

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 22030099 DRB GROUP - 101 FaNC

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Sanford, NC)).

Pages or sheets covered by this seal: I50830498 thru I50830518

My license renewal date for the state of North Carolina is December 31, 2022.

North Carolina COA: C-0844

March 17,2022

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 101 FaNC	
22030099	A01	Common	4	1	Job Reference (optional)	150830498

Scale = 1:72.8

Loading

TCLL (roof)

Snow (Pf)

LUMBER

TOP CHORD BOT CHORD

-- 1-6-0

bracing.

Tension

DOL=1.60 plate grip DOL=1.60

10-12=-117/1961

3-8-6 oc purlins.

Max Horiz 2=-248 (LC 12)

Structural wood sheathing directly applied or

2=1437/0-3-8, 10=1437/0-3-8

Rigid ceiling directly applied or 10-0-0 oc

Max Uplift 2=-139 (LC 14), 10=-139 (LC 15)

Max Grav 2=1696 (LC 24), 10=1696 (LC 25)

(Ib) - Maximum Compression/Maximum

1-2=0/20, 2-4=-2393/227, 4-6=-2211/285,

2-15=-263/2147, 12-15=-18/1423,

6-15=-149/1040, 6-12=-149/1040,

4-15=-511/302, 8-12=-511/302

1) Unbalanced roof live loads have been considered for

Wind: ASCE 7-16; Vult=130mph (3-second gust)

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior

zone and C-C Exterior(2E) -0-8-1 to 2-9-14, Interior (1) 2-9-14 to 13-11-10. Exterior(2R) 13-11-10 to 20-11-6. Interior (1) 20-11-6 to 32-1-2, Exterior(2E) 32-1-2 to 35-7-1 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber

6-8=-2211/285, 8-10=-2394/227, 10-11=0/20

TCDL

BCLL

BCDL

WEBS

SLIDER

BRACING

TOP CHORD

BOT CHORD

FORCES

TOP CHORD

BOT CHORD

this design.

WEBS

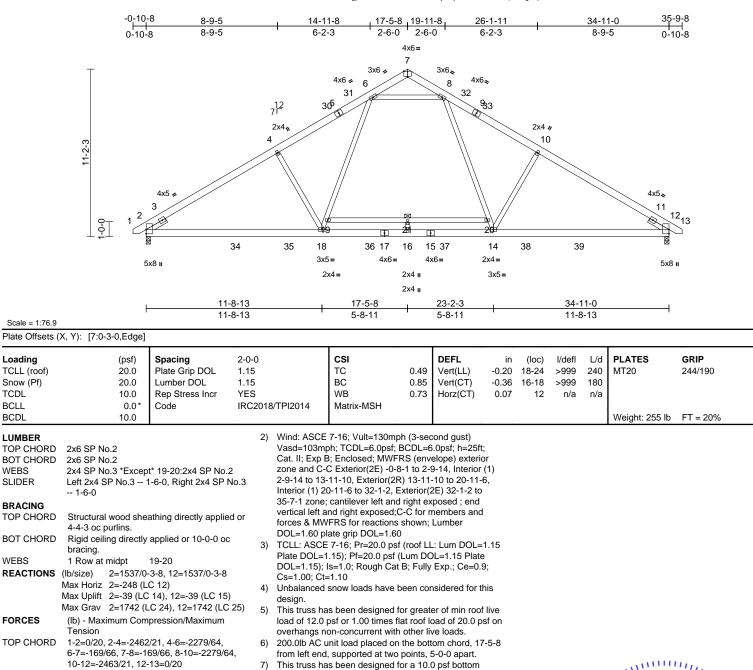
NOTES

2)

REACTIONS (lb/size)

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Wed Mar 16 21:50:36 Page: 1 ID:gjaDKQLY7lcou8lik6PeZ7yHzji-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -0-10-8 35-9-8 8-9-5 17-5-8 26-1-11 34-11-0 0-10-8 8-9-5 8-8-3 8-9-5 8-8-3 0-10-8 5x6: 6 4x8👟 4x8 🖌 25 26 24⁵ 727 712 2x4 2x4 4 4 8 11-2-3 4x5 🖌 4x5、 3 9 ¹⁰11 8 0-0-28 29 15 30 14 13 31 12 32 33 3x5= 4x6 =4x6= 3x5= 5x8 ı 5x8 ı 11-8-13 23-2-3 34-11-0 11-8-13 11-5-5 11-8-13 Plate Offsets (X, Y): [2:0-4-2,0-0-14], [10:0-4-2,0-0-14] 2-0-0 CSI DEFL in (loc) l/defl L/d PLATES GRIP (psf) Spacing 20.0 Plate Grip DOL 1.15 тс 0.73 Vert(LL) -0.20 12-15 >999 240 MT20 244/190 20.0 Lumber DOL 1.15 BC 0.76 Vert(CT) -0.33 12-15 >999 180 10.0 Rep Stress Incr WB Horz(CT) YES 0.39 0.06 10 n/a n/a 0.0 Code IRC2018/TPI2014 Matrix-MSH Weight: 238 lb 10.0 FT = 20% 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 2x6 SP No.2 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate 2x6 SP No.2 DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; 2x4 SP No.2 *Except* 4-15,8-12:2x4 SP No.3

- Cs=1.00: Ct=1.10 Left 2x4 SP No.3 -- 1-6-0, Right 2x4 SP No.3 4) Unbalanced snow loads have been considered for this desian.
 - 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 6)
 - This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7)
 - * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
 - 8) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at it(s) 2 and 10. This connection is for uplift only and does not consider lateral forces.
 - 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
 - LOAD CASE(S) Standard


818 Soundside Road Edenton, NC 27932

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 101 FaNC	
22030099	A02	Common	8	1	Job Reference (optional)	150830499

Run: 8 53 S. Dec. 6 2021 Print: 8 530 S.Dec. 6 2021 MiTek Industries. Inc. Wed Mar 16 21:50:38 ID:gjaDKQLY7lcou8lik6PeZ7yHzji-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

BOT CHORD 2-18=-165/2201, 16-18=0/1718 14-16=0/1718, 12-14=-19/2015 WEBS 18-19=-33/938, 6-19=-19/973, 8-20=-19/974, 14-20=-33/938, 4-18=-447/314, 10-14=-447/314, 19-21=-66/0, 20-21=-66/0, 16-21=0/35, 6-8=-1526/128

NOTES

Loading

TCLL (roof)

Snow (Pf)

LUMBER

TCDL

BCLL

BCDL

WEBS

WEBS

FORCES

SLIDER

BRACING

Unbalanced roof live loads have been considered for 1) this design.

3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 9) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at it(s) 2 and 12. This connection is for uplift

on the bottom chord in all areas where a rectangle

chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf

only and does not consider lateral forces. 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and

R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

818 Soundside Road Edenton, NC 27932

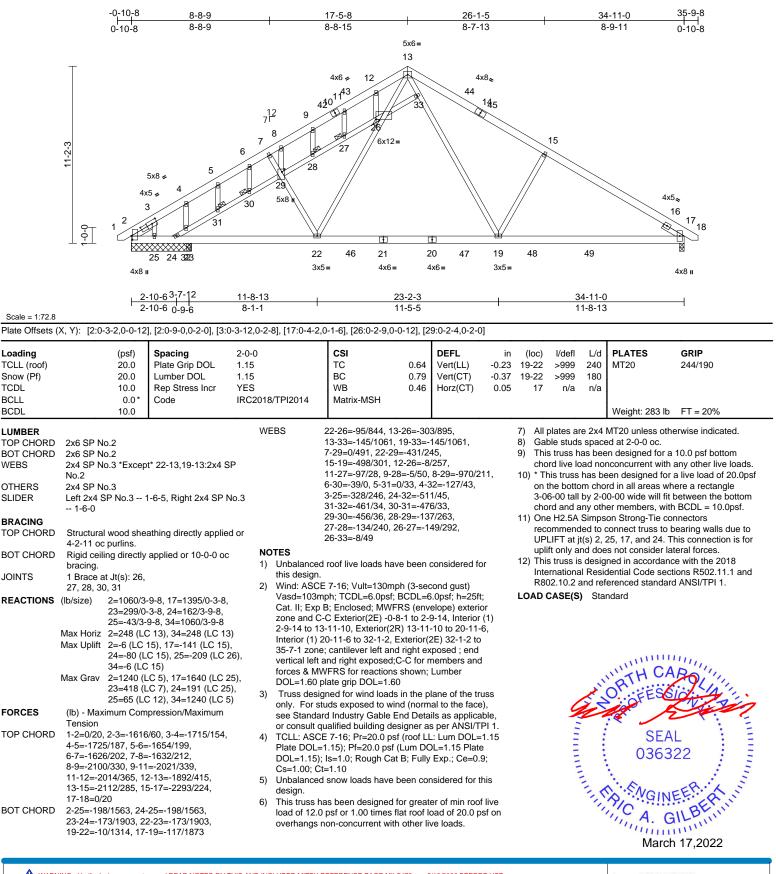
 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

