

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 22030096

DRB GROUP - 5 FaNC

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Sanford, NC)).

Pages or sheets covered by this seal: I50783016 thru I50783043

My license renewal date for the state of North Carolina is December 31, 2022.

North Carolina COA: C-0844

March 15,2022

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 5 FaNC	
22030096	A01	Roof Special	6	1	Job Reference (optional)	50783016

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Tue Mar 15 09:01:15 ID:24AZDW7zTEHAC6YN1cvXXYyEOkd-RfC?PsB70Hq3NSqPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

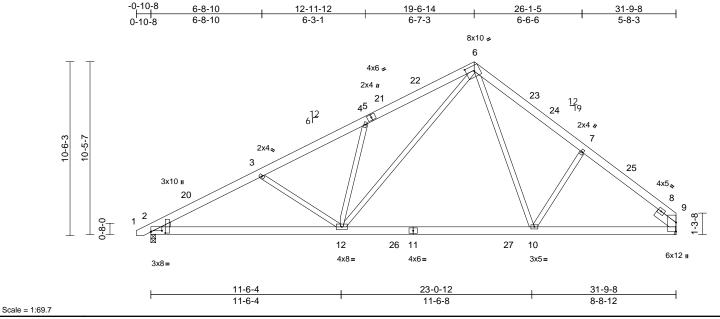


Plate Offsets (X, Y): [2:0-8-0,0-0-13], [2:0-0-14,0-10-7], [6:0-5-14,0-4-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.53	Vert(LL)	-0.24	10-12	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.80	Vert(CT)	-0.39	10-12	>982	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.89	Horz(CT)	0.07	9	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 228 lb	FT = 20%

LUMBER

TOP CHORD 2x6 SP No.2 BOT CHORD 2x6 SP No.2

WEBS 2x4 SP No.3 *Except* 6-12,10-6:2x4 SP No.2

WEDGE Left: 2x4 SP No.3

SLIDER Right 2x6 SP No.2 -- 1-6-0

BRACING

TOP CHORD Structural wood sheathing directly applied or

4-5-8 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (lb/size) 2=1311/0-3-8, 9=1271/ Mechanical

Max Horiz 2=250 (LC 11)

Max Uplift 2=-152 (LC 14), 9=-82 (LC 15) Max Grav 2=1446 (LC 5), 9=1425 (LC 25)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/18, 2-3=-2429/281, 3-4=-2158/232,

4-6=-2302/425, 6-7=-1668/288,

7-9=-1796/224

BOT CHORD 2-12=-338/2146, 10-12=-32/1083,

9-10=-94/1334

4-12=-576/274, 3-12=-407/205, 6-12=-313/1438, 6-10=-03/636

6-12=-313/1428, 6-10=-93/636,

7-10=-289/248

NOTES

WEBS

 Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-7-14 to 2-6-5, Interior (1) 2-6-5 to 16-4-12, Exterior(2R) 16-4-12 to 22-9-1, Interior (1) 22-9-1 to 28-7-6, Exterior(2E) 28-7-6 to 31-9-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 82 lb uplift at joint 9.
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see
ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 5 FaNC	
22030096	A02	Roof Special	7	1	Job Reference (optional)	I50783017

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Tue Mar 15 09:01:18 ID:24AZDW7zTEHAC6YN1cvXXYyEOkd-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

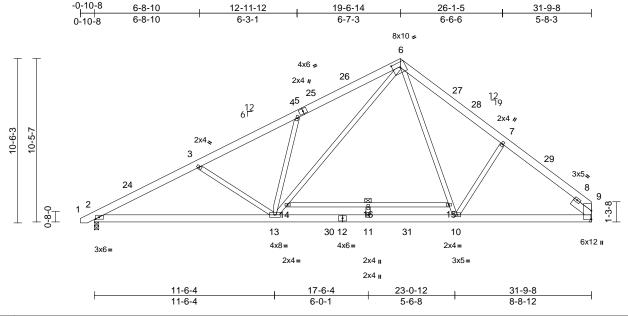


Plate Offsets (X, Y): [2:0-2-10,0-1-8], [6:0-5-14,0-4-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.57	Vert(LL)	-0.10	11	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.74	Vert(CT)	-0.38	11-13	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.50	Horz(CT)	0.07	9	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 244 lb	FT = 20%

LUMBER

Scale = 1:73.7

TOP CHORD 2x6 SP No 2 BOT CHORD 2x6 SP No 2

WEBS 2x4 SP No.3 *Except* 6-13,10-6,14-15:2x4

SP No.2

SLIDER Right 2x6 SP No.2 -- 1-6-0

BRACING

TOP CHORD Structural wood sheathing directly applied or

4-3-8 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

WEBS 1 Row at midpt 14-15

REACTIONS 2=1401/0-3-8, 9=1382/ Mechanical (lb/size)

Max Horiz 2=250 (LC 11)

Max Uplift 2=-63 (LC 14)

Max Grav 2=1424 (LC 21), 9=1382 (LC 1) **FORCES** (lb) - Maximum Compression/Maximum

Tension

1-2=0/18, 2-3=-2478/77, 3-4=-2143/17,

TOP CHORD

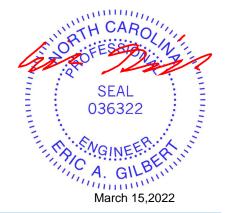
4-6=-2334/208, 6-7=-1626/108, 7-9=-1807/41 2-13=-163/2146, 11-13=0/1107,

BOT CHORD 10-11=0/1107, 9-10=0/1330

WEBS 4-13=-578/271, 3-13=-389/228,

13-14=-193/1403, 6-14=-182/1442,

6-15=0/550, 10-15=-4/517, 7-10=-263/275,


14-16=-40/0, 15-16=-40/0, 11-16=0/45

NOTES

Unbalanced roof live loads have been considered for 1) this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-7-14 to 2-6-5, Interior (1) 2-6-5 to 16-4-12, Exterior(2R) 16-4-12 to 22-9-1, Interior (1) 22-9-1 to 28-7-6, Exterior(2E) 28-7-6 to 31-9-8 zone; cantilever left and right exposed; end vertical left and right exposed C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads
- 200.0lb AC unit load placed on the bottom chord, 17-6-8 from left end, supported at two points, 5-0-0 apart.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- 10) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not

a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 5 FaNC	
22030096	A03	Roof Special	6	1	Job Reference (optional)	150783018

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Tue Mar 15 09:01:18 ID:Z36wOF0uAgOGNrKJXIhZjxyEOgu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

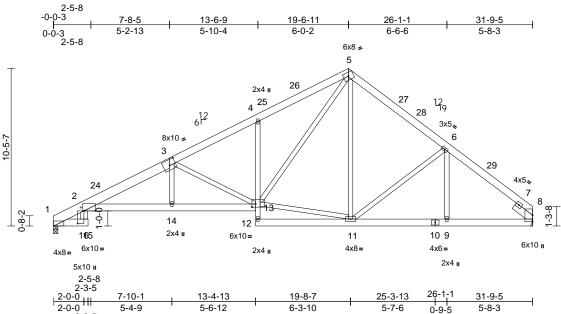


Plate Offsets (X, Y): [2:0-9-0,Edge], [2:1-0-12,0-2-6], [3:0-5-0,0-4-8], [13:0-3-0,0-2-8]

0-3-5

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.49	Vert(LL)	-0.14	2-14	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.60	Vert(CT)	-0.29	2-14	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.84	Horz(CT)	0.16	8	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 254 lb	FT = 20%

LUMBER

Scale = 1:76.5

TOP CHORD 2x6 SP No.2 *Except* 1-3:2x8 SP 2400F

2.0E

BOT CHORD 2x6 SP No.2 *Except* 2-13:2x6 SP 2400F

2.0E, 4-12:2x4 SP No.3

WEBS 2x4 SP No.3 *Except* 13-5:2x4 SP No.2,

2-16:2x6 SP No.2

SLIDER Right 2x6 SP No.2 -- 1-6-0

BRACING

TOP CHORD Structural wood sheathing directly applied or

4-8-14 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing, Except:

6-0-0 oc bracing: 1-16.

