

RE: J0522-2642 Cav&Cates\Lot 153 Anderson Creek Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:

Customer: Project Name: J0522-2642 Lot/Block: Address: City: Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014 Wind Code: ASCE 7-10 Roof Load: 40.0 psf

Design Program: MiTek 20/20 8.4 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 25 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	E16479616	A1	12/11/2021	21	E16479636	M5	12/11/2021
2	E16479617	A1-GE	12/11/2021	22	E16479637	VC01	12/11/2021
3	E16479618	A2	12/11/2021	23	E16479638	VC02	12/11/2021
4	E16479619	A3	12/11/2021	24	E16479639	VC03	12/11/2021
5	E16479620	A4	12/11/2021	25	E16479640	VC04	12/11/2021
6	E16479621	B1	12/11/2021				
7	E16479622	B1-GE	12/11/2021				
8	E16479623	C1	12/11/2021				
9	E16479624	D1-GE	12/11/2021				
10	E16479625	E1	12/11/2021				
11	E16479626	E1-GE	12/11/2021				
12	E16479627	G01	12/11/2021				
13	E16479628	G02	12/11/2021				
14	E16479629	H01	12/11/2021				
15	E16479630	J01	12/11/2021				
16	E16479631	J02	12/11/2021				
17	E16479632	M1	12/11/2021				
18	E16479633	M2	12/11/2021				
19	E16479634	M3	12/11/2021				
20	E16479635	M4	12/11/2021				

The truss drawing(s) referenced above have been prepared by

Truss Engineering Co. under my direct supervision

based on the parameters provided by Comtech, Inc - Fayetteville.

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2022

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 108 lb uplift at joint 2 and 77 lb uplift at joint 9.

ENGINEERING BY REENCO AMITEK ATFILIATE 818 Soundside Road

Edenton, NC 27932

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Refer to girder(s) for truss to truss connections.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 9 except (jt=lb) 2=108.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek Affi 818 Soundside Road

Edenton, NC 27932

	<u> </u>		21-3-1 10-7-3	31-11-0 10-7-15	<u>)</u>
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2015/TPI2014	CSI. TC 0.41 BC 0.54 WB 0.43 Matrix-S	DEFL. in (loc Vert(LL) -0.17 10-1 Vert(CT) -0.23 10-1 Horz(CT) 0.04 Wind(LL)	c) l/defl L/d 2 >999 360 2 >999 240 8 n/a n/a 2 >999 240	PLATES GRIP MT20 244/190 Weight: 220 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

 TOP CHORD
 2x6 SP No.1

 BOT CHORD
 2x6 SP No.1

 WEBS
 2x4 SP No.2

 WEDGE
 2x4 SP No.2

Left: 2x4 SP No.2 , Right: 2x4 SP No.2

REACTIONS. (size) 2=0-3-8, 8=0-3-8 Max Horz 2=-251(LC 8) Max Uplift 2=-112(LC 10), 8=-112(LC 11) Max Grav 2=1513(LC 17), 8=1513(LC 18)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-2108/449. 3-5=-1955/534. 5-7=-1955/534. 7-8=-2109/449

BOT CHORD 2-12=-242/1838, 10-12=-27/1217, 8-10=-242/1651

WEBS 5-10=-179/965, 7-10=-473/296, 5-12=-179/965, 3-12=-473/296

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-15 to 3-7-14, Interior(1) 3-7-14 to 11-7-3, Exterior(2) 11-7-3 to 20-4-13, Interior(1) 20-4-13 to 28-4-2, Exterior(2) 28-4-2 to 32-8-15 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=112, 8=112.