8)

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 101 FaNC	
22030099	A03	Common	1	1	Job Reference (optional)	150830500

TCDL

BCLL

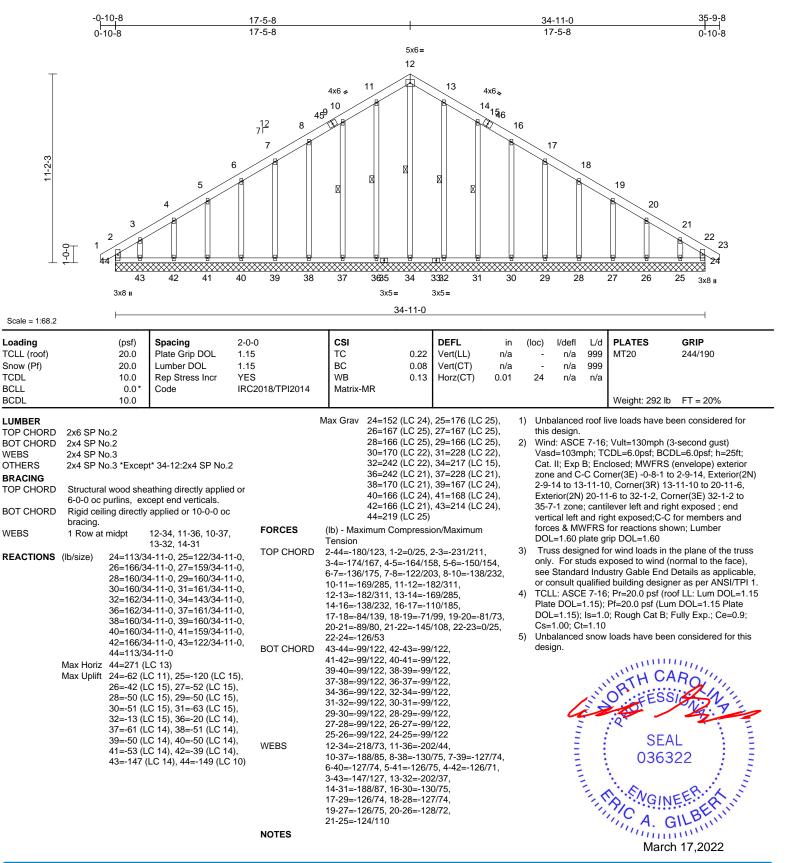

BCDL

WEBS

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Wed Mar 16 21:50:39 ID:inUdrcRV35kd_KkiB9UROuyHzfj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

818 Soundside Road Edenton, NC 27932



 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 101 FaNC	
22030099	A04	Common Supported Gable	1	1	Job Reference (optional)	150830501

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Wed Mar 16 21:50:40 ID:xn3SJVIpx40x6KkiicyXRNyHzfJ-RfC?PsB70Hq3NSqPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

818 Soundside Road Edenton, NC 27932

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway. Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 101 FaNC	
22030099	A04	Common Supported Gable	1	1	Job Reference (optional)	150830501

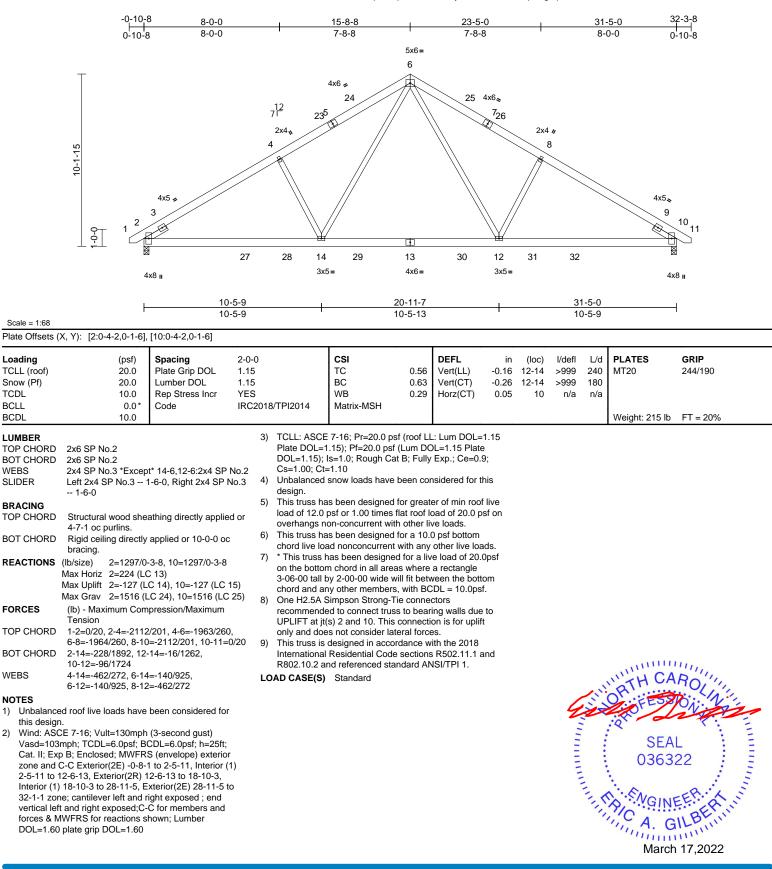
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- All plates are 2x4 MT20 unless otherwise indicated. 7)
- 8) Gable requires continuous bottom chord bearing.
- 9) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 13) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 44, 24, 36, 37, 38, 39, 40, 41, 42, 43, 32, 31, 30, 29, 28, 27, 26, and 25. This connection is for uplift only and does not consider lateral forces.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries. Inc. Wed Mar 16 21:50:40 ID:xn3SJVlpx40x6KkiicyXRNyHzfJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 101 FaNC	
22030099	B01	Common	2	1	Job Reference (optional)	150830502

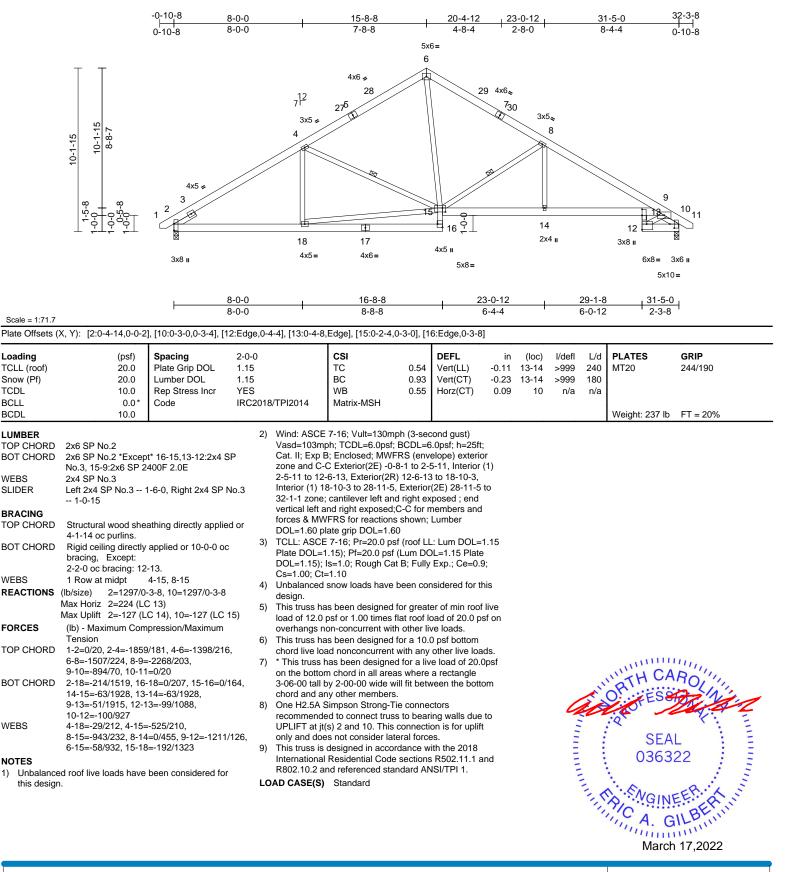

TCDL

BCLL

BCDL

2)

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Wed Mar 16 21:50:40 ID:n0XQrpeEWqLR_iOw19HuR_yHze9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

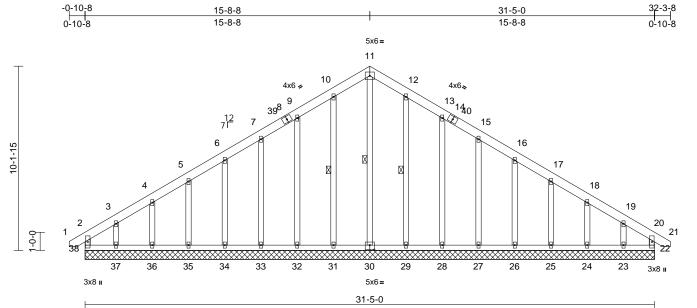


 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 101 FaNC	
22030099	B02	Roof Special	5	1	Job Reference (optional)	150830503

