

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 22030114 DRB GROUP - 112 FaNC

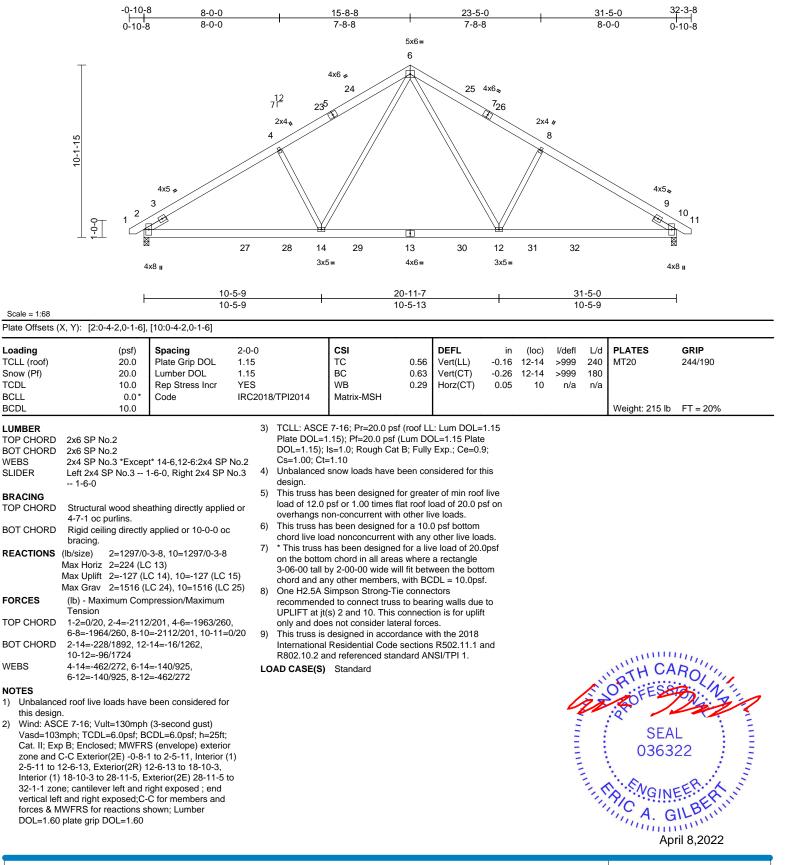
The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Sanford, NC)).

Pages or sheets covered by this seal: I51257023 thru I51257051

My license renewal date for the state of North Carolina is December 31, 2022.

North Carolina COA: C-0844

April 8,2022

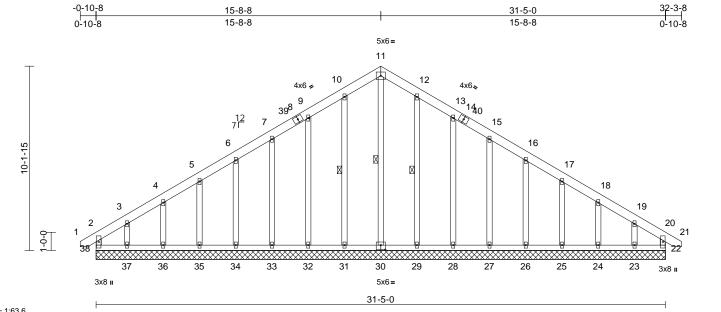

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 112 FaNC	
22030114	A01	Common	7	1	Job Reference (optional)	151257023

2)

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Thu Apr 07 21:16:53 ID:n0XQrpeEWqLR_iOw19HuR_yHze9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1



Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 112 FaNC	
22030114	A03	Common Supported Gable	1	1	Job Reference (optional)	151257024

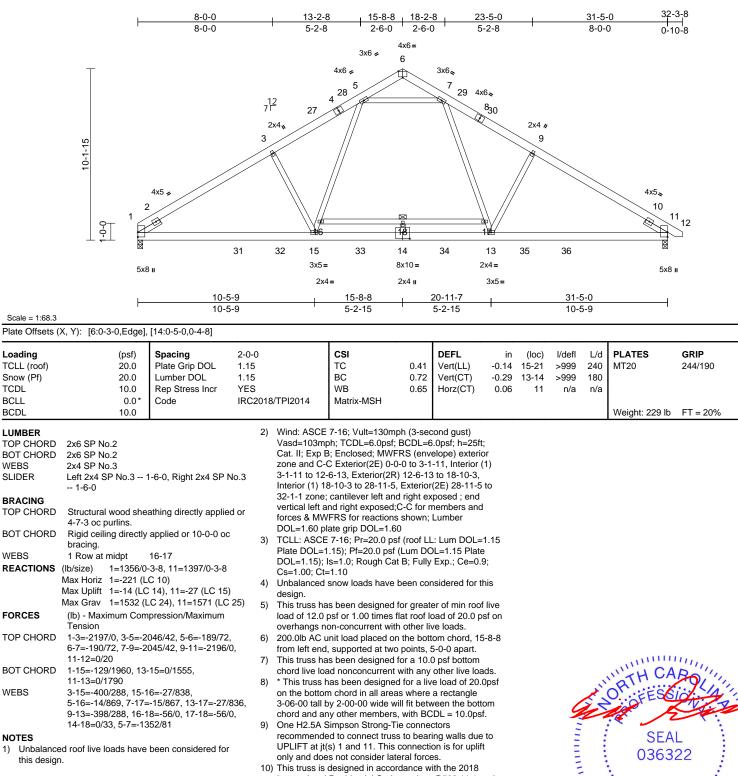
Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Thu Apr 07 21:16:55 ID:eDo5c2px20DPopr5qTS5W0yHza4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:63.6 Plate Offsets (X, Y): [30:0-3-0,0-3-0]

Plate Offsets ()	X, Y): [30:0	-3-0,0-3-0]										-	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2018/TPI201	4	CSI TC BC WB Matrix-MR	0.19 0.07 0.19	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 22	n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 251 lb	GRIP 244/190 FT = 20%
	6-0-0 oc p Rigid ceili bracing. 1 Row at (lb/size) Max Horiz	2.2 3.3 wood she uurlins, exu ng directly 22=118/3 24=159/3 26=155/3 28=156/3 32=156/3 32=156/3 38=118/3 38=240 (22=-47 (L 26=-48 (L 28=-60 (L 31=-22 (L 33=-49 1 (L)		FORCES , TOP CHOP , , , , , , , , , , , , , , ,	RD	26=161 28=221 30=193 32=221 34=161 36=159) (LC 25); (LC 25); (LC 25); (LC 22); (LC 22); (LC 21); (LC 21); (LC 21); (LC 21); (LC 24); (LC 21); (LC 24); (LC 21); (LC 24); (LC 21); (LC 24); (LC 21); (LC 21); (25=162 (LC ,27=164 (LC ,29=236 (LC ,31=236 (LC ,35=163 (LC ,35=163 (LC ,35=163 (LC ,37=203 (LC on/Maximum -3=-193/177, 46, 5-6=-125, 48, 9-10=-14 ,53/276, 19/198, 7107, 7107, 7107, 7107, 7107, 7107, 7107, 7107, 7107, 7107, 7107, 733, 744, 73, 3-37=-144 2/83, 3/72, 3/68,	225), 222), 221), 211, 28), 24), 28, 24), 24, 3/248, 18/94, 18/94,	Va Ca zo 2 Ex 32 ve for D0 3) Th se or 4) TC PD0 Cs 5) Ur	asd=103n at. II; Exp ne and C 5-11 to 1; tterior(2N 2-1-1 zono rtical left rcces & M DL=1.60 russ desi Ny. For s e Standa consult c CLL: ASC LL: ASC LL: ASC ate DOL= DL=1.15) =-1.00; C abalance sign.	nph; T(B; Enc, C-C Con C-C Con C-C Con B; C-C Con C-C Con C-C Con C-C Con C-C C-C C-C C-C C-C C-C C-C C-C C-C C-C	closed; MWFRS mer(3E) -0-8-1 ti , Corner(3R) 12- -0-3 to 28-11-5, C illever left and rig ght exposed;C-C for reactions shi rip DOL=1.60 or wind loads in 1 kposed to wind (ustry Gable End d building design; ;Pr=20.0 psf (tru pf=20.0 psf (tru pf=20.0 psf (tru c) Rough Cat B; loads have bee SEA 0363	DL=6.0psf; h=25ft; (envelope) exterior p 2-5-11, Exterior(2N) 6-13 to 18-10-3, iorner(3E) 28-11-5 to ht exposed ; end for members and own; Lumber the plane of the truss normal to the face), Details as applicable, her as per ANSI/TPI 1. of LL: Lum DOL=1.15 Plate Fully Exp.; Ce=0.9; n considered for this

NOTES

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 112 FaNC	
22030114	A03	Common Supported Gable	1	1	Job Reference (optional)	151257024


- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 7) All plates are 2x4 MT20 unless otherwise indicated.
- 8) Gable requires continuous bottom chord bearing.
- 9) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Thu Apr 07 21:16:55 ID:eDo5c2px20DPopr5qTS5W0yHza4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 112 FaNC	
22030114	A04	Common	9	1	Job Reference (optional)	151257025

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Thu Apr 07 21:16:56 ID:z6ovjROQYXDGGhrL8Ola64zkQzY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

NOTES

WEBS

Loading

Snow (Pf)

LUMBER

TCDL

BCLL

BCDL

WEBS

WEBS

FORCES

SLIDER

BRACING

1) this design.

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 112 FaNC	
22030114	A05	Hip	1	1	Job Reference (optional)	151257026

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Thu Apr 07 21:16:56 Page: 1 ID:ikgyV_aK9qujsLcxhCzoP1zkQwk-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 32-3-8 14-2-2 31-5-0 7-2-13 17-2-14 24-2-3 7-2-13 6-11-5 3-0-11 6-11-5 7-2-13 0-10-8 5x6= 5x6= 4x6 🖌 2 5 27 6 0-2-1 H 4x6 4 7 12 7 25²⁶ ²⁸29 2x4, 2x4 🏿 3 8 30 24 9-0-8 9-0-8 9-3-4 23 4x5 💋 31 4x5 💊 2 9 10 X-11 è 1 32 13 33 14 12 5x8 I 4x6= 3x5= 3x5= 5x8 u 10-5-9 20-11-7 31-5-0 10-5-9 10-5-13 10-5-9 Scale = 1:62.9 Loading 2-0-0 CSI DEFL in l/defl L/d PLATES GRIP (psf) Spacing (loc) TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.51 Vert(LL) -0.21 12-14 >999 240 MT20 244/190 BC Snow (Pf) 20.0 Lumber DOL 1 15 0.66 Vert(CT) -0.31 12-14 >999 180 TCDL 10.0 Rep Stress Incr YES WB 0.31 Horz(CT) 0.06 10 n/a n/a BCLL 0.0 Code IRC2018/TPI2014 Matrix-MSH Weight: 208 lb FT = 20% BCDL 10.0 Wind: ASCE 7-16; Vult=130mph (3-second gust) LUMBER 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; TOP CHORD 2x6 SP No.2 2x6 SP No.2 Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior BOT CHORD bottom chord. zone and C-C Exterior(2E) 0-0-0 to 3-1-11, Interior (1) 2x4 SP No.3 WEBS LOAD CASE(S) Standard 3-1-11 to 9-8-13, Exterior(2R) 9-8-13 to 21-8-3, Interior SLIDER Left 2x4 SP No.3 -- 1-6-0, Right 2x4 SP No.3 (1) 21-8-3 to 28-11-5, Exterior(2E) 28-11-5 to 32-1-1 -- 1-6-0 zone; cantilever left and right exposed ; end vertical left BRACING and right exposed:C-C for members and forces & TOP CHORD Structural wood sheathing directly applied or MWFRS for reactions shown; Lumber DOL=1.60 plate 4-3-8 oc purlins, except arip DOL=1.60 2-0-0 oc purlins (6-0-0 max.): 5-6. TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) BOT CHORD Rigid ceiling directly applied or 10-0-0 oc Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate bracing. DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; REACTIONS (lb/size) 1=1256/ Mechanical, Cs=1.00; Ct=1.10 10=1297/0-3-8 Unbalanced snow loads have been considered for this Max Horiz 1=-198 (LC 10) desian. Max Uplift 1=-118 (LC 14), 10=-131 (LC 15)

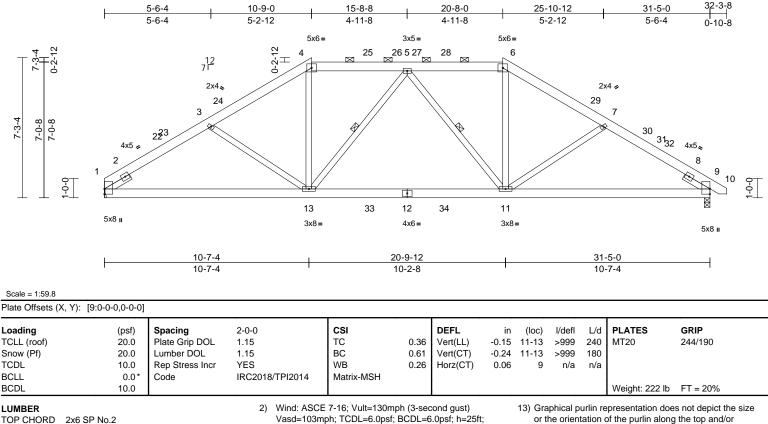
Max Grav 1=1570 (LC 47), 10=1608 (LC 49) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-3=-2312/208, 3-5=-2104/220, 5-6=-1425/205. 6-8=-2111/223. 8-10=-2312/208, 10-11=0/20 BOT CHORD 1-14=-212/2052, 12-14=-25/1461, 10-12=-85/1907 5-14=-81/832, 3-14=-476/263, 6-12=-86/831, WEBS 8-12=-473/264

NOTES

Unbalanced roof live loads have been considered for 1) this design.

- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhands non-concurrent with other live loads. 6) Provide adequate drainage to prevent water ponding.
- 7) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. Refer to girder(s) for truss to truss connections.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 118 lb uplift at joint 1
- 11) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 10. This connection is for uplift only and does not consider lateral forces.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or


0-0-

ſ	Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 112 FaNC	
	22030114	A06	Нір	1	1	Job Reference (optional)	

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Thu Apr 07 21:16:57 ID:77wMrRECRQi3LfkJsXxSbQzkQvu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

BOT CHORD 2x6 SP No.2 WEBS 2x4 SP No.3 SLIDER Left 2x4 SP No.3 -- 1-6-0, Right 2x4 SP No.3 -- 1-6-0 BRACING TOP CHORD Structural wood sheathing directly applied or 4-7-1 oc purlins, except 2-0-0 oc purlins (5-9-11 max.): 4-6. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. WEBS 1 Row at midpt 5-13. 5-11 REACTIONS (lb/size) 1=1256/ Mechanical, 9=1297/0-3-8 Max Horiz 1=-151 (LC 10) Max Uplift 1=-126 (LC 14), 9=-139 (LC 15) Max Grav 1=1435 (LC 45), 9=1474 (LC 45) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-3=-2109/234, 3-4=-1869/203, 4-5=-1561/215, 5-6=-1560/214, 6-7=-1869/201, 7-9=-2114/235, 9-10=0/20 BOT CHORD 1-13=-214/1770, 11-13=-65/1691, 9-11=-112/1750 WEBS 4-13=-8/629, 5-13=-341/169, 3-13=-337/173, 5-11=-342/168, 6-11=-8/628, 7-11=-339/174

NOTES

Unbalanced roof live loads have been considered for 1) this design.

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 3-1-11, Interior (1) 3-1-11 to 6-3-11. Exterior(2R) 6-3-11 to 15-2-5. Interior (1) 15-2-5 to 16-2-11. Exterior(2R) 16-2-11 to 25-1-5. Interior (1) 25-1-5 to 28-11-5, Exterior(2E) 28-11-5 to 32-1-1 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this desian.
- This truss has been designed for greater of min roof live 5) load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Refer to girder(s) for truss to truss connections. 10) Provide mechanical connection (by others) of truss to
- bearing plate capable of withstanding 126 lb uplift at joint 1.
- 11) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 9. This connection is for uplift only and does not consider lateral forces.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

or the orientation of the purlin along the top and/or bottom chord.

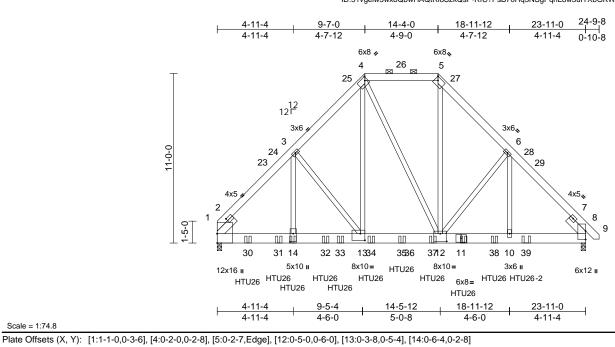
LOAD CASE(S) Standard

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 112 FaNC	
22030114	A07	Roof Special Girder	1	2	Job Reference (optional)	151257028

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Thu Apr 07 21:16:59 ID:o8wA1gQNaLdEAdelWmC8_ozkQt2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1


32-3-8 8-3-0 16-4-4 24-3-11 31-5-0 8-3-0 8-1-4 7-11-8 7-1-5 NAILED NAILED NAILED NAILED NAILED NAILED NAILED NAILED NAIL FD 3x5= NAILED NAILED NAILED NAILED 2x4 I 3x5 4x6= 6x8= 12 2526 ⊠ 2 23 24 34 27 28 29 5 18 \square \bowtie NAILED Ш Ш Ш Ш ш Ш 30 31 5-1-12 5-1-12 nì 4x5 ³² 6 8 0-0-13 пг пп 35 37 38 39 40 41 44 45 33 34 3612 1110 42 43 9 6x8 =3x5= 4x6 =2x4 II 3x8 II NAILED 3x5= NAILED NAILED NAILED 8-3-0 16-4-4 24-5-7 31-5-0 8-3-0 8-1-4 8-1-4 6-11-9 Scale = 1:57.3 Plate Offsets (X, Y): [3:0-3-0,Edge], [7:0-4-10,0-0-2] Loading 2-0-0 CSI DEFL in l/defl L/d PLATES GRIP (psf) Spacing (loc) TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.49 Vert(LL) 0.12 9-10 >999 240 MT20 244/190 Snow (Pf) 20.0 Lumber DOL 1.15 BC 0.55 Vert(CT) -0.18 9-10 >999 180 TCDL Rep Stress Incr WB 10.0 NO 0.67 Horz(CT) 0.06 7 n/a n/a BCLL 0.0 Code IRC2018/TPI2014 Matrix-MSH Weight: 438 lb BCDL 10.0 FT = 20% LUMBER 2) All loads are considered equally applied to all plies, 14) Graphical purlin representation does not depict the size 2x6 SP No.2 except if noted as front (F) or back (B) face in the LOAD or the orientation of the purlin along the top and/or TOP CHORD CASE(S) section. Ply to ply connections have been 2x6 SP No.2 bottom chord. BOT CHORD provided to distribute only loads noted as (F) or (B), WEBS 2x4 SP No.3 15) "NAILED" indicates 3-10d (0.148"x3") or 3-12d SLIDER Right 2x4 SP No.3 -- 1-6-0 unless otherwise indicated. (0.148"x3.25") toe-nails per NDS guidlines. Wind: ASCE 7-16: Vult=130mph (3-second aust) 3) 16) LGT2 Hurricane ties must have two studs in line below BRACING Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; the truss TOP CHORD Structural wood sheathing directly applied or Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior LOAD CASE(S) Standard 6-0-0 oc purlins, except end verticals, and zone; cantilever left and right exposed ; end vertical left 2-0-0 oc purlins (6-0-0 max.): 1-5 Dead + Snow (balanced): Lumber Increase=1.15, Plate 1) and right exposed; Lumber DOL=1.60 plate grip Increase=1.15 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc DOL=1.60 Uniform Loads (lb/ft) bracing. TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 WEBS Vert: 1-5=-60, 5-8=-60, 13-14=-20 1 Row at midpt 2-13 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate Concentrated Loads (lb) REACTIONS (lb/size) 7=2145/0-3-8, 13=2269/ DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Mechanical Vert: 3=-122 (F), 11=-16 (F), 18=-122 (F), 19=-122 Cs=1.00; Ct=1.10 (F), 20=-122 (F), 21=-122 (F), 22=-122 (F), 23=-122 Max Horiz 13=-169 (LC 10) Unbalanced snow loads have been considered for this 5) Max Uplift 7=-825 (LC 13), 13=-1075 (LC 8) (F), 24=-122 (F), 26=-122 (F), 27=-122 (F), 28=-122 desian. (F), 29=-122 (F), 30=-46 (F), 31=-38 (F), 33=-16 (F), Max Grav 7=2172 (LC 34), 13=2419 (LC 33) 6) This truss has been designed for greater of min roof live 34=-16 (F), 35=-16 (F), 36=-16 (F), 37=-16 (F), FORCES (lb) - Maximum Compression/Maximum load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on 38=-16 (F), 39=-16 (F), 40=-16 (F), 41=-16 (F), Tension overhangs non-concurrent with other live loads. 42=-16 (F), 43=-16 (F), 44=-23 (F), 45=-115 (F) TOP CHORD 1-13=-451/198, 1-2=-91/67, 2-4=-3269/1488, Provide adequate drainage to prevent water ponding. 7) 4-5=-4148/1868. 5-7=-3295/1384. 7-8=0/31 8) This truss has been designed for a 10.0 psf bottom ORTH BOT CHORD 12-13=-1495/3272, 10-12=-1852/4148, chord live load nonconcurrent with any other live loads. CA 9-10=-1134/2748, 7-9=-1133/2753 9) * This truss has been designed for a live load of 20.0psf WEBS 5-9=-30/384, 2-12=-303/800, on the bottom chord in all areas where a rectangle 2-13=-3719/1705, 4-12=-1041/469, 3-06-00 tall by 2-00-00 wide will fit between the bottom 4-10=-582/333, 5-10=-834/1664 VIII III IIII IIII chord and any other members. Refer to girder(s) for truss to truss connections. NOTES SEAL 11) Provide mechanical connection (by others) of truss to 1) 2-ply truss to be connected together with 10d bearing plate capable of withstanding 1075 lb uplift at (0.131"x3") nails as follows: 036322 joint 13 Top chords connected as follows: 2x4 - 1 row at 0-9-0 12) LGT2 Simpson Strong-Tie connectors recommended to oc, 2x6 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x6 - 2 rows connect truss to bearing walls due to UPLIFT at jt(s) 7. This connection is for uplift only and does not consider staggered at 0-9-0 oc. lateral forces Web connected as follows: 2x4 - 1 row at 0-9-0 oc. 13) This truss is designed in accordance with the 2018 G International Residential Code sections R502.11.1 and minin R802.10.2 and referenced standard ANSI/TPI 1. April 8,2022

> ENGINEERING BY TREENCO AMITEK Attiliate 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 112 FaNC	
22030114	B01	Piggyback Base Girder	1	3	Job Reference (optional)	151257029

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Thu Apr 07 21:16:59 ID:51vgeiw5wxoQbwHAQtRI8SzkQsP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:74.8

	A, T). [1.1-1-0,0-3-0],	[4.0-2-0,0-2-0], [5.0-	z-r,Euge	, [12.0-5-0,0-0	-0], [13.0-3-6,0-3-4	·], [14.0-	0-4,0-2-0]							
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.62 0.37 0.82	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.09 -0.18 0.05	(loc) 13-14 13-14 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 722 lb	GRIP 244/190 FT = 20%	
	1-6-0 Structural wood shea 6-0-0 oc purlins, exc 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. (Ib/size) 1=9384/0- Max Horiz 1=-238 (Li	1-6-0, Right 2x6 SP N athing directly applied exept -0 max.): 4-5. applied or 10-0-0 oc -3-8, 8=8426/0-3-8 C 56)	3) d or 4) 5)	except if note CASE(S) see provided to c Unbalanced this design. Wind: ASCE Vasd=103mp Cat. II; Exp E zone; cantile and right exp DOL=1.60 TCLL: ASCE	considered equall ed as front (F) or b titon. Ply to ply cor tistribute only load: wise indicated. roof live loads hav 7-16; Vult=130mp bh; TCDL=6.0psf; 3; Enclosed; MWFI ver left and right e posed; Lumber DO 57-16; Pr=20.0 psf (.15); Pf=20.0 psf	ack (B) nection s noted e been o h (3-sec BCDL=6 RS (env xposed L=1.60 p (roof LL	face in the LC s have been as (F) or (B), considered fo cond gust) .0psf; h=25ft; elope) exteric; ; end vertical plate grip .: Lum DOL=	r ; or left 1.15	Inte R8(14) Gra or ti bott 15) Use 11- spa end bott 16) Use 14- 20-(rnationa 22.10.2 a phical p he orien om choi Simpso 10dx1 1, ced at 2 to 18-0 om choi Simpso 10d Trus	I Resid and ref urlin re tation o rd. on Stro 2 Trus -1-8 o -0 to c rd. on Stro ss, Sin m the l	erenced standar apresentation do of the purlin alon ang-Tie HTU26 (2 is, Single Ply Gir c max. starting al onnect truss(es) ang-Tie HTU26-2 gle Ply Girder) or eft end to connect	tions R502.11.1 and d ANSI/TPI 1. es not depict the size g the top and/or 20-10d Girder, der) or equivalent t 2-0-0 from the left to back face of (20-10d Girder,	
	Max Uplift 1=-460 (L' Max Grav 1=10493 ((Ib) - Maximum Com	(LC 45), 8=9165 (LC		DOL=1.15); Cs=1.00; Ct=	ls=1.0; Rough Cat	B; Fully	Exp.; Ce=0.9	9;	17) Fill 18) LG	all nail h	oles w	here hanger is ir	n contact with lumber. wee studs in line below	
TOP CHORD	Tension 1-3=-11218/560, 3-4 4-5=-6094/619, 5-6= 6-8=-10276/1298, 8-	-8801/791,	7)	load of 12.0	is been designed f psf or 1.00 times fl on-concurrent with	at roof le	oad of 20.0 p			ad + Sr	now (ba	alanced): Lumbe	r Increase=1.15, Plate	
BOT CHORD	1-14=-426/7811, 13- 12-13=-359/6261, 10 8-10=-817/7012	-14=-426/7811,	8) 9)	Provide adeo This truss ha	quate drainage to p is been designed f ad nonconcurrent v	orevent or a 10.0	water ponding D psf bottom	-			ALL I	N'ITH CA	ROLINIA	
WEBS	3-14=0/3410, 3-13=- 4-13=-174/6278, 4-1 5-12=-493/5889, 6-1 6-10=-925/2114	2=-479/39,	10	on the bottor 3-06-00 tall b	has been designed n chord in all areas by 2-00-00 wide wi by other members.	s where Il fit betv	a rectangle veen the botto	om			Ŵ	SEA		
NOTES 1) 3-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x8 - 3 rows staggered at 0-4-0 oc. Web connected as follows: 2x4 - 1 row at 0-7-0 oc.				 One H2.5A S recommende UPLIFT at jt(does not con LGT3-SDS2. recommende UPLIFT at jt(chord and any other members, with BCDL = 10.0psf. One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 1. This connection is for uplift only and does not consider lateral forces. LGT3-SDS2.5 Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 8. This connection is for uplift only and does not consider lateral forces.					NGINEER ALL				