Structural wood sheathing directly applied or 5-2-4 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

December 11,2021

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek Affilia 818 Soundside Road

Edenton, NC 27932

December 11,2021

Job		Truss	Truss Type	Qty	Ply	Cav&Cates\Lot 153 Anderson Creek	
						E	16479623
J0522-2642		C1	GABLE	1	1		
						Job Reference (optional)	
Comtech, Inc, F	ayettev	ille, NC - 28314,			3.430 s Au	g 16 2021 MiTek Industries, Inc. Fri Dec 10 05:53:01 2021	Page 2
	-		ID:RoFG	ORvmtbu\	/?DZjm98	bzzKksg-1gZXGN3g5BH_E?rV?sl88hy5ViLz0wR?VnTS90y	/ASjW

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-2=-60, 2-3=-60, 3-6=-60, 6-8=-60, 8-12=-20

Concentrated Loads (lb) Vert: 10=-123(F) 22=-123(F) 23=-123(F) 24=-123(F) 25=-123(F)

REACTIONS. All bearings 10-7-0.

(lb) - Max Horz 2=121(LC 7)

Max Upit All upit 100 bor less at joint(s) 2, 8 except 12=-156(LC 10), 10=-150(LC 11) Max Grav All reactions 250 lb or less at joint(s) 2, 8, 11 except 12=284(LC 17), 10=277(LC 18)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design

- Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.

5) Gable studs spaced at 2-0-0 oc.

- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8 except (jt=lb) 12=156, 10=150.

	6-0-0		12-0-0
	6-0-0		6-0-0
Plate Offsets (X,Y)	[2:0-3-0,Edge], [4:0-3-0,Edge]		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2015/TPI2014	CSI. TC 0.37 BC 0.30 WB 0.06 Matrix-S	DEFL. in (loc) //defl L/d Vert(LL) 0.08 2-6 >999 240 Vert(CT) -0.07 2-6 >999 240 Horz(CT) 0.01 4 n/a n/a Weight: 42 lb FT = 20%
LUMBER- TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 WEBS 2x4 SP No.2			BRACING-TOP CHORDStructural wood sheathing directly applied or 5-11-14 oc purlins.BOT CHORDRigid ceiling directly applied or 6-5-11 oc bracing.
REACTIONS. (siz Max H Max I Max (ze) 2=0-3-8, 4=0-3-8 Horz 2=-27(LC 15) Jplift 2=-217(LC 6), 4=-217(LC 7) Grav 2=530(LC 1), 4=530(LC 1)		
FORCES.(lb) - MaxTOP CHORD2-3=BOT CHORD2-6=WEBS3-6=	. Comp./Max. Ten All forces 250 (lb) or 859/1008, 3-4=-859/1008 865/759, 4-6=-865/759 371/281	less except when shown.	
NOTES-			

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=217, 4=217.

⊢	<u> </u>			<u>12-0-0</u> 6-0-0	
Plate Offsets (X,Y)	[2:0-3-0,Edge], [4:0-3-0,Edge]				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.37 BC 0.30 WB 0.06 Matrix-S	DEFL. in Vert(LL) 0.08 Vert(CT) -0.07 Horz(CT) 0.01	(loc) l/defl L/d 4-6 >999 240 4-6 >999 240 4 n/a n/a	PLATES GRIP MT20 244/190 Weight: 46 lb FT = 20%
LUMBER- TOP CHORD 2x4 S BOT CHORD 2x4 S WEBS 2x4 S OTHERS 2x4 S	SP No.1 SP No.1 SP No.2 SP No.2		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing di Rigid ceiling directly applied	rectly applied or 5-11-14 oc purlins. or 6-5-11 oc bracing.
REACTIONS. (s Max Max Max	ize) 2=0-3-8, 4=0-3-8 Horz 2=46(LC 10) Uplift 2=-305(LC 6), 4=-305(LC 7) Grav 2=530(LC 1), 4=530(LC 1)				
FORCES.(lb) - Ma.TOP CHORD2-3BOT CHORD2-6WEBS3-6	x. Comp./Max. Ten All forces 250 (lb) o =-859/1008, 3-4=-859/1008 =-865/759, 4-6=-865/759 =-371/281	r less except when shown.			
NOTES.					

