 12)

Max Uplift 10=-49 (LC 11), 11=-143 (LC 15),

12=-89 (LC 15), 14=-88 (LC 14),

15=-147 (LC 14), 16=-68 (LC 10)

10=166 (LC 24), 11=198 (LC 25), 12=286 (LC 22), 13=209 (LC 15),

12=286 (LC 22), 13=209 (LC 15), 14=286 (LC 21), 15=203 (LC 24),

16=182 (LC 25)

FORCES (lb) - Maximum Compression/Maximum

Tension

Max Grav

TOP CHORD 2-16=-151/64, 1-2=0/43, 2-3=-125/113,

3-4=-111/122, 4-5=-195/227, 5-6=-195/227, 6-7=-111/122, 7-8=-105/90, 8-9=0/43,

8-10=-137/47

BOT CHORD 15-16=-84/102, 14-15=-84/102,

13-14=-84/102, 12-13=-84/102, 11-12=-84/102, 10-11=-84/102

WEBS 5-13=-253/154, 4-14=-246/125,

3-15=-188/150, 6-12=-246/125,

7-11=-188/150

NOTES

 Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 2-0-8, Exterior(2N) 2-0-8 to 3-0-8, Corner(3R) 3-0-8 to 9-0-8, Exterior(2N) 9-0-8 to 9-11-8, Corner(3E) 9-11-8 to 12-11-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 7) All plates are 2x4 MT20 unless otherwise indicated.
- 8) Gable requires continuous bottom chord bearing.
- Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 10) Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty Ply DRB GROUP - 80 FaNC 151473194 80 FaNC H₀2 2 Common Girder Job Reference (optional)

Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.53 S Apr 11 2022 Print: 8.530 S Apr 11 2022 MiTek Industries, Inc. Wed Apr 20 07:53:18 ID:1shJDaaHoP_Vye3aFmpvwryEMix-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

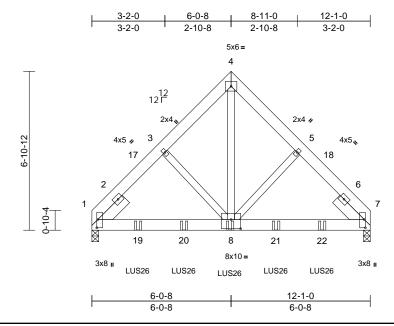


Plate Offsets (X, Y): [1:0-4-4,0-0-8], [7:0-4-4,0-0-8], [8:0-5-0,0-4-12]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.23	Vert(LL)	-0.04	8-15	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.81	Vert(CT)	-0.07	8-15	>999	180		
TCDL	10.0	Rep Stress Incr	NO	WB	0.68	Horz(CT)	0.01	7	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0	1		1							Weight: 196 lb	FT = 20%

LUMBER

TOP CHORD 2x6 SP No.2 2x6 SP No.2 **BOT CHORD WEBS** 2x4 SP No.3

SLIDER Left 2x6 SP No.2 -- 1-6-0, Right 2x6 SP No.2

BRACING TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (lb/size) 1=2903/0-3-8, 7=2875/0-3-8

Max Horiz 1=-138 (LC 8)

Max Uplift 1=-170 (LC 13), 7=-168 (LC 12) Max Grav 1=2986 (LC 18), 7=2959 (LC 19)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-3=-3212/205, 3-4=-2622/233,

> 4-5=-2621/232. 5-7=-3203/204 1-8=-162/1994, 7-8=-105/1992

WEBS 4-8=-243/3299, 5-8=-321/142, 3-8=-324/141

NOTES

BOT CHORD

- 1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:
 - Top chords connected as follows: 2x6 2 rows staggered at 0-9-0 oc.
 - Bottom chords connected as follows: 2x6 2 rows staggered at 0-9-0 oc.
 - Web connected as follows: 2x4 1 row at 0-9-0 oc.
- All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- Unbalanced roof live loads have been considered for this design.

- 4) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 1 and 7. This connection is for uplift only and does not consider lateral forces.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) Use Simpson Strong-Tie LUS26 (4-10d Girder, 4-10d Truss, Single Ply Girder) or equivalent spaced at 2-0-0 oc max. starting at 2-0-0 from the left end to 10-0-0 to connect truss(es) to back face of bottom chord
- 12) Fill all nail holes where hanger is in contact with lumber.