April 8,2022

Continued on page 2
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component
Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 112 FaNC	
22030114	B01	Piggyback Base Girder	Piggyback Base Girder 1 3 Job Reference (optional)			
Carter Components (Sanfo	d), Sanford, NC - 27332,	Run: 8.53 S	Dec 6 2021 Print: 8	.530 S Dec 6	2021 MiTek Industries, Inc. Thu Apr 07 21:16:59	Page: 2

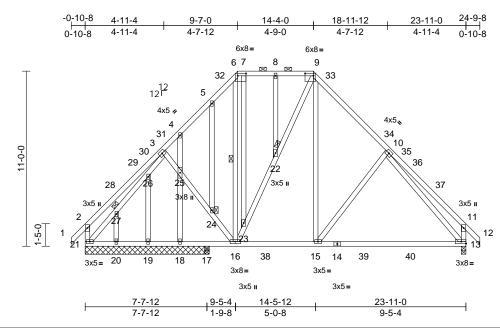
Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Thu Apr 07 21:16:59 ID:51vgeiw5wxoQbwHAQtRI8SzkQsP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Uniform Loads (lb/ft)

Vert: 1-4=-60, 4-5=-60, 5-9=-60, 15-19=-20

Concentrated Loads (lb)

Vert: 11=-1435 (B), 14=-1336 (B), 30=-1336 (B),


31=-1336 (B), 32=-1336 (B), 33=-1336 (B), 34=-1336 (B), 35=-1336 (B), 37=-1336 (B), 38=-1331 (B), 39=-2399 (B)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 112 FaNC	
22030114	B02	Piggyback Base Structural Gable	1	1	Job Reference (optional)	151257030

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Thu Apr 07 21:17:00 ID:6wbfcOMkuVnXMCt2uM4fTYzkQqY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:72.4 Plate Offsets (X, Y): [6:0-6-4,0-1-12], [9:0-6-4,0-1-12]

], [0.0 0 .,0]											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/	TPI2014	CSI TC BC WB Matrix-MSH	0.61 0.89 0.85	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 13-15 13-15 13	l/defl >690 >411 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 232 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.3 *Excep No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex 2-0-0 oc purlins (6-0 Rigid ceiling directly	athing directly applied cept end verticals, ar -0 max.): 6-9.	d or Id NO T 1)	FES	3-25=-95/213, 24-2 16-24=-93/243, 6-1 16-23=-312/52, 22- 9-22=-377/62, 9-15 10-15=-274/236, 21 26-27=-440/74, 3-2 10-13=-795/45, 8-2 5-24=-92/52, 4-25= 19-26=-217/9, 20-2 roof live loads have	6=-90/2 23=-36 =-78/59 -27=-4 6=-618 2=-68/2 -234/88 7=-8/29	211, 6/67, 96, 54/69, /82, 23, 7-23=-26/9 3, 18-25=-346,	/123,	bra 10) Gal 11) This cho 12) * Th on t 3-0	ced aga ble studs s truss h ord live lo nis truss the botto 6-00 tall ord and a	inst lat s space bas bee bad not has be om cho by 2-0	eral movement (i. ed at 2-0-0 oc. en designed for a nconcurrent with een designed for rd in all areas wh 0-00 wide will fit	any other live loads. a live load of 20.0psf
				Vasd=103mp Cat. II; Exp E zone and C- 2-1-8 to 5-4- 18-6-15 to 2' cantilever lef right exposed for reactions DOL=1.60 Truss design only. For stu	7-16; Vult=130mpf bh; TCDL=6.0psf; E 3; Enclosed; MWFR C Exterior(2E) -0-10 1, Exterior(2R) 5-4- 1-9-8, Exterior(2E) : it and right exposed d;C-C for members shown; Lumber DC ned for wind loads i ids exposed to wind d Industry Gable Er	CDL=6 S (env 2-8 to 2 1 to 18 21-9-8 i ; end v and fo DL=1.60 n the p d (norm	6.0psf; h=25ft; elope) exterio -1-8, Interior -6-15, Interior to 24-9-8 zom, vertical left an rcces & MWFR 0 plate grip lane of the tru al to the face;	r (1) e; d :S iss	Inte R80 15) Gra or t	ernationa 02.10.2 a phical p he orien tom cho	al Resid and ref ourlin re tation o rd.	erenced standard presentation doe of the purlin along	ions R502.11.1 and ANSI/TPI 1. s not depict the size
FORCES	(lb) - Maximum Com Tension 1-2=0/43, 2-3=-248/: 4-5=-641/209, 5-6=- 7-8=-400/221, 8-9=- 10-11=-406/160, 11- 11-13=-421/168	225, 3-4=-585/149, 567/257, 6-7=-400/2 400/221, 9-10=-874/2	4) 21, 222, 220, 5)	or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced	ialified building des 57-16; Pr=20.0 psf 1.15); Pf=20.0 psf (l Is=1.0; Rough Cat I	igner a (roof Ll Lum DC B; Fully	s per ANSI/TF .: Lum DOL=* DL=1.15 Plate Exp.; Ce=0.9	PI 1. 1.15);		U	Ŵ	SEA 0363	
BOT CHORD	20-21=-174/461, 19- 18-19=-174/461, 17- 16-17=-174/461, 15- 13-15=0/629	-18=-174/461,	6) 7)	load of 12.0 overhangs ne Provide adeo	as been designed for psf or 1.00 times fla on-concurrent with quate drainage to p e 2x4 MT20 unless	at roof l other li revent	oad of 20.0 ps ve loads. water ponding	sf on			A MARTINE AND	O363	

April 8,2022

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 112 FaNC	
22030114	C01	Common	3	1	Job Reference (optional)	151257031

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Thu Apr 07 21:17:01 ID:UtTc_VcFY43JHIEBplfwtlzT_jh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

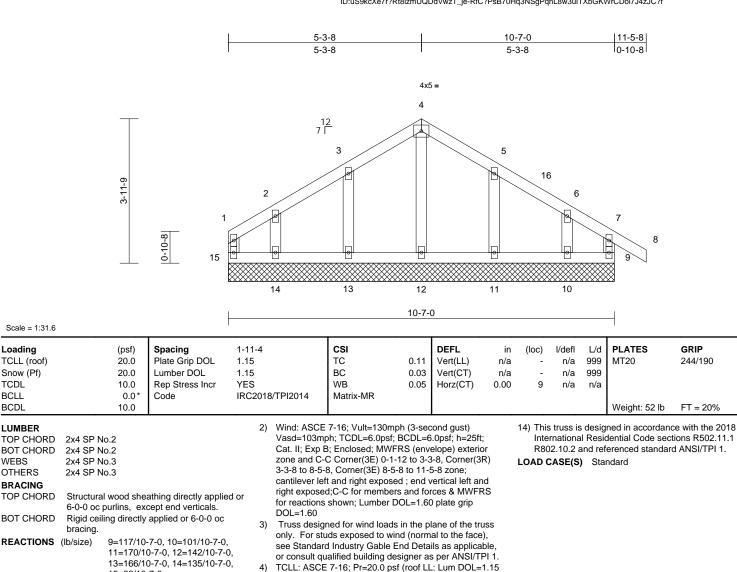
11-5-8_. 5-3-8 10-7-0 5-3-8 5-3-8 0-10-8 4x5 = 3 12 7 Г 4x5 🍬 4x5 👟 2 4 5 6 7 2x4 II 3x8 II 3x8 II 5-3-8 10-7-0 5-3-8 5-3-8 CSI IN DIATES l/dof in (loc) CDID

ENGINEERING BY A MITEK Alfil 818 Soundside Road Edenton, NC 27932

Scale = 1:37.7 Plate Offsets (X, Y): [1:0-3-0,0-0-3], [5:0-5-15,0-0-3]

3-11-9

0-10-8


Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MSH	0.46 0.35 0.08	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.04 -0.05 0.02	(loc) 7-10 7-10 1	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 48 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.3 Left 2x6 SP No.2 1-6-0 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (Ib/size) 1=421/0-3 Max Horiz 1=-80 (LC Max Uplift 1=-37 (LC Max Grav 1=519 (LC (Ib) - Maximum Com Tension 1-3=-453/131, 3-5=-	athing directly applie applied or 10-0-0 oc 3-8, 5=478/0-3-8 ; 10) ; 14), 5=-54 (LC 15) ; 21), 5=575 (LC 22) pression/Maximum 456/132, 5-6=0/26	6) d or 7) : 8) 9)	design. This truss ha load of 12.0 overhangs n This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar One H2.5A S recommende UPLIFT at jit and does no This truss is International	snow loads have as been designed i psf or 1.00 times f on-concurrent with as been designed ad nonconcurrent has been designed on chord in all area by 2-00-00 wide w hy other members Simpson Strong-Tri ed to connect truss (s) 1 and 5. This c t consider lateral f designed in accor Residential Code nd referenced star Standard	for great lat roof l n other li for a 10. with any d for a liv is where ill fit betv ie conne is to bear onnectio orces. dance w sections	er of min roo oad of 20.0 p ve loads. 0 psf bottom other live loa re load of 20. a rectangle ween the bott ctors ing walls due n is for uplift with the 2018 s R502.11.1 a	f live sf on ads. Opsf om to only					
this desig	ed roof live loads have n. CE 7-16; Vult=130mph										- This	NITH CA	ROLIN

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Exterior(2R) 3-0-0 to 8-5-8, Exterior(2E) 8-5-8 to 11-5-8 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 112 FaNC	
22030114	C02	Common Supported Gable	1	1	Job Reference (optional)	151257032

Run: 8,53 S Dec 6 2021 Print: 8,530 S Dec 6 2021 MiTek Industries, Inc. Thu Apr 07 21:17:01 ID:uS9kcXe7r?Rt8lzmUQDdVwzT_je-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

- BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS (lb/size) 15=26/10-7-0 Max Horiz 15=-99 (LC 10) Max Uplift 9=-25 (LC 11), 10=-57 (LC 15), 11=-52 (LC 15), 13=-51 (LC 14), 14=-62 (LC 14), 15=-39 (LC 10) Max Grav 9=131 (LC 22), 10=163 (LC 22), 11=255 (LC 22), 12=150 (LC 22), 13=251 (LC 21), 14=195 (LC 21), 15=60 (LC 13) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-15=-40/28, 1-2=-53/54, 2-3=-49/85, 3-4=-80/161, 4-5=-80/161, 5-6=-44/89, 6-7=-47/43, 7-8=0/30, 7-9=-119/111 14-15=-49/70, 13-14=-49/70, 12-13=-49/70, BOT CHORD 11-12=-49/70, 10-11=-49/70, 9-10=-49/70 WEBS 4-12=-112/0, 3-13=-211/128, 2-14=-161/127, 5-11=-214/119, 6-10=-135/95
- NOTES

Loading

TCLL (roof)

Snow (Pf)

LUMBER

TCDL

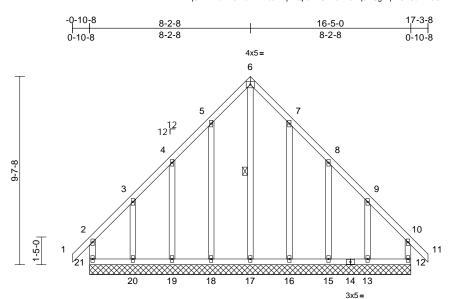
BCLL

BCDL

1) Unbalanced roof live loads have been considered for this design.

