

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 22050115 DRB GROUP - 137 FaNC

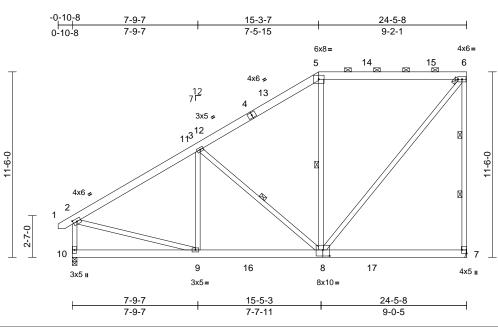
The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Sanford, NC)).

Pages or sheets covered by this seal: I52223717 thru I52223753

My license renewal date for the state of North Carolina is December 31, 2022.

North Carolina COA: C-0844

May 30,2022


Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 137 FaNC	
22050115	A01	Piggyback Base	5	1	Job Reference (optional)	152223717

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Fri May 27 11:41:19 ID:7s9YZp8yTT6bkb8sXP_ligyEN4k-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

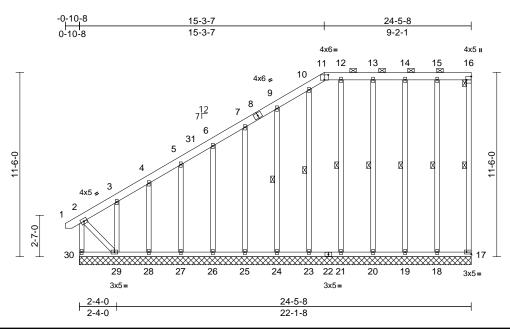
Plate Offsets (X, Y): [2:0-2-14,0-2-0], [7:Edge,0-3-8], [8:0-5-0,0-4-8]

Scale = 1:71.4

Loading TCLL (roof) Snow (Pf) TCDL BCLL	(psf) 20.0 20.0 10.0 0.0*	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.96 0.45 0.47	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.09 -0.15 0.01	(loc) 7-8 7-8 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCDL LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	No.2 Structural wood she	t* 6-7,8-5,8-6:2x4 SP athing directly applied cept end verticals, and		Vasd=103m Cat. II; Exp E zone and C- 2-3-15 to 12- (1) 18-3-7 to zone; cantile and right exp	7-16; Vult=130mp bh; TCDL=6.0psf; E 3; Enclosed; MWFF C Exterior(2E) -0-8 -3-7, Exterior(2R) 1 21-3-12, Exterior(2 21-3-12, Exterior(2 ver left and right e bosed;C-C for mem	3CDL=6 RS (env -1 to 2-1 (2-3-7 to 2E) 21-3 xposed ibers ar	6.0psf; h=25ft elope) exterio 3-15, Interior 5 18-3-7, Inte 3-12 to 24-3-1 ; end vertical id forces &	or (1) rior 2 left	or t		tation o rd.	of the purlin along	es not depict the size
BOT CHORD WEBS WEBS REACTIONS	2-0-0 oc purlins (2-2 Rigid ceiling directly bracing. 1 Row at midpt 2 Rows at 1/3 pts	-0 max.): 5-6. applied or 10-0-0 oc 3-8, 5-8 6-7 echanical, 10=1016/0- .C 13) C 11), 10=-99 (LC 14)	3) ³⁻⁸ 4) 5)	grip DOL=1. TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. This truss ha	7-16; Pr=20.0 psf 1.15); Pf=20.0 psf (Is=1.0; Rough Cat	(roof LI Lum DC B; Fully been cor or great	L: Lum DOL= DL=1.15 Plate Exp.; Ce=0.9 Insidered for the er of min roof	1.15 9; his					
FORCES	(lb) - Maximum Com Tension	,, (6)	overhangs n	pst or 1.00 times fla on-concurrent with quate drainage to p	other liv	ve loads.						
TOP CHORD	1-2=0/25, 2-3=-1254 5-6=-605/216, 6-7=- 2-10=-1081/136		7) 8)	This truss ha chord live loa	as been designed for ad nonconcurrent w nas been designed	or a 10. vith any	0 psf bottom other live loa	ids.					
BOT CHORD WEBS	9-10=-379/292, 7-9= 3-9=-97/178, 3-8=-6 6-8=-135/1002, 2-9=	49/211, 5-8=-286/188,	0)	on the bottor 3-06-00 tall b	n chord in all areas by 2-00-00 wide wil by other members,	s where Il fit betv	a rectangle veen the bott	om		6	1 M	ORTHOR	RO
NOTES 1) Unbalance this design	ed roof live loads have		1C 11	Refer to gird Provide mec bearing plate joint 7.) One H2.5A S recommende UPLIFT at jt(does not cor ?) This truss is	er(s) for truss to tru hanical connection a capable of withsta Simpson Strong-Tie ed to connect truss (s) 10. This connec isider lateral forces designed in accord Residential Code	uss conr (by oth anding 1 e conne to bear tion is f s. dance w	nections. ers) of truss to 69 lb uplift at ctors ing walls due or uplift only a ith the 2018	to to and				SEA 0363	• -

- 11) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 10. This connection is for uplift only and does not consider lateral forces.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

818 Soundside Road Edenton, NC 27932


G minin May 30,2022

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 137 FaNC	
22050115	A02	Piggyback Base Supported Gable	1	1	Job Reference (optional)	152223718

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Fri May 27 11:41:22 ID:uyiQOAflaNPen2Lx?DkcPXyEN44-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

.

Scale = 1:71.9

Plate Offsets (X, Y): [11:0-3-0,0-3-12], [16:Edge,0-3-8], [17:Edge,0-1-8]

					-										
Loading		(psf)	Spacing	1-11-4	ļ	CSI		DEFL	in	(le	oc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.15		TC	0.69	Vert(LL)	n/a		-	n/a	999	MT20	244/190
Snow (Pf)		20.0	Lumber DOL	1.15		BC	0.32	Vert(CT)	n/a		-	n/a	999		
TCDL		10.0	Rep Stress Incr	YES		WB	0.23	Horz(CT)	-0.01		17	n/a	n/a		
BCLL		0.0*	Code	IRC20)18/TPI2014	Matrix-MSH		- (-)							
BCDL		10.0	0000											Weight: 258 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS	2x6 SP No.2 2x4 SP No.2 2x4 SP No.2	2	t* 16-17:2x4 SP No.2		FORCES	(lb) - Maximum Co Tension 2-30=-424/228, 1- 3-4=-265/170, 4-5	2=0/24,	2-3=-292/187		4)	Plate DOL	e DOL=	1.15); ls=1.0	Pf=20.0 psf (Lum); Rough Cat B; F	of LL: Lum DOL=1.15 n DOL=1.15 Plate Fully Exp.; Ce=0.9;
OTHERS	2x4 SP No.3	8 *Except				6-7=-211/139, 7-9=-199/136, 9-10=-186/158, 5) Unbalanced snow loads have been cor 10-11=-162/168, 11-12=-153/169, design.									
BRACING TOP CHORD	6-0-0 oc pur	lins, exc	athing directly applied cept end verticals, and -0 max.): 11-16.	d	BOT CHORD	12-13=-153/169, 1 14-15=-153/169, 1 16-17=-131/122 29-30=-375/243, 2	5-16=-1 8-29=-1	53/169, 48/164,		7)	load over Prov	of 12.0 hangs r vide ade	psf or non-co quate	1.00 times flat ro ncurrent with oth drainage to prev	ent water ponding.
BOT CHORD			applied or 9-8-7 oc			27-28=-148/164, 2 25-26=-148/164, 2	4-25=-1	48/164,						MT20 unless oth ntinuous bottom	erwise indicated. chord bearing.
WEBS	0	1 Row at midpt 16-17, 15-18, 14-19, 13-20, 12-21, 10-23, 9-24				23-24=-148/164, 21-23=-148/164, 20-21=-148/164, 19-20=-148/164, 18-19=-148/164, 17-18=-148/164 11) Gable studs spaced at 2-0-0 oc									
REACTIONS (lb/size) 17=66/24-5-8, 18=163/24-5-8, 19=157/24-5-8, 20=155/24-5-8, 21=155/24-5-8, 21=155/24-5-8, 24=154/24-5-8, 25=155/24-5-8, 26=155/24-5-8, 27=155/24-5-8, 28=152/24-5-8, 29=169/24-5-8, 30=128/24-5-8				WEBS 15-18=-140/104, 17-10=-140/104 15-18=-181/103, 14-19=-181/50, 13-20=-179/56, 12-21=-158/72, 10-23=-157/62, 9-24=-178/76, 7-25=-178/74, 6-26=-166/72, 5-27=-128/72, 4-28=-124/74, 3-29=-125/76, 2-29=-277/409 NOTES						 11) Gable studs spaced at 2-0-0 oc. 12) This truss has been designed for a 10.0 psf botto chord live load nonconcurrent with any other live 13) * This truss has been designed for a live load of 2 on the bottom chord in all areas where a rectang 3-06-00 tall by 2-00-00 wide will fit between the b chord and any other members. 					
					,	d roof live loads hav	/e been	considered fo	r						11111
	Max Horiz 30=390 (LC 13) Max Uplift 17=-15 (LC 11), 18=-45 (LC 10), 19=-46 (LC 11), 20=-39 (LC 10), 21=-50 (LC 11), 23=-38 (LC 11), 24=-53 (LC 14), 25=-50 (LC 14), 26=-49 (LC 14), 27=-48 (LC 14), 28=-52 (LC 14), 29=-299 (LC 11), 30=-214 (LC 12)				 this design. Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-8-1 to 2-4-0, Interior (1) 2-4-0 to 12-3-7, Exterior(2R) 12-3-7 to 18-4-0, Interior (1) 18-4-0 to 21-3-12, Exterior(2E) 21-3-12 to 24-3-12 					A. GILBER					
Max Grav 17=92 (LC 35), 18=224 (LC 35), 20 19=218 (LC 35), 20=218 (LC 35), an 21=197 (LC 35), 23=195 (LC 36), gr 24=217 (LC 36), 25=217 (LC 36), gr 26=205 (LC 36), 27=167 (LC 40), 3) T 28=160 (LC 24), 29=324 (LC 40), or 30=440 (IC 11) se				and right e MWFRS fo grip DOL= 3) Truss desi only. For s see Standa	cantilever left and right exposed ; end vertical left ht exposed;C-C for members and forces & S for reactions shown; Lumber DOL=1.60 plate				EER. KIN						

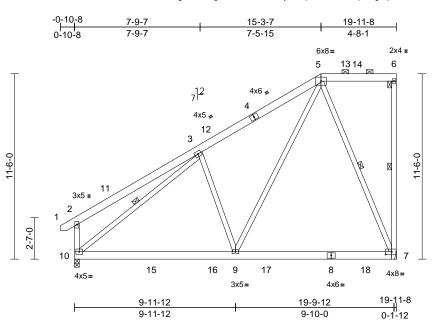
May 30,2022

Continued on page 2
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component
Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 137 FaNC	
22050115	A02	Piggyback Base Supported Gable	1	1	Job Reference (optional)	152223718

- 14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 214 lb uplift at joint 30, 15 lb uplift at joint 17, 45 lb uplift at joint 18, 46 lb uplift at joint 19, 39 lb uplift at joint 20, 50 lb uplift at joint 21, 38 lb uplift at joint 23, 53 lb uplift at joint 24, 50 lb uplift at joint 25, 49 lb uplift at joint 26, 48 lb uplift at joint 27, 52 lb uplift at joint 28 and 299 lb uplift at joint 29.
- 15) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 16) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard


Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Fri May 27 11:41:22 ID:uyiQOAfIaNPen2Lx?DkcPXyEN44-RfC?PsB70Hq3NSgPqnL&w3uITXbGKWrCDoi7J4zJC?f Page: 2

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 137 FaNC	
22050115	B01	Piggyback Base	7	1	Job Reference (optional)	152223719

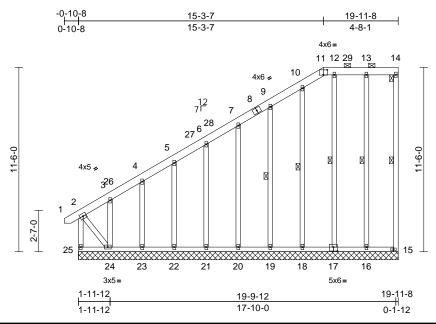
Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Fri May 27 11:41:22 ID:gfOscPOdgdYC2AMcQTKNEuyEN1q-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:71.4

Plate Offsets (X, Y): [7:0-4-8,0-2-0]

		1			· · · · · ·							-	
Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.46	DEFL Vert(LL)	in -0.13	(loc) 7-9	l/defl >999	L/d 240	PLATES MT20	GRIP 244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.46	Vert(LL)	-0.13	7-9 7-9	>999 >999	240 180	101120	244/190
· · /			YES		WB	0.60	· · ·		7-9				
TCDL	10.0	Rep Stress Incr				0.54	Horz(CT)	0.01	1	n/a	n/a		
BCLL	0.0*	Code	IRC201	8/TPI2014	Matrix-MSH								
BCDL	10.0											Weight: 178 lb	F1 = 20%
LUMBER			3)	TCLL: ASCE	7-16; Pr=20.0 ps	f (roof Ll	.: Lum DOL=	=1.15					
TOP CHORD	2x6 SP No.2				.15); Pf=20.0 psf								
BOT CHORD	2x6 SP No.2			DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10									
WEBS	2x4 SP No.2 *Excep	ot* 10-2,10-3,9-3:2x4											
	No.3		4)		snow loads have	been co	nsidered for t	this					
BRACING				design.									
TOP CHORD	Structural wood she	athing directly applie	dor ⁵⁾		s been designed								
		cept end verticals, ar			psf or 1.00 times f			osf on					
	2-0-0 oc purlins (6-0	-0 max.): 5-6.			on-concurrent with								
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc	6)		quate drainage to								
	bracing.		7)		s been designed								
WEBS	1 Row at midpt	6-7, 5-7, 3-10			ad nonconcurrent								
REACTIONS	(lb/size) 7=786/ M	echanical, 10=837/0-	-3-8 ⁸⁾	 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 									
	Max Horiz 10=313 (L	,											
	Max Uplift 7=-200 (L		4)		by 2-00-00 wide w								
	Max Grav 7=952 (LC		ío)		ny other members			51.					
FORCES	(lb) - Maximum Com	<i>,,</i>	, s)		er(s) for truss to tr hanical connectio			40					
TOROLO	Tension	pression/maximum	IC										
TOP CHORD		138 3-51007/127		ioint 7.	e capable of withst	anuing 4	to ib upint a	11					
	5-6=-6/0, 6-7=-187/5		14	1.	Simpson Strong-Ti		otoro						
BOT CHORD			11		ed to connect trus			a ta					11
WEBS		= 917/0, 3-9=-409/30	8		s) 10. This conne							1111 00	11/1, h
WEDS	5-9=-159/980	31770, 3-3403/30	σ,		sider lateral force		or upint only	anu				"TH UA	ROUT
NOTES	0 0- 100,000		10		designed in accor		ith the 2018				X	A	6.911 L
	ad reaf live leads have	has a sensidered for			Residential Code			and		/	52	·······································	- and
this design	ed roof live loads have n.	been considered for			nd referenced star			ana		<u> </u>	A	R.	M
	CE 7-16; Vult=130mph	(3-second aust)	13	Graphical pu	Irlin representation	n does n	ot depict the	size		-			
	Bmph; TCDL=6.0psf; B				ation of the purlin a	along the	e top and/or			=		SEA	L : =
	p B; Enclosed; MWFR			bottom chord.								• -	
	C-C Exterior(2E) -0-8-			LOAD CASE(S) Standard = 036322							22 : I		
2-3-15 to	11-0-8, Exterior(2R) 11	I-0-8 to 16-9-12, Exte	erior	()							8		1
	(2E) 16-9-12 to 19-9-12 zone; cantilever left exposed ;										2	·	all S
	end vertical left exposed;C-C for members and forces &										21	A SAGINI	ENAN
MWFRS for reactions shown; Lumber DOL=1.60 plate			е								11	710	THE AND
grip DOL=	=1.60											A G	ILBEIT


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

GI 11111111 May 30,2022

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 137 FaNC	
22050115	B03	Piggyback Base Supported Gable	1	1	Job Reference (optional)	152223720

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Fri May 27 11:41:22 ID:2VuldpuPTjAcxEqRhVYSG2yEN?u-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Plate Offsets (X, Y): [11:0-3-0,0-3-12], [17:0-3-0,0-3-0]

