

Trenco 818 Soundside Rd Edenton, NC 27932

Re: P-7862-1 Rosemont V2-Roof

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Peak Truss Builders, LLC(Closed).

Pages or sheets covered by this seal: I46894765 thru I46894782

My license renewal date for the state of North Carolina is December 31, 2021.

North Carolina COA: C-0844

July 8,2021

Sevier, Scott

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	rpe Qty Ply		Rosemont V2-Roof	
P-7862-1	CAP1	Piggyback	2	1	Job Reference (optional)	146894765

4-3-2

-0-9-8

Peak Truss Builders, LLC (Closed), New Hill, NC - 27562,

Run: 8.43 S Jun 2 2021 Print: 8.430 S Jun 2 2021 MiTek Industries, Inc. Wed Jul 07 11:18:54 ID:Qh1vErgjMfBSYZrRTg1W8fz8NM5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

8-6-5

9-3-13

8-6-5

Scale =	1:29.4
---------	--------

											-	
Loading TCLL (roof) TCDL BCLL	(psf) 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI TC BC WB	0.05 0.03 0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 6	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0	Code	IRC2015/TP	I2014 Matrix-MP							Weight: 37 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.1 2x4 SP No.1 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (Ib/size) 2=117/8-6 8=204/8-6 10=204/8 15=117/8 Max Horiz 2=50 (LC Max Uplift 2=-26 (LC 8=-56 (LC 11=-26 (L	athing directly applie applied or 10-0-0 oc 6-5, 6=117/8-6-5, 6-5, 9=102/8-6-5, 6-5, 11=117/8-6-5, 6-5 10), 11=50 (LC 10) 211), 6=-26 (LC 11), 211), 10=-56 (LC 11 C 11), 15=-26 (LC 1	3) Tru onl see or (4) Ga (4) Ga (5) Ga (6) * T (7) Pro be (7) Pro (7) P	uss designed for wind loar ly. For studs exposed to e Standard Industry Gable consult qualified building ble requires continuous b uble studs spaced at 2-0-0 his truss has been desigr the bottom chord in all ar 06-00 tall by 2-00-00 wide ord and any other membe conder mechanical connect aring plate capable of with 26 lb uplift at joint 6, 56 lb joint 8, 26 lb uplift at joint e Standard Industry Pigg tail for Connection to bas sult qualified building de CASE(S) Standard	ds in the pl wind (norm e End Deta designer a oottom chor) oc. need for a liv eas where will fit betw rs. tion (by oth nstanding 2 uplift at joi 2 and 26 lb yback Trus e truss as a signer.	ane of the tru al to the face ils as applica s per ANSI/TI d bearing. re load of 20.0 a rectangle veen the bott ers) of truss t 26 lb uplift at j int 10, 56 lb u o uplift at joint s Connection applicable, or	ss), ble, PI 1. Opsf om to oint plift 5.					
FORCES	(lb) - Maximum Corr Tension	pression/Maximum										
TOP CHORD	1-2=0/16, 2-3=-47/3 4-5=-64/55, 5-6=-33	6, 3-4=-64/55, /23, 6-7=0/16										
BOT CHORD	2-10=-19/39, 9-10=- 6-8=-19/39	19/39, 8-9=-19/39,										
WEBS	4-9=-72/0, 3-10=-14	6/76, 5-8=-146/76										1111 Acres
NOTES										1 💦	IN THUA	ROUL
1) Unbalance	ed roof live loads have	been considered for								1	ONEESS	in Alle
this design). CE Z 10: \/ult_120mph	(2 accord quat)								D		No. 7
Z) Wind. ASC Vasd=95m	pph: TCDL=6.0psf: BC	DL=6.0psf: h=30ft:								er.	Jun 2	June
B=20ft; L=	20ft; eave=4ft; Cat. II;	Exp B; Enclosed;							-		SEA	a 🚯
MWFRS (directional) and C-C E	xterior (2) 0-3-11 to							-	:	JEA	. :

Vaso=95mph; 1CDL=6.0psf; BCDL=6.0psf; n=30ft; B=20ft; L=20ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) 0-3-11 to 3-1-1, Interior (1) 3-1-1 to 5-1-1, Exterior (2) 5-1-1 to 8-1-1, Interior (1) 8-1-1 to 9-10-8 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 SEAL 044925 WGINEER July 8,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/ITPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Rosemont V2-Roof	
P-7862-1	CAP2	Piggyback	25	1	Job Reference (optional)	146894766

Run: 8,43 S Jun 2 2021 Print: 8,430 S Jun 2 2021 MiTek Industries, Inc. Wed Jul 07 11:18:56 ID:Qh1vErgjMfBSYZrRTg1W8fz8NM5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:29.4		
Plate Offsets (X Y)	[2.0-1-2.0-1-0]	[4.0-1-5 0-1-0]

	(,,, ,). [2:0 : 0;0 : 0];	[
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20 ⁷	15/TPI2014	CSI TC BC WB Matrix-MP	0.17 0.18 0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 11	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 33 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.1 2x4 SP No.1 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins. Rigid ceiling directly bracing. (Ib/size) 2=226/8-6 6=292/8-6 11=226/8- Max Horiz 2=-50 (LC Max Uplift 2=-62 (LC	athing directly applie applied or 10-0-0 oc 5-5, 4=226/8-6-5, 5-5, 7=226/8-6-5, 6-5 : 9), 7=-50 (LC 9) : 11), 4=-62 (LC 11),	4 5 6 d or 7 5 8	 Gable requir. Gable studs This truss h on the bottor 3-06-00 tall b chord and ar Provide mec bearing plate 2, 62 lb uplift uplift at joint See Standar Detail for Co consult quali OAD CASE(S) 	es continuous bol spaced at 4-0-0 d nas been designe n chord in all area by 2-00-00 wide w y other members hanical connectio e capable of withs at joint 4, 62 lb u 4. d Industry Piggyb nnection to base fied building desig Standard	ttom chor oc. d for a liv as where vill fit betv s. on (by oth tanding 6 plift at joi pack Trus truss as a gner.	d bearing. e load of 20.0 a rectangle veen the bott ers) of truss t s2 lb uplift at j nt 2 and 62 ll s Connection applicable, or	Dpsf om oont o					
FORCES	/=-62 (LC (lb) - Maximum Com Tension	pression/Maximum)										
TOP CHORD	1-2=0/16, 2-3=-147/6 4-5=0/16	63, 3-4=-147/63,											
BOT CHORD WEBS	2-6=-7/76, 4-6=-10/7 3-6=-124/14	6											
NOTES												minin	1111.
 Unbalanc this desig Wind: AS Vasd=95r B=20ft; L: MWFRS I 3-3-11, Int 8-1-1, Intt and right exposed; reactions DDL=1.6 	ed roof live loads have n. CE 7-10; Vult=120mph mph; TCDL=6.0psf; BC =20ft; eave=4ft; Cat. II; (directional) and C-C E: terior (1) 3-3-11 to 5-1- erior (1) 8-1-1 to 9-10-8 exposed ; end vertical I c-C for members and ft shown; Lumber DOL=1 0	been considered for (3-second gust) DL=6.0psf; h=30ft; Exp B; Enclosed; kterior (2) 0-3-11 to 1, Exterior (2) 5-1-1 zone; cantilever left eft and right orcces & MWFRS for I.60 plate grip	to							A strained		SEA 0449	L 25 EER & J
 Truss des only. For 	signed for wind loads in studs exposed to wind	the plane of the trus (normal to the face)	S ,								14	TTM	SEVIEN

DOL=1.60 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3)

July 8,2021

mm

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Rosemont V2-Roof	
P-7862-1	T1	Piggyback Base	3	1	Job Reference (optional)	146894767

Run: 8,43 S Jun 2 2021 Print: 8,430 S Jun 2 2021 MiTek Industries, Inc. Wed Jul 07 11:18:56 ID:ISHQ4DjDQuht1A9CiW6SJVz8NM1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale =	1:83.8
---------	--------