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Gable studs spaced at 2-0-0 oc.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=305, 4=305.

ENGINEERING BY ENGINEERING BY A MITEK Atfiliate 818 Soundside Road Edenton, NC 27932

20-0-0

20-0-0 [2:Edge,0-1-2], [2:0-2-12,Edge], [6:0-2-0,0-2-3], [8:0-2-0,0-2-3], [9:0-0-0,0-0-0], [10:0-0,0-0-0], [11:0-0-0,0-0-0], [12:Edge,0-1-2], [12:0-2-12,Edge], Plate Offsets (X,Y)--[17:0-2-8,0-3-0]

TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	TC 0.04 BC 0.02 WB 0.07 Matrix-S	Vert(LL) -0.00 12 n/r 120 Vert(CT) -0.00 12 n/r 120 Vert(CT) 0.00 12 n/a n/a	MT20 244/190 Weight: 117 lb FT = 20%
LUMBER- TOP CHORD 2x4 SP	No.1		BRACING- TOP CHORD Structural wood sheathing	directly applied or 6-0-0 oc purlins.

BOT CHORD

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 OTHERS 2x4 SP No.2 WEDGE Left: 2x4 SP No.2 , Right: 2x4 SP No.2

REACTIONS.

All bearings 20-0-0. (lb) -Max Horz 2=142(LC 9)

Max Uplift All uplift 100 lb or less at joint(s) 2, 18, 19, 20, 21, 22, 16, 15, 14, 12 Max Grav All reactions 250 lb or less at joint(s) 2, 17, 18, 19, 20, 21, 22, 16, 15, 14.12

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Corner(3) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Provide adequate drainage to prevent water ponding.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 18, 19, 20, 21, 22, 16, 15, 14, 12.

Rigid ceiling directly applied or 10-0-0 oc bracing.

December 11.2021

Plate Offsets (X,Y)	- [2:0-6-0,0-0-5], [4:0-6-0,0-0-5]		
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.58	Vert(LL) -0.18 4-7 >999 360 MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.91	Vert(CT) -0.36 4-7 >653 240
BCLL 0.0 *	Rep Stress Incr YES	WB 0.16	Horz(CT) 0.02 4 n/a n/a
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL) 0.07 2-7 >999 240 Weight: 101 lb FT = 20%
LUMBER-			BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No 1 BOT CHORD 2x4 SP No.1 2x4 SP No.2 WFBS

REACTIONS. (size) 4=0-3-8, 2=0-3-8 Max Horz 2=172(LC 9) Max Uplift 4=-73(LC 11), 2=-73(LC 10) Max Grav 4=978(LC 18), 2=978(LC 17)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-1164/242, 3-4=-1164/242

BOT CHORD 2-7=-12/912, 4-7=-12/912

WFBS 3-7=0/696

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-15 to 3-7-14, Interior(1) 3-7-14 to 5-7-3, Exterior(2) 5-7-3 to 14-4-13, Interior(1) 14-4-13 to 16-4-2, Exterior(2) 16-4-2 to 20-8-15 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2.

ORT THE AND AND AND A STATE OF A STAT VIIIIIIIIIII SEAL 036322 G (1111111) December 11,2021

Structural wood sheathing directly applied or 5-10-15 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

 Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); Lumber DOL=1.60 plate grip DOL=1.60

- 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are MT20 plates unless otherwise indicated.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) WARNING: Required bearing size at joint(s) 6 greater than input bearing size.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 11=829, 6=827.