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Wed Mar 16 21:50:41 ID:_gzrqirmuR8ICWjj8g0KH9yHzbK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 101 FaNC	
22030099	B03	Common Supported Gable	1	1	Job Reference (optional)	150830504

Run: 8,53 S Dec 6 2021 Print: 8,530 S Dec 6 2021 MiTek Industries, Inc. Wed Mar 16 21:50:41 ID:eDo5c2px20DPopr5qTS5W0yHza4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:63.6

Plate Offsets (X, Y): [30:0-3-0,0-3-0]

		-		- <u> </u>			-			
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2018/TPI2014	TC 0.19 V BC 0.07 V	DEFL in Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.01	(loc) - - 22	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 251 lb	GRIP 244/190 FT = 20%
BOT CHORD 2x4 S WEBS 2x4 S OTHERS 2x4 S BRACING TOP CHORD Struc 6-0-C BOT CHORD Rigid braci WEBS 1 Ro REACTIONS (lb/size	 oc purlins, ex ceiling directly ng. w at midpt 22=118/3 26=155/3 28=156/3 30=136/3 32=156/3 34=155/3 36=159/3 38=118/3 oriz 38=-240 (L 24=-40 (L 24=-40 (L 28=-60 (L 33=-49 (L 35=-51 (L 		FORCES TOP CHORD BOT CHORD	Max Grav 22=144 (LC 24), 2: 24=160 (LC 25), 2: 28=221 (LC 25), 2: 28=221 (LC 22), 2: 30=193 (LC 27), 3: 32=221 (LC 21), 3: 34=161 (LC 24), 3: 36=159 (LC 21), 3: 38=195 (LC 25) (lb) - Maximum Compression Tension 2:38=-163/99, 1-2=0/24, 2-3= 3-4=-149/137, 4-5=-139/136, 6-7=-112/170, 7-9=-119/198, 10-11=-163/276, 11-12=-163, 12-13=-148/248, 13-15=-119, 15-16=-93/152, 16-17=-67/10 15-16=-93/152, 16-17=-67/10 15-36=-89/107, 32-33=-89/10 33-34=-89/107, 32-33=-89/10 31-32=-89/107, 27-28=-89/10 24-25=-89/107, 23-24=-89/10 24-25=-89/107, 23-24=-89/10 24-25=-123/73, 4-36=-121/67, 13-32=-182/82, 7-33=-125/72, 5-35=-123/73, 4-36=-121/67, 12-29=-198/40, 13-28=-182/6 19-23=-126/103 d roof live loads have been cord	 15=162 (LC 25), 17=164 (LC 22), 19=236 (LC 22), 19=236 (LC 21), 13=164 (LC 21), 15=163 (LC 28), 17=203 (LC 24), 1/Maximum -193/177, 5-6=-125/143, 9-10=-148/248, 19-20=-118/94, 07, 08, 	Va Ca zof 2-E: Exi 32- ver for DC S Cs 4) TC Pla bC Cs 55) Un des	sd=103n t. II; Exp he and C j=11 to 12 terior(2N 1-1 zone tical left cess & MV b=1.60 p uss desig y. For si e Standa consult q LL: ASC tte DOL= b=1.00; C balanceo sign.	nph; TC B; Enc (-C Cor (-C Cor	closed; MWFRS (ner(3E) -0-8-1 to Corner(3R) 12-6)-3 to 28-11-5, C. lever left and righ th exposed;C-C for reactions sho rip DOL=1.60 or wind loads in th qoosed to wind (n istry Gable End I d building design ; Pr=20.0 psf (four Pf=20.0 psf (four Pf=20.0 psf (four b); Rough Cat B; F loads have beer	DL=6.0psf; h=25ft; envelope) exterior 2-5-11, Exterior(2N) i-13 to 18-10-3, orner(3E) 28-11-5 to the exposed; end for members and

NOTES

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

March 17,2022

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 101 FaNC	
22030099	B03	Common Supported Gable	1	1	Job Reference (optional)	150830504

- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 7) All plates are 2x4 MT20 unless otherwise indicated.
- 8) Gable requires continuous bottom chord bearing.
- 9) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 13) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 38, 22, 31, 32, 33, 34, 35, 36, 37, 29, 28, 27, 26, 25, 24, and 23. This connection is for uplift only and does not consider lateral forces.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Wed Mar 16 21:50:41 ID:eDo5c2px20DPopr5qTS5W0yHza4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 101 FaNC	
22030099	C01	Common	3	1	Job Reference (optional)	150830505

4x5 = 3

5-3-8

5-3-8

12 7 Г

Carter Components (Sanford), Sanford, NC - 27332

Scale = 1:37.7

(psf)

20.0

20.0

10.0

0.0

10.0

2x4 SP No.2

2x4 SP No.2

2x4 SP No.3

6-0-0 oc purlins.

-- 1-6-0

bracing.

Max Horiz

Tension

3-7=0/212

Loading

TCLL (roof)

Snow (Pf)

LUMBER

TOP CHORD

BOT CHORD

TCDL

BCLL

BCDL

WEBS

SLIDER

BRACING

TOP CHORD

BOT CHORD

FORCES

WEBS

NOTES 1)

2)

3)

TOP CHORD

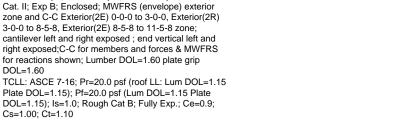
BOT CHORD

this design.

REACTIONS (lb/size)

Run: 8 53 S. Dec. 6 2021 Print: 8 530 S.Dec. 6 2021 MiTek Industries. Inc. Wed Mar 16 21:50:42 ID:4GdDKQwnylLxHOniToLeTyyAfK1-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

10-7-0


5-3-8

11-5-8

0-10-8

Page: 1

4x5 🍬 4x5 👟 3-11-9 2 4 5 0-10-8 6 7 2x4 II 3x8 II 3x8 II 10-7-0 5-3-8 5-3-8 5-3-8 Plate Offsets (X, Y): [1:0-3-0,0-0-3], [5:0-5-15,0-0-3] 2-0-0 CSI DEFL in l/defl L/d PLATES GRIP Spacing (loc) Plate Grip DOL 1.15 тс 0.46 Vert(LL) -0.04 7-10 >999 240 MT20 244/190 Lumber DOL 1.15 BC 0.35 Vert(CT) -0.05 7-10 >999 180 Rep Stress Incr WB 0.08 Horz(CT) YES 0.02 n/a n/a Code IRC2018/TPI2014 Matrix-MSH Weight: 48 lb FT = 20% 4) Unbalanced snow loads have been considered for this design. This truss has been designed for greater of min roof live 5) load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on Left 2x6 SP No.2 -- 1-6-0, Right 2x6 SP No.2 overhangs non-concurrent with other live loads 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) * This truss has been designed for a live load of 20.0psf Structural wood sheathing directly applied or on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom Rigid ceiling directly applied or 10-0-0 oc chord and any other members. One H2.5A Simpson Strong-Tie connectors 8) 1=421/0-3-8, 5=478/0-3-8 recommended to connect truss to bearing walls due to 1=-80 (LC 10) UPLIFT at jt(s) 1 and 5. This connection is for uplift only Max Uplift 1=-37 (LC 14), 5=-54 (LC 15) and does not consider lateral forces. Max Grav 1=519 (LC 21), 5=575 (LC 22) 9) This truss is designed in accordance with the 2018 (Ib) - Maximum Compression/Maximum International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 1-3=-453/131, 3-5=-456/132, 5-6=0/26 LOAD CASE(S) Standard 1-7=-114/365, 5-7=-82/365 Unbalanced roof live loads have been considered for Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft;

SEAL

036322

G

mmm March 17,2022 VIIIIIIIIII

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 101 FaNC	
22030099	C02	Common Supported Gable	1	1	Job Reference (optional)	150830506

Scale = 1:31.6 Loading

TCLL (roof)

Snow (Pf)

LUMBER

TOP CHORD

BOT CHORD

TCDL

BCLL

BCDL

WEBS

OTHERS

BRACING

TOP CHORD

BOT CHORD

FORCES

TOP CHORD

BOT CHORD

this design.