LOAD CASE(S) Standard

Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

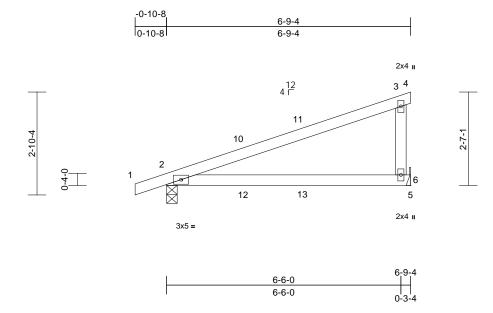
Uniform Loads (lb/ft)

Vert: 1-4=-60, 4-7=-60, 9-13=-20

Concentrated Loads (lb)

Vert: 8=-967 (B), 19=-967 (B), 20=-967 (B), 21=-967 (B), 22=-967 (B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not


a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 80 FaNC	
80 FaNC	M01	Monopitch	4	1	Job Reference (optional)	473195

Run: 8.53 S Apr 11 2022 Print: 8.530 S Apr 11 2022 MiTek Industries, Inc. Wed Apr 20 07:53:18 ID:dq31jByjVxu5APxXZmsAhNyEMiS-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:32

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.92	Vert(LL)	0.30	6-9	>258	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.73	Vert(CT)	-0.25	6-9	>315	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	2	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 25 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 2x4 SP No.2 **BOT CHORD** 2x4 SP No.3 WEBS

BRACING

TOP CHORD Structural wood sheathing directly applied or 2-2-0 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (lb/size) 2=316/0-3-8, 6=279/ Mechanical

Max Horiz 2=95 (LC 13)

Max Uplift 2=-125 (LC 10), 6=-105 (LC 10) Max Grav 2=410 (LC 21), 6=381 (LC 21)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/17, 2-3=-177/205, 3-4=-8/0,

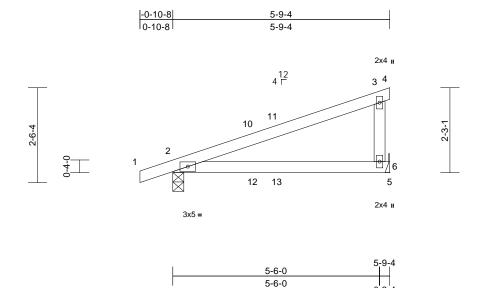
3-6=-273/208

BOT CHORD 2-6=-210/169, 5-6=0/0

NOTES

- Wind: ASCE 7-16; Vult=130mph (3-second gust) 1) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 3-9-4, Exterior(2E) 3-9-4 to 6-9-4 zone; cantilever left and right exposed; end vertical left and right exposed; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 105 lb uplift at
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 80 FaNC	
80 FaNC	M02	Monopitch	5	1	Job Reference (optional)	3196

Run: 8.53 S Apr 11 2022 Print: 8.530 S Apr 11 2022 MiTek Industries, Inc. Wed Apr 20 07:53:18 ID:ZUiCigAe1nIPyKuBBGidyOyEMi9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:30.6

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.62	Vert(LL)	0.16	6-9	>406	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.54	Vert(CT)	0.13	6-9	>506	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	2	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 22 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 2x4 SP No.2 **BOT CHORD** 2x4 SP No.3 WEBS

BRACING

TOP CHORD Structural wood sheathing directly applied or 5-9-4 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (lb/size) 2=276/0-3-8, 6=238/ Mechanical

Max Horiz 2=82 (LC 13)

Max Uplift 2=-111 (LC 10), 6=-89 (LC 10) Max Grav 2=383 (LC 21), 6=324 (LC 21)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/25, 2-3=-137/176, 3-4=-8/0,

3-6=-232/187

BOT CHORD 2-6=-181/122, 5-6=0/0

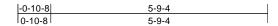
NOTES

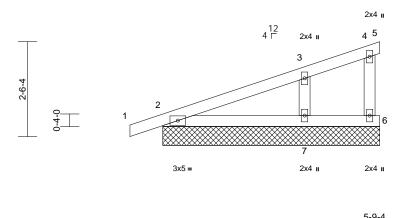
- Wind: ASCE 7-16; Vult=130mph (3-second gust) 1) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 2-9-4, Exterior(2E) 2-9-4 to 5-9-4 zone; cantilever left and right exposed; end vertical left and right exposed; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 89 lb uplift at joint
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chorembers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rerection and bracing of trusses and truss systems, see


ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 80 FaNC	
80 FaNC	M03	Monopitch Supported Gable	1	1	Job Reference (optional)	I51473197

Run: 8.53 S Apr 11 2022 Print: 8.530 S Apr 11 2022 MiTek Industries, Inc. Wed Apr 20 07:53:18 Page: 1

Scale = 1:30.6

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.24	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.38	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.08	Horz(CT)	0.00	2	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0			1							Weight: 23 lb	FT = 20%

5-6-0 5-6-0

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 WEBS **OTHERS** 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

5-9-4 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

REACTIONS (lb/size)

2=192/5-9-4, 5=46/5-9-4,

6=42/5-9-4, 7=310/5-9-4,

8=192/5-9-4

Max Horiz 2=82 (LC 11), 8=82 (LC 11)

Max Uplift 2=-45 (LC 10), 7=-40 (LC 14), 8=-45 (LC 10)

Max Grav

2=268 (LC 21), 5=58 (LC 21), 6=70 (LC 7), 7=410 (LC 21), 8=268 (LC

21)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/25, 2-3=-78/59, 3-4=-49/25, 4-5=-8/18,

4-6=0/68

BOT CHORD 2-7=-43/50, 6-7=-32/43

WEBS 3-7=-334/271

NOTES

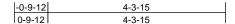
- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 2-1-8, Exterior(2N) 2-1-8 to 5-9-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.

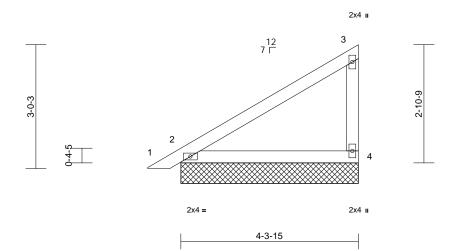
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

April 20,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chorembers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rerection and bracing of trusses and truss systems, see


ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 80 FaNC	
80 FaNC	PB1	Piggyback	5	1	I51473198 Job Reference (optional)	3

Run: 8.53 S Apr 11 2022 Print: 8.530 S Apr 11 2022 MiTek Industries, Inc. Wed Apr 20 07:53:19 ID:e?lvN3P58lb?UmZVpHm8vbyAOrr-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:28.1

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.39	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.31	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	2	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 19 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 WEBS

BRACING

TOP CHORD Structural wood sheathing directly applied or 5-2-1 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (lb/size) 2=202/4-3-15, 4=168/4-3-15,

5=202/4-3-15

Max Horiz 2=93 (LC 13), 5=93 (LC 13) Max Uplift 2=-24 (LC 14), 4=-38 (LC 14),

5=-24 (LC 14)

Max Grav 2=302 (LC 21), 4=245 (LC 21),

5=302 (LC 21)

FORCES (lb) - Maximum Compression/Maximum

Tension

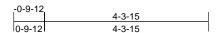
TOP CHORD 1-2=0/27, 2-3=-77/69, 3-4=-173/59

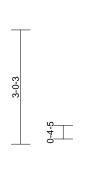
BOT CHORD 2-4=-47/65

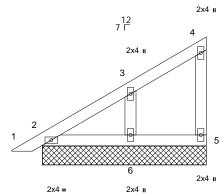
- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this design.

- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

LOAD CASE(S) Standard




April 20,2022



Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 80 FaNC	
80 FaNC	PB2	Piggyback	1	1	Job Reference (optional)	51473199

Run: 8.53 S Apr 11 2022 Print: 8.530 S Apr 11 2022 MiTek Industries, Inc. Wed Apr 20 07:53:19 ID:?nh37D5DyVf3CNrG51mGAPyAOqz-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

4-3-15

Scale = 1:30.4

		1	-	1	-		-				1	:
Loading	(psf)	Spacing	1-11-4	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.10	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.06	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.04	Horz(CT)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0	l									Weight: 20 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD 2x4 SP No.3 WEBS **OTHERS** 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

5-2-1 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

REACTIONS (lb/size)

2=108/4-3-15, 5=50/4-3-15, 6=198/4-3-15, 7=108/4-3-15 Max Horiz 2=90 (LC 13), 7=90 (LC 13)

