

RE: J0322-1506 Cates\Lot 738 Lexington Plantation Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:

Customer: Lot/Block:	Project Name:	J0322-1506	
Address:			
Citv:			

Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014 Wind Code: ASCE 7-10 Roof Load: 40.0 psf Design Program: MiTek 20/20 8.4 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 30 individual, dated Truss Design Drawings and 0 Additional Drawings.

No	Sool#	Truce Nome	Dete	No	Seel#		Dete
INO.		Truss Name	Dale	INO.		Truss Name	Dale
1	E15961602	A1GE	7/21/2021	21	E15961622	M2	7/21/2022
2	E15961603	A2	7/21/2021	22	E15961623	M3	7/21/202
3	E15961604	A3	7/21/2021	23	E15961624	P1	7/21/2021
4	E15961605	A4	7/21/2021	24	E15961625	P1GE	7/21/2021
5	E15961606	A5GE	7/21/2021	25	E15961626	VC1	7/21/2021
6	E15961607	B1	7/21/2021	26	E15961627	VC2	7/21/2021
7	E15961608	B1A	7/21/2021	27	E15961628	VC3	7/21/2021
8	E15961609	B1GE	7/21/2021	28	E15961629	VC4	7/21/2021
9	E15961610	C1GE	7/21/2021	29	E15961630	VC5	7/21/2021
10	E15961611	C2GDR	7/21/2021	30	E15961631	VC6	7/21/2021
11	E15961612	D1	7/21/2021				
12	E15961613	D1GE	7/21/2021				
13	E15961614	J04	7/21/2021				
14	E15961615	J06GE	7/21/2021				
15	E15961616	J08	7/21/2021				
16	E15961617	J08A	7/21/2021				
17	E15961618	J08B	7/21/2021				
18	E15961619	J08C	7/21/2021				
19	E15961620	M1	7/21/2021				
20	E15961621	M1GDR	7/21/2021				

The truss drawing(s) referenced above have been prepared by

Truss Engineering Co. under my direct supervision

based on the parameters provided by Comtech, Inc - Fayetteville.

Truss Design Engineer's Name: Strzyzewski, Marvin

My license renewal date for the state of North Carolina is December 31, 2022

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

	2-2-0	9-0-0	12-1-0	18-0-0		27-0-0	0		36	6-0-0		
Plate Offsets (X Y)	[2:0-8-0 0-4-10] [5	·0-4-0 0-0-10] [7:0-	-4-0 0-0-10] [5-11-0 10:0-2-7 0-2-0	1 [17:0-2-15 0-1	9-0-0	, 0-2-10 0	-0-91 [20	9. 0-2-12 0-1-1	<u>-0-0</u> 1 [22·0-'	1-14 0-1-0]	
],[.1.0 _ 10,0	-],[:0.	0 2 .0,0	0 0], [20], [,	
LOADING (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	P	PLATES	GRIP
TCLL 20.0	Plate Grip D	OL 1.15	TC	0.55	Vert(LL)	-0.12	2-19	>999	360	N	/T20	244/190
TCDL 10.0	Lumber DO	L 1.15	BC	0.90	Vert(CT)	-0.26	2-19	>999	240			
BCLL 0.0 *	Rep Stress	Incr YES	WB	0.56	Horz(CT)	0.09	10	n/a	n/a			FT 00%
BCDL 10.0	Code IRC2	015/TPI2014	Matri	ix-S	Wind(LL)	0.14	2-19	>999	240	v	Veight: 337 lb	FT = 20%
LUMBER-					BRACING	i-						
TOP CHORD 2x6 SF	P No.1				TOP CHC	RD	Structu	iral wood	sheathing dir	rectly ap	plied or 4-6-1 c	c purlins.
BOT CHORD 2x8 SF	P No.1 *Except*				BOT CHC	RD	Rigid c	eiling dire	ectly applied o	or 10-0-0) oc bracing.	
2-17:2	2x6 SP No.1				WEBS		1 Row	at midpt	3	8-16, 9-1	6	
WEBS 2x4 SF	P No.2											
OTHERS 2x4 SF	P No.2											
REACTIONS. All b (Ib) - Max H Max U Max C	earings 5-9-8 excep lorz 2=327(LC 9) Jplift All uplift 100 l Grav All reactions 2	t (jt=length) 2=0-3- b or less at joint(s) 250 lb or less at joir	8. 13 except 2≕ nt(s) 12 excep	-311(LC 10), 1 ot 2=1405(LC 1	0=-201(LC 11), 1), 10=1053(LC	12=-244 1), 13=7	(LC 17) 23(LC 1)				
FORCES. (lb) - Max. TOP CHORD 2-3=	Comp./Max. Ten -2201/568, 3-5=-13-	All forces 250 (lb) 46/502, 7-9=-1342/	or less except 501, 9-10=-16	t when shown. 54/448, 5-6=-	1068/484,							
BOT CHORD 2-19 10-1	=-431/1894, 16-19= 2=-188/1241	-424/1894, 14-16=	-188/1241, 13	-14=-188/124	1, 12-13=-188/1	241,						
WEBS 3-16	=-1091/449, 6-16=-	178/817, 3-19=-5/6	23, 9-16=-377	7/320								
NOIES-	a laada haya haan d	anaidanad far thia	lasian									
2) Wind: ASCE 7 10:1	e loads have been o	102mph TCDL-6	aesign.	Onof h 15th	Cot III Evo C. E	noloood		C (onvolo				
2) Wind. ASCE 7-10, V gable end zone and 32-4-2, Exterior(2) 3 DOL=1.60	Content of the solution of the	8-15 to 3-7-14, Inte ne;C-C for membe	rior(1) 3-7-14 rs and forces	to 9-4-14, Ext & MWFRS for	reactions show	n; Lumbe	, Interior er DOL=	(1) 26-7-2 1.60 plate	2 to e grip		TH CA	Route
 Truss designed for Gable End Details a 	wind loads in the pla as applicable, or cor	ane of the truss only sult qualified buildi	 For studs e ng designer a 	exposed to wir s per ANSI/TF	nd (normal to the PI 1.	face), s	ee Stan	dard Indu	stry	J'C	Rice	A A
 Provide adequate d 	rainage to prevent v	vater ponding.								57.	in l	MAD 3
All plates are 2x4 M	T20 unless otherwis	se indicated.							-	6 . J.		
 Gable studs spaced 	at 2-0-0 oc.								=	:	SEA	1 1 1
 This truss has been This truss has been 	designed for a 10.0) pst bottom chord I	ive load nonc	oncurrent with	any other live l	bads.	0.0.1-11.1		=		JEA	
a) I his truss has been will fit between the been set of the between the b	en designed for a live	e load of 20.0pst or		nord in all are	as where a recta	angle 3-6	b-U tali b	y 2-0-0 w		-	1667	3
WIII III between the t	connection (by oth	iy other members,	$SODE = \frac{1}{2}$	10.0psi.	nding 100 lb un	ift at icin	t(c) 12 c	woont (it	.lb) 🗧	2:		: * :
3) Trovide mechanical	connection (by othe	ers, or truss to bear	ing plate capa		inding 100 ib up	nt at juin	13 13 6	sveehr (Jr=	-10)	· YA:		: 0 -