ORT WWWWWWWW SEAL 036322 G mmm December 11,2021

Continued on page 2

Job	Truss	Truss Type	Qty	Ply	Cav&Cates\Lot 153 Anderson Creek	
						E16479629
J0522-2642	H01	FLAT GIRDER	1	2		
				_	Job Reference (optional)	
Comtech, Inc, Fayettev	ille, NC - 28314,		6	3.430 s Au	g 16 2021 MiTek Industries, Inc. Fri Dec 10 05:53:09 202	1 Page 2

NOTES-

ID:RoFQORvmtbuV?DZjm98VbzzKksg-oD2Zy6AiCeIrCET2TYu0TNHQcw30uNtBK1PtRYyASj0

10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 89 lb down and 67 lb up at 0-2-12, 96 lb down and 70 lb up at 2-0-12, 96 lb down and 70 lb up at 4-0-12, 96 lb down and 70 lb up at 6-0-12, 96 lb down and 70 lb up at 8-0-12, 96 lb down and 70 lb up at 10-0-12, 98 lb down and 73 lb up at 12-0-12, 98 lb down and 73 lb up at 16-0-12, and 98 lb down and 73 lb up at 18-0-12, and 95 lb down and 72 lb up at 20-0-12 on top chord, and 30 lb down at 2-0-12, 1221 lb down and 97 lb up at 2-0-12, 30 lb down at 4-0-12, 1221 lb down and 97 lb up at 4-0-12, 1221 lb down and 97 lb up at 5-4-4, 30 lb down at 6-0-12, 1221 lb down and 97 lb up at 6-8-12, 30 lb down at 8-0-12, 1221 lb down and 97 lb up at 10-0-12, 1305 lb down and 97 lb up at 10-0-12, 1305 lb down and 97 lb up at 10-0-12, 1305 lb down and 97 lb up at 10-0-12, 1305 lb down and 97 lb up at 10-0-12, 1305 lb down and 97 lb up at 10-0-12, 1305 lb down and 97 lb up at 10-0-12, 1305 lb down and 97 lb up at 10-0-12, 1305 lb down and 97 lb up at 10-0-12, 1305 lb down and 97 lb up at 10-0-12, 1305 lb down and 97 lb up at 10-0-12, 1305 lb down and 97 lb up at 10-0-12, 1305 lb down and 97 lb up at 10-0-12, 1305 lb down and 97 lb up at 10-0-12, 1305 lb down and 97 lb up at 10

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-5=-60, 6-11=-20

Concentrated Loads (lb)

Vert: 1=-73(F) 8=-16(F) 10=-1166(B) 9=-1166(B) 4=-47(F) 12=-38(F) 13=-38(F) 14=-38(F) 15=-38(F) 16=-38(F) 17=-47(F) 18=-47(F) 19=-47(F) 20=-56(F) 21=-1181(F=-15, B=-1166) 22=-1181(F=-15, B=-1166) 23=-15(F) 24=-1166(B) 25=-15(F) 26=-1166(B) 27=-15(F) 28=-1166(B) 29=-16(F) 30=-1166(B) 31=-1182(F=-16, B=-1166) 32=-1182(F=-16, B=-1166) 33=-1188(F=-19, B=-1169)

LOADIN	IG (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d PLATES GRIP	
TCLL	20.0	Plate Grip DOL 1.15	TC 0.08	Vert(LL) -0.00 2-4 >999 360 MT20 244/190	
TCDL	10.0	Lumber DOL 1.15	BC 0.04	Vert(CT) -0.00 2-4 >999 240	
BCLL	0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) -0.00 3 n/a n/a	
BCDL	10.0	Code IRC2015/TPI2014	Matrix-P	Wind(LL) 0.00 2 **** 240 Weight: 23 lb FT = 20%	

```
LUMBER-
```

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WEDGE Left: 2x4 SP No.2

REACTIONS. (size) 3=Mechanical, 2=0-3-8, 4=Mechanical Max Horz 2=90(LC 10) Max Uplift 3=-70(LC 10)

Max Grav 3=112(LC 17), 2=203(LC 1), 4=70(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 3-9-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