WEBS

NOTES

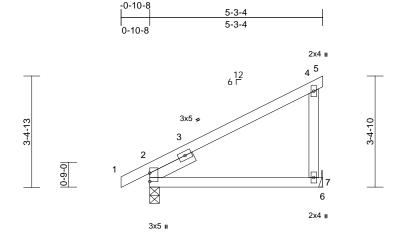
1)

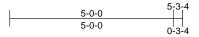
Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Wed Mar 16 21:50:42 ID:NcYsop?AlvDxcTp2NmzHFRyAfJw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

5-3-8 10-7-0 11-5-8 5-3-8 5-3-8 0-10-8 4x5 : 4 12 7 Г 3 5 ÞQ. 16 3-11-9 2 6 7 0-10-8 8 ю 15 ٣ Т 14 13 12 11 10 10-7-0 Spacing 1-11-4 CSI DEFL l/defl L/d PLATES GRIP (psf) in (loc) Plate Grip DOL 20.0 1.15 TC 0.11 Vert(LL) n/a n/a 999 MT20 244/190 BC 20.0 Lumber DOL 1 15 0.03 Vert(CT) n/a n/a 999 10.0 Rep Stress Incr YES WB 0.05 Horz(CT) 0.00 9 n/a n/a 0.0 Code IRC2018/TPI2014 Matrix-MR Weight: 52 lb 10.0 FT = 20%Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) 14) This truss is designed in accordance with the 2018 Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; International Residential Code sections R502.11.1 and 2x4 SP No.2 Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior 2x4 SP No.2 R802.10.2 and referenced standard ANSI/TPI 1. zone and C-C Corner(3E) 0-1-12 to 3-3-8, Corner(3R) 2x4 SP No.3 LOAD CASE(S) Standard 3-3-8 to 8-5-8, Corner(3E) 8-5-8 to 11-5-8 zone; 2x4 SP No.3 cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS Structural wood sheathing directly applied or for reactions shown; Lumber DOL=1.60 plate grip 6-0-0 oc purlins, except end verticals. DOL=1.60 Rigid ceiling directly applied or 6-0-0 oc 3) Truss designed for wind loads in the plane of the truss bracing. only. For studs exposed to wind (normal to the face), REACTIONS (lb/size) 9=117/10-7-0, 10=101/10-7-0, see Standard Industry Gable End Details as applicable, 11=170/10-7-0, 12=142/10-7-0, or consult qualified building designer as per ANSI/TPI 1. 13=166/10-7-0, 14=135/10-7-0, TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) 15=26/10-7-0 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate Max Horiz 15=-99 (LC 10) DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Max Uplift 9=-25 (LC 11), 10=-57 (LC 15), Cs=1.00; Ct=1.10 11=-52 (LC 15), 13=-51 (LC 14), 5) Unbalanced snow loads have been considered for this 14=-62 (LC 14), 15=-39 (LC 10) desian. Max Grav 9=131 (LC 22), 10=163 (LC 22), This truss has been designed for greater of min roof live 6) 11=255 (LC 22), 12=150 (LC 22), load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on 13=251 (LC 21), 14=195 (LC 21), overhangs non-concurrent with other live loads. 15=60 (LC 13) All plates are 2x4 MT20 unless otherwise indicated. (lb) - Maximum Compression/Maximum 8) Gable requires continuous bottom chord bearing. ORT Tension Truss to be fully sheathed from one face or securely 9) 1-15=-40/28, 1-2=-53/54, 2-3=-49/85, braced against lateral movement (i.e. diagonal web). 3-4=-80/161, 4-5=-80/161, 5-6=-44/89, 10) Gable studs spaced at 2-0-0 oc. 6-7=-47/43, 7-8=0/30, 7-9=-119/111 Walthousen This truss has been designed for a 10.0 psf bottom 11) 14-15=-49/70, 13-14=-49/70, 12-13=-49/70, chord live load nonconcurrent with any other live loads. 11-12=-49/70, 10-11=-49/70, 9-10=-49/70 12) * This truss has been designed for a live load of 20.0psf SEAL 4-12=-112/0, 3-13=-211/128, 2-14=-161/127, on the bottom chord in all areas where a rectangle 5-11=-214/119, 6-10=-135/95 036322 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 13) One H2.5A Simpson Strong-Tie connectors Unbalanced roof live loads have been considered for recommended to connect truss to bearing walls due to UPLIFT at jt(s) 15, 9, 13, 14, 11, and 10. This connection is for uplift only and does not consider lateral forces. G mmm March 17,2022

818 Soundside Road Edenton, NC 27932


🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component
Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 101 FaNC	
22030099	D01	Monopitch	7	1	Job Reference (optional)	50830507

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries. Inc. Wed Mar 16 21:50:43 ID:M25sh9MsgfT5neCtu3GLFDyHzY3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:35.1

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MP	0.57 0.41 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.10 -0.09 0.03	(loc) 7-10 7-10 2	l/defl >581 >679 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 25 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left 2x4 SP No.3	athing directly applie cept end verticals. applied or 10-0-0 or 3-8, 7=218/ Mechani C 13) C 14), 7=-71 (LC 11) C 21), 7=-716 (LC 21 ppression/Maximum 221, 4-5=-12/0,	8) ical 9)) 1(chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Refer to gird Provide mec bearing plate 7. One H2.5A S recommende UPLIFT at jtt does not cor) This truss is International	as been designed ad nonconcurrent has been designed m chord in all area by 2-00-00 wide w hy other members, er(s) for truss to tr thanical connection e capable of withst Simpson Strong-Ti ed to connect truss (s) 2. This connect hisider lateral force designed in accor Residential Code nd referenced star Standard	with any d for a liv is where ill fit betv uss conr n (by oth canding 7 ie conne s to bear tion is for s. dance w sections	other live loa e load of 20.0 a rectangle veen the botti- nections. ers) of truss i '1 lb uplift at j ctors ing walls due r uplift only ar ith the 2018 s R502.11.1 a	Opsf om to joint to nd					
NOTES 1) Wind: ASC Vasd=103 Cat. II; Exp zone and exposed;	CE 7-16; Vult=130mph imph; TCDL=6.0psf; B p B; Enclosed; MWFR C-C Exterior(2E) zone end vertical left and ri exposed;C-C for memb	i (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterio ; cantilever left and i ght exposed; porch l	or right								- Internet	TH CA	ROLL

- MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

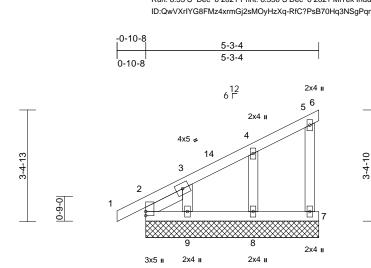
GI

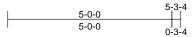
munn March 17,2022

SEAL

036322

annununu


Paris and and the


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

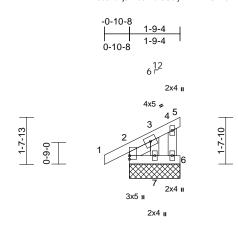
Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 101 FaNC	
22030099	D02	Monopitch Supported Gable	1	1	Job Reference (optional)	

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Wed Mar 16 21:50:43 ID:QwVXrIYG8FMz4xrmGj2sMOyHzXq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:35.1

00010 = 1.00.1														
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2018/	TPI2014	CSI TC BC WB Matrix-MP	0.18 0.03 0.06	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 6	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 28 lb	GRIP 244/190 FT = 20%	
BCDL LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Wind: ASY Vasd=103	10.0 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Left 2x4 SP No.3 Left 2x4 SP No.3	1-3-13 athing directly applied cept end verticals. applied or 10-0-0 oc 3-4, 6=-5/5-3-4, 4, 8=163/5-3-4, 2-13), 10=110 (LC 13) 10), 6=-9 (LC 21), 7=- 8=-41 (LC 14), 9=-61 (5 (LC 10) C 21), 6=8 (LC 14), 7= 3=234 (LC 21), 9=182 17 (LC 21) apression/Maximum 9, 3-4=-69/43, /8, 5-7=-98/68 /66, 7-8=-49/66 148/194 (3-second gust) CDL=6.0psf; h=25ft;	2) 3) 1 or 4) 5) (1) (1) (1) (1) (1) (1) (1) (1	Truss design only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced design. This truss ha load of 12.0 g overhangs nu Gable requirn Gable studs i This truss ha chord live loa * This truss h on the bottom this truss h on the bottom and an Provide meci bearing plate 6. One H2.5A S recommende UPLIFT at jt(only and doe UPLIFT at jt(hed for wind loads dis exposed to wind a Industry Gable E alified building de 7-16; Pr=20.0 ps (s) 15); Pf=20.0 ps (s) 15); Pf	nd (norm End Deta esigner a: of (roof LL (Lum DC t B; Fully been con for great flat roof I h other Ii tom chor c. for a 10.1 with any d for a 110.1 with any d for a 10.1 with any d for a 10.1 with a	al to the face ils as applical is per ANSI/TF iL=1.15 Plate Exp.; Ce=0.5 asidered for the er of min roof bad of 20.0 ps re loads. d bearing. D psf bottom other live loa e load of 20.0 a rectangle veen the botto ers) of truss t I buplift at jo ctors ing walls due tection is for s. the the 2018 i R502.11.1 a), ble, PI 1. 1.15 9; live sf on ds. Dpsf om to uplift		4	0	ORTH CA	ROL	
2-1-8 to 5 end vertic forces & N	C-C Corner(3E) -0-10- -3-4 zone; cantilever le cal left and right expose WWFRS for reactions s 0 plate grip DOL=1.60	eft and right exposed ; ed;C-C for members a	,									SEA 0363 MGIN Marcl	EER.	dinne.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