REACTIONS (lb/size) 1=1280/0-3-8, 8=1272/ Mechanical

Max Horiz 1=246 (LC 11)

Max Uplift 1=-134 (LC 14), 8=-81 (LC 15)

Max Grav 1=1303 (LC 20), 8=1272 (LC 1)

FORCES (lb) - Maximum Compression/Maximum Tension

1 2 650

TOP CHORD 1-2=-659/134, 2-4=-2923/342,

4-5=-2048/378, 5-6=-1356/266,

6-8=-1593/211

BOT CHORD 1-16=-85/321, 15-16=0/0, 2-14=-393/2645,

13-14=-391/2660, 12-13=0/106, 4-13=-431/203, 11-12=-11/157,

9-11=-84/1180, 8-9=-84/1180 WEBS 3-14=0/400, 3-13=-1060/228, 11-13=-12/844,

5-13=-291/1329, 5-11=-67/302,

6-11=-315/208, 6-9=-3/146, 2-16=-57/388

NOTES

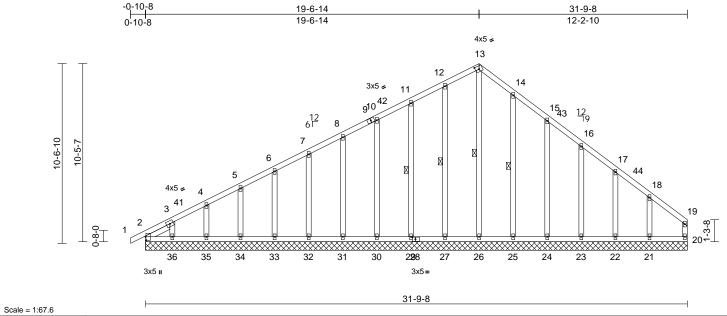
 Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-3 to 3-2-6, Interior (1) 3-2-6 to 16-4-12, Exterior(2R) 16-4-12 to 22-9-1, Interior (1) 22-9-1 to 28-7-6, Exterior(2E) 28-7-6 to 31-9-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- Bearing at joint(s) 1 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 81 lb uplift at joint
- 10) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 1. This connection is for uplift only and does not consider lateral forces.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Page: 1

March


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 5 FaNC	
22030096	A04	Roof Special Supported Gable	2	1	Job Reference (optional)	150783019

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Tue Mar 15 09:01:19 ID:wSfeYGx?zDIrK7PgnUXd7GyEOeQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?i Page: 1

Dieta Offeeta (V.)	۸.	[2.0.2.0.0.6] [42.0.2.40.0.2.4] [20.0.2.2.0.4	01
Plate Ulisets (A, 1):	[2:0-2-8,0-0-5], [13:0-2-10,0-2-4], [28:0-2-2,0-1-	-01

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.12	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.09	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.18	Horz(CT)	0.00	20	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 229 lb	FT = 20%

LUM	BER
TOP	CHO

2x4 SP No 2 OP CHORD 2x4 SP No.2 **BOT CHORD WEBS** 2x4 SP No.3 **OTHERS** 2x4 SP No.3 Left 2x4 SP No.3 -- 1-7-7 **SLIDER**

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins, except end verticals. **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc

bracing.

WEBS 13-26, 12-27, 11-29, 1 Row at midpt 14-25

REACTIONS (lb/size)

2=126/31-9-8, 20=84/31-9-8, 21=174/31-9-8, 22=156/31-9-8, 23=161/31-9-8, 24=159/31-9-8, 25=166/31-9-8, 26=135/31-9-8, 27=165/31-9-8, 29=159/31-9-8, 30=160/31-9-8, 31=160/31-9-8, 32=160/31-9-8. 33=160/31-9-8. 34=159/31-9-8, 35=164/31-9-8, 36=136/31-9-8, 37=126/31-9-8 Max Horiz 2=271 (LC 13), 37=271 (LC 13) Max Uplift 2=-52 (LC 15), 21=-124 (LC 15), 22=-52 (LC 15), 23=-69 (LC 15), 24=-72 (LC 15), 25=-57 (LC 15), 26=-40 (LC 13), 27=-35 (LC 14),

29=-48 (LC 14), 30=-43 (LC 14), 31=-44 (LC 14), 32=-44 (LC 14), 33=-44 (LC 14), 34=-44 (LC 14), 35=-43 (LC 14), 36=-83 (LC 14),

37=-52 (LC 15)

Max Grav 2=205 (LC 25), 20=97 (LC 27), 21=210 (LC 25), 22=161 (LC 25), 23=173 (LC 25), 24=220 (LC 22), 25=266 (LC 22), 26=283 (LC 15), 27=244 (LC 21), 29=228 (LC 21), 30=175 (LC 21), 31=160 (LC 34), 32=160 (LC 21), 33=160 (LC 1),

34=159 (LC 21), 35=164 (LC 1), 36=137 (LC 34), 37=205 (LC 25)

(lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/23, 2-3=-109/46, 3-4=-239/112, 4-5=-226/131, 5-6=-212/154, 6-7=-199/178, 7-8=-186/206, 8-10=-172/251,

10-11=-159/296, 11-12=-147/344, 12-13=-149/380, 13-14=-164/415 14-15=-135/349, 15-16=-105/268, 16-17=-79/192, 17-18=-56/118,

18-19=-80/36, 19-20=-66/15 **BOT CHORD** 2-36=-42/81, 35-36=-42/81, 34-35=-42/81, 33-34=-42/81, 32-33=-42/81, 31-32=-42/81,

30-31=-42/81, 29-30=-42/81, 27-29=-42/81, 26-27=-42/81, 25-26=-42/81, 24-25=-42/81, 23-24=-42/81, 22-23=-42/81, 21-22=-42/81, 20-21=-42/81

13-26=-339/98, 12-27=-204/59,

11-29=-188/86, 10-30=-135/76, 8-31=-120/78, 7-32=-120/77, 6-33=-120/77 5-34=-119/76, 4-35=-123/81, 3-36=-100/103,

14-25=-226/87, 15-24=-180/111, 16-23=-132/102, 17-22=-125/99, 18-21=-154/198

NOTES

WEBS

FORCES

Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 2-3-10, Exterior (2N) 2-3-10 to 16-4-12, Corner(3R) 16-4-12 to 22-9-1, Exterior(2N) 22-9-1 to 28-5-10, Corner(3E) 28-5-10 to 31-7-12 zone; cantilever left and right exposed; end vertical left and right exposed: C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this desian.

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE

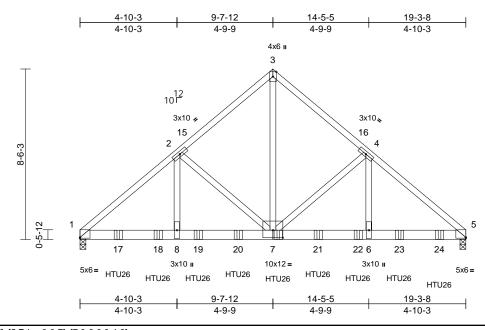
Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 5 FaNC	
22030096	A04	Roof Special Supported Gable	2	1	Job Reference (optional)	3019

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Tue Mar 15 09:01:19 ID:wSfeYGx?zDIrK7PgnUXd7GyEOeQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 2-0-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.


 Job
 Truss
 Truss Type
 Qty
 Ply
 DRB GROUP - 5 FaNC

 22030096
 B01
 Common Girder
 1
 2
 Job Reference (optional)

Carter Components (Sanford), Sanford, NC - 27332,

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Tue Mar 15 09:01:19 ID:pVQbySBA1gxsLMVjWOPYUhyEOe5-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:57.6

Plate Offsets (X, Y): [1:Edge,0-0-7], [5:Edge,0-0-7], [7:0-6-0,0-4-8]

Loading	(psf)	Spacing	1-11-4	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.67	Vert(LL)	-0.10	7-8	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.50	Vert(CT)	-0.19	7-8	>999	180		
TCDL	10.0	Rep Stress Incr	NO	WB	0.83	Horz(CT)	0.04	5	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 247 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 BOT CHORD 2x6 SP 2400F 2.0E

WEBS 2x4 SP No.3 *Except* 7-3:2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or

3-7-13 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (lb/size) 1=6260/0-3-8, 5=6725/0-3-8

Max Horiz 1=-183 (LC 10) Max Uplift 1=-326 (LC 12)

Max Grav 1=6306 (LC 18), 5=6771 (LC 19)

FORCES (lb) - Maximum Compression/Maximum

Tension

Tension
1-2=-8327/415, 2-3=-5649/310,

TOP CHORD 1-2=-832

3-4=-5651/307, 4-5=-8368/0

BOT CHORD

1-8=-356/6372, 6-8=-356/6411, 5-6=0/6411 3-7=-279/6754, 4-7=-2875/0, 4-6=0/3277,

WEBS

2-7=-2824/334, 2-8=-176/3230

NOTES

 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

(0.10 x 3) flains as follows: 2x4 - 1 row at 0-9-0

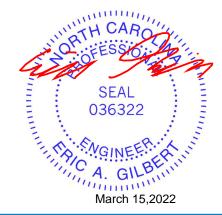
Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-7-0 oc.