Plate Offsets (X, Y): [6:0-2-8,0-2-1], [8:0-2-8,0-2-1]

Loading TCLL (roof) TCDL BCLL BCDL		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.40 0.72 0.45	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.31 -0.24 0.02	(loc) 16-17 14-26 14	l/defl >999 >504 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 288 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP N 2x4 SP N 2x4 SP N Structural 5-9-4 oc p 2-0-0 oc p Rigid ceili bracing. 1 Row at (lb/size) Max Horiz Max Uplift Max Grav	5.1 5.3 wood she burlins, excourlins, excourlins, excourlins, excourlins (6-C ng directly midpt 2=268/0-3 14=1708/ 2=222 (LC 2=-71 (LC 14=-222 (2=274 (LC 14=-1798)	athing directly applied pept -0 max.): 6-8. applied or 6-0-0 oc 9-14, 7-17, 7-16 3-8, 12=377/0-3-8, 0-3-8, 20=1500/0-3-8 C 10) 2 11), 12=-67 (LC 11), LC 11), 20=-170 (LC 2 23), 12=390 (LC 24) (LC 20), 20=1595 (LC	2; d or 3; 4; 11) 5; 5 19)	 Wind: ASCE Vasd=95mpl B=20ft; L=47 MWFRS (dir, 3-8-0, Interio to 24-10-2, Ir 28-5-1 to 35- cantilever lef right exposed for reactions DOL=1.60 Provide adec * This truss h on the bottor 3-06-00 tall b chord and ar Provide mecc bearing plate 2, 170 lb upli 	7-10; Vult=120mp n; TCDL=6.0psf; B(ft; eave=6ft; Cat. II ectional) and C-C E r (1) 3-8-0 to 18-2- terior (1) 24-10-2 0-5, Interior (1) 35- t and right exposed d;C-C for members shown; Lumber D(quate drainage to p has been designed n chord in all areas by 2-00-00 wide will by other members, hanical connection o capable of withsta ft at joint 20, 222 Ik	h (3-sec CDL=6.0 ; Exp B Exterior 15, Exterior 15, Exterior 0-5 to 2 -0-5 to	cond gust) Dpsf; h=30ft; ; Enclosed; (2) -1-0-0 to errior (2) 18-2- 1, Exterior (2) 17-8-0 zone; vertical left an rcces & MWFR) plate grip water ponding e load of 20.0 a rectangle veen the botto DL = 10.0psf ers) of truss t 1 lb uplift at j t joint 14 and	15) d SS g. Dpsf om o oint 67						
FORCES TOP CHORD	(lb) - Max Tension 1-2=0/30, 5-6=-1058 8-9=-901/	imum Com 2-3=-105/ 5/270, 6-7= 244, 9-11=	npression/Maximum 189, 3-5=-997/213, 852/271, 7-8=-719/2 =0/225, 11-12=-233/6:	6) 248, 2, L	Ib uplift at joi Graphical pu or the orienta bottom chorc OAD CASE(S)	nt 12. rlin representation ation of the purlin a l. Standard	does no long the	ot depict the s top and/or	size					Politic	
BOT CHORD WEBS	12-13=0/3 2-20=-103 16-17=0/9 3-20=-142	30 3/86, 19-20 900, 14-16 20/233, 3-1)=-103/84, 17-19=0/8 =0/318, 12-14=0/163 9=-29/1004,	97,									OR	ÖN	
NOTES 1) Unbalance this design	5-19=-416 8-16=-5/1 11-14=-37 ed roof live I	5/80, 5-17= 98, 9-16=0 72/173, 7-1 oads have	79/154, 6-17=-17/25)/660, 9-14=-1341/21- 7=-123/82, 7-16=-41 been considered for	54, 4, 0/91							annus.	æ	SEA 0449	25	WILLIAM IN

this design.

munin July 8,2021

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Rosemont V2-Roof	
P-7862-1	T1A	Piggyback Base	6	1	Job Reference (optional)	146894768

Run: 8.43 S Jun 2 2021 Print: 8.430 S Jun 2 2021 MiTek Industries, Inc. Wed Jul 07 11:18:57 ID:BEWwwamkT6CJWnSzxMAOTLz8NLz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1	:83.8
-----------	-------

Plate Offsets (X, Y): [6:0-2-8,0-2-1], [8:0-2-8,0-2-1]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.44 0.85 0.86	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.32 -0.57 0.09	(loc) 20-21 20-21 16	l/defl >999 >882 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 293 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.1 2x4 SP No.3 Right 2x4 SP No.3 Structural wood she 3-3-1 oc purlins, exc 2-0-0 oc purlins (4-9 Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 13 1 Row at midpt (lb/size) 2=1703/0 16=2291/ (req. 0-3- Max Horiz 2=-203 (L Max Uplitt 2=-242 (L 16=-235 (- 2-0-0 athing directly applied b-4 max.): 6-8. applied or 10-0-0 oc 5-16. 5-21, 7-21, 7-20 -3-8, 13=-143/0-3-8, (0-3-8 + bearing block 10) C 9) C 11), 13=-294 (LC 2 (LC 11)	1) 2) d or 3) k), 25), 4) 5)	2x4 SP No.1 front face witi o.c. 8 Total fa No.2. Unbalanced this design. Wind: ASCE Vasd=95mpf B=20ft; L=47 MWFRS (dire 3-8-0, Interio to 24-10-2, Ir 28-5-1 to 35- cantilever left right exposed for reactions DOL=1.60 Provide aded * This truss h on the bottom	bearing block 12" h 2 rows of 10d (l asteners. Bearing roof live loads hav 7-10; Vult=120mp ; TCDL=6.0psf; B ft; eave=6ft; Cat. I ectional) and C-C r (1) 3-8-0 to 18-2: terior (1) 24-10-2 0-5, Interior (1) 35 t and right expose d;C-C for members shown; Lumber D quate drainage to p as been designed n chord in all areas	long at j 0.131"33 is assum re been of the been of t	it. 16 attache ") nails spac- ned to be SP considered for considered for cond gust) Dpsf; h=30ft; ; Enclosed; (2) -1-0-0 to srior (2) 18-2- 1, Exterior (2 17-8-0 zone; vertical left ar ces & MWFF) plate grip water pondin- e load of 20 a rectangle	d to ed 3" F -15 :) nd RS g. Opsf						
FORCES	(lb) - Maximum Com	(LC 20) npression/Maximum), 6)	3-06-00 tall b chord and an Provide mech	y 2-00-00 wide wi y other members, hanical connection	with BC with BC (by oth	DL = 10.0ps ers) of truss	om f. to				mmm	1111.	
TOP CHORD	1-2=0/30, 2-3=-2900 5-6=-2009/387, 6-7= 7-8=-1448/353, 8-9= 9-11=-1652/303, 11)/398, 3-5=-2715/407 =-1682/372, =-1739/364, -13=-136/875_13-14=	, 7) =0/35	joint 2, 235 lb 13. Graphical pu or the orienta	r capable of withsta o uplift at joint 16 a rlin representation	and 294	b uplift at join t depict the s	t nt size				OF FESS	ROLIN	2
BOT CHORD	2-23=-233/2602, 21- 20-21=0/1680, 18-20 16-1825/411, 13-1	-23=-115/2181, 0=-33/1338, 16666/116	LC	bottom chord DAD CASE(S)	I. Standard	along the					æ	SEA	emer	
WEBS NOTES	3-23=-341/170, 5-23 5-21=-674/207, 6-21 7-21=-123/186, 7-20 9-20=-40/251, 9-18= 11-18=-10/1193, 11	a=-28/555, 1=-77/709,)=-535/85, 8-20=-65/5 486/87, -16=-2341/324	585,							HINE.	1111	0449	ER ER	unin.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

July 8,2021

Job	Truss	Truss Type	Qty	Ply	Rosemont V2-Roof	
P-7862-1	T1B	Piggyback Base	6	1	Job Reference (optional)	146894769

