

Trenco 818 Soundside Rd Edenton, NC 27932

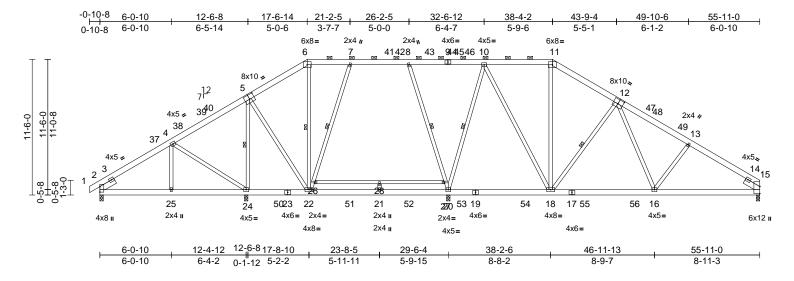
Re: 22060077 DRB GROUP - 138 FARM AT NEILLS CREEK

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Sanford, NC)).

Pages or sheets covered by this seal: I52747648 thru I52747675

My license renewal date for the state of North Carolina is December 31, 2022.

North Carolina COA: C-0844


June 27,2022

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

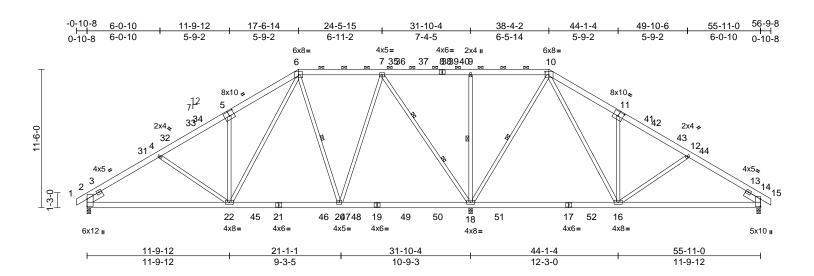
Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 138 FARM AT NEILLS CREEK
22060077	A01	Piggyback Base	6	1	Job Reference (optional)

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Fri Jun 24 12:11:04 ID:vmWSYKxMeSKeeaoGnh3QrczhvSE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:97.6

Plate Offsets (X, Y): [5:0-5-0,0-4-8], [12:0-5-0,0-4-8]

			-										
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.50	Vert(LL)	-0.10	16-18	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.61	Vert(CT)	-0.31	21-22	>662	180	-	
TCDL	10.0	Rep Stress Incr	YES		WB	0.73	Horz(CT)	0.04	15	n/a	n/a		
BCLL	0.0*	Code	IRC201	8/TPI2014	Matrix-MSH		- (-)						
BCDL	10.0											Weight: 475 lb	FT = 20%
BCDL LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	10.0 2x6 SP No.2 2x6 SP No.2 2x4 SP No.3 *Excep 22-6,22-7,20-8,20-10 SP No.2 Left 2x6 SP No.2 1-6-0 Structural wood she 4-7-7 oc purlins, exc 2-0-0 oc purlins (6-0) Rigid ceiling directly bracing. 1 Row at midpt (lb/size) 2=349/0-3 20=1689/ Max Horiz 2=249 (LC 20=-118 (Max Grav 2=427 (LC 20=1924 (lb) - Maximum Com Tension 1-2=0/26, 2-4=-355/	tt* 0,18-10,18-11,26-27:: 1-6-0, Right 2x6 SP N athing directly applied rept -0 max.): 6-11. applied or 6-0-0 oc 5-24, 6-22, 7-22, 8-2 10-20, 12-18 3-8, 15=1066/0-3-8, 0-3-8, 24=1623/0-3-8 C 13) 214), 15=-124 (LC 15 LC 15), 24=-158 (LC C 41), 15=-124 (LC 15 LC 15), 24=-158 (LC C 41), 15=-124 (LC 15 (LC 44), 24=1914 (LC apression/Maximum 87, 4-6=-320/523, 312/172, 8-10=-166/1 -13=-1605/227, 25=-170/317, -22=-116/392, -20=-68/478,	0.2 0.2 1 or 1; 1 or 1; 2; 0, 14) 7), 3; 35) 3; 4	/EBS OTES) Unbalanced this design.) Wind: ASCE Vasd=103m Cat. II; Exp B zone and C- 5-1-6 to 9-1- 26-1-7 to 29 Interior (1) 4 55-11-0 zon vertical left a forces & MW DOL=1.60 p) TCLL: ASCE Plate DOL= DDL=1.15); Cs=1.00; Ct:) Unbalanced design.) This truss ha load of 12.0 overhangs n) 200.0lb AC u from left end) Provide adee) All plates are	4-25=0/282, 4-24=- 5-22=0/934, 6-22=- 7-26=-333/130, 8-2 20-27=-505/129, 10 10-18=-151/952, 11 12-18=-831/226, 12 13-16=-244/179, 26 21-28=0/42 roof live loads have is 7-16; Vult=130mpl ph; TCDL=6.0psf; E 3; Enclosed; MWFF C Exterior(2E) -0-1 3, Exterior(2E) -0-1 4, Exterior(2E) -0-1 4, Exterior(2E) -0-1 4, Exterior(2E) -0, Exterior(2E)	231/42, 7=-493, 0-20=-11 1-18=-7, 2-16=-3, 5-28=-6, e been of h (3-sec 3CDL=6 23-28=-6, h (3-sec 3CDL=6 23-10-7 Exterior d right e -C for n shown; (roof LL Lum DC B; Fully een cor or great at roof k other lin the bott points, s revent v otherwi	22-26=-345/ '142, 041/310, '195, 2/530, '7, 27-28=-6/7 considered for cond gust) .0psf; h=25ft; elope) exterior -1-6, Interior (' to 46-9-13, (2E) 49-11-2 i xxposed ; end hembers and Lumber .: Lum DOL=11 bl=1.15 Plate Exp.; Ce=0.9 asidered for th er of min roof pad of 20.0 ps // e loads. om chord, 23- 5-0-0 apart.	r 117, , , , , , , , , , , , , , , , , ,	on 3-0 chc 11) On rec UP upli 12) Thi Inte R8(13) Gra or t bot	the botto 6-00 tall ord and a e H2.5A ommeno LIFT at j ift only a s truss is ernationa 02.10.2 a aphical p	m cho by 2-0 ny oth Simps led to o t(s) 2, : nd doeg a desig and ref urlin re tation o rd.) Stat	een designed for rd in all areas wh 0-00 wide will fit ter members, with son Strong-Tie co 24, 20, and 15. T as not consider la ined in accordance dential Code sec ierenced standard presentation doe of the purlin along ndard	a live load of 20.0psf erere a rectangle between the bottom n BCDL = 10.0psf. nnectors bearing walls due to his connection is for teral forces. we with the 2018 ions R502.11.1 and d ANSI/TPI 1. se not depict the size of the top and/or
				chord live loa	ad nonconcurrent w	vith any	other live load	ds.				in min	27 2022


June 27,2022

Page: 1

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 138 FARM AT NEILLS CREEK
22060077	A02	Piggyback Base	1	1	Job Reference (optional)

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Fri Jun 24 12:11:07 ID:vmWSYKxMeSKeeaoGnh3QrczhvSE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:95.7

Plate Offsets (X, Y): [5:0-5-0,0-4-8], [10:0-3-12,0-3-0], [11:0-5-0,0-4-8]

	., ., [2:2 2 2,2 . 2],	[-1									
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/		CSI TC BC WB Matrix-MSH	0.47 0.57 0.98		in -0.14 -0.18 0.02	(loc) 16-18 18-20 18	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 451 lb	GRIP 244/190 FT = 20% a live load of 20.0psf
TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD BOT CHORD WEBS WEBS REACTIONS	2x6 SP 2400F 2.0E No.2 2x4 SP No.2 *Excep 22-4,16-11,16-12,5- Left 2x6 SP No.2 1-6-0 Structural wood she 4-7-5 oc purlins, exc 2-0-0 oc purlins, exc 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 16 1 Row at midpt 2 Rows at 1/3 pts	t* 22:2x4 SP No.3 1-6-0, Right 2x6 SP I athing directly applie ept -0 max.): 6-10. applied or 10-0-0 oc -18. 9-18, 10-18, 6-20 7-18 -3-8, 14=707/0-3-8, 0-3-8 C 12) C 14), 14=-133 (LC C 15) -C 35), 14=919 (LC 3	No.2 NO 1) d or 2) 15), ³⁾	TES Unbalanced this design. Wind: ASCE Vasd=103mp Cat. II; Exp E zone and C-1 5-1-6 to 9-1- 26-0-9 to 29- Interior (1) 44 56-9-8 zone; vertical left a forces & MW DOL=1.60 pl TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct=		=-648/2: I-16=-6: I2-16=-: b been of h (3-sec SC (env 0-8 to 5 -3 to 26 29-10-7 Exterior right ex -C for n shown; (roof LL Lum DC B; Fully	39, 55/236, 347/181, considered fo cond gust) .0psf; h=25ft; elope) exteric 1-6, Interior (1 to 46-9-13, (2E) 50-9-10 posed ; end nembers and Lumbor .: Lum DOL=: DL=1.15 Plate Exp.; Ce=0.5	or (1) (1) to 1.15	on 3-0 cho 10) On rec UP onl 11) Thi Inte R8 12) Gra or t bot	the botto 6-00 tall ord and a e H2.5A commend 'LIFT at j y and do is truss is ernationa 02.10.2 a aphical p	om cho by 2-0 any oth Simps ded to o t(s) 2, 3 es not s desig al Resid and ref urlin re tation o rd.) Stat	rd in all areas wh 0-00 wide will fit er members, with on Strong-Tie co connect truss to b 18, and 14. This consider lateral fi ned in accordanc dential Code sect erenced standard presentation doe of the purlin along	here a rectangle between the bottom h BCDL = 10.0psf. nnectors bearing walls due to connection is for uplif forces. De with the 2018 tions R502.11.1 and d ANSI/TPI 1. Des not depict the size
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Corr Tension 1-2=0/26, 2-4=-1855 6-7=-673/108, 7-9=(10-12=-853/325, 12 14-15=0/26 2-22=-237/1552, 20 18-20=-81/532, 16-1 14-16=-86/883	5) 6) 7) 8)	design. This truss ha load of 12.0 overhangs n 200.0lb AC u 23-11-12 from apart. Provide adeo This truss ha							SEAL 036322			

818 Soundside Road Edenton, NC 27932

June 27,2022

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 138 FARM AT NEILLS CREEK
22060077	A03	Piggyback Base	3	1	Job Reference (optional)

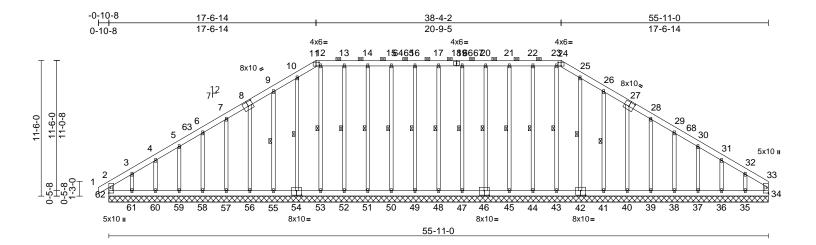
Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Fri Jun 24 12:11:08 ID:aoRBENz7FOPJS6leKNt1qPzFzyH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

-0-10-8 56-9-8 8-<u>7-8</u> 17-6-14 <u> 25-8-9</u> 38-4-2 45-11-13 33-10-4 43-3-5 55-11-0 8-1-11 8-1-11 4-5-14 2-8-9 8-11-5 4-11-2 9-11-3 0-10-8 8-7-8 0-10-8 6x8= 4x8= 4x6= 3x5 II 6x8= 37 8 3839 6 35**3**6 9 10 7¹² 4x8 🖌 4x6👟 5 11 4x5 🎜 2x4 // 12 34 <u>11-6-0</u> 10-6-0 4 11-6-0 33 40 32 41 4x5 🖌 3 13 2 Ì 🎝 0-0-14 ်ငှဲပုံ 21 46 으 1 47 19 488 49 16 ₿ 22 8 27 26 42 25 43 242344 45 4x5= 4x6= 3x5 II 6x8= 4x8 u 4x5= 4x6= 4x5= 2x4 🥡 4x8= 5x6= 4x6= 3x5 II 10x12👟 5-0-0 5-1-1 10-3-13 5-0-0 0-1-1 5-2-12 34-0-0 45-11-0 55-11-0 31-10-4 43-9-12 53-7-8 21-1-1 2-1-4 7-8-8 2-3-8 10-9-3 10-9-3 9-9-12 2-1-12

Scale = 1:98.6

Plate Offsets (X, Y):	[10:0-3-12,0-3-0], [15:0-4-12,0-2-12], [20:0-2-12,0-3-12]