Web connected as follows: 2x4 - 1 row at 0-9-0 oc.

- All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- Unbalanced roof live loads have been considered for this design.

- 4) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 5) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 1. This connection is for uplift only and does not consider lateral forces.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) Use Simpson Strong-Tie HTU26 (20-10d Girder, 11-10dx1 1/2 Truss, Single Ply Girder) or equivalent spaced at 2-0-12 oc max. starting at 1-11-0 from the left end to 17-11-12 to connect truss(es) to back face of bottom chord.
- 12) Fill all nail holes where hanger is in contact with lumber.

LOAD CASE(S) Standard


 Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

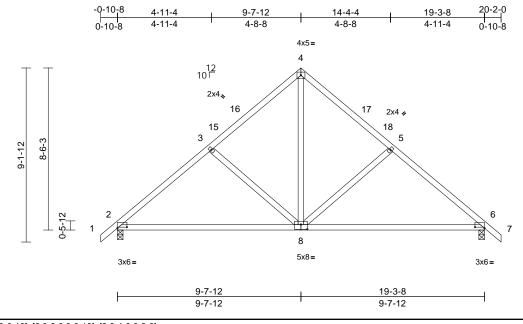
Vert: 1-3=-58, 3-5=-58, 9-12=-19

Concentrated Loads (lb)

Vert: 7=-1252 (B), 17=-1252 (B), 18=-1252 (B), 19=-1252 (B), 20=-1252 (B), 21=-1252 (B), 22=-1252 (B), 23=-1362 (B), 24=-1362 (B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parenters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see


ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 5 FaNC	
22030096	B02	Common	5	1	Job Reference (optional)	50783021

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Tue Mar 15 09:01:20 ID:o4fmq6AP0YAwS4shMMctTDyAbjt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:60.6

Plate Offsets (X, Y): [2:0-6-0,0-0-10], [6:0-6-0,0-0-10], [8:0-4-0,0-3-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.47	Vert(LL)	-0.14	8-11	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.83	Vert(CT)	-0.29	8-11	>791	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.27	Horz(CT)	0.02	6	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 100 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No 2 **WEBS** 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

5-3-15 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (lb/size) 2=824/0-3-8, 6=824/0-3-8

Max Horiz 2=-206 (LC 12)

Max Uplift 2=-74 (LC 14), 6=-74 (LC 15)

Max Grav 2=872 (LC 21), 6=872 (LC 22)

FORCES

(lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/34, 2-3=-1015/136, 3-4=-801/149,

4-5=-801/149, 5-6=-1015/136, 6-7=0/34

BOT CHORD 2-6=-144/748

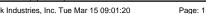
WFBS 4-8=-68/577, 5-8=-340/200, 3-8=-340/199

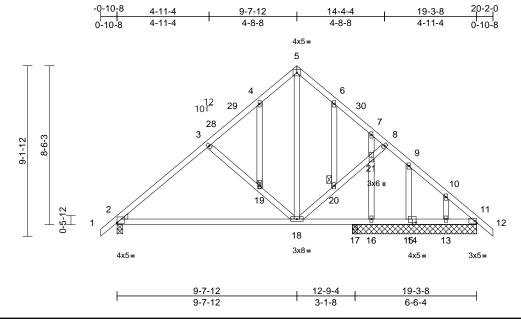
NOTES

- Unbalanced roof live loads have been considered for this design
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 6-7-12, Exterior(2R) 6-7-12 to 12-7-12, Interior (1) 12-7-12 to 17-2-0, Exterior(2E) 17-2-0 to 20-2-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

- 4) Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 6. This connection is for uplift only and does not consider lateral forces.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard




March 15,2022

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 5 FaNC	
22030096	B03	Common Structural Gable	1	1	Job Reference (optional)	150783022

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Tue Mar 15 09:01:20 ID:NmW2mvLBjrww7DwNBIsA1AyAbjf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:61.8

Plate Offsets (X, Y): [2:Edge,0-0-6], [14:0-2-8,0-1-4]

Loading	(psf)	Spacing	1-11-4	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.41	Vert(LL)	-0.17	18-24	>902	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.67	Vert(CT)	-0.35	18-24	>437	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.41	Horz(CT)	0.01	2	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 127 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2 2x4 SP No.2 **BOT CHORD WEBS** 2x4 SP No.3 **OTHERS** 2x4 SP No.3 WEDGE Left: 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

JOINTS 1 Brace at Jt(s): 19.

20

REACTIONS (lb/size) 2=623/0-3-8, 11=203/6-8-0,

13=106/6-8-0, 15=255/6-8-0, 16=454/6-8-0, 17=-44/0-3-8,

25=203/6-8-0 Max Horiz 2=-199 (LC 12)

Max Uplift 2=-47 (LC 14), 13=-98 (LC 15),

15=-15 (LC 14), 16=-79 (LC 15),

17=-116 (LC 7)

Max Grav 2=699 (LC 21), 11=203 (LC 28),

13=137 (LC 29), 15=255 (LC 1),

16=586 (LC 22), 17=-28 (LC 21),

25=203 (LC 28)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/33, 2-3=-751/71, 3-4=-524/60,

4-5=-393/96, 5-6=-384/109, 6-7=-426/86 7-8=-273/34, 8-9=-233/23, 9-10=-158/18,

10-11=-204/25, 11-12=0/33

BOT CHORD 2-18=-144/547, 17-18=-22/175,

16-17=-22/175, 15-16=-22/175,

13-15=-22/175, 11-13=-22/175

WEBS

5-18=-45/328, 18-20=-1/258, 20-21=-8/259, 8-21=-3/231, 3-19=-308/178,

18-19=-357/200, 4-19=-75/34, 6-20=-93/43,

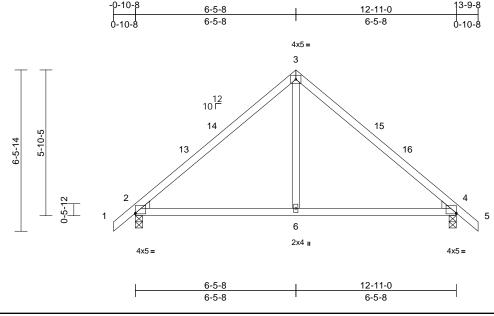
7-21=-377/81, 16-21=-521/121,


9-15=-215/38. 10-13=-102/110

NOTES

- 1) Unbalanced roof live loads have been considered for this design
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 6-7-12, Exterior(2R) 6-7-12 to 12-7-12, Interior (1) 12-7-12 to 17-2-0, Exterior(2E) 17-2-0 to 20-2-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable
- or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- All plates are 2x4 MT20 unless otherwise indicated.
- Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.



Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 5 FaNC	
22030096	C01	Common	2	1	Job Reference (optional)	150783023

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Tue Mar 15 09:01:20 ID:oLBBOwO30mJV_hfysQPtfoyAbjc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:46.4

Plate Offsets (X, Y): [2:Edge,0-0-6], [4:Edge,0-0-6]

Loading	(psf)	Spacing	2-0-0	csı		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.91	Vert(LL)	-0.09	6-9	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.62	Vert(CT)	-0.14	6-9	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.12	Horz(CT)	0.01	2	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 57 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 **WEBS** 2x4 SP No.3 WEDGE Left: 2x4 SP No.3 Right: 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

2-2-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (lb/size) 2=569/0-3-8, 4=569/0-3-8

Max Horiz 2=-143 (LC 12)

Max Uplift 2=-55 (LC 14), 4=-55 (LC 15)

Max Grav 2=650 (LC 21), 4=650 (LC 22)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/34, 2-3=-653/140, 3-4=-653/140,

