

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 22030102 DRB - 100 FARM AT NEILLS CREEK

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Sanford, NC)).

Pages or sheets covered by this seal: I51256987 thru I51257022

My license renewal date for the state of North Carolina is December 31, 2022.

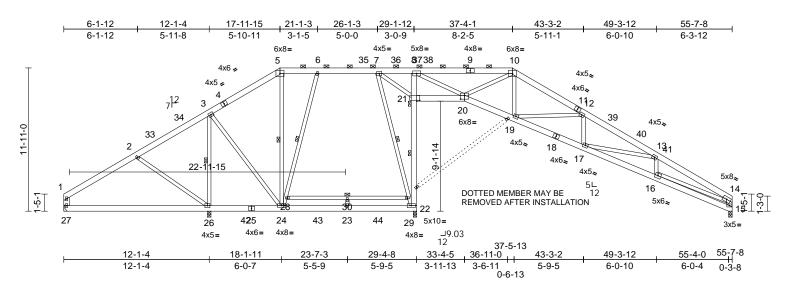
North Carolina COA: C-0844

April 8,2022

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	DRB - 100 FARM AT NEILLS CREEK	
22030102	A01	Piggyback Base	3	1	Job Reference (optional)	151256987


Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Thu Apr 07 20:54:32 ID:vmWSYKxMeSKeeaoGnh3QrczhvSE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

818 Soundside Road Edenton, NC 27932

6-5-4 12-4-12 18-3-7 21-4-11 26-4-11 29-5-4 37-7-9 43-6-10 49-7-4 55-11-0 6-5-4 5-11-8 5-10-11 3-1-5 5-0-0 3-0-9 8-2-5 5-11-1 6-0-10 6-3-12 6x8= 2x4 I 4x5= 5x8= 4x8 =6x8= 6 7 40 8 41 <u>942</u>43 10 11 4x6 💋 4x5 4x5 🖌 4x6。 5 7¹² 22 123 4 21 Q 39 2x4, 6x8= 4x5。 1-11-0 20 38 45 2x4 🏑 37³ 146 19 9-1-14 4x5. 18 4x6. 4x5 4x5~ 5L 17 15 12 -3-0 DOTTED MEMBER MAY BE 5x6. 劧 REMOVED AFTER INSTALLATION 23 16 4**2**6 25 48 24 49 5x10= 29 27 10x12 4x6= 4x8= 2x4 🛛 4x5= **J**9.03 5x10 i 2x4= 12 2x4 ı 2x4= 4x8= 2x4 . 37-9-5 55-11-0 12-4-12 18-5-3 23-10-11 29-8-0 33-7-13 37-2-8 43-6-10 49-7-4 55-7-8 12-4-12 6-0-7 5-5-9 5-9-5 3-11-13 3-6-11 5-9-5 6-0-10 6-0-4 0-3-8 0-6-13 Scale = 1:93.6 Plate Offsets (X, Y): [16:0-4-4,0-3-8], [21:0-4-0,0-3-8], [22:0-3-0,0-0-12] 2-0-0 CSI DEFL in l/defl L/d PLATES GRIP Loading (psf) Spacing (loc) TCLL (roof) 20.0 Plate Grip DOL 1.15 тс 0.56 Vert(LL) -0.20 17-18 >999 240 MT20 244/190 Snow (Pf) 20.0 Lumber DOL 1.15 BC 0.69 Vert(CT) -0.34 24 >595 180 TCDL WB Horz(CT) 10.0 Rep Stress Incr YES 0.84 0.16 16 n/a n/a BCLL 0.0 Code IRC2018/TPI2014 Matrix-MSH Weight: 483 lb BCDL 10.0 FT = 20% LUMBER WEBS 9-21=-75/2018, 11-21=-566/226, 9) * This truss has been designed for a live load of 20.0psf 11-20=-107/865, 15-17=-367/2541, on the bottom chord in all areas where a rectangle TOP CHORD 2x6 SP No.2 3-27=-524/190, 4-27=-1464/91, 4-25=0/951, 3-06-00 tall by 2-00-00 wide will fit between the bottom BOT CHORD 2x6 SP No.2 6-25=-400/83, 25-28=-220/220, chord and any other members, with BCDL = 10.0psf. WEBS 2x4 SP No.3 *Except* 16-15:2x6 SP No.2, 17-15,25-6,25-7,23-8,28-29:2x4 SP No.2 7-28=-190/243. 8-29=-273/374 10) Bearing at joint(s) 16 considers parallel to grain value 23-29=-294/356. 8-22=-1072/346. using ANSI/TPI 1 angle to grain formula. Building SLIDER Left 2x6 SP No.2 -- 1-6-0 28-30=-36/32, 29-30=-36/32, 24-30=0/60. designer should verify capacity of bearing surface. BRACING 13-20=-1292/334. 