	(, 1). [10.0 0 12,0 0	-0j, [15:0-4-12,0-2-12], [20:0 2	12,0 0 12]								1	
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.75		-0.19		>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.74	· · ·	-0.36	17-19	>795	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.72	Horz(CT)	0.13	15	n/a	n/a		
BCLL	0.0*	Code	IRC201	8/TPI2014	Matrix-MSH								FT 000/
BCDL	10.0											Weight: 469 lb	FI = 20%
LUMBER			W		20-22=-1089/395,							on Strong-Tie co	
TOP CHORD	2x6 SP No.2				7-22=-2221/164, 7		,						pearing walls due to
BOT CHORD		pt* 21-9:2x4 SP No.2			6-24=-440/142, 7-2			5,					s connection is for
	17-16:2x4 SP No.3				4-27=-1632/262, 6							es not consider la	
WEBS	2x4 SP No.2 *Exce		•		12-19=-794/306, 1 13-16=-210/148	0-19=-1	80/1353,					ned in accordance	tions R502.11.1 and
		-12,16-13:2x4 SP No			13-10=-210/140							erenced standar	
	15-13,7-22:2x6 SP			DTES	<i></i>								es not depict the size
SLIDER	Left 2x6 SP No.2	1-0-0	1)		roof live loads hav	e been	considered for					of the purlin along	
BRACING	Other strengthere and all a		dor 2)	this design.	7-16; Vult=130mp	h (2 aa	and quat)			tom cho			g the top and/or
TOP CHORD		eathing directly applie cept end verticals, a	/		oh; TCDL=6.0psf;				LOAD			ndard	
	2-0-0 oc purlins (6-		iu		B; Enclosed; MWF				20/12 1	0/102(0	, 010	liadia	
BOT CHORD		y applied or 6-0-0 oc			C Exterior(2E) -0-1			(1)					
Do l'ollond	bracing. Except:				-15, Exterior(2R)								
1 Row at midpt				(1) 25-5-12 t	o 30-5-4, Exterior(2R) 30-	5-4 to 46-0-15,						
WEBS	1 Row at midpt	10-20, 6-24, 4-27, 6	-26		6-0-15 to 51-2-6, E								
WEBS	2 Rows at 1/3 pts	7-22			cantilever left and								
REACTIONS	(lb/size) 15=732/0	0-3-8, 22=2516/0-3-8			nd right exposed; /FRS for reactions								
	27=1327	/0-3-8			late grip DOL=1.60		Lumber						
	Max Horiz 27=279 (LC 13)	3)		7-16; Pr=20.0 pst			15					
	27=-229		15), 7	Plate DOL=1	I.15); Pf=20.0 psf (I.15); Pf=20.0 psf (Is=1.0; Rough Cat	(Lum DC	DL=1.15 Plate	15				What CA	Della
	27=1648	· · ·	6), 4)	Cs=1.00; Ct=			•				(SI)	ORTEESS	in the a
FORCES	· · /	npression/Maximum	.,	design.						4			No. Y'
TOP CHORD	Tension 1-2=0/26, 2-4=-280	FEE 4 6 997/202	5)		as been designed f						u	- 19:	July -
TOP CHORD	6-7=-382/229, 7-9=				psf or 1.00 times f			on				CEA	n <u>1</u> E
	10-12=-902/295, 12	, ,			on-concurrent with					=		SEA	L <u>i</u> E
	13-14=0/42, 13-15=	,	6)		quate drainage to					=	:	0363	22 : =
BOT CHORD	2-27=-353/251, 26-		7)		as been designed f								
	24-26=-203/556, 22		0)		has been designed						-	S	- 1 - S
	21-22=-206/0, 20-2	1=-286/0, 9-20=-535/	168, ⁸⁾		n chord in all area			151			20		FFR. A S
	19-20=-156/159, 17	7-19=-44/880,			ov 2-00-00 wide wi			n			1	S, GIN	EF. AN
	13-17=-4/795, 16-1	7=-71/148,			by 2-00-00 wide wi						1	CA C	BEIN
	15-16=-165/267				.,							11, 4. 6	IL IIII
													111.


June 27,2022

Page: 1

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 138 FARM AT NEILLS CREEK
22060077	A04	Piggyback Base Supported Gable	1	1	Job Reference (optional)

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Fri Jun 24 12:11:09 ID:ACS0SGCfmETEfJzgbpcWMMzhrbI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:97.7

Plate Offsets (2	X, Y): [8:0-5-0,0-4-	3], [11:0-3-0,0-3-12], [24	:0-3-0,0-3-12], [27:0	-5-0,0-4-8],	[42:0-5-0,0-4-8], [46:0-5-0,0-4	-8], [54:0-	-5-0,0-4-	8]			
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-	0.21 0.06 0.22 MR	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 34	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 585 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS	46-20,45-21,44-22 Structural wood sh 6-0-0 oc purlins, 6 2-0-0 oc purlins (6	,51-14,52-13,53-12,47- ,43-23:2x4 SP No.2 neathing directly applied except end verticals, and	or	Max Uplift Max Grav	$\begin{array}{c} 34 = -60 \ (LC \ 13), \\ 36 = -32 \ (LC \ 15), \\ 38 = -49 \ (LC \ 15), \\ 40 = -53 \ (LC \ 15), \\ 42 = -10 \ (LC \ 15), \\ 45 = -26 \ (LC \ 11), \\ 47 = -27 \ (LC \ 11), \\ 47 = -27 \ (LC \ 11), \\ 51 = -28 \ (LC \ 10), \\ 53 = -1 \ (LC \ 11), \\ 55 = -60 \ (LC \ 14), \\ 57 = -39 \ (LC \ 14), \\ 57 = -39 \ (LC \ 14), \\ 57 = -39 \ (LC \ 14), \\ 61 = -155 \ (LC \ 14), \\ 61 = -155 \ (LC \ 14), \\ 61 = -155 \ (LC \ 14), \\ 36 = 155 \ (LC \ 39) \\ 38 = 226 \ (LC \ 43) \\ 40 = 234 \ (LC \ 43) \\ 42 = 226 \ (LC \ 43) \end{array}$	37=-52 (LC 39=-39 (LC 44=-26 (LC 44=-26 (LC 46=-26 (LC 50=-25 (LC 50=-25 (LC 52=-24 (LC 60=-27 (LC 60=-27 (LC 35=-13 (LC 37=165 (LC 39=220 (LC 41=253 (LC	15), 15), 15), 15), 11), 10), 10), 10), 11), 10), 40, 14), 14), 14), 24), 243), 243), 243),	TOP CF	iORD	3-4=-1 6-7=-1 10-11: 12-13: 14-15: 16-17: 19-20: 21-22: 23-24: 25-26: 28-29:	122/162, 7-9=-13 =-181/291, 11-12 =-164/276, 13-14 =-164/276, 15-16 =-164/276, 17-19 =-164/276, 20-21 =-164/276, 22-22 =-164/276, 22-22 =-164/276, 22-22 =-164/269, 26-22 =-168/269, 26-22 =-91/132, 29-30=	0/147, 5-6=-136/143, 8/218, 9-10=-167/269, =-164/276, =-164/276, =-164/276, =-164/276, =-164/276, =-164/276, =-164/276, =-164/276, =-182/292,
REACTIONS	36=155 38=156 40=154 42=152 44=155 48=156 50=155 52=155 54=152 56=154 58=156 60=159	j5-11-0, 35=156/55-11-(j55-11-0, 37=155/55-11 j55-11-0, 41=164/55-11 j55-11-0, 41=164/55-11 j55-11-0, 43=152/55-11 j55-11-0, 45=157/55-11 j55-11-0, 51=155/55-11 j55-11-0, 51=155/55-11 j55-11-0, 55=164/55-11 j55-11-0, 55=164/55-11 j55-11-0, 61=134/55-11 j55-11-0 (LC 11)	-0, -0, -0, -0, -0, -0, -0, -0, -0, -0,	(Ib) - Maː Tension	44=217 (LC 38) 46=211 (LC 38) 48=156 (LC 55) 50=211 (LC 38) 54=225 (LC 41) 56=233 (LC 41) 56=233 (LC 41) 60=159 (LC 39) 62=232 (LC 49) kimum Compressi	47=171 (LC 49=173 (LC 51=218 (LC 53=183 (LC 55=252 (LC 57=219 (LC 59=165 (LC 61=226 (LC	C 38), C 38), C 38), C 52), C 41), C 41), C 41), C 24), C 28),			No. Contraction of the second	SEA 0363	L 22 L L BERTINI

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

June 27,2022

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 138 FARM AT NEILLS CREEK
22060077	A04	Piggyback Base Supported Gable	1	1	I52747651 Job Reference (optional)

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Fri Jun 24 12:11:09

ID:ACS0SGCfmETEfJzgbpcWMMzhrbI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

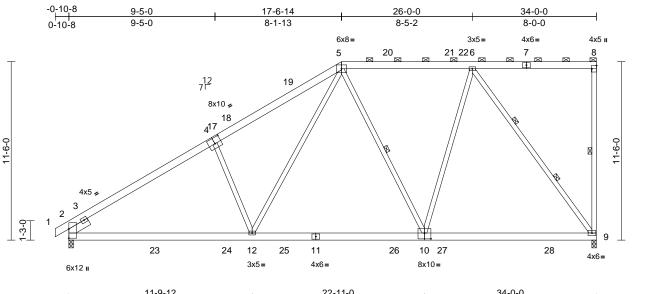
Carter Components (Sanford), Sanford, NC - 27332,

BOT CHORD	61-62=-104/119, 60-61=-104/119, 59-60=-104/119, 58-59=-104/119, 57-58=-104/119, 56-57=-104/119, 55-56=-105/118, 53-55=-105/118, 50-51=-105/118, 51-52=-105/118, 48-49=-105/118, 47-48=-105/118, 45-47=-105/118, 47-48=-105/118, 43-44=-105/118, 41-43=-105/118, 43-44=-105/118, 39-40=-103/117, 38-39=-103/117, 37-38=-103/117, 34-35=-103/117
WEBS	$\begin{array}{l} 17-48=-116/48, \ 16-49=-134/48, \\ 15-50=-172/48, \ 14-51=-179/51, \\ 13-52=-179/48, \ 12-53=-143/25, \\ 10-54=-187/38, \ 9-55=-214/83, \ 8-56=-194/77, \\ 7-57=-181/62, \ 6-58=-183/73, \ 5-59=-123/73, \\ 4-60=-120/64, \ 3-61=-146/121, \\ 19-47=-134/49, \ 20-46=-172/49, \\ 21-45=-179/51, \ 22-44=-179/49, \\ 23-43=-131/2, \ 22-42=-187/33, \\ 26-41=-215/84, \ 27-40=-195/76, \\ 27-40=$

28-39=-181/62, 29-38=-187/73, 30-37=-127/73, 31-36=-119/66, 32-35=-147/112

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 5-1-6, Exterior(2N) 5-1-6 to 11-6-15, Corner(3R) 11-6-15 to 23-6-12, Exterior(2N) 23-6-12 to 32-4-4, Corner(3R) 32-4-4 to 44-2-7, Exterior(2N) 44-2-7 to 49-9-6, Corner(3E) 49-9-6 to 55-9-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this 5) desian.
- This truss has been designed for greater of min roof live 6) load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding.
- All plates are 2x4 MT20 unless otherwise indicated. 8)
- Gable requires continuous bottom chord bearing. 9)
- 10) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 11) Gable studs spaced at 2-0-0 oc.
- 12) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 13) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.


- 14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 127 lb uplift at joint 62, 60 lb uplift at joint 34, 24 lb uplift at joint 48. 25 Ib uplift at joint 49, 25 lb uplift at joint 50, 28 lb uplift at joint 51, 24 lb uplift at joint 52, 1 lb uplift at joint 53, 15 lb uplift at joint 54, 60 lb uplift at joint 55, 53 lb uplift at joint 56, 39 lb uplift at joint 57, 49 lb uplift at joint 58, 53 lb uplift at joint 59, 27 lb uplift at joint 60, 155 lb uplift at joint 61, 27 lb uplift at joint 47, 26 lb uplift at joint 46, 26 Ib uplift at joint 45, 26 lb uplift at joint 44, 10 lb uplift at joint 42, 62 lb uplift at joint 41, 53 lb uplift at joint 40, 39 Ib uplift at joint 39, 49 lb uplift at joint 38, 52 lb uplift at joint 37, 32 lb uplift at joint 36 and 132 lb uplift at joint 35.
- 15) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 16) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- LOAD CASE(S) Standard

J	ob	Truss	Truss Type	Qty	Ply	DRB GROUP - 138 FARM AT NEILLS CREEK
2	2060077	B01	Piggyback Base	8	1	Job Reference (optional)

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Fri Jun 24 12:11:10 ID:fgJGN1CBxSiq8LzfII_gKzzhpjD-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:74.2			
	11-9-12	11-1-4	11-1-0
	11-9-12	22-11-0	34-0-0

Plate Offsets (X, Y): [4:0-5-0,0-4-8], [8:Edge,0-3-8], [10:0-5-0,0-4-8]

				-			· · · · ·						
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.68		-0.20	9-10	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.88	Vert(CT)	-0.32	9-10	>999	180	-	
TCDL	10.0	Rep Stress Incr	YES		WB	0.90	Horz(CT)	0.05	9	n/a	n/a		
BCLL	0.0*	Code		8/TPI2014	Matrix-MSH	0.00	1.0.2(0.1)	0.00	Ũ		, a	1	
BCDL	10.0		110201	0/11/2011								Weight: 268 lb	FT = 20%
		1			ļ							Trongini 200 ib	2070
LUMBER			2)		7-16; Vult=130mp								
TOP CHORD					ph; TCDL=6.0psf;								
BOT CHORD					B; Enclosed; MWF								
WEBS	2x4 SP No.2 *Excep	ot* 6-9:2x4 SP No.1,			C Exterior(2E) -0-1			(1)					
	4-12:2x4 SP No.3				6-14, Exterior(2R) 0-6-14 to 30-10-4,			to					
SLIDER	Left 2x6 SP No.2 7	1-6-0			e; cantilever left ar								
BRACING	- ·				and right exposed;								
TOP CHORD		athing directly applied			VFRS for reactions								
		cept end verticals, an	a		late grip DOL=1.60	,							
	2-0-0 oc purlins (6-0	,	3)		E 7-16; Pr=20.0 ps		L: Lum DOL=	1.15					
BOT CHORD	bracing.	applied or 10-0-0 oc	,	Plate DOL=	1.15); Pf=20.0 psf	(Lum DC	DL=1.15 Plate	Э					
WEBS	•	8-9, 5-10			Is=1.0; Rough Cat	B; Fully	Exp.; Ce=0.	9;					
WEBS	2 Rows at 1/3 pts	,		Cs=1.00; Ct									
REACTIONS		-3-8, 9=1353/0-3-8	4)		snow loads have I	been co	nsidered for t	his					
REACTIONS	Max Horiz 2=396 (LC	,		design.									
	Max Uplift 2=-136 (L		、 5)		as been designed f								
	Max Grav 2=1661 (L				psf or 1.00 times f			ist on					
FORCES	(lb) - Maximum Com	<i>.</i>	,		ion-concurrent with			~					
FURGES	Tension	ipression/iviaximum	6) 7)		quate drainage to as been designed f			g.					
TOP CHORD		6/293, 5-6=-1167/220	,		ad nonconcurrent			ode				WITH CA	1.1.1
	6-8=-151/162, 8-9=-		8)		has been designed							11111 00	
BOT CHORD			0)		m chord in all area			opoi				TH UA	ROIL
WEBS	5-12=-180/1113, 5-1				by 2-00-00 wide wi			om			1	ON JESS	D. Mil
		1673/233, 4-12=-571	/311		ny other members,					/	52	S FEU	PN: Si
NOTES	,	,	9)		Simpson Strong-Ti					4		15 / ·	vier
	ed roof live loads have	been considered for			ed to connect truss						() }		1 1 E
this design				UPLIFT at jt	(s) 9 and 2. This co	onnectio	n is for uplift	only		=		SEA	L 🗄 🗄
, , , , , , , , , , , , , , , , , , ,					t consider lateral f					=	:		• -
			10		designed in accor					1		0363	~~ ; :
					Residential Code			and				1. Sec. 1. Sec	1
					nd referenced star						5	·	all S
			11		urlin representation			size				NGINI	ELAN
					ation of the purlin a	along the	e top and/or				11	7/0	OF N
				bottom chor	u.						1	IL A C	II BEIN