4-5=0/34

BOT CHORD 2-6=-156/374, 4-6=-95/374

WEBS 3-6=0/307

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 3-5-8, Exterior(2R) 3-5-8 to 9-5-8, Interior (1) 9-5-8 to 10-9-8, Exterior(2E) 10-9-8 to 13-9-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate $DOL=1.15); \ Is=1.0; \ Rough \ Cat \ B; \ Fully \ Exp.; \ Ce=0.9;$ Cs=1.00: Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 4. This connection is for uplift only and does not consider lateral forces.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chorembers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rerection and bracing of trusses and truss systems, see

ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 5 FaNC	
22030096	C02	Common Supported Gable	1	1	Job Reference (optional)	150783024

6-5-8

Carter Components (Sanford), Sanford, NC - 27332

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Tue Mar 15 09:01:21 ID:GYIZcGOhn4RMcrE8Q8x6C0yAbjb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

12-11-0

Page: 1

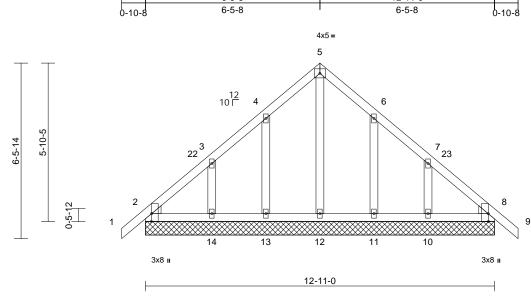


Plate Offsets (X, Y): [2:0-3-8,Edge], [8:0-3-8,Edge]

Loading	(psf)	Spacing	1-11-4	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.08	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.06	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.07	Horz(CT)	0.00	8	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 74 lb	FT = 20%

LUMBER

Scale = 1:42.6

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 **OTHERS** 2x4 SP No.3 WEDGE Left: 2x4 SP No.3 Right: 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (lb/size) 2=162/12-11-0, 8=162/12-11-0,

10=184/12-11-0, 11=151/12-11-0, 12=108/12-11-0, 13=151/12-11-0, 14=184/12-11-0, 15=162/12-11-0,

19=162/12-11-0

Max Horiz 2=-139 (LC 12), 15=-139 (LC 12) Max Uplift 2=-17 (LC 10), 10=-98 (LC 15), 11=-69 (LC 15), 13=-70 (LC 14),

14=-99 (LC 14), 15=-17 (LC 10) 2=163 (LC 25), 8=162 (LC 1),

Max Grav 10=224 (LC 22), 11=255 (LC 22), 12=138 (LC 27), 13=255 (LC 21),

14=224 (LC 21), 15=163 (LC 25), 19=162 (LC 1)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/33, 2-3=-105/90, 3-4=-103/69,

4-5=-108/161, 5-6=-108/161, 6-7=-97/65,

7-8=-82/50, 8-9=0/33

BOT CHORD 2-14=-45/158, 13-14=-45/158,

12-13=-45/158, 11-12=-45/158, 10-11=-45/158. 8-10=-45/158 5-12=-129/24, 4-13=-222/127,

WFRS 3-14=-170/153, 6-11=-222/127,

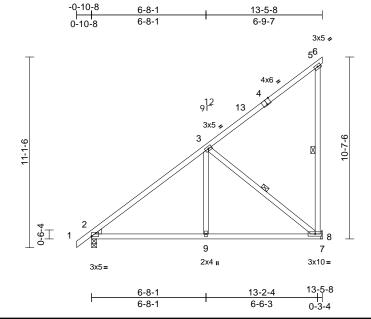
7-10=-170/153

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 2-1-8, Exterior(2N) 2-1-8 to 3-5-8, Corner(3R) 3-5-8 to 9-5-8, Exterior(2N) 9-5-8 to 10-9-8, Corner(3E) 10-9-8 to 13-9-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 2-0-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

NOTES

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chorembers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rerection and bracing of trusses and truss systems, see


ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 5 FaNC	
22030096	D01	Monopitch	10	1	Job Reference (optional)	25

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Tue Mar 15 09:01:21 ID:Z0_dihojcXcRjIsBXhGf5kyEOZQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:67.2

Plate Offsets (X, Y): [2:Edge,0-0-3], [4:0-3-0,Edge]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.80	Vert(LL)	-0.06	8-9	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.44	Vert(CT)	-0.10	8-9	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.22	Horz(CT)	0.01	8	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 81 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP No.2

WEBS 2x4 SP No.3 *Except* 5-8:2x4 SP No.2

WEDGE Left: 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

WFBS 1 Row at midpt 5-8.3-8

REACTIONS (lb/size) 2=582/0-3-8, 8=548/ Mechanical

Max Horiz 2=372 (LC 13)

Max Uplift 2=-24 (LC 14), 8=-162 (LC 14)

Max Grav 2=609 (LC 21), 8=710 (LC 21)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/32, 2-3=-657/110, 3-5=-255/151,

5-6=-17/0. 5-8=-299/101

BOT CHORD 2-9=-277/471, 8-9=-127/471, 7-8=0/0 **WEBS** 3-9=0/306, 3-8=-558/222

NOTES

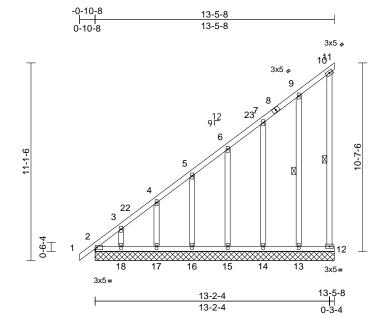
- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 10-5-8, Exterior(2E) 10-5-8 to 13-5-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this

- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 162 lb uplift at joint 8.
- One RT8A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

March 15,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chorembers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rerection and bracing of trusses and truss systems, see

ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job		Truss	Truss Type	Qty	Ply	DRB GROUP - 5 FaNC	
22030	0096	D02	Monopitch Supported Gable	1	1	Job Reference (optional)	150783026

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Tue Mar 15 09:01:21 ID:R3mZ6t3uf_FSkXzDGc8bSAyEOZ5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:64.8

Loading	(psf)	Spacing	1-11-4	csı		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.76	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.33	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.18	Horz(CT)	-0.01	11	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 105 lb	FT = 20%

LUMBER

2x4 SP No.2 TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS **OTHERS** 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins, except end verticals. **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc

WEBS 1 Row at midpt 10-12, 9-13 REACTIONS (lb/size) 2=110/13-5-8. 11=12/13-5-8. 12=57/13-5-8, 13=157/13-5-8,

14=156/13-5-8, 15=155/13-5-8, 16=154/13-5-8, 17=161/13-5-8, 18=127/13-5-8, 19=110/13-5-8

Max Horiz 2=360 (LC 11), 19=360 (LC 11) Max Uplift 2=-94 (LC 10), 11=-120 (LC 14), 12=-255 (LC 13), 13=-82 (LC 14),

14=-60 (LC 14), 15=-67 (LC 14), 16=-65 (LC 14), 17=-58 (LC 14), 18=-102 (LC 14), 19=-94 (LC 10)

Max Grav 2=243 (LC 11), 11=157 (LC 13), 12=225 (LC 10), 13=246 (LC 21), 14=213 (LC 21), 15=164 (LC 24), 16=166 (LC 24), 17=167 (LC 28), 18=162 (LC 28), 19=243 (LC 11)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/31, 2-3=-348/223, 3-4=-306/198, 4-5=-270/174, 5-6=-235/150, 6-7=-215/137,

7-9=-205/140, 9-10=-138/140, 10-11=-151/119, 10-12=-232/180 **BOT CHORD** 2-18=-215/185, 17-18=-147/185, 16-17=-147/185, 15-16=-147/185

14-15=-147/185, 13-14=-147/185,

12-13=-147/185

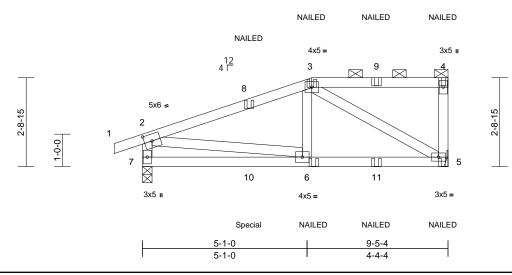
WEBS

9-13=-206/87, 7-14=-174/142, 6-15=-127/113, 5-16=-126/117, 4-17=-129/119, 3-18=-117/132

NOTES

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 2-1-8. Exterior(2N) 2-1-8 to 13-5-8 zone: cantilever left and right exposed: end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) Bearing at joint(s) 11 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 120 lb uplift at ioint 11.