2=311, 10=201, 12=244.

P.P.J.N. 100000 July 21,2021

818 Soundside Road Edenton, NC 27932

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-15 to 3-7-14, Interior(1) 3-7-14 to 13-7-3, Exterior(2) 13-7-3 to 22-4-13, Interior(1) 22-4-13 to 32-4-2, Exterior(2) 32-4-2 to 36-8-15 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=124, 8=124.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Edenton, NC 27932

July 21,2021

Plate Offsets (X,Y)	[11:0-4-0,0-2-13], [15:0-4-0,0-2-13], [31	:0-4-0,0-4-8], [35:0-4-0,0-4	-8]					
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.05 BC 0.02 WB 0.17 Matrix-S	DEFL. i Vert(LL) -0.00 Vert(CT) 0.00 Horz(CT) 0.00	n (loc)) 1) 1 24	l/defl n/r n/r n/a	L/d 120 120 n/a	PLATES MT20 Weight: 335 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 S BOT CHORD 2x6 S OTHERS 2x4 S	P No.1 P No.1 P No.2		BRACING- TOP CHORD BOT CHORD WEBS	Structu Rigid co T-Brace	ral wood sh eiling directl e:	eathing directly ly applied or 10- 2x4 Si , 16-3	applied or 6-0-0 c -0-0 oc bracing. PF No.2 - 14-32, 1 1	oc purlins. 3-33, 12-34, 10-35

REACTIONS. All bearings 36-0-0.

- (lb) Max Horz 2=322(LC 7)
 - Max Uplift All uplift 100 lb or less at joint(s) 2, 32, 33, 34, 35, 37, 38, 39, 40, 31, 29, 28, 27, 26, 24 except 36=-103(LC 10), 41=-106(LC 10), 30=-105(LC 11), 25=-112(LC 11) Max Grav All reactions 250 lb or less at joint(s) 2, 32, 33, 34, 35, 36, 37, 38, 39,
 - Max Grav All reactions 250 lb or less at joint(s) 2, 32, 33, 34, 35, 36, 37, 38, 3 40, 41, 31, 30, 29, 28, 27, 26, 25, 24
- FORCES. (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown.
- TOP CHORD 2-3=-327/259, 9-10=-233/274, 10-11=-261/295, 11-12=-242/281, 12-13=-242/281,
 - 13-14=-242/281, 14-15=-242/281, 15-16=-261/295, 16-17=-233/259

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-8-15 to 3-7-14, Exterior(2) 3-7-14 to 11-1-4, Corner(3) 11-1-4 to 24-10-12, Exterior(2) 24-10-12 to 31-7-3, Corner(3) 31-7-3 to 36-0-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 32, 33, 34, 35, 37, 38, 39, 40, 31, 29, 28, 27, 26, 24 except (jt=lb) 36=103, 41=106, 30=105, 25=112.
- 11) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Fasten (2X) T and I braces to narrow edge of web with 10d (0.131"x3") nails, 6in o.c.,with 3in minimum end distance.

Brace must cover 90% of web length.

2) White ASCE 7-10, Valie Formpti Vasce roshipti, FCDL=8.0psi, BCDL=8.0psi, BF151, Cal. II, Exp C, Enclosed, MWFRS (envelop and C-C Exterior(2) -0-8-15 to 3-7-14, Interior(1) 3-7-14 to 10-10-3, Exterior(2) 10-10-3 to 19-7-13, Interior(1) 19-7-13 to 26-10-2, Exterior(2) 26-10-2 to 31-2-15 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=106, 8=106.