13-18=0/324 11) One H2.5A Simpson Strong-Tie connectors TOP CHORD Structural wood sheathing directly applied or 14-18=-304/168, 14-17=-295/140 recommended to connect truss to bearing walls due to 3-9-7 oc purlins, except end verticals, and UPLIFT at jt(s) 1, 16, 27, and 23. This connection is for NOTES 2-0-0 oc purlins (6-0-0 max.): 6-11. uplift only and does not consider lateral forces. Unbalanced roof live loads have been considered for BOT CHORD Rigid ceiling directly applied or 6-0-0 oc 1) 12) This truss is designed in accordance with the 2018 this design. bracing. Except: International Residential Code sections R502.11.1 and Wind: ASCE 7-16; Vult=130mph (3-second gust) 5-2-0 oc bracing: 22-23 R802.10.2 and referenced standard ANSI/TPI 1. Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; WEBS 1 Row at midpt 4-27. 6-25. 7-25. 8-23. 13) Graphical purlin representation does not depict the size Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior 28-29 or the orientation of the purlin along the top and/or zone and C-C Exterior(2E) 0-0-0 to 5-7-2, Interior (1) JOINTS 1 Brace at Jt(s): 22 5-7-2 to 10-4-9, Exterior(2R) 10-4-9 to 26-4-0, Interior bottom chord. **REACTIONS** (lb/size) 1=153/0-3-8, 16=991/0-3-8, (1) 26-4-0 to 29-5-4, Exterior(2R) 29-5-4 to 45-6-7, LOAD CASE(S) Standard 23=1768/0-3-8, 27=1743/0-3-8 Interior (1) 45-6-7 to 50-1-2, Exterior(2E) 50-1-2 to Max Horiz 1=272 (LC 13) 55-8-4 zone; cantilever left and right exposed ; end Max Uplift 1=-170 (LC 15), 16=-205 (LC 15), vertical left and right exposed;C-C for members and 23=-7 (LC 15), 27=-129 (LC 14) forces & MWFRS for reactions shown; Lumber 1=312 (LC 48), 16=1222 (LC 48), Max Grav DOL=1.60 plate grip DOL=1.60 CAF 23=1935 (LC 43), 27=2022 (LC 34) 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 FORCES (Ib) - Maximum Compression/Maximum C Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate Tension DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; TOP CHORD 1-3=-671/553, 3-4=-147/755, 4-6=-247/274, Cs=1.00; Ct=1.10 6-7=-182/254, 7-8=-184/281, 8-9=0/825, 4) Unbalanced snow loads have been considered for this 9-11=-1086/118, 11-13=-1920/317, SEAL design. 13-14=-3292/547, 14-15=-3489/600, 200.0lb AC unit load placed on the bottom chord, 5) 036322 15-16=-1272/269 23-11-0 from left end, supported at two points, 5-0-0 BOT CHORD 1-27=-352/123, 25-27=-547/0 apart. 24-25=-104/137, 23-24=-104/137 6) Provide adequate drainage to prevent water ponding. 22-23=-1727/430, 9-22=-1091/246, 7) All plates are 2x4 MT20 unless otherwise indicated. 21-22=-766/324, 20-21=0/1646. This truss has been designed for a 10.0 psf bottom 8) 18-20=-311/3031, 17-18=-494/3198 chord live load nonconcurrent with any other live loads. GI 16-17=-111/545 minin April 8,2022

