Department of Environment, Health and Natural Resources Division of Environmental Health On-Site Wastewater Section

for ON-SITE WASTEWATER SYSTEM

System

25/6100

Available Space (.1945)

System Type(s)

Site LTAR

SOIL/SITE EVALUATION

- Applicant: LALCOYEND HOLE LLC

Sheet: Property ID: Lot #:

File #:

SFD2206-0058

Code:

Princia PLACE

LOT 61

Locati	ss: 236 Pessed Facility: on of Site: Supply: ation Method of Wastewate			FIOD	CITY RECOI	ded.		Spring Mixed	e:		, 61	
P R O F I L E	.1940 Landscape	Horizon Depth (In.)	SOIL MORPHOLOGY .1941				OTHER PROFILE FACTORS					
	Position/ Slope %		.1941 Structure/ Texture		.1941 Consistence Mineralogy		Soil Wetness/ Color	/	.1943 Soil Depth (IN.)	.1956 Sapro Class	.1944 Restr Horiz	Profile Class & LTAR
1,2	L 42	0-18	62	LS	UNL	Nap						P5
	L 4%	118-40	m	sec	FL	30			40			0.35
		-										
Descri	ption	I	nitial	Re	epair Syste	em	Other Factors (.1946):				

Site Classification (.1948): Provisionally SuiTABLE

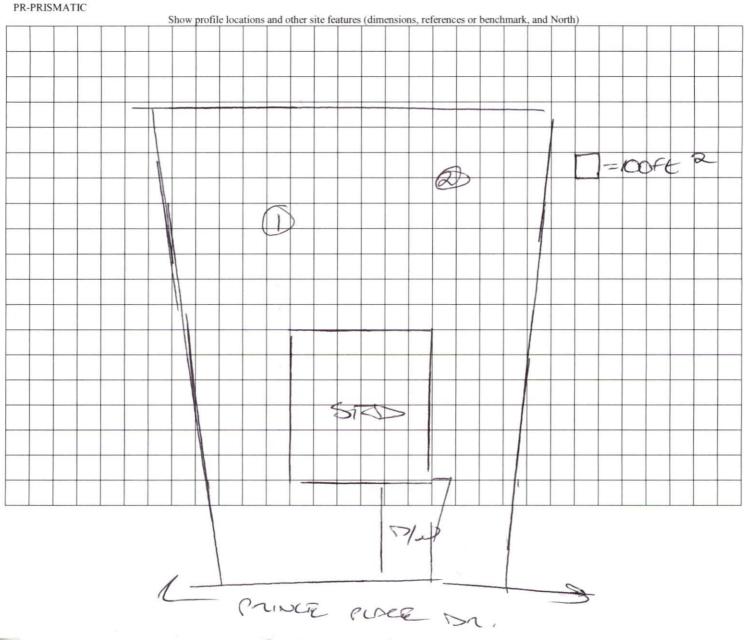
ANDREW CURIN, TEATS

Evaluated By:

Others Present:

COMMENTS: ____

LANDSCAPE POSITIONS	GROUP	TEXTURES	.1955 LTAR	CONSISTENCE MOIST	WET
R-RIDGE	I	S-SAND	1.2 - 0.8		
S-SHOULDER SLOPE		LS-LOAMY SAND		VFR-VERY FRIABLE	NS-NON-STICKY
L-LINEAR SLOPE				FR-FRIABLE	SS-SLIGHTY STICKY
FS-FOOT SLOPE	II	SL-SANDY LOAM	0.8 - 0.6	FI-FIRM	S-STICKY
N-NOSE SLOPE		L-LOAM		VFI-VERY FIRM	VS-VERY STICKY
H-HEAD SLOPE				EFI-EXTREMELY FIRM	NP-NON-PLASTIC
CC-CONCLAVE SLOPE	III	SI-SILT	0.6 - 0.3		SP-SLIGHTLY STICKY
CV-CONVEX SLOPE		SIL-SILT LOAM			P-PLASTIC
T-TERRACE		CL-CLAY LOAM			VP-VERY PLASTIC
FP-FLOOD PLAN		SCL-SANDY CLAY LOAM			


IV SIC-SILTY CLAY 0.4 - 0.1 C-CLAY

STRUCTURE SG-SINGLE GRAIN M- MASSIVE CR-CRUMB **GR-GRANULAR** SBK-SUBANGULAR BLOCKY ABK-ANGULAR BLOCKY PL-PLATY

MINERALOGY SLIGHTLY EXPANSIVE

SC-SANDY CLAY

EXPANSIVE