Scale = 1:71.9

		1	-											
Loading	(psf)	Spacing	2-0-0	lc	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	ΙT	ГС	0.13	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
Snow (Pf)	20.0	Lumber DOL	1.15	В	BC	0.05	Vert(CT)	n/a	-	n/a	999			
TCDL	10.0	Rep Stress Incr	YES	N N	NB	0.22	Horz(CT)	0.00	24	n/a	n/a			
BCLL	0.0*	Code	IRC2018/TPI2	014 N	Matrix-MSH									
BCDL	10.0											Weight: 207 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	2x4 SP No.3 *Exce No.2 Structural wood sh	pt* 14-15:2x4 SP No.2 pt* 17-12,16-13:2x4 Sf eathing directly appliec xcept end verticals, an 0-0 may b: 11-14	BOT CH	3-4: 6-7: 10- 13- ORD 24-: 21-: 18- 7-2(25=-612/305, 1-2= 1=-333/180, 4-5=- 7=-172/96, 7-9=-1 -11=-42/14, 11-12 -14=0/0, 14-15=-7 -25=-413/202, 23 -22=-1/0, 20-21=- -19=-1/0, 16-18=- 0=-184/80, 6-21= 23=-131/92, 3-24=	276/15 20/69, 2=0/1, 74/27 -24=-1, 1/0, 19 1/0, 15 =-165/8	0, 5-6=-225/1 9-10=-69/50, 12-13=0/0, 0, 22-23=-1/0 -20=-1/0, -16=0/0 0, 5-22=-128/	23,), /78,	 8) All 9) Ga 10) Tru bra 11) Ga 12) Th cha 13) * T 	plates an able requiss to be aced aga able stude is truss h ord live lo 'his truss	re 2x4 fully sl inst late s space bad not has bee bad not	MT20 unless othen ntinuous bottom of heathed from one eral movement (i. ed at 2-0-0 oc. en designed for a nconcurrent with	chord bearing. face or securely e. diagonal web). 10.0 psf bottom any other live loads. a live load of 20.0psf	
BOT CHORD	Rigid ceiling directl bracing, Except: 9-2-7 oc bracing: 2	y applied or 6-0-0 oc 4-25	NOTES	13-	-18=-169/77, 12-1 -16=-182/63, 2-24	l=-321,	656	r.	ch 14) Be	ord and a aring at j	any oth oint(s)	er members.	between the bottom allel to grain value mula, Building	
WEBS	1 Row at midpt 14-15, 9-19, 10-18, this of 12-17, 13-16 2) Wind			design. I: ASCE 7-′	SCE 7-16; Vult=130mph (3-second gust)					signer sh ovide me	ould vo	erify capacity of bearing surface. cal connection (by others) of truss to able of withstanding 179 lb uplift at		
	17=165/ 19=160/ 21=160/ 23=161/ 25=119/ Max Horiz 25=312 Max Uplift 15=-12 (17=-23 (19=-52 (21=-50 (23=-58 (25=-179) Max Grav 15=88 (L	LC 14) LC 11), 16=-26 (LC 10 LC 11), 18=-46 (LC 14 LC 14), 20=-51 (LC 14 LC 14), 22=-50 (LC 14 LC 14), 24=-435 (LC 1 (LC 12) .C 35), 16=226 (LC 35)	2, Cat. -8, Zone -8, 2-3- -8, (3E) end MWV grip), 3) Tru:), 3) Tru:), 3) cru: (1, 0) (2, 0) (3, 0) (4, 0) (4, 0) (5,	sd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; t. II; Exp B; Enclosed; MWFRS (envelope) exterior ne and C-C Corner(3E) -0-8-1 to 2-3-15, Exterior(2N 3-15 to 12-3-7, Corner(3R) 12-3-7 to 16-9-12, Corne E) 16-9-12 to 19-9-12 zone; cantilever left exposed; d vertical left exposed;C-C for members and forces WFRS for reactions shown; Lumber DOL=1.60 plate p DOL=1.60 uss designed for wind loads in the plane of the truss ly. For studs exposed to wind (normal to the face), e Standard Industry Gable End Details as applicable consult qualified building designer as per ANSI/TPI CLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.1 ate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9;				r 2N) her 5 & te ss 5, 5 ble, 21 1. 1.15	joint 25, 12 lb uplift at joint 15, 51 lb up lb uplift at joint 21, 50 lb uplift at joint 2 joint 23, 52 lb uplift at joint 19, 46 lb up lb uplift at joint 17, 26 lb uplift at joint 1 at joint 24.		L plift at joint 20, 50 th 22, 58 lb uplift at uplift at joint 18, 23 th 16 and 435 lb uplift			
FORCES	19=226 21=205 23=169 25=545	(LC 35), 18=208 (LC 36) (LC 36), 20=224 (LC 36) (LC 36), 22=168 (LC 4) (LC 24), 24=297 (LC 4) (LC 14) npression/Maximum	5), Cs= 6), 5) Unb 0), 5) Unb desi 0), desi 0), 6) This load	00; Ct=1. alanced sno n. truss has b of 12.0 psf	0; Ct=1.10 nced snow loads have been considered for this									

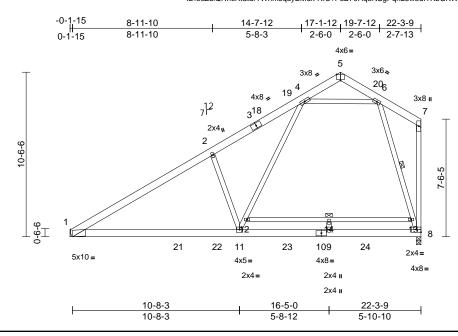
May 30,2022

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 137 FaNC	
22050115	B03	Piggyback Base Supported Gable	1	1	Job Reference (optional)	152223720
Carter Components (Sanford	, Sanford, NC - 27332,	Run: 8.53 S Apr 27	2022 MiTek Industries, Inc. Fri May 27 11:41:22	Page: 2		

ID:2VuldpuPTjAcxEqRhVYSG2yEN?u-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

16) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

17) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.


LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 137 FaNC	
22050115	C01	Common	6	1	Job Reference (optional)	152223721

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Fri May 27 11:41:23 ID:ecZulQRhcRtdtdrTWhmsqdyEMuk-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:73.7

Plate Offsets (X, Y): [5:0-3-0,Edge]

		1											
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.79	Vert(LL)	-0.26	11-17	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.64	Vert(CT)	-0.59	9-11	>448	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.65	Horz(CT)	0.02	8	n/a	n/a		
BCLL	0.0*	Code	IRC201	8/TPI2014	Matrix-MSH								
BCDL	10.0											Weight: 182 lb	FT = 20%
	Structural wood she 4-4-5 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt	t* 8-7,12-13:2x4 SP I athing directly applied cept end verticals. applied or 10-0-0 oc 6-8, 12-13 echanical, 8=1033/0- C 13) C 14)	No.2 4) d or 5) 6) 7) 3-8	Plate DOL=1 DOL=1.15); Cs=1.00; Ct Unbalanced design. 200.0lb AC of from left end This truss ha chord live lo: * This truss h on the bottoo 3-06-00 tall t chord and at Refer to gird	snow loads have b unit load placed on , supported at two is been designed for ad nonconcurrent v has been designed in chord in all areas by 2-00-00 wide will yo other members, er(s) for truss to tru	Lum DC B; Fully eeen col the bot points, or a 10. vith any for a liv s where I fit betv with BC uss con	DL=1.15 Plate Exp.; Ce=0.9 nsidered for the com chord, 16 5-0-0 apart. 0 psf bottom other live load re load of 20.1 a rectangle veen the bott DL = 10.0psi hections.	e 9; his 6-5-0 ds. Opsf om f.					
FORCES	(lb) - Maximum Corr Tension	<i>.</i>	4) 9)	bearing plate	hanical connection e capable of withsta								
TOP CHORD		447/97, 4-5=-30/482, 8/409, 7-8=-62/686	10		designed in accord Residential Code			and					
BOT CHORD WEBS	,	=-20/666, 8-9=-20/66 2=-38/1352, 3=-1649/122, 5=-632/131,	11	R802.10.2 a) Gap betwee	nd referenced stan n inside of top chor vertical web shall n	dard AN d bearii	NSI/TPI 1. ng and first					TH CA	ROUM
NOTES	, -	,								/	SA	COL COU	Mi al
	ed roof live loads have n.	been considered for								4		:21	
Vasd=103i Cat. II; Exp zone and 0 3-1-15 to 1 Exterior(2E right expos for membe	CE 7-16; Vult=130mph mph; TCDL=6.0psf; B p B; Enclosed; MWFR C-C Exterior(2E) 0-1-1 14-3-11, Exterior(2R) 1 E) 19-3-12 to 22-3-12 sed; end vertical left a ers and forces & MWF	CDL=6.0psf; h=25ft; S (envelope) exterior 5 to 3-1-15, Interior (I4-3-11 to 19-3-12, zone; cantilever left a and right exposed;C-C RS for reactions show	nd ;							111110		SEA 0363	

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-1-15 to 3-1-15, Interior (1) 3-1-15 to 14-3-11, Exterior(2R) 14-3-11 to 19-3-12, Exterior(2E) 19-3-12 to 22-3-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

GILB

May 30,2022

minin

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 137 FaNC	
22050115	C02	Common	1	1	Job Reference (optional)	152223722

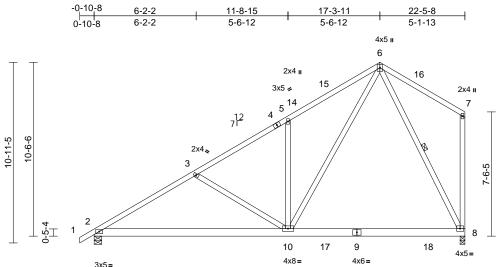
Scale = 1:69.8 Loading

TCLL (roof)

00

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Fri May 27 11:41:23 ID:BbDw5a4NpwtTaMgPxYhWo5yEMsd-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

0.02


8

n/a n/a

Weight: 155 lb

FT = 20%

Page: 1

		3X3=									
		 	<u>11-8-15</u> 11-8-15			22-5 10-8	-		—		
(psf) 20.0 20.0	Spacing Plate Grip DOL Lumber DOL	1-11-4 1.15 1.15	CSI TC BC	0.61 0.72	DEFL Vert(LL) Vert(CT)	in -0.18 -0.26	(loc) 8-10 8-10	l/defl >999 >999		PLATES MT20	GRIP 244/190

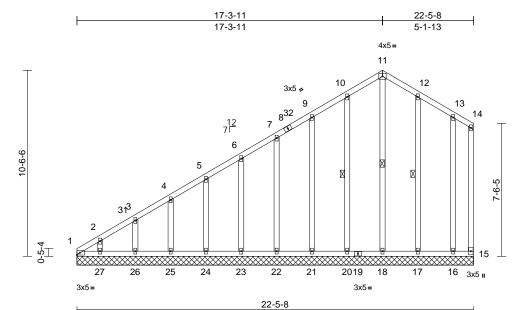
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.72	Vert(CT)
TCDL	10.0	Rep Stress Incr	YES		WB	0.51	Horz(CT)
BCLL	0.0*	Code	IRC201	8/TPI2014	Matrix-MSH		
BCDL	10.0		-				
LUMBER			4)		snow loads have	been cor	nsidered for
TOP CHORD	2x4 SP No.2			design.			
BOT CHORD	2x6 SP No.2		5)		is been designed		
WEBS	2x4 SP No.3 *Excep	t* 10-6,6-8:2x4 SP I	No.2		psf or 1.00 times		
BRACING				•	on-concurrent wi		
TOP CHORD	Structural wood shea		ed or 6)		is been designed		
	4-4-7 oc purlins, exc	•			ad nonconcurrent		
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 o	c 7)	on the bottor	nas been designe m chord in all are	as where	a rectangle
WEBS	1 Row at midpt	6-8			by 2-00-00 wide v		
REACTIONS	(lb/size) 2=916/0-5	-8, 8=864/0-3-8	0)		ny other members		
	Max Horiz 2=324 (LC	C 13)	8)		Simpson Strong-T ed to connect true		
	Max Uplift 2=-107 (Le	C 14), 8=-107 (LC 1	4)		(s) 2 and 8. This		0
	Max Grav 2=1048 (L	.C 24), 8=1057 (LC	24)		t consider lateral		
FORCES	(lb) - Maximum Com Tension	pression/Maximum	9)	This truss is	designed in acco Residential Code	rdance w	
TOP CHORD	1-2=0/26, 2-3=-1414	/173. 3-5=-1157/12	6.		nd referenced sta		
	5-6=-1196/261, 6-7=		1125	DAD CASE(S)		indui di 7 ti	
BOT CHORD	2-10=-242/1340, 8-1	0=-76/430	-		Standard		
WEBS	5-10=-441/220, 6-10	=-211/1220,					
	3-10=-380/192, 6-8=	-888/97					
NOTES							
1) Unbalance	ed roof live loads have	been considered fo	r				

this design. Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 14-3-11, Exterior(2R) 14-3-11 to 19-3-12, Exterior(2E) 19-3-12 to 22-3-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

dered for this

- of min roof live d of 20.0 psf on loads.
- osf bottom her live loads.
- oad of 20.0psf rectangle en the bottom L = 10.0psf.
- ors g walls due to is for uplift only the 2018
- 502.11.1 and I/TPI 1.



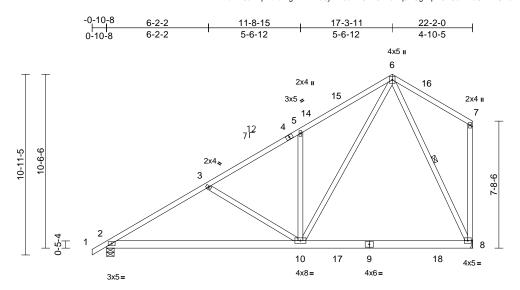
Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 137 FaNC	
22050115	C03	Common Supported Gable	1	1	Job Reference (optional)	152223723

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Fri May 27 11:41:23 ID:88Z52mkxJJGu7aDx0X9tOCyEMqT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

818 Soundside Road Edenton, NC 27932

Scale = 1:65.3

Loading (psf)	Spacing 1-	11-4	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof) 20.0	•	15	тс	0.55	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf) 20.0	Lumber DOL 1.		BC	0.16	Vert(TL)	n/a	-	n/a	999	-	
CDL 10.0		ËS	WB	0.22	Horiz(TL)	0.00	15	n/a	n/a		
3CLL 0.0*		C2018/TPI2014	Matrix-MSH	0.22	110112(112)	0.00	10	n/a	n/a		
3CDL 10.0		02010/11/2014	Matrix-Mort							Weight: 179 lb	FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 3OT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 OTHERS 2x4 SP No.3 BRACING TOP CHORD Structural wood shea 6-0-0 oc purlins, exc 3OT CHORD Rigid ceiling directly a bracing. WEBS 1 Row at midpt REACTIONS (lb/size) 1=34/22-5 16=124/322 18=143/22 21=154/22		BOT CHORD WEBS	1-2=-305/227, 2-3= 4-5=-230/174, 5-6= 7-9=-190/161, 9-10 10-11=-176/246, 11 12-13=-151/199, 13 14-15=-140/162 1-27=-111/120, 26 25-26=-101/120, 22 23-24=-101/120, 22 23-24=-101/120, 17 16-17=-101/120, 15 11-18=-186/99, 10- 9-21=-180/76, 7-22 5-24=-123/72, 4-25 2-27=-115/82, 12-1	-217/16 =-178/2 1-12=-11 3-14=-1 2-25=-10 2-23=-10 2-23=-10 2-23=-10 2-23=-10 2-23=-10 2-21=-10 2-16=-10 20=-20 20=-20 2=-123/7 =-122/7	8, 6-7=-204/1 04, 76/246, 56/189, 1/120, 01/120, 01/120, 01/120, 01/120, 01/120, 01/120 5/69, 2, 6-23=-123/ 2, 3-26=-125/	65, 72, 78, 52/90	 8) Gat 9) This cho 10) * Th on 1 3-00 cho 11) N/A 12) This Inte R80 	ble studs s truss h rd live lo his truss he botto 6-00 tall rd and a s truss is rnationa)2.10.2 a	s space as bee bad nor has be m cho by 2-0 iny oth s desig il Resid and ref	ntinuous bottom of ead at 2-0-0 oc. en designed for a noconcurrent with een designed for rd in all areas wh 0-00 wide will fit er members.	chord bearing. 10.0 psf bottom any other live loads. a live load of 20.0psf ere a rectangle between the bottom ce with the 2018 tions R502.11.1 and
27=142/22 Max Horiz 1=318 (LC Max Uplift 1=-107 (LC 16=-31 (LC 18=-57 (LC 21=-51 (LC 23=-49 (LC		this design. 2) Wind: ASCE Vasd=103m Cat. II; Exp zone and C- 3-0-0 to 14- (3E) 19-3-1	roof live loads have 7-16; Vult=130mpl ph; TCDL=6.0psf; E B; Enclosed; MWFF C Corner(3E) 0-0- 3-11, Corner(3R) 14 I to 22-3-12 zone; c	h (3-sec 3CDL=6 3S (envi to 3-0- 1-3-11 to antileve	cond gust) .0psf; h=25ft; elope) exterio 0, Exterior(2N o 19-3-11, Con er left and righ	r) rner	LOAD	CASE(S)		NUTH CA	RO
Max Grav 1=181 (LC 16=184 (LI 18=176 (LI 21=219 (LI 23=161 (LI 25=161 (LI	C 21), 17=251 (LC 21), C 27), 20=244 (LC 20), C 20), 22=162 (LC 23), C 23), 24=161 (LC 23), C 23), 26=162 (LC 23), C 23), 26=181 (LC 11)	members ar Lumber DO 3) Truss desig only. For st see Standar or consult q 4) TCLL: ASCP Plate DOL= DOL=1.15); Cs=1.00; Ct 5) Unbalanced design.	nd vertical left and r nd forces & MWFRS L=1.60 plate grip D0 ned for wind loads uds exposed to winn d Industry Gable Er ualified building des 5 7-16; Pr=20.0 psf (1.15); Pf=20.0 psf (1s=1.0; Rough Cat =1.10 snow loads have b e 2x4 MT20 unless	6 for rea DL=1.60 in the pl d (norm nd Deta igner as (roof LL Lum DC B; Fully een cor	ctions shown;) ane of the tru al to the face) is as applicat s per ANSI/TP .: Lum DOL=1 I/L=1.15 Plate Exp.; Ce=0.9	ss , ble, 11. .15 ;		U		SEA 0363	L 22 EER C


Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 137 FaNC	
22050115	C04	Common	3	1	Job Reference (optional)	152223724

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries. Inc. Fri May 27 11:41:24 ID:BbDw5a4NpwtTaMgPxYhWo5yEMsd-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

22-2-0

10-5-1

Page: 1

Sca	le -	- 1.1	60	8

Scale = 1:69.8													
Loading	(psf)	Spacing	1-11-4		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.60	Vert(LL)	-0.16	8-10	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.71	Vert(CT)	-0.25	10-13	>999	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.50	Horz(CT)	0.02	8	n/a	n/a		
BCLL	0.0*	Code	IRC2018	3/TPI2014	Matrix-MSH								
BCDL	10.0											Weight: 154 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING	4) Unbalanced snow loads have been considered for this design.												
TOP CHORD	Structural wood she	athing directly appli	edor 6)	This truss h	as been designed	for a 10.) psf bottom						

11-8-15

11-8-15

TOP CHORD		I wood sheathing directly applied or
	4-4-15 oc	purlins, except end verticals.
BOT CHORD	Rigid ceil	ing directly applied or 10-0-0 oc
	bracing.	
WEBS	1 Row at	midpt 6-8
REACTIONS	(lb/size)	2=905/0-5-8, 8=852/ Mechanical
	Max Horiz	2=326 (LC 13)
	Max Uplift	2=-105 (LC 14), 8=-110 (LC 14)
	Max Grav	2=1034 (LC 24), 8=1046 (LC 24)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	·
TOP CHORD	1-2=0/26,	2-3=-1384/171, 3-5=-1124/125,
	5-6=-116	0/259, 6-7=-178/189, 7-8=-225/134
BOT CHORD	2-10=-240	0/1315, 8-10=-78/408
WEBS	3-10=-38	1/191, 5-10=-435/221,

NOTES

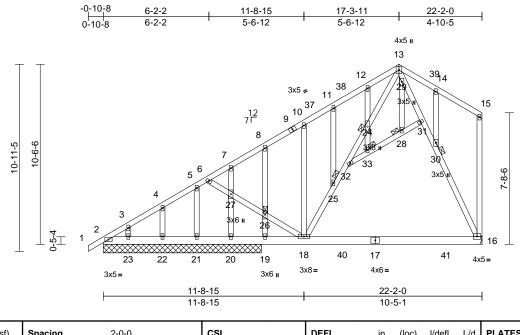
1) Unbalanced roof live loads have been considered for this design.