Run: 8.43 S Jun 2 2021 Print: 8.430 S Jun 2 2021 MiTek Industries, Inc. Wed Jul 07 11:18:57 ID:j1yYiEm6jp3SuetnNff9w8z8NM_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = '	1:83.8
-----------	--------

Plate Offsets (X, Y): [6:0-2-8,0-2-1], [8:0-2-8,0-2-1]

Loading TCLL (roof) TCDL BCLL BCDL		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.43 0.83 0.77	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.32 -0.55 0.07	(loc) 16-17 16-17 12	l/defl >999 >877 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 289 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD WEBS REACTIONS FORCES TOP CHORD	2x4 SP N 2x4 SP N 2x4 SP N Structura 3-4-6 oc 2-0-0 oc Rigid ceil bracing. 1 Row at (lb/size) Max Horiz Max Uplift Max Grav (lb) - Max Tension 1-2=0/30, 5-6=-150, 7-8=-156; 9-11=-25; 12=13=0/2	o.1 o.3 o.3 ourlins, exc ourlins, exc ourlins (4-1 ing directly midpt 2=34/0-3-8 21=2193/((req. 0-3-9 2=-202 (LC 21=-259 (I 2=-109 (LC 21=-259 (I 2=-109 (LC 21=-2283 (imum Com 2-3=-72/62 4/326, 6-7= 6/351, 8-9= 30	athing directly applied ept 1-11 max.): 6-8. applied or 6-0-0 oc 9-16, 7-17, 7-16 3, 12=1626/0-3-8, 0-3-8 + bearing bloc 9) : 10) 2 26), 12=-229 (LC 1 2 C 11) : 23), 12=1666 (LC 2 LC 19) pression/Maximum 41, 3-5=-1204/239, -1228/321, -1876/362, 12=-2769/374,	2) 3) d or (k), 4) 5) 11), 20), 6) 7) LC	Unbalanced i this design. Wind: ASCE Vasd=95mpH B=20ft; L=47 MWFRS (dird 3-8-0, Interio to 24-10-2, Ir 28-5-1 to 35- cantilever left right exposed for reactions DOL=1.60 Provide aded * This truss h on the bottom 3-06-00 tall b chord and an Provide meed bearing plate joint 2, 259 lb 12. Graphical pu or the orienta bottom chord DAD CASE(S)	roof live loads have 7-10; Vult=120mph ; TCDL=6.0psf; BC fit; eave=6ft; Cat. II; ectional) and C-C E r (1) 3-8-0 to 18-2-1 terior (1) 24-10-2 to 0-5, Interior (1) 35-0 and right exposed t;C-C for members shown; Lumber DC uate drainage to pr as been designed fin chord in all areas y 2-00-00 wide will y other members, v annical connection capable of withstan o uplift at joint 21 and chin representation of tion of the purlin all Standard	been (3-sect DL=6.1 Exp B xterior 5, Exterior 5, Exter	considered for ond gust) 0psf; h=30ft; Enclosed; (2) -1-0-0 to rrior (2) 18-2 1, Exterior (2) 1, Exterior (2) 7-8-0 zone; rertical left and cess & MWFR 0 plate grip water ponding e load of 20.0 a rectangle veen the botto DL = 10.0psf. 37 lb uplift at b uplift at join t depict the si top and/or	15 S psf m t t				WH CA	ROLIN
BOT CHORD 2-21=-504/117, 19-21=-504/117, 17-19=0/1064, 16-17=0/1483, 14-16=-95/1915, 12-14=-214/2337 WEBS 3-21=-2103/322, 3-19=-114/1663, 5-19=-771/126, 5-17=0/461, 6-17=-45/481, 8-16=-65/634, 9-16=-675/207, 9-14=-28/557, 11-14=-341/170, 7-17=-596/99, 7-16=-51/257 NOTES 1) 2x4 SP No.1 bearing block 12" long at jt. 21 attached to front face with 2 rows of 10d (0.131"x3") nails spaced 3" o.c. 8 Total fasteners. Bearing is assumed to be SPF No.2.											. ann that		SEA 0449: Sea Official Sea Sea Sea Sea Sea Sea Sea Sea Sea Sea	25 SEVIENTING V 8.2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Rosemont V2-Roof	
P-7862-1	T1C	Piggyback Base	10	1	Job Reference (optional)	146894770

Run: 8,43 S Jun 2 2021 Print: 8,430 S Jun 2 2021 MiTek Industries, Inc. Wed Jul 07 11:18:58 ID:BEWwwamkT6CJWnSzxMAOTLz8NLz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale =	1:87.1
---------	--------

Plate Offsets (X, Y): [2:0-2-12,0-0-7], [4:0-2-12,0-3-0], [5:0-3-0,0-2-4], [7:0-3-0,0-2-4], [8:0-5-8,0-3-0]	
---	--

				_											
Loading TCLL (roof) TCDL BCLL BCDL		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201!	5/TPI2014	CSI TC BC WB Matrix-MS	0.79 0.80 0.54	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.11 -0.24 0.06	(loc) 13-15 13-15 13	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 332 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP N 2x6 SP N 2x4 SP N Right 2x4 Structura 2-2-0 oc Rigid ceil bracing. 1 Row at (Ib/size)	Io.1 Io.2 *Excep Io.3 SP No.3 I wood she purlins, exc purlins (6-0 ing directly midpt 2=1263/0	t* 18-16:2x10 SP No - 2-0-0 athing directly applied expt -0 max.): 5-7. applied or 7-5-2 oc 6-19, 7-15, 6-15, 9-1 3-19 -3-8, 11=1251/0-3-8,	2) .2 d or 5, 3) 4)	Wind: ASCE Vasd=95mph B=20ft; L=46 MWFRS (dir 3-6-13, Interi 18-2-15 to 24 (2) 28-5-1 to zone; cantile and right exp MWFRS for grip DOL=1.(Provide adec * This truss h on the bottor	7-10; Vult=120mph ;; TCDL=6.0psf; BC ift; eave=6ft; Cat. II; ectional) and C-C E or (1) 3-6-13 to 18- 4-8-7, Interior (1) 24 34-10-9, Interior	(3-sec CDL=6.0 Exp B xterior 2-15, E -8-7 to) 34-10 posed pos posed pos pos pos pos pos pos pos pos pos pos	ond gust) psf; h=30ft; Enclosed; (2) -1-0-0 to xterior (2) 28-5-1, Exter 9 to 47-8-0 end vertical d forces & DOL=1.60 pla vater ponding e load of 20.0 a rectangle	rior left ate g. Dpsf						
	Max Horiz Max Uplift Max Grav	17=1319/ 2=-205 (L 2=-200 (L 17=-126 (2=1263 (L 17=1457)	C 9) C 11), 11=-230 (LC 1 LC 11) LC 1), 11=1265 (LC 2 (LC 19)	5) 11), 20), 6)	3-06-00 tall to chord and an Provide meci bearing plate joint 2, 230 lt 17. Graphical pu	by 2-00-00 wide will yo other members, whanical connection a capable of withsta o uplift at joint 11 ar rlin representation of	fit betw with BC (by oth nding 2 nd 126 does no	veen the botto DL = 10.0psf ers) of truss t 00 lb uplift at b uplift at joir ot depict the s	om f. to t nt size						
FORCES	(lb) - Max Tension	kimum Com	pression/Maximum	,	or the orientation of the purlin along the top and/or bottom chord.								111.		
TOP CHORD	1-2=0/30 5-6=-812 9-11=-16	, 2-3=-1946 /305, 6-7=- 43/265, 11-	3/304, 3-5=-1095/288 712/294, 7-9=-972/2 -12=0/60	, LC 73,	LOAD CASE(S) Standard							- mi	H CA	ROLINE	\$
BOT CHORD	2-21=-11 17-19=0/3 11-13=-7	1/1734, 19- 862, 15-17= 1/1333	-21=-111/1734, =0/886, 13-15=-71/13	333,							2	Č.		So Ma	N
WEBS	5-19=0/1 6-15=-42 3-21=0/4	65, 6-19=-2 9/70, 9-13= 58, 3-19=-1	241/104, 7-15=-5/99, =0/360, 9-15=-820/20 028/239	4,									SEA 0449:	25	ALL IN
NOTES 1) Unbalance this design	ed roof live n.	loads have	been considered for									un o		SEVIE 98,2021	in and the second se