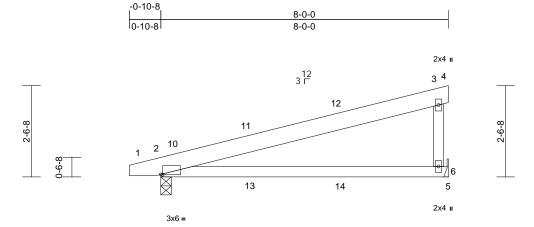
Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 101 FaNC	
22030099	D03	Monopitch Supported Gable	1	1	Job Reference (optional)	150830509

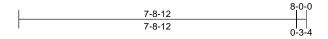
Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Wed Mar 16 21:50:43 ID:F4so5Ld1j577osIwcz9GcfyHzXk-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f _

Scale = 1:40.3

Loading (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Spacing1-1Plate Grip DOL1.1!Lumber DOL1.1!Rep Stress IncrYESCodeIRC	5 5	BC 0	.09 Vert(LL) .01 Vert(CT) .02 Horz(CT)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 11 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 OTHERS 2x4 SP No.3 OTHERS 2x4 SP No.3 SLIDER Left 2x4 SP No.3 (BRACING TOP CHORD Structural wood sheat 1-9-4 oc purlins, exi BOT CHORD Rigid ceiling directly bracing. REACTIONS (lb/size) 2=107/1-9 6=24/1-9- 8=107/1-9 Max Horiz 2=47 (LC Max Uplift 2=-10 (LC (LC 14), 7 10) Max Grav 2=151 (LC CLC 12), FORCES (lb) - Maximum Com Tension	athing directly applied or cept end verticals. applied or 10-0-0 oc 0-4, 5=10/1-9-4, 4, 7=41/1-9-4, 0-4 13), 8=47 (LC 13) 10), 5=-3 (LC 11), 6=-6 =-24 (LC 14), 8=-10 (LC 2 21), 5=14 (LC 21), 6=33 =51 (LC 21), 8=151 (LC pression/Maximum 4, 3-4=-23/10, 4-5=-8/5, /27 (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior cantilever left and right pht exposed;C-C for for reactions shown;	 only. For stitus see Standard or consult qu 3) TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct=4) Unbalanced design. 5) This truss ha load of 12.0 goverhangs n 6) Gable require 7) Gable studs 8) This truss ha chord live load 9) * This truss ha chord live load 9) * This truss ha chord and ar 10) Provide mec bearing plate 5. 11) One H2.5A S recommended UPLIFT at jt(only and doe 12) This truss has chord struss is international 	snow loads have been as been designed for g port 1.00 times flat m on-concurrent with oth es continuous bottom spaced at 2-0-0 oc. Is been designed for a ad nonconcurrent with has been designed for n chord in all areas with by 2-00-00 wide will fit by other members. hanical connection (by a capable of withstand Simpson Strong-Tie co ad to connect truss to 1 s) 2, 6, and 7. This co as not consider lateral designed in accordam. Residential Code sec and referenced standar	normal to the fact Details as application of LL: Lum DOL= n DOL=1.15 Plat Fully Exp.; Ce=0. In considered for interaction of 20.0 p and of 20.	e), able, TPI 1. =1.15 e .9; this of live osf on ads. .0psf tom to coint e to oblift				NRTH CA ORTESS SEA 0363	EER. R. I

March 17,2022




WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 101 FaNC	
22030099	E01	Monopitch	5	1	Job Reference (optional)	150830510

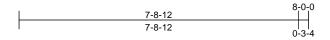
Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Wed Mar 16 21:50:43 ID:yqBaHQz?T20cbzgylivV8PzaJS6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:32.1

Plate Offsets (X, Y): [2:0-0-9,0-0-1]

	, .). [
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/	TPI2014	CSI TC BC WB Matrix-MP	0.70 0.67 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.33 0.25 -0.02	(loc) 6-9 6-9 2	l/defl >284 >364 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 36 lb	GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=103r Cat. II; Exp zone and C 2-5-13 to 5 cantilever I right expos members a Lumber DC 2) TCLL: ASC Plate DOL= DOL=1.15) Cs=1.00; C 3) Unbalance design. 4) This truss I load of 12.1	Max Horiz 2=82 (LC Max Uplift 2=-131 (L Max Grav 2=426 (LC (Ib) - Maximum Corr Tension 1-2=0/7, 2-3=-266/2 3-6=-348/277 2-6=-180/186, 5-6=(C E 7-16; Vult=130mph mph; TCDL=6.0psf; B b; Enclosed; MWFR C-C Exterior(2E) -0-6- i-0-0, Exterior(2E) -0-0,	cept end verticals. applied or 10-0-0 od 3-8, 6=330/ Mechani 13) C. 10), 6=-123 (LC 1 C 21), 6=434 (LC 21 apression/Maximum 92, 3-4=-6/0, 0/0 (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterio 3 to 2-5-13, Interior (-0 to 8-0-0 zone; ; end vertical left an- ht exposed;C-C for for reactions shown, DL=1.60 (roof LL: Lum DOL=1 2; Fully Exp.; Ce=0.9 seen considered for th r greater of min roof t roof load of 20.0 ps	6) ed or 7) cal 9) (0) 10) LOA r 1) LOA is live	chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Refer to gird Provide mec bearing plate joint 6. One H2.5A S recommende UPLIFT at jt(does not cor This truss is International	Is been designed f ad nonconcurrent v has been designed in chord in all area: by 2-00-00 wide wi hy other members. er(s) for truss to tru- hanical connectior capable of withst. Simpson Strong-Ti- de to connect truss (s) 2. This connect isider lateral forces designed in accord Residential Code nd referenced star Standard	with any I for a liv s where II fit betw uss conre h (by oth anding 1 e conne to bear ion is for s. dance w sections	other live load e load of 20. a rectangle veen the bott nections. ers) of truss : 23 lb uplift ai ctors ing walls due r uplift only ai ith the 2018 s R502.11.1 a	Opsf om to t to nd				SEA 0363	EER AL

818 Soundside Road Edenton, NC 27932


March 17,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 101 FaNC	
22030099	E02	Monopitch Supported Gable	1	1	Job Reference (optional)	150830511

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Wed Mar 16 21:50:44 ID:cPSYMKKBeygUZQOXUIwlpWzaJRf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

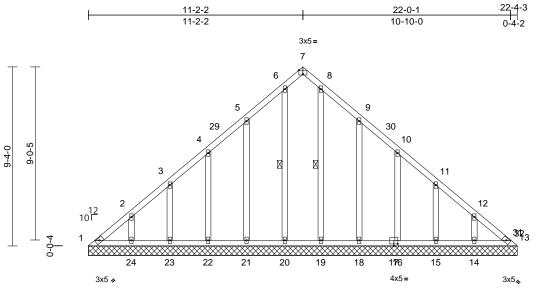
-0-10-8 8-0-0 0-10-8 8-0-0 2x4 II 12 3 Г 2x4 u 56 2x4 🛛 4 Ð 3 0 2-6-8 2-6-8 P 14 2 1 0-6-8 0 Ю ю 7 \bigotimes 8 9 3x5 = 2x4 II 2x4 II 2x4 II