6-10=-214/1212. 6-8=-883/98

- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 14-3-11, Exterior(2R) 14-3-11 to 19-0-4, Exterior (2E) 19-0-4 to 22-0-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

- chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 7) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. Refer to girder(s) for truss to truss connections. 8)
- Provide mechanical connection (by others) of truss to 9)
- bearing plate capable of withstanding 110 lb uplift at joint 8.
- 10) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

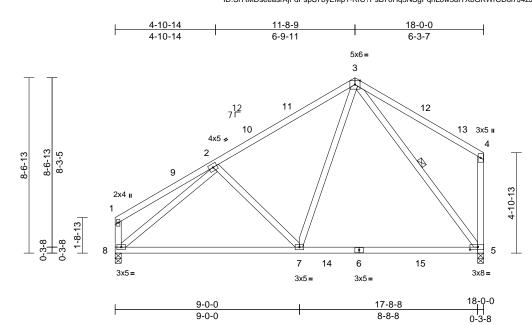
LOAD CASE(S) Standard



Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 137 FaNC	
22050115	C05	Common Structural Gable	1	1	Job Reference (optional)	152223725

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Fri May 27 11:41:24 ID:U0FHqD_Q9yKq4uvqqoX5LvyEMrS-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1


Scale = 1:67.4				11	-8-15			10	1-5-1				
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC2018/	TPI2014	CSI TC BC WB Matrix-MSH	0.58 0.56 0.46	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.17 -0.26 0.00	(loc) 16-18 16-18 16	l/defl >999 >662 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 205 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD JOINTS	No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex	t* 13-18,16-13:2x4 SP athing directly applied of cept end verticals. applied or 10-0-0 oc	NO	res	6-27=0/505, 26-2 10-18=-288/158, 25-32=-78/511, 2- 13-24=-111/579, 29-31=-549/82, 30 16-30=-600/88, 11 11-25=-94/30, 8-2 7-27=-271/89, 20- 5-21=-519/49, 4-2 28-29=-54/142, 11 32-33=-106/45, 2- 28-31=-106/45, 2-	18-25=-6 4-32=-11 13-29=-4 0-31=-50 2-24=-13 26=-109/3 -27=-296 22=-90/81 4-30=-20 8-33=-94 4-33=-16	9/445, 8/612, 55/61, 8/74, 9/54, 96, 19-26=-14 /103, , 3-23=-122/6 1/94, //41, 7/62	0/22, 61,	chc 10) * TI on 3-0 chc 11) Rei 12) Pro	ord live lo nis truss the botto 6-00 tall ord and a fer to gird wide me aring plat	bad noi has be om cho by 2-0 iny oth der(s) f chanic	een designed for ord in all areas wh 00-00 wide will fit or members, with for truss to truss al connection (by	any other live loads. a live load of 20.0psf here a rectangle between the bottom n BCDL = 10.0psf.
	(lb/size) 2=129/9-3 20=399/9 22=143/9 34=129/9 Max Horiz 2=337 (LC Max Uplift 2=-42 (LC 20=-132 (L 23=-41 (L Max Grav 2=174 (LC 20=407 (L	C 13), 34=337 (LC 13) 10), 16=-56 (LC 14), LC 14), 22=-64 (LC 14) C 14), 34=-42 (LC 10) C 29), 16=766 (LC 24), LC 24), 21=575 (LC 5), LC 24), 23=180 (LC 24)	al, 2)), 3)	this design. Wind: ASCE Vasd=103m Cat. II; Exp zone and C. 2-1-8 to 14- (2E) 19-0-4 exposed ; e members ar Lumber DO Truss desig only. For st	I roof live loads ha E 7-16; Vult=130m ph; TCDL=6.0psf; B; Enclosed; MWF -C Exterior(2E) -0- 3-11, Exterior(2R) to 22-0-4 zone; ca nd vertical left and nd forces & MWFR L=1.60 plate grip I gned for wind loads uds exposed to wi	ph (3-seo BCDL=6 FRS (env 10-8 to 2 14-3-11 antilever I I right exp RS for rea DOL=1.60 s in the p nd (norm	cond gust) .0psf; h=25ft; elope) exterior -1-8, Interior to 19-0-4, Ext eft and right posed;C-C for ctions shown 0 lane of the tru al to the face	or (1) terior ; uss),	Inte R8	ernationa	I Resid	ferenced standar	ions R502.11.1 and
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Com Tension 1-2=0/26, 2-3=-214/ 4-5=-170/115, 5-6=-	pression/Maximum 138, 3-4=-198/122, 331/54, 6-7=-537/23, 597/92, 10-11=-612/16 -13=-552/212, -15=-168/174, 23=-156/132, -21=-156/132,	4) 5) 6) 7)	or consult q TCLL: ASCI Plate DOL= DOL=1.15); Cs=1.00; Ct Unbalanced design. This truss h load of 12.0 overhangs r All plates ar	rd Industry Gable I ualified building de E 7-16; Pr=20.0 ps 1.15); Pf=20.0 ps 1s=1.0; Rough Ca t=1.10 d snow loads have as been designed ppsf or 1.00 times pon-concurrent wit te 2x4 MT20 unles a spaced at 2-0-0 c	esigner a of (roof LL (Lum DC t B; Fully been cor for great flat roof lu h other lin s otherwi	s per ANSI/TF .: Lum DOL= DL=1.15 Plate Exp.; Ce=0.9 nsidered for the er of min roof pad of 20.0 per ve loads.	PI 1. 1.15 9; his live		A. Children			L 22 EEREKTIIII

May 30,2022

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 137 FaNC	
22050115	D01	Common	7	1	Job Reference (optional)	152223726

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Fri May 27 11:41:25 ID:Sr7tMDseeasrAjFdPspS7byEMp1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:56.3	
----------------	--

Plate Offsets (X, Y): [5:0-4-8,0-1-8]

	[0.0 . 0,0 . 0]											
Loading	(psf)	Spacing	2-0-0	CSI	-	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.98	Vert(LL)	-0.28	5-7	>756	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.93	Vert(CT)	-0.42	5-7	>508	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.68	Horz(CT)	0.02	5	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 111 lb	FT = 20%
LUMBER	UMBER 4) Unbalanced snow loads have been considered for this											
TOP CHORD 2x4	SP No 2		desian.									

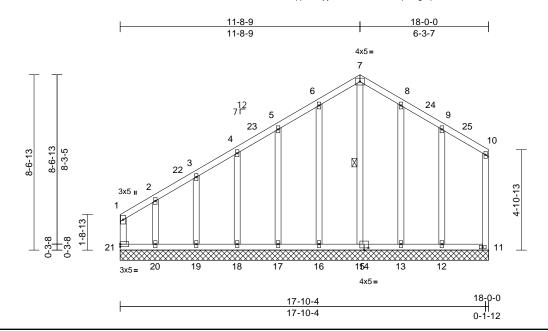
LUWBER	
TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.2
WEBS	2x4 SP No.3
BRACING	
TOP CHORD	Structural wood sheathing directly applied, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 2-2-0 oc bracing.
WEBS	1 Row at midpt 3-5
REACTIONS	(lb/size) 5=708/0-3-8, 8=708/0-3-8
	Max Horiz 8=249 (LC 11)
	Max Uplift 5=-61 (LC 14), 8=-66 (LC 14)
	Max Grav 5=834 (LC 6), 8=819 (LC 5)
FORCES	(lb) - Maximum Compression/Maximum Tension
TOP CHORD	1-2=-162/59, 2-3=-807/148, 3-4=-199/173,
	4-5=-281/134, 1-8=-158/47
BOT CHORD	7-8=-142/798, 5-7=-46/462
WEBS	3-5=-690/50, 2-8=-885/104, 3-7=-27/587, 2-7=-264/209

NOTES

- Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 2-1-7 to 5-1-7, Interior (1) 5-1-7 to 10-8-5, Exterior(2R) 10-8-5 to 16-9-15, Exterior (2E) 16-9-15 to 19-9-15 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

- 5) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 8 and 5. This connection is for uplift only and does not consider lateral forces.
 9) This truss is designed in accordance with the 2018
- International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard



ERGINEERING BY EREPACED A Mittek Affiliate 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 137 FaNC	
22050115	D02	Common Supported Gable	1	1	Job Reference (optional)	152223727

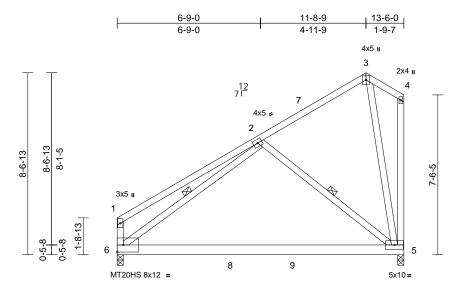
Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Fri May 27 11:41:25 ID:91F41SBaltF?vsppU0onjlyEMoc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:56.3

Plate Offsets (X, Y): [14:0-2-8,0-1-4]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI201	CSI TC BC WB Matrix-MR	0.41 0.24 0.21	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 11	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 131 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3		fhis de	0	9=-121/8 2=-204/9 /e been	33, 2-20=-198 94 considered fo	/153,	usi	ng ANSI/ signer sh	TPI 1	11 considers par angle to grain for erify capacity of b	
	6-0-0 oc purlins, exe Rigid ceiling directly bracing. 1 Row at midpt (lb/size) 11=75/18. 13=162/13 16=166/11 20=156/11 Max Horiz 21=249 (L 13=-52 (L 16=-49 (L 18=-57 (L 20=-271 (L 13=247 (L 16=252 (L) 16=252 (L 16=252 (L) 16=252 (L)	applied or 10-0-0 oc 7-15 0-0, 12=180/18-0-0, 3-0-0, 15=148/18-0-0, 3-0-0, 17=159/18-0-0, 3-0-0, 19=161/18-0-0, 3-0-0, 21=50/18-0-0 .C 11) C 14), 12=-49 (LC 15 C 15), 15=-24 (LC 13 C 14), 17=-50 (LC 14 LC 11), 21=-231 (LC 2 24), 12=249 (LC 21) .C 21), 15=172 (LC 22) .C 20), 17=226 (LC 22) .C 23), 19=161 (LC 1) .C 12), 21=323 (LC 1)	Vasd= Cat. II; zone a 5-1-7 tk (3E) 16 expose membe Lumbe 3) Truss only. F see Sta or cons), 4) TCLL:), Plate D), Plate 1 12) DOL=1 (, 5) Unbala 3), design), 6) All plate 1) 7) Gable	SCE 7-16; Vult=130m; 03mph; TCDL=6.0psf; Exp B; Enclosed; MWF d C-C Corner(3E) 2-1- 10-8-5, Corner(3E) 2-1- 10-8-5, Corner(3E) 10- 9-15 to 19-9-15 zone; d; end vertical left and DOL=1.60 plate grip I designed for wind loads or studs exposed to win ndard Industry Gable E ult qualified building de ASCE 7-16; Pr=20.0 psf .15); Is=1.0; Rough Ca 0; Ct=1.10 need snow loads have es are 2x4 MT20 unless equires continuous bot b be fully sheathed from	BCDL=(RS (env 7 to 5-1- I-8-5 to 7 cantilevv right exp S for rea ODL=1.6 in the p nd (norm End Deta signer a f (roof LI (Lum DC E B; Fully been co	6.0psf; h=25ft; elope) exterior 7, Exterior(2M 6-9-15, Corm er left and righ bosed;C-C for ctions shown 0 lane of the tr. all to the face ills as applical s per ANSI/TF .: Lum DOL= 1.15 Plate Exp.; Ce=0.9 nsidered for th se indicated. d bearing.	or N) er tss ; ss), ble, PI 1. 1.15 ; 2); his	LOAD	ernationa 02.10.2 a CASE(S)	Il Resid and ref) Star	erenced standard ndard	tions R502.11.1 and d ANSI/TPI 1.
FORCES	(lb) - Maximum Com Tension		braced	against lateral movementud spaced at 2-0-0 o	ent (i.e. o						SEA	
BOT CHORD	4-5=-158/151, 5-6=- 7-8=-160/260, 8-9=- 10-11=-98/119, 1-21 20-21=-68/80, 19-20 17-18=-68/80, 16-17	 251/207, 2-3=-178/145, 3-4=-174/150, 158/151, 5-6=-146/209, 6-7=-160/259, 160/260, 8-9=-133/207, 9-10=-110/147, =-98/119, 1-21=-198/144 598/119, 1-21=-198/144 58/80, 19-20=-68/80, 18-19=-68/80, 18-19=-68/80, 16-17=-68/80, 15-16=-68/80, 12-13=-68/80, 11-12=-68/80 50 Gable Study Space of al 22-0-02 (space of all 22-0-02) with any other live loads. 51 This truss has been designed for a 10.0 psf bottom chord live load of 20.0 psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 						of AUGINEER A				


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

May 30,2022

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 137 FaNC			
22050115	D03	Common	2	1	Job Reference (optional)	152223728		

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries. Inc. Fri May 27 11:41:25 ID:ifG_WZnxWFZvvYeQQWhVIryEMnq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	тс	0.76	Vert(LL)	-0.44	5-6	>359	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.97	Vert(CT)	-0.77	5-6	>207	180	MT20HS	187/143
TCDL	10.0	Rep Stress Incr	YES	WB	0.23	Horz(CT)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 103 lb	FT = 20%

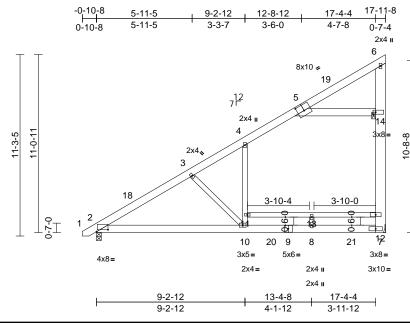
13-6-0

- TOP CHORD 2x4 SP No.2 2x6 SP No.2 BOT CHORD 2x4 SP No.3 *Except* 6-1:2x4 SP No.2 WEBS BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 2-2-0 oc bracing. WEBS 1 Row at midpt 2-6, 2-5 5=528/0-3-8, 6=528/0-3-8 REACTIONS (lb/size) Max Horiz 6=279 (LC 11) Max Uplift 5=-101 (LC 14), 6=-40 (LC 14) Max Grav 5=665 (LC 23), 6=604 (LC 23) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-464/96, 2-3=-202/115, 3-4=-181/173, 4-5=-150/128, 1-6=-373/104 BOT CHORD 5-6=-157/397 WEBS 3-5=-181/127. 2-6=-183/186. 2-5=-403/227 NOTES
- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 2-1-7 to 5-1-7, Interior (1) 5-1-7 to 10-8-5, Exterior(2R) 10-8-5 to 13-8-5, Exterior (2E) 13-8-5 to 15-3-15 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.

