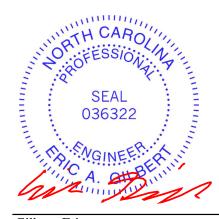


Trenco 818 Soundside Rd Edenton, NC 27932

Re: 22030100


DRB GROUP - 7 FaNC

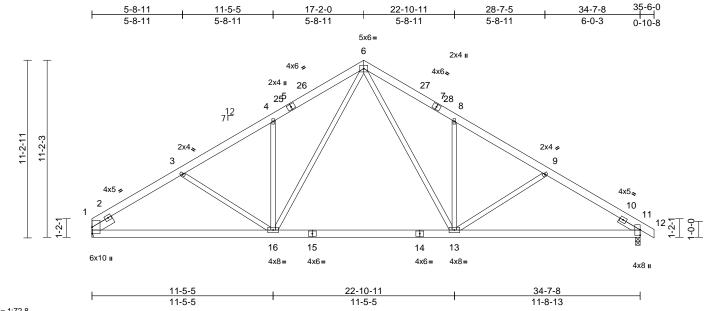
The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Sanford, NC)).

Pages or sheets covered by this seal: I50831246 thru I50831268

My license renewal date for the state of North Carolina is December 31, 2022.

North Carolina COA: C-0844

March 17,2022


Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 7 FaNC	
22030100	A01	Common	2	1	I50831 Job Reference (optional)	1246

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Wed Mar 16 23:20:52 ID:gjaDKQLY7lcou8lik6PeZ7yHzji-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:72.8 Plate Offsets (X, Y): [1:0-4-15,0-0-2]

		-										
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.52	Vert(LL)	-0.24	13-16	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.72	Vert(CT)	-0.38	13-16	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.57	Horz(CT)	0.06	11	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 259 lb	FT = 20%

LUMBER

TOP CHORD 2x6 SP No 2 BOT CHORD 2x6 SP No.2

WEBS 2x4 SP No.3 *Except* 13-6,16-6:2x4 SP No.2 SLIDER Left 2x6 SP No.2 -- 1-6-0, Right 2x4 SP No.3

BRACING

TOP CHORD

Structural wood sheathing directly applied or

4-1-7 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (lb/size) 1=1384/ Mechanical,

11=1438/0-3-8

Max Horiz 1=-247 (LC 10)

Max Uplift 1=-124 (LC 14), 11=-143 (LC 15) Max Grav 1=1587 (LC 24), 11=1640 (LC 25)

FORCES (lb) - Maximum Compression/Maximum

Tension TOP CHORD

1-3=-2253/226. 3-4=-2039/206.

4-6=-2118/340, 6-8=-2146/342,

8-9=-2091/207, 9-11=-2329/235, 11-12=0/26

BOT CHORD 1-16=-259/2017, 13-16=-9/1345,

11-13=-108/1915

WEBS 6-13=-224/1142, 8-13=-492/237,

9-13=-261/184, 6-16=-223/1091,

4-16=-508/240, 3-16=-204/174

NOTES

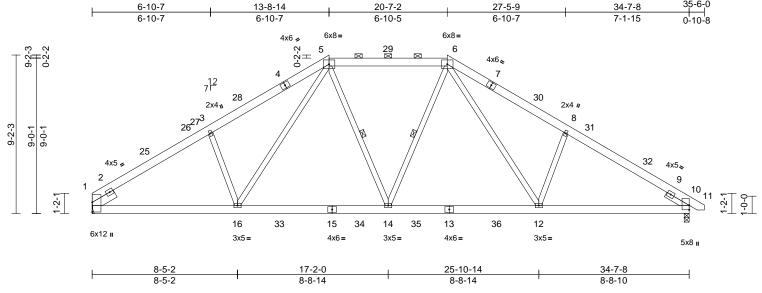
Unbalanced roof live loads have been considered for 1) this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-3-8 to 3-9-1, Interior (1) 3-9-1 to 13-11-15, Exterior(2R) 13-11-15 to 20-11-1, Interior (1) 20-11-1 to 32-3-15, Exterior(2E) 32-3-15 to 35-9-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this desian.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 124 lb uplift at ioint 1.
- 10) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 11. This connection is for uplift only and does not consider lateral forces.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

March 17,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not


a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 7 FaNC	
22030100	A01A	Hip	1	1	Job Reference (optional)	I50831247

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Wed Mar 16 23:20:54 ID:gjaDKQLY7lcou8lik6PeZ7yHzji-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:66.8

Plate Offsets (X, Y): [1:0-6-11,0-0-2]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.61	Vert(LL)	-0.15	14-16	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.80	Vert(CT)	-0.24	14-16	>999	180	1	
TCDL	10.0	Rep Stress Incr	YES	WB	0.29	Horz(CT)	0.07	10	n/a	n/a	1	
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 250 lb	FT = 20%

LUMBER

BRACING

WEBS

2x6 SP No.2 TOP CHORD BOT CHORD 2x6 SP No.2 WFBS 2x4 SP No.3

SLIDER Left 2x6 SP No.2 -- 1-6-0, Right 2x4 SP No.3

TOP CHORD Structural wood sheathing directly applied or

3-8-0 oc purlins, except

2-0-0 oc purlins (5-2-0 max.): 5-6. **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc

bracing.

1 Row at midpt 5-14. 6-14

REACTIONS (lb/size) 1=1385/ Mechanical,

10=1426/0-3-8

Max Horiz 1=-196 (LC 10)

Max Uplift 1=-133 (LC 14), 10=-148 (LC 15)

Max Grav 1=1652 (LC 47), 10=1691 (LC 49)

FORCES (lb) - Maximum Compression/Maximum

Tension

1-3=-2432/221, 3-5=-2304/306, TOP CHORD 5-6=-1707/228, 6-8=-2396/315,

8-10=-2501/228, 10-11=0/20

BOT CHORD 1-16=-216/2100, 14-16=-67/1612,

12-14=-13/1623, 10-12=-96/2076

WEBS 3-16=-380/231, 5-16=-138/692,

5-14=-43/367. 6-14=-55/345. 6-12=-146/782.

8-12=-424/238

NOTES

Unbalanced roof live loads have been considered for this design

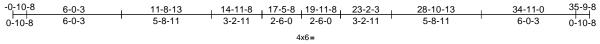
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-3-8 to 3-9-1, Interior (1) 3-9-1 to 9-1-10, Exterior(2R) 9-1-10 to 25-9-6, Interior (1) 25-9-6 to 32-1-8, Exterior(2E) 32-1-8 to 35-7-1 zone; cantilever left and right exposed; end vertical left and right exposed C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this desian.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Refer to girder(s) for truss to truss connections.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 133 lb uplift at
- 11) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 10. This connection is for uplift only and does not consider lateral forces.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see


AMSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

ſ	Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 7 FaNC	
	22030100	A02	Common	3	1	Job Reference (optional)	50831248

Run: 8.53 S. Dec. 6.2021 Print: 8.530 S.Dec. 6.2021 MiTek Industries. Inc. Wed Mar 16.23:20:55 ID:PP89IwHSJ3y1fHJtQdiOGozaDW7-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

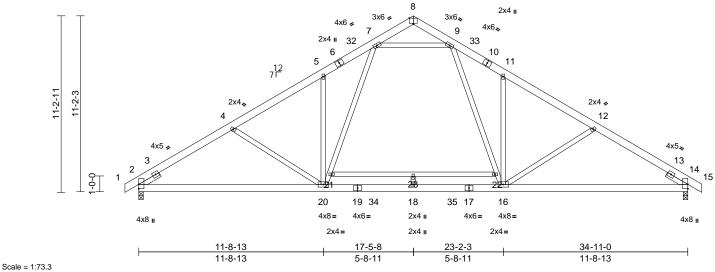


Plate Offsets (X, Y): [8:0-3-0,Edge]

Loading	(psf)	Spacing	1-11-4	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.45	Vert(LL)	-0.14	20	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.66	Vert(CT)	-0.35	18	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.61	Horz(CT)	0.07	14	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 278 lb	FT = 20%

LUMBER

TOP CHORD 2x6 SP No 2 2x6 SP No.2 BOT CHORD

WEBS 2x4 SP No.3 *Except* 21-22:2x4 SP No.2 SLIDER Left 2x4 SP No.3 -- 1-6-0, Right 2x4 SP No.3

BRACING TOP CHORD

Structural wood sheathing directly applied or

4-2-7 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (lb/size) 2=1504/0-3-8, 14=1504/0-3-8

Max Horiz 2=-243 (LC 12)

Max Uplift 2=-39 (LC 14), 14=-39 (LC 15)

FORCES

(lb) - Maximum Compression/Maximum

TOP CHORD 1-2=0/26, 2-4=-2218/37, 4-5=-1967/0,

5-7=-2011/119, 7-8=-248/84, 8-9=-248/85,

9-11=-2011/119, 11-12=-1967/0, 12-14=-2218/37, 14-15=0/26 2-20=-147/1835, 18-20=0/1321,