Page: 1

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 5 FaNC	
22030096	E01	Half Hip Girder	1	1	Job Reference (optional)	'83027

Run: 8.53 S. Dec. 6.2021 Print: 8.530 S.Dec. 6.2021 MiTek Industries. Inc. Tue Mar 15.09:01:22 ID:108dtl3YDFI_aPRMnsoz17zkTwU-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Scale = 1:35.6

Plate Offsets (X, Y): [2:0-2-14,0-2-8]

Loading	(psf)	Spacing	2-0-0	csı		DEFL	in	(loc)	l/defl	I /d	PLATES	GRIP
-		- 3				I		(/			_	
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.63	Vert(LL)	0.06	6-7	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.63	Vert(CT)	-0.08	6-7	>999	180		
TCDL	10.0	Rep Stress Incr	NO	WB	0.42	Horz(CT)	0.01	5	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 51 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP No 2 **WEBS** 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or 5-6-0 oc purlins, except end verticals, and

2-0-0 oc purlins (6-0-0 max.): 3-4.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS (lb/size) 5=924/ Mechanical, 7=711/0-3-8

Max Horiz 7=101 (LC 9)

Max Uplift 5=-332 (LC 9), 7=-271 (LC 8)

Max Grav 5=939 (LC 33), 7=790 (LC 34)

FORCES (lb) - Maximum Compression/Maximum

TOP CHORD 1-2=0/27, 2-3=-947/326, 3-4=-52/36,

4-5=-391/128, 2-7=-671/230

BOT CHORD 6-7=-177/322, 5-6=-316/812

WEBS 3-6=-99/336, 3-5=-914/335, 2-6=-156/584

NOTES

- 1) Unbalanced roof live loads have been considered for
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; porch left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this design

- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 332 lb uplift at joint 5.
- 11) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 7. This connection is for uplift only and does not consider lateral forces.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 14) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 15) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 218 lb down and 104 lb up at 3-3-8 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 16) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (lb/ft)

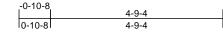
Vert: 1-2=-60, 2-3=-60, 3-4=-60, 5-7=-20 Concentrated Loads (lb)

Vert: 4=-173 (F), 6=-43 (F), 5=-58 (F), 3=-135 (F), 8=-21 (F), 9=-145 (F), 10=-218 (F), 11=-48 (F)

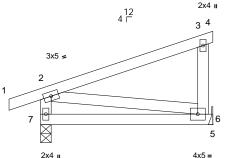
Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not

a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 5 FaNC	
22030096	E02	Monopitch	6	1	Job Reference (optional)	


Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Tue Mar 15 09:01:22 ID:5V7akKsxgX3cUYU2fj_Ri1zkTvS-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2-7-,

Page: 1

Scale = 1:31.9

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.48	Vert(LL)	0.07	6-7	>761	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.36	Vert(CT)	0.06	6-7	>936	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.04	Horz(CT)	0.00	6	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 26 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 2x4 SP No.2 **BOT CHORD** 2x4 SP No.3 WEBS

BRACING

TOP CHORD Structural wood sheathing directly applied or 4-9-4 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (lb/size) 6=189/ Mechanical, 7=242/0-3-8

Max Horiz 7=92 (LC 11)

Max Uplift 6=-73 (LC 10), 7=-98 (LC 10) Max Grav 6=257 (LC 21), 7=338 (LC 21)

FORCES

(lb) - Maximum Compression/Maximum Tension

TOP CHORD

1-2=0/29, 2-3=-68/46, 3-4=-8/0, 3-6=-208/143, 2-7=-294/216

BOT CHORD 6-7=-89/1, 5-6=0/0

WEBS 2-6=-6/124

NOTES

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 73 lb uplift at joint
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 7. This connection is for uplift only and does not consider lateral forces.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

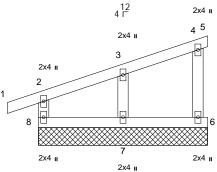
LOAD CASE(S) Standard

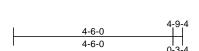
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information

available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 5 FaNC	
22030096	E03	Monopitch Supported Gable	1	1	Job Reference (optional)	150783029


Run: 8.53 S. Dec. 6.2021 Print: 8.530 S.Dec. 6.2021 MiTek Industries. Inc. Tue Mar. 15.09:01:22 ID:90XFtS1L88yUos7w1NlypCzkTvD-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

2-7-1

Scale = 1:32.5

Loading	(psf)	Spacing	1-11-4	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.18	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.08	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.06	Horz(CT)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MR								
BCDL	10.0										Weight: 22 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD 2x4 SP No.3 WEBS **OTHERS** 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

4-9-4 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc

BOT CHORD

REACTIONS (lb/size)

5=-10/4-9-4, 6=99/4-9-4,

7=174/4-9-4, 8=149/4-9-4

Max Horiz 8=90 (LC 11) Max Uplift 5=-21 (LC 14), 6=-3 (LC 11), 7=-49

(LC 14), 8=-37 (LC 10) Max Grav 5=5 (LC 7), 6=141 (LC 21), 7=235

(LC 21), 8=212 (LC 21)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 2-8=-191/168, 1-2=0/28, 2-3=-57/21, 3-4=-46/35, 4-5=-19/11, 4-6=-121/32

7-8=-28/31, 6-7=-28/31 BOT CHORD

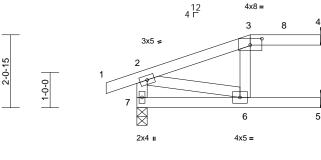
WFBS 3-7=-192/214

NOTES

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 2-4-10, Exterior (2N) 2-4-10 to 4-9-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- Gable requires continuous bottom chord bearing.
- Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 21 lb uplift at joint

Page: 1



Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 5 FaNC	
22030096	E04	Half Hip Girder	1	1	Job Reference (optional)	30

Run: 8.53 S. Dec. 6.2021 Print: 8.530 S.Dec. 6.2021 MiTek Industries. Inc. Tue Mar. 15.09:01:23 ID:108dtl3YDFI_aPRMnsoz17zkTwU-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Special

Special 3-1-0 5-2-12 3-1-0 2-1-12

Scale = 1:32.8

Plate Offsets (X, Y): [3:0-4-0,0-2-3]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.22	Vert(LL)	0.13	6-7	>482	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.90	Vert(CT)	-0.20	6-7	>306	180		
TCDL	10.0	Rep Stress Incr	NO	WB	0.06	Horz(CT)	0.12	4	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 24 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP No.1 **WEBS** 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

5-2-12 oc purlins, except end verticals, and

2-0-0 oc purlins: 3-4.

BOT CHORD Rigid ceiling directly applied or 8-10-14 oc

bracing.

REACTIONS (lb/size) 4=58/ Mechanical, 5=230/ Mechanical, 7=329/0-3-8

7=47 (LC 9) Max Horiz

Max Uplift 4=-24 (LC 8), 5=-92 (LC 8), 7=-128

(LC 8)

4=81 (LC 33), 5=238 (LC 34), Max Grav

7=397 (LC 34)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/27, 2-3=-34/52, 3-4=0/0, 2-7=-214/64

BOT CHORD 6-7=-49/9. 5-6=0/0

3-6=-281/104, 2-6=-24/59

WEBS NOTES

- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; porch left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

- 4) Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads
- Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 24 lb uplift at joint 4 and 92 lb uplift at joint 5.
- 11) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 7. This connection is for uplift only and does not consider lateral forces.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord
- 14) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 167 lb down and 107 lb up at 3-2-12 on top chord, and 44 lb down and 61 lb up at 3-2-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 15) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

Vert: 1-2=-60, 2-3=-60, 3-4=-60, 5-7=-20

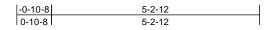
Page: 1

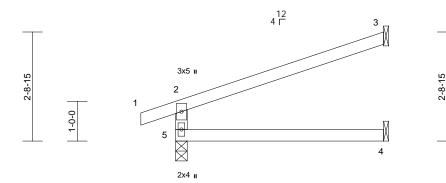
Concentrated Loads (lb)

Vert: 3=-120 (B), 6=-34 (B)

March 15,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.


Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chorembers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see


AMSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 5 FaNC	
22030096	E05	Jack-Open	1	1	Job Reference (optional)	150783031

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Tue Mar 15 09:01:23 ID:YcaFgQ2vSyd7yFsAD8HkVvzkTwV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-2-12 Scale = 1:29

Loading	(psf)	Spacing	1-11-4	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.57	Vert(LL)	0.13	4-5	>461	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.52	Vert(CT)	0.11	4-5	>552	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.07	3	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MR								
BCDL	10.0										Weight: 18 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 WEBS

BRACING

TOP CHORD Structural wood sheathing directly applied or 5-2-12 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (lb/size) 3=132/ Mechanical, 4=56/ Mechanical, 5=260/0-3-8

Max Horiz 5=65 (LC 10)

Max Uplift 3=-67 (LC 10), 4=-23 (LC 10),

5=-94 (LC 10)

Max Grav 3=194 (LC 21), 4=92 (LC 7), 5=362

(LC 21)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 2-5=-327/218, 1-2=0/28, 2-3=-79/48

BOT CHORD 4-5=0/0

NOTES

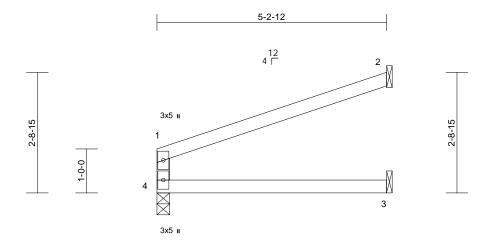
- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 67 lb uplift at joint 3 and 23 lb uplift at joint 4.
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 5. This connection is for uplift only and does not consider lateral forces.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chorembers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rerection and bracing of trusses and truss systems, see

ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 5 FaNC	
22030096	E06	Jack-Open	2	1	Job Reference (optional)	150783032

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Tue Mar 15 09:01:23 ID:YcaFgQ2vSyd7yFsAD8HkVvzkTwV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

5-2-12

Scale = 1:26.2

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.62	Vert(LL)	0.14	3-4	>440	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.55	Vert(CT)	0.11	3-4	>529	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.07	2	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MR								
BCDL	10.0	l									Weight: 17 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 WEBS

BRACING

TOP CHORD Structural wood sheathing directly applied or 5-2-12 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (lb/size)

2=140/ Mechanical, 3=61/ Mechanical, 4=201/0-3-8

Max Horiz 4=56 (LC 11)

Max Uplift 2=-70 (LC 10), 3=-24 (LC 10),

4=-57 (LC 10)

Max Grav 2=205 (LC 20), 3=96 (LC 7), 4=274

(LC 20)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-4=-242/141, 1-2=-82/51

BOT CHORD 3-4=0/0

NOTES

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

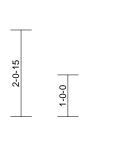
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 70 lb uplift at joint 2 and 24 lb uplift at joint 3.
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 4. This connection is for uplift only and does not consider lateral forces.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

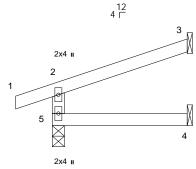
LOAD CASE(S) Standard

March 15,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chorembers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rerection and bracing of trusses and truss systems, see


ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 5 FaNC	
22030096	E07	Jack-Open	1	1	Job Reference (optional)	

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Tue Mar 15 09:01:23 ID:YcaFgQ2vSyd7yFsAD8HkVvzkTwV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:27.6

3-2-12	١
	1

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.21	Vert(LL)	0.02	4-5	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.19	Vert(CT)	0.02	4-5	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.02	3	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MR								
BCDL	10.0			l							Weight: 12 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 WEBS

BRACING

TOP CHORD Structural wood sheathing directly applied or 3-2-12 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (lb/size)

3=78/ Mechanical, 4=32/ Mechanical, 5=192/0-3-8

Max Horiz 5=46 (LC 11)

Max Uplift 3=-41 (LC 10), 4=-15 (LC 10),

5=-72 (LC 10)

Max Grav 3=112 (LC 21), 4=57 (LC 7), 5=263

(LC 21)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 2-5=-237/167, 1-2=0/28, 2-3=-50/27

BOT CHORD 4-5=0/0

NOTES

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 41 lb uplift at joint 3 and 15 lb uplift at joint 4.
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 5. This connection is for uplift only and does not consider lateral forces.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

March 15,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chorembers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rerection and bracing of trusses and truss systems, see


ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 5 FaNC	
22030096	E08	Jack-Open	1	1	Job Reference (optional)	

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Tue Mar 15 09:01:24 ID:YcaFgQ2vSyd7yFsAD8HkVvzkTwV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

4-5-5

Scale = 1:27.5

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.35	Vert(LL)	0.07	4-5	>750	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.38	Vert(CT)	0.06	4-5	>886	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.04	3	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MR								
BCDL	10.0										Weight: 16 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 2x4 SP No.2 **BOT CHORD** 2x4 SP No.3 WEBS

BRACING

TOP CHORD Structural wood sheathing directly applied or 4-5-5 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (lb/size) 3=110/ Mechanical 4=45/ Mechanical, 5=266/0-4-9

Max Horiz 5=44 (LC 11)

Max Uplift 3=-51 (LC 10), 4=-17 (LC 10),

5=-111 (LC 10)

Max Grav 3=154 (LC 21), 4=79 (LC 7), 5=357

(LC 21)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 2-5=-320/270, 1-2=0/27, 2-3=-47/27

BOT CHORD 4-5=0/0

NOTES

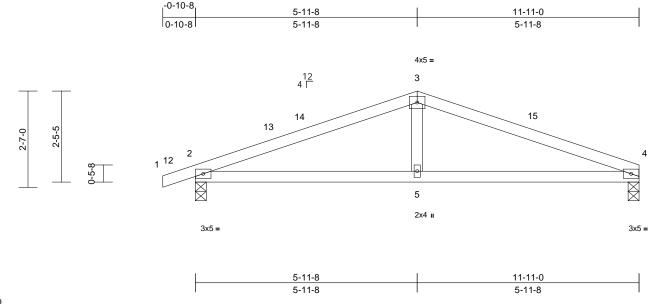
- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) -1-2-14 to 3-0-1, Exterior(2R) 3-0-1 to 4-4-9 zone; cantilever left and right exposed; end vertical left and right exposed; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.

- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 51 lb uplift at joint 3 and 17 lb uplift at joint 4.
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 5. This connection is for uplift only and does not consider lateral forces.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chorembers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see


AMSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 5 FaNC	
22030096	F01	Common	4	1	I5078303 Job Reference (optional)	35

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Tue Mar 15 09:01:24 ID:30I7L8IJqgcF6FSk6W?buZzakzT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:30.9

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.66	Vert(LL)	-0.07	5-8	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.54	Vert(CT)	-0.10	5-8	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.10	Horz(CT)	0.01	4	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 41 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 WEBS

BRACING

TOP CHORD Structural wood sheathing directly applied or

4-4-12 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (lb/size) 2=531/0-3-8, 4=475/0-3-8

Max Horiz 2=41 (LC 18)

Max Uplift 2=-89 (LC 10), 4=-56 (LC 11)

Max Grav 2=636 (LC 21), 4=563 (LC 22) FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=0/22, 2-3=-874/409, 3-4=-879/407

BOT CHORD 2-5=-307/758, 4-5=-307/758

WEBS 3-5=0/259

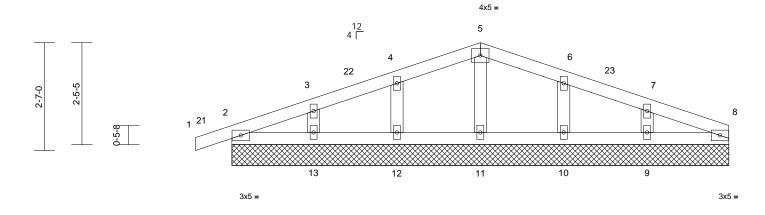
NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 2-11-8, Exterior(2R) 2-11-8 to 8-11-0, Exterior (2E) 8-11-0 to 11-11-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this design.

- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 4 and 2. This connection is for uplift only and does not consider lateral forces.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

March 15,2022


Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 5 FaNC	
22030096	F02	Common Supported Gable	1	1	ાઇ Job Reference (optional)	50783036

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Tue Mar 15 09:01:24 ID:TbzF_AnB7b_qziAJneZIVBzakzQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

11-11-0

Scale = 1:27.6

Loading	(psf)	Spacing	1-11-4	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.07	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.04	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.04	Horz(CT)	0.00	8	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 46 lb	FT = 20%

11	м	R	E	D

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 **OTHERS**

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (lb/size)

2=131/11-11-0 8=66/11-11-0 9=170/11-11-0, 10=158/11-11-0, 11=136/11-11-0, 12=162/11-11-0, 13=152/11-11-0, 14=131/11-11-0,

18=66/11-11-0

Max Horiz 2=39 (LC 14), 14=39 (LC 14) Max Uplift 2=-39 (LC 10), 8=-4 (LC 11), 9=-38

(LC 15), 10=-35 (LC 15), 12=-37 (LC 10), 13=-34 (LC 14), 14=-39 (LC 10), 18=-4 (LC 11)

Max Grav 2=171 (LC 21), 8=88 (LC 22), 9=231 (LC 22), 10=219 (LC 22), 11=137 (LC 21), 12=224 (LC 21), 13=210 (LC 21), 14=171 (LC 21),

18=88 (LC 22) (lb) - Maximum Compression/Maximum

FORCES Tension

TOP CHORD 1-2=0/21, 2-3=-42/28, 3-4=-39/38,

4-5=-44/91, 5-6=-46/91, 6-7=-42/38,

7-8=-29/13

BOT CHORD 2-13=-22/29, 12-13=-1/29, 11-12=-1/29,

10-11=-1/29, 9-10=-1/29, 8-9=-6/30 **WEBS** 5-11=-98/57, 4-12=-188/146, 3-13=-163/107,

6-10=-185/144, 7-9=-173/117

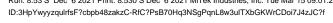
NOTES

1) Unbalanced roof live loads have been considered for this design.

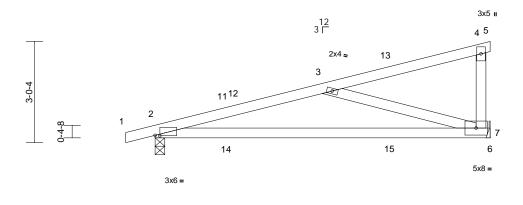
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 1-11-8, Exterior(2N) 1-11-8 to 2-11-8, Corner(3R) 2-11-8 to 8-11-0, Corner (3E) 8-11-0 to 11-11-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 2-0-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

March 15,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

AMSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 5 FaNC	
22030096	J01	Monopitch	5	1	Job Reference (optional)	0783037

Run: 8.53 S. Dec. 6.2021 Print: 8.530 S.Dec. 6.2021 MiTek Industries. Inc. Tue Mar. 15.09:01:24

Scale = 1:34.4

Plate Offsets (X, Y): [2:0-1-11,0-0-2]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.68	Vert(LL)	0.43	7-10	>273	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.65	Vert(CT)	-0.34	7-10	>343	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.41	Horz(CT)	0.01	7	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 42 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP No.2

WEBS 2x4 SP No.2 *Except* 7-3:2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or 5-3-11 oc purlins, except end verticals. **BOT CHORD** Rigid ceiling directly applied or 4-8-14 oc

bracing.

REACTIONS (lb/size) 2=444/0-3-8, 7=409/ Mechanical

Max Horiz 2=101 (LC 13)

Max Uplift 2=-174 (LC 10), 7=-153 (LC 10)

Max Grav 2=512 (LC 21), 7=530 (LC 21)

FORCES

(lb) - Maximum Compression/Maximum

Tension

1-2=0/13, 2-3=-997/794, 3-4=-144/182,

4-5=-6/0, 4-7=-183/66 BOT CHORD 2-7=-808/956, 6-7=0/0

WFBS 3-7=-902/720

NOTES

TOP CHORD

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 7-0-0, Exterior(2E) 7-0-0 to 10-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1 00: Ct=1 10
- Unbalanced snow loads have been considered for this design.

- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 153 lb uplift at joint 7
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Page: 1

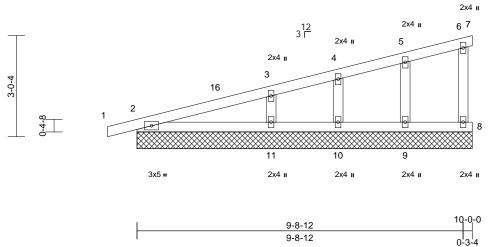
2-10-8

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information

available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 5 FaNC	
22030096	J02	Monopitch Supported Gable	1	1	Job Reference (optional)	150783038

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Tue Mar 15 09:01:25 ID:qplabh2?xLlic5sX4GyTOqzakz4-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

2-10-8

Scale = 1:34.4

Loading	(psf)	Spacing	1-11-4	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.17	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.14	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.06	Horz(CT)	0.00	7	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 41 lb	FT = 20%

11	м	R	E	D

TOP CHORD 2x4 SP No.2 2x4 SP No.2 **BOT CHORD** 2x4 SP No.3 WEBS **OTHERS** 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins, except end verticals. **BOT CHORD**

Rigid ceiling directly applied or 10-0-0 oc

REACTIONS (lb/size)

2=185/10-0-0, 7=2/10-0-0, 8=67/10-0-0, 9=171/10-0-0, 10=92/10-0-0, 11=304/10-0-0,

12=185/10-0-0

Max Horiz 2=98 (LC 13), 12=98 (LC 13) Max Uplift 2=-42 (LC 10), 7=-13 (LC 10),

8=-19 (LC 11), 9=-31 (LC 14), 10=-19 (LC 10), 11=-58 (LC 14),

12=-42 (LC 10)

Max Grav 2=189 (LC 21), 7=16 (LC 13), 8=91 (LC 21), 9=220 (LC 21), 10=135

(LC 21), 11=367 (LC 21), 12=189

(LC 21)

FORCES (lb) - Maximum Compression/Maximum

TOP CHORD 1-2=0/12, 2-3=-87/33, 3-4=-56/10,

4-5=-47/19, 5-6=-43/39, 6-7=-8/5, 6-8=-79/24

BOT CHORD 2-11=-36/47, 10-11=-36/46, 9-10=-36/46,

8-9=-36/46

WFBS 5-9=-174/123, 4-10=-126/98, 3-11=-262/194

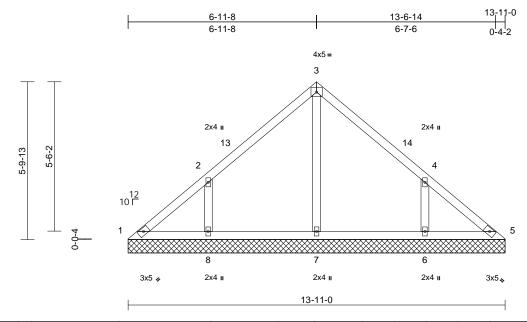
NOTES

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 2-1-8, Exterior(2N) 2-1-8 to 10-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads
- All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing. Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 13 lb uplift at joint

March 15,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chorembers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rerection and bracing of trusses and truss systems, see


ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 5 FaNC	
22030096	V1	Valley	1	1	Job Reference (optional)	

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Tue Mar 15 09:01:25 ID:fxEGipx38KAuBA0Cp6bicAyEOiH-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:42.5

Loading	(psf)	Spacing	2-0-0	csı		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.33	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.11	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.12	Horiz(TL)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0			1							Weight: 60 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.3 **OTHERS**

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (lb/size) 1=91/13-11-0, 5=91/13-11-0,

6=326/13-11-0, 7=279/13-11-0, 8=326/13-11-0

Max Horiz 1=-132 (LC 10)

Max Uplift 1=-25 (LC 10), 6=-149 (LC 15),

8=-152 (LC 14)

Max Grav 1=116 (LC 24), 5=92 (LC 23),

6=446 (LC 21), 7=292 (LC 21),

8=446 (LC 20)

FORCES (lb) - Maximum Compression/Maximum

Tension TOP CHORD

1-2=-144/123, 2-3=-187/117, 3-4=-187/113, 4-5=-114/87

BOT CHORD 1-8=-52/116, 7-8=-52/93, 6-7=-52/93

5-6=-52/93

WEBS 3-7=-210/0, 2-8=-374/193, 4-6=-374/192

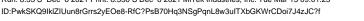
NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 2-11-13, Interior (1) 2-11-13 to 3-11-13, Exterior(2R) 3-11-13 to 9-11-13, Interior (1) 9-11-13 to 10-11-5, Exterior(2E) 10-11-5 to 13-11-5 zone: cantilever left and right exposed : end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