Scale = 1:31.8

Loading		(psf)	Spacing	1-11-4		CSI	-	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.15		тс	0.11	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)		20.0	Lumber DOL	1.15		BC	0.07	Vert(CT)	n/a	-	n/a	999		
CDL		10.0	Rep Stress Incr	YES		WB	0.07	Horz(CT)	0.00	2	n/a	n/a		
BCLL		0.0*	Code	IRC20	8/TPI2014	Matrix-MP		, , ,						
BCDL		10.0									-		Weight: 39 lb	FT = 20%
LUMBER FOP CHORD SOT CHORD WEBS DTHERS BRACING FOP CHORD BOT CHORD REACTIONS	2x4 SP N 2x4 SP N 2x4 SP N Structura 6-0-0 oc Rigid ceil bracing. (lb/size) Max Horiz Max Uplift	o.2 o.3 o.3 I wood she purlins, ex ing directly 2=159/8-(7=68/8-0- 9=309/8-(2=79 (LC 2=-28 (LC (LC 14), 8 14), 10=-1 2=189 (LC (LC 21), 8	athing directly applie cept end verticals. applied or 10-0-0 oc 0-0, 6=10/8-0-0, 0, 8=97/8-0-0, 1-0, 10=159/8-0-0 13), 10=79 (LC 13) 1-0), 6=-5 (LC 11), 7 3=-16 (LC 10), 9=-62 28 (LC 10) C 21), 6=14 (LC 21), 9=400 89 (LC 21)	5 4 5 7=-13 8 (LC 9 7=90 9	only. For stt see Standarr or consult qu) TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct) Unbalanced design.) This truss ha load of 12.0 overhangs n) Gable studs) This truss ha chord live loa chord live loa) * This truss ha chord live botton 3-06-00 tall h	ned for wind load dids exposed to w d Industry Gable valified building c : 7-16; Pr=20.0 ps (1.15); Pf=20.0 ps (1.15); Pf=20.0 ps (1.10); Rough C =1.10 snow loads have us been designed on-concurrent w es continuous bo spaced at 2-0-0 (1.10) times on-concurrent w es continuous bo spaced at 2-0-0 (1.10) times on-concurrent as been designed ad nonconcurren has been designed py 2-00-00 wide yy other member	vind (norm End Deta lesigner a: sisf (roof LL f (Lum DC at B; Fully e been cor d for great f flat roof l ith other li bottom chor oc. d for a 10. t with any ed for a liv sas where will fit bett	al to the face; ils as applicat s per ANSI/TF :: Lum DOL=' U=1.15 Plate Exp.; Ce=0.9 asidered for th er of min roof pad of 20.0 ps ve loads. d bearing. D psf bottom other live loa e load of 20.0 a rectangle), ole, 211. 1.15 1; iis live sf on ds. opsf					
FORCES	Tension		pression/Maximum , 3-4=-46/7, 4-5=-33/		0) One H2.5A S recommende	Simpson Strong- ed to connect tru	Tie conne ss to bear	ing walls due					min	um.
		5-7=-74/5		20,		(s) 2, 7, 8, and 9 es not consider la			ipiiit				WTH CA	Rollin
Vasd=103 Cat. II; Ex zone and 2-5-13 to end vertic forces & M	4-8=-107, CE 7-16; Vu 3mph; TCDL (p B; Enclose C-C Corner 8-0-0 zone; cal left and ri	/100, 3-9=- llt=130mph .=6.0psf; B ed; MWFR (3E) -0-6-3 cantilever ght expose reactions s	/44, 7-8=-33/44 323/252 (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior to 2-5-13, Exterior(2 left and right expose d;C-C for members hown; Lumber	1 r 2N) d; L	 One RT8A M truss to bear connection is forces. This truss is International 	fiTek connectors ing walls due to s for uplift only a designed in acco Residential Cod nd referenced st	recomme UPLIFT at nd does no ordance w le sections	inded to conn jt(s) 6. This ot consider lat ith the 2018 5 R502.11.1 a	teral		Manutal Contraction of the Contr	A. A	SEA 0363	EER A

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

March 17,2022


Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 101 FaNC	
22030099	V1	Valley	1	1	Job Reference (optional)	150830512

FORCES

TOP CHORD

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Wed Mar 16 21:50:44 ID:kKSTvkKIb8M5frbJdhNATiyHzjk-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:60.1	—		22	2-4-3						
Plate Offsets (X, Y): [7:0-2-8,Edg	e], [17:0-2-8,0-1-4]									
Loading (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0		1-11-4 1.15 1.15 YES IRC2018/TPI2014	BC 0	DEFL 08 Vert(LL) 06 Vert(TL) 17 Horiz(TL)	in n/a 0.01	(loc) - - 13	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 145 lb	GRIP 244/190 FT = 20%
6-0-0 oc purlins. BOT CHORD Rigid ceiling direc bracing. WEBS 1 Row at midpt REACTIONS (lb/size) 1=77/2 14=183 16=157 19=133 21=157	heathing directly applied tly applied or 10-0-0 oc 6-20, 8-19 2-4-3, 13=57/22-4-3, 1/22-4-3, 15=146/22-4-3, 1/22-4-3, 28=157/22-4-3, 1/22-4-3, 22=157/22-4-3, 1/22-4-3, 24=190/22-4-3	NOTES 1) Unbalance this design 2) Wind: ASC Vasd=103r Cat. II; Exp	1-24=-105/214, 23-24= 22-23=-105/214, 21-22 20-21=-105/214, 19-2(18-19=-105/214, 16-16 15-16=-105/214, 14-16 13-14=-105/214 6-20=-172/25, 8-19=-1 4-22=-130/93, 3-23=-1 9-18=-209/120, 10-16= 11-15=-129/104, 12-12 d roof live loads have be E 7-16; Vult=130mph (3 mph; TCDL=6.0psf; BCD b B; Enclosed; MWFRS (-C Exterior(2E) 0-0-5 to	=-105/214, =-105/214, =-105/214, =-105/214, 72/0, 5-21=-209/ 27/102, 2-24=-1(129/92, =-131/74 en considered for -second gust) L=6.0psf; h=25fi envelope) exterii	/115, 36/79, or t; or	chor 10) * Th on ti 3-06 chor 11) Prov bear 1 an 12) Once recco UPL This later 13) This Inter	rd live lo is truss he botto 3-00 tall rd and a vide me ring pla d 19 lb H2.5A pommeno LIFT at j conneo ral force truss is rnationa	bad noi has be om cho by 2-0 any oth chanic te capa uplift a Simps ded to o it(s) 20 ction is es. s desiga al Resid	een designed for rd in all areas wh 10-00 wide will fit 1 ter members. al connection (by able of withstandii at joint 13. con Strong-Tie con- connect truss to b , 21, 22, 23, 24, 1 for uplift only and uned in accordance	any other live loads. a live load of 20.0psf lere a rectangle between the bottom others) of truss to ng 47 lb uplift at joint nnectors bearing walls due to 18, 16, 15, and 14. d does not consider we with the 2018 ions R502.11.1 and

zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Interior (1) Max Horiz 1=207 (LC 11) 3-0-5 to 8-2-6, Exterior(2R) 8-2-6 to 14-1-10, Interior (1) Max Uplift 1=-47 (LC 12), 13=-19 (LC 13), 14-1-10 to 18-11-15, Exterior(2E) 18-11-15 to 21-11-15 14=-38 (LC 15), 15=-84 (LC 15), zone; cantilever left and right exposed ; end vertical left 16=-68 (LC 15), 18=-96 (LC 15), and right exposed;C-C for members and forces & 20=-2 (LC 11), 21=-92 (LC 14), MWFRS for reactions shown; Lumber DOL=1.60 plate 22=-69 (LC 14), 23=-81 (LC 14), grip DOL=1.60 24=-49 (LC 14) Max Grav 1=144 (LC 14), 13=126 (LC 15),

23=159 (LC 23), 24=200 (LC 23)

(Ib) - Maximum Compression/Maximum

4-5=-94/79, 5-6=-87/107, 6-7=-66/81,

7-8=-66/77, 8-9=-87/76, 9-10=-63/46,

10-11=-102/64, 11-12=-183/92,

1-2=-272/164, 2-3=-211/133, 3-4=-131/106,

Tension

12-13=-242/132

- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), 14=189 (LC 21), 15=163 (LC 24), see Standard Industry Gable End Details as applicable, 16=170 (LC 21), 18=247 (LC 21), or consult qualified building designer as per ANSI/TPI 1. 19=209 (LC 21), 20=209 (LC 20), 21=247 (LC 20), 22=170 (LC 20),
 - TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
 - 5) Unbalanced snow loads have been considered for this design.
 - 6) All plates are 2x4 MT20 unless otherwise indicated
 - Gable requires continuous bottom chord bearing. 7)
 - 8) Gable studs spaced at 2-0-0 oc.