Job	Truss	Truss Type	Qty	Ply	DRB - 100 FARM AT NEILLS CREEK	
22030102	A02	Piggyback Base	4	1	Job Reference (ontional)	151256988

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Thu Apr 07 20:54:35 ID:vmWSYKxMeSKeeaoGnh3QrczhvSE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:95.9

Plate Offsets (X, Y): [20:0-4-0,0-3-8], [21:0-3-0,0-0-12]

Loading TCLL (roof) Snow (Pf) TCDL	(psf) 20.0 20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI TC BC WB	0.75 0.70 0.83	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 16-17 23-24 15	l/defl >999 >549 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190		
BCLL BCDL	0.0* 10.0	Code	IRC2018/TP								Weight: 480 lb	FT = 20%		
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	No.2, 16-14,24-5,24 No.2 Structural wood she 3-8-14 oc purlins, e 2-0-0 oc purlins (5-6		WEBS	10-19=-112/86 2-26=-435/222, 5-24=-395/83, 2 7-29=-783/468,	5, 22-23=-1 95, 8-21=-1 9, 19-20=0/ 9, 16-17=- 9, 10-20=-5 5, 14-16=-3 3-26=-144 24-28=-41/2 22-29=-82	43/325, 014/358, 1739, 416/3251, 26/355, 00/2586, 3/165, 3-24=0/ 327, 6-28=-10/3 7/458,	/704,	 All (This cho Th cho * Th on 1 3-00 cho 10) Ref 11) Bea usir 	plates and s truss he and live lo ins truss the botto 6-00 tall and and a fer to gine aring at j ang ANSI.	re 2x4 has bee bad not has be bom cho by 2-0 any oth der(s) f oint(s) /TPI 1	MT20 unless other an designed for a nconcurrent with seen designed for rd in all areas wh 10-00 wide will fit er members, with for truss to truss 15 considers par angle to grain for	10.0 psf bottom any other live loads. a live load of 20.0psf ere a rectangle between the bottom h BCDL = 10.0psf. connections. allel to grain value mula. Building		
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing, Except: 6-0-0 oc bracing: 24-26. 5-5-0 oc bracing: 21-22 WEBS 1 Row at midpt 3-26, 5-24, 6-24, 7-22,				7-21=-1114/605, 28-30=-72/35, 29-30=-72/35, 23-30=0/61, 12-19=-1294/346, 12-17=0/324, 13-17=-305/194, 13-16=-301/130, 1-27=-124/88						 designer should verify capacity of bearing surface. 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 27 lb uplift at joint 27. 13) One H2.5A Simpson Strong-Tie connectors 				
JOINTS	1 Brace at Jt(s): 21	28-29	7 NOTE 1) Ur	s balanced roof live loads	nave been	considered for						nnectors bearing walls due to		
	(Ib/size) 15=1004/ 26=1589/ Mechanic Max Horiz 27=269 (I Max Uplift 15=-181 (27=-27 (L Max Grav 15=1218	LC 13) LC 15), 26=-192 (LC LC 14)	2) W Va Ca 14), 6-: (1) (LC 55	s design. nd: ASCE 7-16; Vult=130 sd=103mph; TCDL=6.0p t. II; Exp B; Enclosed; M ne and C-C Exterior(2E) 2-12 to 10-4-9, Exterior(2 26-4-0 to 29-5-4, Exterior erior (1) 45-6-7 to 50-1-2 -8-4 zone; cantilever left	sf; BCDL=6 WFRS (env)-6-4 to 6-2 R) 10-4-9 to r(2R) 29-5 Exterior(2 and right ex	6.0psf; h=25ft; elope) exterior -12, Interior (1 o 26-4-0, Interio 4 to 45-6-7, E) 50-1-2 to posed ; end	r)	only 14) This Inte	y and do s truss is ernationa	es not s desig al Resid	consider lateral f ned in accordance	e with the 2018 ions R502.11.1 and		
FORCES	(lb) - Maximum Com Tension	pression/Maximum	foi	rtical left and right expose ces & MWFRS for reaction	ons shown;						Q 0 0			
TOP CHORD	1-2=-48/124, 2-3=-1		3) TC 6, Pla DC Cs 4) Ur de 5) 20	DL=1.60 plate grip DOL= LL: ASCE 7-16; Pr=20.0 p ate DOL=1.15); Pf=20.0 p DL=1.15); Is=1.0; Rough =1.00; Ct=1.10 balanced snow loads hav sign. 0.0lb AC unit load placed m left end, supported at t	psf (roof Ll sf (Lum DC Cat B; Fully ve been co on the bot	DL=1.15 Plate Exp.; Ce=0.9; insidered for thi com chord, 23-	; is		111100	A A A A A A A A A A A A A A A A A A A	SEA 0363	EER.K		

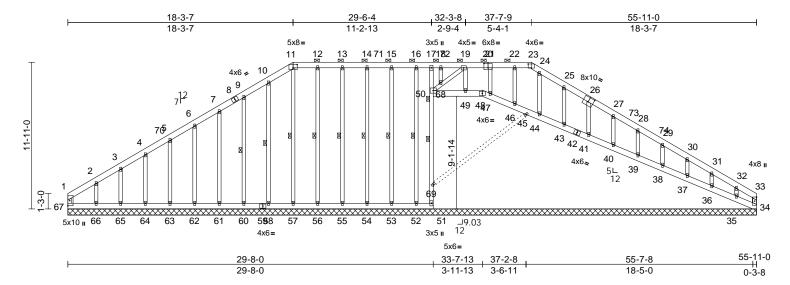
Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev, 5/19/2020 BEFORE USE WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2/2/2/ BE-VRE USE. Design valid for use only with MITEK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB - 100 FARM AT NEILLS CREEK	
22030102	A02	Piggyback Base	4	1	Job Reference (optional)	151256988
Carter Components (Sanford), S	anford, NC - 27332,	Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Thu Apr 07 20:54:35				

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Thu Apr 07 20:54:35 ID:vmWSYKxMeSKeeaoGnh3QrczhvSE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.


LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	DRB - 100 FARM AT NEILLS CREEK	
22030102	A03	Piggyback Base Supported Gable	1	1	Job Reference (optional)	151256989

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Thu Apr 07 20:54:36 ID:ACS0SGCfmETEfJzgbpcWMMzhrbI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:93.6

Plate Offsets ((X, Y): [11:0-4-0,0-3	-3], [20:0-4-0,0-4-4], [2	23:0-3-0,0-3-12], [26:	0-5-0,0-4-8]								
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-	0.35 0.47 0.23 MSH	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.03	(loc) - - 45	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 524 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING	2x6 SP No.2 2x6 SP No.2 *Exc 2x4 SP No.3 2x4 SP No.3 *Exc	ept* 51-17:2x4 SP No. ept* ,54-14,53-15,52-16:22		Max Uplift	35=-96 (LC 15), 37=-50 (LC 15), 39=-50 (LC 15), 41=-50 (LC 15), 44=-490 (LC 37), 51=-14 (LC 37), 53=-20 (LC 11), 55=-31 (LC 10),	38=-48 (LC 40=-45 (LC 43=-68 (LC , 45=-114 (L 52=-9 (LC 1 54=-27 (LC	15), 15), 15), C 11), 0), 10),	TOP CI	HORD	3-4=-2 6-7=-2 10-11 12-13 14-15 16-17	218/195, 1-2=-3 278/293, 4-5=-26	35/331, 2-3=-284/2 4/289, 5-6=-251/30 4/360, 9-10=-231/3 =-223/379, =-223/379, =-223/379, =-223/379, =-223/379,
TOP CHORD	6-0-0 oc purlins, 6 2-0-0 oc purlins (6				57=-34 (LC 13), 60=-56 (LC 14), 62=-49 (LC 14), 64=-53 (LC 14),	61=-49 (LC 63=-48 (LC	14), 14),			23-24 25-27	2=-250/327, 22-23 =-238/309, 24-25 2=-251/299, 27-28 1=-174/165, 29-30	=-275/353, =-200/211,
BOT CHORD	Rigid ceiling direct bracing. Except: 6-0-0 oc bracing:	tly applied or 6-0-0 oc 50-69		Max Gray	66=-170 (LC 11) 69=-84 (LC 11) 34=132 (LC 37).	, 67=-253 (L	.C 10),			30-31	=-174/103, 29-30 =-154/75, 31-32= 5=-173/19, 33-34=	-148/30,
WEBS JOINTS REACTIONS	36=169 38=156 40=157 43=180 45=694/ 52=94/ 54=159 56=159	9-60, 10-58, 11-57, 12-56, 13-55, 14-54 15-53, 16-52 0 /55-11-0, 35=77/55-11 /55-11-0, 39=154/55- /55-11-0, 39=154/55- /55-11-0, 41=44/55-1 /55-11-0, 51=-8/55-11 /55-11-0, 53=120/55-1 /55-11-0, 55=156/55-1 /55-11-0, 60=155/55-1	-0, 1-0, 1-0, 1-0, 11-0, -0, -0, 1-		36=169 (LC 24), 38=183 (LC 42), 43=258 (LC 42), 43=258 (LC 42), 45=963 (LC 37), 52=95 (LC 54), 54=219 (LC 37), 56=219 (LC 37), 58=236 (LC 40), 61=233 (LC 40), 63=205 (LC 40), 65=148 (LC 38), 67=304 (LC 13),	37=161 (LC 39=235 (LC 41=225 (LC 44=122 (LC 51=14 (LC 53=134 (LC 55=220 (LC 57=204 (LC 60=236 (LC 62=235 (LC 64=169 (LC 66=310 (LC 69=588 (LC	2 48), 2 42), 2 42), 2 10), 10), 37), 2 37), 2 51), 2 40), 2 40), 2 40), 2 33, 2 33, 2 37)		C	25	ORTH CA	ROJA
	61=155 63=155 65=148	/55-11-0, 62=155/55-1 /55-11-0, 64=156/55-1 /55-11-0, 66=185/55-1 55-11-0, 69=436/55-11	1-0, FORCES 1-0, 1-0,	(Ib) - Max Tension	imum Compressi	on/Maximum	1			A A A A A A A A A A A A A A A A A A A	SEA 0363	L 22 ILBERTITI

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	DRB - 100 FARM AT NEILLS CREEK			
22030102	A03	Piggyback Base Supported Gable	1	1	Job Reference (optional)	151256989
Carter Components (Sanford	. Sanford, NC - 27332.	Run: 8.53 S Dec 6 2	2021 Print: 8.	530 S Dec 6	2021 MiTek Industries, Inc. Thu Apr 07 20:54:36	Page: 2