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this desian.
- This truss has been designed for greater of min roof live 6) load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- All plates are 2x4 MT20 unless otherwise indicated.
- 8) Gable requires continuous bottom chord bearing.
- Truss to be fully sheathed from one face or securely 9) braced against lateral movement (i.e. diagonal web). 10) Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 11) chord live load nonconcurrent with any other live loads.
- 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 13) N/A

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


> Vermannen 1111111111 SEAL 036322 G mm April 8,2022

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 112 FaNC	
22030114	D01	Common Supported Gable	1	1	Job Reference (optional)	151257033

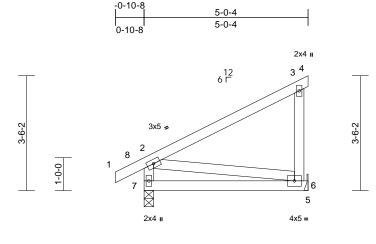
Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Thu Apr 07 21:17:01 ID:qOFHrRuKX0KIezEVTcszFqzkQps-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

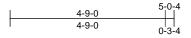
Page: 1

16 5 0

			1			16-5-0							
Scale = 1:58.9													
Loading TCLL (roof) Snow (Pf) TCDL BCLL	(psf) 20.0 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MR	0.22 0.14 0.25	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 12	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0		110201	0/11/12011								Weight: 125 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt (lb/size) 12=150/1 17=144/1 19=159/1 21=150/1 Max Horiz 21=255 (Max Uplift 12=-130 15=-84 (l 18=-94 (l 20=-186 Max Grav 12=228 (15=209 (17=364 (l	Applied or 6-0-0 oc 6-17 6-5-0, 13=158/16-5- 6-5-0, 18=167/16-5- 6-5-0, 18=167/16-5- 6-5-0, 20=158/16-5- 6-5-0 LC 13) (LC 11), 13=-182 (LC C 14), 19=-82 (LC 1 (LC 14), 19=-82 (LC 1 (LC 14), 13=259 (LC 1 LC 24), 18=281 (LC LC 15), 18=281 (LC LC 15), 18=281 (LC LC 15), 20=265 (LC 1)	N(1) ed or 2) 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	OTES Unbalanced this design. Wind: ASCE Vasd=103m Cat. II; Exp I zone and C- 2-2-8 to 5-2- 11-2-8 to 14 cantilever lef right expose for reactions DOL=1.60 Truss desig only. For stt see Standar or consult qu TCLL: ASCE Plate DOL= DOL=1.15); Cs=1.00; Ct	6-17=-573/195, § 4-19=-170/152, § 7-16=-241/124, § 9-13=-177/177 roof live loads h 7-16; Vult=130r ph; TCDL=6.0ps 3; Enclosed; MW C Corner(3E) -0- 8, Corner(3E) -0- 1, Corner	3-20=-181. 8-15=-170. ave been mph (3-sec f; BCDL== /FRS (env -10-8 to 2- -2-8 to 11- 14-2-8 to sed ; end vers ers and fo DOL=1.6(ds in the p vind (norm End Deta designer at sf (roof Ll sf (Lum DC at B; Fully	(177, (152, considered fo cond gust) .0psf; h=25ft elope) exterior 2-8, Exterior(2-8, Exterior(2-8, Exterior(17-3-8 zone; vertical left an ces & MWFF 0 plate grip lane of the trr al to the face ils as applica s per ANSI/TI .: Lum DOL= DL=1.15 Plate Exp.; Ce=0.5	or ; 2N) 2N) 2N 2N 2N 2N 2S 2S 2S 2S 2S 2S 2S 2S 2S 2S 2S 2S 2S	on t 3-06	he bottc 5-00 tall rd and a	om cho by 2-0 any oth	ord in all areas wh	between the bottom
FORCES	Tension	npression/Maximum	6)	This truss ha	as been designed psf or 1.00 times					4	è S		A. T
TOP CHORD BOT CHORD	3-4=-108/237, 4-5= 6-7=-212/466, 7-8= 9-10=-161/158, 10- 20-21=-125/131, 19	,	866, 7) 37, 8)	overhangs n All plates are Gable requir Truss to be f	on-concurrent w e 2x4 MT20 unle res continuous be fully sheathed fro nst lateral moven	ith other li ss otherwi ottom chor om one fac	ve loads. se indicated. d bearing. e or securely	,		THE OWNER		SEA 0363	• –
	18-19=-125/131, 17 16-17=-125/131, 15 13-15=-125/131, 12	-16=-125/131,)) Gable studs)) This truss ha	spaced at 2-0-0 as been designed ad nonconcurrer	oc. d for a 10.) psf bottom					11111	EFR. KININ

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601




April 8,2022

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 112 FaNC	
22030114	E01	Monopitch	7	1	I51257 Job Reference (optional)	/034

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Thu Apr 07 21:17:01 ID:tGfy?Z4k?dDAxHuOrFeUM_zkQpd-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:35.3

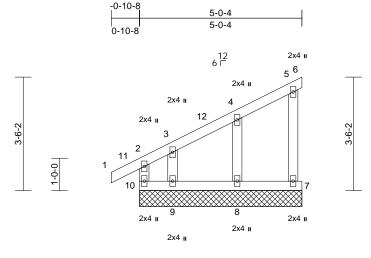
							· · · · · ·						
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MP	0.61 0.31 0.04	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.07 -0.05 0.00	(loc) 6-7 6-7 6	l/defl >799 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 29 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 5-0-4 oc purlins, ex Rigid ceiling directly bracing. (Ib/size) 6=200/ M Max Horiz 7=123 (LC Max Uplift 6=-75 (LC Max Grav 6=291 (LC (Ib) - Maximum Com Tension 1-2=0/35, 2-3=-89/7 3-6=-239/115, 2-7=- 6-7=-120/32, 5-6=0/ 2-6=-19/143	cept end verticals. applied or 10-0-0 oc 2 c11) 2 11), 7=-31 (LC 10) 2 21), 7=350 (LC 21) pression/Maximum 6, 3-4=-12/0, 304/160	7) 8) 3-8 9) 10	chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Refer to gird Provide mec bearing plate 6. One H2.5A S recommende UPLIFT at jtt does not cor) This truss is International	is been designed ad nonconcurrent has been designer in chord in all area by 2-00-00 wide w hy other members er(s) for truss to th hanical connectio e capable of withs Simpson Strong-T ded to connect trus (s) 7. This connec bisider lateral force designed in accor Residential Code nd referenced sta Standard	with any d for a liv as where vill fit betw truss conr n (by oth tanding 7 ie conne s to bear tion is for s. rdance w a sections	other live loa e load of 20. a rectangle ween the bott nections. ers) of truss '5 lb uplift at ctors ing walls due r uplift only at ith the 2018 s R502.11.1 a	0psf tom joint ≩ to nd					
Vasd=103 Cat. II; Exp zone and (exposed ;	CE 7-16; Vult=130mph mph; TCDL=6.0psf; B p B; Enclosed; MWFR C-C Exterior(2E) zone end vertical left and rig exposed;C-C for memb	CDL=6.0psf; h=25ft; S (envelope) exterior ; cantilever left and ri ght exposed; porch le	ight							4	ALL ALL	OR FESS	ROIN

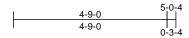
grip DOL=1.60 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

MWFRS for reactions shown; Lumber DOL=1.60 plate

- Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

SEAL 036322 A. GILBERT


> ENGINEERING BY AMITEK Alfiliate B18 Soundside Road Edenton, NC 27932


Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 112 FaNC	
22030114	E02	Monopitch Supported Gable	1	1	Job Reference (optional)	5

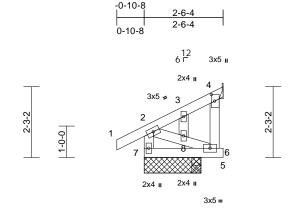
Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Thu Apr 07 21:17:02 ID:TzVFxLFWiw_BdQy4gBunwxzkQpP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

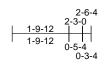
Page: 1

Scale = 1:35.6

L oading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC	0.24	DEFL Vert(LL)	in n/a	(loc) -	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190
now (Pf)	20.0	Lumber DOL	1.15	BC	0.11	Vert(CT)	n/a	-	n/a	999		
CDL	10.0	Rep Stress Incr	YES	WB	0.06	Horz(CT)	0.00	6	n/a	n/a		
BCLL	0.0	Code	IRC2018/TPI2014	Matrix-MR								
BCDL	10.0						_				Weight: 27 lb	FT = 20%
UMBER OP CHORD 30T CHORD VEBS DTHERS BRACING OP CHORD 30T CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 5-0-4 oc purlins, of Rigid ceiling direct bracing. (Ib/size) 6=4/5-0 8=168/4 10=116 Max Horiz 10=124 Max Upliff 6=-32 (8=-37 (10=-216) 10=-216	(LC 11) _C 14), 7=-34 (LC 11) _C 14), 9=-101 (LC 11 (LC 10) C 13), 7=101 (LC 21), LC 21), 9=143 (LC 21)	ed or c 4) Unbalan design. 5) This trus load of 1 c 4) Unbalan design. 5) This trus load of 1 overhan 6) All plate 7) Gable rs 9) Gable st 10) This trus c 9) Gable st 10) This trus c 10) Thi	esigned for wind loa r studs exposed to / Idard Industry Gable It qualified building of SCE 7-16; Pr=20.0 pr SCE 7-16; Pr=20.0 pr (5); Is=1.0; Rough C ; Ct=1.10 ced snow loads hav s has been designe 2.0 psf or 1.00 time gs non-concurrent w s are 2x4 MT20 unle quires continuous b be fully sheathed fr gainst lateral mover uds spaced at 2-0-0 s has been designe e load nonconcurrer	wind (norm > End Deta designer a psf (roof LL sf (Lum DC cat B; Fully e been col d for great s flat roof I with other li sss otherwind other with any d for a cat a flat roof I otherwind otherwin	al to the face ils as applical s per ANSI/TF DL=1.15 Plate Exp.; Ce=0.9 nsidered for the er of min roof oad of 20.0 per ve loads. se indicated. d bearing. se or securely liagonal web) 0 psf bottom other live loa), ole, P 1. I.15 ; iis live of on ds.					
FORCES	(lb) - Maximum Co Tension	mpression/Maximum	on the b	iss has been design ottom chord in all ar tall by 2-00-00 wide	eas where	a rectangle						11.
TOP CHORD	2-10=-129/30, 1-2 3-4=-70/42, 4-5=-5 5-7=-86/33	=0/35, 2-3=-143/19, 59/44, 5-6=-38/22,	chord ar 12) Provide	d any other membe mechanical connect plate capable of with	rs. ion (by oth	ers) of truss t	0			- II	TH CA	ROLIN
BOT CHORD	,	-48/61, 7-8=-48/61	6.	•	0	. ,			4	i i	FES	Phi a
WEBS	4-8=-198/160, 3-9	=-123/203							4	/	1	1414
Vasd=10 Cat. II; Ex zone and 2-1-8 to 5 end vertic forces & I	xp B; Enclosed; MWF C-C Corner(3E) -0-1 5-0-4 zone; cantilever	BCDL=6.0psf; h=25ft; RS (envelope) exterior 0-8 to 2-1-8, Exterior(left and right exposed sed;C-C for members shown; Lumber	r 2N) ⊨;						THURNE.		SEA 0363	EER ER LUU

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


April 8,2022


Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 112 FaNC	
22030114	E03	Monopitch Structural Gable	1	1	Job Reference (optional)	151257036

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Thu Apr 07 21:17:02 ID:ihYfqQMAah7vCp8ohaYunqzkQpG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

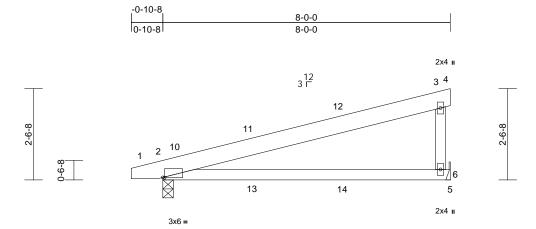
Scale = 1:36.8

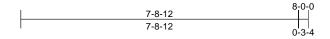
Plate Offsets (X, Y): [4:0-2-8,0-1-4]

						-							
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MP	0.10 0.05 0.06	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 6-7 6-7 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 17 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 2-6-4 oc purlins, ex Rigid ceiling directly bracing. (Ib/size) 4=39/ Me 7=160/1-1 Max Horiz 7=74 (LC Max Uplift 4=-17 (LC (LC 14) Max Grav 4=58 (LC	cept end verticals. ² applied or 10-0-0 o chanical, 6=36/1-9- 9-12 11) C 11), 6=-8 (LC 11),	c 6; 12, 7; 8; 7=-26 9;	Plate DOL=1 DOL=1.15); Cs=1.00; Ct Unbalanced design. This truss ha load of 12.0 overhangs n Truss to be f braced agair Gable studs This truss ha chord live loa * This truss l on the bottor	7-16; Pr=20.0 ps 1.15); Pf=20.0 ps 1s=1.0; Rough Ca =1.10 snow loads have as been designed psf or 1.00 times to on-concurrent with fully sheathed from that lateral movem spaced at 2-0-0 o as been designed ad nonconcurrent has been designed an chord in all area by 2-00-00 wide w	(Lum DC t B; Fully been cor for great flat roof li h other li n one fac ent (i.e. c cc. for a 10. with any d for a li as where	DL=1.15 Plate Exp.; Ce=0.9 nsidered for the er of min roof oad of 20.0 p ve loads. er or securely liagonal web) O psf bottom other live load e load of 20.0 a rectangle	e); i live sf on , uds. Dpsf					
Vasd=103	2-8=-14/88, 6-8=-17 CE 7-16; Vult=130mph mph; TCDL=6.0psf; B	6, 3-4=-32/22, 4-6=(7/94, 3-8=-35/18 1 (3-second gust) CDL=6.0psf; h=25ft;),)/0, 1; ; 1;	 Refer to gird Provide mec bearing plate A. N/A This truss is 	ny other members er(s) for truss to tr shanical connectio e capable of withs designed in accord Residential Code	russ conr n (by oth tanding 1 rdance w	ers) of truss t 7 lb uplift at j ith the 2018	oint		4	I	OP OF ES	ROLIN
	p B; Enclosed; MWFR C-C Exterior(2E) zone		right	R802.10.2 a	nd referenced sta	ndard AN	ISI/TPI 1.	uiu				SEA	LIE

zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- R802.10.2 and referenced standard ANSI/TPI 1.
- 14) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in. LOAD CASE(S) Standard