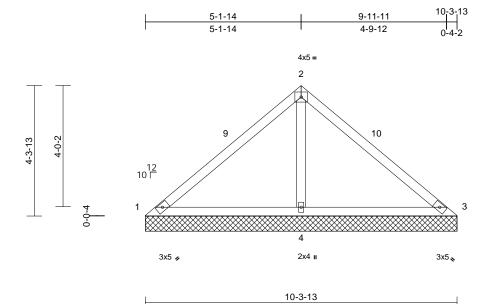
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this 5) design.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 25 lb uplift at joint

March 15,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chorembers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rerection and bracing of trusses and truss systems, see

ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 5 FaNC	
22030096	V2	Valley	1	1	Job Reference (optional)	150783040

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Tue Mar 15 09:01:25

Page: 1

Scale = 1:38.1

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.53	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.49	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.23	Horiz(TL)	0.01	4	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0	l		1							Weight: 39 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 **OTHERS**

BRACING

TOP CHORD Structural wood sheathing directly applied or

10-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (lb/size) 1=21/10-3-13, 3=21/10-3-13, 4=783/10-3-13

Max Horiz 1=97 (LC 13)

Max Uplift 1=-67 (LC 21), 3=-67 (LC 20),

4=-124 (LC 14)

Max Grav 1=91 (LC 20), 3=91 (LC 21), 4=858

(LC 20)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-130/424, 2-3=-130/424

BOT CHORD 1-4=-241/187, 3-4=-241/187

WEBS 2-4=-670/295

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Exterior(2R) 3-0-5 to 7-4-2, Exterior(2E) 7-4-2 to 10-4-2 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

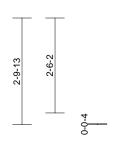
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this desian.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 67 lb uplift at joint 1 and 67 lb uplift at joint 3.

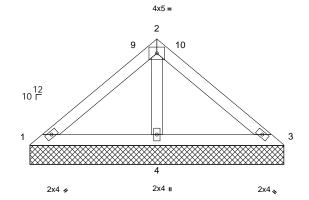
March 15,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chorembers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rerection and bracing of trusses and truss systems, see

ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601




Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 5 FaNC	
22030096	V3	Valley	1	1	Job Reference (optional)	150783041

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Tue Mar 15 09:01:25 ID:PwkSKQ9IklZIUun8rGrrs2yEOe8-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

6-8-10

Scale = 1:30.5

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.21	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.23	Vert(TL)	n/a	-	n/a	999			
TCDL	10.0	Rep Stress Incr	YES	WB	0.07	Horiz(TL)	0.00	4	n/a	n/a			
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP									
BCDL	10.0	1				l					Weight: 25 lb	FT = 20%	

LUMBER

2x4 SP No.2 TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3 **OTHERS**

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-8-10 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (lb/size) 1=45/6-8-10, 3=45/6-8-10, 4=448/6-8-10

Max Horiz 1=-62 (LC 10)

Max Uplift 1=-8 (LC 21), 3=-8 (LC 20), 4=-63

Max Grav 1=103 (LC 20), 3=103 (LC 21),

4=475 (LC 21)

FORCES (lb) - Maximum Compression/Maximum

Tension

1-2=-87/197, 2-3=-87/197 TOP CHORD 1-4=-142/138, 3-4=-142/138

BOT CHORD WEBS 2-4=-331/177

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Exterior(2R) 3-0-5 to 3-8-14, Exterior(2E) 3-8-14 to 6-8-14 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 8 lb uplift at joint 1 and 8 lb uplift at joint 3.

March 15,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chorembers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rerection and bracing of trusses and truss systems, see


ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 5 FaNC	
22030096	V4	Valley	1	1	I50783 Job Reference (optional)	3042

Run: 8.88 F.8.53 Jan. 6.2022 Print: 8.530 F. Jan. 6.2022 MiTek Industries. Inc. Tue Mar. 15.13:19:43 ID:3YLzUm9eq6uRBT2G5fcaGkzakyx-9VDD5tcz2B2p332adcrZZ619qaMvtFEMqYFhYzzagl_

Page: 1

6-9-5 Scale = 1:21.4

Loading	(psf)	Spacing	1-11-4	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.85	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.80	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.02	3	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 21 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.1 2x4 SP No.3 WEBS

BRACING

TOP CHORD Structural wood sheathing directly applied or 5-4-11 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 1=7-3-5, 3=7-3-5

Max Horiz 1=60 (LC 11)

Max Uplift 1=-41 (LC 10), 3=-47 (LC 10) Max Grav 1=363 (LC 20), 3=363 (LC 20)

FORCES (lb) - Max. Comp./Max. Ten. - All forces 250

(lb) or less except when shown.

TOP CHORD 1-6=-1068/499 BOT CHORD 1-3=-538/1027

NOTES

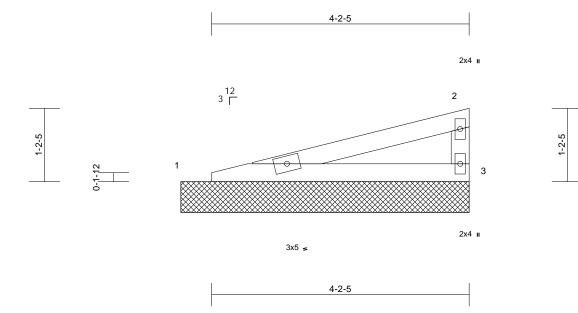
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph: TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.

- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 41 lb uplift at joint
- 10) N/A
- 11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information


available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

١	Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 5 FaNC	
	22030096	V5	Valley	1	1	Job Reference (optional)	150783043

Run: 8.88 E 8.53 Jan 6 2022 Print: 8.530 E Jan 6 2022 MiTek Industries. Inc. Tue Mar 15 13:20:08 ID:YYUdOYoFa5R2RT0G8aYmNizaky7-wJEgLQvf9tCGZvTObMnQ4NaZRf?KEYQ1axpWw0zagkb

Page: 1

Loading	(psf)	Spacing	2-0-0	csı		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.28	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.37	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.01	3	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 13 lb	FT = 20%

LUMBER

Scale = 1:18.8

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 WEBS

BRACING

TOP CHORD Structural wood sheathing directly applied or 4-2-5 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 1=4-8-5, 3=4-8-5

Max Horiz 1=37 (LC 11)

Max Uplift 1=-27 (LC 10), 3=-31 (LC 14)

Max Grav 1=237 (LC 20), 3=237 (LC 20) (lb) - Max. Comp./Max. Ten. - All forces 250

FORCES (lb) or less except when shown.

1-2=-583/298

TOP CHORD BOT CHORD 1-3=-322/556

NOTES

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph: TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.

- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 27 lb uplift at joint 1.
- 10) N/A
- 11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

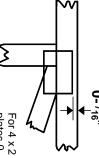
March 15,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information

available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



Symbols

PLATE LOCATION AND ORIENTATION

Center plate on joint unless x, y offsets are indicated.
Dimensions are in ft-in-sixteenths.
Apply plates to both sides of truss and fully embed teeth.

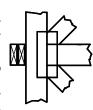
For 4 x 2 orientation, locate plates 0- $\frac{1}{16}$ from outside edge of truss.

This symbol indicates the required direction of slots in connector plates.

* Plate location details available in MiTek 20/20 software or upon request.

PLATE SIZE

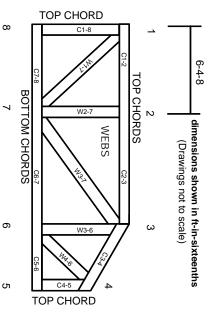
4 × 4


The first dimension is the plate width measured perpendicular to slots. Second dimension is the length parallel to slots.

LATERAL BRACING LOCATION

Indicated by symbol shown and/or by text in the bracing section of the output. Use T or I bracing if indicated.

BEARING


Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number where bearings occur. Min size shown is for crushing only

Industry Standards:

National Design Specification for Metal Plate Connected Wood Truss Construction. Design Standard for Bracing. Building Component Safety Information, Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses.

ANSI/TPI1: DSB-89:

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

PRODUCT CODE APPROVALS

ICC-ES Reports:

ESR-1311, ESR-1352, ESR1988 ER-3907, ESR-2362, ESR-1397, ESR-3282

Trusses are designed for wind loads in the plane of the truss unless otherwise shown.

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

© 2012 MiTek® All Rights Reserved

A Milek Affiliate

MiTek Engineering Reference Sheet: MII-7473 rev. 5/19/2020

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.

ω

Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.

4

- Cut members to bear tightly against each other
- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.

ი ი

- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.

9

φ.

- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others
- Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.