BOT CHORD 66-67=-7/2 65-66=-7/2 64-65=-7/2 63-64=-7/2, 62-63=-7/2, 61-62=-7/2, 60-61=-7/2, 58-60=-7/2, 57-58=-7/2, 56-57=-7/2, 55-56=-7/2, 54-55=-7/2, 53-54=-7/2, 52-53=-7/2, 51-52=-7/2, 51-69=0/0. 50-69=-588/84. 17-50=-377/95. 49-50=-24/118, 48-49=-24/118, 47-48=-27/114, 46-47=-30/117, 45-46=-58/59, 44-45=-53/326, 43-44=-28/118, 41-43=-30/140, 40-41=-29/134, 39-40=-29/137, 38-39=-29/137, 37-38=-29/137, 36-37=-29/136, 35-36=-30/140, 34-35=-25/119 WEBS 2-66=-197/123, 3-65=-113/65, 4-64=-124/73, 5-63=-167/72, 6-62=-197/72, 7-61=-194/72, 9-60=-197/79, 10-58=-198/57, 11-57=-166/73, 12-56=-180/53. 13-55=-182/54, 14-54=-180/50, 15-53=-98/43, 16-52=-42/28, 18-68=-21/5, 19-49=0/76. 21-47=-2/57. 22-46=-345/72. 24-44=-139/28, 25-43=-189/98,

NOTES

1) Unbalanced roof live loads have been considered for this design.

19-68 = -165/29

26-41=-193/71, 27-40=-190/69, 28-39=-197/73, 29-38=-144/72, 30-37=-122/72, 31-36=-127/70, 32-35=-108/91, 50-68=-179/33,

- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) 0-1-12 to 5-8-14, Exterior(2N) 5-8-14 to 12-8-5, Corner(3R) 12-8-5 to 23-10-8, Exterior (2N) 23-10-8 to 32-0-8, Corner(3R) 32-0-8 to 43-2-11, Exterior(2N) 43-2-11 to 50-2-2, Corner(3E) 50-2-2 to 55-9-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this 5) desian.
- 6) Provide adequate drainage to prevent water ponding.
- 7) All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing. 8)
- Truss to be fully sheathed from one face or securely 9) braced against lateral movement (i.e. diagonal web). 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 13) Bearing at joint(s) 69 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 14 lb uplift at joint 51.
- 15) N/A
 - WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

surface with truss chord at joint(s) 44, 43, 41, 40, 39, 38, 37. 36. 35. 45. 18) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 19) Graphical purlin representation does not depict the size

ID:ACS0SGCfmETEfJzgbpcWMMzhrbl-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

or the orientation of the purlin along the top and/or bottom chord.

17) Beveled plate or shim required to provide full bearing

LOAD CASE(S) Standard

16) N/A

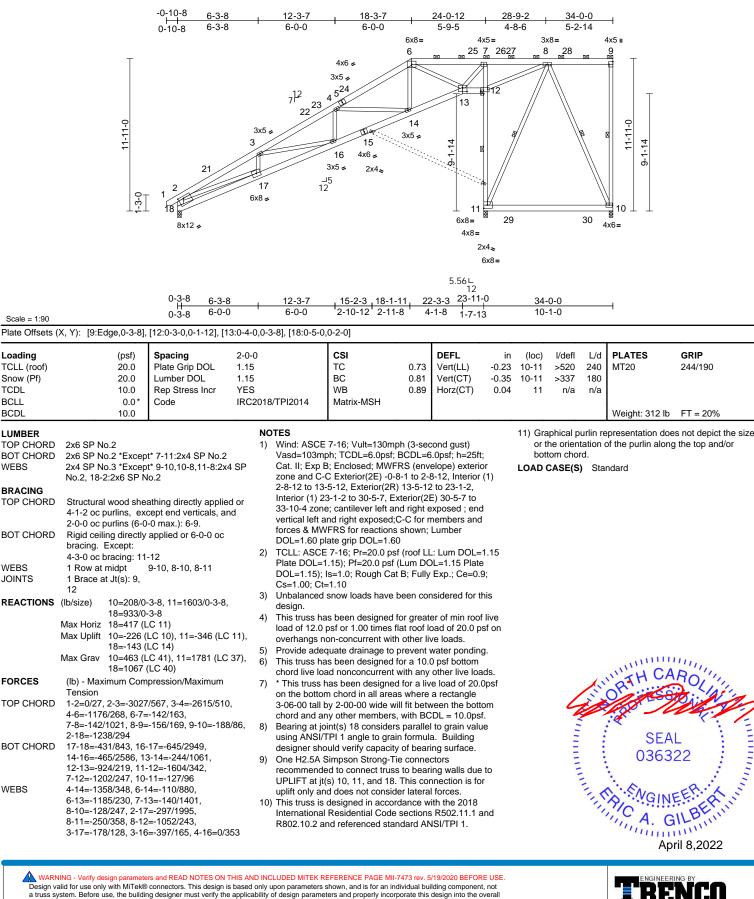
Job	Truss	Truss Type	Qty	Ply	DRB - 100 FARM AT NEILLS CREEK		
22030102	B01	Piggyback Base	4	1	Job Reference (optional)	151256990	

TCDL

BCLL

BCDL

WEBS


WEBS

WEBS

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Thu Apr 07 20:54:38 ID:wEsxu2PHLUbbwrpGGIKVTFzhpmq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Job	Truss	Truss Type	Qty	Ply	DRB - 100 FARM AT NEILLS CREEK	
22030102	B02	Monopitch	3	1	Job Reference (optional)	151256991