- and does not consider lateral forces. 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

G minim

June 27,2022

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 138 FARM AT NEILLS CREEK
22060077	B02	Piggyback Base	2	1	Job Reference (optional)

TCDL

BCLL

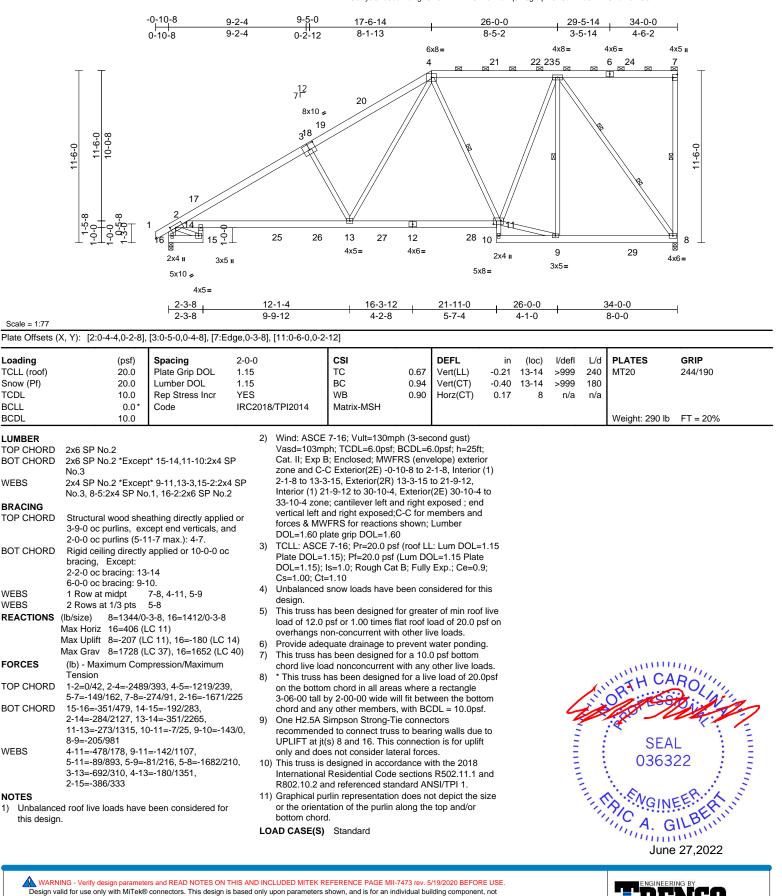
BCDL

WEBS

WEBS

WFBS

WEBS


NOTES

1)

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Fri Jun 24 12:11:10 ID:U0VysG?d9oeHisHgY8i761zFzil-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?l

Page: 1

818 Soundside Road Edenton, NC 27932

a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 138 FARM AT NEILLS CREEK
22060077	B03	Piggyback Base Supported Gable	1	1	I52747654 Job Reference (optional)

17-6-14

17-6-14

Carter Components (Sanford), Sanford, NC - 27332

11-6-0

Scale = 1:69.7

Loading

TCLL (roof)

Snow (Pf)

LUMBER

TOP CHORD

BOT CHORD

TCDL

BCLL

BCDL

WEBS

OTHERS

BRACING

TOP CHORD

BOT CHORD

WFBS

-0-10-8

0-10-8

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Fri Jun 24 12:11:11 ID:YRYnCOFh?hCFcyHRX82cVpzhpj9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

34-0-0

16-5-2

Page: 1

4x5 ı 4x6 =4x6 =1213 14 15 1643 4417 18 1920 21 22 T. 11 12 7 10 4x6 🛩 9 ≁¹⁸⁴² 6 11-6-0 X X Ø Ø Ø X X Ø 5 Ø 4 4x5 II 3 -3-0 23 38 37 36 35 34 33 32 31 30 29 26 25 39 28 27 24 3x5 II 3x5= 5x6= 5x6= 34-0-0 Plate Offsets (X, Y): [2:0-2-8,0-1-12], [12:0-3-0,0-3-12], [22:Edge,0-3-8], [23:Edge,0-1-8], [29:0-3-0,0-3-0], [32:0-3-0,0-3-0] 1-11-4 CSI DEFL l/defl L/d PLATES GRIP (psf) Spacing in (loc) 20.0 Plate Grip DOL 1.15 TC 0.67 Vert(LL) 999 MT20 244/190 n/a n/a 20.0 Lumber DOL 1.15 BC 0.31 Vert(CT) n/a n/a 999 10.0 Rep Stress Incr WB 23 YES 0.21 Horz(CT) -0.01 n/a n/a 0.0 Code IRC2018/TPI2014 Matrix-MR 10.0 Weight: 353 lb FT = 20% Max Grav 23=86 (LC 35), 24=216 (LC 35), 1) Unbalanced roof live loads have been considered for 25=219 (LC 35), 26=213 (LC 35), 2x6 SP No.2 this design Wind: ASCE 7-16; Vult=130mph (3-second gust) 27=203 (LC 35), 28=209 (LC 35), 2x4 SP No.2 2) 29=217 (LC 35), 30=219 (LC 35), 2x4 SP No.3 *Except* 22-23:2x4 SP No.2 Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; 2x4 SP No.2 *Except* 31=175 (LC 35), 32=208 (LC 36), Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior 33=217 (LC 36), 34=217 (LC 36), zone and C-C Corner(3E) -0-10-8 to 2-0-0, Exterior(2N) 32-11,33-10,34-9,35-8,36-6,37-5,38-4,39-3:2 x4 SP No.3 35=193 (LC 36), 36=161 (LC 24), 2-0-0 to 14-6-14, Corner(3R) 14-6-14 to 20-6-14, 37=165 (LC 24), 38=157 (LC 36), Exterior(2N) 20-6-14 to 30-10-4, Corner(3E) 30-10-4 to 39=258 (LC 40), 40=343 (LC 11) 33-10-4 zone; cantilever left and right exposed ; end Structural wood sheathing directly applied or vertical left and right exposed;C-C for members and FORCES (lb) - Maximum Compression/Maximum 6-0-0 oc purlins, except end verticals, and forces & MWFRS for reactions shown; Lumber Tension 2-0-0 oc purlins (6-0-0 max.): 12-22. DOL=1.60 plate grip DOL=1.60 TOP CHORD 2-40=-267/116. 1-2=0/30. 2-3=-385/245 Rigid ceiling directly applied or 6-0-0 oc Truss designed for wind loads in the plane of the truss 3) 3-4=-289/186, 4-5=-272/176, 5-6=-245/158 bracing. only. For studs exposed to wind (normal to the face), 6-8=-229/144, 8-9=-215/140, 9-10=-202/137, 1 Row at midpt 22-23, 21-24, 20-25, see Standard Industry Gable End Details as applicable, 10-11=-189/139, 11-12=-166/168, 18-26, 17-27, 16-28, or consult qualified building designer as per ANSI/TPI 1. 12-13=-145/164, 13-14=-145/164, 15-29, 14-30, 13-31, TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) 14-15=-145/164, 15-16=-144/164, 11-32, 10-33 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate 16-17=-144/164, 17-18=-144/164, **REACTIONS** (lb/size) 23=62/34-0-0, 24=157/34-0-0, DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; 18-20=-144/164, 20-21=-144/164, 25=158/34-0-0, 26=155/34-0-0, 21-22=-144/164, 22-23=-128/128 Cs=1.00: Ct=1.10 27=155/34-0-0. 28=154/34-0-0. 39-40=-140/159, 38-39=-140/159, 5) Unbalanced snow loads have been considered for this BOT CHORD 29=155/34-0-0, 30=156/34-0-0. unninn, 37-38=-140/159, 36-37=-140/159, desian. 31=156/34-0-0, 32=154/34-0-0. 35-36=-140/159, 34-35=-140/159, ORTH 33=154/34-0-0. 34=155/34-0-0. 33-34=-140/159, 31-33=-140/159, 35=155/34-0-0, 36=155/34-0-0, 30-31=-140/158, 28-30=-140/159, 37=155/34-0-0, 38=157/34-0-0 27-28=-140/159, 26-27=-140/159, 39=143/34-0-0, 40=135/34-0-0 25-26=-140/159, 24-25=-140/159, Max Horiz 40=394 (LC 13) Contraction of the 23-24=-140/159 Max Uplift 23=-18 (LC 11), 24=-49 (LC 10), WEBS 21-24=-174/102. 20-25=-181/52. SEAL 25=-48 (LC 11), 26=-34 (LC 10), 18-26=-174/51, 17-27=-164/48, 036322 27=-26 (LC 11), 28=-27 (LC 10), 16-28=-171/49, 15-29=-178/50, 29=-26 (LC 11), 30=-25 (LC 10), 14-30=-179/49, 13-31=-136/82, 31=-58 (LC 11), 32=-27 (LC 14), 11-32=-169/50, 10-33=-180/79 33=-57 (LC 14), 34=-48 (LC 14), 9-34=-177/72, 8-35=-154/72, 6-36=-123/72, 35=-49 (LC 14), 36=-47 (LC 14), 5-37=-124/74, 4-38=-119/53, 3-39=-177/191

37=-56 (LC 14), 38=-11 (LC 14), NOTES 39=-241 (LC 14), 40=-144 (LC 12)

Continued on page 2

WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

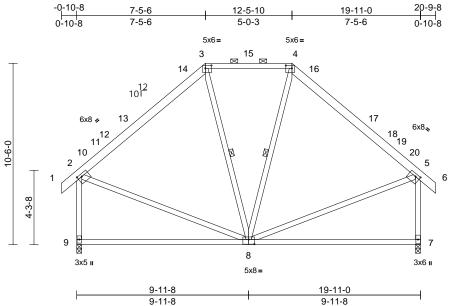
GI minin June 27,2022

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 138 FARM AT NEILLS CREEK
22060077	B03	Piggyback Base Supported Gable	1	1	I52747654 Job Reference (optional)

- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 7) Provide adequate drainage to prevent water ponding.
- 8) All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing. 9)
- 10) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 11) Gable studs spaced at 2-0-0 oc.
- 12) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 13) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 144 lb uplift at joint 40, 18 lb uplift at joint 23, 49 lb uplift at joint 24, 48 Ib uplift at joint 25, 34 lb uplift at joint 26, 26 lb uplift at joint 27, 27 lb uplift at joint 28, 26 lb uplift at joint 29, 25 Ib uplift at joint 30, 58 lb uplift at joint 31, 27 lb uplift at joint 32, 57 lb uplift at joint 33, 48 lb uplift at joint 34, 49 Ib uplift at joint 35, 47 lb uplift at joint 36, 56 lb uplift at joint 37, 11 lb uplift at joint 38 and 241 lb uplift at joint 39
- 15) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 16) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Fri Jun 24 12:11:11 ID:YRYnCOFh?hCFcyHRX82cVpzhpj9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2



Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 138 FARM AT NEILLS CREEK
22060077	C01	Piggyback Base	1	1	I52747655 Job Reference (optional)

Run: 8.53 E May 26 2022 Print: 8.530 E May 26 2022 MiTek Industries, Inc. Mon Jun 27 07:09:30 ID:wN9MV2a7ngO0fSyKmTVeHIzhpg9-YHrirLNVz7rgqd9PcLPVaJF3Xu_YGhHXh0GNwBz29K5

D-9-8

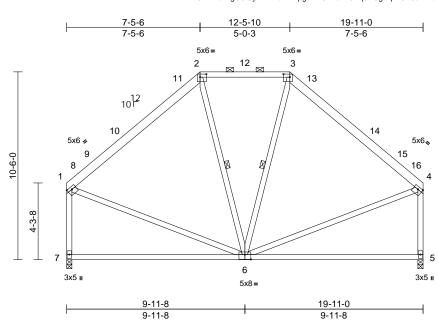
Page: 1

Scale = 1:66.7

Plate Offsets (2	X, Y): [2:0-3-0,0-1-12], [3:0-4-4,0-2-0], [4:	0-4-4,0-2-	0], [5:0-3-2,0-1	-12], [8:0-4-0,0-3-4	4]	-						
Loading	(psf)	Spacing	2-0-0		CSI	0.04	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
FCLL (roof) Snow (Pf)	20.0 20.0	Plate Grip DOL Lumber DOL	1.15 1.15		TC BC	0.81 0.89	Vert(LL) Vert(CT)	-0.19 -0.38	8-9 8-9	>999 >612	240 180	MT20	244/190
	10.0	Rep Stress Incr	YES		WB	0.89	Horz(CT)	-0.38	0-9 7	>012 n/a	n/a		
BCLL	0.0*	Code		8/TPI2014	Matrix-MSH	0.15	11012(01)	-0.01	'	n/a	n/a		
BCDL	10.0	Code	11(0201	0/11/2014	Matrix-Mort							Weight: 161 lb	FT = 20%
UMBER			2	Wind: ASCE	7-16; Vult=130m	oh (3-seo	cond gust)		LOAD	CASE(S) Sta	ndard	
OP CHORD	2x6 SP No.2 *Excep	t* 3-4:2x4 SP No.2		Vasd=103m	ph; TCDL=6.0psf;	BCDL=6	.0psf; h=25ft	;		•	,		
OT CHORD	2x4 SP No.2				B; Enclosed; MWF								
VEBS	2x4 SP No.2 *Excep	t* 9-2:2x4 SP No.3			C Exterior(2E) -0-								
RACING					8, Exterior(2R) 3-2								
OP CHORD	Structural wood she				-9-8, Exterior(2E)								
	6-0-0 oc purlins, ex		nd		ft and right expose d;C-C for member								
	2-0-0 oc purlins (6-0				shown; Lumber D			10					
OT CHORD	Rigid ceiling directly	applied or 6-3-12 or	С	DOL=1.60	Shown, Edinber E	/OL=1.00	plate grip						
	bracing.		3		7-16; Pr=20.0 ps	f (roof Ll	: Lum DOL=	1.15					
/EBS		4-8, 3-8	- /		1.15); Pf=20.0 psf								
EACTIONS		3-8, 9=846/0-3-8			Is=1.0; Rough Cat								
	Max Horiz 9=303 (LC			Cs=1.00; Ct	=1.10	-	-						
	Max Uplift 7=-80 (LC				snow loads have	been cor	nsidered for th	his					
	Max Grav 7=1017 (L	<i>,</i>	'	design.									
ORCES	(lb) - Max. Comp./M		250 5		as been designed								
	(lb) or less except w				psf or 1.00 times f			sf on					
OP CHORD	2-10=-801/126, 10-1				on-concurrent with								
	11-12=-694/142, 12- 13-14=-587/157, 3-1	,	6		quate drainage to			g.					
	3-15=-432/211, 4-15		7)		as been designed			da					1.1.1
	4-16=-485/184, 16-1		8		ad nonconcurrent has been designed								in the
	17-18=-626/150, 18-		0		n chord in all area			opsi				WTH UA	Roit
	19-20=-772/138, 5-2				by 2-00-00 wide w			om			1.	A.	the later
	2-9=-933/170, 5-7=-	,			ny other members		veen the bott	om			52	FESP	ON: STA
OT CHORD	8-9=-267/289		9		Simpson Strong-Ti		ctors			Z	a la	the states	2 all
VEBS	2-8=-75/440, 5-8=-7	6/438	-,		ed to connect trus			to		-	2	: 4	N 1
OTES				UPLIFT at jt	(s) 7 and 9. This c	onnectio	n is for uplift	only		Ξ		SEA	L 🕴
	ed roof live loads have	been considered for	r		t consider lateral f			-		Ξ			•
this design			10		designed in accor							0363	22 :
0					Residential Code			and		LI UN	3	N	9 - S
				R802.10.2 a	nd referenced star	ndard AN	ISI/TPI 1.				1		A

 Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

12) Attic room checked for L/360 deflection.