818 Soundside Road Edenton, NC 27932


Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 112 FaNC	
22030114	F01	Monopitch	5	1	Job Reference (optional)	151257037

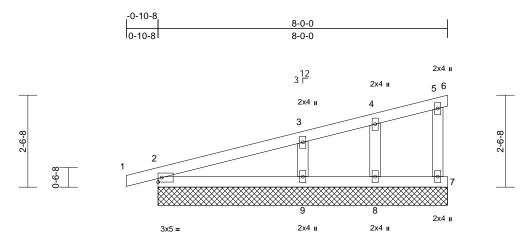
Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Thu Apr 07 21:17:02 ID:uGk0JzG7qgsembMZzedb3hzT_ir-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

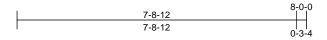
. ug

Scale = 1:32.1

Plate Offsets (X, Y): [2:0-0-9,0-0-1]

- 1010 0110010 ((,,,), [2:0 0 0;0 0 1]												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/T	-	CSI TC BC WB Matrix-MP	0.70 0.67 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.33 0.25 -0.02	(loc) 6-9 6-9 2	l/defl >284 >364 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 36 lb	GRIP 244/190 FT = 20%
TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD NOTES 1) Wind: ASG Vasd=103 Cat. II; Ex zone and 2-5-13 to 4 cantilever right expo members Lumber D DOL=1.15 Cs=1.00; 3) Unbalancc design. 4) This truss load of 12	2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (Ib/size) 2=341/0-3 Max Horiz 2=82 (LC Max Uplift 2=-131 (L Max Grav 2=426 (LC (Ib) - Maximum Com Tension 1-2=0/7, 2-3=-266/2 3-6=-348/277 2-6=-180/186, 5-6=(CE 7-16; Vult=130mph Brph; TCDL=6.0psf; B pB; Enclosed; MWFR C-C Exterior(2E) -0-6- 5-0-0, Exterior(2E) -0-0, Exterior(2E)	cept end verticals. applied or 10-0-0 or 3-8, 6=330/ Mechani 13) C 10), 6=-123 (LC 1 C 21), 6=434 (LC 21 apression/Maximum 92, 3-4=-6/0, 1/0 (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior 3 to 2-5-13, Interior -0 to 8-0-0 zone; ; end vertical left an the exposed; C-C for for reactions shown DL=1.60 roof LL: Lum DOL= ⁻¹ applied of the considered for the r greater of min roof t roof load of 20.0 ps	c 6) * ed or 7) F c 8) F b ical 9) C 10) T 10) T F LOAI f f f 1.15 b; live	chord live loa This truss h on the bottom a-06-00 tall b chord and an Refer to girde Provide mecl bearing plate oint 6. Dne H2.5A S recommende JPLIFT at jt(does not com This truss is a international	ad nonconcurrent w has been designed in chord in all areas by 2-00-00 wide will y other members. er(s) for truss to tru- hanical connection capable of withsta Simpson Strong-Tie d to connect truss s) 2. This connecti sider lateral forces designed in accord Residential Codes and referenced stand	vith any for a liv s where Il fit betw uss conru- (by oth anding 1 e conne- to bear on is for s. dance w sections	other live load e load of 20. a rectangle veen the bott nections. ers) of truss 23 lb uplift a ctors ing walls due uplift only a ith the 2018 s R502.11.1 a	Opsf om to t to nd				ORTH CA ORTEESS SEA 0363	EER AL


April 8,2022



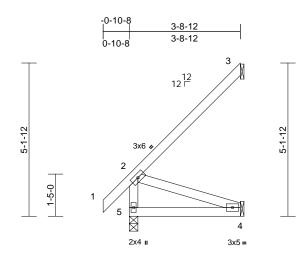
J	lob	Truss	Truss Type	Qty	Ply	DRB GROUP - 112 FaNC	
2	22030114	F02	Monopitch Supported Gable	1	1	Job Reference (optional)	151257038

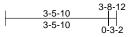
Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Thu Apr 07 21:17:02 ID:vXGSunTnqu0EJCAqTiRaFGzT_ia-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:31.8

	-											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCLL LUMBER	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2018/TPI201	CSI TC BC WB Matrix-MP	0.22 0.13 0.07 ds in the p	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 6	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 32 lb	GRIP 244/190 FT = 20%
TOP CHORE BOT CHORE WEBS OTHERS BRACING TOP CHORE BOT CHORE REACTIONS	 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 cc purlins, ex Rigid ceiling directly bracing. (Ib/size) 2=185/8-1 7=107/8-1 9=306/8-1 9=306/8-1 Max Horiz 2=83 (LC Max Uplift 2=-42 (LC 7=-28 (LC 9=-63 (LC Max Grav 2=219 (LI 7=145 (LL) 	v applied or 10-0-0 oc 0-0, 6=-22/8-0-0, 0-0, 8=90/8-0-0, 0-0, 10=185/8-0-0 13), 10=83 (LC 13) 2 10), 6=-31 (LC 21), 2 14), 8=-14 (LC 10), 2 14), 10=-42 (LC 10)	d or d or 6) This tr 1) Thi	For studs exposed to wandard Industry Gable sult qualified building c ASCE 7-16; Pr=20.0 p DOL=1.15); Pf=20.0 ps 1.15); Is=1.0; Rough C 20; Ct=1.10 anced snow loads have	vind (norm End Deta designer a designer a signer a signer a signer a signer a difficum 2 difficum 2 difficum 3 difficum 3	al to the face ils as applica s per ANSI/TI .: Lum DOL= DL=1.15 Plate Exp.; Ce=0.9 nsidered for the er of min roof bad of 20.0 p ve loads. rd bearing. 0 psf bottom other live loa e load of 20.0 a rectangle	e), bble, PI 1. 1.15 9; his 9; f live sf on ads. 0psf					
FORCES	Tension 0 1-2=0/12, 2-3=-140/			e mechanical connecti g plate capable of with								unin,
Vasd=10 Cat. II; E zone and 2-1-8 to 8 end vertion forces &	4-5=-34/26, 5-6=-13 2-9=-82/47, 8-9=-35 4-8=-106/94, 3-9=-3 30 CE 7-16; Vult=130mph 30mph; TCDL=6.0psf; B xp B; Enclosed; MWFR d C-C Corner(3E) -0-10- 8-0-0 zone; cantilever le cal left and right expose MWFRS for reactions s 00 plate grip DOL=1.60	5/45, 7-8=-35/45 301/247 CDL=6.0psf; h=25ft; IS (envelope) exterior -8 to 2-1-8, Exterior(2 aft and right exposed ed;C-C for members a	?N) ;						Manna and and and and and and and and and	E. M.	SEA 0363	EER A


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



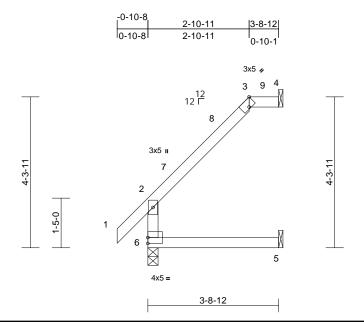
April 8,2022

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 112 FaNC	
22030114	J01	Jack-Open	12	1	I5 Job Reference (optional)	1257039

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Thu Apr 07 21:17:03 ID:0zHay35NTYmrzjE94fELWczkQum-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:38.7

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (root) 20.0	Plate Grip DOL	1.15		тс	0.39	Vert(LL)	-0.01	4-5	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.15	Vert(CT)	-0.02	4-5	>999	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.10	Horz(CT)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TI	PI2014	Matrix-MP								
BCDL	10.0											Weight: 22 lb	FT = 20%
LUMBER TOP CHO BOT CHO WEBS BRACING TOP CHO BOT CHO REACTION	 RD 2x4 SP No.2 2x4 SP No.3 RD Structural wood sh 3-8-12 oc purlins, RD Rigid ceiling directl bracing. NS (Ib/size) 3=97/ M Mechani Max Horiz 5=146 (L Max Uplift 3=-101 (eathing directly applie except end verticals. y applied or 10-0-0 oc echanical, 4=36/ cal, 5=212/0-3-8 C 14) LC 14), 4=-30 (LC 14) C 21), 4=72 (LC 7), 5	d or 6) * 3. d or 7) R 8) O tr 6 9) O 70 10 10 10 10 10 10 10 10 10 1	hord live loa This truss h n the botton -06-00 tall b hord and an tefer to girde One RT8A M russ to beari onnection is porces. One H2.5A S ecommende IPLIFT at jt(;	s been designed for d nonconcurrent w as been designed n chord in all areas y 2-00-00 wide wil y other members. er(s) for truss to tru Tek connectors re ng walls due to UF for uplift only and impson Strong-Tied to connect truss s) 4. This connectis sider lateral forces	vith any for a liv where I fit betv uss con ecomme PLIFT at does no e connec to bear on is for	other live loa e load of 20.0 a rectangle veen the botto nections. anded to conr jt(s) 3. This of consider la ctors ing walls due	Opsf om nect teral to					
	(LC 21)	.0 2 1), 1 - 1 2 (20 1), 0	u.		sider lateral forces designed in accord		ith the 2018						
FORCES		npression/Maximum	ÍIn	nternational	Residential Code	sections	R502.11.1 a	and					
TOP CHO BOT CHO WEBS	,	43, 2-3=-159/102		802.10.2 ar D CASE(S)	nd referenced stand Standard	dard AN	ISI/TPI 1.						
NOTES													
Vasd= Cat. II; zone a expose memb	ASCE 7-16; Vult=130mp 103mph; TCDL=6.0psf; E Exp B; Enclosed; MWFF nd C-C Exterior(2E) zonv ed; end vertical left and r ers and forces & MWFRS r DOL=1.60 plate grip D	CDL=6.0psf; h=25ft; S (envelope) exterior e; cantilever left and ri ight exposed;C-C for for reactions shown;								4	ALL ALL	OR EESS	ROIN
Plate I DOL=	ASCE 7-16; Pr=20.0 psf DOL=1.15); Pf=20.0 psf (1.15); Is=1.0; Rough Cat 10; Ct=1.10	Lum DOL=1.15 Plate										SEA 0363	
,	inced snow loads have b	een considered for thi	is								-	·	all S
load of	uss has been designed for 12.0 psf or 1.00 times fla ngs non-concurrent with	at roof load of 20.0 ps											


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 ENGINEERING BY

818 Soundside Road Edenton, NC 27932

April 8,2022

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 112 FaNC	
22030114	J02	Half Hip	1	1	I512 Job Reference (optional)	257040

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Thu Apr 07 21:17:03 ID:NCcuZbMAIIYjc5wNMHdVPFzkQuQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:32.9

Plate Offsets (X, Y): [3:0-2-8,Edge]

	(,,, ,): [0:0 ± 0,±0g0]												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2	018/TPI2014	CSI TC BC WB Matrix-MR	0.68 0.46 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.03 0.03 -0.11	(loc) 5-6 5-6 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 17 lb	GRIP 244/190 FT = 20%
	2x4 SP No.3 Structural wood she 3-8-12 oc purlins, e 2-0-0 oc purlins: 3-4 Rigid ceiling directly bracing. (Ib/size) 4=92/ Me	xcept end verticals, applied or 10-0-0 o chanical, 5=40/ al, 6=211/0-3-8 C 14) C 14), 5=-12 (LC 14)	and c	 design. This truss has load of 12.0 overhangs r Provide ade This truss has chord live lo * This truss on the botto 3-06-00 tall chord and a Refer to girc Provide meaning plate 4 and 12 lo 	snow loads have as been designed psf or 1.00 times ion-concurrent wi quate drainage to as been designed ad nonconcurrent has been designed m chord in all are by 2-00-00 wide v ny other member: ler(s) for truss to chanical connecti e capable of withs uplift at joint 5. designed in acco	for great flat roof I th other li p prevent for a 10. with any ed for a liv as where vill fit betw s. truss con on (by oth tstanding §	er of min roo bad of 20.0 p ve loads. water pondin 0 psf bottom other live loa re load of 20. a rectangle veen the bott nections. ers) of truss 32 lb uplift at	f live osf on g. ads. Opsf com to					
TOP CHORD	(lb) - Maximum Com Tension 1-2=0/72, 2-3=-140/			International R802.10.2 a 12) Graphical pu	l Residential Code nd referenced sta urlin representatio	e sections andard AN on does no	SR502.11.1 a NSI/TPI 1. ot depict the						
BOT CHORD	5-6=0/0				ation of the purlin	along the	e top and/or						10.
 this design Wind: ASC Vasd=103 Cat. II; Exp zone and 2-1-8 to 2- cantilever right exposition for reaction DOL=1.60 TCLL: ASC Plate DOL 	CE 7-16; Vult=130mph smph; TCDL=6.0psf; B p B; Enclosed; MWFR C-C Exterior(2E) -0-10 10-11, Exterior(2E) 2- left and right exposed sed;C-C for members ns shown; Lumber DC CE 7-16; Pr=20.0 psf (L =1.15); Pf=20.0 psf (L 5); Is=1.0; Rough Cat E	(3-second gust) CDL=6.0psf; h=25ft S (envelope) exterior -8 to 2-1-8, Exterior 10-11 to 3-8-0 zone ; end vertical left an and forces & MWFF DL=1.60 plate grip froof LL: Lum DOL= um DOL=1.15 Plate	; or ; id &S 1.15	bottom chor						(W. CHILLEY		SEA 0363	EER. KUU