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Thu Apr 07 20:54:38 ID:pLkbZTU6Oqpz5W7NzURNa0zhpIR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

April 8,2022

818 Soundside Road Edenton, NC 27932

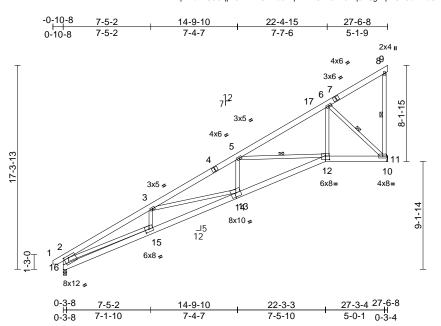
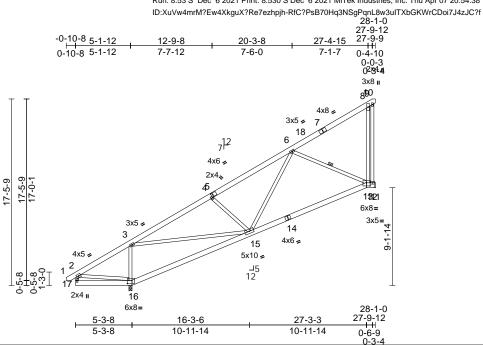


Plate Offsets (X, Y): [12:0-4-0,0-3-8], [15:0-4-0,0-2-12], [16:0-5-0,0-2-0]


	,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,	j, [10.0 + 0,0 Z 12], [1	10.0 0 0,0	2 0]									
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.48 0.66 0.93	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.19 -0.37 0.13	(loc) 13-15 13-15 11	l/defl >999 >885 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 214 lb	GRIP 244/190 FT = 20%
	3-7-5 oc purlins, exe Rigid ceiling directly bracing. 1 Row at midpt	athing directly applied cept end verticals. applied or 7-2-7 oc 8-11, 6-11, 5-12 Mechanical, 0-3-8 .C 11) LC 14), 16=-62 (LC 1	3) d or 4) 5) 6) 4)	Plate DOL=1 DOL=1.15); Cs=1.00; Ct Unbalanced design. This truss ha load of 12.0 overhangs n This truss ha chord live loa * This truss ha chord and an	57-16; Pr=20.0 ps .15); Pf=20.0 ps ls=1.0; Rough Cat =1.10 snow loads have I as been designed f psf or 1.00 times f on-concurrent with as been designed ad nonconcurrent has been designed n chord in all area by 2-00-00 wide wi by other members.	(Lum DC B; Fully been co for great lat roof I n other li for a 10. with any I for a liv s where ill fit betw	DL=1.15 Plate Exp.; Ce=0.9 nsidered for t er of min root oad of 20.0 p ve loads. 0 psf bottom other live loa re load of 20 a rectangle veen the bott	e 9; his f live sf on ads. 0psf					
FORCES	5-6=-1464/250, 6-8=	3/697, 3-5=-2899/573, -169/99, 8-9=-15/0,	8) , 9)	using ANSI/ designer sho Provide med	int(s) 16 considers (FPI 1 angle to grain build verify capacity hanical connection	n formul of bear n (by oth	a. Building ing surface. ers) of truss	to					
BOT CHORD	8-11=-233/50, 2-16= 15-16=-655/956, 13- 12-13=-771/2677, 11 10-11=0/0	15=-1043/3216,	10	joint 11.) One H2.5A \$	e capable of withst Simpson Strong-Ti ed to connect truss	e conne	ctors					TH CA	Rojin
Vasd=103 Cat. II; Exp zone and 0 2-3-15 to 2 cantilever right expos	CE 7-16; Vult=130mph mph; TCDL=6.0psf; B(p B; Enclosed; MWFR: C-C Exterior(2E) -0-8- 24-6-8, Exterior(2E) 24 left and right exposed sed;C-C for members a ns shown; Lumber DO	5=-173/145, =0/421, 5-12=-1359/4 (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior 1 to 2-3-15, Interior (1 -6-8 to 27-6-8 zone; ; end vertical left and and forces & MWFRS)	UPLIFT at jt does not cor) This truss is International	s) 16. This connect sider lateral forces designed in accor Residential Code nd referenced star	ction is f s. dance w sections	or uplift only a ith the 2018 3 R502.11.1 a	and				- MILLIN	22 EER.X

Job	Truss	Truss Type	Qty	Ply	DRB - 100 FARM AT NEILLS CREEK	
22030102	B03	Monopitch	3	1	Job Reference (optional)	151256992