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TF	2-0-0 1.15 1.15 YES Pl2014	CSI. TC BC WB Matri	0.37 0.74 0.43 x-S	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.11 -0.26 0.07 0.09	(loc) 2-14 2-14 8 2-14	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 239 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x6 S BOT CHORD 2x8 S	P No.1 P No.1 *Except*				BRACING- TOP CHOR BOT CHOR	D D	Structu Rigid c	ral wood eiling dire	sheathing o	directly applied or 4-11-1	3 oc purlins.

 BOT CHORD
 2x8 SP No.1 *Except*

 2-11: 2x6 SP No.1

 WEBS
 2x4 SP No.2

REACTIONS. (size) 2=0-3-8, 8=0-3-8 Max Horz 2=-256(LC 8) Max Uplift 2=-107(LC 10), 8=-107(LC 11) Max Grav 2=1276(LC 17), 8=1315(LC 18)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-1953/462, 3-5=-1809/543, 5-7=-1669/528, 7-8=-1818/433

BOT CHORD 2-14=-232/1736, 10-14=0/1068, 8-10=-198/1416

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-8-15 to 3-7-14, Interior(1) 3-7-14 to 10-10-3, Exterior(2) 10-10-3 to 19-7-13, Interior(1) 19-7-13 to 26-10-2, Exterior(2) 26-10-2 to 31-2-15 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=107, 8=107.

SEAL 16673 A. STRZYTEIN July 21,2021

WEBS 3-14=-536/299, 5-14=-213/1015, 5-10=-193/808, 7-10=-510/302

F					30-6-0						
Plate Offsets (X,Y)	[10:0-3-0,0-3-8], [14:0-3-	0,0-3-8]			30-6-0						
LOADING (psf)	SPACING-	2-0-0	CSI.	0.04	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0 TCDL 10.0	Plate Grip DOL Lumber DOL	1.15 1.15	BC	0.04	Vert(LL) Vert(CT)	0.00	22 22	n/r n/r	120 120	M120	244/190
BCDL 10.0	Code IRC2015/T	PI2014	Matri	0.13 x-S	H012(CT)	0.01	22	n/a	n/a	Weight: 265 lb	FT = 20%
LUMBER-					BRACING-						
TOP CHORD 2x6 S	P No.1				TOP CHOR	D	Structu	ral wood	sheathing dir	rectly applied or 6-0-0 c	oc purlins.
BOT CHORD 2x6 S	P No.1				BOT CHOR	D	Rigid c	eiling dire	ectly applied of	or 10-0-0 oc bracing.	
OTHERS 2x4 S	P No.2				WEBS		T-Brace	e:	2	2x4 SPF No.2 - 13-30. 1	12-32, 11-33

REACTIONS. All bearings 30-6-0.

- (lb) Max Horz 2=-271(LC 8)
 - Max Uplift All uplift 100 lb or less at joint(s) 2, 30, 32, 33, 34, 36, 37, 38, 39, 29, 27, 26, 25, 24, 22 except 35=-101(LC 10), 28=-103(LC 11) Max Grav All reactions 250 lb or less at joint(s) 2, 30, 32, 33, 34, 35, 36, 37, 38, 39, 29, 28, 27, 26, 25
 - Max Grav All reactions 250 lb or less at joint(s) 2, 30, 32, 33, 34, 35, 36, 37, 38, 39, 29, 28, 27, 26, 25, 24, 22

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-275/218, 9-10=-213/251, 14-15=-213/251

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-8-15 to 3-7-14, Exterior(2) 3-7-14 to 8-4-4, Corner(3) 8-4-4 to 22-1-12, Exterior(2) 22-1-12 to 26-10-2, Corner(3) 26-10-2 to 31-2-15 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 30, 32, 33, 34, 36, 37, 38, 39, 29, 27, 26, 25, 24, 22 except (jt=lb) 35=101, 28=103.
- 11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 22.
- 12) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

Fasten (2X) T and I braces to narrow edge of web with 10d (0.131"x3") nails, 6in o.c.,with 3in minimum end distance.

Brace must cover 90% of web length.