Max Uplift 5=-13 (LC 11), 6=-63 (LC 14) Max Grav 2=164 (LC 21), 5=74 (LC 21), 6=290 (LC 21), 7=164 (LC 21)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/26, 2-3=-65/58, 3-4=-59/33, 4-5=-65/22

BOT CHORD 2-6=-42/45, 5-6=-42/45

WFBS 3-6=-222/115

NOTES

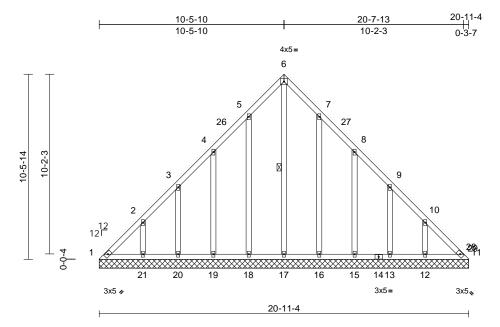
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

- 4) Unbalanced snow loads have been considered for this
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) N/A
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chorembers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see


AMSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 80 FaNC
80 FaNC	V1	Valley	1	1	Job Reference (optional)

Run: 8.53 S Apr 11 2022 Print: 8.530 S Apr 11 2022 MiTek Industries, Inc. Wed Apr 20 07:53:19 ID:n?Bdcaw9NrQS_vuc5TK6uCzpYz_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scal	\sim	_	1	.65	2

Loading	(psf)	Spacing	1-11-4	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.10	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.07	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.30	Horiz(TL)	0.01	11	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 147 lb	FT = 20%

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 **OTHERS**

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

WEBS 1 Row at midpt

REACTIONS (lb/size) 1=84/20-11-4, 11=66/20-11-4,

12=202/20-11-4, 13=141/20-11-4, 15=158/20-11-4, 16=160/20-11-4, 17=131/20-11-4. 18=160/20-11-4. 19=158/20-11-4, 20=140/20-11-4,

21=204/20-11-4

Max Horiz 1=233 (LC 11) 1=-76 (LC 12), 11=-33 (LC 13),

12=-75 (LC 15), 13=-101 (LC 15), 15=-99 (LC 15), 16=-90 (LC 15), 18=-93 (LC 14), 19=-98 (LC 14), 20=-98 (LC 14), 21=-85 (LC 14)

Max Grav

1=174 (LC 14), 11=145 (LC 15), 12=209 (LC 28), 13=163 (LC 24), 15=206 (LC 21), 16=271 (LC 21), 17=224 (LC 15), 18=271 (LC 20),

19=206 (LC 20), 20=160 (LC 23), 21=221 (LC 27)

FORCES (lb) - Maximum Compression/Maximum

Tension TOP CHORD

1-2=-284/201, 2-3=-191/158, 3-4=-125/124, 4-5=-104/137, 5-6=-120/185, 6-7=-120/168, 7-8=-89/95, 8-9=-79/64, 9-10=-151/99, 10-11=-241/138

BOT CHORD 1-21=-100/208, 20-21=-100/208, 19-20=-100/208, 18-19=-100/208,

17-18=-100/208, 16-17=-100/208, 15-16=-100/208, 13-15=-100/208, 12-13=-100/208, 11-12=-100/208 6-17=-201/72, 5-18=-233/116, 4-19=-165/122, 3-20=-131/120, 2-21=-151/111, 7-16=-233/113, 8-15=-165/123, 9-13=-132/121, 10-12=-146/107

NOTES

WEBS

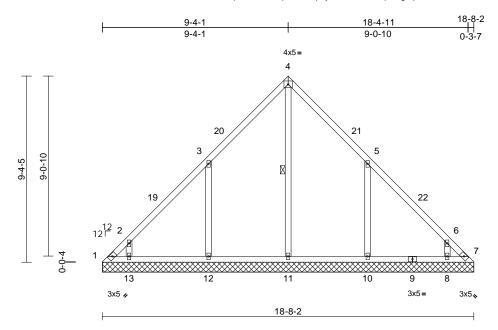
- Unbalanced roof live loads have been considered for 1) this design
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-4 to 3-0-4, Interior (1) 3-0-4 to 7-5-14, Exterior(2R) 7-5-14 to 13-5-14, Interior (1) 13-5-14 to 17-7-8, Exterior(2E) 17-7-8 to 20-7-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 76 lb uplift at joint 1 and 33 lb uplift at joint 11.