A. GILD

June 27,2022

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 138 FARM AT NEILLS CREEK
22060077	C02	Piggyback Base	8	1	I52747656 Job Reference (optional)

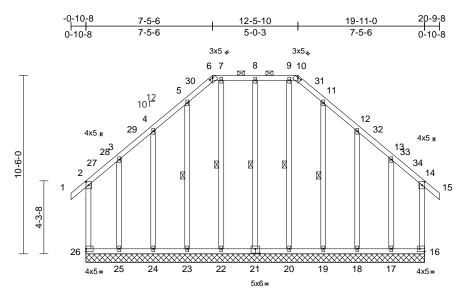
Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Fri Jun 24 12:11:12 ID:wN9MV2a7ngO0fSyKmTVeHIzhpg9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:64.4

Plate Offsets (X, Y): [1:0-3-0,0-1-12], [2:0-4-4,0-2-0], [3:0-4-4,0-2-0], [4:0-3-0,0-1-12]	2], [6:0-4-0,0-3-4]
--	---------------------

						-							
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.71 0.89 0.15	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.19 -0.39 0.00	(loc) 6-7 6-7 5	l/defl >999 >612 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 156 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.2 *Excep Structural wood she 6-0-0 oc purlins, ex 2-0-0 oc purlins (6-C Rigid ceiling directly bracing. 1 Row at midpt (lb/size) 5=785/0-3 Max Horiz 7=-283 (L Max Uplift 5=-62 (LC Max Grav 5=956 (LC (lb) - Maximum Com Tension 1-2=-802/170, 2-3=- 1-7=-872/137, 4-5=- 5-7=-248/270 1-6=-78/446, 4-6=-7 2-6=-117/145 ed roof live loads have	et* 7-1:2x4 SP No.3 athing directly applie cept end verticals, ar l-0 max.): 2-3. applied or 6-3-12 oc 3-6, 2-6 3-8, 7=785/0-3-8 C 10) C 39), 7=956 (LC 14) C 39), 7=956 (LC 39) apression/Maximum 435/201, 3-4=-802/1 872/137	4) d or 5) 6) : 7) 8) 70, 9) 70, 10	Plate DOL= DOL=1.15); Cs=1.00; Ct Unbalanced design. Provide ade This truss ha chord live lo * This truss on the botto 3-06-00 tall chord and a O One H2.5A is recommend UPLIFT at jt and does nc This truss is Internationa R802.10.2 a D) Graphical pu or the orient bottom chor	snow loads have quate drainage to as been designed ad nonconcurrent has been designe m chord in all area by 2-00-00 wide w ny other members Simpson Strong-T ed to connect trus (s) 7 and 5. This c to consider lateral it designed in accoo I Residential Code and referenced sta urlin representation ation of the purlin d. hecked for L/360 of	(Lum DC t B; Fully been con prevent for a 10. with any d for a 10. with any d for a liv as where ill fit betv ie conne s to bear sonnectio forces. rdance w s sections ndard AN n does n along the	DL=1.15 Plate Exp.; Ce=0. Insidered for t water pondin 0 psf bottom other live loa re load of 20. a rectangle veen the bott ctors ing walls due n is for uplift ith the 2018 § R502.11.1 a VSI/TPI 1. ot depict the e top and/or	e 9; his g. ads. Opsf com e to only and			LI III	NTH CA	ROUTIN
Vasd=103 Cat. II; Ex zone and (2R) 3-1-7 zone; can and right	CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B p B; Enclosed; MWFR C-C Exterior(2E) 0-1-1 12 to 16-9-4, Exterior(2 tilever left and right exp exposed;C-C for memt for reactions shown; Lu	CDL=6.0psf; h=25ft; S (envelope) exterior 2 to 3-1-12, Exterior E) 16-9-4 to 19-9-4 posed ; end vertical le posed and forces &	eft							C. MILLING		SEA 0363	22 EER KILL

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



GILB 1000 minut June 27,2022

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 138 FARM AT NEILLS CREEK
22060077	C03	Piggyback Base Supported Gable	1	1	Job Reference (optional)

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Fri Jun 24 12:11:12 ID:mTC1KUi0mrxofallau1_zozhpVg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

19-11-0

Scale = 1:67.8

Plate Offsets (X, Y): [2:0-2-8,0-1-12], [6:0-2-8,0-0-3], [10:0-2-8,0-0-3], [14:0-2-8,0-1-12], [16:Edge,0-2-0], [21:0-3-0,0-3-0]

	7, 1). [2.0 2 (0,0 1 12	j, [0.0-2-0,0-0-3], [10 I	0.0 2 0,0	0 0], [14.0 2 0	,0 1 12], [10.Edge	,0 2 0], [2	1.0 0 0,0 0 0	1				1	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC20	4)18/TPI2014	CSI TC BC WB Matrix-MR	0.89 0.42 0.19	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a -0.01	·	bc) l/dei - n/a - n/a 16 n/a	a 999 a 999		GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural w 6-0-0 oc pur 2-0-0 oc pur	2 3 3 clins, exc lins (6-0 1 directly	athing directly applic cept end verticals, a -0 max.): 6-10. applied or 6-0-0 oc 8-21, 7-22, 5-23, 9-	ed or and	TOP CHORD	2-26=-247/198, 1 3-4=-117/213, 4- 6-7=-134/287, 7- 9-10=-134/287, 7- 9-10=-134/287, 1 11-12=-154/297, 13-14=-206/205, 14-16=-245/196 25-26=-163/145, 23-24=-163/145, 18-19=-163/145,	5=-154/29 8=-134/28 0-11=-16 12-13=-1 14-15=0/ 24-25=-1 22-23=-1 19-20=-1 17-18=-1	17, 5-6=-165/; 17, 8-9=-134/; 5/329, 17/213, 38, 63/145, 63/145, 63/145, 63/145, 63/145,	329, 287,	6) 7) 8) 9) 10) 11) 12)	design. This truss load of 12 overhang Provide a All plates Gable rec Truss to b braced ag Gable stu This truss	has be .0 psf o s non-co dequate are 2x4 uires cc e fully s jainst la ds spac has be	I loads have been en designed for gi r 1.00 times flat rc poncurrent with oth drainage to preve MT20 unless oth mitinuous bottom on heathed from one teral movement (i ed at 2-0-0 oc. en designed for a	considered for this eater of min roof live of load of 20.0 psf or er live loads. ent water ponding. enwise indicated. shord bearing. face or securely e. diagonal web). 10.0 psf bottom
REACTIONS	(Ib/size) 16 18 20 22 24 Max Horiz 26 Max Uplift 16 18 21 22 24 24 24 24 24 24 24 24 24 24 24 24	6=132/19 8=157/19 0=157/19 2=157/19 6=132/19 6=-294 (6=-340 (8=-71 (L 1=-41 (L	11-19 9-11-0, 17=142/19-1 9-11-0, 19=154/19-1 9-11-0, 21=154/19-1 9-11-0, 23=154/19-1 9-11-0, 25=142/19-1 9-11-0 LC 12) LC 11), 17=-375 (LC C 15), 19=-36 (LC 1 C 10), 23=-36 (LC C 14), 25=-378 (LC	11-0, 11-0, 11-0, 11-0, 11-0, C 10), 15), 14),	this design 2) Wind: ASC Vasd=103r Cat. II; Exp zone and C 1-11-8 to 3	8-21=-199/89, 7- 4-24=-192/110, 3 9-20=-179/29, 11 12-18=-192/110, d roof live loads ha E 7-16; Vult=130n nph; TCDL=6.0psf B; Enclosed; MW C-C Exterior(2E) -0 -2-8, Exterior(2E)	3-25=-296 -19=-185 13-17=-2 ave been hph (3-see ;; BCDL=6 FRS (env I-10-8 to 1 3-2-8 to 1	/209, /57, 95/208 considered fo cond gust) 6.0psf; h=25ft elope) exterio -11-8, Interio 6-8-8, Interio	; ; pr r (1) r (1)	13)	* This true on the bo 3-06-00 ta	s has b tom cho all by 2-0	een designed for ord in all areas wh	any other live loads. a live load of 20.0psf ere a rectangle between the bottom
FORCES	Max Grav 16 18 20 22 24 26	6=400 (L 8=231 (L 0=218 (L 2=218 (L 4=231 (L 6=403 (L	LC 12), 17=494 (LC LC 40), 19=230 (LC LC 23), 21=238 (LC LC 22), 23=231 (LC LC 20), 25=497 (LC	50), 39), 48), 12),	right expos for reaction DOL=1.60 3) Truss desi only. For s see Standa or consult (4) TCLL: ASC Plate DOL=	eft and right exposed;C-C for members shown; Lumber igned for wind load tuds exposed to ward Industry Gable qualified building d CE 7-16; Pr=20.0 ps = 1.15); Pf=20.0 ps ;; Is=1.0; Rough C;Ct=1.10	ers and fo DOL=1.60 ds in the p vind (norm End Deta esigner a sf (roof LI f (Lum DC	rces & MWFF 0 plate grip lane of the tru al to the face ils as applica s per ANSI/TI .: Lum DOL= DL=1.15 Plate	RS Jss), ble, PI 1. 1.15			A COMPANY AND A	SEA 0363	L 22 ILBERTUUT

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

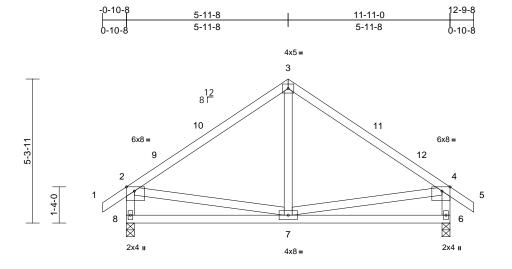
June 27,2022

Job	Truss	Truss Type C		Ply	DRB GROUP - 138 FARM AT NEILLS CREEK
22060077	C03	Piggyback Base Supported Gable	1	1	I52747657 Job Reference (optional)

- 14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 343 lb uplift at joint 26, 340 lb uplift at joint 16, 41 lb uplift at joint 21, 36 lb uplift at joint 23, 72 lb uplift at joint 24, 378 lb uplift at joint 25, 36 lb uplift at joint 19, 71 lb uplift at joint 18 and 375 lb uplift at joint 17.
- 15) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 16) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 17) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Fri Jun 24 12:11:12 ID:mTC1KUi0mrxofallau1_zozhpVg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


Page: 2

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 138 FARM AT NEILLS CREEK				
22060077	D01	Common	5	1	I52747658 Job Reference (optional)				

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Fri Jun 24 12:11:13 ID:_chtVMf3J_GcW_b8at2KjIzFzYt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

5-11-8	11-11-0
5-11-8	5-11-8

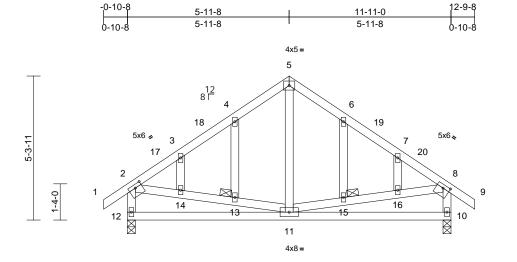
Plate Offsets (X, Y): [2:0-3-8,Edge], [4:0-3-8,Edge]

Scale = 1:42.4

Flate Offsets (A, f). [2.0-3-6,Euge],	[4.0-3-6,Euge]											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code		3/TPI2014	CSI TC BC WB Matrix-MSH	0.91 0.30 0.10	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.05 0.00	(loc) 7-8 7-8 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 69 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (lb/size) 6=526/0-3 Max Horiz 8=145 (LC Max Uplift 6=-56 (LC Max Grav 6=619 (LC	cept end verticals. applied or 10-0-0 or 3-8, 8=526/0-3-8 C 13) C 15), 8=-56 (LC 14)	8)	design. This truss ha load of 12.0 overhangs n This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar One H2.5A S recommender	snow loads have l so been designed f psf or 1.00 times f on-concurrent with is been designed f ad nonconcurrent i has been designed n chord in all area by 2-00-00 wide wi by other members. Simpson Strong-Ti ed to connect truss s) 8 and 6. This co	for great lat roof I o other li for a 10. with any d for a liv s where ill fit betv. e conne s to bear	er of min roo cad of 20.0 p ve loads. 0 psf bottom other live loa re load of 20. a rectangle veen the bott ctors ing walls due	f live isf on ads. Opsf com					
FORCES	(lb) - Maximum Com Tension 1-2=0/34, 2-3=-539/ 4-5=0/34, 2-8=-566/	122, 3-4=-539/122,	9)	and does no This truss is International	t consider lateral for designed in accor Residential Code	orces. dance w sections	ith the 2018 8 R502.11.1 a						
BOT CHORD WEBS	7-8=-153/263, 6-7=- 3-7=0/208, 2-7=-36/2	85/252	LC	AD CASE(S)	nd referenced star Standard	idard Ar	NSI/TPTT.						
this design 2) Wind: ASC Vasd=103 Cat. II; Ex zone and 2-1-8 to 2- 8-11-8 to 2- 8-11-8 to 2- 8-11-8 to 2- cantilever right expoo- for reactio DOL=1.60 3) TCLL: ASC Plate DOL	CE 7-16; Vult=130mph imph; TCDL=6.0psf; Bi p B; Enclosed; MWFR C-C Exterior(2E) -0-10 -11-8, Exterior(2E) 9-9 Jeft and right exposed sed;C-C for members ns shown; Lumber DO	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterio I-8 to 2-1-8, Interior (1-8 to 8-11-8, Interior -8 to 12-9-8 zone; ; end vertical left and and forces & MWFR uL=1.60 plate grip roof LL: Lum DOL=1 um DOL=1.15 Plate	r 1) or (1) d S									SEA 0363	• -