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Rosemont V2-Roof		
P-7862-1	T1CGE	Piggyback Base Supported Gable	1	1	Job Reference (optional)	146894771	

Run: 8.43 S Jun 2 2021 Print: 8.430 S Jun 2 2021 MiTek Industries, Inc. Wed Jul 07 11:18:58 ID:7cehKGo_?kS1I5cM2nCsYmz8NLx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:85.1	
Plate Offsets (X, Y):	[12:0-3-0,0-1-12], [18:0-3-0,0-1-12]

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0 0,0	_]; [:::::::]												
Loading TCLL (roof) TCDL BCLL BCDL		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	ł	CSI TC BC WB Matrix-MS	0.25 0.05 0.14	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loo 3	c) l/defl - n/a - n/a 0 n/a	L/d 999 999 n/a	PLATES MT20 Weight: 367 lt	GRIP 244/190	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS	IMBER PCHORD 2x4 SP No.1 DT CHORD 2x4 SP No.1 EBS 2x4 SP No.3 THERS 2x4 SP No.3 CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 12-18. DT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. EBS 1 Row at midpt 15-42, 14-43, 13-44, 11-45, 10-46, 16-641, 17-40, 19-39, 20-37					ax Grav 2=192 (31=123 33=157 35=160 37=161 40=165 42=160 44=165 46=160 51=169 53=256 b) - Maximum Co	30=268 (LC 32=178 (LC 34=161 (LC 36=160 (LC 39=166 (LC 33=161 (LC 41=162 (LC 43=161 (LC 48=160 (LC 50=158 (LC 50=158 (LC 52=125 (LC 54=192 (LC on/Maximum	1), 2 1), 2 24), 2 24), 2 23), 24), 19), 2 1), 2 3), 2 4), 2 3), 2 4), 2 3), 2 4), 2 3), 2 3	WEB NOT 1) L 1) L 2) V	E S Jnbalanceo his design. Vind: ASC	15-42=-120/41, 14-43=-121/58, 13-44=-125/0, 11-45=-132/0, 10-46=-123/84, 9-48=-120/65, 8-49=-120/67, 7-50=-119/66, 6-51=-124/68, 5-52=-101/60, 3-53=-174/87, 16-41=-122/58, 17-40=-125/0, 19-39=-126/0, 20-37=-123/84, 21-36=-120/65, 22-35=-120/67, 23-34=-121/67, 24-33=-117/66, 25-32=-135/69, 27-31=-153/74 ed roof live loads have been considered for 1. CE 7-10; Vult=120mph (3-second gust)			:3/84,)/66, I/87, 26/0,	
REACTIONS	$\begin{array}{c} 11.45, 10.46, 16.41, \\ 17-40, 19.39, 20.37 \\ \hline \\ \mbox{S} (lb/size) 2=174/45.8-0, 30=268/45.8-0, \\ 31=95/45.8-0, 32=178/45.8-0, \\ 33=156/45.8-0, 32=178/45.8-0, \\ 33=156/45.8-0, 34=161/45.8-0, \\ 33=156/45.8-0, 34=161/45.8-0, \\ 40=165/45.8-0, 41=158/45.8-0, \\ 40=165/45.8-0, 41=158/45.8-0, \\ 40=165/45.8-0, 41=158/45.8-0, \\ 42=160/45.8-0, 43=158/45.8-0, \\ 42=160/45.8-0, 50=158/45.8-0, \\ 40=169/45.8-0, 50=158/45.8-0, \\ 40=169/45.8-0, 50=158/45.8-0, \\ 40=160/45.8-0, 50=158/45.8-0, \\ 53=254/45.8-0, 54=174/45.8-0, \\ 53=254/45.8-0, 54=174/45.8-0, \\ 53=254/45.8-0, 54=174/45.8-0, \\ 53=254/45.8-0, 54=174/45.8-0, \\ 53=254/45.8-0, 54=174/45.8-0, \\ 53=254/45.8-0, 54=174/45.8-0, \\ 33=-43 (LC 11), 32=-41 (LC 11), \\ 31=-49 (LC 11), 32=-41 (LC 11), \\ 35=-43 (LC 11), 43=-34 (LC 11), \\ 42=-17 (LC 11), 43=-34 (LC 11), \\ 49=-43 (LC 11), 50=-42 (LC 11), \\ 51=-44 (LC 11), 52=-36 (LC 11), \\ 51=-44 (LC 11), 52=-36 (LC 11), \\ 53=-61 (LC 11), 54=-12 (LC 7) \\ \end{array}$				T 1 5 8 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 5 5 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3	rension -2=0/30, 2-3=-16i -6=-140/140, 6-7: -9=-120/153, 9-11 0-11=-196/251, 1 2-13=-184/244, 1 4-15=-184/244, 1 6-17=-184/244, 1 6-17=-184/244, 1 0-21=-154/198, 2 2-23=-85/107, 23: 5-27=-51/58, 272 -53=-117/168, 52 1-52=-117/168, 52 1-52=-117/168, 4 2-43=-117/168, 3 7-39=-117/168, 3 3-34=-117/168, 3 1-32=-117/168, 3	5/176, 3- =-129/12 0=-154/1 1-12=-11 3-14=-11 5-16=-11 7-18=-11 9-20=-11 1-22=-12 1-24=-50 28=-87/1 0-51=-1 8-49=-1 5-46=-1 3-44=-1 1-42=-1 9-40=-1 6-37=-1 4-35=-1 0-31=-1	5=-154/146, 16, 7-8=-117, 98, 93/244, 84/244, 84/244, 96/251, 20/153, 162, 24-25=-: 00, 28-29=0 7/168, 17/168	, 30/45, 1/65,	L E M 3 t 2 c c r r fr E	/asd=95m =20ft; L=∠ /WFRS (d -4-0, Exte 2 22-9-11, 8-5-1 to 3: antilever la ight expos or reaction 0OL=1.60	bh; TCI 66t; ea irrectior 2-11-14 ft and ed;C-C s show	DL=6.0psf; BCE ve=2ft; Cat. II; E hal) and C-C Co 3-4-0 to 18-2-1: or (2) 22-9-11 to 4, Exterior (2) 32 right exposed ; 6 for members a m; Lumber DOL SEC 0444	L=6.0psf; h=30ft; ixp B; Enclosed; mer (3) -1-0-0 to 5, Corner (3) 18-2- 28-5-1, Corner (3) 18-2- 28-5-1, Corner (3) 2-11-14 to 47-8-0 z end vertical left an nd forces & MWFR =1.60 plate grip	15) zone; id S

mm July 8,2021

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Rosemont V2-Roof		
P-7862-1	T1CGE	Piggyback Base Supported Gable	1	1	Job Reference (optional)	146894771	

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 12 lb uplift at joint 2, 17 lb uplift at joint 42, 34 lb uplift at joint 43, 60 lb uplift at joint 46, 41 lb uplift at joint 43, 43 lb uplift at joint 49, 42 lb uplift at joint 50, 44 lb uplift at joint 51, 36 lb uplift at joint 52, 61 lb uplift at joint 53, 34 lb uplift at joint 41, 60 lb uplift at joint 37, 41 lb uplift at joint 36, 43 lb uplift at joint 35, 43 lb uplift at joint 34, 43 lb uplift at joint 33, 41 lb uplift at joint 32, 49 lb uplift at joint 31, 41 lb uplift at joint 30 and 12 lb uplift at joint 2.
- 10) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 2, 54.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Run: 8.43 S Jun 2 2021 Print: 8.430 S Jun 2 2021 MiTek Industries, Inc. Wed Jul 07 11:18:58 ID:7cehKGo_?kS115cM2nCsYmz8NLx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Rosemont V2-Roof	
P-7862-1	T1GE	Piggyback Base Supported Gable	1	1	Job Reference (optional)	146894772