April 20,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see


AMSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 80 FaNC	
80 FaNC	V2	Valley	1	1	Job Reference (optional)	

Run: 8.53 S Apr 11 2022 Print: 8.530 S Apr 11 2022 MiTek Industries, Inc. Wed Apr 20 07:53:19 ID:FCI?pwxn89YJc3TpfArLRQzpYyz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:57.9

Loading	(psf)	Spacing	2-0-0	csı		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.33	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.17	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.19	Horiz(TL)	0.00	7	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 95 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.3 **OTHERS**

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

WEBS 1 Row at midpt

REACTIONS (lb/size) 1=24/18-8-2, 7=0/18-8-2, 8=271/18-8-2, 10=344/18-8-2,

11=211/18-8-2, 12=344/18-8-2, 13=274/18-8-2, 18=0/18-8-2

Max Horiz 1=215 (LC 11)

Max Uplift 1=-147 (LC 12), 7=-1 (LC 15),

8=-32 (LC 15), 10=-255 (LC 15), 11=-33 (LC 13), 12=-224 (LC 14), 13=-126 (LC 14), 18=-1 (LC 15)

1=173 (LC 11), 7=0 (LC 13), 8=289 Max Grav (LC 24), 10=498 (LC 24), 11=483

(LC 26), 12=487 (LC 5), 13=326

(LC 23), 18=0 (LC 13)

FORCES (lb) - Maximum Compression/Maximum

TOP CHORD 1-2=-284/250, 2-3=-272/219, 3-4=-233/314,

4-5=-222/281, 5-6=-137/64, 6-7=-126/56 1-13=-59/91. 12-13=-24/80. 11-12=-24/80.

BOT CHORD 10-11=-24/80, 8-10=-24/80, 7-8=-24/80

WFBS 4-11=-339/122. 3-12=-389/270.

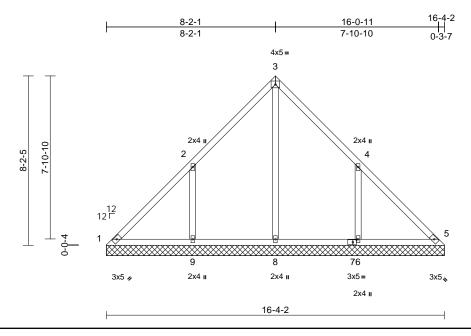
2-13=-240/221, 5-10=-387/282, 6-8=-228/189

NOTES

Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-4 to 3-0-4, Interior (1) 3-0-4 to 6-4-5, Exterior(2R) 6-4-5 to 12-4-5, Interior (1) 12-4-5 to 15-8-6, Exterior(2E) 15-8-6 to 18-8-6 zone; cantilever left and right exposed; end vertical left and right exposed: C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- All plates are 2x4 MT20 unless otherwise indicated.
- 7) Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 147 lb uplift at joint 1, 1 lb uplift at joint 7 and 1 lb uplift at joint 7.

LOAD CASE(S) Standard



April 20,2022

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 80 FaNC	
80 FaNC	V3	Valley	1	1	Job Reference (optional)	51473202

Run: 8.53 S Apr 11 2022 Print: 8.530 S Apr 11 2022 MiTek Industries, Inc. Wed Apr 20 07:53:20 ID:FCI?pwxn89YJc3TpfArLRQzpYyz-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:55.7

Plate Offsets (X, Y): [7:0-2-1,0-1-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.38	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.17	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.57	Horiz(TL)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 79 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP No 2 OTHERS 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

10-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (lb/size)

1=27/16-4-2, 5=0/16-4-2, 6=377/16-4-2, 8=502/16-4-2, 9=375/16-4-2. 14=0/16-4-2

Max Horiz 1=187 (LC 11)

Max Uplift 1=-102 (LC 10), 5=-1 (LC 15), 6=-226 (LC 15), 9=-233 (LC 14),

14=-1 (LC 15)

Max Grav 1=122 (LC 13), 5=1 (LC 24), 6=513

(LC 24), 8=688 (LC 26), 9=517 (LC

23), 14=1 (LC 24)