- 2-1-8 to 2-11-8, Exterior(2R) 2-11-8 to 8-11-8, Interior (1) 8-11-8 to 9-9-8, Exterior(2E) 9-9-8 to 12-9-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


818 Soundside Road Edenton, NC 27932

GI minin

June 27,2022

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 138 FARM AT NEILLS CREEK		
22060077	D02	Common Structural Gable	1	1	I52747659 Job Reference (optional)		

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Fri Jun 24 12:11:13 ID:sNxOLkiaNCm2?cvvpi6Gu8zFzYp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

L	5-11-8	11-11-0
Γ	5-11-8	5-11-8

Dista Offersta (×	10 0 0 0 0 1 10 0 0 0 0 1 01
Plate Offsets (X, Y):	[2:0-3-0,0-1-8], [8:0-3-0,0-1-8]

Scale = 1:42.4

	X, Y): [2:0-3-0,0-1-8],	[8:0-3-0,0-1-8]											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-MSH	0.69 0.29 0.70	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 11-12 11-12 10	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 81 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD JOINTS	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. 1 Brace at Jt(s): 13,	athing directly applied cept end verticals. applied or 10-0-0 oc	2) 1 or 3)	Vasd=103mp Cat. II; Exp E zone and C-1 1-11-8 to 2-1 (1) 8-11-8 to cantilever lef right exposed for reactions DOL=1.60 Truss design	7-16; Vult=130mp bh; TCDL=6.0psf; 3; Enclosed; MWFI C Exterior(2E) -0-1 1-8, Exterior(2R) 2 9-9-8, Exterior(2E t and right expose d;C-C for members shown; Lumber D med for wind loads ids exposed to wind	BCDL=6 RS (env 0-8 to 1 2-11-8 to) 9-9-8 t d; end oL=1.60 in the p	0.0psf; h=25ft; elope) exterio -11-8, Interio 9 8-11-8, Interio 0 12-9-8 zone vertical left an cces & MWFF 0 plate grip lane of the tru	or r (1) rior e; d SS	Inte	rnationa)2.10.2	al Resid and ref	erenced standar	tions R502.11.1 and
REACTIONS	15 (lb/size) 10=526/0 Max Horiz 12=-145 (Max Uplift 10=-56 (L Max Grav 10=619 (L	C 15), 12=-56 (LC 14		see Standard or consult qu TCLL: ASCE Plate DOL=1	d Industry Gable E alified building des 7-16; Pr=20.0 psf .15); Pf=20.0 psf (s=1.0; Rough Cat	nd Deta signer a (roof Ll Lum DC	ils as applicat s per ANSI/TF .: Lum DOL= 0L=1.15 Plate	ble, PI 1. 1.15					
FORCES	(lb) - Maximum Com Tension	, · · · · · · · · · · · · · · · · · · ·	·	Cs=1.00; Ct=			•						
TOP CHORD	1-2=0/34, 2-3=-511/	380/134, 6-7=-436/98	,	design. This truss ha load of 12.0	s been designed f psf or 1.00 times fl on-concurrent with	or great at roof l	er of min roof bad of 20.0 p	live					11111
BOT CHORD WEBS	11-12=-135/232, 10- 5-11=-11/209, 2-14= 11-13=-27/254, 11-1	22/253, 13-14=-22/2 5=-31/254, ፩=-25/253, 4-13=-82/4	l3, 9)	All plates are Truss to be f braced again Gable studs	2x4 MT20 unless ully sheathed from ist lateral moveme spaced at 2-0-0 oc s been designed f	otherwi one fac nt (i.e. c	se indicated. e or securely liagonal web)			4	Z	ORTH CA	ROLL
NOTES 1) Unbalance this design	ed roof live loads have		11	chord live loa) * This truss h on the bottor 3-06-00 tall b chord and ar t) One H2.5A S recommende UPLIFT at jt(ad nonconcurrent v aad nonconcurrent v aas been designed n chord in all areas by 2-00-00 wide wi y other members. Simpson Strong-Tie ed to connect truss s) 12 and 10. This s not consider late	vith any for a liv s where Il fit betw e conne to bear connec	other live loa e load of 20.0 a rectangle veen the botto ctors ing walls due tion is for upli)psf om to			A A A A A A A A A A A A A A A A A A A		EER ALU

- chord and any other members. 12) One H2.5A Simpson Strong-Tie connectors
- recommended to connect truss to bearing walls due to UPLIFT at jt(s) 12 and 10. This connection is for uplift only and does not consider lateral forces.

11111111 June 27,2022

Page: 1

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 138 FARM AT NEILLS CREEK			
22060077	PB1	Piggyback	10	1	I52747660 Job Reference (optional)			

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Fri Jun 24 12:11:13

Page: 1

ID:BJweuyr2dKwhU0kO5sRv9pzG_Fp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -0-9-12 19-10-11 19-0-15 9-6-8 d-9-12 9-6-8 9-6-8 d-9-12 4x5 = 5 1<u>2</u> 7 Г 24 25 4 6 23 26 5-11-1 6-0-11 22 27 3 0-4-5 15 14 28 1312 29 11 10 3x5 =3x5 = 3x5 =19-0-15 Scale = 1:44.6 Loading 2-0-0 CSI DEFL l/defl L/d PLATES GRIP (psf) Spacing in (loc) TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.30 Vert(LL) n/a n/a 999 MT20 244/190 Snow (Pf) BC 20.0 Lumber DOL 1 15 0.17 Vert(CT) n/a n/a 999 10.0 Rep Stress Incr YES WB 0.13 Horz(CT) 0.00 19 n/a n/a 0.0 Code IRC2018/TPI2014 Matrix-MSH 10.0 Weight: 83 lb FT = 20%Wind: ASCE 7-16; Vult=130mph (3-second gust) 14) See Standard Industry Piggyback Truss Connection LUMBER 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Detail for Connection to base truss as applicable, or 2x4 SP No.2 TOP CHORD consult qualified building designer. BOT CHORD 2x4 SP No.2

LOAD CASE(S) Standard

2x4 SP No.3 OTHERS BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (lb/size) 2=67/19-0-15, 8=67/19-0-15, 3) 10=253/19-0-15, 11=346/19-0-15, 12=260/19-0-15, 14=346/19-0-15, 15=253/19-0-15, 16=67/19-0-15, 19=67/19-0-15 Max Horiz 2=-138 (LC 12), 16=-138 (LC 12) Max Uplift 2=-36 (LC 10), 8=-9 (LC 11), 10=-79 (LC 15), 11=-115 (LC 15), 14=-116 (LC 14), 15=-80 (LC 14), 5) 16=-36 (LC 10), 19=-9 (LC 11) Max Grav 2=89 (LC 25), 8=75 (LC 22), 6) 10=310 (LC 25), 11=479 (LC 6), 12=374 (LC 24), 14=479 (LC 5), 15=311 (LC 24), 16=89 (LC 25), 19=75 (LC 22) 8) FORCES (lb) - Maximum Compression/Maximum 9) Tension TOP CHORD 1-2=0/16, 2-3=-127/108, 3-4=-130/87, 4-5=-147/128, 5-6=-147/111, 6-7=-90/52, 7-8=-91/55, 8-9=0/16 BOT CHORD 2-15=-39/90, 14-15=-39/90, 12-14=-39/90, 11-12=-39/90, 10-11=-39/90, 8-10=-39/90 WEBS 5-12=-203/0, 4-14=-395/165, 3-15=-206/129, 12) N/A 6-11=-395/164, 7-10=-206/128

NOTES

TCDL

BCLL

BCDL

1) Unbalanced roof live loads have been considered for this design.

- Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-3-11 to 3-3-11, Interior (1) 3-3-11 to 7-4-10, Exterior(2R) 7-4-10 to 13-4-10, Interior (1) 13-4-10 to 17-5-10, Exterior(2E) 17-5-10 to 20-5-10 zone; cantilever left and right exposed ; end vertical left and right exposed:C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this desian.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 11) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

ORTH Walterman SEAL 036322 G mm June 27,2022

> 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 138 FARM AT NEILLS CREEK			
22060077	PB2	Piggyback	1	1	I52747661 Job Reference (optional)			

9-6-8

9-6-8

Carter Components (Sanford), Sanford, NC - 27332,

6-0-11

Scale = 1:44.6

5-11-1

0-4-5

-0-9-12

0-9-12

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Fri Jun 24 12:11:14 ID:qL3tquim6qzpeKtAr_y6F3zFzxL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4x5 = 7

19-0-15

9-6-8

19-10-11

0-9-12

12 13

3x5 =

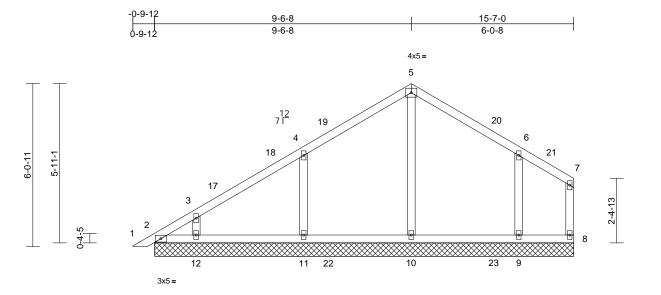
35

11

14

8 6 12 7 [32 33 5 9 31 34 4 10 30 3 2 23 22 21 20 1918 17 16 15 3x5 = 3x5 = 19-0-15 Т_{сеі} enacine 1_11_/ (loc) l/dofl

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MSH	0.08 0.03 0.08	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 12	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 101 I	GRIP 244/190 b FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD	6-0-0 oc purlins.	athing directly applie		2-23=-42/92, 22- 20-21=-42/92, 14 16-17=-42/92, 14 12-14=-42/92 7-18=-110/5, 6-2 4-22=-126/74, 3- 9-16=-180/72, 10	8-20=-42/9 5-16=-42/9 20=-206/74 23=-110/6	92, 17-18=-42 92, 14-15=-42 4, 5-21=-180/7 64, 8-17=-206	2/92, 2/92, 72, 5/73,	0n † 3-0	the botto 6-00 tall ord and a	om cho by 2-0	ord in all areas v	or a live load of 20.0psf where a rectangle it between the bottom	
	bracing. (lb/size) 2=90/19-0 14=144/1 16=153/1 21=153/1 21=153/1 23=144/1 27=90/19 Max Horiz 2=-134 (L Max Uplift 2=-24 (LC 15=-49 (L 17=-50 (L 23=-49 (L 14=151 (l 16=219 (l 18=149 (l 21=219 (l 21=219 (l	$ \begin{array}{c} \text{C 12}, 24 = -134 \ (\text{LC }^{-1} \\ \text{C 10}, 14 = -47 \ (\text{LC } 15), \\ \text{C 15}, 16 = -50 \ (\text{LC } 15, \\ \text{C } 15), 20 = -51 \ (\text{LC } 14, \\ \text{C } 14), 22 = -49 \ (\text{LC } 14, \\ \text{C } 14), 24 = -24 \ (\text{LC } 10, \\ \text{C } 25), 12 = 91 \ (\text{LC } 22), \\ \text{LC } 25), 15 = 164 \ (\text{LC } 22, \\ \text{LC } 25), 17 = 245 \ (\text{LC } 22, \\ \text{LC } 21), 22 = 164 \ (\text{LC } 22, \\ \text{LC } 24), 24 = 102 \ (\text{LC } 22, \\ \text{C } 22), \\ \text{spression/Maximum} \\ \begin{array}{c} \text{(100, } 3 - 4 = -96/86, \\ \text{(99, } 6 - 7 = -82/124, \\ \end{array} \end{array} $	1) Unbalance this desig this desig -15, 2) Wind: AS -15, Cat. II; E zone and -15, Cat. II; E zone; cat -15, 3-3-11 to (1) 13-4- 12) zone; cat and right 0, and right MWFRS 4), 3) Truss de 0) only. Foi see Stan 22), 4) TCLL: AS 21), Plate DO 22), 24), CS=1.00; 5) 10balance design. 6) This truss: 10cad of 12; overhange 7) All plates	balanced roof live loads have been considered for s design. nd: ASCE 7-16; Vult=130mph (3-second gust) sd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; t. II; Exp B; Enclosed; MWFRS (envelope) exterior ne and C-C Exterior(2E) 0-3-11 to 3-3-11, Interior (1) 3-11 to 7-4-10, Exterior(2R) 7-4-10 to 13-4-10, Interior 13-4-10 to 17-5-10, Exterior(2E) 17-5-10 to 20-5-10 ne; cantilever left and right exposed ; end vertical left d right exposed; C-C for members and forces & VFRS for reactions shown; Lumber DOL=1.60 plate p DOL=1.60 uss designed for wind loads in the plane of the truss ly. For studs exposed to wind (normal to the face), e Standard Industry Gable End Details as applicable, consult qualified building designer as per ANSI/TPI 1. :LL: ASCE 7-16; Pr=20.0 psf (Lord DL=1.15 Plate DL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; =1.00; Ct=1.10 balanced snow loads have been considered for this				Inte R8(14) See Det con LOAD	ernationa 02.10.2 (Standa ail for C isult qua CASE(S	al Resi and rei ard Ind onnec lified b) Sta	dential Code se ferenced standa ustry Piggyback tion to base trus puilding designe	AROUNT AL	•
	,	2=-79/48, 12-13=0/16	9) Gable stu 10) This trus	quires continuous bo lds spaced at 2-0-0 has been designed load nonconcurren	oc. d for a 10.	0 psf bottom	ds.					GILBERTIN	