				3-7-8	
LOADIN	G (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl	L/d PLATES GRIP
TCLL	20.0	Plate Grip DOL 1.15	TC 0.09	Vert(LL) -0.00 1-4 >999	360 MT20 244/190
TCDL	10.0	Lumber DOL 1.15	BC 0.05	Vert(CT) -0.00 1-4 >999	240
BCLL	0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) 0.00 3 n/a	n/a
BCDL	10.0	Code IRC2015/TPI2014	Matrix-P	Wind(LL) 0.00 1 ****	240 Weight: 22 lb FT = 20%

LUMBER-

 TOP CHORD
 2x6 SP No.1

 BOT CHORD
 2x6 SP No.1

 SLIDER
 Left 2x4 SP No.2 2-1-14

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 3-7-8 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 1=Mechanical, 3=Mechanical, 4=Mechanical Max Horz 1=90(LC 10)

Max Uplift 3=-72(LC 10)

Max Grav 1=143(LC 1), 3=120(LC 17), 4=71(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

 Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.

	0-1-12 0-1-12		4-10-4				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.35 BC 0.39 WB 0.00 Matrix-P	DEFL. in Vert(LL) -0.01 Vert(CT) -0.02 Horz(CT) 0.00 Wind(LL) 0.02	(loc) 2-4 2-4 4 2-4	l/defl L/d >999 360 >999 240 n/a n/a >999 240	PLATES MT20 Weight: 25 lb	GRIP 244/190 FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x4 SP No.1BOT CHORD2x6 SP No.1WEBS2x4 SP No.2

REACTIONS. (size) 4=0-1-8, 2=0-3-8

Max Horz 2=80(LC 10) Max Uplift 4=-69(LC 6), 2=-82(LC 6)

Max Grav 4=199(LC 1), 2=271(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2.

Structural wood sheathing directly applied or 5-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

	0 ₁ -1-12 0-1-12		<u>5-3-8</u> 5-1-12	I
Plate Offsets (X,Y)	[2:0-4-0,0-2-14]			
OADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) l/defl L/d	PLATES GRIP
CLL 20.0	Plate Grip DOL 1.15	TC 0.30	Vert(LL) -0.03 6 >999 360	MT20 244/190
CDL 10.0	Lumber DOL 1.15	BC 0.51	Vert(CT) -0.07 6 >946 240	
CLL 0.0 *	Rep Stress Incr NO	WB 0.00	Horz(CT) 0.00 5 n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P	Wind(LL) 0.06 6 >999 240	Weight: 32 lb FT = 20%
			BRACING-	

 TOP CHORD
 2x4 SP No.1
 TOP CHORD
 Structural wood sheathing directly applied or 3-0-0 oc purlins, except end verticals.

 BOT CHORD
 2x10 SP 2400F 2.0E
 BOT CHORD
 Structural wood sheathing directly applied or 9-0-12 oc bracing.

 WEBS
 2x4 SP No.2 *Except*
 BOT CHORD
 Rigid ceiling directly applied or 9-0-12 oc bracing.

 6-7: 2x6 SP No.1
 Except applied or 9-0-12 oc bracing.
 Except applied or 9-0-12 oc bracing.

REACTIONS. (size) 5=0-3-8, 2=0-3-8 Max Horz 2=54(LC 10) Max Uplift 5=-217(LC 10), 2=-146(LC 10)

Max Grav 5=1784(LC 1), 2=1122(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 5=217, 2=146.

 Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s). The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-60, 3-4=-20, 2-6=-20, 5-6=-130

Vert: 1-3=-60, 3-4=-20, 2-6=-20, 5-6=-130 Concentrated Loads (lb) Vert: 8=-2300

LOADING TCLL TCDL BCLL BCDL	(psf) 20.0 10.0 0.0 * 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TPl2	2-0-0 1.15 1.15 YES 2014	CSI. TC BC WB Matrix	0.10 0.08 0.00 x-P	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.00 -0.01 -0.00 0.01	(loc) 2-4 2-4 2 2-4	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 13 lb	GRIP 244/190 FT = 20%	
LUMBER-	4					BRACING-							

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 2x4 SP No.2 WEBS

REACTIONS. (size) 2=0-3-8, 4=0-1-8

Max Horz 4=54(LC 10) Max Uplift 2=-75(LC 6), 4=-29(LC 6)

Max Grav 2=217(LC 1), 4=83(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.