BOT CHORD

16-18=0/1321, 14-16=-4/1822 WFBS

5-20=-481/245, 20-21=-122/952 7-21=-111/948, 4-20=-242/213,

9-22=-110/948, 16-22=-121/952 11-16=-481/244, 12-16=-243/214 7-9=-1246/84, 21-23=-1/61, 22-23=-1/61,

18-23=0/38

NOTES

Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-7-6, Interior (1) 2-7-6 to 13-11-10, Exterior(2R) 13-11-10 to 20-11-6, Interior (1) 20-11-6 to 32-3-10, Exterior(2E) 32-3-10 to 35-9-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads
- 200.0lb AC unit load placed on the bottom chord, 17-5-8 from left end, supported at two points, 5-0-0 apart.
- All plates are 2x4 MT20 unless otherwise indicated.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 14. This connection is for uplift only and does not consider lateral forces.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

March 17,2022

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 7 FaNC	
22030100	A02A	Common	5	1	Job Reference (optional)	150831249

Run: 8.53 S. Dec. 6.2021 Print: 8.530 S.Dec. 6.2021 MiTek Industries. Inc. Wed Mar 16.23:20:56 ID:gjaDKQLY7lcou8lik6PeZ7yHzji-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

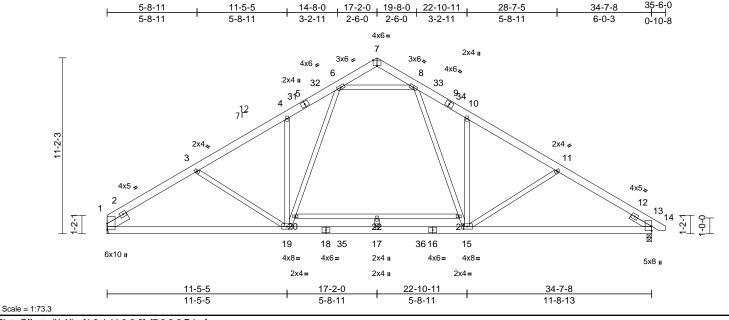


Plate Offsets (X, Y): [1:0-4-11,0-0-2], [7:0-3-0,Edge]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.63	Vert(LL)	-0.15	15	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.68	Vert(CT)	-0.37	17	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.61	Horz(CT)	0.06	13	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 276 lb	FT = 20%

LUMBER

TOP CHORD 2x6 SP No 2 BOT CHORD 2x6 SP No.2

WEBS 2x4 SP No.3 *Except* 20-21:2x4 SP No.2 SLIDER Left 2x6 SP No.2 -- 1-6-0, Right 2x4 SP No.3

BRACING TOP CHORD

Structural wood sheathing directly applied or

3-9-1 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (lb/size) 1=1484/ Mechanical,

13=1526/0-3-8

Max Horiz 1=-245 (LC 10) Max Uplift 1=-25 (LC 14), 13=-38 (LC 15)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-3=-2193/45, 3-4=-1970/10, 4-6=-2035/134,

6-7=-266/84, 7-8=-250/89, 8-10=-2078/125,

10-11=-2007/4, 11-13=-2268/43, 13-14=0/20

BOT CHORD 1-19=-144/1796, 17-19=0/1337, 15-17=0/1337, 13-15=-10/1863

WEBS 4-19=-513/258, 19-20=-138/937,

6-20=-126/934, 3-19=-187/215,

8-21=-108/1007, 15-21=-119/1010, 10-15=-520/249, 11-15=-254/221, 6-8=-1257/92, 20-22=-1/61, 21-22=-1/61,

17-22=0/39

NOTES

Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-3-8 to 3-9-6, Interior (1) 3-9-6 to 13-11-10. Exterior(2R) 13-11-10 to 20-11-6. Interior (1) 20-11-6 to 32-1-2, Exterior(2E) 32-1-2 to 35-7-1 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads
- 200.0lb AC unit load placed on the bottom chord, 17-5-8 from left end, supported at two points, 5-0-0 apart.
- All plates are 2x4 MT20 unless otherwise indicated.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Refer to girder(s) for truss to truss connections.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 25 lb uplift at joint
- 12) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 13. This connection is for uplift only and does not consider lateral forces.

13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not

a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

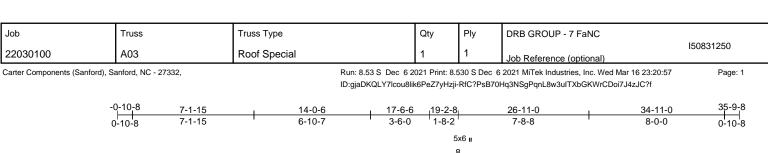


Plate Offsets (X, Y): [7:0-2-12,0-3-4]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.55	Vert(LL)	-0.15	14-16	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.79	Vert(CT)	-0.29	14-16	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.78	Horz(CT)	0.07	12	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 271 lb	FT = 20%

LUMBER

Scale = 1:68

TOP CHORD 2x6 SP No 2 BOT CHORD 2x6 SP No.2

WEBS 2x4 SP No.3 *Except* 14-8:2x4 SP No.2 SLIDER Left 2x4 SP No.3 -- 1-6-0, Right 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

3-10-7 oc purlins, except

2-0-0 oc purlins (5-1-14 max.): 6-7. **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc

bracing.

WFBS 1 Row at midpt 6-16. 7-16

REACTIONS (lb/size) 2=1537/0-3-8, 12=1537/0-3-8

Max Horiz 2=-224 (LC 12)

Max Uplift 2=-57 (LC 14), 12=-30 (LC 15)

Max Grav 2=1759 (LC 51), 12=1752 (LC 25)

FORCES

TOP CHORD

(lb) - Maximum Compression/Maximum Tension

1-2=0/20, 2-4=-2590/63, 4-6=-2499/151,

6-7=-1843/56, 7-8=-2058/72 8-10=-2613/213, 10-12=-2573/29,

12-13=0/20

BOT CHORD 2-18=-164/2298, 16-18=0/1779

14-16=0/1645, 12-14=-19/2106

WEBS 4-18=-412/252, 6-18=-142/785, 6-16=-1/432,

7-16=-1038/59, 8-16=0/1445, 8-14=-293/909,

10-14=-489/327

NOTES

Unbalanced roof live loads have been considered for this design.

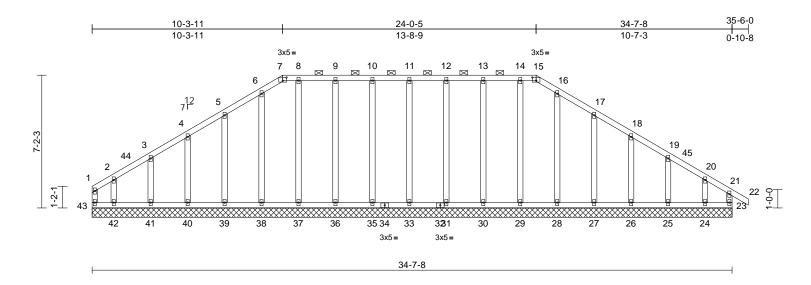
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-8-1 to 2-9-14, Interior (1) 2-9-14 to 10-6-7, Exterior(2R) 10-6-7 to 14-0-6, Exterior (2E) 14-0-6 to 17-6-6, Exterior(2R) 17-6-6 to 22-8-6, Interior (1) 22-8-6 to 32-1-2, Exterior(2E) 32-1-2 to 35-7-1 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads
- 200.0lb AC unit load placed on the bottom chord, 17-5-8 from left end, supported at two points, 5-0-0 apart.
- Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf
- 10) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 12. This connection is for uplift only and does not consider lateral forces.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see


AMSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

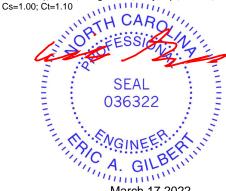
Job		Truss	Truss Type	Qty	Ply	DRB GROUP - 7 FaNC	
2203	30100	A04	Hip Supported Gable	1	1	Job Reference (optional)	150831251

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Wed Mar 16 23:20:57 ID:xn3SJVlpx40x6KkiicyXRNyHzfJ-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:62.3

Plate Offsets (X, Y):	Plate Offsets (X, Y): [7:0-2-8,0-2-1], [15:0-2-8,0-2-1]											
Loading	(psf)	Spacing	2-0-0	csı		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.14	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.08	Vert(CT)	n/a	-	n/a	999	1	
TCDL	10.0	Rep Stress Incr	YES	WB	0.17	Horz(CT)	0.01	23	n/a	n/a	1	
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MR								
BCDL	10.0			1							Weight: 235 lb	FT = 20%