FORCES (lb) - Maximum Compression/Maximum

Tension TOP CHORD

1-2=-158/381, 2-3=-77/336, 3-4=-76/309,

4-5=-165/262 **BOT CHORD**

1-9=-148/77, 8-9=-148/77, 6-8=-148/77,

5-6=-148/77

WEBS 3-8=-492/0, 2-9=-397/264, 4-6=-398/261

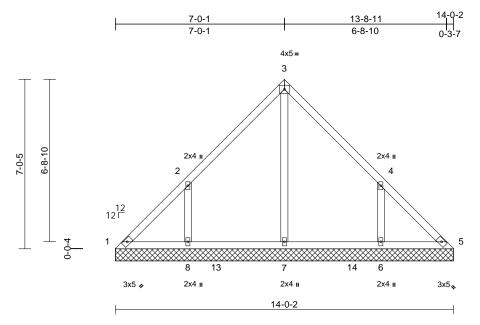
NOTES

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-4 to 3-0-4, Interior (1) 3-0-4 to 5-2-5. Exterior(2R) 5-2-5 to 11-2-5. Interior (1) 11-2-5 to 13-4-6, Exterior(2E) 13-4-6 to 16-4-6 zone; cantilever left and right exposed; end vertical left and right exposed C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 102 lb uplift at joint 1, 1 lb uplift at joint 5 and 1 lb uplift at joint 5.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 80 FaNC
80 FaNC	V4	Valley	1	1	Job Reference (optional)

Run: 8.53 S Apr 11 2022 Print: 8.530 S Apr 11 2022 MiTek Industries, Inc. Wed Apr 20 07:53:20

Page: 1

Scale = 1:47.7

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.35	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.17	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.17	Horiz(TL)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 66 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 **OTHERS**

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (lb/size) 1=99/14-0-2, 5=99/14-0-2,

6=329/14-0-2, 7=264/14-0-2, 8=329/14-0-2

Max Horiz 1=-160 (LC 10)

Max Uplift 1=-40 (LC 10), 5=-3 (LC 11),

6=-191 (LC 15), 8=-196 (LC 14) Max Grav 1=143 (LC 24), 5=116 (LC 23),

6=460 (LC 21), 7=385 (LC 23),

8=460 (LC 20)

FORCES (lb) - Maximum Compression/Maximum

Tension TOP CHORD

1-2=-164/148, 2-3=-221/131, 3-4=-221/112,

4-5=-142/105

BOT CHORD 1-8=-85/128. 7-8=-85/127. 6-7=-85/127.

5-6=-85/127

WEBS 3-7=-198/0, 2-8=-385/237, 4-6=-385/235

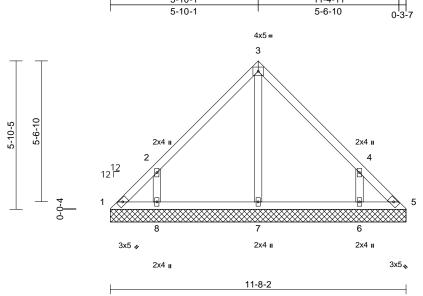
NOTES

- 1) Unbalanced roof live loads have been considered for
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-4 to 3-0-5, Interior (1) 3-0-5 to 4-0-5, Exterior(2R) 4-0-5 to 10-0-5, Interior (1) 10-0-5 to 11-0-5, Exterior(2E) 11-0-5 to 14-0-6 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this 5) design.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 40 lb uplift at joint 1 and 3 lb uplift at joint 5.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chorembers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rerection and bracing of trusses and truss systems, see


ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 80 FaNC	
80 FaNC	V5	Valley	1	1	Job Reference (optional)	151473204

Run: 8.53 S Apr 11 2022 Print: 8.530 S Apr 11 2022 MiTek Industries, Inc. Wed Apr 20 07:53:20 ID:szi?0yxDqMtgRgkZSPJamjzpYxh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:45.5

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.33	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.12	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.09	Horiz(TL)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0			1							Weight: 52 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 **OTHERS**

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (lb/size) 1=59/11-8-2, 5=59/11-8-2,

6=298/11-8-2, 7=220/11-8-2, 8=298/11-8-2

Max Horiz 1=-133 (LC 10)

Max Uplift 1=-50 (LC 12), 5=-18 (LC 13), 6=-170 (LC 15), 8=-175 (LC 14)

Max Grav 1=105 (LC 28), 5=85 (LC 26),

6=450 (LC 21), 7=240 (LC 20),

8=450 (LC 20)