July 21,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 July 21,202

Job	Truss	Truss Type	Qty	Ply	Cates\Lot 738 Lexington Plantation	
J0322-1506	C2GDR	HIP GIRDER	1	2	E159616	511
Comtech, Inc, Fayettev	/ille, NC - 28314,			3.430 s Jur	Job Reference (optional) n 2 2021 MiTek Industries, Inc. Wed Jul 21 13:52:29 2021 Page 1	
	4-9-1	9-4-13 12	ID:sAYSzhikgw I-7-3 16	TroF9Uz(-2-15	GDilayZT5e-s3L_PSIml1i1UYvcKlksNBvCYXwK3J7sL?DmiFyvq4G 21-0-0	
	4-9-1	4-7-12 2	-2-6 4-	7-12	4-9-1	
		6×6 —	6x6 =		Scale: 1/4	J"=1'
		3	4			
		<u>A</u>				
	10.00 12			\langle / \rangle		
	2x4 \	× //			2x4 //	
0-2-	2				°	
œ					∞ [∞]	
			//	/		
			//			
	1				° I	
0-6-0				4		
	4x8 = 10 1	1 12 9 13 14 15 8x8 =	8 16 7 $6x8 = 8x$	17 8 =	18 19 20 ⊠ 4x8 =	
	7-4-13	13	3-7-3		21-0-0	
Plate Offsets (X,Y) [1:0	-4-12,0-2-0], [6:0-4-12,0-2-0]	, [7:0-3-12,0-6-4], [9:0-3-12,0-6-4]	20			
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in	(loc)	I/defi L/d PLATES GRIP	
TCLL 20.0 TCDL 10.0	Lumber DOL 1.15	BC 0.43	Vert(LL) -0.07 Vert(CT) -0.14	6-7 6-7	>999 360 MT20 244/190 >999 240	
BCLL 0.0 * BCDL 10.0	Rep Stress Incr NO Code IRC2015/TPI2014	WB 0.46 Matrix-S	Horz(CT) 0.02 Wind(LL) 0.05	6 6-7	n/a n/a >999 240 Weight: 495 lb FT = 20%	
LUMBER-			BRACING-			
TOP CHORD2x6 SP No.BOT CHORD2x8 SP 240WEBS2x4 SP No.	.1 00F 2.0E .2		TOP CHORD BOT CHORD	Structura Rigid ce	al wood sheathing directly applied or 6-0-0 oc purlins. iling directly applied or 10-0-0 oc bracing.	
REACTIONS. (size)	1=0-3-8, 6=0-3-8					
Max Horz Max Uplift	1=-192(LC 25) 1=-629(LC 8), 6=-693(LC 9)					
Max Grav	1=7646(LC 2), 6=8430(LC 2)				
FORCES. (Ib) - Max. Con TOP CHORD 1-2=-8933	np./Max. Ten All forces 250 9/762, 2-3=-8777/807, 3-4=-{) (lb) or less except when shown. 5275/532, 4-5=-8798/808, 5-6=-8962/ 50/5595	763			
WEBS 2-9=-266/	/304, 3-9=-505/5589, 4-7=-50)8/5632, 5-7=-266/294				
NOTES-						
 3-ply truss to be connect Top chords connected as 	ted together with 10d (0.131" s follows: 2x6 - 2 rows stage	x3") nails as follows: ered at 0-9-0 oc.				
Bottom chords connecte	d as follows: $2x8 - 2$ rows sta	aggered at 0-4-0 oc.				
2) All loads are considered	equally applied to all plies, e	xcept if noted as front (F) or back (B)	face in the LOAD CA	ASE(S) s	section. Ply to	
a) Unbalanced roof live load	en provided to distribute only ds have been considered for	this design.	erwise indicated.			
 Wind: ASCE 7-10; Vult= Lumber DOL=1.60 plate 	130mph Vasd=103mph; TCE grip DOL=1.60	DL=6.0psf; BCDL=5.0psf; h=15ft; Cat.	II; Exp C; Enclosed;	MWFRS	S (envelope);	
5) Provide adequate draina6) This truss has been desi	age to prevent water ponding	nord live load nonconcurrent with any	other live loads		NOP AND AND	
 7) * This truss has been de 	signed for a live load of 20.0	osf on the bottom chord in all areas w	here a rectangle 3-6	-0 tall by	2-0-0 wide	
8) Provide mechanical con	m chord and any other memi nection (by others) of truss to	bers, with BCDL = 10.0pst. bearing plate capable of withstandin	g 100 lb uplift at joint	(s) excep	pt (jt=lb)	
1=629, 6=693. 9) Hanger(s) or other conne	ection device(s) shall be prov	ided sufficient to support concentrate	ed load(s) 1457 lb dov	wn and 1	132 lb up at 16673	
2-0-12, 1457 lb down an lb down and 132 lb up at	d 132 lb up at 4-0-12, 1457 t 10-0-12 1436 lb down and	b down and 132 lb up at 6-0-12, 144 132 lb up at 12-0-12 1457 lb down :	l9 lb down and 132 lb and 132 lb up at _14-i	oupat8	3-0-12, 1427	
and 132 lb up at 16-0-12	2, and 1457 lb down and 132	Ib up at 18-0-12, and 1459 lb down	and 130 lb up at 20-	0-12 on	bottom	
chora. The design/selec	aion of such connection devi	יש מווע ווש וששטטואטווונע טו טנחפרא.			A GINE A	
 LOAD CASE(S) Standard 1) Dead + Roof Live (balan 	ced): Lumber Increase=1.15	, Plate Increase=1.15			MA STRA	
					July 21,2021	
Continued on page 2						

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

ENGINEERING BY AMTEK AMILATE B18 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Cates\Lot 738 Lexington Plantation
					E15961611
J0322-1506	C2GDR	HIP GIRDER	1	2	
				J	Job Reference (optional)
Comtech, Inc, Fayette	ville, NC - 28314,			8.430 s Ju	2 2021 MiTek Industries, Inc. Wed Jul 21 13:52:29 2021 Page 2

ID:sAYSzhikgwTroF9UzGDilayZT5e-s3L_PSImI1i1UYvcKIksNBvCYXwK3J7sL?DmiFyvq4G

LOAD CASE(S) Standard

Uniform Loads (plf)

Vert: 1-3=-60, 3-4=-60, 4-6=-60, 1-6=-20

Concentrated Loads (lb)

Vert: 8=-1411(B) 10=-1411(B) 11=-1411(B) 12=-1411(B) 13=-1411(B) 15=-1411(B) 17=-1411(B) 18=-1411(B) 19=-1411(B) 20=-1413(B)

and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.