18-26=-181/73, 19-25=-177/73,

20-24=-115/95

LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	6-0-0 oc p 2-0-0 oc p	o.2 o.3 o.3 I wood sheathing directly applied or purlins, except end verticals, and purlins (6-0-0 max.): 7-15.		Max Grav	23=157 (LC 47), 24=168 (LC 49), 25=219 (LC 39), 26=221 (LC 39), 27=223 (LC 39), 28=213 (LC 43), 29=203 (LC 38), 30=224 (LC 38), 31=221 (LC 38), 33=221 (LC 38), 35=221 (LC 38), 36=224 (LC 38), 37=203 (LC 38), 38=214 (LC 41), 39=225 (LC 41), 40=223 (LC 41), 41=223 (LC 41), 42=219 (LC 47), 43=145 (LC 11)
BOT CHORD	Rigid ceili bracing.	ing directly applied or 6-0-0 oc	FORCES	(lb) - Max	kimum Compression/Maximum
REACTIONS	(lb/size) Max Horiz	23=131/34-7-8, 24=111/34-7-8, 25=168/34-7-8, 26=158/34-7-8, 27=160/34-7-8, 28=158/34-7-8, 31=160/34-7-8, 33=160/34-7-8, 31=160/34-7-8, 33=160/34-7-8, 35=160/34-7-8, 36=159/34-7-8, 37=159/34-7-8, 38=158/34-7-8, 39=160/34-7-8, 40=159/34-7-8, 41=165/34-7-8, 42=131/34-7-8, 43=29/34-7-8, 42=131/34-7-8, 43=29/34-7-8, 42=106 (LC 15), 25=-43 (LC 10), 25=-61 (LC 15), 28=-6 (LC 15), 29=-1 (LC 10), 30=-32 (LC 11), 31=-25 (LC 11), 36=-32 (LC 10), 37=-66 (LC 11), 38=-8 (LC 14), 39=-61 (LC 14), 40=-50 (LC 14), 41=-43 (LC 14), 42=-130 (LC 14), 43=-122 (LC 12)	TOP CHORD BOT CHORD WEBS	3-4=-87/8 6-7=-118 9-10=-10 11-12=-1 13-14=-1 15-16=-1 17-18=-7 20-21=-1 42-43=-9 40-41=-9 38-39=-9 36-37=-9 30-31=-9 28-29=-9 24-25=-9 11-33=-1 9-36=-18 5-39=-18 5-39=-18	

NOTES

- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) 0-5-4 to 3-10-13, Exterior(2N) 3-10-13 to 7-1-11, Corner(3R) 7-1-11 to 14-0-12, Exterior(2N) 14-0-12 to 20-10-4, Corner(3R) 20-10-4 to 27-9-5, Exterior(2N) 27-9-5 to 32-3-15, Corner(3E) 32-3-15 to 35-9-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9;

March 17,2022

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 7 FaNC	
22030100	A04	Hip Supported Gable	1	1	Job Reference (optional)	50831251

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Wed Mar 16 23:20:57 ID:xn3SJVlpx40x6KkiicyXRNyHzfJ-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 2

- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding.
- 8) All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- 10) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 11) Gable studs spaced at 2-0-0 oc.
- 12) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 13) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 14) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 43, 23, 33, 35, 36, 37, 38, 39, 40, 41, 42, 31, 30, 29, 28, 27, 26, 25, and 24. This connection is for uplift only and does not consider lateral forces.
- 15) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 16) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 7 FaNC	
22030100	A05	Roof Special Structural Gable	1	1	Job Reference (optional)	150831252

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Wed Mar 16 23:20:59 ID:inUdrcRV35kd_KkiB9UROuyHzfj-RfC?PsB70Hq3NSqPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

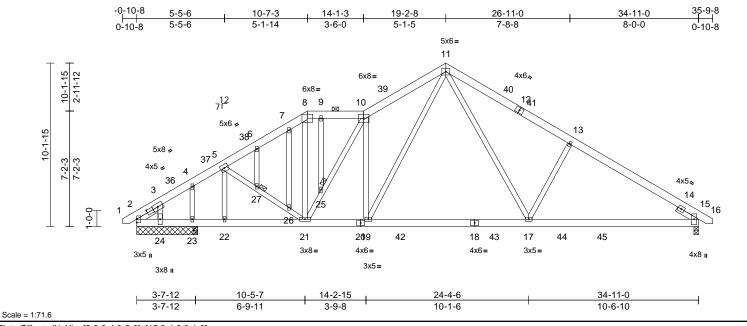


Plate Offsets (X, Y): [2:0-9-4,0-2-0], [15:0-4-2,0-1-6]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.57	Vert(LL)	-0.16	17-19	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.72	Vert(CT)	-0.28	17-19	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.53	Horz(CT)	0.05	15	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 290 lb	FT = 20%

LUMBER

TOP CHORD 2x6 SP No.2 BOT CHORD 2x6 SP No.2

WEBS 2x4 SP No.3 *Except* 19-11,17-11:2x4 SP

No.2

OTHERS 2x4 SP No.3

SLIDER Left 2x4 SP No.3 -- 1-6-5, Right 2x4 SP No.3

-- 1-6-0

BRACING TOP CHORD

BOT CHORD

TOP CHORD

TOP CHORD Structural wood sheathing directly applied or

4-5-2 oc purlins, except

2-0-0 oc purlins (6-0-0 max.): 8-10. Rigid ceiling directly applied or 10-0-0 oc

bracing.

JOINTS 1 Brace at Jt(s): 25,

27

REACTIONS (lb/size)

ize) 2=1047/3-9-8, 15=1331/0-3-8,

23=1482/3-9-8, 24=-987/3-9-8,

28=1047/3-9-8

Max Horiz 2=224 (LC 13), 28=224 (LC 13)

Max Uplift 2=-31 (LC 14), 15=-129 (LC 15), 23=-179 (LC 14), 24=-1152 (LC

49), 28=-31 (LC 14)

Max Grav 2=1220 (LC 53), 15=1546 (LC 25),

23=1745 (LC 51), 24=36 (LC 14), 28=1220 (LC 53)

FORCES (lb) - Maximum Compression/Maximum

Tension

1-2=0/20, 2-3=-1242/51, 3-4=-974/71,

4-5=-1313/119, 5-6=-1591/174, 6-7=-1543/189, 7-8=-1438/200, 8-9=-1325/210, 9-10=-1325/210, 10-11=-1944/312, 11-13=-2016/274

13-15=-2173/218, 15-16=0/20

BOT CHORD

D 2-24=-121/1050, 23-24=-121/1050, 22-23=-121/1050, 21-22=-115/1030,

19-21=-93/1675, 17-19=-10/1248,

15-17=-98/1802

WEBS 5-27=-3/640, 26-27=0/609, 21-26=0/665, 8-21=-16/368, 21-25=-679/40,

10-25=-727/43, 10-19=-633/248, 11-19=-169/1000, 11-17=-134/916, 13-17=-459/272, 9-25=-4/60, 7-26=0/97, 6-27=-66/10, 5-22=-383/110, 4-23=-852/102,

3-24=0/487

NOTES

 Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-8-1 to 2-9-14, Interior (1) 2-9-14 to 7-1-5, Exterior(2R) 7-1-5 to 10-7-3, Exterior (2E) 10-7-3 to 14-1-3, Interior (1) 14-1-3 to 15-8-10, Exterior(2R) 15-8-10 to 22-8-6, Interior (1) 22-8-6 to 32-1-2, Exterior(2E) 32-1-2 to 35-7-1 zone; cantilever left and right exposed; end vertical left and right exposed; end vertical left and right exposed; con members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.

- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding.
 All plates are 2x4 MT20 unless otherwise indicated.
- 9) Gable studs spaced at 2-0-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 1152 lb uplift at joint 24.
- 13) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2, 23, and 15. This connection is for uplift only and does not consider lateral forces.
- 14) This truss is designed in accordance with the 2018
 International Residential Code sections R502.11.1 and

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not

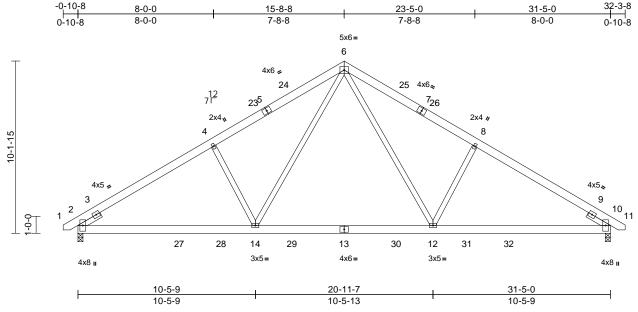
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designe must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

**ABSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 7 FaNC	
22030100	A05	Roof Special Structural Gable	1	1	I508 Job Reference (optional)	31252

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Wed Mar 16 23:20:59


Page: 2

- 15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 16) This truss has large uplift reaction(s) from gravity load case(s). Proper connection is required to secure truss against upward movement at the bearings. Building designer must provide for uplift reactions indicated.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 7 FaNC	
22030100	B01	Common	1	1	I50831 Job Reference (optional)	1253

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Wed Mar 16 23:20:59 ID:n0XQrpeEWqLR_iOw19HuR_yHze9-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:68 Plate Offsets (X, Y): [2:0-4-2,0-1-6], [10:0-4-2,0-1-6]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.56	Vert(LL)	-0.16	12-14	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.63	Vert(CT)	-0.26	12-14	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.29	Horz(CT)	0.05	10	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 215 lb	FT = 20%

LUMBER

TOP CHORD 2x6 SP No 2 **BOT CHORD** 2x6 SP No.2

WEBS 2x4 SP No.3 *Except* 14-6,12-6:2x4 SP No.2 SLIDER Left 2x4 SP No.3 -- 1-6-0, Right 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

4-7-1 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (lb/size) 2=1297/0-3-8, 10=1297/0-3-8

Max Horiz 2=224 (LC 13)

Max Uplift 2=-127 (LC 14), 10=-127 (LC 15) Max Grav 2=1516 (LC 24), 10=1516 (LC 25)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/20, 2-4=-2112/201, 4-6=-1963/260,

6-8=-1964/260, 8-10=-2112/201, 10-11=0/20 2-14=-228/1892, 12-14=-16/1262,

10-12=-96/1724

WEBS 4-14=-462/272, 6-14=-140/925,

6-12=-140/925, 8-12=-462/272

NOTES

BOT CHORD

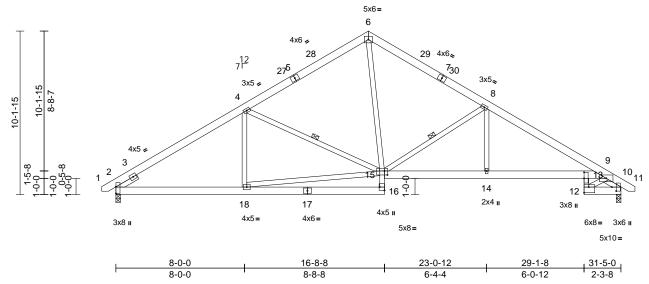
- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-8-1 to 2-5-11, Interior (1) 2-5-11 to 12-6-13, Exterior(2R) 12-6-13 to 18-10-3, Interior (1) 18-10-3 to 28-11-5, Exterior(2E) 28-11-5 to 32-1-1 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at it(s) 2 and 10. This connection is for uplift only and does not consider lateral forces.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

March 17,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not


a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 7 FaNC	
22030100	B02	Roof Special	5	1	Job Reference (optional)	150831254

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Wed Mar 16 23:21:00 ID:_qzrqirmuR8lCWjj8g0KH9yHzbK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:71.7

Plate Offsets (X, Y): [2:0-4-14,0-0-2], [10:0-3-0,0-3-4], [12:Edge,0-4-4], [13:0-4-8,Edge], [15:0-2-4,0-3-0], [16:Edge,0-3-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.54	Vert(LL)	-0.11	13-14	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.93	Vert(CT)	-0.23	13-14	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.55	Horz(CT)	0.09	10	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 237 lb	FT = 20%

LUMBER

2x6 SP No.2 TOP CHORD

2x6 SP No.2 *Except* 16-15,13-12:2x4 SP **BOT CHORD**

No.3, 15-9:2x6 SP 2400F 2.0E

WEBS 2x4 SP No.3

SLIDER Left 2x4 SP No.3 -- 1-6-0, Right 2x4 SP No.3

-- 1-0-15

BRACING

TOP CHORD Structural wood sheathing directly applied or

4-1-14 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing, Except:

2-2-0 oc bracing: 12-13. 1 Row at midpt 4-15. 8-15

WFBS REACTIONS (lb/size) 2=1297/0-3-8, 10=1297/0-3-8

Max Horiz 2=224 (LC 13)

Max Uplift 2=-127 (LC 14), 10=-127 (LC 15)

FORCES (lb) - Maximum Compression/Maximum

TOP CHORD

Tension

1-2=0/20, 2-4=-1859/181, 4-6=-1398/216,

6-8=-1507/224, 8-9=-2268/203,

9-10=-894/70, 10-11=0/20

BOT CHORD 2-18=-214/1519, 16-18=0/207, 15-16=0/164,

14-15=-63/1928, 13-14=-63/1928, 9-13=-51/1915, 12-13=-99/1088,

10-12=-100/927

WEBS 4-18=-29/212, 4-15=-525/210,

8-15=-943/232, 8-14=0/455, 9-12=-1211/126,

6-15=-58/932, 15-18=-192/1323

NOTES

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-8-1 to 2-5-11, Interior (1) 2-5-11 to 12-6-13, Exterior(2R) 12-6-13 to 18-10-3, Interior (1) 18-10-3 to 28-11-5, Exterior(2E) 28-11-5 to 32-1-1 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at it(s) 2 and 10. This connection is for uplift only and does not consider lateral forces.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

March 17,2022

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not

a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 7 FaNC
22030100	B03	Hip	1	1	I50831255 Job Reference (optional)

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Wed Mar 16 23:21:00 ID:n0XQrpeEWqLR_iOw19HuR_yHze9-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

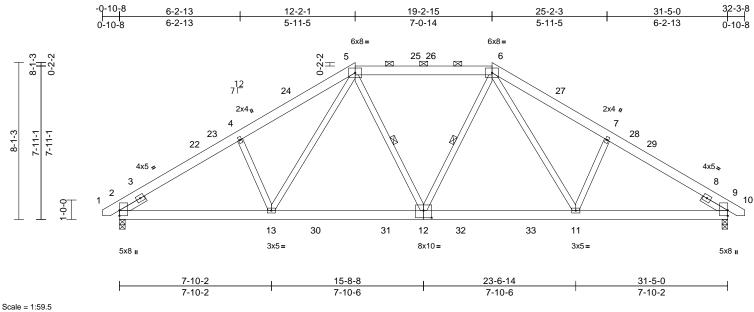


Plate Offsets (X, Y): [12:0-5-0,0-4-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.51	Vert(LL)	-0.10	12-13	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.62	Vert(CT)	-0.17	12-13	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.23	Horz(CT)	0.06	9	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 226 lb	FT = 20%

LUMBER

TOP CHORD 2x6 SP No.2 **BOT CHORD** 2x6 SP No 2 **WEBS** 2x4 SP No.3

SLIDER Left 2x4 SP No.3 -- 1-6-0, Right 2x4 SP No.3

BRACING TOP CHORD

Structural wood sheathing directly applied or

4-4-3 oc purlins, except 2-0-0 oc purlins (5-3-8 max.): 5-6

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

WFBS 1 Row at midpt 5-12. 6-12 REACTIONS (lb/size) 2=1297/0-3-8, 9=1297/0-3-8

Max Horiz 2=-174 (LC 12)

Max Uplift 2=-105 (LC 14), 9=-105 (LC 15)

Max Grav 2=1530 (LC 45), 9=1530 (LC 45)

FORCES (lb) - Maximum Compression/Maximum Tension

1-2=0/20, 2-4=-2242/219, 4-5=-2124/273,TOP CHORD

5-6=-1572/237, 6-7=-2124/273,

7-9=-2242/219, 9-10=0/20 **BOT CHORD** 2-13=-162/1930, 11-13=-28/1481,

9-11=-101/1857

4-13=-364/207, 5-13=-117/652,

WEBS 5-12=-35/314, 6-12=-35/314, 6-11=-118/653,

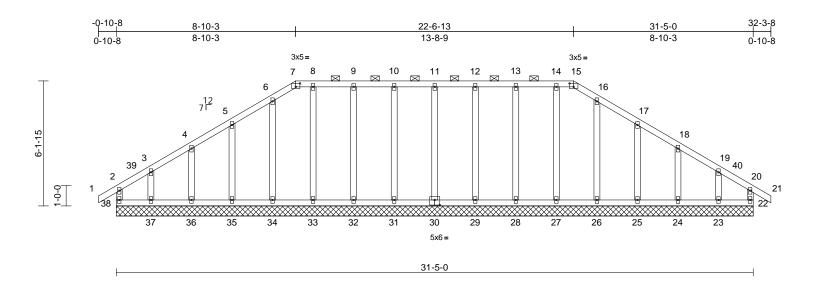
7-11=-364/208

NOTES

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-8-1 to 2-5-11, Interior (1) 2-5-11 to 9-0-6. Exterior(2R) 9-0-6 to 15-3-12. Interior (1) 15-3-12 to 16-1-4, Exterior(2R) 16-1-4 to 22-4-10, Interior (1) 22-4-10 to 28-11-5, Exterior(2E) 28-11-5 to 32-1-1 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads
- Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 9. This connection is for uplift only and does not consider lateral forces.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 7 FaNC	
22030100	B04	Hip Supported Gable	1	1	Job Reference (optional)	150831256

Run: 8.53 S. Dec. 6.2021 Print: 8.530 S.Dec. 6.2021 MiTek Industries. Inc. Wed Mar 16.23:21:01 ID:eDo5c2px20DPopr5qTS5W0yHza4-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Scale = 1:56.8

Plate Offsets (X, Y):	[7:0-2-8,0-2-1],	[15:0-2-8,0-2-1],	[30:0-3-0,0-3-0]
-----------------------	------------------	-------------------	------------------

Loading	(psf)	Spacing	1-11-4	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.10	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.05	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.12	Horz(CT)	0.00	22	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MR								
BCDL	10.0										Weight: 199 lb	FT = 20%

LUMBER TOP CHORD

2x4 SP No 2 BOT CHORD 2x4 SP No 2 **WEBS** 2x4 SP No.3 **OTHERS** 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 7-15.