Worn normality 1111111111 SEAL 036322 G mmm March 17,2022

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 101 FaNC	
22030099	V2	Valley	1	1	Job Reference (optional)	150830513

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Wed Mar 16 21:50:44 ID:kKSTvkKIb8M5frbJdhNATiyHzjk-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:56

Plate Offsets (X, Y): [9:0-3-0,0-3-0]

												-	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 I.15 I.15 YES RC2018/T	TPI2014	CSI TC BC WB Matrix-MSH	0.31 0.18 0.22	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 93 lb	GRIP 244/190 FT = 20%
	6-0-0 oc purlins. Rigid ceiling directly bracing. (Ib/size) 1=54/19- 8=269/19 10=229/1 12=273/1 Max Horiz 1=188 (L Max Uplift 1=-64 (L0 8=94 (L0 11=-175 Max Grav 1=111 (L 8=317 (L	C 11) C 12), 7=-19 (LC 13), C 15), 9=-179 (LC 15), (LC 14), 12=-99 (LC 14) C 11), 7=84 (LC 26), C 24), 9=487 (LC 6), LC 26), 11=478 (LC 5),	or 3) (), 4) 5) (6) 4	Vasd=103mp Cat. II; Exp B zone and C-C 3-0-5 to 6-10 (1) 12-10-2 tr zone; cantile' and right exp MWFRS for r grip DOL=1.6 Truss desigr only. For stu see Standarc or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced design.	hed for wind loads ds exposed to wind d Industry Gable E alified building des 7-16; Pr=20.0 psf .15); Pf=20.0 psf (s=1.0; Rough Cat	SCDL=6 RS (env. 5 to 3-0 10-2 to (2E) 16 xposed bers an umber I in the p d (norm nd Deta signer as (roof LL Lum DC B; Fully been cor otherwi	.0psf; h=25ft; elope) exterio -5, Interior (1) 12-10-2, Interi 7.715 to 19-7- ; end vertical I d forces & DOL=1.60 plai lane of the tru al to the face) ils as applicat s per ANSI/TP L=1.15 Plate Exp.; Ce=0.9 nsidered for th se indicated.	r 15 left te ss , sle, -15 ;	Ínte R80	rnationa)2.10.2 a CASE(S)	Il Resid and ref) Sta	erenced standar	ions R502.11.1 and d ANSI/TPI 1.
FORCES		npression/Maximum	8) (Gable studs	spaced at 4-0-0 oc s been designed for).	0					OR EESS	RO
TOP CHORD		-184/119, 3-4=-207/168, -135/71, 6-7=-178/100	, í	chord live loa	ad nonconcurrent v las been designed	vith any	other live load				- II	OR FESS	IN NOT
BOT CHORD	1-12=-74/142, 11-1		, í	on the botton	n chord in all areas	s where	a rectangle			4		.0	-
WEBS NOTES 1) Unbalance this design	4-10=-183/8, 3-11= 5-9=-385/226, 6-8= ed roof live loads have	-378/222, 2-12=-223/16 -221/160	3, 11) 	chord and an Provide mecl bearing plate 1 and 19 lb u	y 2-00-00 wide wil y other members, hanical connection capable of withsta plift at joint 7. Simpson Strong-Tie	with BC (by oth anding 6	DL = 10.0psf. ers) of truss to 4 lb uplift at jo	D		THE DAYS		SEA 0363	• –
una ucargi			,		d to connect trucs			to			1	1. A.	ail i

recommended to connect truss to bearing walls due to UPLIFT at jt(s) 11, 12, 9, and 8. This connection is for uplift only and does not consider lateral forces.

A. GILDIN March 17,2022

C

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 101 FaNC	
22030099	V3	Valley	1	1	Job Reference (optional)	150830514

Loading

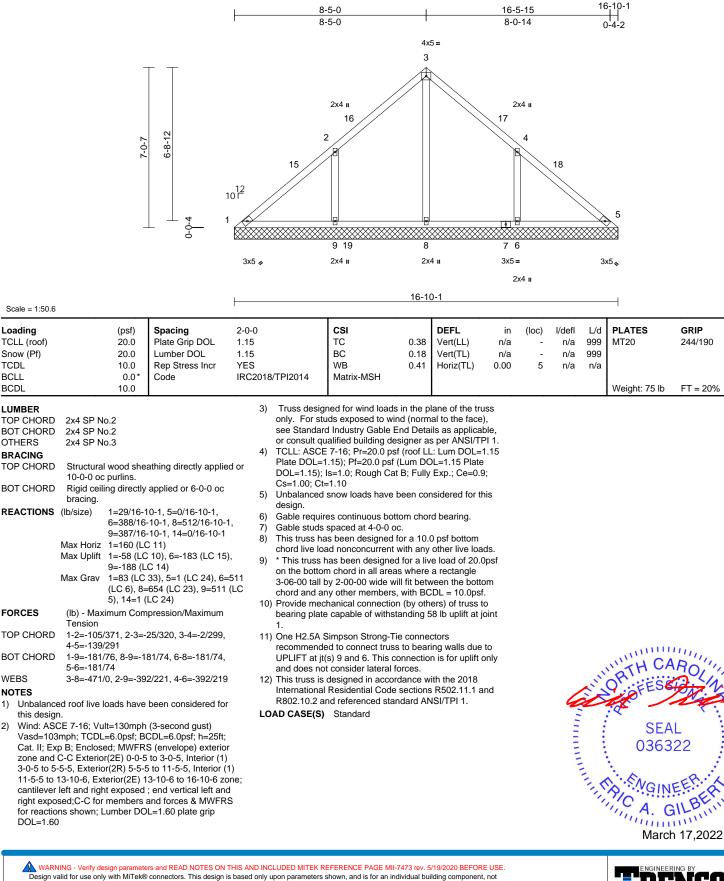
TCDL

BCLL

BCDL

FORCES

WEBS


1)

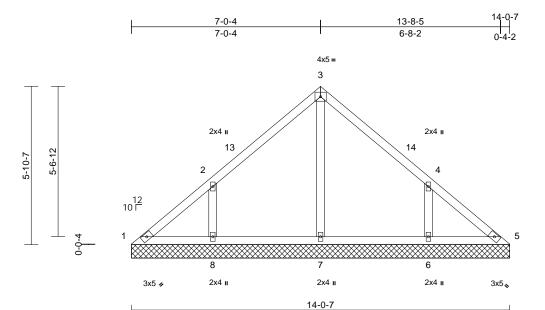
2)

NOTES

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Wed Mar 16 21:50:45 ID:kKSTvkKlb8M5frbJdhNATiyHzjk-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

818 Soundside Road Edenton, NC 27932


a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 101 FaNC	
22030099	V4	Valley	1	1	Job Reference (optional)	150830515

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Wed Mar 16 21:50:45 ID:CX0r74LwMRUyH?AVBOuP0vyHzjj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

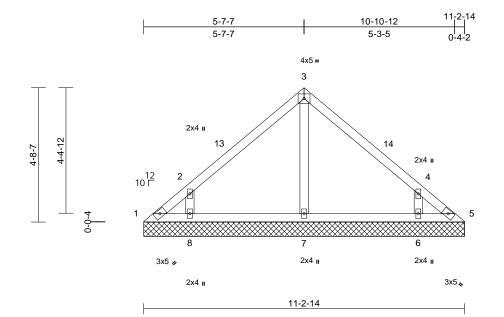
Page: 1

_

<u> </u>		
Scale	=	1:42.7

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MSH	0.34 0.11 0.13	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 60 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 Structural wood shi 6-0-0 oc purlins. Rigid ceiling directh bracing. (lb/size) 1=92/14- 6=328/1- 8=328/1- Max Horiz 1=-133 (L 8=-154 (Max Grav 1=117 (L	_C 10) C 10), 6=-151 (LC 15 _C 14) C 24), 5=93 (LC 23), C 21), 7=294 (LC 21)	ed or ed or (), (), (), (), (), (), (), (), (), (),	esigned for wind loar r studs exposed to v dard Industry Gable t qualified building of SCE 7-16; Pr=20.0 pt L=1.15); Pf=20.0 pt 5); Is=1.0; Rough C Ct=1.10 ced snow loads hav quires continuous b uds spaced at 4-0-0 s has been designe bload nonconcurrer ss has been design toom chord in all are all by 2-00-00 wide d any other membe nechanical connect	vind (norm End Deta Jesigner a: osf (roof LL f (Lum DC) at B; Fully e been cor- ottom chor oc. d for a 10. tt with any ed for a liv eas where will fit betw rs.	al to the face ils as applica s per ANSI/TI :: Lum DOL= DL=1.15 Plate Exp.; Ce=0.1 d bearing. 0 psf bottom other live loa re load of 20.1 a rectangle veen the bott), ble, Pl 1. 1.15 e 9; his ds. Opsf om						
FORCES	(lb) - Maximum Cor Tension	npression/Maximum		blate capable of with									
TOP CHORD	1-2=-145/125, 2-3= 4-5=-114/90	-185/117, 3-4=-185/1		5A Simpson Strong- ended to connect tru			to						
BOT CHORD	1-8=-54/117, 7-8=- 5-6=-54/95	54/95, 6-7=-54/95,	UPLIFT	at jt(s) 8 and 6. This not consider latera	connectio	0					WH CA	ROUL	
WEBS		74/194, 4-6=-374/193	12) This trus	s is designed in acc	ordance w					15	R		1
NOTES	ed roof live loads have	been considered for	B000.40	onal Residential Coo 2 and referenced st			and		4			Ver	2.
this desig	n.			(S) Standard					-		: « `		E
Vasd=103 Cat. II; E> zone and 3-0-8 to 4 10-0-8 to cantilever right expo	CE 7-16; Vult=130mpl 3mph; TCDL=6.0psf; E 4p B; Enclosed; MWFF C-C Exterior(2E) 0-0- -0-8, Exterior(2R) 4-0- 11-0-8, Exterior(2R) 4-0- 11-0-8, Exterior(2R) 1 left and right exposed posed;C-C for members pons shown; Lumber DC 0	CDL=6.0psf; h=25ft; S (envelope) exterio 5 to 3-0-8, Interior (1) 8 to 10-0-8, Interior (1) -0-8 to 14-0-12 zone l; end vertical left an and forces & MWFR	r 1) ə; d							A A A A A A A A A A A A A A A A A A A	SEA 0363	22 EERCA	NITTONIA PARTICIA