1 1010 011	0010 (71,17)		,									
LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.02	Vert(LL)	0.00	11	n/r	120	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.02	Vert(CT)	0.00	11	n/r	120		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.04	Horz(CT)	0.00	11	n/a	n/a		
BCDL	10.0	Code IRC2015/TI	PI2014	Matri	x-S						Weight: 106 lb	FT = 20%
	}-					BRACING-		Christer	nolod	ah aath in a di		

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 14-0-0.

2x6 SP No.1

2x4 SP No.2

(lb) -Max Horz 2=-156(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 2, 11, 15, 16, 17, 14 except 18=-145(LC 10), 13=-144(LC 11) Max Grav All reactions 250 lb or less at joint(s) 2, 11, 15, 16, 17, 18, 14, 13

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

BOT CHORD

OTHERS

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 11, 15, 16, 17, 14 except (jt=lb) 18=145, 13=144.

11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 2.

July 21,2021

			<u>3-10-8</u> 3-10-8			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.16 BC 0.12 WB 0.00 Matrix-P	DEFL. Vert(LL) -0. Vert(CT) -0. Horz(CT) -0. Wind(LL) 0.	in (loc) 0.01 2-4 0.02 2-4 0.00 3 0.00 2	l/defl L/d >999 360 >999 240 n/a n/a **** 240	PLATES GRIP MT20 244/190 Weight: 13 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1

REACTIONS. (size) 3=Mechanical, 2=0-3-8, 4=Mechanical

Max Horz 2=41(LC 6)

Max Uplift 3=-40(LC 10), 2=-57(LC 6)

Max Grav 3=101(LC 1), 2=216(LC 1), 4=73(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; porch right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.

Structural wood sheathing directly applied or 3-10-8 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.05 BC 0.02 WB 0.04 Matrix-P	DEFL. ir Vert(LL) 0.00 Vert(CT) -0.00 Horz(CT) -0.00	n (loc) l/def) 1 n/) 1 n/) 6 n/a	fl L/d /r 120 /r 120 a n/a	PLATES MT20 Weight: 27 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 S BOT CHORD 2x4 S WEBS 2x4 S	P No.1 P No.1 P No.2		BRACING- TOP CHORD BOT CHORD	Structural wo except end ve Rigid ceiling	od sheathing di erticals. directly applied (ectly applied or 6-0-0 or 10-0-0 oc bracing.	oc purlins,

TOP CHORD	2x4 SP No.1
BOT CHORD	2x4 SP No.1
WEBS	2x4 SP No.2
OTHERS	2x4 SP No.2

REACTIONS. All bearings 6-0-0.

(lb) -Max Horz 2=133(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 6, 7, 2, 8, 9 Max Grav All reactions 250 lb or less at joint(s) 6, 7, 2, 8, 9

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) -0-10-8 to 3-8-12, Exterior(2) 3-8-12 to 6-0-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable requires continuous bottom chord bearing.
- 4) Gable studs spaced at 2-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 7, 2, 8, 9.

					5-6-5					2.	-5-11	
	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.40	Vert(LL)	-0.07	2-6	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.45	Vert(CT)	-0.15	2-6	>617	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.04	Horz(CT)	-0.08	4	n/a	n/a		
BCDL	10.0	Code IRC2015/T	PI2014	Matrix	ĸ-P	Wind(LL)	0.19	2-6	>480	240	Weight: 36 lb	FT = 20%

LUMBER-

TOP CHORD2x4 SP No.1BOT CHORD2x6 SP No.1WEBS2x4 SP No.2

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 8-0-0 oc purlins. Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. (size) 4=Mechanical, 2=0-3-8, 5=Mechanical

Max Horz 2=82(LC 10)

Max Uplift 4=-25(LC 6), 2=-119(LC 6), 5=-95(LC 7) Max Grav 4=72(LC 1), 2=377(LC 1), 5=235(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 5 except (jt=lb) 2=119.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

		4-3-14 4-3-14					3-8-2		-1
LOADING (psf) TCLL 20.0	SPACING- 2-0-0 Plate Grip DOL 1.15	CSI. TC 0.22	DEFL. Vert(LL)	in -0.08	(loc) 6	l/defl >999	L/d 360	PLATES MT20	GRIP 244/190
TCDL 10.0 BCLL 0.0 * BCDL 10.0	Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	BC 0.49 WB 0.04 Matrix-P	Vert(CT) Horz(CT) Wind(LL)	-0.17 -0.10 0.21	6 4 6	>551 n/a >450	240 n/a 240	Weight: 35 lb	FT = 20%
LUMBER-			BRACING-						

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 2x6 SP No.1 BOT CHORD 2x4 SP No.2 WEBS

REACTIONS. (size) 4=Mechanical, 2=0-3-8, 5=Mechanical

Max Horz 2=66(LC 10)

Max Uplift 4=-37(LC 6), 2=-126(LC 6), 5=-86(LC 7) Max Grav 4=108(LC 1), 2=377(LC 1), 5=199(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 5 except (jt=lb) 2=126.

Structural wood sheathing directly applied or 8-0-0 oc purlins.

Rigid ceiling directly applied or 6-0-0 oc bracing.