- 6) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 7) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf
- 8) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 5 and 6. This connection is for uplift only and does not consider lateral forces.
- This truss is designed in accordance with the 2018 9) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

\cap VIIIIIIIII SEAL 036322 G mmm May 30,2022

Page: 1



Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 137 FaNC	
22050115	E01	Monopitch	9	1	Job Reference (optional)	152223729

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Fri May 27 11:41:25 ID:ffZIL62A0Cf9NXbPWMZuymyEMmC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

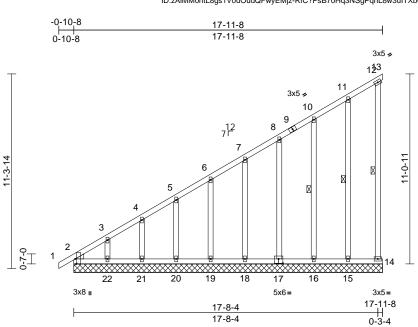
Page: 1

Plate Offsets (X, Y): [2:0-8-8,0-1-7], [5:0-5-0,0-4-8], [14:0-2-0,0-1-8]

	(,,, ,). [2:0 0 0;0 : .];	[0:0 0 0;0 : 0]; [: ::0	2 0,0 : 0	1									
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MSH	0.60 0.71 0.96	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.40 -0.84 0.01	(loc) 10-17 8-10 7	l/defl >529 >253 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 163 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD JOINTS REACTIONS FORCES TOP CHORD BOT CHORD WEBS	2.0E 2x6 SP No.2 2x4 SP No.3 *Except 6-7:2x8 SP 2400F 2. Structural wood shea 6-0-0 oc purlins. Rigid ceiling directly bracing. 1 Brace at Jt(s): 14 (lb/size) 2=796/0-3 Max Horiz 2=390 (LC Max Uplift 7=-72 (LC Max Grav 2=821 (LC (lb) - Maximum Comp Tension 1-2=0/20, 2-3=-1111, 4-6=-280/1076	 * 5-14:2x6 SP No.2, 0E athing directly applied applied or 10-0-0 oc -8, 7=857/ Mechanic 14) 21), 7=1018 (LC 21 pression/Maximum /0, 3-4=-748/0, =-34/304, 7-8=-34/30 1=0/793, 4-11=0/829 -29/76, 8-13=0/70, 2=-823/184, 	3) 4) for 5) 6) al 7)) 8) 9) 9) 2, 10	Plate DOL=1 DOL=1.15); Cs=1.00; Ct: Unbalanced design. This truss ha load of 12.0 overhangs n 200.0lb AC uf from left end This truss ha chord live loa * This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and ar Refer to gird Provide mec bearing plate 7.) This truss is International	snow loads have b as been designed f psf or 1.00 times fl on-concurrent with unit load placed on l, supported at two as been designed fad nonconcurrent to as been designed m chord in all areas by 2-00-00 wide wi hy other members. er(s) for truss to tru- thanical connection e capable of withstand designed in accord Residential Code nd referenced star	Lum DC B; Fully been col or great at roof I other li the bot points, or a 10. with any for a liv s where II fit betv uss conn (by oth anding 7 dance w sections	DL=1.15 Plate Exp.; Ce=0.1 hsidered for t er of min rool bad of 20.0 p ve loads. om chord, 12 5-0-0 apart. D psf bottom other live loa e load of 20.1 a rectangle veen the bott hections. ers) of truss i '2 lb uplift at j ith the 2018 s R502.11.1 a	e 9; his f live ssf on 3-4-8 ads. 0psf com to				HTH CA	ROMAN
Vasd=103 Cat. II; Ex zone and 2-3-15 to cantilever for member	CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; BC p B; Enclosed; MWFRS C-C Exterior(2E) -0-8-1 14-7-14, Exterior(2E) 1: left exposed ; end verti ers and forces & MWFF POL=1.60 plate grip DOI	CDL=6.0psf; h=25ft; 5 (envelope) exterior 1 to 2-3-15, Interior (1 4-7-14 to 17-7-14 zo ical left exposed;C-C RS for reactions shov) ne;									SEA 0363	• •

Scale = 1:71.6

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

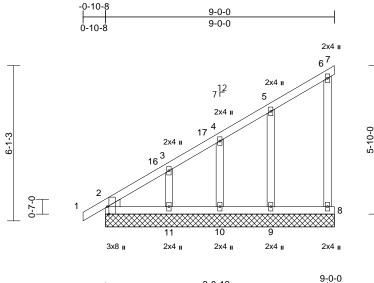


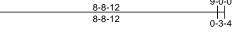
G١ 100000 May 30,2022

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 137 FaNC	
22050115	E02	Monopitch Supported Gable	1	1	Job Reference (optional)	152223730

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Fri May 27 11:41:26 ID:zAiMM0ntL8gs1V0uOudQFwyEMjz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

818 Soundside Road Edenton, NC 27932


Diata Offacta (X. V):	[2:0.2.9 Edge] [17:0.2.0.0.2.0]
Figure Offsets (Λ, T) .	[2:0-3-8,Edge], [17:0-3-0,0-3-0]


Plate Olisets (X, Y): [2:0-3-8,Edge],	[17.0-3-0,0-3-0]			-		
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES RC2018/TPI2014	CSI TC 0.82 BC 0.35 WB 0.14 Matrix-MSH	Vert(CT) n/a Horz(CT) -0.07	a - n/a 999 a - n/a 999 I 13 n/a n/a	MT20 244/190 Weight: 138 lb FT = 20%
	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt (lb/size) 2=129/17 14=57/17 16=162/1 18=159/1 20=160/1 22=161/1 Max Horiz 2=386 (LC Max Uplift 2=-74 (LC 14=-269 (16=-44 (L 20=-54 (L 22=-109 (Max Grav 2=226 (LC 14=237 (L 18=236 (L 18=167 (L 20=168 (L	applied or 6-0-0 oc 12-14, 11-15, 10-16 -11-8, 13=14/17-11-8, -11-8, 15=162/17-11-8, 7-11-8, 17=160/17-11-5 7-11-8, 23=129/17-11-5 (C 13), 23=386 (LC 13) -10), 13=-138 (LC 14), LC 13), 15=-71 (LC 14), C 14), 17=-54 (LC 14), C 14), 12=-50 (LC 14), LC 14), 21=-37 (LC 14), LC 14), 21=-37 (LC 14), C 14), 13=184 (LC 13), .C 10), 15=240 (LC 21), .C 24), 19=166 (LC 24), C 24), 21=160 (LC 24), .C 24), 23=226 (LC 25)	BOT CHORD WEBS 1) Wind: ASC Vasd=103n Cat. II; Exp 3, Cat. II; Exp 4, Cat. II; Exp 5, Cat. II; Exp 6, Cat. II; Exp 7, Cat. II; Exp 7, Cat. II; Exp 7, Cat. II; Exp 8, Cat. II; Exp 8, Cat. II; Exp 9, Cat. II;	1-2=0/26, 2-3=-344/223, 3 4-5=-282/181, 5-6=-254/1 7-8=-217/139, 8-10=-202 10-11=-197/155, 11-12=- 12-13=-136/111, 12-14=- 2-22=-189/187, 21-22=-1 20-21=-153/187, 19-20=- 18-19=-153/187, 16-18=- 15-16=-153/186, 14-15=- 11-15=-200/85, 10-16=-1 8-17=-133/82, 7-18=-127, 5-20=-127/86, 4-21=-125, E 7-16; Vult=130mph (3-se ph; TCDL=6.0psf; BCDL= B; Enclosed; MWFRS (en -C Corner(3E) -0-10-8 to 1 r-11-8 zone; cantilever left nd vertical left and right ex nd forces & MWFRS for re L=1.60 plate grip DOL=1.6 gned for wind loads in the ualified building designer r E 7-16; PT=20.0 psf (roof L 1.15); Pf=20.0 psf (cof L as been designed for great Psf or 1.00 times flat roof non-concurrent with other re 2x4 MT20 unless otherw res continuous bottom cho s spaced at 2-0-0 oc.	63, 6-7=-231/145, 134, 137/145, 230/182 33/187, 153/187, 153/187, 153/187, 153/186 66/110, 86, 6-19=-126/85, 82, 3-22=-134/105 cond gust) 6.0psf; h=25ft; velope) exterior -11-8, Exterior(2N) and right posed;C-C for actions shown; 50 Dane of the truss nal to the face), ails as applicable, as per ANSI/TPI 1. L: Lum DOL=1.15 OL=1.15 Plate y Exp.; Ce=0.9; unsidered for this ter of min roof live load of 20.0 psf on ive loads. rise indicated.	chord live load nd 10) * This truss has b on the bottom ch- 3-06-00 tall by 2- chord and any oti 11) Bearing at joint(s using ANSI/TPI 1 designer should v 12) Provide mechanic bearing plate cap 2, 138 lb uplift at uplift at joint 15, 4 17, 50 lb uplift at uplift at joint 20, 3 joint 22 and 74 lb 13) This truss is desil International Res R802.10.2 and re LOAD CASE(S) Sta) 13 considers parallel to grain value angle to grain formula. Building verify capacity of bearing surface. cal connection (by others) of truss to vable of withstanding 74 lb uplift at joint joint 13, 269 lb uplift at joint 14, 71 lb 14 lb uplift at joint 16, 54 lb uplift at joint joint 18, 50 lb uplift at joint 19, 54 lb 87 lb uplift at joint 21, 109 lb uplift at uplift at joint 2. gned in accordance with the 2018 idential Code sections R502.11.1 and ferenced standard ANSI/TPI 1.

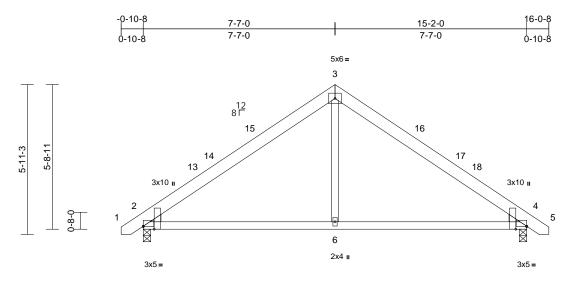
Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 137 FaNC	
22050115	E03	Monopitch Supported Gable	1	1	Job Reference (optional)	152223731

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Fri May 27 11:41:26 ID:J7VFPjr0AgI98GvrASDby_yEMju-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:45.3 Plate Offsets (X, Y): [2:0-3-8.Edge]

Plate Offsets (.	X, Y): [2:0-3-8,Edge]				-								
Loading TCLL (roof) Snow (Pf) TCDL BCLL	(psf) 20.0 20.0 10.0 0.0*	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 /ES RC2018/TF	212014	CSI TC BC WB Matrix-MSH	0.34 0.10 0.08	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0	Code	KC2010/11	12014								Weight: 51 lb	FT = 20%
	6-0-0 oc purlins, ex Rigid ceiling directly bracing. (Ib/size) 2=146/9- 8=102/9- 10=142/9 12=146/9 Max Horiz 2=199 (L Max Uplift 2=-17 (L 8=-77 (L 10=-37 (L 12=-17 (L 8=-17 (L 8=-166 (L 10=194 (v applied or 10-0-0 oc 0-0, 7=-9/9-0-0, 0-0, 9=188/9-0-0, 0-0-0, 11=197/9-0-0, 0-0-0 C 13), 12=199 (LC 13) C 10), 7=-47 (LC 10), C 13), 9=-62 (LC 14), C 14), 11=-88 (LC 14), C 10) C 25), 7=59 (LC 13), C 21), 9=279 (LC 24), LC 21), 11=219 (LC 24)	v; C zc er fo D T or 2) T or 3) T Pl D C C 4) U da 5) Ti lo o 6) Al 7) G	asd=103mp at. II; Exp E one and C-(-1-8 to 9-0-1 nd vertical I rces & MW OL=1.60 pl russ design hy. For stu ee Standarc consult qu CLL: ASCE late DOL=1 OL=1.15; I oL=1.15; I nbalanced esign. his truss ha ad of 12.0 l verhangs n Il plates are able require	7-16; Vult=130mp bh; TCDL=6.0psf; I bh; TCDL=6.0psf; I S; Enclosed; MWFI C Corner(3E) -0-10 0 zone; cantilever eft and right expos (FRS for reactions ate grip DOL=1.60 ched for wind loads ids exposed to wind d Industry Gable E ialified building des :7-16; Pr=20.0 psf (15); Pf=20.0	BCDL=6 RS (env 2-8 to 2- left and sed;C-C shown;) in the p ad (norm nd Deta signer a: (roof LL Lum DC B; Fully been cor or great at roof lu o ther lin o ther lin o ther vio	.0psf; h=25ft; elope) exterio 1-8, Exterior(2 inght exposed for members Lumber lane of the tru al to the face) ils as applicat s per ANSI/TF .: Lum DOL=1 DL=1.15 Plate Exp.; Ce=0.9 isidered for th er of min roof pad of 20.0 ps re loads. se indicated.	2N) ; and ss , ole, , 11. .15 ; is	LOAD	CASE(S) Sta	ndard	NRC IN
FORCES	12=169 ((Ib) - Maximum Con Tension 1-2=0/26, 2-3=-162	npression/Maximum /112, 3-4=-129/83,	ch 10) * ⁻	 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 							No. No.		
BOT CHORD WEBS NOTES	8-9=-83/109	96/83, 6-7=-47/34, 1=-83/109, 9-10=-83/10 1=-150/154, 5-9=-231/1	06-00 tall b nord and ar rovide mec earing plate 47 lb uplift i joint 10, 88	by 2-00-00 wide wi ny other members. hanical connection capable of withsta at joint 7, 77 lb up 8 lb uplift at joint 1	II fit betw n (by oth anding 1 blift at joi	veen the botto ers) of truss to 7 lb uplift at jo nt 8, 37 lb upl	o pint ift		111111		SEA 0363	• •	
			12) Ti In	his truss is ternational	lift at joint 2. designed in accord Residential Code nd referenced stan	sections	R502.11.1 a	nd				111111	ALBERTIN W 30 2022


818 Soundside Road Edenton, NC 27932

May 30,2022

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 137 FaNC	
22050115	F01	Common	8	1	Job Reference (optional)	152223732

Scale = 1:45.6

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Fri May 27 11:41:26 ID:DKKz13pSYN8H07UkHE90r_yANSE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

L	7-7-0	15-2-0
	7-7-0	7-7-0

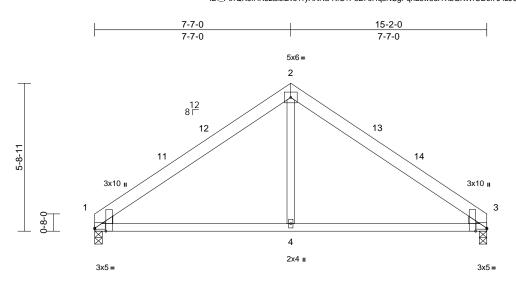
Plate Offsets (X, Y): [2:Edge,0-0-3], [2:0-1-6,Edge], [4:Edge,0-0-3], [4:0-1-6,Edge]

Loading	(psf)	Spacing	2-0-0		CSI	0.50	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL Lumber DOL	1.15 1.15		TC BC	0.53	Vert(LL) Vert(CT)	-0.07	6-9	>999	240 180	MT20	244/190
Snow (Pf) TCDL	20.0 10.0	Rep Stress Incr	YES		WB	0.48 0.12	Horz(CT)	-0.13 0.02	6-9 2	>999 n/a	n/a		
BCLL	0.0*	Code		3/TPI2014	Matrix-MSH	0.12		0.02	2	n/a	n/a		
BCDL	10.0	Code	INCZUIE	0/1F12014	Matrix-MOT							Weight: 79 lb	FT = 20%
		•	3)	TCLL: ASCE	7-16; Pr=20.0 psf	(roof LL	: Lum DOL=	1.15					
	x6 SP No.2		-,		.15); Pf=20.0 psf (
BOT CHORD 2	x4 SP No.2			DOL=1.15); I	s=1.0; Rough Cat	B; Fully	Exp.; Ce=0.9	Э;					
WEBS 22	x4 SP No.3			Cs=1.00; Ct=									
WEDGE L	eft: 2x4 SP No.3		4)		snow loads have b	een cor	nsidered for the	his					
R	light: 2x4 SP No.3			design.									
BRACING			5)		s been designed fo								
		athing directly applie	d or		osf or 1.00 times flag			sron					
	-0-0 oc purlins.		6)	•	on-concurrent with s been designed for								
		applied or 10-0-0 oc	0)		id nonconcurrent v			de					
	racing.		7)		as been designed								
,	,	3-8, 4=648/0-3-8	• • • •		n chord in all areas			op0.					
	ax Horiz 2=-129 (L	,			y 2-00-00 wide wil			om					
		(LC 15) 4=-65 (LC 15)		chord and an	y other members.								
	· · ·	C 21), 4=718 (LC 22)	8)	One H2.5A S	impson Strong-Tie	e conne	ctors						
		pression/Maximum			d to connect truss								
	ension				s) 2 and 4. This co		n is for uplift o	only					
	-2=0/23, 2-3=-731/ [.] -5=0/23	123, 3-4=-731/123,	•		consider lateral fo								
	-5=0/23 -6=-73/518, 4-6=-22	0/510	9)		designed in accord Residential Code			اممر					
	-6=73/318, 4-6=-2. -6=0/310	2/310			nd referenced stan			ina				SALLE.	1.1.1
	-0=0/310						1 01/1111.					1111 CA	
NOTES	oof live loade hour	hoop considered for	LC	AD CASE(S)	Stanuaru						1	TH CA	NOIL
1) Unbalanced r	our live loads have	been considered for									15	n'iiico	De Main

this design. 2)

Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-8-3 to 2-3-13, Interior (1) 2-3-13 to 4-7-0, Exterior(2R) 4-7-0 to 10-7-0, Interior (1) 10-7-0 to 12-10-3, Exterior(2E) 12-10-3 to 15-10-3 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Vanananan SEAL 036322 G mmm May 30,2022


VIIIIIIIIIIII

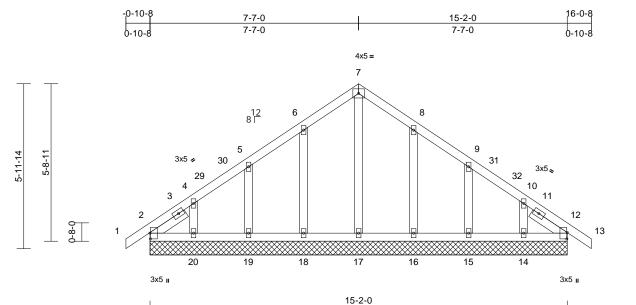
Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 137 FaNC	
22050115	F02	Common	4	1	Job Reference (optional)	152223733

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Fri May 27 11:41:26 ID:_PtrrQKofHRJ2aiol2vsYryANRa-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