Run: 8.43 S Jun 2 2021 Print: 8.430 S Jun 2 2021 MiTek Industries, Inc. Wed Jul 07 11:18:59 ID:bpC3Ycpcm1auNFBYcUk55_z8NLw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:83.8	
----------------	--

Plate Offsets (X, Y):	[12:0-3-0.0-1-12], [18:0-3-0.0-1-12]

	λ, i). [i2.	0-0-0,0-1-12	2], [10.0-3-0,0-1-12]												
Loading TCLL (roof) TCDL BCLL BCDL		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	С: Т(В(W М	SI C C B atrix-MS	0.07 0.06 0.14	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 28	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 368 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP N 2x4 SP N 2x4 SP N Structura 6-0-0 oc 2-0-0 oc Rigid ceil bracing. 1 Row at (lb/size)	o.1 o.1 o.3 I wood shea purlins, exc purlins (6-0 ing directly midpt 2=194/46- 30=253/46 32=169/46 33=169/46 36=161/46 43=161/46 43=161/46 43=161/46 43=161/46 45=161/46 45=253/46 50=169/46 52=253/46 50=169/46 52=253/46 50=169/46 52=253/46 50=169/46 52=253/46 50=169/46 52=253/46 50=169/46 52=253/46 50=169/46 52=253/46 50=169/46 52=253/46 50=169/46 52=253/46 50=169/46 52=253/46 50=169/46 52=253/46 50=169/46 52=253/46 50=169/46 52=253/46 50=169/46 52=253/46 50=169/46 52=253/46 50=169/46 52=253/46 50=169/46 52=253/46 52=252/46 52=25	athing directly applied ept -0 max.): 12-18. applied or 10-0-0 oc 15-41, 14-42, 13-43, 11-44, 10-45, 16-40, 17-39, 19-38, 20-36 -8-0, 38=158/46-8-0, 5-8-0, 33=158/46-8-0, 5-8-0, 35=160/46-8-0, 5-8-0, 40=161/46-8-0, 5-8-0, 40=161/46-8-0, 5-8-0, 42=161/46-8-0, 5-8-0, 44=153/46-8-0, 5-8-0, 44=158/46-8-0, 5-8-0, 51=125/46-8-0, 5-8-0, 53=194/46-8-0, 5-8-0, 53=194/46-8-0, 5-8-0, 53=194/46-8-0, 5-8-0, 53=194/46-8-0, 5-8-0, 53=202 (LC 10) C 11), 31=-36 (LC 11 C 11), 42=-33 (LC 11 C 11), 47=-41 (LC 11 C 11), 47=-41 (LC 11 C 11), 47=-41 (LC 11 C 11), 47=-41 (LC 11 C 11), 51=-36 (LC 11 C 11), 51=-36 (LC 11 C 11)	FORCES TOP CHORD BOT CHORD	(lb) Ten 1-2- 5-6= 8-9= 10-1 12-1 14-1 16-1 18-1 22-2 25-52 50-5 48-4 45-4 43-4 43-4 34-3 34-3 34-3 34-3 30-3	Grav 2=199 (30=254 32=169 34=160 36=162 39=155 41=160 43=155 45=161 48=160 50=169 52=255 56=194 - Maximum Cc sion =0/30, 2-3=-15 130/116, 6-7 105/121, 9-1 13=-171/217, 1 5=-171/217, 1 7=-171/217, 1 7=-171/217, 1 7=-171/217, 1 7=-116/172, 4 47=-116/172, 4 47=-116/172, 4 47=-116/172, 4 42=-116/172, 3 35=-116/172, 3 3	LC 20), 2 (LC 20), (LC 24), (LC 24), (LC 1), 3 (LC 2), (LC 2), (LC 2), (LC 2), (LC 1), 4 (LC 23), (LC 1), 4 (LC	28=194 (LC 1) 31=125 (LC 1) 33=158 (LC 2) 33=158 (LC 2) 33=154 (LC 2) 40=163 (LC 2) 40=163 (LC 2) 41=160 (LC 2) 42=163 (LC 2) 42=163 (LC 2) 42=163 (LC 2) 43=158 (LC 1) 51=125 (LC 2) 51=125), 1), 1), 4), 224), 23), 4), 19), 3), 1), 20), 00,	WEBS NOTES 1) Uni this 2) Wir Va: 3-8 to 2 28- car righ for DC	balancec design. nd: ASCI 20ft; L=4 /FRS (di -0, Exter 22-10-15 5-1 to 33 tillever let texpose L=1.60	15-41: 13-43: 9-47= 6-50= 16-40: 22-34: 24-32: 27-30: 1 roof li 5 7-10; h; TCI 7ft; ea 5 c 1 roof li 5 7-10; h; TCI 7ft; ea 6 c 1 roof li 5 c 7 c 1 roof li 6 c 7 c 1 c 7	-120/42, 14-42 -115/0, 11-44= -120/65, 8-48=-1 -124/68, 5-51=-1 -122/82, 21-35 -122/82, 21-35 -122/82, 21-35 -122/82, 21-35 -174/87 ve loads have bu Vult=120mph (3 DL=6.0psf; BCDD ve=2ft; Cat. II; Ei al) and C-C Cor 3-8-0 to 18-2-15 ior (2) 22-10-15 Exterior (2) 33-4- for members an n; Lumber DOL= VH CA SEA 0449 VGIN	-123/57, 119/0, 10-45= 20/67, 7-49=- 01/60, 3-52=- -115/0, 19-38 -119/66, -101/60, 2en considere -second gust) _=6.0psf; h=3(gv B; Enclosec ner (3) 11-0-0 , Corner (3) 11 to 28-5-1, Cor 0 to 47-8-0 zo and vertical lef of forces & MV 1.60 plate gri POULT	=-122/82, 119/66, 174/87, 3=-114/0, d for) Dft; d; to 8-2-15 ner (3) ne; it and WFRS p

July 8,2021

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Rosemont V2-Roof	
P-7862-1	T1GE	Piggyback Base Supported Gable	1	1	Job Reference (optional)	146894772

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 18 lb uplift at joint 41, 33 lb uplift at joint 42, 58 lb uplift at joint 45, 41 lb uplift at joint 47, 43 lb uplift at joint 48, 42 lb uplift at joint 49, 44 lb uplift at joint 50, 36 lb uplift at joint 51, 62 lb uplift at joint 52, 33 lb uplift at joint 40, 58 lb uplift at joint 36, 41 lb uplift at joint 35, 43 lb uplift at joint 34, 42 lb uplift at joint 33, 44 lb uplift at joint 32, 36 lb uplift at joint 31 and 62 lb uplift at joint 30.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Run: 8.43 S Jun 2 2021 Print: 8.430 S Jun 2 2021 MiTek Industries, Inc. Wed Jul 07 11:18:59 ID:bpC3Ycpcm1auNFBYcUk55_z8NLw-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 2

Job	Truss	Truss Type	Qty	Ply	Rosemont V2-Roof	
P-7862-1	V1	Valley	1	1	Job Reference (optional)	146894773

Run: 8.43 S Jun 2 2021 Print: 8.430 S Jun 2 2021 MiTek Industries, Inc. Wed Jul 07 11:19:00 ID:utbHSBhL7zJIAjQd0OYIhtz8NM4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:71.3

