Department of Environment, Health and Natural Resources Division of Environmental Health On-Site Wastewater Section

Sheet: Property ID: Lot #: File #:

Site Classification (.1948): Provisional Suitable

ANDREW COMIN, VETES

Evaluated By:

Others Present:

SOIL/SITE EVALUATION for ON-SITE WASTEWATER SYSTEM

System

25/0 25

0.375

25/0 750

0.375

Available Space (.1945)

System Type(s)

Site LTAR

Code: 5002206-0654

Prince PACE

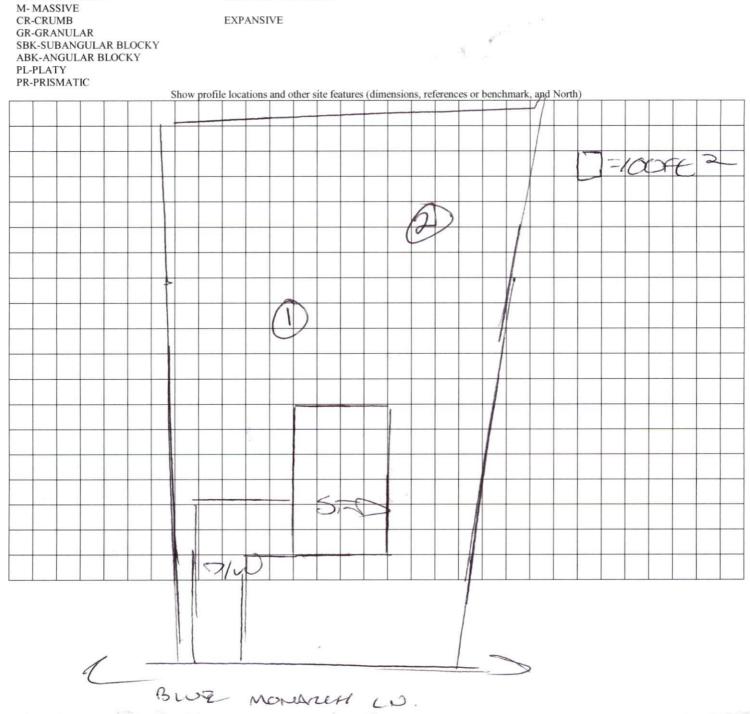
Propos Location Water Evalua	sed Facility: on of Site: Supply: ation Method	462 x	Date Desig Prope Desig Prope Desig Prope Sewage	Evaluate gn Flow erty Reco ndividua	ed: 06/2 (.1949): & orded:	Propert Propert Spr		LOT		
P R O F I L E	.1940 Landscape Position/ Slope %	Horizon Depth (In.)	SOIL MORPHOLOGY .1941			OTHER PROFILE FACTORS				
			.1941 Structure/ Texture	Cor	1941 nsistence neralogy	.1942 Soil Wetness/ Color	.1943 Soil Depth (IN.)	.1956 Sapro Class	.1944 Restr Horiz	Profile Class & LTAR
,2	L 4%	0-18	GL 15	ML	MSH					PS 0.375
		18-40	BVL 516	A	50		40	100		0.375
							4			
Descri	ption	Ir	nitial R	epair Sys	stem	Other Factors (.1946	6):			

COMMENTS: ____

LANDSCAPE POSITIONS	GROUP	<u>TEXTURES</u>	.1955 LTAR	CONSISTENCE MOIST	WET
R-RIDGE S-SHOULDER SLOPE L-LINEAR SLOPE	I	S-SAND LS-LOAMY SAND	1.2 - 0.8	VFR-VERY FRIABLE FR-FRIABLE	NS-NON-STICKY SS-SLIGHTY STICKY
FS-FOOT SLOPE N-NOSE SLOPE H-HEAD SLOPE	II	SL-SANDY LOAM L-LOAM	0.8 - 0.6	FI-FIRM VFI-VERY FIRM EFI-EXTREMELY FIRM	S-STICKY VS-VERY STICKY NP-NON-PLASTIC
CC-CONCLAVE SLOPE CV-CONVEX SLOPE T-TERRACE FP-FLOOD PLAN	Ш	SI-SILT SIL-SILT LOAM CL-CLAY LOAM SCL-SANDY CLAY LOAM	0.6 - 0.3		SP-SLIGHTLY STICKY P-PLASTIC VP-VERY PLASTIC

IV SIC-SILTY CLAY 0.4 - 0.1 C-CLAY

SC-SANDY CLAY


STRUCTURE SG-SINGLE GRAIN M- MASSIVE

CR-CRUMB GR-GRANULAR

SBK-SUBANGULAR BLOCKY ABK-ANGULAR BLOCKY

PL-PLATY PR-PRISMATIC MINERALOGY SLIGHTLY EXPANSIVE

EXPANSIVE