Rigid ceiling directly applied or 6-0-0 oc

BOT CHORD bracing.

REACTIONS (lb/size) 22=129/31-5-0, 23=125/31-5-0, 24=161/31-5-0, 25=153/31-5-0,

26=155/31-5-0, 27=156/31-5-0, 28=154/31-5-0, 29=155/31-5-0, 30=155/31-5-0, 31=155/31-5-0, 32=154/31-5-0, 33=156/31-5-0, 34=155/31-5-0, 35=153/31-5-0, 36=161/31-5-0, 37=125/31-5-0,

38=129/31-5-0 Max Horiz 38=-155 (LC 12)

Max Uplift 22=-29 (LC 11), 23=-86 (LC 15),

24=-40 (LC 15), 25=-60 (LC 15), 26=-10 (LC 15), 27=-2 (LC 11), 28=-29 (LC 11), 29=-24 (LC 10),

30=-25 (LC 10), 31=-24 (LC 11), 32=-32 (LC 10), 33=-12 (LC 11), 34=-14 (LC 14), 35=-60 (LC 14), 36=-38 (LC 14), 37=-94 (LC 14),

38=-60 (LC 10)

FORCES

TOP CHORD

BOT CHORD

38=155 (LC 49) (lb) - Maximum Compression/Maximum

Max Grav 22=131 (LC 22), 23=199 (LC 49),

24=222 (LC 39), 25=214 (LC 39),

26=208 (LC 39), 27=198 (LC 38),

28=217 (LC 38), 29=214 (LC 38),

30=214 (LC 38), 31=214 (LC 38), 32=217 (LC 38), 33=198 (LC 38),

34=208 (LC 39), 35=214 (LC 39),

36=222 (LC 39), 37=213 (LC 47),

Tension 2-38=-124/48, 1-2=0/30, 2-3=-98/96,

3-4=-82/81, 4-5=-77/89, 5-6=-84/136 6-7=-98/155, 7-8=-86/152, 8-9=-86/152, 9-10=-86/152, 10-11=-86/152,

11-12=-86/152, 12-13=-86/152 13-14=-86/152, 14-15=-86/152, 15-16=-98/155, 16-17=-84/136, 17-18=-55/86, 18-19=-59/62, 19-20=-64/62,

20-21=0/30, 20-22=-115/48 37-38=-68/75, 36-37=-68/75, 35-36=-68/75,

34-35=-68/75, 33-34=-68/75, 32-33=-68/75, 31-32=-68/75, 29-31=-68/75, 28-29=-68/75, 27-28=-68/75, 26-27=-68/75, 25-26=-68/75, 24-25=-68/75, 23-24=-68/75, 22-23=-68/75

11-30=-176/48 10-31=-175/47 9-32=-178/56, 8-33=-159/35, 6-34=-169/37,

5-35=-175/82, 4-36=-182/67, 3-37=-158/92, 12-29=-175/47, 13-28=-178/56, 14-27=-159/25, 16-26=-169/34,

17-25=-175/82, 18-24=-182/68, 19-23=-150/87

NOTES

WEBS

Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 2-3-3, Exterior(2N) 2-3-3 to 5-8-8, Corner(3R) 5-8-8 to 11-8-8, Exterior(2N) 11-8-8 to 19-5-1, Corner(3R) 19-5-1 to 25-8-8, Exterior (2N) 25-8-8 to 29-1-13, Corner(3E) 29-1-13 to 32-3-8 zone: cantilever left and right exposed: end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Page: 1

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this design.

March 17,2022

Continued on page 2

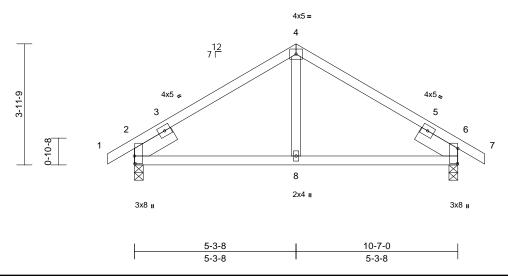
Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 7 FaNC	
22030100	B04	Hip Supported Gable	1	1	Job Reference (optional)	1256

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Wed Mar 16 23:21:01 ID:eDo5c2px20DPopr5qTS5W0yHza4-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 2


- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding.
- All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- 10) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 11) Gable studs spaced at 2-0-0 oc.
- 12) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 13) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 14) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 38, 22, 30, 31, 32, 33, 34, 35, 36, 37, 29, 28, 27, 26, 25, 24, and 23. This connection is for uplift only and does not consider lateral forces.
- 15) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 16) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 7 FaNC	
22030100	C01	Common	3	1	Job Reference (optional)	50831257

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Wed Mar 16 23:21:02 ID:4GdDKQwnylLxHOniToLeTyyAfK1-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Scale = 1:37.7

Plate Offsets (X, Y): [2:0-3-0,0-0-3], [6:0-5-15,0-0-3]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.46	Vert(LL)	-0.04	8-15	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.33	Vert(CT)	-0.05	8-15	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.08	Horz(CT)	0.02	2	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 49 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 **WEBS** 2x4 SP No.3

SLIDER Left 2x6 SP No.2 -- 1-6-0, Right 2x6 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (lb/size) 2=476/0-3-8, 6=476/0-3-8

Max Horiz 2=-84 (LC 12)

Max Uplift 2=-54 (LC 14), 6=-54 (LC 15) Max Grav 2=574 (LC 21), 6=574 (LC 22)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/26, 2-4=-451/130, 4-6=-451/130,

6-7=0/26

2-8=-115/361, 6-8=-82/361 **BOT CHORD**

WEBS 4-8=0/211

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Exterior(2R) 2-1-8 to 8-5-8, Exterior(2E) 8-5-8 to 11-5-8 zone; cantilever left and right exposed; end vertical left and right exposed:C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

- 4) Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 6. This connection is for uplift only and does not consider lateral forces.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

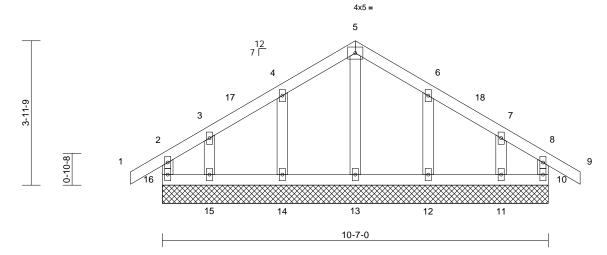
March 17,2022

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chorembers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rerection and bracing of trusses and truss systems, see

ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 7 FaNC	
22030100	C02	Common Supported Gable	1	1	Job Reference (optional)	150831258

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Wed Mar 16 23:21:02 ID:NcYsop?AlvDxcTp2NmzHFRyAfJw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:31.6

Loading	(psf)	Spacing	1-11-4	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.11	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.03	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.05	Horz(CT)	0.00	10	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MR								
BCDL	10.0										Weight: 54 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD 2x4 SP No.3 WEBS **OTHERS** 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins, except end verticals. **BOT CHORD** Rigid ceiling directly applied or 6-0-0 oc

REACTIONS (lb/size)

10=106/10-7-0, 11=107/10-7-0, 12=170/10-7-0, 13=151/10-7-0, 14=170/10-7-0, 15=107/10-7-0,

16=106/10-7-0

Max Horiz 16=-103 (LC 12)

Max Uplift 10=-23 (LC 11), 11=-55 (LC 15), 12=-52 (LC 15), 14=-51 (LC 14),

15=-58 (LC 14), 16=-38 (LC 10) 10=125 (LC 22), 11=167 (LC 22), Max Grav

12=255 (LC 22), 13=155 (LC 21), 14=255 (LC 21), 15=167 (LC 21),

16=125 (LC 21)

FORCES (lb) - Maximum Compression/Maximum

TOP CHORD 2-16=-115/109, 1-2=0/30, 2-3=-56/57, 3-4=-41/86, 4-5=-77/158, 5-6=-77/158,

6-7=-41/86, 7-8=-38/42, 8-9=0/30,

8-10=-115/109

BOT CHORD 15-16=-49/73, 14-15=-49/73, 13-14=-49/73,

12-13=-49/73, 11-12=-49/73, 10-11=-49/73

WEBS 5-13=-117/0, 4-14=-214/119, 3-15=-137/96, 6-12=-214/119, 7-11=-137/96

NOTES

Unbalanced roof live loads have been considered for this design.