June 27,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 138 FARM AT NEILLS CREEK			
22060077	PB3	Piggyback	10	1	Job Reference (optional)			

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Fri Jun 24 12:11:14 ID:N2f4Wi7Qirl_DEHgFPhyiqz3598-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

15-7-0

Scale = 1:42.8

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0		1.15		тс	0.31	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0		1.15		BC	0.17	Vert(CT)	n/a	-	n/a	999	-	
TCDL	10.0		YES		WB	0.15	Horz(CT)	0.00	8	n/a	n/a		
BCLL	0.0*			3/TPI2014	Matrix-MSH	0.10	11012(01)	0.00	U	n/a	n/a		
BCDL	10.0	Couo										Weight: 73 lb	FT = 20%
	6-0-0 oc purlins, exe Rigid ceiling directly bracing. (lb/size) 2=50/15-7 9=290/15 11=344/11 13=50/15 Max Horiz 2=163 (LC Max Uplift 2=-58 (LC 9=-104 (L 12=-80 (L Max Grav 2=94 (LC (LC 22), 1 (LC 5), 12 25)	applied or 6-0-0 oc -0, 8=28/15-7-0, -7-0, 10=301/15-7-0, 5-7-0, 12=255/15-7-0, -7-0 2 13), 13=163 (LC 13) 10), 8=-12 (LC 14), C 15), 11=-116 (LC 14), C 15), 11=-116 (LC 14), C 15), 8=34 (LC 25), 9=4 0=431 (LC 24), 11=47 =313 (LC 24), 13=94 (3) 4)), 5) 136 6)	Vasd=103mp Cat. II; Exp E zone and C- 3-3-11 to 7-4 (2E) 13-3-6 t exposed ; en members an Lumber DOL Truss design only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced design. This truss ha load of 12.0 j overhangs n	7-16; Vult=130mp bh; TCDL=6.0psf; 3; Enclosed; MWF C Exterior(2E) 0-3 -10, Exterior(2R) 1 o 16-3-6 zone; car d vertical left and d forces & MWFR: =1.60 plate grip D ned for wind loads uds exposed to wird l Industry Gable E tailfied building der : 7-16; Pr=20.0 psf (15); Pf=20.0 psf	BCDL=6 RS (env. 11 to 3- 7-4-10 to tright exp S for rea OL=1.6(in the p dd (norm nd Deta signer a: (roof LL Lum DC B; Fully been cor or great at roof lo	.0psf; h=25ft elope) exterio 3-11, Interior J 13-3-6, Exte eft and right bosed;C-C for ctions shown alare of the tru alare of the tru alare of the tru alare of the tru alare of the tru blae.15 Plate Exp.; Ce=0.9 sidered for the er of min roof bad of 20.0 p: //e loads.	; or (1) prior r; uss), ble, PI 1. 1.15 e 9; his	Det	ail for Cu sult qua CASE(S	onnect lified b) Sta	ion to base truss uilding designer. ndard	Fruss Connection as applicable, or
FORCES	(lb) - Maximum Com Tension		8) 9)	 overhangs non-concurrent with other live loads. 7) All plates are 2x4 MT20 unless otherwise indicated. 8) Gable requires continuous bottom chord bearing. 9) Gable studs spaced at 4-0-0 oc. 10) This truss has been designed for a 10.0 psf bottom chord live loads and ponconcurrent with any other live loads. 									RO
TOP CHORD	1-2=0/16, 2-3=-159/ 4-5=-124/140, 5-6=- 7-8=-34/28		chord live loa	is been designed f ad nonconcurrent	with any	other live loa				N. N.	ORTH CA	Der N.	
BOT CHORD		34/38, 10-11=-34/38, 4/38	11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom										
WEBS	5-10=-244/26, 4-11= 3-12=-207/129, 6-9=	12	chord and any other members, with BCDL = 10.0psf. SEAL 12) N/A SEAL								• -		
NOTES											- : :		
1) Unbalance	ed roof live loads have	been considered for									-	(A)	1 2
this design).										21	N. ENG	- CR. A S

- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Hummin . June 27,2022

GILB

Page: 1

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 138 FARM AT NEILLS CREEK
22060077	PB4	Piggyback	1	1	I52747663 Job Reference (optional)

6-0-11 5-11-1

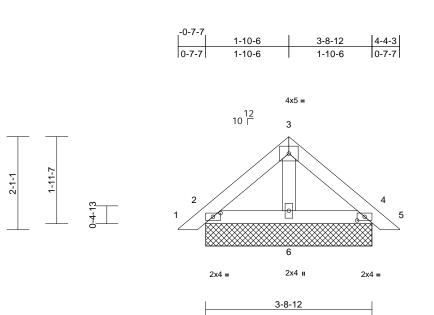
Scale = 1:43.8

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Fri Jun 24 12:11:14

Page: 1

ID:EH?9y8P97CeBx_Eia0ORCNz34u_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -0-9-12 0-9-12 9-6-8 15-7-0 9-6-8 6-0-8 4x5= 7 ↥ 6 8 12 7 Г 25 ø 5 9 24 26 10 4 23 3 2-4-13 2 0-4-5 11

17 15 14 13 12 18 16 3x5 = 15-7-0


Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2018/	/TPI2014	CSI TC BC WB Matrix-MSH	0.08 0.03 0.08	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 11	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 88 lb	GRIP 244/190 FT = 20%
	6-0-0 oc purlins, ex Rigid ceiling directly bracing. (Ib/size) 2=84/15-7 12=161/1 14=140/1 16=153/1 18=144/1 Max Horiz 2=158 (LC Max Uplift 2=-46 (LC 12=-56 (L 14=-3 (LC 16=-49 (L 18=-49 (L 18=-49 (L 12=226 (L 14=160 (L 14=160 (L 16=218 (L	applied or 10-0-0 oc 7-0, 11=66/15-7-0, 5-7-0, 13=160/15-7-0, 5-7-0, 15=162/15-7-0, 5-7-0, 17=158/15-7-0, 5-7-0, 19=84/15-7-0, C 13), 19=158 (LC 13) C 10), 11=-12 (LC 14), C 15), 13=-49 (LC 15, C 14), 17=-49 (LC 14), C 14), 19=-46 (LC 10)	1) 2) or 3) 4) (, 5) (, 5) (, 6) (), (, 7) (), (), (), (), (), (), (), ()	this design. Wind: ASCE Vasd=103mp Cat. II; Exp E zone and C-(3-3-11 to 7-4 (3E) 13-3-6 t exposed ; en members an Lumber DOL Truss design only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15; I CS=1.00; Ct Unbalanced design. This truss ha load of 12.0 ţ overhangs no All plates are	roof live loads hav 7-16; Vult=130mp bh; TCDL=6.0psf; l; Enclosed; MWF- C Corner(3E) 0-3- -10, Corner(3R) 7 o 16-3-6 zone; car d vertical left and d forces & MWFR: =1.60 plate grip D hed for wind loads ds exposed to wir l Industry Gable E alified building dea 7-16; Pr=20.0 psf (s=1.0; Rough Cat -1.0; Rough Cat -1.0; show loads have t s been designed f psf or 1.00 times fl on-concurrent with 2x4 MT20 unless es continuous bott	oh (3-sec BCDL=6 RC (env 11 to 3-2 -4-10 to titlever I right exp S for rea OL=1.6(in the p d (norm ind Deta signer at f (roof LL (Lum DC B; Fully been cor for great lat roof la o other I in o other in	cond gust) .0psf; h=25ft; elope) exterior -11, Exterior(13-3-6, Corne eft and right iosed;C-C for ctions shown;) ane of the tru al to the face) is as applicat s per ANSI/TF .: Lum DOL=1 L=1.15 Plate Exp.; Ce=0.9 isidered for th er of min roof pad of 20.0 ps re loads. se indicated.	r 2N) er ; ss , , ole, , 1.15 ; ; is	Inter R80 14) See Deta	rnationa 2.10.2 a Standa ail for Co sult qua	I Resid and ref rd Indu onnect lified b	erenced standard ustry Piggyback 1 ion to base truss uilding designer.	ions R502.11.1 and d ANSI/TPI 1. Truss Connection
FORCES	(lb) - Maximum Com Tension	pression/Maximum	9)	Gable studs	spaced at 2-0-0 or s been designed f	c.	0			4		ierro -	
TOP CHORD	,	132, 3-4=-138/118, 112/147, 6-7=-116/20 88/147, 9-10=-57/76,	^{3,} 11)	chord live loa * This truss h on the bottom	ad nonconcurrent v as been designed n chord in all areas y 2-00-00 wide wi	with any I for a liv s where	other live load e load of 20.0 a rectangle	psf				SEA 0363	• -
BOT CHORD		=-31/41, 16-17=-31/41 5=-31/41, 13-14=-31/4 2=-31/41			y other members.		een ine bollo	лп				NGIN	ERIX
WEBS		=-207/88, 5-16=-180/9 =-111/93, 8-13=-205/8									111		27,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

INFERING 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 138 FARM AT NEILLS CREEK
22060077	PB5	Piggyback	10	1	I52747664 Job Reference (optional)

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Fri Jun 24 12:11:15 ID:8mWxTeWJ9gZVpjX8mZWEG3z34rG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:25.8

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MP	0.05 0.06 0.01	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 17 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORI BOT CHORI OTHERS BRACING TOP CHORI BOT CHORI REACTIONS	 2x4 SP No.2 2x4 SP No.3 Structural wood she 5-0-3 oc purlins. Rigid ceiling directly bracing. (Ib/size) 2=111/3-1 6=124/3-1 10=111/3 Max Horiz 2=-44 (LC Max Uplift 2=-19 (LC 7=-19 (LC Max Grav 2=154 (L) 6=126 (L) 10=154 (i (1b) - Maximum Com Tension 	C 12), 7=-44 (LC 12) C 14), 4=-25 (LC 15), C 14), 10=-25 (LC 15), C 21), 4=154 (LC 22) C 21), 7=154 (LC 21) LC 22) ppression/Maximum	5 6 7 8 9 9	 only. For sti see Standar, or consult qu TCLL: ASCE Plate DOL=' DOL=1.15); Cs=1.00; Cs=1.00; Cs Unbalanced design. This truss ha load of 12.0 overhangs n Gable requir Gable studs This truss ha chord live lox truss ha chord live lox * This truss ha on the botton 3-06-00 tall ha 	ned for wind loads ids exposed to wi d Industry Gable I lailified building de 5 7-16; Pr=20.0 ps 1.5); Pf=20.0 ps 1.5); Pf=20.0 ps Is=1.0; Rough Ca =1.10 snow loads have as been designed ps for 1.00 times on-concurrent wit es continuous bei spaced at 4-0-0 c is been designed ad nonconcurrent nas been designed national designed ad nonconcurrent nas been designed national designed national designed ad nonconcurrent national designed national designed ad nonconcurrent national designed national designed ad nonconcurrent national designed national designed	nd (norm End Deta esigner a signer a for for of Ll (Lum DC t B; Fully been cou- for great flat roof I h other li toom cho- too for a 10. with any d for a liv as where vill fit betw	al to the face ils as applica s per ANS//TI .: Lum DOL= DL=1.15 Plate Exp.; Ce=0.9 nsidered for the er of min roof pad of 20.0 pi ve loads. d bearing. D psf bottom other live loa e load of 20.0 a rectangle), ble, PI 1. 1.15 9; his 9; f live sf on ds. 0psf					
this desi 2) Wind: A Vasd=10 Cat. II; E zone and exposed member	2-6=-10/46, 4-6=-8/- 3-6=-50/2 ced roof live loads have	been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior ; cantilever left and ri ght exposed;C-C for for reactions shown;	1: 1: ght	International R802.10.2 a 3) See Standar Detail for Co	designed in acco Residential Code nd referenced sta d Industry Piggyb nnection to base fied building desig Standard	e sections ndard Al ack Trus truss as	s R502.11.1 a NSI/TPI 1. s Connection			Contraction of the second seco		SEA 0363	22 EEREALUL

June 27,2022

Page: 1

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 138 FARM AT NEILLS CREEK
22060077	V1	Valley	1	1	I52747665 Job Reference (optional)

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Fri Jun 24 12:11:15

Page: 1

INFERING

818 Soundside Road Edenton, NC 27932

ID:obl8CR79AVIhJxhIYr2zsHzhpM4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 16-5-14 _ 3x5 II 10 9 24 3x5 ≠ 8 6^{7²³} T 5 9-7-11 9-7-11 X 4 3 2²² 12 71 0-0-4 11 ***** 18 17 1413 12 19 16 15 3x5= 3x5 🍫 3x5= 16-5-14

Scale = 1:56.6

Plate Offsets (X, Y): [11:Edge,0-1-8]

H

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 138 FARM AT NEILLS CREEK
22060077	V2	Valley	1	1	Job Reference (optional)

14-5-9

Carter Components (Sanford), Sanford, NC - 27332

Scale = 1:51.5 Loading

TCLL (roof)

Snow (Pf)

LUMBER

TOP CHORD

BOT CHORD

TCDL

BCLL

BCDL

WEBS

WEBS

FORCES

TOP CHORD

BOT CHORD

DOL=1.60

WEBS

NOTES

1)

OTHERS

BRACING

TOP CHORD

BOT CHORD

REACTIONS (lb/size)

bracing.