Scale = 1:17.5

<u>3-1-8</u> 3-1-8			<u>8-0-0</u> 4-10-8
-OADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d PLATES GRIP
ICLL 20.0	Plate Grip DOL 1.15	TC 0.33	Vert(LL) -0.07 5-6 >999 360 MT20 244/190
CDL 10.0	Lumber DOL 1.15	BC 0.47	Vert(CT) -0.16 5-6 >590 240
CLL 0.0 *	Rep Stress Incr YES	WB 0.04	Horz(CT) -0.09 4 n/a n/a
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P	Wind(LL) 0.20 5-6 >477 240 Weight: 34 lb FT = 204

TOP CHORD

BOT CHORD

LUMBER-

2x4 SP No.1 TOP CHORD BOT CHORD 2x6 SP No.1 2x4 SP No.2 WFBS

REACTIONS. (size) 4=Mechanical, 2=0-3-8, 5=Mechanical

Max Horz 2=50(LC 10)

Max Uplift 4=-50(LC 6), 2=-134(LC 6), 5=-76(LC 7) Max Grav 4=144(LC 1), 2=377(LC 1), 5=184(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 5 except (jt=lb) 2=134.

Structural wood sheathing directly applied or 8-0-0 oc purlins.

Rigid ceiling directly applied or 6-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Scale = 1:17.2

	1-11-2			8-0-0	
Plate Offsets (X,Y)	[3:0-5-0,0-2-0], [4:0-3-0,0-0-8]			5-0-14	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2015/TPI2014	CSI. TC 0.74 BC 0.22 WB 0.33 Matrix-P	DEFL. ir Vert(LL) -0.02 Vert(CT) -0.04 Horz(CT) 0.01 Wind(LL) 0.01	n (loc) l/defl L/d 2 6-7 >999 360 6 6-7 >999 240 4 n/a n/a 6-7 >999 240	PLATES GRIP MT20 244/190 Weight: 42 lb FT = 20%
LUMBER- TOP CHORD 2x4 SH BOT CHORD 2x6 SH WEBS 2x4 SH	P No.1 P No.1 P No.2		BRACING- TOP CHORD BOT CHORD	Structural wood sheath except end verticals. Rigid ceiling directly ap	ing directly applied or 6-0-0 oc purlins, plied or 10-0-0 oc bracing.
REACTIONS. (siz Max H Max U Max C	e) 4=Mechanical, 6=Mechanical, 2=0- łorz 2=37(LC 27) Jplift 4=-81(LC 4), 2=-74(LC 4) Grav 4=219(LC 1), 6=237(LC 3), 2=454(LC 3), 2=454(LC 3))	3-8 _C 1)			
FORCES.(lb) - Max.TOP CHORD2-3=BOT CHORD2-7=WEBS3-7=	Comp./Max. Ten All forces 250 (lb) or -672/43 -45/567, 6-7=-32/583 0/271, 3-6=-590/32	less except when shown.			
 NOTES- 1) Unbalanced roof liv. 2) Wind: ASCE 7-10; Lumber DOL=1.60 3) Provide adequate d 4) This truss has been 5) * This truss has been 5) * This truss has been 6) Refer to girder(s) fo 7) Provide mechanical 8) Gap between inside 9) Hanger(s) or other of 1-11-2, and 42 lb do 33 lb down at 4-0-1 responsibility of oth 10) In the LOAD CASH 	e loads have been considered for this de /ult=130mph Vasd=103mph; TCDL=6.0p plate grip DOL=1.60 rainage to prevent water ponding. designed for a 10.0 psf bottom chord liv in designed for a live load of 20.0psf on t bottom chord and any other members. r truss to truss connections. connection (by others) of truss to bearin of top chord bearing and first diagonal 0 connection device(s) shall be provided st bown and 53 lb up at 4-0-12, and 42 lb do 2, and 33 lb down at 6-0-12 on bottom of ers. E(S) section, loads applied to the face of	sign. sf; BCDL=5.0psf; h=15ft; e load nonconcurrent with he bottom chord in all area ig plate capable of withsta or vertical web shall not ex ufficient to support concen wn and 53 lb up at 6-0-12 shord. The design/selection the truss are noted as from	Cat. II; Exp C; Enclosed any other live loads. as where a rectangle 3- inding 100 lb uplift at join ceed 0.500in. trated load(s) 59 lb dow 2 on top chord, and 33 ll on of such connection do nt (F) or back (B).	d; MWFRS (envelope); 6-0 tall by 2-0-0 wide ht(s) 4, 2. n and 53 lb up at b down at 2-0-12, and evice(s) is the	SEAL 16673
LOAD CASE(S) Stan 1) Dead + Roof Live (t Uniform Loads (plf) Vert: 1-3=- Concentrated Loads Vert: 3=-41	dard palanced): Lumber Increase=1.15, Plate 60, 3-4=-60, 2-5=-20 s (lb) (B) 7=-17(B) 8=-41(B) 9=-41(B) 10=-17(Increase=1.15 B) 11=-17(B)			A STRZYZE

July 21,2021

	L	10-6-0									
				10-6-0							
Plate Offsets (X	(,Y) [[2:1-1-4,0-1-7]									
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0))) *)	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.26 BC 0.35 WB 0.26 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.09 -0.19 0.01 0.20	(loc) 2-5 2-5 5 2-5	l/defl >999 >654 n/a >594	L/d 360 240 n/a 240	PLATES MT20 Weight: 54 lb	GRIP 244/190 FT = 20%	
LUMBER- TOP CHORD BOT CHORD WEBS	2x4 SP 2x6 SP 2x6 SP 3-5: 2x4	No.1 No.1 No.1 *Except* 4 SP No.2		BRACING- TOP CHOR BOT CHOR	RD RD	Structu except Rigid c	ral wood end verti eiling dire	sheathing dir cals. ectly applied c	ectly applied or 6-0-0 or 8-1-10 oc bracing.	oc purlins,	
REACTIONS.	(size) Max Ho Max Up Max Gr	e) 2=0-3-8, 5=0-1-8 brz 2=95(LC 6) blift 2=-195(LC 6), 5=-175(LC 6) rav 2=469(LC 1), 5=402(LC 1)									
FORCES. (Ib) TOP CHORD BOT CHORD WEBS	- Max. (2-3=-7 2-5=-6 3-5=-6	Comp./Max. Ten All forces 250 (lb) o 780/565 550/725 582/541	or less except when shown.								