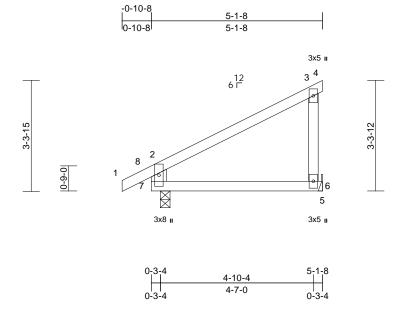
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 2-1-8, Corner(3R) 2-1-8 to 8-5-8, Corner(3E) 8-5-8 to 11-5-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 13) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 16, 10, 14, 15, 12, and 11. This connection is for uplift only and does not consider lateral

14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see


AMSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 7 FaNC	
22030100	D01	Monopitch	7	1	I5 Job Reference (optional)	0831259

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Wed Mar 16 23:21:03 ID:M25sh9MsgfT5neCtu3GLFDyHzY3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:34.5

Loading	(psf)	Spacing	2-0-0	csı		DEFL	in	(loc)	I/defI	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.52	Vert(LL)	0.05	6-7	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.24	Vert(CT)	0.04	6-7	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	6	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MR								
BCDL	10.0										Weight: 23 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2

2x4 SP No.3 *Except* 7-2:2x6 SP No.2 WEBS

BRACING

TOP CHORD Structural wood sheathing directly applied or 5-1-8 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (lb/size) 6=199/ Mechanical, 7=259/0-3-8

Max Horiz 7=117 (LC 13)

Max Uplift 6=-69 (LC 11), 7=-34 (LC 14)

Max Grav 6=291 (LC 21), 7=357 (LC 21) (lb) - Maximum Compression/Maximum

FORCES

Tension TOP CHORD

1-2=0/37, 2-3=-165/63, 3-4=-12/0, 3-6=-218/112, 2-7=-331/192

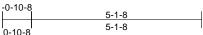
BOT CHORD 6-7=-40/59, 5-6=0/0

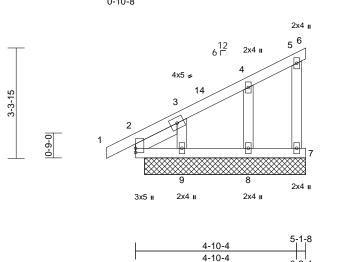
NOTES

- Wind: ASCE 7-16; Vult=130mph (3-second gust) 1) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; porch left and right exposed: C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to 8) bearing plate capable of withstanding 69 lb uplift at joint
- H10A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 7. This connection is for uplift only and does not consider
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard


March 17,2022


Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 7 FaNC	
22030100	D02	Monopitch Supported Gable	1	1	Job Reference (optional)	150831260

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Wed Mar 16 23:21:03 ID:QwVXrIYG8FMz4xrmGj2sMOyHzXq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3-3-12

Page: 1

Scale = 1:34.7

Loading	(psf)	Spacing	1-11-4	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.16	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.02	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.06	Horz(CT)	0.00	6	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 28 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD 2x4 SP No.3 WEBS **OTHERS** 2x4 SP No.3 **SLIDER** Left 2x4 SP No.3 -- 1-5-8

BRACING

TOP CHORD Structural wood sheathing directly applied or

5-1-8 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (lb/size) 2=106/4-10-4, 6=4/4-10-4,

7=53/4-10-4, 8=151/4-10-4, 9=129/4-10-4, 10=106/4-10-4

Max Horiz 2=108 (LC 13), 10=108 (LC 13)

Max Uplift 2=-6 (LC 10), 6=-6 (LC 13), 7=-12

(LC 14), 8=-38 (LC 14), 9=-61 (LC

14). 10=-6 (LC 10)

Max Grav 2=123 (LC 21), 6=6 (LC 21), 7=79 (LC 21), 8=217 (LC 21), 9=194 (LC

21), 10=123 (LC 21)

FORCES (lb) - Maximum Compression/Maximum

Tension

1-2=0/23, 2-3=-53/45, 3-4=-66/42,

4-5=-53/39, 5-6=-9/3, 5-7=-69/44

BOT CHORD 2-9=-48/64, 8-9=-48/64, 7-8=-48/64 **WEBS** 4-8=-180/159, 3-9=-157/198

NOTES

TOP CHORD

Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph: TCDL=6.0psf: BCDL=6.0psf: h=25ft: Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 2-1-8, Exterior(2N) 2-1-8 to 5-1-8 zone: cantilever left and right exposed: end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

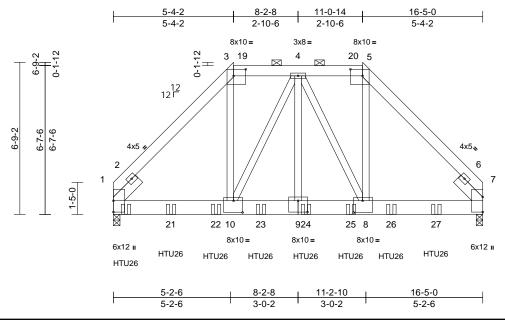
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 6 lb uplift at joint
- 10) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 7, 2, 8, and 9. This connection is for uplift only and does not consider lateral forces.
- 11) N/A
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

March 17,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chorembers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rerection and bracing of trusses and truss systems, see


ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 7 FaNC	
22030100	E01	Hip Girder	1	2	Job Reference (optional)	I50831261

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Wed Mar 16 23:21:04 ID:Dim_AdRwe7B?Nvxqqk3J6PzaD4p-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:51.2

Plate Offsets (X, Y): [3:0-6-8,0-3-8], [5:0-6-8,0-3-8], [8:0-4-12,0-6-4], [9:0-5-0,0-6-0], [10:0-4-12,0-6-4]

Loading	(psf)	Spacing	1-11-4	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.36	Vert(LL)	-0.05	9	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.33	Vert(CT)	-0.10	9	>999	180		
TCDL	10.0	Rep Stress Incr	NO	WB	0.79	Horz(CT)	0.03	7	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 303 lb	FT = 20%

LUMBER

TOP CHORD 2x6 SP No.2 2x8 SP 2400F 2.0E **BOT CHORD WEBS** 2x4 SP No.3

SLIDER Left 2x6 SP No.2 -- 1-6-0, Right 2x6 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins, except 2-0-0 oc purlins (6-0-0 max.): 3-5.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS 1=6949/0-3-8, 7=5891/0-3-8 (lb/size)

Max Horiz 1=-120 (LC 8)

Max Uplift 1=-281 (LC 12), 7=-418 (LC 13) Max Grav 1=7079 (LC 36), 7=6129 (LC 46)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-3=-5977/320, 3-4=-4025/291,

4-5=-4037/368, 5-7=-5965/429

BOT CHORD 1-10=-219/4116, 8-10=-245/4453, 7-8=-237/4123

WEBS

3-10=-160/3830, 4-10=-1205/203,

4-9=-18/1771, 4-8=-1081/31, 5-8=-235/3916

NOTES

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x6 - 2 rows

staggered at 0-9-0 oc.

Bottom chords connected as follows: 2x8 - 2 rows

staggered at 0-6-0 oc

Web connected as follows: 2x4 - 1 row at 0-9-0 oc.

- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this design.
- Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 1 and 7. This connection is for uplift only and does not consider lateral forces.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

- 13) Use Simpson Strong-Tie HTU26 (20-10d Girder, 11-10dx1 1/2 Truss, Single Ply Girder) or equivalent spaced at 2-0-0 oc max. starting at 0-6-12 from the left end to 14-4-4 to connect truss(es) to back face of bottom chord.
- 14) Fill all nail holes where hanger is in contact with lumber.