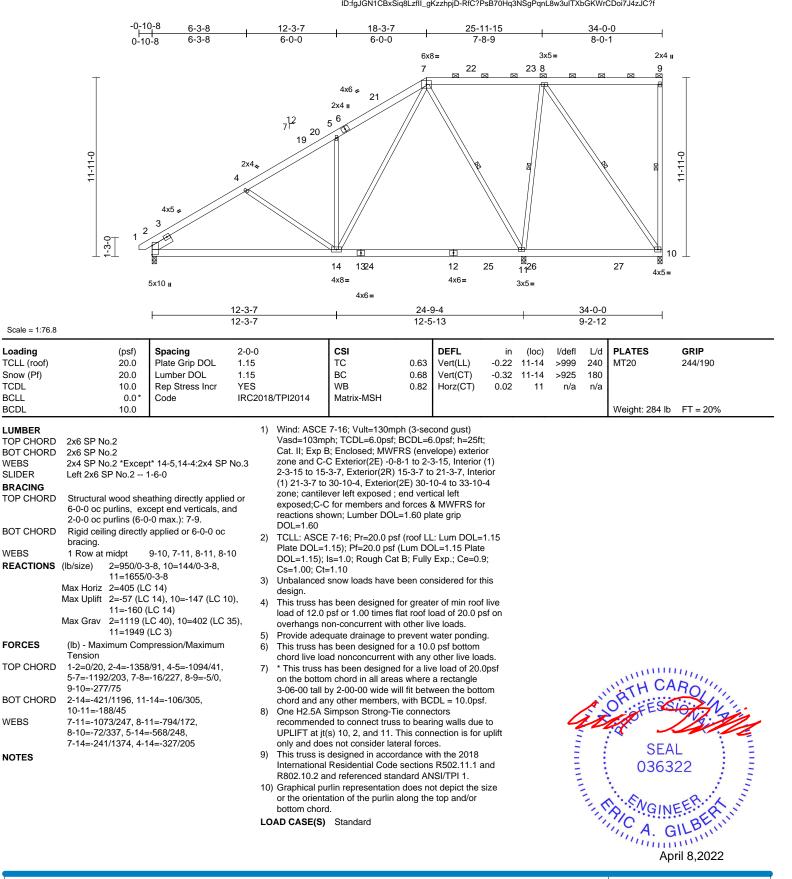
Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Thu Apr 07 20:54:38

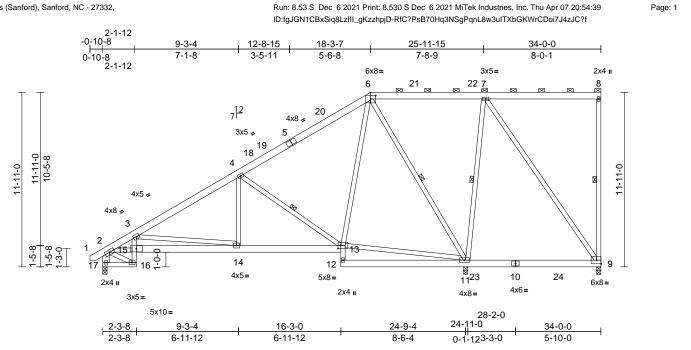
Page: 1

Scale = 1:107.9

Plate Offsets (X, Y): [5:0-1-13,0-2-0], [13:0-4-0,0-3-8], [16:0-5-4,0-3-8]

	(,,, ,). [ete : .ete = e	, [::::::::::::::::::::::::::::::::::::		0.01									
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-MSH	0.70 0.55 0.85	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.12 -0.27 0.03	(loc) 13-15 13-15 12	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 230 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x6 SP No.2 2x4 SP No.3 *Excep Structural wood she 5-9-13 oc purlins, e Rigid ceiling directly bracing. 1 Row at midpt	athing directly applied xcept end verticals. applied or 6-0-0 oc 6-13 Aechanical, 0-3-8 .C 14) LC 14)	3) d or 4) 5) 6)	Plate DOL= DOL=1.15); Cs=1.00; Ct Unbalanced design. This truss ha load of 12.0 overhangs n This truss ha chord live lo * This truss ba chord live lo * This truss ba chord live lo 0 - 06-00 tall chord and a	7-16; Pr=20.0 psi 1.15); Pf=20.0 psi Is=1.0; Rough Cat =1.10 snow loads have I as been designed f psf or 1.00 times fi on-concurrent with as been designed ad nonconcurrent i has been designed m chord in all area by 2-00-00 wide wi by other members.	(Lum DC B; Fully been co for great lat roof I n other li for a 10. with any I for a liv s where ill fit beth	DL=1.15 Plate Exp.; Ce=0. Insidered for t er of min roo oad of 20.0 p ve loads. 0 psf bottom other live loa re load of 20. a rectangle ween the bott	e 9; his f live osf on ads. 0psf					
FORCES	(lb) - Maximum Com Tension 1-2=0/25, 2-3=-233/ 4-6=-1127/208, 6-8= 9-10=-7/0, 2-17=-10	377, 3-4=-1462/240, :-235/83, 8-9=-79/372	8)	Provide med bearing plate joint 12. This truss is	chanical connection capable of withst designed in accord Residential Code	n (by oth anding 3 dance w	iers) of truss 364 lb uplift a rith the 2018	t					
BOT CHORD	,	566/258, 13=0/0, 11-12=0/0 5=-101/1441, i=-104/440, i=-244/297,	LC		nd referenced star			anu		2		OR FESS	ROUT
Vasd=103 Cat. II; Ex zone and 2-3-15 to cantilever right expo	CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; Br c-C Exterior(2E) -0.8- 24-11-5, Exterior(2E) 2 left and right exposed seed;C-C for members a	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior 1 to 2-3-15, Interior (1 4-11-5 to 27-11-5 zor ; end vertical left and and forces & MWFRS) ne;							2111111111		SEA 0363	22 EERER IIII