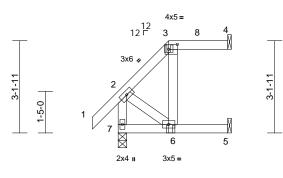
TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

GILB

April 8,2022


1111111

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 112 FaNC	
22030114	J03	Half Hip Girder	1	1	Job Reference (optional)	151257041

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Thu Apr 07 21:17:03 ID:]RxDB6dz63JcFUbcfv0fluzkQu4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

-0-10-8 -0-10-8 1-8-11 3-8-12 0-10-8 -0-10-8

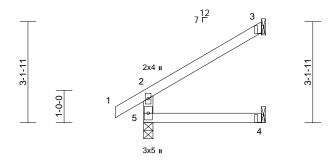
NAILED

NAILED

Scale = 1:39.2

Plate Offsets (X, Y):	[3:0-3-8,0-2-0]

Loading TCLL (roof) Snow (Pf) TCDL	(psf) 20.0 20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 NO		CSI TC BC WB	0.14 0.53 0.04	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.04 -0.05 0.09	(loc) 6 6 4	l/defl >999 >814 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0* 10.0	Code		3/TPI2014	Matrix-MP							Weight: 22 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 3-8-12 oc purlins, ei 2-0-0 oc purlins: 3-4 Rigid ceiling directly bracing. (lb/size) 4=58/ Med	xcept end verticals, a applied or 10-0-0 oc chanical, 5=127/ al, 7=274/0-3-8 12)	5) d or 6) ind 7) 8) 9)	design. This truss ha load of 12.0 overhangs n Provide aded This truss ha chord live loa * This truss h on the bottor 3-06-00 tall tb chord and ar Refer to gird,) Provide mec	snow loads have to s been designed for performer and the second second part of the second second second second second second second part of the second second second second second second second part of the second secon	or great at roof le other lin prevent or a 10.1 with any for a liv s where Il fit betw uss con u (by oth	er of min rooi aad of 20.0 p ve loads. vater pondin 0 psf bottom other live loa e load of 20. a rectangle veen the bott nections. ers) of truss	f live usf on g. ads. Opsf com to				weight. 22 ib	r 1 = 20 <i>%</i>
FORCES	Max Grav 4=97 (LC 7=353 (LC (lb) - Maximum Com Tension	2 34)	11) One H2.5A S recommende UPLIFT at jt(plift at joint 5. Simpson Strong-Ti- d to connect truss s) 7. This connect sider lateral forces	to bear	ng walls due						
TOP CHORD BOT CHORD WEBS NOTES	1-2=0/72, 2-3=-92/17		12) This truss is International R802.10.2 ar	designed in accord Residential Code ad referenced star rlin representation	dance w sections dard AN	R502.11.1 a ISI/TPI 1.					TH CA	Route
 Unbalanc this desig Wind: AS Vasd=103 Cat. II; Ex zone; can and right DOL=1.60 TCLL: AS Plate DOI 	CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B(cp B; Enclosed; MWFR3 titilever left and right exp exposed; Lumber DOL= 0 CCE 7-16; Pr=20.0 psf (L L=1.15); Pf=20.0 psf (L 5); Is=1.0; Rough Cat B	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior bosed ; end vertical k =1.60 plate grip roof LL: Lum DOL=1 um DOL=1.15 Plate	14 15 eft LC 1) 15	or the orienta bottom chorc) "NAILED" ind (0.148"x3.25) In the LOAD of the truss a DAD CASE(S) Dead + Snd Increase=1 Uniform Loa Vert: 1-2: Concentrate	tition of the purlin a licates 3-10d (0.14 ") toe-nails per NE CASE(S) section, re noted as front (Standard w (balanced): Lur 15	llong the 18"x3") c 9S guidli loads a F) or ba nber Inc	top and/or r 3-12d hes. oplied to the ck (B). rease=1.15,	face		Within		SEA 0363	EER RUU


Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 112 FaNC	
22030114	J04	Jack-Open	1	1	Job Reference (optional)	151257042

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Thu Apr 07 21:17:03 ID:jRxDB6dz63JcFUbcfv0fluzkQu4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

NAILED

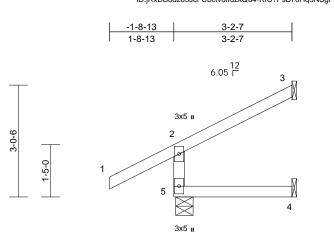
NA	IL	ED	

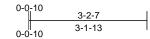
3-8-0

Scale = 1:35.8

Loading (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Spacing2-0Plate Grip DOL1.1Lumber DOL1.1Rep Stress IncrYECodeIRC	5	CSI TC BC WB Matrix-MR	0.27 0.16 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.01 -0.01 -0.01	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BOT CHORD 3-8-0 oc purlins, exc Rigid ceili⊐ directly bracing. REACTIONS (Ib/size) 3=129/ Me Mechanice Max Horiz 5=83 (LC Max Uplift 3=-88 (LC	applied or 10-0-0 oc chanical, 4=45/ al, 5=209/0-3-8 14) 14), 5=-5 (LC 14) 21), 4=81 (LC 7), 5=315 pression/Maximum 50, 2-3=-95/56 (3-second gust) CDL=6.0psf; h=25ft; 6 (envelope) exterior cantilever left and right ht exposed;C-C for for reactions shown; L=1.60 roof LL: Lum DOL=1.15 Jm DOL=1.15 Plate ; Fully Exp.; Ce=0.9; en considered for this greater of min roof live roof load of 20.0 psf on ther live loads.	 on the bottor 3-06-00 tall t chord and ar 7) Refer to gird 8) Provide mec bearing plate 3. 9) One H2.5A S recommende UPLIFT at jtt does not cor 10) This truss is International R802.10.2 at 11) "NAILED" intro- NDS guidline 12) In the LOAD of the truss at LOAD CASE(S) 1) Dead + Snt Increase=1 Uniform Lo Vert: 1-2 Concentrat 	CASE(S) section are noted as front Standard ow (balanced): Lu .15	as where vill fit betw truss conn in (by oth tanding & "ie conne s to bear tion is for s. rdance w e sections ndard AN 48"x3.25 I, loads a (F) or ba	a rectangle veen the bott nections. ers) of truss 8 lb uplift at tors uplift only a s R502.11.1 a ISI/TPI 1. ") toe-nails p oplied to the ck (B).	to joint to and and face				Weight: 14 lb	EER A

April 8,2022




Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 112 FaNC	
22030114	J05	Jack-Open	1	1	Job Reference (optional)	151257043

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Thu Apr 07 21:17:03 ID:jRxDB6dz63JcFUbcfv0fluzkQu4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3-0-6

Page: 1

Scale = 1:31.2

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	18/TPI2014	CSI TC BC WB Matrix-MR	0.44 0.17 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.01 -0.01 -0.02	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 15 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS (III	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 3-2-7 oc purlins, ex Rigid ceiling directly bracing. b/size) 3=61/ Me	cept end verticals. applied or 10-0-0 or chanical, 4=23/ al, 5=268/0-5-11 11) 2 14), 5=-27 (LC 14)	7 c 8 9	 chord live loa * This truss hottor 3-06-00 tall to chord and ar Refer to gird Provide mec bearing plate 3. One RT8A M truss to bear connection is forces. This truss is 	I solve the second seco	with any d for a liv as where vill fit betw truss con on (by oth tanding 5 recomme JPLIFT at d does no rdance w	other live loa e load of 20. a rectangle veen the bott nections. ers) of truss 0 lb uplift at nded to com jt(s) 5. This ot consider la ith the 2018	Opsf com to joint nect ateral				weight. 19 lb	11-2078
TOP CHORD BOT CHORD NOTES 1) Wind: ASCE Vasd=103m Cat. II; Exp B zone and C- 2-6-1 to 3-1- end vertical forces & MW DOL=1.60 p 2) TCLL: ASCE	 (lb) - Maximum Com Tension 2-5=-370/214, 1-2=0 4-5=0/0 7-16; Vult=130mph ph; TCDL=6.0psf; B B; Enclosed; MWFR C Corner (3) -1-8-13 -11 zone; cantilever I left and right expose VFRS for reactions s slate grip DOL=1.60 7-16; Pr=20.0 psf (1 145): Pf=20.0 psf (1 	, //81, 2-3=-86/35 (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterio to 2-6-1, Exterior(2 left and right expose d;C-C for members hown; Lumber roof LL: Lum DOL=1	r R) ad ; and 1.15		nd referenced sta					4	A	OR TH CA	ROUT

- 2 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on 4) overhangs non-concurrent with other live loads.

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 112 FaNC	
22030114	PB1	Piggyback	2	1	I51257044 Job Reference (optional)	

0-6-9

0-8-0

Carter Components (Sanford), Sanford, NC - 27332

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Thu Apr 07 21:17:04 ID:gAh6RshYdoHGBrlKFg43KEzkQsj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3-7-6

1-9-11

6 2x4 🛛 2x4 = 2x4 = 3-7-6 Plate Offsets (X, Y): [2:0-2-6,0-1-0], [4:0-2-6,0-1-0] Spacing 2-0-0 CSI DEFL l/defl (psf) in (loc) 20.0 Plate Grip DOL 1.15 TC 0.05 Vert(LL) 999 n/a n/a 20.0 Lumber DOL 1.15 BC 0.06 Vert(CT) n/a n/a 999 10.0 Rep Stress Incr WB Horz(CT) 4 YES 0.01 0.00 n/a 0.0 Code IRC2018/TPI2014 Matrix-MP 10.0 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate Structural wood sheathing directly applied or DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; 4-9-0 oc purlins. Cs=1 00. Ct=1 10 Rigid ceiling directly applied or 10-0-0 oc 5) Unbalanced snow loads have been considered for this design. 2=109/3-7-6, 4=109/3-7-6, 6) This truss has been designed for greater of min roof live 6=112/3-7-6, 7=109/3-7-6, load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on 10=109/3-7-6 overhangs non-concurrent with other live loads Max Horiz 2=-51 (LC 12), 7=-51 (LC 12) Gable requires continuous bottom chord bearing. 7) Max Uplift 2=-16 (LC 15), 4=-21 (LC 15), Gable studs spaced at 2-0-0 oc. 8) 7=-16 (LC 15), 10=-21 (LC 15) 9) This truss has been designed for a 10.0 psf bottom Max Grav 2=153 (LC 21), 4=153 (LC 22), chord live load nonconcurrent with any other live loads.

6=116 (LC 22), 7=153 (LC 21), 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle (Ib) - Maximum Compression/Maximum 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 11) N/A

2-2-14

2-4-8

TOP CHORD 1-2=0/23, 2-3=-87/64, 3-4=-87/64, 4-5=0/23 BOT CHORD 2-6=-16/60, 4-6=-12/60 WEBS 3-6=-42/0

10=153 (LC 22)

NOTES

FORCES

Scale = 1:29.3

Loading

TCLL (roof)

Snow (Pf)

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

REACTIONS (lb/size)

2x4 SP No 2

2x4 SP No 2

2x4 SP No.3

bracing.

Tension

TCDL

BCLL

BCDL

1) Unbalanced roof live loads have been considered for this design.

Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer

LOAD CASE(S) Standard

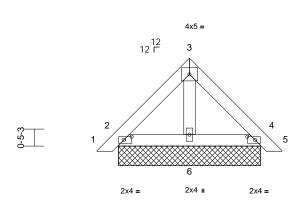
818 Soundside Road Edenton, NC 27932

L/d

n/a

PLATES

Weight: 18 lb

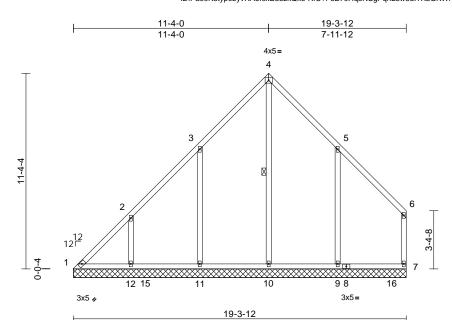

MT20

GRIP

244/190

FT = 20%

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


1-9-11

1-9-11

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 112 FaNC	
22030114	V1	Valley	1	1	Job Reference (optional)	151257045

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Thu Apr 07 21:17:04 ID:Pa90K8typ0byvRAoI0xB3ozkQxe-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

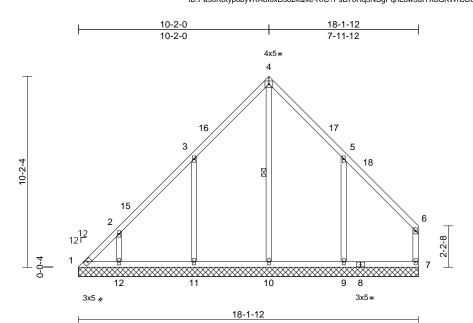
Page: 1

Scale = 1:66.8

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.33	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.18	Vert(TL)	n/a	-	n/a	999			
TCDL	10.0	Rep Stress Incr	YES		WB	0.37	Horiz(TL)	0.00	7	n/a	n/a			
BCLL	0.0*	Code	IRC201	8/TPI2014	Matrix-MSH									
BCDL	10.0											Weight: 114 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	Structural wood sh 6-0-0 oc purlins, e Rigid ceiling direct bracing. 1 Row at midpt (lb/size) 1=111/1 9=352/1 11=334 Max Horiz 1=300 (Max Uplift 1=-169 9=-230 11=-218 Max Grav 1=271 (2001 2011 2012 2012 2012 2012 2012 2012	ed or 3) 2, 12, 12, 12, 12, 4)), 13), 214) 5)	Vasd=103m Cat. II; Exp I zone and C- 3-0-4 to 8-4- 14-4-4 to 16 cantilever le right expose for reactions DOL=1.60 Truss desig only. For stu- see Standar or consult qu TCLL: ASCE Plate DOL= DOL=1.15); Cs=1.00; Ct Unbalanced design.	i: 7-16; Vult=130m ph; TCDL=6.0psf; 3; Enclosed; MWR C Exterior(2E) 0-(4, Exterior(2E) 0-(4, Exterior(2E) 1 f and right expose d;C-C for membe shown; Lumber I ned for wind load: ds exposed to wi d Industry Gable I alified building d e 7-16; Pr=20.0 psf Is=1.0; Rough Ca =1.10 snow loads have a 2x4 MT20 unles	BCDL=6 FRS (env) 0-4 to 3-0 4-4 to 14 16-2-4 tc ed; end v rs and fo DOL=1.60 s in the p nd (norm End Deta ssigner a: sf (roof LL (Lum DC t B; Fully been cor	.0psf; h=25ft; elope) exteric -4, Interior (1 19-2-4 zone vertical left an cress & MWFF) plate grip lane of the tru al to the face ills as applical s per ANSI/TIf :: Lum DOL=: DL=1.15 Plate Exp.; Ce=0.5	or) (1) ; d ss), ble, P1 1. 1.15 ;	LOAD	CASE(S)) Sta	ndard		
FORCES		(LC 5), 12=425 (LC 2 mpression/Maximum	8)	Gable studs	es continuous bot spaced at 4-0-0 c	C.	Ū					mun	0.00	
TOP CHORD	1-2=-354/329, 2-3	=-326/312, 3-4=-352/3 =-163/161, 6-7=-178/1	,	chord live lo	as been designed ad nonconcurrent has been designe	with any	other live loa				- IN	WITH CA	ROLL	
BOT CHORD	1-12=-61/123, 11- 9-10=-39/51, 7-9=	12=-39/51, 10-11=-39/ ·39/51		on the botto	m chord in all area by 2-00-00 wide w	as where	a rectangle	•		L	in	and and	No.	2
WEBS NOTES 1) Unbalance this design	4-10=-410/278, 3- 2-12=-290/214, 5- ed roof live loads have	11=-384/268,		chord and a 1) Provide med	ny other members hanical connectic e capable of withs	, with BC n (by oth	DL = 10.0psf ers) of truss t	0		annun an		SEA 0363		and the second s
			1:		designed in acco Residential Code			nd			in the	A. G	EEP. K	11.

13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

April 8,2022



GI minin

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 112 FaNC	
22030114	V2	Valley	1	1	Job Reference (optional)	151257046

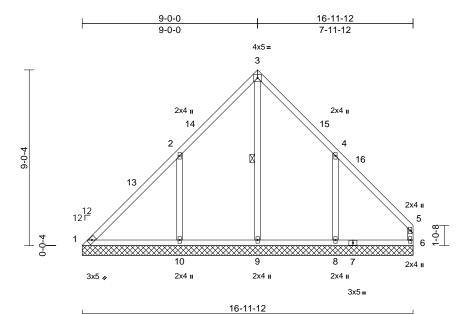
Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Thu Apr 07 21:17:04 ID:Pa90K8typ0byvRAoI0xB3ozkQxe-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:61.5

			1			1		-					1	
Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.15		TC	0.33	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)		20.0	Lumber DOL	1.15		BC	0.17	Vert(TL)	n/a	-	n/a	999		
TCDL		10.0	Rep Stress Incr	YES		WB	0.26	Horiz(TL)	0.00	7	n/a	n/a		
BCLL		0.0*	Code	IRC20	18/TPI2014	Matrix-MSH								
BCDL		10.0											Weight: 101 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP N 2x4 SP N 2x4 SP N Structura 6-0-0 oc	io.2 io.3 io.3 I wood she purlins, ex ing directly midpt 1=67/18-	eathing directly applie coept end verticals. y applied or 10-0-0 oc 4-10 1-12, 7=152/18-1-12, 3-1-12, 10=250/18-1-2	ed or	Vasd=103m Cat. II; Exp zone and C- 3-0-4 to 7-2: 13-2-4 to 15 cantilever le right expose for reactions DOL=1.60 3) Truss desig only. For st see Standar	F-16; Vult=130r ph; TCDL=6.0ps B; Enclosed; MW C Exterior(2E) 0 4, Exterior(2R) 7 0-4, Exterior(2R) 7 0-4, Exterior(2E th and right exposed d;C-C for member shown; Lumber uned for wind load uds exposed to w d Industry Gaba	f; BCDL=6 /FRS (env -0-4 to 3-0 -2-4 to 13) 15-0-4 to sed ; end v ers and foi DOL=1.60 ds in the p vind (norm End Deta	.0psf; h=25ft; elope) exteric -4, Interior (1, -2-4, Interior (1, -3-4, Interior (1, -2-4, Interior (1, -2-4, Interior (1, -2-4, Interior (1, -2-5, Interior (1, -2-5	or (1) ; d &S uss), ble,	LOAD	CASE(S)) Sta	ndard	
		11=344/1 1=259 (L 1=-163 (L 9=-236 (L 11=-223 1=226 (L 9=497 (L	18-1-12, 12=277/18-1 C 11) LC 10), 7=-53 (LC 15) LC 15), 10=-105 (LC (LC 14), 12=-144 (LC C 13), 7=197 (LC 24) C 24), 10=519 (LC 26)	-12), 13), 2 14)), 6),	 TCLL: ASCI Plate DOL= DOL=1.15); Cs=1.00; Ct Unbalanced design. 	ualified building c = 7-16; Pr=20.0 p 1.15); Pf=20.0 ps Is=1.0; Rough C =1.10 snow loads have = 2x4 MT20 unle	esf (roof LL if (Lum DC at B; Fully been cor	.: Lum DOL= [,] DL=1.15 Plate Exp.; Ce=0.9 nsidered for th	1.15);					
		,	LC 5), 12=337 (LC 23	3)	7) Gable requi	res continuous bo	ottom chor	d bearing.						
FORCES	(lb) - Max Tension	kimum Cor	npression/Maximum			spaced at 4-0-0 as been designed) psf bottom					, minini	11111
TOP CHORD			-305/287, 3-4=-256/3 -127/118, 6-7=-145/9	41,	chord live lo	ad nonconcurren has been design	t with any	other live loa				5	"ATH CA	ROUN
BOT CHORD		/77, 11-12 /38, 7-9=-2	=-22/38, 10-11=-22/3 22/38		on the botto	m chord in all are	eas where	a rectangle	•			23	OFESS	Of Sing
WEBS	4-10=-37	,	1=-389/271,		chord and a	ny other member	s, with BC	DL = 10.0psf			-			
NOTES	22		002/201			e capable of with					=	:	SEA	L ; =
		loads have	e been considered for		joint 1. 12) N/A		· · · · · · · · · · · · · · · · · · ·				IIII.		0363	22

13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. A. GILBERING A. GILBERING April 8,2022

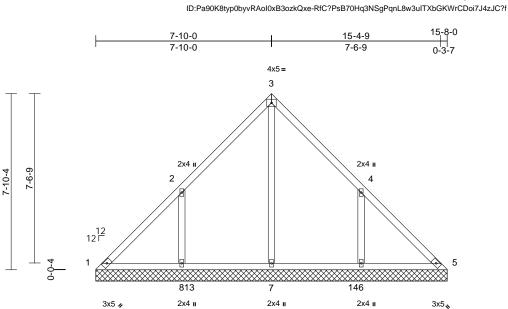

> 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 112 FaNC	
22030114	V3	Valley	1	1	Job Reference (optional)	151257047

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Thu Apr 07 21:17:04 ID:Pa90K8typ0byvRAoI0xB3ozkQxe-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Snow (Pf) 20.0 Lumb	e Grip DOL 1.15 Iber DOL 1.15 Stress Incr YES	3/TPI2014	CSI TC BC WB Matrix-MSH	0.38 0.26 0.19	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 6	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 87 lb	GRIP 244/190 FT = 20%
	nd verticals. ed or 6-0-0 oc 3) 2, 6=138/16-11-12, 2, 9=227/16-11-12, 12 4) 8=-252 (LC 15), 10=-264 (LC 14) 6=152 (LC 28), 9=476 (LC 26), 5)	Vasd=103mp Cat. II; Exp B zone and C-C 3-0-4 to 6-0 12-0-4 to 13- cantilever left right exposed for reactions DOL=1.60 Truss design only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct Unbalanced s design.	7-16; Vult=130mph h; TCDL=6.0psf; B ; Enclosed; MWFR C Exterior(2E) 0-0-4 H, Exterior(2R) 6-0 10-4, Exterior(2R) 6-0 10-4, Exterior(2R) 6-0 10-4, Exterior(2R) 6-0 ind ight exposed transformed in the exposed transformed in the exposed transformed in the exposed to wind loads in ds exposed to wind lifted building desi 7-16; Pr=20.0 psf (L s=1.0; Rough Cat E 1.10 snow loads have be as continuous botto	CDL=6 S (envio to 3-0 4 to 12- 13-10-4 ; end v and for DL=1.60 n the pl I (norm d Detai gner as (roof LL .um DC 3; Fully seen cor	.0psf; h= 25 ft; elope) exterio -4, Interior (1) -0-4, Interior (1) -0-4, Interior (1) to 16-10-4 zc ertical left and ces & MWFR -0 plate grip ane of the tru al to the face) Is as applicat - per ANSI/TF - Lum DOL=1 	r 1) one; d S S ss , ole, 11. 15 ;					
FORCES (lb) - Maximum Compression Tension TOP CHORD 1-2=-323/245, 2-3=-214/28	8)	Gable studs s This truss ha	spaced at 4-0-0 oc. s been designed fo d nonconcurrent w	r a 10.0) psf bottom	ds.					11111


- 4-5=-101/76, 5-6=-118/34 BOT CHORD 1-10=-50/188, 9-10=-36/59, 8-9=-36/59, 6-8=-36/59
- WEBS 3-9=-301/112, 2-10=-424/290, 4-8=-395/286 NOTES
- 1) Unbalanced roof live loads have been considered for this design.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 94 lb uplift at joint 1.