Max Grav

Tension

Run: 8,53 S Apr 27 2022 Print: 8,530 S Apr 27 2022 MiTek Industries, Inc. Fri Jun 24 12:11:15 ID:dZR1oJ6SMNhWOks6TOXq3xzTR1m-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

3x5 II 6 3x5 🗸 2x4 II 4 5 13 2x4 II 8-5-8 8-5-8 3 X 2x4 II 2 12 7 Г 0-0-4 7 10 9 14 8 3x5 II 3x5 🍫 2x4 II 2x4 II 2x4 II 14-5-9 Spacing 2-0-0 CSI DEFL l/defl L/d PLATES GRIP (psf) in (loc) Plate Grip DOL 20.0 1.15 TC 0.70 Vert(LL) n/a n/a 999 MT20 244/190 BC 20.0 Lumber DOL 1 15 999 0.19 Vert(TL) n/a n/a 10.0 Rep Stress Incr YES WB 0.26 Horiz(TL) 0.00 7 n/a n/a 0.0 Code IRC2018/TPI2014 Matrix-MSH 10.0 Weight: 72 lb FT = 20%Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), 2x4 SP No.2 2x4 SP No.2 see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 2x4 SP No.3 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 2x4 SP No.3 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Structural wood sheathing directly applied or Cs=1.00: Ct=1.10 6-0-0 oc purlins, except end verticals. Unbalanced snow loads have been considered for this 4) Rigid ceiling directly applied or 10-0-0 oc desian. 5) Gable requires continuous bottom chord bearing. 1 Row at midpt 6-7 Gable studs spaced at 4-0-0 oc. 6) 1=64/14-5-9, 7=127/14-5-9, This truss has been designed for a 10.0 psf bottom 7) 8=343/14-5-9, 9=322/14-5-9, chord live load nonconcurrent with any other live loads. 10=290/14-5-9 * This truss has been designed for a live load of 20.0psf 8) Max Horiz 1=292 (LC 11) on the bottom chord in all areas where a rectangle Max Uplift 1=-34 (LC 10), 7=-42 (LC 11), 3-06-00 tall by 2-00-00 wide will fit between the bottom 8=-107 (LC 14), 9=-104 (LC 14), chord and any other members, with BCDL = 10.0psf. 10=-67 (LC 14) 9) Provide mechanical connection (by others) of truss to 1=127 (LC 24), 7=207 (LC 5), bearing plate capable of withstanding 34 lb uplift at joint 8=530 (LC 5), 9=417 (LC 23), 1, 42 lb uplift at joint 7, 107 lb uplift at joint 8, 104 lb 10=341 (LC 23) uplift at joint 9 and 67 lb uplift at joint 10. (lb) - Maximum Compression/Maximum 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and ORT 1-2=-255/174, 2-3=-220/148, 3-4=-183/118, R802.10.2 and referenced standard ANSI/TPI 1. 4-6=-149/115, 6-7=-159/47 LOAD CASE(S) Standard 1-10=-120/134, 9-10=-120/134, 8-9=-120/134, 7-8=-120/134 Variation 4-8=-387/140, 3-9=-254/156, 2-10=-223/118 VIIIIIIIIIII SEAL Wind: ASCE 7-16; Vult=130mph (3-second gust) 036322 Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-7 to 3-0-7, Interior (1) 3-0-7 to 11-4-4, Exterior(2E) 11-4-4 to 14-4-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip G mm June 27,2022 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 138 FARM AT NEILLS CREEK
22060077	V3	Valley	1	1	Job Reference (optional)

13-8-10

Carter Components (Sanford), Sanford, NC - 27332

Scale = 1:49.7 Loading

TCLL (roof)

Snow (Pf)

LUMBER

TOP CHORD

BOT CHORD

TCDL

BCLL

BCDL

WEBS

WEBS

FORCES

TOP CHORD

BOT CHORD

DOL=1.60

WEBS

NOTES

2)

OTHERS

BRACING

TOP CHORD

BOT CHORD

REACTIONS (lb/size)

8-0-5

(psf)

20.0

20.0

10.0

10.0

2x4 SP No.2 2x4 SP No.2

2x4 SP No.3

2x4 SP No.3

bracing.

Max Uplift

Max Grav

Tension

4-5=-164/47

1 Row at midpt

Max Horiz 1=276 (LC 11)

3-6=-362/106, 2-7=-338/148

0.0

Code

4-5

7=-110 (LC 14)

Run: 8,53 S Apr 27 2022 Print: 8,530 S Apr 27 2022 MiTek Industries, Inc. Fri Jun 24 12:11:15 ID:dlfQSUCwlL2q1s9Sv59O5YzhpM_-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

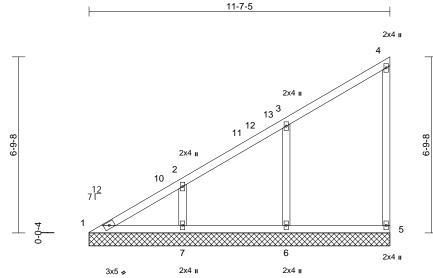
> 2x4 🛛 4

Page: 1

2x4 II 12³ 11 2x4 II 8-0-5 Ø 2 10 12 7Γ 0-0-4 5 13 6 2x4 u 2x4 II 2x4 II 3x5 🗸 13-8-10 Spacing 2-0-0 CSI DEFL l/defl L/d PLATES GRIP in (loc) Plate Grip DOL 1.15 тс 0.62 Vert(LL) n/a n/a 999 MT20 244/190 BC Lumber DOL 1 15 0.34 999 Vert(TL) n/a n/a Rep Stress Incr YES WB 0.21 Horiz(TL) 0.01 5 n/a n/a IRC2018/TPI2014 Matrix-MSH Weight: 66 lb FT = 20%TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 4) Unbalanced snow loads have been considered for this desian. Gable requires continuous bottom chord bearing. 5) Structural wood sheathing directly applied or 6) Gable studs spaced at 4-0-0 oc. 6-0-0 oc purlins, except end verticals. 7) This truss has been designed for a 10.0 psf bottom Rigid ceiling directly applied or 10-0-0 oc chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 8) on the bottom chord in all areas where a rectangle 1=189/13-8-10, 5=136/13-8-10, 3-06-00 tall by 2-00-00 wide will fit between the bottom 6=293/13-8-10, 7=469/13-8-10 chord and any other members, with BCDL = 10.0psf. Provide mechanical connection (by others) of truss to 9) 5=-40 (LC 11), 6=-41 (LC 16), bearing plate capable of withstanding 40 lb uplift at joint 5. 41 lb uplift at joint 6 and 110 lb uplift at joint 7. 1=238 (LC 24), 5=216 (LC 5), 10) This truss is designed in accordance with the 2018 6=475 (LC 5), 7=578 (LC 23) International Residential Code sections R502.11.1 and (Ib) - Maximum Compression/Maximum R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard 1-2=-394/173. 2-3=-179/105. 3-4=-143/104. 1-7=-114/320, 6-7=-114/127, 5-6=-114/127 OR 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior THE COMPANY zone and C-C Exterior(2E) 0-0-7 to 3-0-7, Interior (1) SEAL 3-0-7 to 9-4-7, Exterior(2R) 9-4-7 to 13-7-5 zone; 036322 cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable G mm or consult qualified building designer as per ANSI/TPI 1. June 27,2022

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component
Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 138 FARM AT NEILLS CREEK
22060077	V4	Valley	1	1	Job Reference (optional)

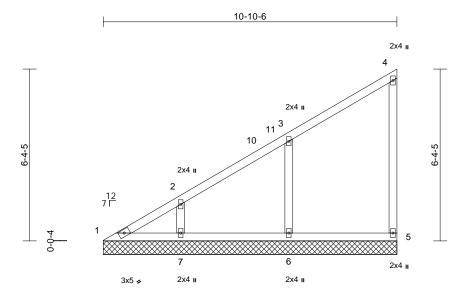

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Fri Jun 24 12:11:16 ID:WLgYeg9zPbBytL9tiEbmDnzTR1i-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

2x4 II 13 ³ 11 ¹² 6-9-8 2x4 🛛 2 10 6 5 7 6 2x4 II 2x4 II 2x4 II 11-7-5 IP 1/190 = 20%

818 Soundside Road Edenton, NC 27932

Scale = 1:44.5


Loading TCLL (roof) Snow (Pf) TCDL		(psf) 20.0 20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.44 0.16 0.14	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIF 244/1
BCLL BCDL		0.0* 10.0	Code	IRC201	8/TPI2014	Matrix-MSH							Weight: 54 lb	FT =
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No 2x4 SP No 2x4 SP No 6-0-0 oc pu Rigid ceilin bracing. (Ib/size) Max Horiz Max Uplift Max Grav	.2 .3 .3 wood shea urlins, exa ig directly 1=115/11- 6=340/11- 1=232 (LC 1=-6 (LC - (LC 14), 7 1=159 (LC 6=494 (LC	athing directly applied cept end verticals. applied or 10-0-0 oc -7-5, 5=127/11-7-5, -7-5, 7=335/11-7-5 C 11) 10), 5=-34 (LC 11), 6 '=-92 (LC 14) C 24), 5=210 (LC 5), C 5), 7=398 (LC 23) pression/Maximum	4 d or 5 6 7 8 =-54 9	 Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. Gable requir Gable studs This truss ha chord live loa * This truss ha chord live loa chord and ar Provide mec bearing plate 5, 6 lb uplift at joint 	snow loads have es continuous bo spaced at 4-0-0 s been designed ad nonconcurren nas been designe n chord in all are y 2-00-00 wide v y 2-00-00 wide v y other member hanical connecti capable of with at joint 1, 54 lb u 7.	f (Lum DC at B; Fully been con oc. I for a 10. t with any ed for a liv as where will fit betw s, with BC on (by oth standing 3 olift at join	DL=1.15 Plate Exp.; Ce=0. Insidered for t rd bearing. 0 psf bottom other live loa re load of 20. a rectangle ween the bott CDL = 10.0ps it content at the and 92 lb	e 9; his dds. 0psf om f. to					
TOP CHORD	Tension 1-2=-252/1	36, 2-3=-	158/110, 3-4=-135/86		International	designed in acco Residential Cod nd referenced sta	e sections	s R502.11.1 a	and					
BOT CHORD WEBS	4-5=-159/4 1-7=-97/18 3-6=-389/1	81, 6-7=-9 ⁻	7/108, 5-6=-97/108 246/132	L	OAD CASE(S)	Standard							mm	1111
NOTES 1) Wind: ASC Vasd=103 Cat. II; Ex zone and 3-0-7 to 7- cantilever right expo	CE 7-16; Vult imph; TCDL= p B; Enclosed C-C Exterior -3-1, Exterior left and right sed;C-C for r ns shown; Lu	=130mph 6.0psf; B(d; MWFR (2E) 0-0-7 (2R) 7-3-1 exposed nembers a	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior to 3-0-7, Interior (1) to 11-5-15 zone; ; end vertical left and and forces & MWFRS L=1.60 plate grip								Contraction of the		SEA 0363	AL.

2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 138 FARM AT NEILLS CREEK
22060077	V5	Valley	1	1	Job Reference (optional)

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Fri Jun 24 12:11:16 ID:VWvwIsFRpZYGWTSD8xEKGOzhpLw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

10-10-6

Scale = 1:42.6

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.38	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.16	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.12	Horiz(TL)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI201	4 Matrix-MSH								
BCDL	10.0										Weight: 49 lb	FT = 20%
LUMBER				ASCE 7-16; Pr=20.0								
TOP CHORD				OL=1.15); Pf=20.0 p								
BOT CHORD				.15); Is=1.0; Rough (Cat B; Fully	/ Exp.; Ce=0.9	9;					
WEBS	2x4 SP No.3			0; Ct=1.10								
OTHERS	2x4 SP No.3		 4) Unbala design. 	nced snow loads hav	/e been co	nsidered for tr	าเร					
BRACING				equires continuous b	ottom cho	rd booring						
TOP CHORD		eathing directly applie		tuds spaced at 4-0-0		iu bearing.						
	6-0-0 oc purlins, ex		7) This tru	ss has been designed		0 psf bottom						
BOT CHORD	0 0 ,	applied or 10-0-0 oc		ve load nonconcurre			ds.					
	bracing.		8) * This t	uss has been desig								
REACTIONS		10-6, 5=126/10-10-6,	on the l	ottom chord in all a								
	6=349/10 Max Horiz 1=216 (L)-10-6, 7=298/10-10-6	o 3-06-00	tall by 2-00-00 wide	will fit betw	ween the botto	om					
	Max Uplift 1=-13 (LC	,		nd any other membe								
		C 14), 7=-83 (LC 14)	9) PIOVICE	mechanical connec								
	Max Grav 1=127 (L0			plate capable of wit								
		C 5), 7=352 (LC 23)	,	uplift at joint 1, 62 lb	o uplift at jo	int 6 and 83 lt)					
FORCES	(lb) - Maximum Con		uplift at	ss is designed in ac	ordonco v	ith the 2019						
1 ONOLO	Tension	iprocolori/maximum		ional Residential Co			nd					
TOP CHORD		-151/110, 3-4=-132/8		0.2 and referenced s			nu					
	4-5=-158/44			E(S) Standard								
BOT CHORD	1-7=-91/125, 6-7=-9	91/101, 5-6=-91/101	LOAD CAS									LET CONTRACT OF CONTRACT OF CONTRACT
WEBS	3-6=-393/143, 2-7=-	-223/127										
NOTES											OP FESS	ROUT
	CE 7-16; Vult=130mph	n (3-second gust)								N	A	SIZ-IN'S
	Bmph; TCDL=6.0psf; B								/	52	FESC	NON
Cat. II; Ex	p B; Enclosed; MWFR	S (envelope) exterior	r						4			
	C-C Exterior(2E) 0-0-7		(1)							R 1	:*	- T (E
	o 6-6-2, Exterior(2R) 6-								-		SE/	AL E
	left and right exposed										0200	• -
	sed;C-C for members		S								0363	522 : :
DOL=1.60	ons shown; Lumber DC	DL=1.60 plate grip									1. Sec. 1. Sec	1
	signed for wind loads i	n the plane of the true	ee							3	A. A.	airs
	studs exposed to wind									11	SEA 0363	EELAN
	ard Industry Gable En									1	10	DE N
	qualified building desi		,								A C	HBEIN

- cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

G١

100000 June 27,2022

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 138 FARM AT NEILLS CREEK
22060077	V6	Valley	1	1	Job Reference (optional)

9 8 / <u>8-9-</u>0

Carter Components (Sanford), Sanford, NC - 27332,

5-1-8

0-0-4

12 7 Г

2x4 🍃

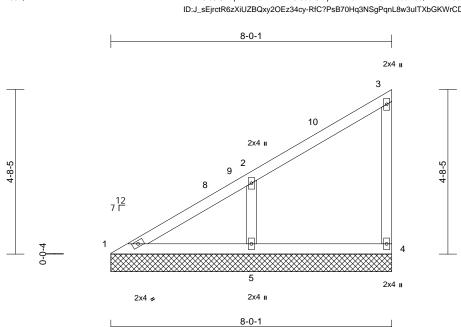
Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Fri Jun 24 12:11:16 ID:9eP49nIUaHiFJB4BPIpajJzTR1W-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2x4 II