Plate Offsets (X, Y): [10:0-2-0,Edge]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2	014	CSI TC BC WB Matrix-MS	0.06 0.10 0.11	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(lo: 1	c) l/defl - n/a - n/a 9 n/a	L/d 999 999 n/a	PLATES MT20 Weight: 213 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.1 2x4 SP No.1 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. 1 Row at midpt (lb/size) 1=85/31-4 20=179/3 22=161/3 24=164/3 26=207/3 29=142/3 31=159/3 33=157/3 Max Horiz 1=215 (LC Max Uplift 1=-40 (LC 21=-73 (L	athing directly applied applied or 10-0-0 oc 9-28, 8-29, 11-26, 12 I-8, 19=85/31-4-8, 1-4-8, 21=157/31-4-8 1-4-8, 23=159/31-4-8 1-4-8, 22=142/31-4-8 1-4-8, 32=161/31-4-8 1-4-8, 32=161/31-4-8 1-4-8, 32=161/31-4-8 2-10) 9), 19=-10 (LC 10), C 11), 22=-54 (LC 11)	TOP CH d or BOT CH 2-25 , , , , , , , , , , , , , , , , , , ,	DRD 1- 5- 8- 11 13 15 18 0RD 1- 32 25 25 25 21 19 9- 6- 2- 12 14 14	2=-334/230, 2-4= 6=-175/101, 6-7= 9=-122/40, 9-10= 1-12=-112/40, 12- 3-14=-134/53, 14- 5-16=-237/149, 16 3-19=-334/230 3-31=-197/298, 33- 2-33=-197/298, 23- 2-33=-197/298, 24- 3-24=-197/298, 24- 3-24=-123/83, 15- 3-21=-127/90, 18-	304/20 147/57 123/76 -13=-122 -15=-177 6-18=-30 34=-197 1-32=-19 9-30=-19 6-28=-19 4-25=-19 2-23=-19 9-21=-19 9=-134/18 9=-134/18 9=-134/18 9=-134/18 9=-134/18 9=-134/18 9=-134/18 9=-22=-12/18 -22=-12/2 -20=-115	1, 4-5=-237/' , 7-8=-135/3{ , 10-11=-123 2/21, 5/101, 04/201, 7/298, 93/298, 93/28, 94/28, 94/2	149, 3, /76, /76,	5) (6) (7) * 8) F t t t t t t t t	Gable requ Gable stud This truss on the bott 3-06-00 tal chord and 3 Provide me bearing pla 1, 87 lb upl uplift at joir 33, 87 lb up uplift at joir 21 and 10 l D CASE(S	ires co s space has be om cho l by 2-0 any oth echanic te capa ift at joi tt 31, 5- bolift at joi tt 23, 5- b uplift tt 23, 5- b uplift	ntinuous bottom (ad at 2-0-0 oc. een designed for rd in all areas wh 0-00 wide will fit er members, with al connection (by able of withstandi int 29, 52 lb uplift 4 lb uplift at joint 1 oint 25, 52 lb uplif 4 lb uplift at joint 1 at joint 19. ndard	hord bearin a live load of ere a rectan between the BCDL = 10 others) of tr vg 40 lb uplii at joint 30, 6 12, 73 lb upli t at joint 24, 22, 73 lb upl	g. f 20.0psf gle bottom .0psf. uss to ft at joint 30 lb ift at joint 60 lb ift at joint
FORCES	23=-60 (L 25=-87 (L 30=-52 (L 32=-54 (L 20=179 (L 22=163 (L 26=282 (L 29=144 (L 31=160 (L 33=161 (L (lb) - Maximum Com Tension	C 11), 24=52 (LC 11 C 11), 29=87 (LC 11 C 11), 31=60 (LC 11 C 11), 31=73 (LC 11 C 11), 19=143 (LC 11 C 1), 21=164 (LC 17 C 17), 23=160 (LC 1 C 17), 25=144 (LC 2 C 17), 28=295 (LC 1 C 20), 30=174 (LC 1 C 16), 32=164 (LC 1 C 16), 34=179 (LC 1 pression/Maximum), NOTES), 1) Unb. (), 1) Unb. (), 2) Wind), 8=20 (), 8=20 (), 18-1 (), 18-1	alanced rc design. I: ASCE 7 I=95mph; Ift; L=31ft rRS (direc,). Interior O-4, Interior or 4, Interior or 4, Interior or 5, C-C ft ions shov =1.60 s designe For stud Standard nsult qua ates are 2	cof live loads have 7-10; Vult=120mp TCDL=6.0psf; Bu tctional) and C-C f (1) 3-2-0 to 15-8- or (1) 18-10-4 to : exposed ; end veri- for members and wn; Lumber DOL= and for wind loads i ls exposed to win Industry Gable Ei lified building dexide Set 2x4 MT20 unless	e been of h (3-sec CDL=6.0 l; Exp B; Exterior 9, Exterior 31-4-13 tical left forces & =1.60 pla n the pla d (norm nd Detai signer as otherwis	considered fo cond gust) Dpsf; h=30ft; Enclosed; (2) 0-0-5 to ior (2) 15-8-9 zone; cantile and right & MWFRS for ate grip ane of the tru al to the face Is as applical \$ per ANSI/TF	r ver ss), ble, Pl 1.			and an and an and an	SEA 0449	ROUN NUL 25 SEVIH	

or consult qualified building designer as per ANSI/TPI 1. 4) All plates are 2x4 MT20 unless otherwise indicated.

July 8,2021

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Rosemont V2-Roof	
P-7862-1	V2	Valley	1	1	Job Reference (optional)	146894774

TCDI

BCLL

BCDL

WEBS

WEBS

NOTES

Run: 8.43 S Jun 2 2021 Print: 8.430 S Jun 2 2021 MiTek Industries, Inc. Wed Jul 07 11:19:00 ID:utbHSBhL7zJIAjQd0OYIhtz8NM4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

IIIIIIIIIIIIII

818 Soundside Road Edenton, NC 27932

a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Rosemont V2-Roof	
P-7862-1	V3	Valley	1	1	Job Reference (optional)	146894775

Loading

TCDI

BCLL

BCDL

LUMBER

OTHERS

BRACING

WEBS

FORCES

WEBS

NOTES

1)

Run: 8.43 S. Jun: 2.2021 Print: 8.430 S. Jun: 2.2021 MiTek Industries. Inc. Wed. Jul 07 11:19:01 ID:utbHSBhL7zJIAjQd0OYIhtz8NM4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

July 8,2021

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Rosemont V2-Roof	
P-7862-1	V4	Valley	1	1	Job Reference (optional)	46894776

Loading

TCDI

BCLL

BCDL

LUMBER

OTHERS

BRACING

FORCES

WEBS

NOTES

TCLL (roof)

Run: 8.43 S Jun 2 2021 Print: 8.430 S Jun 2 2021 MiTek Industries, Inc. Wed Jul 07 11:19:01 ID:M49ffXizuGR9os?pa53_D4z8NM3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

July 8,2021

818 Soundside Road Edenton, NC 27932

🔥 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component
Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Rosemont V2-Roof	
P-7862-1	V5	Valley	1	1	Job Reference (optional)	146894777

Run: 8,43 S Jun 2 2021 Print: 8,430 S Jun 2 2021 MiTek Industries, Inc. Wed Jul 07 11:19:01 ID:M49ffXizuGR9os?pa53_D4z8NM3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

18-11-3

Scale = 1:50.9	1											I	
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.26 0.19 0.35	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 82 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.1 2x4 SP No.1 2x4 SP No.3 Structural wood she 10-0-0 oc purlins. Rigid ceiling directly bracing. (lb/size) 1=78/18- 6=460/18 9=460/18 Max Horiz 1=-127 (L Max Uplift 6=-159 (L Max Grav 1=-101 (L 6=520 (L 9=522 (L)	eathing directly applie / applied or 6-0-0 oc 11-3, 5=78/18-11-3, -11-3, 7=438/18-11- -11-3 -C 9) -C 11), 9=-159 (LC 1 C 20), 5=101 (LC 21 C 17), 7=536 (LC 16 C 16)	3) ed or 5 6) 3, 7) 1) L ⁽),	 Truss design only. For stusee Standar or consult qu Gable requir Gable studs * This truss l on the bottor 3-06-00 tall l chord and ai Provide mee bearing plate joint 9 and 1 OAD CASE(S) 	ned for wind loa uds exposed to d Industry Gablualified building res continuous b spaced at 4-0-6 has been design m chord in all ar by 2-00-00 wide my other member chanical connec capable of witt 59 Ib uplift at joi Standard	ds in the pli wind (norm e End Deta designer as bottom chor) oc. ned for a liv reas where e will fit betw ers, with BC tion (by oth hstanding 1 int 6.	ane of the tru al to the face ils as applica s per ANSI/TI d bearing. e load of 20.0 a rectangle veen the botti DL = 10.0psi ers) of truss to 59 lb uplift at	iss 2), bble, PI 1. Opsf om f. to t					
FORCES	(lb) - Maximum Con Tension	npression/Maximum											
TOP CHORD	1-2=-102/297, 2-3= 4-5=-102/281	0/235, 3-4=0/235,											
BOT CHORD	1-9=-218/139, 7-9=- 5-6=-218/139	-218/139, 6-7=-218/1	139,										
WEBS	3-7=-398/0, 2-9=-32	24/197, 4-6=-323/197	7										
NOTES 1) Unbalanc this desig 2) Wind: AS ¹	ed roof live loads have n. CE 7-10; Vult=120mph	been considered for	r								il s	OR FESS	ROLINIES-

Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=20ft; L=20ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) 0-0-5 to 3-0-5, Interior (1) 3-0-5 to 9-5-15, Exterior (2) 9-5-15 to 12-5-15, Interior (1) 12-5-15 to 18-11-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Rosemont V2-Roof	
P-7862-1	V6	Valley	1	1	Job Reference (optional)	146894778

Run: 8.43 S Jun 2 2021 Print: 8.430 S Jun 2 2021 MiTek Industries, Inc. Wed Jul 07 11:19:01 ID:M49ffXizuGR9os?pa53_D4z8NM3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:43.1

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.17 0.11 0.16	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 67 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.1 2x4 SP No.1 2x4 SP No.3 Structural wood sh 6-0-0 oc purlins. Rigid ceiling direct bracing. (lb/size) 1=98/15 6=369/1 8=369/1 Max Horiz 1=-106 (Max Uplift 6=-128 (Max Grav 1=107 (I 6=391 (I 8=393 (I 8=393 (I	eathing directly applie y applied or 6-0-0 oc 9-13, 5=98/15-9-13, 5-9-13, 7=332/15-9-13 5-9-13 LC 9) LC 11), 8=-128 (LC 1 .C 17), 5=101 (LC 21) .C 17), 7=420 (LC 16) .C 16)	3) 4) 5) 6) 3, 7) 1) .,	Truss design only. For stu see Standard or consult qu Gable requirr Gable studs * This truss h on the botton 3-06-00 tall b chord and an Provide med bearing plate joint 8 and 12 DAD CASE(S)	ed for wind loads ds exposed to wind a Industry Gable E alified building de es continuous bot nas been designed n chord in all area by 2-00-00 wide w y other members hanical connectio capable of withst 28 lb uplift at joint Standard	in the pl nd (norm End Deta signer a: tom chor c. d for a liv s where ill fit betw , with BC n (by oth anding 1 6.	ane of the trus al to the face) ils as applicat s per ANSI/TF d bearing. e load of 20.0 a rectangle veen the botto DL = 10.0psf. ers) of truss to 28 lb uplift at	ss , ble, l 1. psf m					
FORCES	(lb) - Maximum Co Tension	mpression/Maximum											
TOP CHORD	1-2=-131/153, 2-3= 4-5=-114/124	-57/112, 3-4=-47/106	ò,										
BOT CHORD	1-8=-99/118, 7-8=- 5-6=-99/87	99/85, 6-7=-99/85,											
WEBS	3-7=-264/0, 2-8=-2	69/165, 4-6=-268/165	5									UNU CA	Dilli
NOTES												'aTH UA	10/11
 Unbalance this design 	ed roof live loads hav n.	e been considered for	r							5	X	0	Ol Vaz

 Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=20ft; L=20ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) 0-0-5 to 3-0-5, Interior (1) 3-0-5 to 7-11-4, Exterior (2) 7-11-4 to 10-11-4, Interior (1) 10-11-4 to 15-10-3 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 SEAL 044925 MGINEER M. SEVILITI

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Rosemont V2-Roof	
P-7862-1	V7	Valley	1	1	Job Reference (optional)	146894779

6-4-4

6-4-4

Peak Truss Builders, LLC (Closed), New Hill, NC - 27562,

Run: 8.43 S Jun 2 2021 Print: 8.430 S Jun 2 2021 MiTek Industries, Inc. Wed Jul 07 11:19:02 ID:M49ffXizuGR9os?pa53_D4z8NM3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

12-3-14

5-11-10

Page: 1

12-8-8 0-4-10

12-8-8

Scal	<u>e</u> -	- 1	.38

Loading TCLL (roof) TCDL BCLL BCDL LUMBER		(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	15/TPI2014 3) Truss desigr	CSI TC BC WB Matrix-MS	0.14 0.06 0.07	DEFL Vert(LL) Vert(TL) Horiz(TL) ane of the tru	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 51 lb	GRIP 244/190 FT = 20%
TOP CHORE BOT CHORE OTHERS BRACING TOP CHORE BOT CHORE	 2x4 SP N 2x4 SP N 2x4 SP N Structura 6-0-0 oc Rigid ceil bracing. 	lo.1 lo.1 lo.3 I wood she purlins. ing directly	athing directly appli applied or 10-0-0 o	ed or c	 only. For still see Standar or consult qu Gable requiri Gable studs * This truss lion the botton 3-06-00 tall li 	uds exposed to d Industry Gabl ualified building res continuous b spaced at 4-0-(has been design m chord in all ar by 2-00-00 wide	wind (normale End Detail designer as bottom chore 0 oc. ned for a live reas where e will fit betw	al to the face ls as applica s per ANSI/T d bearing. e load of 20.0 a rectangle /een the bott	e), Ible, PI 1. Opsf om					
REACTIONS	Max Horiz Max Uplift Max Grav	1=73/12-8 6=306/12 8=306/12 1=84 (LC 6=-105 (L 1=87 (LC (LC 21), 7 16)	8-8, 5=73/12-8-8, 8-8, 7=257/12-8-8, -8-8 10) C 11), 8=-105 (LC 1 17), 5=73 (LC 1), 6 =257 (LC 1), 8=312	11) =311 2 (LC	chord and an 7) Provide mec bearing plate joint 8 and 1 LOAD CASE(S)	ny other membe hanical connec e capable of wit 05 lb uplift at jo Standard	ers. xtion (by othe hstanding 1 int 6.	ers) of truss t 05 lb uplift a	to t					
FORCES	(lb) - Max Tension	kimum Com	pression/Maximum											
TOP CHORE	1-2=-111 4-5=-90/4	/74, 2-3=-1 15	21/90, 3-4=-119/90,	,										
BOT CHORE) 1-8=-21/8 5-6=-21/7	32, 7-8=-21 70	/51, 6-7=-21/51,											
WEBS	3-7=-173	/0, 2-8=-24	4/153, 4-6=-243/153	3									"TH CA	RO
 Unbaland this designation 	ced roof live	loads have	been considered fo	r								X	ORIESS	S. W

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=20ft; L=20ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) 0-0-5 to 3-0-5, Interior (1) 3-0-5 to 6-4-9, Exterior (2) 6-4-9 to 9-4-9, Interior (1) 9-4-9 to 12-8-13 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek Affiliate 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Rosemont V2-Roof	
P-7862-1	V8	Valley	1	1	Job Reference (optional)	146894780

4-9-9

4-9-9

Peak Truss Builders, LLC (Closed), New Hill, NC - 27562,

3-3-12

0-0-4

3-7-7

Run: 8,43 S Jun 2 2021 Print: 8,430 S Jun 2 2021 MiTek Industries, Inc. Wed Jul 07 11:19:02 ID:M49ffXizuGR9os?pa53_D4z8NM3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