FORCES (lb) - Maximum Compression/Maximum

Tension TOP CHORD

1-2=-159/124, 2-3=-254/117, 3-4=-254/103,

4-5=-134/87

BOT CHORD 1-8=-45/94, 7-8=-41/94, 6-7=-41/94,

5-6=-41/94

WEBS 3-7=-152/0, 2-8=-424/244, 4-6=-424/242

NOTES

- 1) Unbalanced roof live loads have been considered for
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-4 to 3-0-4, Exterior(2R) 3-0-4 to 8-8-6, Exterior(2E) 8-8-6 to 11-8-6 zone; cantilever left and right exposed; end vertical left and right exposed:C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

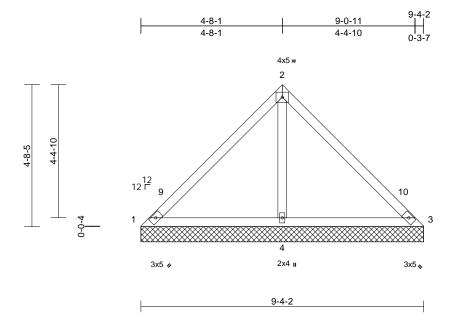
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this 5) design.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 50 lb uplift at joint 1 and 18 lb uplift at joint 5.

April 20,2022

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property danage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see


ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 80 FaNC	
80 FaNC	V6	Valley	1	1	Job Reference (optional)	51473205

Run: 8.53 S Apr 11 2022 Print: 8.530 S Apr 11 2022 MiTek Industries, Inc. Wed Apr 20 07:53:20

Page: 1

Scale = 1:38.1

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.43	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.42	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.22	Horiz(TL)	0.01	4	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 38 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD 2x4 SP No.3 **OTHERS**

BRACING

TOP CHORD Structural wood sheathing directly applied or

9-4-2 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (lb/size) 1=39/9-4-2. 3=39/9-4-2.

4=669/9-4-2

Max Horiz 1=-105 (LC 12) Max Uplift 1=-36 (LC 21), 3=-36 (LC 20),

4=-135 (LC 14)

Max Grav 1=100 (LC 20), 3=100 (LC 21),

4=733 (LC 21)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-104/339, 2-3=-102/339

BOT CHORD 1-4=-225/139, 3-4=-225/139

WEBS 2-4=-557/192

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-4 to 3-0-4, Exterior(2R) 3-0-4 to 6-4-6, Exterior(2E) 6-4-6 to 9-4-6 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face). see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

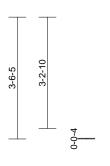
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 36 lb uplift at joint 1 and 36 lb uplift at joint 3.

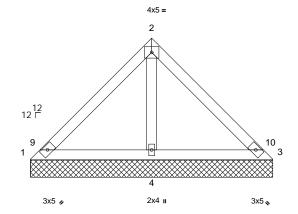
April 20,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chorembers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rerection and bracing of trusses and truss systems, see

ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601




Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 80 FaNC	
80 FaNC	V7	Valley	1	1	Job Reference (optional)	151473206

Run: 8.53 S Apr 11 2022 Print: 8.530 S Apr 11 2022 MiTek Industries, Inc. Wed Apr 20 07:53:21 ID:NCzT?RI5VThp5l5ivxmTD7zpYqm-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

7-0-2

Scale = 1:33.3

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.25	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.26	Vert(TL)	n/a	-	n/a	999			
TCDL	10.0	Rep Stress Incr	YES	WB	0.09	Horiz(TL)	0.00	3	n/a	n/a			
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP									
BCDL	10.0	l									Weight: 28 lb	FT = 20%	

LUMBER

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD 2x4 SP No.3 **OTHERS**

BRACING

TOP CHORD Structural wood sheathing directly applied or

7-0-2 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (lb/size) 1=45/7-0-2, 3=45/7-0-2, 4=471/7-0-2

Max Horiz 1=78 (LC 11)

Max Uplift 1=-12 (LC 21), 3=-12 (LC 20),

4=-92 (LC 14)