_______Scale = 1:44.6 Plate Offsets (X, Y): [1:Edge,0-0-7], [1:0-1-6,Edge], [3:Edge,0-0-7], [3:0-1-6,Edge]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.53	Vert(LL)	-0.07	4-10	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.48	Vert(CT)	-0.13	4-10	>999	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.12	Horz(CT)	0.02	1	n/a	n/a		
BCLL	0.0*	Code	IRC201	8/TPI2014	Matrix-MSH								
BCDL	10.0					-		-		-		Weight: 75 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE	2x6 SP No.2 2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3		3) 4)	Plate DOL= DOL=1.15); Cs=1.00; Ct Unbalanced	E 7-16; Pr=20.0 μ 1.15); Pf=20.0 ps Is=1.0; Rough C =1.10 snow loads have	f (Lum DC at B; Fully	DL=1.15 Plate Exp.; Ce=0.9	e 9;					
BRACING TOP CHORD BOT CHORD REACTIONS FORCES	ACING Structural wood sheathing directly applied or 6-0-0 oc purlins. 5) This tructural choice P CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. 6) * This T CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. 6) * This ACTIONS (lb/size) 1=607/0-3-8, 3=607/0-3-8 7) One H recoming Max Horiz 1=-119 (LC 10) Max Uplift 1=-51 (LC 14), 3=-51 (LC 15) Max Grav 1=677 (LC 20), 3=677 (LC 21) and do				as been designer ad nonconcurrer has been design m chord in all are by 2-00-00 wide ny other member Simpson Strong- ed to connect tru (s) 1 and 3. This it consider latera designed in acc	at with any ed for a liv eas where will fit betw rs. Tie conne ss to bear connectio I forces. ordance w	other live loa e load of 20.0 a rectangle veen the both ctors ing walls due n is for uplift ith the 2018	Opsf om to only					
TOP CHORD BOT CHORD WEBS	Tension 1-2=-733/125, 2-3=- 1-4=-92/520, 3-4=-5 2-4=0/311		L		Residential Coo nd referenced st Standard			and				201111	11.5
NOTES 1) Unbalance this design	ed roof live loads have										11	WITH CA	ROUT


2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 4-7-0, Exterior(2R) 4-7-0 to 10-7-0, Interior (1) 10-7-0 to 12-2-0, Exterior(2E) 12-2-0 to 15-2-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 SEAL 036322 MGINEER May 30,2022

> 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 137 FaNC	
22050115	F03	Common Supported Gable	1	1	Job Reference (optional)	152223734

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Fri May 27 11:41:27 ID:pZE65TPZE7BTmV9y5J0Hn6yANRU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

					13	5-2-0						
Scale = 1:41.9												
Plate Offsets (2	X, Y): [2:0-2-8,0-0-3]	, [12:0-2-13,0-0-3]										
Loading FCLL (roof) Snow (Pf) FCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MSH	0.08 0.03 0.07	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 12	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 88 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD DTHERS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left 2x4 SP No.3 1-6-0 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (lb/size) 2=127/15 14=131/1	ed or NOTES 1) Unbalance this design 2) Wind: AS(Vasd=103 0, Cat. II; Ex	17-18=-41/115, 16-17=-41/115, 15-16=-41/115, 14-15=-41/115, 12-14=-41/115, 7-17=-108/6, 6-18=-212/99, 5-19=-180/103, 4-20=-117/110, 8-16=-212/99, 9-15=-180/103, 10-14=-111/110 nced roof live loads have been considered for					 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads 11) * This truss has been designed for a live load of 20.0p on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 34 lb uplift at join 2, 2 lb uplift at joint 12, 59 lb uplift at joint 18, 54 lb uplift at joint 19, 78 lb uplift at joint 20, 58 lb uplift at joint 16 55 lb uplift at joint 15, 71 lb uplift at joint 14, 34 lb uplift at joint 2 and 2 lb uplift at joint 12. 13) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 12, 25. 				
	18=160/1		0, 2-1-8 to 4 0, 10-7-0 to cantilever 12) right expo	C-C Corner(3E) -0-10-8 to 2-1-8, Exterior(2N) 7-0, Corner(3R) 4-7-0 to 10-7-0, Exterior(2N) 3-0-8, Corner(3E) 13-0-8 to 16-0-8 zone; eft and right exposed ; end vertical left and ed;C-C for members and forces & MWFRS to schoure; Lumber DOL =1.60 ploto grip			Ínte	rnationa)2.10.2	al Resid and ref	dential Code sec ferenced standar	ice with the 2018 ctions R502.11.1 and rd ANSI/TPI 1.	

FORCES	$\begin{array}{c} 16{=}160/15{-}2{-}0,\ 17{=}125/15{-}2{-}0, \\ 18{=}160/15{-}2{-}0,\ 9{=}158/15{-}2{-}0, \\ 20{=}131/15{-}2{-}0,\ 21{=}127/15{-}2{-}0, \\ 25{=}127/15{-}2{-}0 \\ \mbox{Max Horiz} \ 2{=}{-}128\ (LC\ 12),\ 21{=}{-}128\ (LC\ 12) \\ \mbox{Max Uplift} \ 2{=}{-}34\ (LC\ 10),\ 12{=}{-}2\ (LC\ 11), \\ 14{=}{-}71\ (LC\ 15),\ 15{=}{-}55\ (LC\ 15), \\ 16{=}{-}58\ (LC\ 15),\ 18{=}{-}59\ (LC\ 14), \\ 21{=}{-}34\ (LC\ 10),\ 25{=}{-}2\ (LC\ 11) \\ \mbox{Max Grav} \ 2{=}139\ (LC\ 25),\ 12{=}129\ (LC\ 22), \\ 14{=}150\ (LC\ 25),\ 15{=}219\ (LC\ 22), \\ 16{=}251\ (LC\ 22),\ 17{=}146\ (LC\ 27), \\ 18{=}251\ (LC\ 24),\ 21{=}139\ (LC\ 25), \\ 25{=}129\ (LC\ 22) \\ \mbox{(lb)} - \mbox{Maximum Compression/Maximum Tension} \\ \end{array}$	 zone and C-C Corner(3E) -0-10-8 to 2-1-8, Exterior(2N) 2-1-8 to 4-7-0, Corner(3R) 4-7-0 to 10-7-0, Exterior(2N) 10-7-0 to 13-0-8, Corner(3E) 13-0-8 to 160-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) TCLL: ASCE 7-16; Pr=20.0 psf (toof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (toof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (toof LL: Lum DOL=1.15 Plate GoL=1.10). 6) This truss has been designed for greater of min roof live
FORCES		6) This truss has been designed for greater of min roof live
TOP CHORD	1-2=0/28, 2-4=-105/97, 4-5=-91/72, 5-6=-81/87, 6-7=-82/154, 7-8=-82/154, 8-9=-72/87, 9-10=-58/31, 10-12=-71/49, 12-13=0/28	 load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 7) All plates are 2x4 MT20 unless otherwise indicated. 8) Gable requires continuous bottom chord bearing. 9) Gable studs spaced at 2-0-0 oc.

818 Soundside Road Edenton, NC 27932

May 30,2022

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 137 FaNC	
22050115	H01	Common Supported Gable	1	1	Job Reference (optional)	152223735

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Fri May 27 11:41:27

Page: 1

ID:CRocOjIrDL5mi6p9PQuWV_yEMjI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -0-10-8 0-10-8 12-11-8 6-0-8 12-1-0 6-0-8 6-0-8 4x5 = 5 \wedge 1<u>2</u> 12 Г 6 4 6-10-12 3 7 8 2 Q-10-4 9

/16 \boxtimes X 15 13 14 12 11 3x8 II 3x8 II 12-1-0

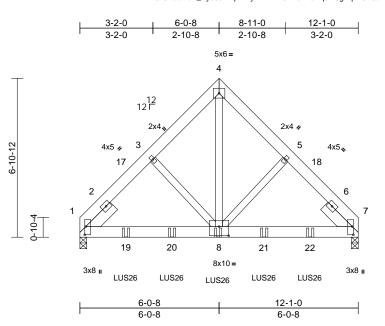
Scale = 1:45 Plate Offsets (X, Y): [10:0-4-12,0-1-8], [16:0-4-12,0-1-8]

7-3-15

Plate Offsets (X, Y): [10:0-4-1]	2,0-1-8	3], [16:0-4-12,0-1-8]											
Loading TCLL (roof) Snow (Pf) TCDL BCLL	20 20 10	osf) 0.0 0.0 0.0 0.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-MR	0.11 0.07 0.20	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 10	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL	10	0.0					-						Weight: 78 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 6-0-0 oc bracing.				Cat. II; Exp f zone and C- 2-0-8 to 3-0- 9-0-8 to 9-11 cantilever lef right expose for reactions DOL=1.60) Truss desig only. For str see Standar or consult qu) TCLL: ASCE Plate DOL= DOL=1.15); Cs=1.00; Ct:) Unbalanced design.	6.0psf; h=25ft; elope) exterior 0-8, Exterior(2N -8, Exterior(2N 2-11-8 zone; vertical left and rcces & MWFR 0 plate grip lane of the tru al to the face) ils as applicat s per ANSI/TF u=1.15 Plate Exp.; Ce=0.9 nsidered for th er of min roof poad of 20.0 ps	r 2N) J S S ss , ple, 11. .15 ; is	 13) Provide mechanical connection (by others) of truss bearing plate capable of withstanding 68 lb uplift at 16, 49 lb uplift at joint 10, 88 lb uplift at joint 14, 14 uplift at joint 15, 89 lb uplift at joint 12 and 143 lb u joint 11. 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard 						
FORCES	(Ib) - Maximum Compression/Maximum 7) All plates are 2x4 MT20 u											- SI	ORTHO	
TOP CHORD	3-4=-111/122,	4-5=-1	/43, 2-3=-125/113, 95/227, 5-6=-195/223 05/90, 8-9=0/43,	7,	9) Truss to be fully sheathed from one face or securely						4	>>		A T
BOT CHORD	DRD 15-16=-84/102, 14-15=-84/102, cho 13-14=-84/102, 12-13=-84/102, 12) * Tł 11-12=-84/102, 12) * Tł 5-13=-253/154, 4-14=-246/125, 3-0 3-0					 (able studies paced at 2-0-0 cc. (a) Gable studies paced at 2-0-0 cc. (b) Gable studies paced at 2-0-0 cc. (c) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. (c) * This truss has been designed for a live load of 20.0 psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 								• -
	3-15=-188/150 7-11=-188/150), 6-12				ny other members						in s	S ENGIN	EEP ALL

NOTES

Unbalanced roof live loads have been considered for 1) this design.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A. GILBERT May 30,2022

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 137 FaNC	
22050115	H02	Common Girder	1	2	Job Reference (optional)	152223736

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Fri May 27 11:41:27 ID:1shJDaaHoP_Vye3aFmpvwryEMix-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

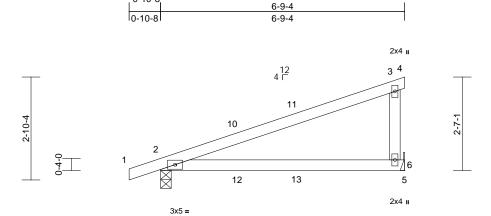
Scale = 1:50

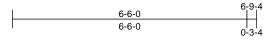
Plate Offsets (X, Y): [1:0-4-4,0-0-8], [7:0-4-4,0-0-8], [8:0-5-0,0-4-12]

	(,,,,), [, ,,,,,,,],			-1									
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.25 0.86 0.72	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.04 -0.08 0.01	(loc) 8-15 8-15 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 196 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x6 SP No.2 2x4 SP No.3 Left 2x6 SP No.2 1-6-0 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing.	athing directly applie applied or 10-0-0 or -3-8, 7=2876/0-3-8 C 35) C 13), 7=-158 (LC 1 -C 22), 7=3146 (LC	5) ed or ; 6) 7) 2) 8)	Vasd=103m Cat. II; Exp II zone; cantille and right exp DOL=1.60 TCLL: ASCE Plate DOL=- DOL=1.15; Cs=1.00; Ct: Unbalanced design. This truss ha chord live loss * This truss I on the botton	7-16; Vult=130m; ph; TCDL=6.0ps; 3; Enclosed; MWF ever left and right e bosed; Lumber DC 57-16; Pr=20.0 psf I.15); Pf=20.0 psf I.15); Pf=20.0 psf Is=1.0; Rough Cat =1.10 snow loads have I ad nonconcurrent has been designed ad nonconcurrent has been designed n chord in all area by 2-00-00 wide w	BCDL=6 RS (env exposed DL=1.60 f (roof LI (Lum DC : B; Fully been cor for a 10. with any d for a liv s where	Copsf; h=25ft elope) exteric g end vertical olate grip ∴ Lum DOL= L=1.15 Plate Exp.; Ce=0.9 asidered for th O psf bottom other live loa e load of 20.0 a rectangle	or left 1.15 9; his dds. Opsf		Vert: 8= (B), 22=			20=-967 (B), 21=-967
 (0.131"x3' Top chord staggered Bottom ch staggered Web conn 2) All loads a except if m CASE(S) provided t unless oth 	4-5=-2790/224, 5-7= 1-8=-155/2179, 7-8= 4-8=-231/3681, 5-8= s to be connected toge ") nails as follows: ts connected as follows: at 0-9-0 oc. hords connected as follows: at 0-9-0 oc. hereted as follows: 2x4 - are considered equally hoted as front (F) or ba section. Ply to ply comr to distribute only loads herwise indicated. ed roof live loads have	10 11 12 12 12 14 10 10	One H2.5A S recommende UPLIFT at jt and does no)) This truss is International R802.10.2 a)) Use Simpso Truss) or eq 2-0-0 from th back face of 2) Fill all nail ho DAD CASE(S) Dead + Sm Increase=1 Uniform Lo Vert: 1-4	ow (balanced): Lui .15	e conne s to bear onnectio orces. dance w sections ndard AN 26 (4-10c 2-0-0 oc 0 to con is in cor mber Inc	ing walls due n is for uplift R502.11.1 a ISI/TPI 1. Girder, 4-10 max. startin nect truss(es	only and g at) to ber.		Awaran		in the second se	ER A LU	

May 30,2022

Page: 1


Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 137 FaNC	
22050115	M01	Monopitch	4	1	Job Reference (optional)	152223737


-0-10-8

Carter Components (Sanford), Sanford, NC - 27332,

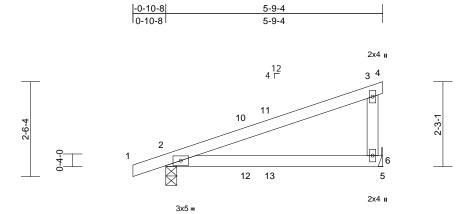
Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Fri May 27 11:41:28 ID:dq31jByjVxu5APxXZmsAhNyEMiS-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

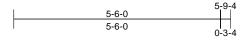
Scale = 1:32

		i			· · · · ·		i					i	
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.92	Vert(LL)	0.30	6-9	>258	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.73	Vert(CT)	-0.25	6-9	>315	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.00	Horz(CT)	0.00	2	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2	014	Matrix-MP								
BCDL	10.0											Weight: 25 lb	FT = 20%
LUMBER			5) This	truss ha	s been designed f	for a 10.	0 psf bottom						
TOP CHORD	2x4 SP No.2				ad nonconcurrent								
BOT CHORD					as been designed			0psf					
WEBS	2x4 SP No.3				n chord in all area by 2-00-00 wide wi								
BRACING			ahay		ly other members.		veen the bott	om					
TOP CHORD	Structural wood she 2-2-0 oc purlins, ex				er(s) for truss to tr		nections.						
BOT CHORD					hanical connection			to					
BOT ONORD	bracing.		bear		capable of withst	anding 1	05 lb uplift a	t					
REACTIONS	(lb/size) 2=316/0-3	3-8, 6=279/ Mechani	ical 9) One		Simpson Strong-Ti	0 00000	otoro						
	Max Horiz 2=95 (LC		, reco		ed to connect truss			to					
	Max Uplift 2=-125 (L		⁰⁾ UPI		s) 2. This connect								
	Max Grav 2=410 (L0		, uue.		sider lateral force								
FORCES	(Ib) - Maximum Com	pression/Maximum			designed in accor								
TOP CHORD	Tension 1-2=0/17, 2-3=-177/	205 3-18/0			Residential Code			and					
	3-6=-273/208	200, 0-40/0,			nd referenced star	iuaru Ar	NGI/TELT.						
BOT CHORD		0/0	LUAD C	ASE(S)	Standard								
NOTES													
1) Wind: AS	CE 7-16; Vult=130mph	(3-second gust)											
Vasd=103	Smph; TCDL=6.0psf; B	CDL=6.0psf; h=25ft;											
	p B; Enclosed; MWFR											minin	11111
	C-C Exterior(2E) -0-10 -9-4, Exterior(2E) 3-9-4		(1)									WAH CA	Rolly
	left and right exposed		d								Y	R	State -
	sed; porch left and right									/	53	U.SEF C	Of Jak
	and forces & MWFRS		;							L	A		MAL
	OL=1.60 plate grip DC									-		:4	
	CE 7-16; Pr=20.0 psf (=		SEA	L E
	_=1.15); Pf=20.0 psf (L									=	:	0363	• -
Cs=1.00;	5); Is=1.0; Rough Cat E	s, Fully Exp., Ce=0.9	,							-		0505	22 : 5
	ed snow loads have be	en considered for th	nis									N.	1 E -
design.			-								2.	S.En	-cRik S
	has been designed fo											S, GIN	EFR
	.0 psf or 1.00 times fla		sf on								1	CA C	BEIN
overhangs	s non-concurrent with o	other live loads.										11, A. C	11-111

- 3) Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on 4) overhangs non-concurrent with other live loads.