Page: 1

Scale = 1:34.7

		1					· · · ·						
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.37	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.21	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES		WB	0.10	Horiz(TL)	0.00	4	n/a	n/a		
BCLL BCDL	0.0* 10.0	Code	IRC201	8/TPI2014	Matrix-MP							Weight: 37 lb	FT = 20%
	10.0											weight. 37 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD FORCES TOP CHORD BOT CHORD BOT CHORD	 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 cc purlins, ex Rigid ceiling directly bracing. (Ib/size) 1=150/8- 5=433/8- Max Horiz 1=172 (LI Max Uplift 4=-27 (LC Max Grav 1=159 (LI 5=563 (LI (Ib) - Maximum Con Tension 1-2=-252/124, 2-3=- 	v applied or 10-0-0 oc 9-0, 4=105/8-9-0, 9-0 C 11) C 11), 5=-111 (LC 14 C 24), 4=168 (LC 20) C 20) npression/Maximum -122/62, 3-4=-146/45	4) d or 5) 6) 7) 8) 8) 9)	Plate DOL=1 DOL=1.15); Cs=1.00; Ct: Unbalanced design. Gable requir Gable studs This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and ar Provide mec bearing plate 4 and 111 lb)) This truss is International	snow loads have b es continuous bott spaced at 4-0-0 or is been designed n chord in all area by 2-00-00 wide wi by other members. hanical connectior e capable of withst uplift at joint 5. designed in accorr Residential Code nd referenced star	Lum DC B; Fully been cor om chor c. or a 10.0 with any f for a liv s where Il fit betw h (by oth anding 2 dance w sections	DL=1.15 Plate Exp.; Ce=0.9 nsidered for the d bearing. D psf bottom other live load e load of 20.0 a rectangle veen the botto ers) of truss t t? Ib uplift at ju ith the 2018 s R502.11.1 a	ds. Dpsf om o oint					
WEBS	2-5=-435/188			(-)									
NOTES		(0,										minin	unin.
	SCE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B											TH CA	Roit


- Vinito. ASCE 7-10, Vulle 130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-7 to 3-0-7, Interior (1) 3-0-7 to 4-4-12, Exterior(2R) 4-4-12 to 8-7-11 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

SEAL 036322 June 27,2022

> ENGINEERING BY A MITEK Affiliate B18 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 138 FARM AT NEILLS CREEK
22060077	V7	Valley	1	1	Job Reference (optional)

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Fri Jun 24 12:11:16 ID:J_sEjrctR6zXiUZBQxy2OEz34cy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:32.8

Scale = 1:32.8	3												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	018/TPI2014	CSI TC BC WB Matrix-MP	0.33 0.15 0.09	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 34 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD	 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (lb/size) 1=122/8-(5=392/8-(Max Horiz 1=157 (LC Max Uplift 4=-25 (LC Max Uplift 4=-25 (LC Max Grav 1=134 (LC 5=524 (LC (1b) - Maximum Com Tension 1-2=-207/113, 2-3=- 	cept end verticals. applied or 10-0-0 or 0-1, 4=115/8-0-1, 0-1 0-11) 0-11), 5=-105 (LC 14 0-24), 4=177 (LC 20) 0-20) npression/Maximum 115/57, 3-4=-151/44	ed or c	 Plate DOL= DOL=1.15); Cs=1.00; Ct: Unbalanced design. Gable requir Gable studs This truss ha chord live lo. * This truss I on the botton 3-06-00 tall I chord and ai Provide mee bearing plate 4 and 105 lb This truss is International 	snow loads have res continuous bo spaced at 4-0-0 as been designed ad nonconcurren has been designed m chord in all are by 2-00-00 wide to y other member chanical connection e capable of with o uplift at joint 5. designed in acco I Residential Cod nd referenced sta	f (Lum DC at B; Fully be been con octom chon oc. d for a 10. t with any ed for a liv as where will fit betv s. on (by oth standing 2 ordance w e sections	DL=1.15 Plate Exp.; Ce=0.9 nsidered for the rd bearing. 0 psf bottom other live loa re load of 20.1 a rectangle veen the botth ers) of truss to 25 lb uplift at j ith the 2018 \$ R502.11.1 a	e 9; his ds. 0psf om to oint					
NOTES 1) Wind: AS Vasd=103	CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B xp B; Enclosed; MWFR	CDL=6.0psf; h=25ft;									111	NITH CA	ROLIN

- Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-7 to 3-0-7, Interior (1) 3-0-7 to 3-7-13, Exterior(2R) 3-7-13 to 7-10-12 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

June 27,2022

4. GILD

SEAL

036322

annununu

Vinnennen

Page: 1

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 138 FARM AT NEILLS CREEK
22060077	V8	Valley	1	1	I52747672 Job Reference (optional)

5-3-3

Carter Components (Sanford), Sanford, NC - 27332

Run: 8,53 S Apr 27 2022 Print: 8,530 S Apr 27 2022 MiTek Industries, Inc. Fri Jun 24 12:11:16 ID:JAHy0P_uRRYm5f9OxjX5pTz34dl-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2x4 I

2

Page: 1

GRIP

244/190

FT = 20%

3-1-2 3-1-2 12 7 Г 3 2x4 II 3x5 🍃 5-3-3 Spacing 2-0-0 CSI DEFL l/defl L/d PLATES (psf) in (loc) Plate Grip DOL 20.0 1.15 TC 0.57 Vert(LL) n/a n/a 999 MT20 BC 20.0 Lumber DOL 1 15 0.57 Vert(TL) n/a n/a 999 10.0 Rep Stress Incr YES WB 0.00 Horiz(TL) 0.01 3 n/a n/a Matrix-MP 0.0 Code IRC2018/TPI2014 Weight: 20 lb 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf 8) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

- Provide mechanical connection (by others) of truss to 9) bearing plate capable of withstanding 47 lb uplift at joint 3 and 18 lb uplift at joint 1.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

CHINNER WAR SEAL 036322 G

mm June 27,2022

818 Soundside Road Edenton, NC 27932

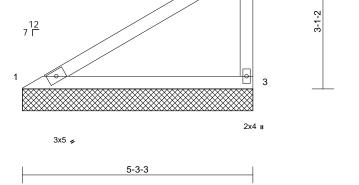
BCDL 10.0 LUMBER TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD 2x4 SP No.3 WEBS BRACING TOP CHORD Structural wood sheathing directly applied or 5-3-3 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing. REACTIONS (lb/size) 1=205/5-3-3 3=205/5-3-3 Max Horiz 1=99 (LC 11) Max Uplift 1=-18 (LC 14), 3=-47 (LC 14) Max Grav 1=303 (LC 20), 3=303 (LC 20) FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=-471/85, 2-3=-208/66 BOT CHORD 1-3=-84/399

NOTES

Scale = 1:26.3 Loading


TCLL (roof)

Snow (Pf)

TCDL

BCLL

- Wind: ASCE 7-16; Vult=130mph (3-second gust) 1) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this 4) design
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 4-0-0 oc.

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 138 FARM AT NEILLS CREEK
22060077	V9	Valley	1	1	I52747673 Job Reference (optional)

3-0-5

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Fri Jun 24 12:11:17 ID:JAHy0P_uRRYm5f9OxjX5pTz34dI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

먼 3 2x4 II 3x5 🖌 5-1-13 Spacing 2-0-0 CSI DEFL l/defl L/d PLATES (psf) in (loc) Plate Grip DOL 20.0 1.15 TC 0.54 Vert(LL) n/a n/a 999 MT20 BC 20.0 Lumber DOL 1 15 0.55 Vert(TL) n/a n/a 999 10.0 Rep Stress Incr YES WB 0.00 Horiz(TL) 0.01 3 n/a n/a 0.0 Code IRC2018/TPI2014 Matrix-MP 10.0 Weight: 19 lb 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 2x4 SP No.2 2x4 SP No.2 * This truss has been designed for a live load of 20.0psf 8) 2x4 SP No.3 on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. Structural wood sheathing directly applied or Provide mechanical connection (by others) of truss to 9) 5-1-13 oc purlins, except end verticals. bearing plate capable of withstanding 46 lb uplift at joint Rigid ceiling directly applied or 10-0-0 oc 3 and 17 lb uplift at joint 1. bracing. 10) This truss is designed in accordance with the 2018 (lb/size) 1=200/5-1-13, 3=200/5-1-13 International Residential Code sections R502.11.1 and Max Horiz 1=97 (LC 11) R802.10.2 and referenced standard ANSI/TPI 1. Max Uplift 1=-17 (LC 14), 3=-46 (LC 14)

LOAD CASE(S) Standard

BOT CHORD

TOP CHORD

FORCES

Scale = 1:26

TCLL (roof)

Snow (Pf)

LUMBER

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

REACTIONS

TCDL

BCLL

BCDL

WEBS

BRACING

NOTES

 Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

1-2=-459/83, 2-3=-203/65

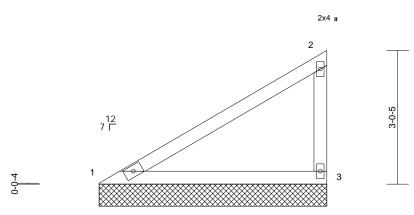
Max Grav 1=296 (LC 20), 3=296 (LC 20)

(lb) - Maximum Compression/Maximum

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 4-0-0 oc.

Tension

1-3=-82/389

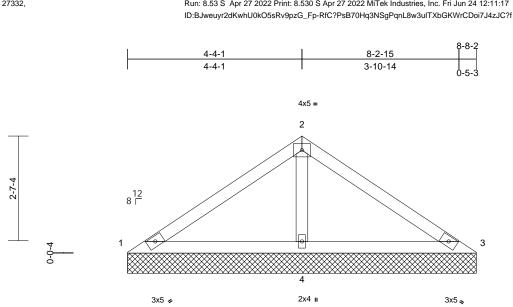

Page: 1

GRIP

244/190

FT = 20%

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


5-1-13

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 138 FARM AT NEILLS CREEK
22060077	V10	Valley	1	1	I52747674 Job Reference (optional)

2-10-15

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Fri Jun 24 12:11:17

8-8-2

Scale =	= 1:28.7

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-MP	0.38 0.37 0.11	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 30 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD	2x4 SP No.3 Structural wood she 8-8-2 oc purlins. Rigid ceiling directly bracing.	2, 3=30/8-8-2, 3-2 2 (10) 2 (21), 3=-40 (LC 20), 2 (14) C (20), 3=104 (LC 21) C (21) 10pression/Maximum 109/336	6) 7) 8) 9) , 10	Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. Gable requirt Gable studs This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and ar)) Provide mec bearing plate 1, 40 lb uplift) This truss is International	snow loads have b es continuous bott spaced at 4-0-0 oc is been designed fr ad nonconcurrent v has been designed n chord in all areas by 2-00-00 wide will yo other members. hanical connection capable of withste at joint 3 and 76 lt designed in accord Residential Codes and referenced stan	Lum DC B; Fully opeen cor om chor c or a 10.0 vith any for a liv s where Il fit betw (by oth anding 4 b uplift a dance w sections	DL=1.15 Plate Exp.; Ce=0.9 nsidered for the rd bearing. 0 psf bottom other live loa re load of 20.0 a rectangle veen the botto ers) of truss t 10 lb uplift at j it joint 4. ith the 2018 \$ R502.11.1 a	e); ds. Opsf om oont					
WEBS NOTES	2-4=-501/208		20	5,12 5,10E(0)	Clandard							mm	0117

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-6 to 3-0-6, Exterior(2R) 3-0-6 to 5-8-8, Exterior(2E) 5-8-8 to 8-8-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Page: 1

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 138 FARM AT NEILLS CREEK
22060077	V11	Valley	1	1	I52747675 Job Reference (optional)

2-7-1

2-7-1

Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Fri Jun 24 12:11:17 ID:BJweuyr2dKwhU0kO5sRv9pzG_Fp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4x5 =

4-8-15

2-1-14

5-2-2

PLATES

Weight: 17 lb

MT20

GRIP

244/190

FT = 20%

2 12 8 Г 1-5-4 1-8-15 3 4 2x4 🧳 2x4 II 2x4 💊 5-2-2 (psf) Spacing 2-0-0 CSI DEFL l/defl L/d in (loc) 20.0 Plate Grip DOL 1.15 тс 0.09 Vert(LL) n/a n/a 999 BC 20.0 Lumber DOL 1 15 0.12 999 Vert(TL) n/a n/a 10.0 Rep Stress Incr YES WB 0.04 Horiz(TL) 0.00 4 n/a n/a 0.0 Code IRC2018/TPI2014 Matrix-MP 10.0 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 5) Unbalanced snow loads have been considered for this desian. ed or Gable requires continuous bottom chord bearing. 6) 7) Gable studs spaced at 4-0-0 oc. 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 9) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom 4=-28 chord and any other members. 10) Provide mechanical connection (by others) of truss to 4=314 bearing plate capable of withstanding 5 lb uplift at joint 1, 11 lb uplift at joint 3 and 28 lb uplift at joint 4. 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard 2-4=-196/100Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face),

see Standard Industry Gable End Details as applicable. or consult qualified building designer as per ANSI/TPI 1.

818 Soundside Road Edenton, NC 27932

G mm June 27,2022

MILLIN

SEAL

036322

CAR

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Scale = 1:23.9

Loading

TCLL (roof)

Snow (Pf)

TCDL

BCLL

BCDL

NOTES

1)

2)

3)

BOBE		10.0				
LUMBER						
TOP CHORD	2x4 SP N	o.2				
BOT CHORD	2x4 SP N	0.2				
OTHERS	2x4 SP No.3					
BRACING						
TOP CHORD	Structural wood sheathing directly applie					
	5-2-2 oc p	ourlins.				
BOT CHORD	OT CHORD Rigid ceiling directly applied or 6-0-					
	bracing.					
REACTIONS	(lb/size)					
		4=311/5-2				
	Max Horiz	``	,			
	Max Uplift		14), 3=-11 (LC 15), 4			
	-	(LC 14)				
	Max Grav	1=90 (LC : (LC 20)	20), 3=90 (LC 21), 4			
FORCES	(lb) - Max	(Ib) - Maximum Compression/Maximu				
	Tension					
TOP CHORD	1-2=-88/120, 2-3=-88/120					
BOT CHORD	1-4=-91/83, 3-4=-91/83					
WEBS	2-4=-196/100					