NOTES-

- Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-10-8 to 3-6-5, Interior(1) 3-6-5 to 5-10-7, Exterior(2) 5-10-7 to 10-3-4 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 5.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=195, 5=175.

		600	10-0-0				
Plate Offsets (X,Y)	[2:1-1-4,0-0-15]	0-0-0			4-0-0		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrNOCodeIRC2015/TPI2014	CSI. TC 0.63 BC 0.49 WB 0.64 Matrix-S	DEFL. in Vert(LL) -0.05 Vert(CT) -0.10 Horz(CT) 0.02 Wind(LL) 0.05	(loc) I/defl L/d 2-8 >999 360 2-8 >999 240 7 n/a n/a 2-8 >999 240	PLATES GRIP MT20 244/190 Weight: 53 lb FT = 20%		
LUMBER- TOP CHORD 2x4 S BOT CHORD 2x6 S WEBS 2x4 S	P No.1 P No.1 P No.2		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing d except end verticals. Rigid ceiling directly applied	irectly applied or 3-7-5 oc purlins, or 10-0-0 oc bracing.		
REACTIONS. (siz	ze) 7=Mechanical, 2=0-3-8						

Max Horz 2=96(LC 19) Max Uplift 7=-398(LC 4), 2=-255(LC 4) Max Grav 7=1088(LC 1), 2=811(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-1916/542

BOT CHORD 2-8=-578/1807, 7-8=-578/1807

WEBS 3-8=-127/619, 3-7=-1869/594

NOTES-

- Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); porch left exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 7=398, 2=255.
- 6) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 159 lb down and 94 lb up at 3-11-4, 84 lb down and 62 lb up at 5-11-4, and 48 lb down and 50 lb up at 7-11-4, and 31 lb down and 33 lb up at 9-11-4 on top chord, and 197 lb down at 3-11-4, 144 lb down and 96 lb up at 5-11-4, and 179 lb down and 106 lb up at 7-11-4, and 220 lb down and 111 lb up at 9-11-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 7) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-4=-60, 4-5=-20, 2-6=-20
 - Concentrated Loads (lb)
 - Vert: 4=-31(F) 7=-220(F) 3=-84(F) 8=-143(F) 9=-159(F) 10=-48(F) 11=-155(F) 12=-179(F)

			5-0-0		
Plate Offsets (X,Y)	[2:1-1-4,0-1-7]				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.27 BC 0.08 WB 0.00 Matrix-P	DEFL. ir Vert(LL) -0.01 Vert(CT) -0.01 Horz(CT) 0.00 Wind(LL) 0.01	n (loc) l/defl L/d 2-4 >999 360 2-4 >999 240 n/a n/a 2-4 >999 240	PLATES GRIP MT20 244/190 Weight: 22 lb FT = 20%
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x6 SF WEBS 2x6 SF	P No.1 P No.1 P No.1	· / _	BRACING- TOP CHORD BOT CHORD	Structural wood sheathing of except end verticals. Rigid ceiling directly applied	directly applied or 5-0-0 oc purlins, d or 10-0-0 oc bracing.

REACTIONS. (size) 2=0-3-8, 4=0-1-8 Max Horz 2=50(LC 6) Max Uplift 2=-113(LC 6), 4=-76(LC 6) Max Grav 2=253(LC 1), 4=178(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 2=113.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

		4-0-0								
	4-0-0									
Plate Offsets (X,Y)	[2:1-1-4,0-1-7]									
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. ir	n (loc) l/defl	L/d	PLATES	GRIP			
FCLL 20.0	Plate Grip DOL 1.15	TC 0.15	Vert(LL) -0.00	2-4 >999	360	MT20	244/190			
TCDL 10.0	Lumber DOL 1.15	BC 0.05	Vert(CT) -0.00	2-4 >999	240					
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) 0.00	n/a	n/a					
3CDL 10.0	Code IRC2015/TPI2014	Matrix-P	Wind(LL) 0.01	2-4 >999	240	Weight: 18 lb	FT = 20%			
-UMBER-	No.1	BRACING- TOP CHORD	Structural wood	sheathing directly a	applied or 4-0-0	oc purlins.				
					!-		oo parinio,			

BOT CHORD2x6 SP No.1TOP CHORDStructural wood shearning directly applied of 4-0-0 oc purlins,
except end verticals.WEBS2x6 SP No.1BOT CHORDRigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 4=0-1-8, 2=0-3-8 Max Horz 2=42(LC 6) Max Uplift 4=-58(LC 6), 2=-99(LC 6) Max Grav 4=136(LC 1), 2=215(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2.