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 112 FaNC	
22030114	V4	Valley	1	1	Job Reference (optional)	151257048

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Thu Apr 07 21:17:05

15-8-0

Scale = 1:51.4

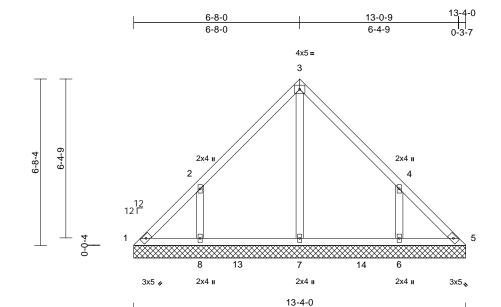
			1			1		· · · ·					i	:	
Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)		20.0	Plate Grip DOL	1.15		TC	0.33	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
Snow (Pf)		20.0	Lumber DOL	1.15		BC	0.17	Vert(TL)	n/a	-	n/a	999			
TCDL		10.0	Rep Stress Incr	YES		WB	0.27	Horiz(TL)	0.00	5	n/a	n/a			
BCLL		0.0*	Code	IRC201	8/TPI2014	Matrix-MSH									
BCDL		10.0											Weight: 75 lb	FT = 20%	
LUMBER				3	Truss desig	ned for wind load	s in the p	lane of the tru	JSS						
TOP CHORD	2x4 SP No.2	2				uds exposed to w									
BOT CHORD	2x4 SP No.2	2				d Industry Gable									
OTHERS	2x4 SP No.3	3				ualified building de									
BRACING				4		E 7-16; Pr=20.0 ps									
TOP CHORD	Structural wo	ood she	athing directly applied	d or		1.15); Pf=20.0 psf									
	6-0-0 oc pur		annig anoon) appno			Is=1.0; Rough Ca	t B; Fully	Exp.; Ce=0.9	9;						
BOT CHORD			applied or 6-0-0 oc		Cs=1.00; Ct										
	bracing.			5	Unbalanced design.	snow loads have	been cor	nsidered for t	nis						
REACTIONS			-8-0, 5=104/15-8-0,	6	0	es continuous bo	ttom chor	d bearing.							
			-8-0, 7=311/15-8-0,	7	Gable studs	spaced at 4-0-0 d	DC.	0							
		=367/15-		8	This truss ha	as been designed	for a 10.	0 psf bottom							
	Max Horiz 1=	``	,			ad nonconcurrent			ds.						
			10), 6=-214 (LC 15)	, 9		has been designe									
		=-218 (L			on the botto	m chord in all area	as where	a rectangle	•						
			C 28), 5=124 (LC 26)	,	3-06-00 tall I	by 2-00-00 wide v	vill fit betw	veen the bott	om						
		=500 (LC =501 (LC	C 6), 7=440 (LC 23), C 23)	1		ny other members									
FORCES	()	um Com	pression/Maximum	•		e capable of withs									
	Tension				1.										
TOP CHORD	1-2=-176/20 4-5=-152/16		184/152, 3-4=-184/12	27,									WITH CA	11.	
BOT CHORD	1-8=-134/15	6, 7-8=-	134/156, 6-7=-134/15	56,									111110	1111	
	5-6=-134/15	6											IN THUA	ROUL	
WEBS	3-7=-247/0, 2	2-8=-39	3/253, 4-6=-393/251									×	A	Sil SIN'	é.
NOTES												53	· · · · · · · ·	Or Yo	11
1) Unbalance this design		ds have	been considered for								2	a		1000	2
0		130mph	(3-second gust)								-		SEA	а ÷	www.un
			CDL=6.0psf; h=25ft;								=	:			=
			S (envelope) exterior								=		0363	322 :	-
			to 3-0-4, Interior (1)												-
3-0-4 to 4-	10-4, Exterior((2R) 4-1	0-4 to 10-10-4, Interio	r								2	Sec. 1		-
(1) 10 10	· · · · · _ `	· /										-	· ^	• •••	-

(1) 10-10-4 to 12-8-4, Exterior(2E) 12-8-4 to 15-8-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

munin April 8,2022

GI

Page: 1



Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 112 FaNC	
22030114	V5	Valley	1	1	Job Reference (optional)	151257049

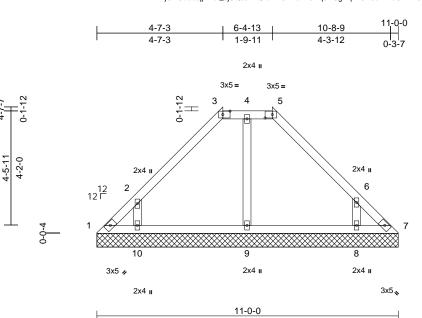
Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Thu Apr 07 21:17:05 ID:tmjOYUuaaJjpWbl_sjSQc0zkQxd-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:46.3

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2	CSI TC BC WB Matrix-MSH	0.33 0.17 0.14	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 62 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (Ib/size) 1=93/13-4 6=317/13- 8=317/13- 8=317/13- Max Horiz 1=-152 (L Max Uplift 1=-42 (LC 6=-183 (L Max Grav 1=136 (LC	applied or 10-0-0 oc 4-0, 5=93/13-4-0, -4-0, 7=249/13-4-0, -4-0 C 10) 10), 5=-6 (LC 11), C 15), 8=-188 (LC 14) C 24), 5=109 (LC 23) C 24), 7=364 (LC 23)	d or 4) TCL Plat DOI Cs= 5) Unt des 6) Gat 7) Gat 8) This cho 9) * Tr on t 9, * Tr on t cho	Iss designed for wind load <i>x</i> . For studs exposed to w Standard Industry Gable onsult qualified building d L: ASCE 7-16; Pr=20.0 ps te DOL=1.15); Pf=20.0 ps L=1.15); Is=1.0; Rough Ca 1.00; Ct=1.10 alanced snow loads have ign. ble requires continuous bo ble studs spaced at 4-0-0 û s truss has been designed rd live load nonconcurrent his truss has been designed he bottom chord in all are 6-00 tall by 2-00-00 wide rd and any other members vide mechanical connection	ind (norm End Deta ssigner as sf (roof LL (Lum DC (Lum DC tom chor oc. for a 10.0 with any d for a liv as where will fit betw s, with BC	al to the face ils as applica s per ANS/TI :Lum DOL= :L=1.15 Plate Exp.; Ce=0.9 asidered for the d bearing.) psf bottom other live loa e load of 20.0 a rectangle DL = 10.0psl), ble, PI 1. 1.15 e d; his ds. Dpsf om f.				Troight. 62 h		
FORCES	(lb) - Maximum Com Tension		bea 1 ar	ring plate capable of withs nd 6 lb uplift at joint 5.									
TOP CHORD	1-2=-157/137, 2-3=- 4-5=-135/93	233/129, 3-4=-233/1	11,										
BOT CHORD	1-8=-68/118, 7-8=-6 5-6=-68/116	8/116, 6-7=-68/116,									"TH CA	RO	
WEBS	3-7=-182/0, 2-8=-38	8/233, 4-6=-388/231								N	ORIESS	2114	5
NOTES									/	52		This	11
	ed roof live loads have	been considered for							2	Ÿ,	101 -	No.	1
Vasd=103 Cat. II; Ex zone and 3-0-4 to 3 9-8-4 to 1 cantilever	n. CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; Br qp B; Enclosed; MWFR: C-C Exterior(2E) 0-0-4 -8-4, Exterior(2E) 10- -1eft and right exposed seed;C-C for members i	CDL=6.0psf; h=25ft; S (envelope) exterior t to 3-0-4, Interior (1) 4 to 9-8-4, Interior (1) 4-4 to 13-4-4 zone; ; end vertical left and								A A A A A A A A A A A A A A A A A A A	SEA 0363		anninnan.

(1)9-8-4 to 10-4-4, Exterior(2E) 10-4-4 to 13-4-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



G

minin April 8,2022

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 112 FaNC	
22030114	V6	Valley	1	1	Job Reference (optional)	151257050

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Thu Apr 07 21:17:05 ID:tmjOYUuaaJjpWbl_sjSQc0zkQxd-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:42.1	2.1	1:4	=	Scale	
----------------	-----	-----	---	-------	--

Plate Offsets (X, Y): [3:0-3-2,0-1-8], [5:0-3-2,0-1-8]

4-7-7

	A, T). [3.0-3-2,0-1-0],	[5.0-3-2,0-1-6]	-										
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.22 0.13 0.07	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 46 lb	GRIP 244/190 FT = 20%
	8=268/11 10=271/1 Max Horiz 1=-102 (L Max Uplift 1=-51 (LC 8=-136 (L Max Grav 1=140 (LC	xept -0 max.): 3-5. applied or 10-0-0 oc 0-0, 7=87/11-0-0, -0-0, 9=172/11-0-0, 1-0-0 C 12) : 10), 7=-25 (LC 11), C 15), 10=-145 (LC : 48), 7=127 (LC 38) C 42), 9=220 (LC 20)	2 3) 4) 14)), 5)	Vasd=103mp Cat. II; Exp E zone and C-1 3-0-4 to 8-0- cantilever lef right expose for reactions DOL=1.60 Truss design only. For stu see Standarr or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design.	7-16; Vult=130mp bh; TCDL=6.0ps;; E 3; Enclosed; MWFF C Exterior(2E) 0-0- 4, Exterior(2E) 8-0- t and right exposed d;C-C for members shown; Lumber D0 ned for wind loads ids exposed to wind d Industry Gable En alified building des 7-16; Pr=20.0 psf (15); Pf=20.0 psf (1 s=1.0; Rough Cat =1.10 snow loads have b quate drainage to p	CDL=6 RS (env 4 to 3-0 4 to 11 d; end v a and for DL=1.60 in the p d (norm nd Deta signer as (roof LL Lum DC B; Fully ween cor	:.0psf; h=25ft; elope) exterior -4, Exterior(21) o-4 zone; vertical left and cces & MWFR 0 plate grip lane of the tru al to the face) ils as applicat is per ANSI/TF :: Lum DOL=1 DL=1.15 Plate Exp.; Ce=0.9 asidered for th	ar R) d SS ass), ble, PI 1. 1.15 9; nis	or th	he orien	tation rd.	of the purlin along	is not depict the size the top and/or
FORCES	(lb) - Maximum Com Tension	,	() 7) 8)	Gable requir	es continuous botto spaced at 4-0-0 oc	om chor		J.					
TOP CHORD BOT CHORD	1-2=-173/88, 2-3=-3 4-5=-152/111, 5-6=- 1-10=-27/138, 9-10= 7-8=-32/138	309/101, 6-7=-161/6	1, 9) 0	This truss ha chord live loa) * This truss h	is been designed for ad nonconcurrent w has been designed n chord in all areas	or a 10.0 vith any for a liv	other live load e load of 20.0				T.	OR EESS	ROUNT
WEBS NOTES 1) Unbalance this design	4-9=-135/31, 2-10=- ed roof live loads have		. 11	3-06-00 tall to chord and ar) Provide mec bearing plate	n chord in all areas by 2-00-00 wide wil ay other members. hanical connection e capable of withsta uplift at joint 7.	l fit betv (by oth	veen the botto ers) of truss to	0		CN 11111	P	SEA 0363	• -
			13) This truss is	designed in accord	lance w	ith the 2018						EER. KINN

- this design. 1 and 25 lb uplift at joint 7. 12) ^{N/A}
 - 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

minin April 8,2022

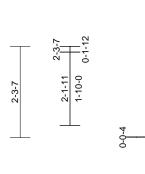
G

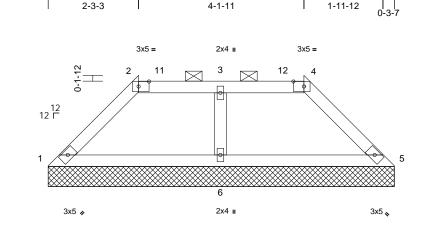
Page: 1

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 112 FaNC	
22030114	V7	Valley	1	1	Job Reference (optional)	151257051

2-3-3


Carter Components (Sanford), Sanford, NC - 27332,


Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Thu Apr 07 21:17:06 ID:tmjOYUuaaJjpWbl_sjSQc0zkQxd-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

8-4-9

Fa

8-8-0

6-4-13

Scale = 1	1:28.8
-----------	--------

Plate Offsets (X, Y): [2:0-3-2,0-1-8], [4:0-3-2,0-1-8]

	(7, 1). [2:0 0 2,0 1 0]	, [,]	-										
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.18	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf) TCDL	20.0	Lumber DOL	1.15 YES		BC WB	0.29	Vert(TL)	n/a 0.01	- 5	n/a	999 n/a		
BCLL	10.0 0.0*	Rep Stress Incr Code		3/TPI2014	Matrix-MP	0.06	Horiz(TL)	0.01	5	n/a	n/a		
BCDL	10.0	Code	IRC201	0/1712014	Wattix-WIP							Weight: 30 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalanc	2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, exc 2-0-0 oc purlins (6-C Rigid ceiling directly bracing. (lb/size) 1=198/8-1 6=297/8-1 Max Horiz 1=-47 (LC Max Uplift 1=-30 (LC 6=-14 (LC Max Grav 1=256 (LC 6=389 (LC (lb) - Maximum Con Tension 1-2=-314/54, 2-3=-1 4-5=-315/55	Cept Common Comm	c 5) 6) 7) 8) 9) (), 10 (), 11	only. For sti see Standar, or consult qu TCLL: ASCE Plate DOL=' DOL=1.15); Cs=1.00; Ct: Unbalanced design. Provide ade Gable studs This truss ha chord live loi 0, * This truss ha on the botton 3-06-00 tall I chord and an) Provide mec bearing plate	ned for wind loads Jds exposed to wind Industry Gable E Jalified building de 7-16; Pr=20.0 ps I.15); Pf=20.0 ps I.15); Pf=20.0 ps I.10; Rough Cat =1.10 snow loads have I quate drainage to es continuous bott spaced at 4-0-0 of ad nonconcurrent has been designed to concurrent has been designed by 2-00-00 wide wind by other members. hanical connection e capable of withst uplift at joint 5.	nd (norm nd Deta signer as f (roof LL (Lum DC B; Fully been cor or event or corevent or a for with any f for a liv s where Il fit betw n (by oth	al to the face ils as applical s per ANSI/TF L: Lum DOL=: DL=1.15 Plate Exp.; Ce=0.9 nsidered for the water ponding d bearing. D psf bottom other live loa e load of 20.0 a rectangle ween the botto ers) of truss t), ble, pl 1. 1.15 ; ; ; g. ds. Dpsf om			A A A	NITH CA	ROLIN
this desig		been considered to	" 13) This truss is	designed in accor	dance w	ith the 2018				11	21	

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-4 to 2-3-7, Exterior(2R) 2-3-7 to 6-5-1, Exterior(2E) 6-5-1 to 8-8-4 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

ENGINEERING BY TREENCO A MITEK Attiliate 818 Soundside Road Edenton, NC 27932