818 Soundside Road Edenton, NC 27932


GI munn May 30,2022


Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 137 FaNC	
22050115	M02	Monopitch	5	1	Job Reference (optional)	152223738

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Fri May 27 11:41:28 ID: ZUiCigAe1nIPyKuBBGidyOyEMi9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

5-9-4

Scale = 1:30.6

		· · · · · · · · · · · · · · · · · · ·				i					
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in (lo	c) l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.62	Vert(LL) (0.16 6	9 >406	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.54		0.13 6		180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT) (0.00	2 n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI201	4 Matrix-MP							
BCDL	10.0									Weight: 22 lb	FT = 20%
LUMBER				uss has been designed							
TOP CHORD	2x4 SP No.2			ive load nonconcurren							
BOT CHORD				russ has been designe			f				
WEBS	2x4 SP No.3			bottom chord in all are							
BRACING			مامعما) tall by 2-00-00 wide and any other member		ween the bottom					
TOP CHORD	Structural wood she 5-9-4 oc purlins, ex			o girder(s) for truss to		nections.					
BOT CHORD	Rigid ceiling directly		c 8) Provid	e mechanical connecti	on (by oth	ners) of truss to					
	bracing.		6	g plate capable of with	stanuing a	be in uplin at join	L				
REACTIONS	(Ib/size) 2=276/0-3 Max Horiz 2=82 (LC	3-8, 6=238/ Mechan	9) One H	2.5A Simpson Strong-							
	Max Uplift 2=-111 (L			nended to connect tru							
	Max Grav 2=383 (L0		UPLIF	Γ at jt(s) 2. This conne ot consider lateral forc		r uplift only and					
FORCES	(lb) - Maximum Corr		, uues n	iss is designed in acco		ith the 2018					
	Tension			tional Residential Cod							
TOP CHORD		176, 3-4=-8/0,	R802.1	0.2 and referenced sta	andard Al	NSI/TPI 1.					
DOT OUODD	3-6=-232/187	2/0	LOAD CAS	SE(S) Standard							
BOT CHORD	2-6=-181/122, 5-6=0	0/0									
NOTES	CE 7-16; Vult=130mph	(2 accord such)									
	Bmph; TCDL=6.0psf; B										
	p B; Enclosed; MWFR									ORTH CA	11
	C-C Exterior(2E) -0-10									1111 C	ND 111
	-9-4, Exterior(2E) 2-9-4									N'ATH UN	NON IN
	left and right exposed		ld						15	OVEESS	Nº 1
	sed; porch left and right							1	25		N. T.
	and forces & MWFRS OL=1.60 plate grip DC		l,							·0-	2.
	CE 7-16; Pr=20.0 psf (1 15								n 1 E
	_=1.15); Pf=20.0 psf (L									SEA	
	5); Is=1.0; Rough Cat E									0363	322 : =
Cs=1.00;											1 5
	ed snow loads have be	en considered for the	his						-	SEA 0363	A 1. 3
design.	has been designed fo	r greater of min roof	live						2.5	S. SNGIN	FERRICA
	.0 psf or 1.00 times fla								11	710	allin
	s non-concurrent with									111, A. C	ALPIN
										1111	

- Unbalanced snow loads have been considered for this 3) design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on 4) overhangs non-concurrent with other live loads.

818 Soundside Road Edenton, NC 27932

GI munn May 30,2022

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 137 FaNC	
22050115	M03	Monopitch Supported Gable	1	1	Job Reference (optional)	152223739

2-6-4

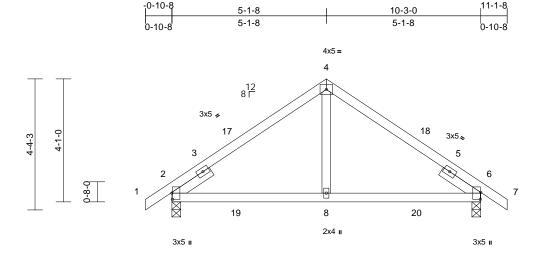
Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Fri May 27 11:41:28 ID:1JGHD_2cgqdt8RQp6gOEGQzpYpn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

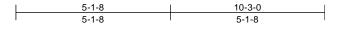
-0-10-8 5-9-4 0-10-8 5-9-4 2x4 u 12 4 Г 4 5 2x4 II P 3 0 2-3-1 2 0-4-0 6 0 a XX 7 3x5 = 2x4 II 2x4 u

Scale = 1:30.6

		1		1							1	
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.24	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.38	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.08	Horz(CT)	0.00	2	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 23 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 5-9-4 oc purlins, ex 	cept end verticals.	Plate DOI DOL=1.1(Cs=1.00; 4) Unbalanc design. 5) This truss load of 12	CE 7-16; Pr=20.0 p =1.15); Pf=20.0 ps ;); Is=1.0; Rough Ca Ct=1.10 ed snow loads have has been designed .0 psf or 1.00 times s non-concurrent wi	f (Lùm DC at B; Fully been co I for great flat roof I	DL=1.15 Plate Exp.; Ce=0.9 Insidered for the er of min roof pad of 20.0 ps); nis live					
BOT CHORD	bracing.	applied or 10-0-0 oc	6) Gable rec	uires continuous bo ds spaced at 2-0-0	ttom cho							
	8=192/5-5 Max Horiz 2=82 (LC Max Uplift 2=-45 (LC 8=-45 (LC Max Grav 2=268 (LC	11), 8=82 (LC 11) C 10), 7=-40 (LC 14), C 10)	6=70 (LC (LC (LC) (LC) (LC) (LC) (LC) (LC) (has been designed load nonconcurren s has been designe tom chord in all are Il by 2-00-00 wide v any other member echanical connection ate capable of withs lift at joint 7 and 45	t with any ed for a liv as where will fit bety s. on (by oth standing 4	other live loa re load of 20.0 a rectangle veen the botto ers) of truss t I5 lb uplift at j)psf om o					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	11) This truss	is designed in acco	ordance w	ith the 2018						
TOP CHORD	0 1-2=0/25, 2-3=-78/5 4-6=0/68			nal Residential Cod 2 and referenced sta S) Standard			nd				IN TH CA	ROUL
WEBS	3-7=-334/271	/40								5	R	
NOTES	0.1-00.0201									K	O'.FESS	Chilling .
 Wind: AS Vasd=10: Cat. II; E) zone and 2-1-8 to 5 end vertic forces & I DOL=1.6 Truss de only. For see Stand 	SCE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B xp B; Enclosed; MWFR I C-C Corner(3E) -0-10- 5-9-4 zone; cantilever le cal left and right expose MWFRS for reactions s i0 plate grip DOL=1.60 esigned for wind loads in r studs exposed to wind dard Industry Gable En It qualified building desi	CDL=6.0psf; h=25ft; S (envelope) exterior 8 to 2-1-8, Exterior(2 fft and right exposed d;C-C for members hown; Lumber n the plane of the tru I (normal to the face) d Details as applicat	2N) ; and ss , ole,						U annual a		11111	EEP. KIN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601




May 30,2022

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 137 FaNC	
22050115	N01	Common	5	1	Job Reference (optional)	152223740

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Fri May 27 11:41:28 ID:XQfCX9ZIA05r4qJKSttFAOzCJZR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

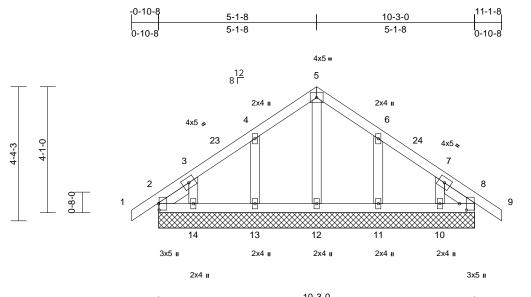
Plate Offsets (X, Y): [2:0-2-8,0-0-3], [6:0-2-13,0-0-3]

Scale = 1:38.2

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.46 0.39 0.09	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.04 -0.05 0.02	(loc) 8-11 8-11 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 47 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left 2x4 SP No.3 1 1-6-0 Structural wood shea 6-0-0 oc purlins. Rigid ceiling directly bracing. (Ib/size) 2=463/0-3 Max Horiz 2=-94 (LC Max Uplift 2=-51 (LC Max Grav 2=566 (LC (Ib) - Maximum Com Tension	athing directly applie applied or 10-0-0 oc 3-8, 6=463/0-3-8 5 12) 5 14), 6=-51 (LC 15) C 21), 6=566 (LC 22)	6) _{ed or} 7) ; 8)	design. This truss ha load of 12.0 overhangs n This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar One H2.5A S recommende UPLIFT at jt(and does no This truss is International	snow loads have t snow loads have t psf or 1.00 times fi on-concurrent with is been designed f ad nonconcurrent v has been designed in chord in all area by 2-00-00 wide wi yy other members. Simpson Strong-Ti ad to connect truss (s) 2 and 6. This co t consider lateral fo designed in accorr Residential Code	for great lat roof l o other li for a 10. with any f for a liv s where a line for a liv s where e conne s to bear connectio orces. dance w sections	er of min roof pad of 20.0 p ve loads. 0 psf bottom other live loa e load of 20.1 a rectangle veen the bott ctors ing walls due n is for uplift ith the 2018 s R502.11.1 a	f live sf on dds. Dpsf om to only					
this desigr	1-2=0/29, 2-4=-453/4 6-7=0/29 2-8=-230/340, 6-8=-2 4-8=-302/221	230/340 been considered for		R802.10.2 a	nd referenced star Standard	idard An	ISI/TPT1.				and the second	OP FES	RALIN

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Exterior(2R) 2-1-8 to 8-1-8, Exterior(2E) 8-1-8 to 11-1-8 zone; cantilever left and right exposed; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10


Vannunning. and the second SEAL 036322 G mmm May 30,2022

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 137 FaNC	
22050115	N02	Common Supported Gable	1	1	Job Reference (optional)	152223741

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Fri May 27 11:41:29 ID:fwx7FbjS60k?8qoqj6clC7zCJZE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

						10-3-0							
Scale = 1:37.4			I							1			
Plate Offsets (X, Y): [2:0-2-8,0-0-3], [8:0-2-8,0-2-11]													
Loading	(psf)	Spacing	1-11-4	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	тс	0.09	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.03	Vert(CT)	n/a	-	n/a	999			
TCDL	10.0	Rep Stress Incr	YES	WB	0.05	Horz(CT)	0.00	8	n/a	n/a			
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH									
BCDL	10.0										Weight: 55 lb	FT = 20%	

1) Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16: Vult=130mph (3-second gust) 2) Left 2x4 SP No.3 -- 1-2-5, Right 2x4 SP No.3 Structural wood sheathing directly applied or

- 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.
- REACTIONS (lb/size) 2=113/10-3-0, 8=113/10-3-0, 10=107/10-3-0, 11=167/10-3-0, 12=122/10-3-0, 13=167/10-3-0, 14=107/10-3-0, 15=113/10-3-0, 19=113/10-3-0 Max Horiz 2=-91 (LC 12), 15=-91 (LC 12) Max Uplift 2=-27 (LC 10), 8=-3 (LC 11), 10=-58 (LC 15), 11=-61 (LC 15), 13=-62 (LC 14), 14=-63 (LC 14), 15=-27 (LC 10), 19=-3 (LC 11) Max Grav 2=114 (LC 25), 8=114 (LC 22), 10=169 (LC 22), 11=258 (LC 22), 12=130 (LC 21), 13=258 (LC 21), 14=169 (LC 21), 15=114 (LC 25), 19=114 (LC 22) FORCES (Ib) - Maximum Compression/Maximum Tension 1-2=0/28, 2-3=-45/54, 3-4=-73/51, TOP CHORD

LUMBER

OTHERS

SLIDER

BRACING

NOTES

TOP CHORD

TOP CHORD

BOT CHORD

2x4 SP No.2

2x4 SP No.2

2x4 SP No.3

-- 1-2-5

4-5=-83/126, 5-6=-83/126, 6-7=-71/40, 7-8=-45/53, 8-9=0/28 BOT CHORD 2-14=-27/101, 13-14=-27/101, 12-13=-27/101, 11-12=-27/101, 10-11=-27/101, 8-10=-27/101 WEBS 5-12=-92/0. 4-13=-218/132. 3-14=-137/122. 6-11=-218/132.7-10=-137/122

- Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 2-1-8, Corner(3R) 2-1-8 to 8-1-8, Corner(3E) 8-1-8 to 11-1-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15
- Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- 5) Unbalanced snow loads have been considered for this desian.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 2-0-0 oc. 8)
- This truss has been designed for a 10.0 psf bottom 9) chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 27 lb uplift at joint 2, 3 lb uplift at joint 8, 62 lb uplift at joint 13, 63 lb uplift at joint 14, 61 lb uplift at joint 11, 58 lb uplift at joint 10, 27 lb uplift at joint 2 and 3 lb uplift at joint 8.

12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 137 FaNC	
22050115	PB1	Piggyback	5	1	Job Reference (optional)	152223742

5-4-3

Spacing

Code

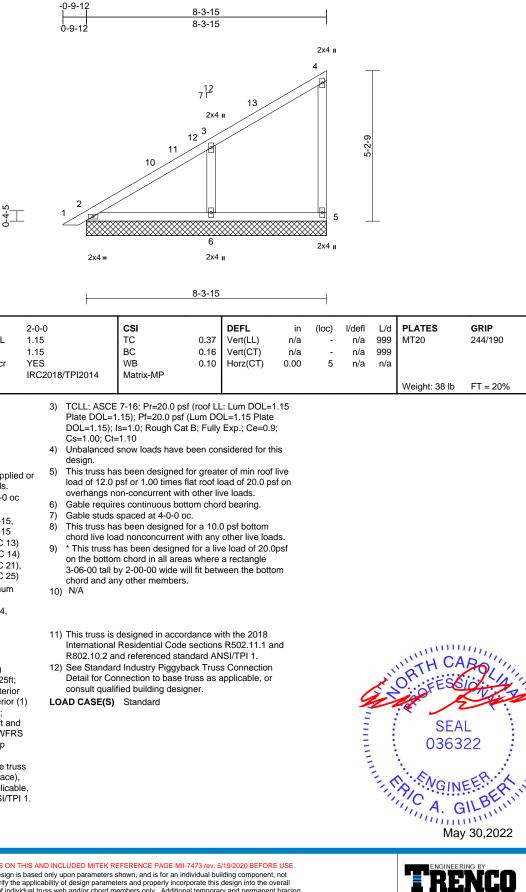
Plate Grip DOL

Rep Stress Incr

Lumber DOL

(psf)

20.0


20.0

10.0

0.0

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Fri May 27 11:41:29 ID:e?IvN3P58Ib?UmZVpHm8vbyAOrr-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Scale = 1:40

Loading

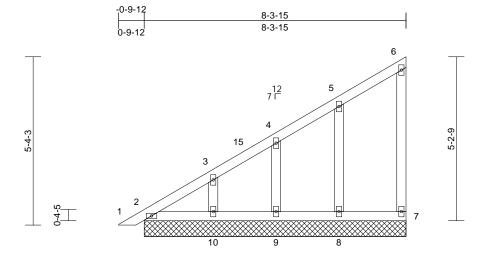
TCLL (roof)

Snow (Pf)

TCDL

BCLL

BCDL		10.0	
LUMBER			
TOP CHORD	2x4 SP N	0.2	
BOT CHORD	2x4 SP N	0.2	
WEBS	2x4 SP N	0.3	
OTHERS	2x4 SP N	0.3	
BRACING			
TOP CHORD			athing directly applied cept end verticals.
BOT CHORD	Rigid ceil bracing.	ing directly	applied or 10-0-0 oc
REACTIONS	(lb/size)		-15, 5=111/8-3-15, -15, 7=169/8-3-15
	Max Horiz	2=177 (LC	C 13), 7=177 (LC 13)
	Max Uplift	5=-26 (LC	11), 6=-117 (LC 14)
	Max Grav		25), 5=174 (LC 21), 21), 7=172 (LC 25)
FORCES	(lb) - Max Tension	imum Com	pression/Maximum
TOP CHORD	1-2=0/16.	2-3=-137/	21, 3-4=-122/64,
	4-5=-149/		, ,
BOT CHORD	2-6=-79/8	86, 5-6=-79/	86
WEBS	3-6=-423/	/192	
NOTES			


- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-3-11 to 3-3-11, Interior (1) 3-3-11 to 4-9-7, Exterior(2R) 4-9-7 to 9-0-5 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

818 Soundside Road Edenton, NC 27932 VIIIIIIIIIII

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 137 FaNC	
22050115	PB2	Piggyback	1	1	Job Reference (optional)	152223743

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Fri May 27 11:41:29 ID:?nh37D5DyVf3CNrG51mGAPyAOqz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

8-3-15

Scale =	1:36.6
---------	--------

3-0-8 to 4-9-7, Exterior(2R) 4-9-7 to 9-0-5 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip

DOL=1.60

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-MP	0.36 0.03 0.07	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 45 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	6-0-0 oc purlins, ex Rigid ceiling directly bracing. (lb/size) 2=104/8- 8=175/8- 10=181/8 Max Horiz 2=171 (L Max Upliff 2=-10 (LC 8=-36 (LC 10=-59 (I Max Grav 2=123 (L	x applied or 10-0-0 oc 3-15, 7=61/8-3-15, 3-15, 9=144/8-3-15, I-3-15, 11=104/8-3-12, C 13), 11=171 (LC 12, C 10), 7=-23 (LC 11), C 14), 9=-48 (LC 14), LC 14), 11=-10 (LC 11)	5 4) 5) 5) 5) 6) 7) 8) 8) 9) 0) 10	only. For stt see Standar or consult qu TCLL: ASCE Plate DOL= DOL=1.15); Cs=1.00; Ct: Unbalanced design. This truss ha load of 12.0 overhangs n All plates are Gable studs This truss ha chord live loo	snow loads have as been designer psf or 1.00 times on-concurrent w e 2x4 MT20 unle es continuous be spaced at 2-0-0 as been designer ad nonconcurrer mas been design	vind (norm End Deta lesigner a: sof (roof LL f (Lum DC at B; Fully a been cor d for greatt flat roof k ith other lin ss otherwi totom chor oc. d for a 10.4 t with any ed for a liv	al to the face ils as applica s per ANSI/T .: Lum DOL= Del-1.15 Plate Exp.; Ce=0.9 nsidered for t er of min rool oad of 20.0 p ve loads. se indicated. d bearing. D psf bottom other live loa e load of 20.0), ble, PI 1. 1.5 9; 9; f live sf on					
FORCES	10=191 ((lb) - Maximum Con Tension	LC 24), 11=123 (LC 2 npression/Maximum	,	3-06-00 tall I	m chord in all are by 2-00-00 wide ny other member	will fit betv	0	om					111.
TOP CHORD	1-2=0/16, 2-3=-140/ 4-5=-99/64, 5-6=-89											WH CA	ROUL
BOT CHORD	2-10=-76/83, 9-10= 7-8=-76/83	,	12	?) This truss is	designed in acc	ordance w	ith the 2018				and a	OR FESC	Dir N.
WEBS	3-10=-133/76, 4-9=-	-177/74, 5-8=-215/95		Ínternational	Residential Coo	le sections	s R502.11.1 a	and		6		12 /	C.
Vasd=103	CE 7-16; Vult=130mph mph; TCDL=6.0psf; B p B; Enclosed; MWFR	CDL=6.0psf; h=25ft;	r	 See Standar Detail for Co 	nd referenced st d Industry Piggy nnection to base fied building des	back Trus truss as a	s Connection					SEA 0363	•

zone and C-C Exterior(2E) 0-3-11 to 3-0-8, Interior (1) LOAD CASE(S) Standard

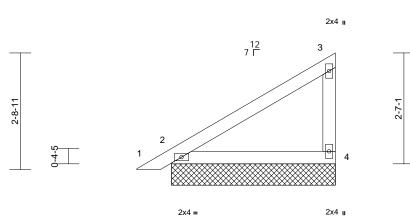
AMITERATING BY AMITERATING 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 137 FaNC	
22050115	PB3	Piggyback	7	1	Job Reference (optional)	152223744

3-9-15

3-9-15

-0-9-12


0-9-12

Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Fri May 27 11:41:29 ID:ySJfi3GINWaRR?st5t8tz_zUA1r-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

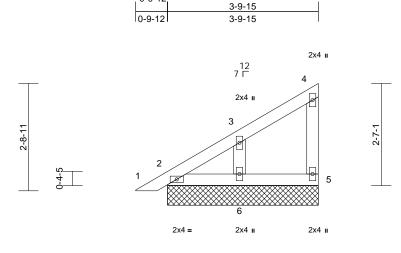
Page: 1

Loading TCLL (roof) Snow (Pf) TCDL	(psf) 20.0 20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.28 0.23 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCLL	0.0*	Code	IRC201	8/TPI2014	Matrix-MP								
BCDL	10.0											Weight: 17 lb	FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 BRACING TOP CHORD TOP CHORD Structural wood sheathing directly applied or 4-8-1 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (lb/size) 2=182/3-9-15, 4=148/3-9-15, 5=182/3-9-15 Max Horiz 2=83 (LC 13), 5=83 (LC 13) Max Uplift 2=-23 (LC 14), 4=-33 (LC 14),			c 9) 1(load of 12.0 overhangs n Gable requir Gable studs This truss ha chord live lo * This truss l on the bottoo 3-06-00 tall	as been designed psf or 1.00 times ion-concurrent wit res continuous bol spaced at 4-0-0 c as been designed ad nonconcurrent has been designe m chord in all area by 2-00-00 wide w ny other members	flat roof le h other li tom chor bc. for a 10. with any d for a liv as where vill fit betw	bad of 20.0 p ve loads. rd bearing. 0 psf bottom other live loa re load of 20. a rectangle	osf on ads. Opsf					
FORCES	5=-23 (L0 Max Grav 2=268 (L0 5=268 (L0	C 21), 4=212 (LC 21 C 21)), 1	Ínternational	designed in accord Residential Code	sections	s R502.11.1 a	and					
TOP CHORD BOT CHORD	,		12	2) See Standar Detail for Co	nd referenced sta rd Industry Piggyb onnection to base ified building desig	ack Trus truss as a	s Connection						
NOTES			1	DAD CASE(S)	0 (gilei.							
Vasd=103 Cat. II; Ex zone and exposed ; members Lumber D 2) Truss des	CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B qp B; Enclosed; MWFR C-C Exterior(2E) zone end vertical left and ri and forces & MWFRS JOL=1.60 plate grip DC signed for wind loads i stude exposed to wind	; or right ; ;							4		ORTHESS SEA	And I	

- 2 only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this 4) design.

anna ann E The second second GILB 1111111 May 30,2022

036322


Job	Truss Truss Type			Ply	DRB GROUP - 137 FaNC	
22050115	PB4	Piggyback	1	1	I52: Job Reference (optional)	223745

-0-9-12

Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Fri May 27 11:41:30 ID:NpSnLzi?5zbyGIX7FcheXAzU9vX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3-9-15

Scale = 1:29.3

WFBS

1)

2)

3)

Cs=1.00; Ct=1.10

NOTES

3-6=-198/108

Lumber DOL=1.60 plate grip DOL=1.60

Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for

members and forces & MWFRS for reactions shown;

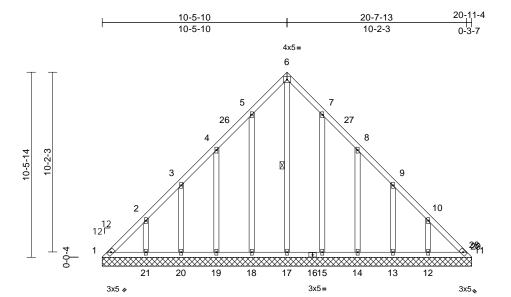
Truss designed for wind loads in the plane of the truss

only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15

 $\label{eq:plate_delta} \begin{array}{l} \mbox{Plate DOL=1.15}; \mbox{ Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15)}; \mbox{ Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9;} \end{array}$

					1								
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-MP	0.08 0.03 0.04	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 18 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	4-8-1 oc purlins, exc Rigid ceiling directly a bracing. (Ib/size) 2=93/3-9-1 6=176/3-9- Max Horiz 2=83 (LC 1 Max Uplift 5=-12 (LC Max Grav 2=140 (LC	ept end verticals. applied or 10-0-0 oc 5, 5=57/3-9-15, -15, 7=93/3-9-15 13), 7=83 (LC 13) 11), 6=-56 (LC 14)	8) 9)	design. This truss ha load of 12.0 overhangs n Gable requir Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall t	snow loads have as been designed psf or 1.00 times on-concurrent wit es continuous boi spaced at 2-0-0 of sa been designed ad nonconcurrent has been designe m chord in all area boy 2-00-00 wide w hy other members	for greate flat roof lo h other liv ttom chor oc. for a 10.0 with any d for a liv as where <i>i</i> ill fit betw	er of min roof bad of 20.0 p ve loads. d bearing. 0 psf bottom other live loa e load of 20.0 a rectangle	f live sf on ads. 0psf					
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Comp Tension 1-2=0/26, 2-3=-60/52, 2-6=-38/41, 5-6=-38/4	, 3-4=-56/29, 4-5=-7	0/21	International R802.10.2 a	designed in acco Residential Code nd referenced sta d Industry Piggyb	e sections ndard AN	R502.11.1 a ISI/TPI 1.						

 See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.


LOAD CASE(S) Standard

TRENGING BY TRENCO A MITEK Affiliate 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 137 FaNC	
22050115	V1	Valley	1	1	Job Reference (optional)	152223746

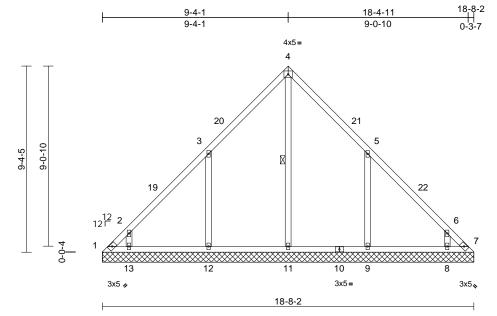
Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Fri May 27 11:41:30 ID:n?Bdcaw9NrQS_vuc5TK6uCzpYz_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

20-11-4

Scale = 1:65.3

00010 = 110010																	
Loading		(psf)	Spacing	1-11-4		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP			
TCLL (roof)		20.0	Plate Grip DOL	1.15		тс	0.10	Vert(LL)	n/a	()	n/a	999	MT20	244/190			
Snow (Pf)		20.0	Lumber DOL	1.15		BC	0.07	Vert(TL)	n/a	-	n/a	999					
TCDL		10.0	Rep Stress Incr	YES		WB	0.30	· · /	0.01	11	n/a	n/a					
BCLL		0.0*	Code		18/TPI2014	Matrix-MSH	0.00	110112(112)	0.01		n/a	n, a					
BCDL		10.0		11020	10,1112011								Weight: 147 lb	FT = 20%			
BCDL LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD WEBS REACTIONS FORCES TOP CHORD	2x4 SP No 2x4 SP No Structural 6-0-0 oc p Rigid ceilir bracing. 1 Row at r (lb/size) Max Horiz Max Uplift Max Grav (lb) - Maxin Tension 1-2=-284/2	2.2 3.3 wood shear urlins. ng directly nidpt 1=84/20-1 12=202/21 14=158/21 17=131/21 19=158/22 21=204/21 1=233 (LC 12=-75 (L 1499 (L) 12=-75 (L 1493 (L) 20=-98 (L 12=-29 (L) 1493 (L) 20=-98 (L) 12=-209 (L) 12=209 (L) 12=209 (L) 12=209 (L) 12=209 (L) 12=209 (L) 12=209 (L) 12=209 (L) 12=201 (L) 12=202 (L)	2 11) 12), 11=-33 (LC 13) C 15), 13=-101 (LC - C 15), 15=-90 (LC 14) C 14), 19=-98 (LC 14) C 14), 19=-98 (LC 14) C 14), 11=145 (LC 15) C 28), 13=163 (LC 2) C 21), 15=271 (LC 2) C 20), 20=160 (LC 2) C 27) pression/Maximum 191/158, 3-4=-125/12	d or V 1-4, 1 1-4, 2 1-4, 2 1-4, 2 1-4, 2 1-4, 3 1-4, 3 1-4, 3 20, 3 20, 2 20, 2 21, 2 20, 2 24, 5 24, 5	VEBS IOTES) Unbalanced this design.) Wind: ASCI Vasd=103 Cat. II; Exp zone and C 3-0-4 to 7-5 (1) 13-5-14 zone; cantil and right ex MWFRS for grip DOL=1) Truss desig only. For s see Standa or consult c) TCLL: ASC Plate DOL= DOL=1.15) Cs=1.00; C	E 7-16; Vult=130m, nph; TCDL=6.0psf; B; Enclosed; MWF -C Exterior(2E) 0-0 5-14, Exterior(2E) 7 to 17-7-8, Exterior lever left and right 6 cposed; C-C for mer r reactions shown; .60 gned for wind loads tuds exposed to wi rd Industry Gable F ualified building de E 7-16; Pr=20.0 psf ; Is=1.0; Rough Ca t=1.10	18-19=-1 15-17=-1 13-14=-1 11-12=-1 8=-233/1 20=-131, 15=-233 13=-132 ve been of BCDL=6 FRS (env) -4 to 3-0 -5-14 to (2E) 17-7 exposed mbers ar Lumber I s in the p nd (norm End Deta ssigner a: of (cof LI (Lum DC t B; Fully)	00/208, 00/208, 00/208, 00/208, 00/208, 116, /120, /113, /121, considered for cond gust) 6.0psf; h=25ft elope) exteric 14, Interior (1 13-5-14, Interior (1 13-5-	; or ifor left uss), ble, Pl 1. 1.15 9;	on 1 3-00 cho 11) Pro bea 1, 3 at je 90 l at ji 90 l at ji 12) This Inte R86 LOAD (the botto 6-00 tall rd and a vide mee ring plat 3 lb upli 3 lb upli 3 lb upli ioint 19, § b uplift a b uplift a b uplift a b uplift a b uplift a b uplift a s truss is rnationa 22.10.2 a CASE(S)	m cho by 2-0 ny oth chanic c capa ft at joint at joint nd 75 c desig l Resid and ref) Sta	een designed for rd in all areas wh 0-00 wide will fit er members. al connection (by able of withstandi int 11, 93 lb uplift plift at joint 20, 83 15, 99 lb uplift at lb uplift at joint 10, ned in accordand dential Code sec erenced standar ndard	a live load of 20.0psf here a rectangle between the bottom / others) of truss to ing 76 lb uplift at joint at joint 18, 98 lb uplift 5 lb uplift at joint 21, i joint 14, 101 lb uplift 2. ce with the 2018 tions R502.11.1 and d ANSI/TPI 1.			
	4-5=-104/137, 5-6=-120/185, 6-7=-120/168, 7-8=-89/95, 8-9=-79/64, 9-10=-151/99, 10-11=-241/138				 Gable requi Gable studs This truss h 	nbalanced snow loads have been considered for this sign. I plates are 2x4 MT20 unless otherwise indicated. able requires continuous bottom chord bearing. able studs spaced at 2-0-0 oc. his truss has been designed for a 10.0 psf bottom hord live load nonconcurrent with any other live loads.						SEAL 036322					

May 30,2022


Page: 1

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 137 FaNC	
22050115	V2	Valley	1	1	Job Reference (optional)	152223747

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Fri May 27 11:41:30 ID:FCI?pwxn89YJc3TpfArLRQzpYyz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	тс	0.33	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.17	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.19	Horiz(TL)	0.00	7	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 95 lb	FT = 20%

LUMBER TOP CHORD BOT CHORD OTHERS BRACING		0.2								
TOP CHORD	Structural 6-0-0 oc p	I wood sheathing directly applied or purlins.								
BOT CHORD	Rigid ceili bracing.	ing directly applied or 10-0-0 oc								
WEBS	1 Row at	midpt 4-11								
REACTIONS		1=24/18-8-2, 7=0/18-8-2, 8=271/18-8-2, 9=344/18-8-2, 11=211/18-8-2, 12=344/18-8-2, 13=274/18-8-2, 18=0/18-8-2 1=215 (LC 11) 1=-147 (LC 12), 7=-1 (LC 15),								
	Max Grav	8=-32 (LC 15), 9=-255 (LC 15), 11=-33 (LC 13), 12=-224 (LC 14), 13=-126 (LC 14), 18=-1 (LC 15) 1=173 (LC 11), 7=0 (LC 13), 8=289 (LC 24), 9=498 (LC 24), 11=483 (LC 26), 12=487 (LC 5), 13=326 (LC 23), 18=0 (LC 13)								
FORCES	(lb) - Max Tension	imum Compression/Maximum								
TOP CHORD		/250, 2-3=-272/219, 3-4=-233/314, /281, 5-6=-137/64, 6-7=-126/56								
BOT CHORD	1-13=-59/	-13=-59/91, 12-13=-24/80, 11-12=-24/80, -11=-24/80, 8-9=-24/80, 7-8=-24/80								
WEBS	4-11=-33	-11=-24/80, 8-9=-24/80, 7-6=-24/80 -11=-339/122, 3-12=-389/270, -13=-240/221, 5-9=-387/282, 6-8=-228/189								

NOTES

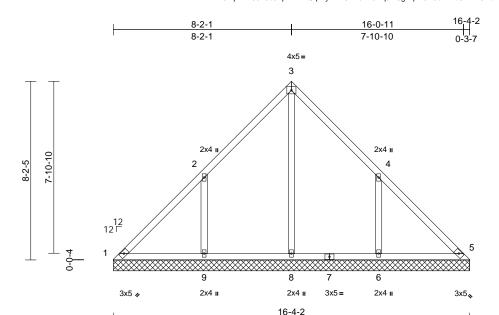
Scale - 1:57 9

Unbalanced roof live loads have been considered for 1) this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-4 to 3-0-4, Interior (1) 3-0-4 to 6-4-5, Exterior(2R) 6-4-5 to 12-4-5, Interior (1) 12-4-5 to 15-8-6, Exterior(2E) 15-8-6 to 18-8-6 zone; cantilever left and right exposed ; end vertical left and right exposed:C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4)
- Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) All plates are 2x4 MT20 unless otherwise indicated.
- 7) Gable requires continuous bottom chord bearing.
- 8) Gable studs spaced at 4-0-0 oc.
- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 147 lb uplift at joint 1, 1 lb uplift at joint 7, 33 lb uplift at joint 11, 224 lb uplift at joint 12, 126 lb uplift at joint 13, 255 lb uplift at joint 9, 32 lb uplift at joint 8 and 1 lb uplift at joint 7.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard



Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 137 FaNC	
22050115	V3	Valley	1	1	Job Reference (optional)	152223748

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Fri May 27 11:41:30 ID:FCI?pwxn89YJc3TpfArLRQzpYyz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:52.8

		1					i						
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.38	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.17	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES		WB	0.57	Horiz(TL)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC2018	3/TPI2014	Matrix-MSH								
BCDL	10.0											Weight: 79 lb	FT = 20%
LUMBER			2)	Wind: ASCE	7-16; Vult=130mpl	n (3-seo	cond aust)						
TOP CHORD	2x4 SP No.2		,		oh; TCDL=6.0psf; E								
BOT CHORD	2x4 SP No.2				B; Enclosed; MWFF								
OTHERS	2x4 SP No.3				C Exterior(2E) 0-0-								
BRACING					5, Exterior(2R) 5-2-								
TOP CHORD		athing directly applied	d or		 4-6, Exterior(2E) 1 t and right exposed 								
	10-0-0 oc purlins.				d;C-C for members								
BOT CHORD		applied or 6-0-0 oc			shown; Lumber DC			.0					
	bracing.			DOL=1.60			- Frence 2.1F						
REACTIONS		4-2, 5=0/16-4-2,	3)	Truss desig	ned for wind loads i	in the p	lane of the tru	ISS					
		6-4-2, 8=502/16-4-2, 6-4-2, 14=0/16-4-2			uds exposed to wind								
	Max Horiz 1=187 (L	,			d Industry Gable Er								
	Max Uplift 1=-102 (L	,			alified building des								
		_C 15), 9=-233 (LC 14	4)		7-16; Pr=20.0 psf								
	14=-1 (L0		,,		l.15); Pf=20.0 psf (l ls=1.0; Rough Cat								
	,	C 13), 5=1 (LC 24), 6=	=517	Cs=1.00; Ct		b, Fully	Exp., Ce=0.8	,					
	(LC 24),	8=688 (LC 26), 9=517	(LC 5)	,	snow loads have b	een cor	nsidered for th	nis					
	23), 14=1	(LC 24)		design.									
FORCES	(lb) - Maximum Con	npression/Maximum	6)	Gable requir	es continuous botto	om choi	d bearing.						
	Tension		7)	Gable studs	Cable stude spaced at 4.0.0 as								
TOP CHORD		-77/336, 3-4=-76/309,	8)		as been designed fo								111.
	4-5=-165/262			 a) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. a) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 									
BOT CHORD	,	48/77, 6-8=-148/77,	9)		has been designed)psf				ORTH CA	TOX 11
	5-6=-148/77				n chord in all areas						X	OTTESS	6.14:
WEBS	3-8=-492/0, 2-9=-39	97/264, 4-6=-398/261		3-06-00 tall 1	by 2-00-00 wide will			DITI			22	in	Ti an

NOTES

Unbalanced roof live loads have been considered for 1) this design.