LOAD CASE(S) Standard

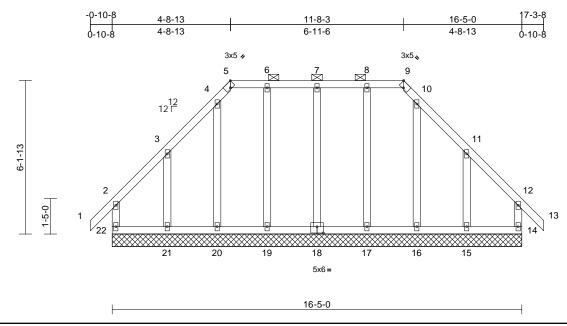
Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

Vert: 1-3=-58, 3-5=-58, 5-7=-58, 11-15=-19 Concentrated Loads (lb)

Vert: 13=-1469 (B), 21=-1464 (B), 22=-1464 (B), 23=-1464 (B), 24=-1464 (B), 25=-1365 (B),

26=-1365 (B), 27=-1512 (B)


March 17,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 7 FaNC	
22030100	E02	Hip Supported Gable	1	1	Job Reference (optional)	I50831262

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Wed Mar 16 23:21:04 ID:PdWQAqBp2A?CpRhlSmArdUzaD3r-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:46.2

Plate Offsets (X	Y):	[5:0-2-8,Edge], [9:0-2-8,Edge], [18:0-3-0,0-3-0]
------------------	-----	--

Loading	(psf)	Spacing	1-11-4	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.13	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.09	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.13	Horz(CT)	0.00	14	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MR								
BCDL	10.0										Weight: 111 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP No 2 **WEBS** 2x4 SP No.3 **OTHERS** 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 5-9.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (lb/size) 14=145/16-5-0, 15=154/16-5-0,

16=153/16-5-0, 17=155/16-5-0, 18=155/16-5-0, 19=155/16-5-0, 20=153/16-5-0, 21=154/16-5-0,

22=145/16-5-0

Max Horiz 22=-169 (LC 12)

Max Uplift 14=-70 (LC 11), 15=-167 (LC 15),

17=-12 (LC 10), 18=-33 (LC 10), 19=-14 (LC 11), 21=-168 (LC 14),

22=-80 (LC 10)

Max Grav 14=225 (LC 47), 15=294 (LC 49),

16=199 (LC 39), 17=232 (LC 38), 18=234 (LC 38), 19=232 (LC 38),

20=199 (LC 39), 21=298 (LC 47), 22=234 (LC 49)

FORCES (lb) - Maximum Compression/Maximum

Tension

 $2\hbox{-}22\hbox{-}202/83,\ 1\hbox{-}2\hbox{-}0/70,\ 2\hbox{-}3\hbox{-}-120/117,$ TOP CHORD

3-4=-150/202, 4-5=-137/165, 5-6=-131/182, 6-7=-131/182, 7-8=-131/182, 8-9=-131/182,

9-10=-137/165, 10-11=-150/202

11-12=-112/109, 12-13=0/70, 12-14=-202/83

BOT CHORD 21-22=-85/84, 20-21=-85/84, 19-20=-85/84, 17-19=-85/84, 16-17=-85/84, 15-16=-85/84,

14-15=-85/84

WEBS

7-18=-195/78, 6-19=-193/35, 4-20=-161/11, 3-21=-228/169, 8-17=-193/33, 10-16=-161/7,

11-15=-226/168

NOTES

- Unbalanced roof live loads have been considered for 1) this design
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 2-2-8, Corner(3R) 2-2-8 to 7-8-13, Exterior(2N) 7-8-13 to 8-8-3, Corner(3R) 8-8-3 to 14-2-8, Corner(3E) 14-2-8 to 17-3-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads
- Provide adequate drainage to prevent water ponding.
- All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing. 10) Truss to be fully sheathed from one face or securely
- braced against lateral movement (i.e. diagonal web). 11) Gable studs spaced at 2-0-0 oc.
- 12) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

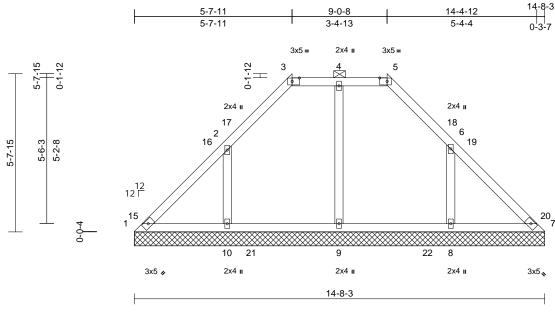
- 13) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 14) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at it(s) 22, 14, 18, 19, 21, 17, and 15. This connection is for uplift only and does not consider lateral forces.
- 15) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1
- 16) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

March 17,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see


AMSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 7 FaNC	
22030100	V1	Valley	1	1	Job Reference (optional)	

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Wed Mar 16 23:21:05 ID:F7THd5F0QxKe2ideDPiXbszaDa2-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:41.2 Plate Offsets (X, Y): [3:0-3-3,0-1-8], [5:0-3-3,0-1-8]

•	-	ı	-			-	-	-	-			
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defI	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.22	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.22	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.13	Horiz(TL)	0.01	7	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0			1							Weight: 65 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP No 2 OTHERS 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins, except 2-0-0 oc purlins (6-0-0 max.): 3-5.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

REACTIONS (lb/size)

1=162/14-8-3, 7=163/14-8-3, 8=311/14-8-3, 9=229/14-8-3,

10=310/14-8-3

Max Horiz 1=-126 (LC 12)

Max Uplift 1=-15 (LC 10), 8=-152 (LC 15), 10=-160 (LC 14)

Max Grav 1=220 (LC 38), 7=223 (LC 38),

8=528 (LC 48), 9=394 (LC 43),

10=534 (LC 46)

FORCES (lb) - Maximum Compression/Maximum

Tension TOP CHORD

1-2=-248/100, 2-3=-237/92, 3-4=-98/99,

4-5=-98/99, 5-6=-237/92, 6-7=-248/83 **BOT CHORD**

1-10=-60/199, 9-10=-60/130, 8-9=-60/130,

7-8=-60/177

WEBS 4-9=-236/50, 2-10=-340/190, 6-8=-334/184

NOTES

Unbalanced roof live loads have been considered for 1) this design.

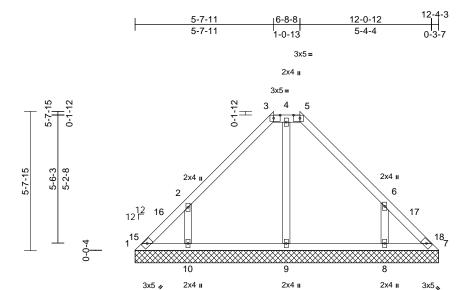
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-4 to 3-0-4, Exterior(2R) 3-0-4 to 11-8-7. Exterior(2E) 11-8-7 to 14-8-7 zone: cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- Provide adequate drainage to prevent water ponding.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 15 lb uplift at joint
- 12) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 10 and 8. This connection is for uplift only and does not consider lateral forces.
- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chorembers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see


AMSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 7 FaNC	
22030100	V2	Valley	1	1	Job Reference (optional)	I50831264

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Wed Mar 16 23:21:05 ID:F7THd5F0QxKe2ideDPiXbszaDa2-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:46.9

Plate Offsets (X, Y): [3:0-3-3,0-1-8], [5:0-3-3,0-1-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.25	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.12	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.09	Horiz(TL)	0.00	7	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 55 lb	FT = 20%

12-4-3

LUMBER

TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP No 2 OTHERS 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins, except 2-0-0 oc purlins (6-0-0 max.): 3-5.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

REACTIONS (lb/size) 1=99/12-4-3, 7=102/12-4-3, 8=288/12-4-3, 9=212/12-4-3,

10=288/12-4-3

Max Horiz 1=126 (LC 11)

Max Uplift 1=-46 (LC 10), 7=-10 (LC 11),

8=-157 (LC 15), 10=-163 (LC 14)

1=168 (LC 48), 7=152 (LC 38), Max Grav 8=431 (LC 38), 9=251 (LC 20),

10=435 (LC 46)

(lb) - Maximum Compression/Maximum

Tension TOP CHORD

1-2=-201/111, 2-3=-263/121, 3-4=-144/123,

4-5=-144/123, 5-6=-262/112, 6-7=-179/65

BOT CHORD 1-10=-38/134, 9-10=-34/117, 8-9=-34/117,

7-8=-34/124

WEBS 4-9=-167/19, 2-10=-361/214, 6-8=-357/208

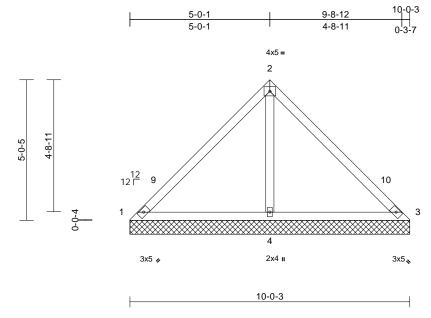
NOTES

FORCES

Unbalanced roof live loads have been considered for 1) this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-4 to 3-0-4, Exterior(2R) 3-0-4 to 9-4-7, Exterior(2E) 9-4-7 to 12-4-7 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- Provide adequate drainage to prevent water ponding.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 46 lb uplift at joint 1 and 10 lb uplift at joint 7.
- 12) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 10 and 8. This connection is for uplift only and does not consider lateral forces.
- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.


LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 7 FaNC	
22030100	V3	Valley	1	1	Job Reference (optional)	I50831265

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Wed Mar 16 23:21:06 ID:F7THd5F0QxKe2ideDPiXbszaDa2-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Scale = 1:41.2

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.51	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.47	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.27	Horiz(TL)	0.01	4	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 41 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD 2x4 SP No.3 **OTHERS**

BRACING

TOP CHORD Structural wood sheathing directly applied or

10-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (lb/size) 1=31/10-0-3, 3=31/10-0-3, 4=740/10-0-3

Max Horiz 1=-113 (LC 10)

Max Uplift 1=-50 (LC 21), 3=-50 (LC 20),

4=-155 (LC 14)

Max Grav 1=92 (LC 20), 3=92 (LC 21), 4=809

(LC 21)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-122/381, 2-3=-121/381

BOT CHORD 1-4=-255/155, 3-4=-255/155

WEBS 2-4=-623/218

NOTES

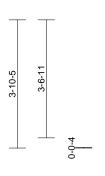
- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-4 to 3-0-4, Exterior(2R) 3-0-4 to 7-0-7, Exterior(2E) 7-0-7 to 10-0-7 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For study exposed to wind (normal to the face). see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.

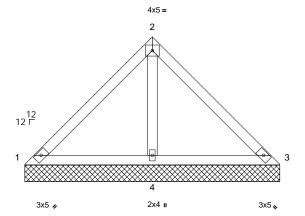
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 50 lb uplift at joint 1 and 50 lb uplift at joint 3.
- 11) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 4. This connection is for uplift only and does not consider lateral forces.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

March 17,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601




Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 7 FaNC	
22030100	V4	Valley	1	1	I50831266 Job Reference (optional)	

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Wed Mar 16 23:21:06 ID:F7THd5F0QxKe2ideDPiXbszaDa2-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

7-8-3

Scale = 1:34.7

Loading	(psf)	Spacing	2-0-0	csı		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.31	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.31	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.12	Horiz(TL)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 31 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.3 **OTHERS**

BRACING

TOP CHORD Structural wood sheathing directly applied or

7-8-3 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (lb/size) 1=38/7-8-3, 3=38/7-8-3,

4=537/7-8-3

Max Horiz 1=86 (LC 13) Max Uplift 1=-23 (LC 21), 3=-23 (LC 20),

4=-111 (LC 14)

Max Grav 1=88 (LC 20), 3=88 (LC 21), 4=582

(LC 21)

(lb) - Maximum Compression/Maximum **FORCES**

Tension

TOP CHORD 1-2=-80/243, 2-3=-80/243

BOT CHORD 1-4=-196/126, 3-4=-196/126

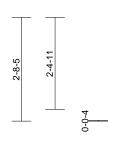
WEBS 2-4=-419/149

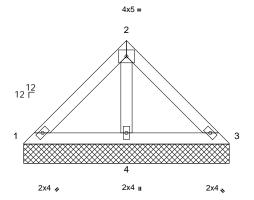
NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-4 to 3-0-4, Exterior(2R) 3-0-4 to 4-8-7, Exterior(2E) 4-8-7 to 7-8-7 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 23 lb uplift at joint 1 and 23 lb uplift at joint 3.
- 11) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 4. This connection is for uplift only and does not consider lateral forces.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard


March 17,2022



Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 7 FaNC	
22030100	V5	Valley	1	1	Job Reference (optional)	7

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Wed Mar 16 23:21:06 ID:jJ1fqRFeBFTVgsCqn7Dm84zaDa1-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

5-4-3

Scale = 1:30

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.12	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.15	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.05	Horiz(TL)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 21 lb	FT = 20%

ш	М	R	F	R

TOP CHORD 2x4 SP No.2 2x4 SP No.2 **BOT CHORD** 2x4 SP No.3 **OTHERS**

BRACING

TOP CHORD Structural wood sheathing directly applied or

5-4-3 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (lb/size) 1=52/5-4-3, 3=52/5-4-3,

4=324/5-4-3

Max Horiz 1=-58 (LC 12)

Max Uplift 4=-54 (LC 14)

Max Grav 1=99 (LC 20), 3=99 (LC 21), 4=342

(LC 20)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-83/121, 2-3=-83/121 **BOT CHORD** 1-4=-103/72, 3-4=-103/72

WFBS 2-4=-219/68

NOTES

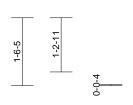
- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable
- or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

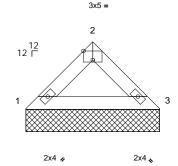
- Unbalanced snow loads have been considered for this 5) design.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 8) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 4. This connection is for uplift only and does not consider lateral forces.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

March 17,2022


Edenton, NC 27932


Page: 1


Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 7 FaNC	
22030100	V6	Valley	1	1	Job Reference (optional)	150831268

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Wed Mar 16 23:21:07 ID:jJ1fqRFeBFTVgsCqn7Dm84zaDa1-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

3-0-3

Plate Offsets (X, Y): [2:0-2-8,Edge]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.07	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.06	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 10 lb	FT = 20%

LUMBER

2x4 SP No.2 TOP CHORD BOT CHORD 2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or

3-0-3 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

1=121/3-0-3, 3=121/3-0-3 REACTIONS (lb/size)

Max Horiz 1=-31 (LC 12)

Max Uplift 1=-9 (LC 14), 3=-9 (LC 15)

Max Grav 1=141 (LC 20), 3=141 (LC 21) (lb) - Maximum Compression/Maximum **FORCES**

Tension

TOP CHORD 1-2=-165/74, 2-3=-165/74

BOT CHORD 1-3=-37/110

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this
- Gable requires continuous bottom chord bearing.

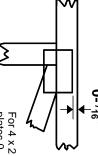
- 7) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 9 lb uplift at joint 1 and 9 lb uplift at joint 3.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chorembers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rerection and bracing of trusses and truss systems, see

ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



Symbols

PLATE LOCATION AND ORIENTATION

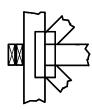
offsets are indicated. Center plate on joint unless x, y and fully embed teeth Apply plates to both sides of truss Dimensions are in ft-in-sixteenths

edge of truss. plates 0- 1/16" from outside For 4 x 2 orientation, locate

connector plates. required direction of slots in This symbol indicates the

* Plate location details available in MiTek 20/20 software or upon request.

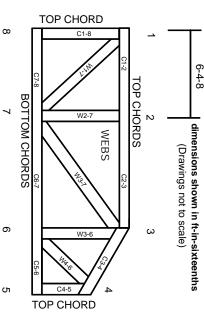
PLATE SIZE


to slots. Second dimension is the length parallel to slots. width measured perpendicular The first dimension is the plate

LATERAL BRACING LOCATION

by text in the bracing section of the output. Use T or I bracing if indicated. ndicated by symbol shown and/or

BEARING


Min size shown is for crushing only number where bearings occur. reaction section indicates joint (supports) occur. Icons vary but Indicates location where bearings

Industry Standards:

National Design Specification for Metal Building Component Safety Information Installing & Bracing of Metal Plate Connected Wood Trusses. Guide to Good Practice for Handling Design Standard for Bracing. Plate Connected Wood Truss Construction.

DSB-89: ANSI/TPI1:

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

PRODUCT CODE APPROVALS

ICC-ES Reports:

ESR-1311, ESR-1352, ESR1988 ER-3907, ESR-2362, ESR-1397, ESR-3282

truss unless otherwise shown. Trusses are designed for wind loads in the plane of the

established by others. section 6.3 These truss designs rely on lumber values Lumber design values are in accordance with ANSI/TPI 1

© 2012 MiTek® All Rights Reserved

MiTek Engineering Reference Sheet: MII-7473 rev. 5/19/2020

General Safety Notes

Damage or Personal Injury Failure to Follow Could Cause Property

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI
- Ņ Truss bracing must be designed by an engineer. For bracing should be considered. may require bracing, or alternative Tor I wide truss spacing, individual lateral braces themselves
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.

ω

designer, erection supervisor, property owner and all other interested parties. Provide copies of this truss design to the building

4

- Cut members to bear tightly against each other
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.

ტ. Ö

- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.

9

φ.

- Camber is a non-structural consideration and is the camber for dead load deflection. responsibility of truss fabricator. General practice is to
- Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that
- 13. Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted
- Connections not shown are the responsibility of others
- Do not cut or alter truss member or plate without prior approval of an engineer
- 17. Install and load vertically unless indicated otherwise.
- 18. Use of green or treated lumber may pose unacceptable project engineer before use. environmental, health or performance risks. Consult with
- Review all portions of this design (front, back, words is not sufficient. and pictures) before use. Reviewing pictures alone
- Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.