L	6-0-0		12-0-0
I	6-0-0		6-0-0
Plate Offsets (X,Y)	[2:0-2-9,0-1-8], [4:0-2-9,0-1-8]		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.37 BC 0.30 WB 0.06 Matrix-S	DEFL. in (loc) I/defl L/d PLATES GRIP Vert(LL) 0.08 2-6 >999 240 MT20 244/190 Vert(CT) -0.07 2-6 >999 240 MT20 244/190 Horz(CT) 0.01 4 n/a n/a Weight: 42 lb FT = 20%
LUMBER- TOP CHORD 2x4 S BOT CHORD 2x4 S WEBS 2x4 S	SP No.1 SP No.1 SP No.2		BRACING-TOP CHORDStructural wood sheathing directly applied or 6-0-0 oc purlins.BOT CHORDRigid ceiling directly applied or 6-7-0 oc bracing.
REACTIONS. (s Max Max Max	ze) 2=0-3-8, 4=0-3-8 Horz 2=-27(LC 11) Uplift 2=-217(LC 6), 4=-217(LC 7) Grav 2=530(LC 1), 4=530(LC 1)		
FORCES.(lb) - MaxTOP CHORD2-3BOT CHORD2-6WEBS3-6	 Comp./Max. Ten All forces 250 (lb) or =-836/979, 3-4=-836/979 =-837/732, 4-6=-837/732 =-372/281 	less except when shown.	
NOTES-			

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=217, 4=217.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A MiTek Affilia

818 Soundside Road Edenton, NC 27932

Scale = 1:22.0

		+ <u>12-0-0</u> 6-0-0							
.OADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL 20.0	Plate Grip DOL 1.15	TC 0.37	Vert(LL)	-0.03	2-6	>999	360	MT20	244/190
CDL 10.0	Lumber DOL 1.15	BC 0.30	Vert(CT)	-0.07	2-6	>999	240		
CLL 0.0 *	Rep Stress Incr YES	WB 0.06	Horz(CT)	0.01	4	n/a	n/a		
BCDL 10.0	Code IRC2015/TPI2014	Matrix-S	Wind(LL)	0.03	2-6	>999	240	Weight: 48 lb	FT = 20%

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD	2x4 SP No.1
BOT CHORD	2x4 SP No.1
WEBS	2x4 SP No.2
OTHERS	2x4 SP No 2

REACTIONS. (size) 2=0-3-8, 4=0-3-8 Max Horz 2=-46(LC 11) Max Uplift 2=-174(LC 6), 4=-174(LC 7) Max Grav 2=530(LC 1), 4=530(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

2-3=-836/341, 3-4=-836/341 TOP CHORD

BOT CHORD 2-6=-234/732, 4-6=-234/732 WFBS 3-6=0/281

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.

5) Gable studs spaced at 2-0-0 oc.

- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=174, 4=174.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

 $6)^{\circ}$ This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7 except (jt=lb) 1=125, 12=149, 13=111, 9=149, 8=111.

NOTES-

 Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 Orthe particular discussion of the particular discussion of the particular discussion.

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 8=149, 6=149.

¹⁾ Unbalanced roof live loads have been considered for this design.

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=130, 6=130.

							<u> </u>		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.18 BC 0.13 WB 0.04 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (n/a n/a 0.00	(loc) l/c - - 3	lefl L/d n/a 999 n/a 999 n/a n/a	PLATES MT20 Weight: 34 lb	GRIP 244/190 FT = 20%	
LUMBER-			BRACING-						

TOP CHORD

BOT CHORD

LUMBER-

2x4 SP No.1 TOP CHORD BOT CHORD 2x4 SP No.1 2x4 SP No.2 OTHERS

REACTIONS. (size) 1=9-0-4, 3=9-0-4, 4=9-0-4

Max Horz 1=83(LC 7)

Max Uplift 1=-23(LC 11), 3=-30(LC 11)

Max Grav 1=177(LC 1), 3=177(LC 1), 4=309(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD

BOT CHORD

TOP CHORD

2x4 SP No.1 BOT CHORD 2x4 SP No.1 2x4 SP No.2 OTHERS

REACTIONS. (size) 1=5-9-13, 3=5-9-13, 4=5-9-13 Max Horz 1=-51(LC 6)

Max Uplift 1=-20(LC 11), 3=-24(LC 11)

Max Grav 1=118(LC 1), 3=118(LC 1), 4=172(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

Structural wood sheathing directly applied or 5-10-12 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

2x4 1/

2x4 📎

	0-0-7 0-0-7		2-8-5 2-7-14		—		
_							
	SPACING- 2-0-0	CSI.	DEFL.	in (loc) l/defl L/d	PLATES	GRIP	

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2015/TPI2014	CSI. TC 0.01 BC 0.03 WB 0.00 Matrix-P	DEFL. ii Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.00	n (loc) l/defl L/d a - n/a 999 a - n/a 999 0 3 n/a n/a	PLATES GRIP MT20 244/190 Weight: 8 lb FT = 20%
LUMBER- TOP CHORD 2x4 BOT CHORD 2x4	SP No.1 SP No.1		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing di Rigid ceiling directly applied	rectly applied or 2-8-5 oc purlins. or 10-0-0 oc bracing.

Plate Offsets (X,Y)--

REACTIONS. (size) 1=2-7-7, 3=2-7-7

Max Horz 1=19(LC 7) Max Uplift 1=-5(LC 10), 3=-5(LC 11)

Max Grav 1=76(LC 1), 3=76(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=5.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