Structural wood sheathing directly applied or 3-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

				L	3-0-0							
				3-0-0								
Plate Offsets (X,Y) [3:0-1-12.0-2-0]												
										-		
LOADIN	IG (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl L/d	PLATES	GRIP			
TCLL	20.0	Plate Grip DOL	1.15	TC 0.10	Vert(LL)	-0.01 5	>999 360	MT20	244/190			
TCDL	10.0	Lumber DOL	1.15	BC 0.34	Vert(CT)	-0.01 2-5	>999 240					
BCLL	00 *	Ren Stress Incr	NO	WB 0.01	Horz(CT)	-0.00 2	n/a n/a					

Wind(LL)

BRACING-

TOP CHORD

BOT CHORD

2-5

>999

240

Rigid ceiling directly applied or 10-0-0 oc bracing.

Structural wood sheathing directly applied or 2-0-0 oc purlins.

Weight: 14 lb

FT = 20%

0.02

LUMBER-TOP CHORD 2x4 SP No.1 BOT CHORD 2x6 SP No.1

10.0

BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.2

REACTIONS. (size) 4=Mechanical, 2=0-3-8

Max Horz 4=44(LC 10) Max Uplift 4=-176(LC 6), 2=-128(LC 6) Max Grav 4=569(LC 1), 2=382(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

Code IRC2015/TPI2014

NOTES-

BCDL

 Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Matrix-S

- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 4=176. 2=128.
- 6) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s). The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

- 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15
- Uniform Loads (plf)

Vert: 1-3=-60, 2-5=-20, 4-5=-130 Concentrated Loads (lb)

Vert: 5=-600

ENGINEERING BY AMITEK Affiliate 818 Soundside Road Edenton, NC 27932

	3-0-0												
			3-0-0										
Plate Offsets (X,Y) [3:0-1-12.0-2-0]													
		· · · · · · · · · · · · · · · · · · ·											
LOADIN	IG (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL	20.0	Plate Grip DOL	1.15	TC	0.10	Vert(LL)	-0.01	5	>999	360	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15	BC	0.35	Vert(CT)	-0.01	2-5	>999	240			
BCLL	00 *	Rep Stress Incr	NO	WB	0.01	Horz(CT)	-0.00	2	n/a	n/a			

Wind(LL)

BRACING-

TOP CHORD

BOT CHORD

2-5

>999

240

Rigid ceiling directly applied or 10-0-0 oc bracing.

Structural wood sheathing directly applied or 2-0-0 oc purlins.

Weight: 14 lb

FT = 20%

0.02

LUMBER-TOP CHORD 2x4 SP No.1 BOT CHORD 2x6 SP No.1

10.0

BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.2

REACTIONS. (size) 4=Mechanical, 2=0-3-8

Max Horz 4=44(LC 10) Max Uplift 4=-178(LC 6), 2=-128(LC 6) Max Grav 4=576(LC 1), 2=383(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

Code IRC2015/TPI2014

NOTES-

BCDL

 Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Matrix-S

- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 4=178, 2=128.
- 6) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s). The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-3=-60, 2-5=-20, 4-5=-140 Concentrated Loads (lb)

Vert: 5=-600

SEAL 036322 December 11,2021

> ENGINEERING BY **REENCO** A MITEK Affiliate 818 Soundside Road

Edenton, NC 27932

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 8=115, 6=115.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5, 8, 6.

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

REACTIONS. (size) 1=4-7-15, 3=4-7-15, 4=4-7-15

Max Horz 1=30(LC 7)

Max Uplift 1=-14(LC 10), 3=-17(LC 11)

Max Grav 1=80(LC 1), 3=80(LC 1), 4=135(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