Max Grav 1=98 (LC 20), 3=98 (LC 21), 4=511

(LC 21)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-72/206, 2-3=-72/206

BOT CHORD 1-4=-166/109, 3-4=-166/109

WEBS 2-4=-359/124

NOTES

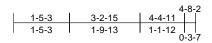
- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-4 to 3-0-4, Exterior(2R) 3-0-4 to 4-0-6, Exterior(2E) 4-0-6 to 7-0-6 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For study exposed to wind (normal to the face). see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

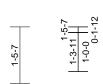
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 12 lb uplift at joint 1 and 12 lb uplift at joint 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

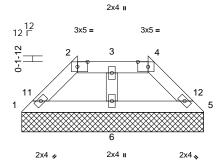
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chorembers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rerection and bracing of trusses and truss systems, see

ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601




Edenton, NC 27932

Page: 1


Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 80 FaNC	
80 FaNC	V8	Valley	1	1	Job Reference (optional)	151473207

Run: 8.53 S Apr 11 2022 Print: 8.530 S Apr 11 2022 MiTek Industries, Inc. Wed Apr 20 07:53:21 ID:sOXrCnIjGmpgivgvTeHilLzpYql-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

4-8-2

Scale = 1:29.6

Plate Offsets (X, Y): [2:0-3-2,0-1-8], [4:0-3-2,0-1-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.05	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.10	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.03	Horiz(TL)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 16 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP No 2 OTHERS 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

4-8-2 oc purlins, except 2-0-0 oc purlins: 2-4.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

REACTIONS (lb/size) 1=94/4-8-2, 5=96/4-8-2,

6=184/4-8-2

1=28 (LC 13) Max Horiz Max Uplift 1=-13 (LC 14), 5=-17 (LC 15),

6=-10 (LC 14)

Max Grav 1=128 (LC 38), 5=130 (LC 38),

6=214 (LC 37)

FORCES (lb) - Maximum Compression/Maximum

Tension TOP CHORD

1-2=-142/53, 2-3=-53/61, 3-4=-53/61, 4-5=-144/54

1-6=-25/94, 5-6=-25/96 **BOT CHORD**

WEBS 3-6=-142/88

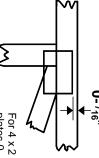
NOTES

- 1) Unbalanced roof live loads have been considered for
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-4 to 1-5-7, Exterior(2R) 1-5-7 to 3-3-3, Exterior(2E) 3-3-3 to 4-8-6 zone; cantilever left and right exposed; end vertical left and right exposed:C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this design.
- Provide adequate drainage to prevent water ponding.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 13 lb uplift at joint 1 and 17 lb uplift at joint 5.
- 12) N/A
- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Page: 1


April 20,2022

Symbols

PLATE LOCATION AND ORIENTATION

Center plate on joint unless x, y offsets are indicated.
Dimensions are in ft-in-sixteenths.
Apply plates to both sides of truss and fully embed teeth.

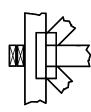
For 4 x 2 orientation, locate plates 0- $\frac{1}{16}$ from outside edge of truss.

This symbol indicates the required direction of slots in connector plates.

* Plate location details available in MiTek 20/20 software or upon request.

PLATE SIZE

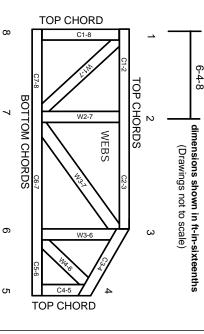
4 × 4


The first dimension is the plate width measured perpendicular to slots. Second dimension is the length parallel to slots.

LATERAL BRACING LOCATION

Indicated by symbol shown and/or by text in the bracing section of the output. Use T or I bracing if indicated.

BEARING


Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number where bearings occur. Min size shown is for crushing only

Industry Standards:

National Design Specification for Metal Plate Connected Wood Truss Construction. Design Standard for Bracing. Building Component Safety Information, Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses.

ANSI/TPI1: DSB-89:

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

PRODUCT CODE APPROVALS

ICC-ES Reports:

ESR-1311, ESR-1352, ESR1988 ER-3907, ESR-2362, ESR-1397, ESR-3282

Trusses are designed for wind loads in the plane of the truss unless otherwise shown.

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

© 2012 MiTek® All Rights Reserved

A MiTek Affiliate

MiTek Engineering Reference Sheet: MII-7473 rev. 5/19/2020

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.

ω

Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.

4.

- Cut members to bear tightly against each other.
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.

ი ი

- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.

φ.

- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others
- Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.