- 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 102 lb uplift at joint 1, 1 lb uplift at joint 5, 233 lb uplift at joint 9, 226 lb uplift at joint 6 and 1 lb uplift at joint 5.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 137 FaNC	
22050115	V4	Valley	1	1	Job Reference (optional)	152223749

4x5=

7-0-1

7-0-1

Carter Components (Sanford), Sanford, NC - 27332

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Fri May 27 11:41:31 ID:szi?0yxDqMtgRgkZSPJamjzpYxh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

13-8-11

6-8-10

14-0-2

GRIP

244/190

FT = 20%

3 10 7-0-5 2x4 2x4 II ,-8-9 2 4 1<u>2</u> 12 Г 5 0-0-4 8 13 14 6 7 3x5、 3x5 🖌 2x4 II 2x4 II 2x4 II 14-0-2 Spacing 2-0-0 CSI DEFL l/defl L/d PLATES in (loc) Plate Grip DOL 1.15 TC 0.35 Vert(LL) n/a n/a 999 MT20 BC Lumber DOL 1 15 0.17 Vert(TL) n/a n/a 999 Rep Stress Incr YES WB 0.17 Horiz(TL) 0.00 5 n/a n/a Code IRC2018/TPI2014 Matrix-MSH Weight: 66 lb 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate Structural wood sheathing directly applied or DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10 Rigid ceiling directly applied or 6-0-0 oc Unbalanced snow loads have been considered for this 5) desian. 1=99/14-0-2, 5=99/14-0-2, 6) Gable requires continuous bottom chord bearing. 6=329/14-0-2, 7=264/14-0-2, Gable studs spaced at 4-0-0 oc. 7) 8=329/14-0-2 This truss has been designed for a 10.0 psf bottom 8) Max Horiz 1=-160 (LC 10) chord live load nonconcurrent with any other live loads. Max Uplift 1=-40 (LC 10), 5=-3 (LC 11), * This truss has been designed for a live load of 20.0psf 9) 6=-191 (LC 15), 8=-196 (LC 14) on the bottom chord in all areas where a rectangle 1=143 (LC 24), 5=116 (LC 23), 3-06-00 tall by 2-00-00 wide will fit between the bottom 6=460 (LC 21), 7=385 (LC 23), chord and any other members, with BCDL = 10.0psf. 8=460 (LC 20) 10) Provide mechanical connection (by others) of truss to

- FORCES (Ib) - Maximum Compression/Maximum Tension 1-2=-164/148, 2-3=-221/131, 3-4=-221/112, TOP CHORD 4-5=-142/105
- BOT CHORD 1-8=-85/128, 7-8=-85/127, 6-7=-85/127, 5-6=-85/127 3-7=-198/0, 2-8=-385/237, 4-6=-385/235

(psf)

20.0

20.0

10.0

10.0

2x4 SP No.2 2x4 SP No.2

2x4 SP No.3

6-0-0 oc purlins.

bracing.

Max Grav

0.0

WEBS NOTES

Scale = 1:47.7 Loading

TCLL (roof)

Snow (Pf)

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

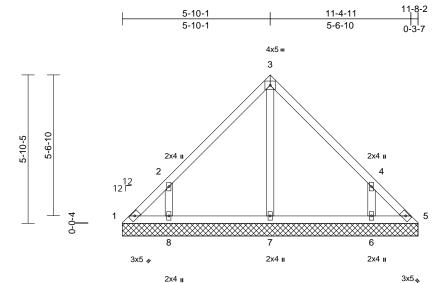
REACTIONS (lb/size)

TCDL

BCLL

BCDL

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-4 to 3-0-5, Interior (1) 3-0-5 to 4-0-5, Exterior(2R) 4-0-5 to 10-0-5, Interior (1) 10-0-5 to 11-0-5, Exterior(2E) 11-0-5 to 14-0-6 zone; cantilever left and right exposed : end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- bearing plate capable of withstanding 40 lb uplift at joint 1, 3 lb uplift at joint 5, 196 lb uplift at joint 8 and 191 lb $\,$ uplift at joint 6.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- LOAD CASE(S) Standard



Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 137 FaNC	
22050115	V5	Valley	1	1	Job Reference (optional)	152223750

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Fri May 27 11:41:31 ID:szi?0yxDqMtgRgkZSPJamjzpYxh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

11-8-2

Scale = 1:45.5

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MSH	0.33 0.12 0.09	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 52 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	6=298/11 8=298/11 Max Horiz 1=-133 (L Max Uplift 1=-50 (LC 6=-170 (L Max Grav 1=105 (LC	applied or 10-0-0 or 3-2, 5=59/11-8-2, -8-2, 7=220/11-8-2, -8-2 C 10) (12), 5=-18 (LC 13), C 15), 8=-175 (LC 1 (LC 1), 228), 5=85 (LC 26), C 21), 7=240 (LC 20)	ed or c sed or c set standa or consult q TCLL: ASC Plate DDL= DOL=1.15); Cs=1.00; C Unbalanced design. 6) Gable requi 7) Gable studs 8) This truss h chord live lo 4) 9) * This truss h chord live lo 3-06-00 tall chord and a	Ined for wind load uds exposed to w d Industry Gable ualified building d E 7-16; Pr=20.0 p 1.15); Pf=20.0 ps Is=1.0; Rough C = 1.10 is now loads have res continuous bo is spaced at 4-0-0 as been designed ad nonconcurren has been designed m chord in all are by 2-00-00 wide i ny other member chanical connecti	vind (norm End Deta lesigner a: osf (roof LL of (Lum DC) at B; Fully e been cor ottom chor oc. d for a 10. tt with any ed for a liv eas where will fit betw 's.	al to the face ils as applica s per ANSI/TI :: Lum DOL= :)L=1.15 Plate Exp.; Ce=0.9 asidered for th d bearing. D psf bottom other live loa e load of 20.0 a rectangle veen the bottom), ble, 2] 1. 1.15); his ds. 0psf om					
FORCES	(lb) - Maximum Com Tension 1-2=-159/124, 2-3=-	pression/Maximum	bearing plat 1, 18 lb upli	e capable of with ft at joint 5, 175 lb	standing 5	i0 lb uplift at j	oint					
BOT CHORD	4-5=-134/87 1-8=-45/94, 7-8=-41 5-6=-41/94	,	11) This truss is Internationa	designed in acco Residential Cod	le sections	R502.11.1 a	nd				ORTH CA	Ro
WEBS	3-7=-152/0, 2-8=-42	4/244, 4-6=-424/242								1	R	D. Main
 this design Wind: ASC Vasd=103 Cat. II; Explanation 	ed roof live loads have CE 7-16; Vult=130mph mph; TCDL=6.0psf; Bi o B; Enclosed; MWFR C Exterior(2E) 0.0.4	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterio	r						Carlin III		SEA 0363	L

zone and C-C Exterior(2E) 0-0-4 to 3-0-4, Exterior(2R) 3-0-4 to 8-8-6, Exterior(2E) 8-8-6 to 11-8-6 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

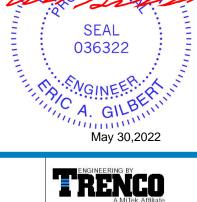
Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 137 FaNC	
22050115	V6	Valley	1	1	Job Reference (optional)	152223751

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Fri May 27 11:41:31 ID:szi?0yxDqMtgRgkZSPJamjzpYxh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

9-4-2 4-8-1 9-0-11 4-8-1 4-4-10 4x5 = 2 4-4-10 4-8-5 12 12 ⊏ q 10 3 0-0-0 4 3x5 🍬 2x4 II 3x5 💊 9-4-2

Scale = 1:35.8


Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MSH	0.43 0.42 0.22	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 38 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS	9-4-2 oc purlins. Rigid ceiling direct bracing. (Ib/size) 1=39/9- 4=669/5 Max Horiz 1=-105 Max Uplift 1=-36 (4=-135 Max Grav 1=100 (4=733 ((LC 12) LC 12), 3=-36 (LC 20) (LC 14) LC 20), 3=100 (LC 21 LC 21) mpression/Maximum =-102/339	6) 7) 8) 9)), 10	Plate DOL=1 DOL=1.15); Cs=1.00; Ct: Unbalanced design. Gable requir Gable studs This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and ar) Provide mec bearing plate 1, 36 lb upliff) This truss is International	snow loads have es continuous bo spaced at 4-0-0 d is been designed ad nonconcurrent has been designed n chord in all are by 2-00-00 wide v by other members hanical connection capable of withs at joint 3 and 1 designed in acco Residential Code nd referenced sta	(Lum DC t B; Fully been cor tom chor oc. for a 10.0 with any d for a liv as where vill fit betv an (by oth tanding 3 5 lb uplift rodance w e sections	DL=1.15 Plate Exp.; Ce=0.9 nsidered for the d bearing. D psf bottom other live loa e load of 20.1 a rectangle veen the botth ers) of truss t 66 lb uplift at j at joint 4. ith the 2018 s R502.11.1 a	e - his Opsf om ooint					
NOTES	ed roof live loads hav	ve been considered fo											11111

Unbalanced roof live loads have been considered for 1) this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-4 to 3-0-4, Exterior(2R) 3-0-4 to 6-4-6, Exterior(2E) 6-4-6 to 9-4-6 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

SEAL

036322

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 137 FaNC	
22050115	V7	Valley	1	1	Job Reference (optional)	152223752

3-6-1

3-6-1

Carter Components (Sanford), Sanford, NC - 27332,

3-2-10

0-0-4

3-6-5

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Fri May 27 11:41:31 ID:NCzT?RI5VThp5l5ivxmTD7zpYqm-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

6-8-11

3-2-10

2 12 12 Г 9 10 3 1 4 2x4 II 3x5 🧳 3x5 💊 7-0-2 DEEL IN DIATES (100) l/defl

4x5 =

Scale = 1:31.1

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MP	0.25 0.26 0.09	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 28 lb	GRIP 244/190 FT = 20%
	7-0-2 oc purlins. Rigid ceiling directly bracing.	11) C 21), 3=-12 (LC 20), C 14) 2 20), 3=98 (LC 21), 4	6) 7) 8) 9) =511	Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. Gable requir Gable studs This truss ha chord live load * This truss ha on the bottor 3-06-00 tall b chord and ar D) Provide mec bearing plate 1, 12 lb uplift	57-16; Pr=20.0 ps .15); Pf=20.0 ps ls=1.0; Rough Cat =1.10 snow loads have es continuous bot spaced at 4-0-0 o is been designed ad nonconcurrent has been designed n chord in all area by 2-00-00 wide w by other members hanical connection capable of withst cat joint 3 and 92 designed in accor Residential Code	(Lum DC B; Fully been cor tom chor c. for a 10.0 with any d for a liv s where ill fit betv n h (by oth anding 1 b uplift a dance w	DL=1.15 Plate Exp.; Ce=0.9 Insidered for the d bearing. D psf bottom other live load e load of 20.0 a rectangle ween the botthe ers) of truss to 2 lb uplift at j tt joint 4.	e); ds. Dpsf om o ont					
TOP CHORD BOT CHORD WEBS	1-2=-72/206, 2-3=-7 1-4=-166/109, 3-4= 2-4=-359/124		L	R802.10.2 a DAD CASE(S)	nd referenced star Standard	ndard AN	ISI/TPI 1.						
NOTES 1) Unbalance this design	ed roof live loads have n.	been considered for									13	TH CA	Ro

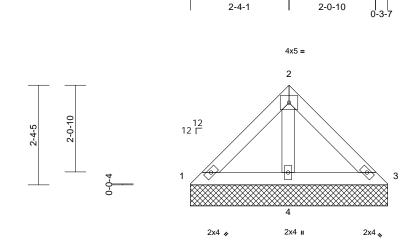
2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-4 to 3-0-4, Exterior(2R) 3-0-4 to 4-0-6, Exterior(2E) 4-0-6 to 7-0-6 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), 3) see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 111111111 SEAL 036322 G mmm May 30,2022

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 137 FaNC	
22050115	V8	Valley	1	1	Job Reference (optional)	152223753

2-4-1

Carter Components (Sanford), Sanford, NC - 27332,


Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Fri May 27 11:41:32 ID:sOXrCnljGmpgivgvTeHilLzpYqI-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

4-8-2

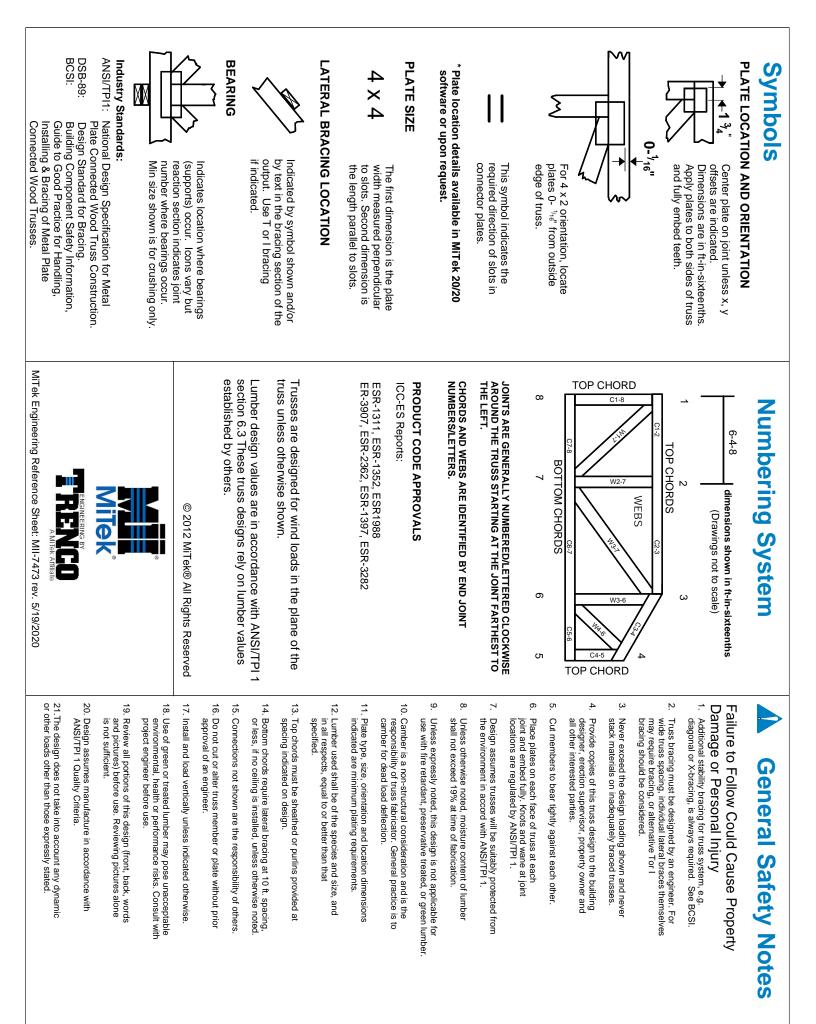
4-4-1

Page: 1

rCDoi7J4zJC?f

Scale = 1:27.3

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	20.0 20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-MP	0.08 0.11 0.04	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 18 lb	GRIP 244/190 FT = 20%
	4=271/4-8-2 Max Horiz 1=51 (LC 13 Max Uplift 3=-1 (LC 15 Max Grav 1=89 (LC 20 (LC 20)	pplied or 6-0-0 oc 3=53/4-8-2, 2 3)), 4=-41 (LC 14) 0), 3=92 (LC 21), 4	9) 10 11	design. Gable require Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar D) Provide mec bearing plate and 41 lb upl) This truss is International	snow loads hav es continuous b spaced at 4-0-0 is been designe ad nonconcurrer has been design n chord in all ar by 2-00-00 wide hanical connect o capable of with lift at joint 4. designed in acc Residential Coo nd referenced si	ottom chor oc. d for a 10.0 ti with any ed for a liv eas where will fit betw rs. ion (by oth- istanding 1 ordance wi de sections	d bearing. D psf bottom other live loa e load of 20.0 a rectangle veen the bottu ers) of truss t Ib uplift at jo ith the 2018 s R502.11.1 a	ds. Dpsf om o int 3					
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Compr Tension 1-2=-76/94, 2-3=-80/92 1-4=-82/59, 3-4=-80/58 2-4=-171/48	2	LC	DAD CASE(S)	Standard								


NOTES

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