9-2-9

4-5-0

2 10 11 9 12 9 T 4

4x5 =

2x4 II

9-7-3

2x4 🍫

Scale = 1:31.5

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.19 0.18 0.14	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 35 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	Instruction Instruction Immodel 10.0 Code Instruction Immodel Instruction Instruction Instruction Immodel 2x4 SP No.1 Instruction Instruction Immodel 2x4 SP No.1 Instruction Instruction Immodel 2x4 SP No.1 Instruction Instruction Immodel 2x4 SP No.3 Instruction Instruction Immodel Structural wood sheathing directly applied or 9-7-3 oc purlins. Instruction Immodel Rigid ceiling directly applied or 6-0-0 oc bracing. Instruction Immodel Immodel Immodel Immodel				spaced at 4-0- has been desig n chord in all a by 2-00-00 wide by other member hanical connect e capable of wit at joint 3 and	0 oc. ned for a live reas where e will fit betw ers. tion (by othe hstanding 2 127 lb uplift	e load of 20. a rectangle veen the bott ers) of truss 1 lb uplift at at joint 4.	Opsf com to joint				Trogin. do ib	
REACTIONS	bracing. (lb/size) 1=37/9-7- 4=693/9-7 Max Horiz 1=63 (LC Max Uplift 1=-21 (LC Max Grav 1=75 (LC Max Grav (LC 1)	-3, 3=37/9-7-3, 7-3 10) 2 21), 3=-21 (LC 20 .C 11) 20), 3=75 (LC 21),), 4=693	AD CASE(S)	Stanuaru								
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-2=-63/299, 2-3=-6 1-4=-217/105, 3-4=- 2-4525/145	1											

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; B=20ft; L=20ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) 0-0-5 to 3-0-5, Interior (1) 3-0-5 to 4-9-15, Exterior (2) 4-9-15 to 7-9-15, Interior (1) 7-9-15 to 9-7-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.

3

2x4 💊

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Rosemont V2-Roof	
P-7862-1	V9	Valley	1	1	Job Reference (optional)	146894781

Run: 8.43 S Jun 2 2021 Print: 8.430 S Jun 2 2021 MiTek Industries, Inc. Wed Jul 07 11:19:02 ID:qGj1stjbfaZ0P0a08paDmIz8NM2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

6-5-13

Scale = 1:26.8

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI20	CSI TC BC WB 14 Matrix-MP	0.09 0.10 0.06	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 23 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.1 2x4 SP No.1 2x4 SP No.3 Structural wood shee 6-5-13 oc purlins. Rigid ceiling directly bracing.	athing directly applie applied or 6-0-0 oc	6) * This on the 3-06-0 chord 7) Provic bearin 4. LOAD CA	truss has been designe bottom chord in all are 00 tall by 2-00-00 wide and any other member le mechanical connecti g plate capable of with SE(S) Standard	ed for a liv eas where will fit betw s. on (by oth standing 6	e load of 20.0 a rectangle veen the botto ers) of truss t 39 lb uplift at j	opsf om o oint						
REACTIONS	(lb/size) 1=50/6-5- 4=419/6-5 Max Horiz 1=42 (LC Max Uplift 4=-69 (LC Max Grav 1=70 (LC (LC 1)	13, 3=50/6-5-13, 5-13 10) : 11) 20), 3=70 (LC 21), 4	l=419										
FORCES TOP CHORD BOT CHORD WEBS NOTES	(lb) - Maximum Com Tension 1-2=-61/154, 2-3=-6 1-4=-126/70, 3-4=-1: 2-4=-283/76	pression/Maximum 1/154 26/70											
 Oribatance this design Wind: ASC Vasd=95n B=20ft; L= MWFRS (cantilever right expo for reactio DOL=1.6C Truss des 	Crool live loads have n. CE 7-10; Vult=120mph nph; TCDL=6.0psf; BC =20ft; eave=4ft; Cat. II; directional) and C-C E: left and right exposed sed;C-C for members a ns shown; Lumber DO) igned for wind loads in	(3-second gust) DL=6.0psf; h=30ft; Exp B; Enclosed; xterior (2) zone; ; end vertical left and and forces & MWFR L=1.60 plate grip the plane of the trus	d S SS							el el	SEA	NROLIN NL 25	in the summer

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Gable requires continuous bottom chord bearing.

5) Gable studs spaced at 4-0-0 oc.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Rosemont V2-Roof	
P-7862-1	V10	Valley	1	1	Job Reference (optional)	146894782

Run: 8,43 S Jun 2 2021 Print: 8,430 S Jun 2 2021 MiTek Industries, Inc. Wed Jul 07 11:19:03 ID:utbHSBhL7zJIAjQd0OYIhtz8NM4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2-11-14

1-3-10

Page: 1

1-8-4

1-8-4

2x4 🏑 2x4 💊

3-4-8

Scale = 1:23.2		

Plate Offsets (X, Y): [2:0-2-0,Edge]

Loa	ding	((psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCL	L (roof)	:	20.0	Plate Grip DOL	1.15	TC	0.06	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TC	DL		10.0	Lumber DOL	1.15	BC	0.05	Vert(TL)	n/a	-	n/a	999		
BCI	-L		0.0*	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCI	DL		10.0	Code	IRC2015/TPI2014	Matrix-MP							Weight: 10 lb	FT = 20%
LUN	IBER				7) Provide med	hanical connection	n (by oth	ers) of truss t	0					
TOP	CHORD	2x4 SP No.1			bearing plat	e capable of withst	tanding 1	7 lb uplift at j	oint					
BO	CHORD	2x4 SP No.1			1 and 17 lb	uplift at joint 3.								
BR/	ACING				LOAD CASE(S)	Standard								
TOF	P CHORD	Structural wo 3-4-8 oc purli	od shei	athing directly applie	d or									
BO	r CHORD	Rigid ceiling o bracing.	directly	applied or 10-0-0 oc										
RE/	ACTIONS	(lb/size) 1=	135/3-4	-8, 3=135/3-4-8										
		Max Horiz 1=	-20 (LC	9)										
		Max Uplift 1=-	-17 (LC	11), 3=-17 (LC 11)										
FO	RCES	(lb) - Maximu	m Com	pression/Maximum										
		Tension												
TOP	P CHORD	1-2=-185/29,	2-3=-1	85/29										
BO	CHORD	1-3=-14/142												
NO.	TES													
1)	Unbalance	ed roof live load	ls have	been considered for										
2)	Mind: ASC	∩. ⊂⊑ 7 10· \/ult_1	20mph	(2 second quist)										
2)	Vasd=95n	nph: TCDI = $6.0r$	nsf [.] BC	DI = 6 Opsf h = 30 ft										
	B=20ft: L=	=20ft: eave=4ft:	Cat. II:	Exp B: Enclosed:										
	MWFRS (directional) and	C-C E	kterior (2) zone;									mun	un.
	cantilever	left and right ex	posed	; end vertical left and									IN'TH CA	ROUL
	right expo	sed;C-C for me	mbers a	and forces & MWFRS	6							N.S	A	U.S.
	for reactio	ns shown; Luml	ber DO	L=1.60 plate grip							(0	O'.EESS	10: 1.0
2	DOL=1.60) I ana a al fa a coda al lu	a a da Sa	4	_							15		Zonal
3)	Truss des	igned for wind it	oads in	the plane of the trus	S						-			
	see Stand	lard Industry Ga	able End	(normal to the face),	le								SEA	1 1 2
	or consult	qualified buildir	na desia	ner as per ANSI/TP	1						=	:	SLA	- : :
4)	Gable reg	uires continuous	s bottor	n chord bearing.							=		0449	25 : =
5)	Gable stud	ds spaced at 4-0	0-0 oc.	0										1 - E -
6)	* This trus	s has been des	igned f	or a live load of 20.0p	osf									0103
	on the bot	tom chord in all	areas	where a rectangle								-0	NGIN	FERRICE
	3-06-00 ta	all by 2-00-00 wi	ide will i	fit between the botto	m							11	O	ALL IN
	chord and	I any other mem	nbers.										TITM	SE

- 5) Gable studs spaced at 4-0-0 oc.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

818 Soundside Road Edenton, NC 27932

munin July 8,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