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


818 Soundside Road Edenton, NC 27932

March 17,2022

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 101 FaNC	
22030099	V5	Valley	1	1	Job Reference (optional)	150830516

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Wed Mar 16 21:50:46 ID:CX0r74LwMRUyH?AVBOuP0vyHzjj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

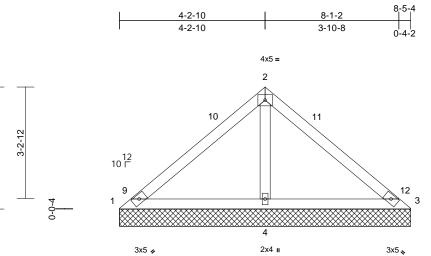
Page: 1

Scale = 1:40.4

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.32 0.12 0.09	Vert(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 46 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	6-0-0 oc Rigid ceil bracing. (Ib/size) Max Horiz Max Uplift	lo.2 lo.3 ll wood she purlins. ling directly 1=36/11-2 6=298/11- 8=298/11- 1=-106 (L 6=-134 (L 1=72 (LC		: 5) 4, 6) 7) 8) 4) 9) -=444 4 (LC	only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. Gable requiri Gable studs This truss ha chord live loa * This truss ha on the bottor 3-06-00 tall b chord and ar	ned for wind load ids exposed to w d Industry Gable lalified building d 7-16; Pr=20.0 ps (s) Pf=20.0 ps (s) Pf=20.0 ps (s) S=1.0; Rough C (s) S=1.0; Rough C (s) Same designed at onoconcurren has been designed an ochord in all are by 2-00-00 wide ' hanical connecti	rind (norm End Deta esigner a sf (roof Ll f (Lum DC at B; Fully be been col- butom choo oc. I for a 10. t with any ed for a liv as where will fit betw s.	hal to the face iils as applica s per ANSI/T L: Lum DOL= DL=1.15 Plate r Exp.; Ce=0. Insidered for t rd bearing. 0 psf bottom other live loa re load of 20. a rectangle ween the bott), ble, PI 1. 1.5 9; his dds. Dpsf						
FORCES	(lb) - Max Tension	kimum Com	pression/Maximum	I.	bearing plate	capable of with plift at joint 5.									
TOP CHORD	1-2=-126 4-5=-102		225/112, 3-4=-225/1	12, 1 ⁷	1) One H2.5A S	Simpson Strong-			to						
BOT CHORD		74, 7-8=-25	/74, 6-7=-25/74,		UPLIFT at jt(s) 8 and 6. This to consider lateral	connectio						WH CA	ROUL	
this design 2) Wind: ASC Vasd=103 Cat. II; Ex zone and 3-0-5 to 8- cantilever right expo	ed roof live n. CE 7-16; Vu mph; TCDI p B; Enclos C-C Exterio -3-2, Exterio left and rigi sed;C-C for ns shown; I	loads have ult=130mph =6.0psf; Bu ed; MWFR or(2E) 0-0-5 or(2E) 8-3-2 ht exposed members	3/249, 4-6=-443/249 been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterion to 3-0-5, Exterior(2F to 11-3-2 zone; ; end vertical left and and forces & MWFR L=1.60 plate grip	L(7) 1	 This truss is International 	designed in acco Residential Cod nd referenced sta	ordance w e sections	s R502.11.1 a	Ind		1		SEA 0363	EER A	Mannunna.

March 17,2022

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 101 FaNC	
22030099	V6	Valley	1	1	Job Reference (optional)	150830517


3-6-7

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Wed Mar 16 21:50:46 ID:CX0r74LwMRUyH?AVBOuP0vyHzjj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

GRIP 244/190

FT = 20%

8-5-4

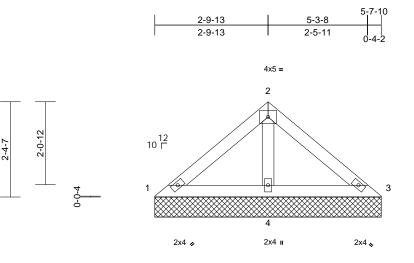

Scale = 1:33.4

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-MP	0.38 0.37 0.13	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 32 lb	G 2 F
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP N 2x4 SP N Structura 8-5-4 oc Rigid ceil bracing. (Ib/size) Max Horiz Max Uplift	0.2 10.3 I wood she purlins. ing directly 1=27/8-5- 4=621/8-5 1=79 (LC 1=-44 (LC 4=-101 (L	11) 21), 3=-44 (LC 20),	dor G S S	 Plate DOL=1 DOL=1.15); Cs=1.00; Ct: Unbalanced design. Gable requir Gable studs This truss ha chord live loa * This truss ha chord all the chord and ar * Provide mec 	snow loads have es continuous la spaced at 4-0-1 s been designe ad nonconcurre nas been design n chord in all an yy 2-00-00 wide ny other membe	sf (Lum DC Cat B; Fully ve been cor bottom chor 0 oc. ed for a 10. mt with any ned for a 1iv reas where eas where e will fit betv ers. tion (by oth	DL=1.15 Plate Exp.; Ce=0.9 nsidered for the d bearing. D psf bottom other live loa e load of 20.0 a rectangle ween the botto ers) of truss t	e); his ds. Dpsf om					
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance	Tension 1-2=-122 1-4=-209 2-4=-500	/309, 2-3=- /183, 3-4=-: /251			1 and 44 lb u 1) One H2.5A S recommende UPLIFT at jtt does not cor 2) This truss is International	plift at joint 3. Simpson Strong ed to connect tr s) 4. This conn sider lateral for	I-Tie conne uss to bear ection is for rces. cordance w ide sections	ctors ing walls due r uplift only ar ith the 2018 \$ R502.11.1 a	to nd					11,

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Exterior(2R) 3-0-5 to 5-5-9, Exterior(2E) 5-5-9 to 8-5-9 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. LOAD CASE(S) Standard



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 101 FaNC	
22030099	V7	Valley	1	1	Job Reference (optional)	50830518

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Wed Mar 16 21:50:46 ID:CX0r74LwMRUyH?AVBOuP0vyHzjj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

5-7-10

Scale = 1:28.7

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.13		n/a	(100)	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.15	• • •	n/a	-	n/a	999		21.0.100
TCDL	10.0	Rep Stress Incr	YES		WB	0.05	· · /	0.00	4	n/a	n/a		
BCLL	0.0*	Code		018/TPI2014	Matrix-MP	0.00		0.00	•		1.70	1	
BCDL	10.0											Weight: 20 lb	FT = 20%
LUMBER				5) Unbalanced	snow loads have	been cor	nsidered for t	his					
TOP CHORD	2x4 SP No.2			design.									
BOT CHORD	2x4 SP No.2			Gable requir	es continuous bo	ttom chor	d bearing.						
OTHERS	2x4 SP No.3			,	spaced at 4-0-0								
BRACING					is been designed								
TOP CHORD	Structural wood she 5-7-10 oc purlins.	athing directly applie	ed or	9) * This truss ł	ad nonconcurren nas been designe	ed for a liv	e load of 20.						
BOT CHORD	Rigid ceiling directly bracing.	applied or 6-0-0 oc		3-06-00 tall b	n chord in all are by 2-00-00 wide v	will fit betw		om					
REACTIONS	(lb/size) 1=50/5-7-10, 3=50/5-7-10, 4=351/5-7-10			10) Provide mec		on (by oth							
	Max Horiz 1=-51 (LC	; 12)		3.	e capable of with	standing a	b ib upilit at jo	nnt					
	Max Uplift 3=-5 (LC	Uplift 3=-5 (LC 15), 4=-45 (LC 14) Grav 1=96 (LC 20), 3=96 (LC 21), 4=366 (LC 20)			Simpson Strong-	Tie conne	ctors						
					ed to connect true s) 4. This connect	ss to bear	ing walls due						
FORCES	(lb) - Maximum Compression/Maximum				sider lateral forc		upint only a	iu -					
	Tension			12) This truss is			ith the 2018						
TOP CHORD	1-2=-86/139, 2-3=-8	6/139			Residential Cod			and					
BOT CHORD	1-4=-105/110, 3-4=-	105/110		R802.10.2 a	nd referenced sta	andard AN	ISI/TPI 1.						
WEBS	2-4=-240/131			LOAD CASE(S)	Standard								
NOTES				(-)									
1) Unbalance this design	ed roof live loads have h.	been considered fo	r									WITH CA	11111
0	CE 7-16; Vult=130mph	(3-second gust)									"ATH UP	HONIL	
Vacd-103	mph TCDI -6 Opef B	CDI -6 Opef. b-25ft.									~		X. 4/1 1

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