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


Job	Truss	Truss Type	Qty	Ply	DRB - 100 FARM AT NEILLS CREEK	
22030102	C01	Piggyback Base	2	1	Job Reference (optional)	151256993

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Thu Apr 07 20:54:39 ID:fgJGN1CBxSiq8LzfII_gKzzhpjD-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

818 Soundside Road Edenton, NC 27932

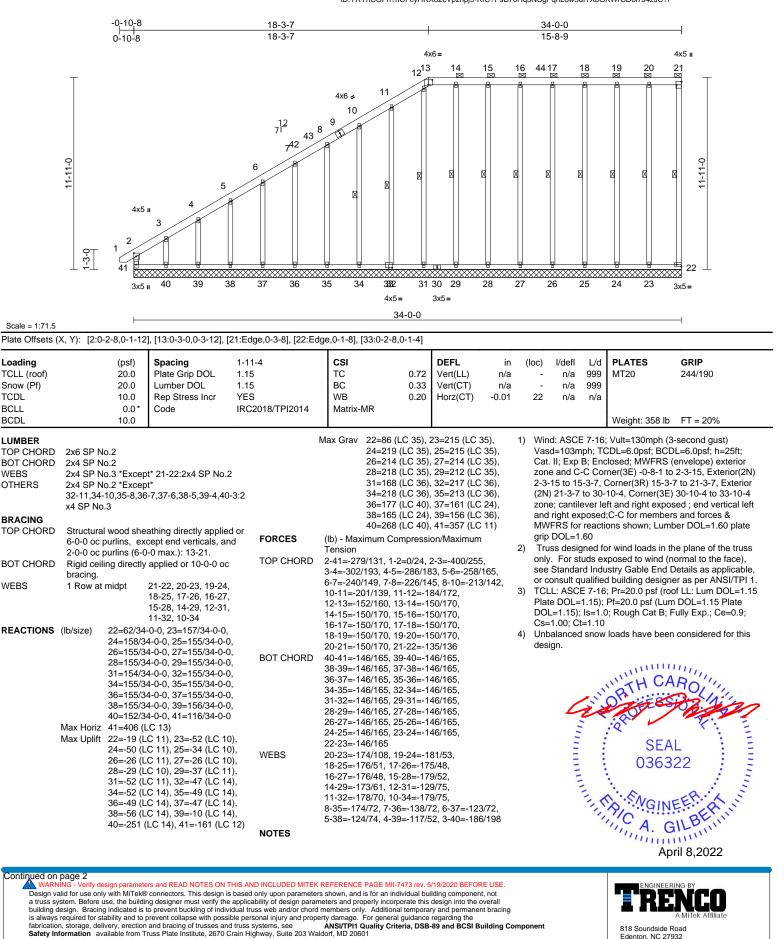
Job	Truss	Truss Type	Qty	Ply	DRB - 100 FARM AT NEILLS CREEK	
22030102	C02	Piggyback Base	4	1	Job Reference (optional)	151256994

Plate Offsets (X, Y): [6:0-4-0,0-2-12], [13:0-2-4,0-2-8]

Scale = 1:78.6

	, .,. <u>Lete</u> : e,e = :=], []											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-MSH	0.64 0.43 0.92	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.10 -0.14 0.06	(loc) 9-11 9-11 11	l/defl >999 >757 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 305 lb	GRIP 244/190 FT = 20%
	2x6 SP No.2 *Excep 16-3,13-12:2x4 SP No.3 *Excep 8-9,13-6,11-6,11-7,S SP No.2 Structural wood she 5-5-6 oc purlins, ex 2-0-0 oc purlins, ex 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. 1 Row at midpt (lb/size) 9=33/0-3- 17=912/0 Max Horiz 17=392 (I Max Uplift 9=-270 (L 17=-28 (L	at [*] -7:2x4 SP No.2, 17-2:: athing directly applied cept end verticals, and -0 max.): 6-8. applied or 6-0-0 oc 8-9, 4-13, 6-11, 7-11 8, 11=1799/0-3-8, -3-8 _C 14) C 40), 11=-270 (LC 14 C 43), 11=2005 (LC 3),	2x6 or 2) 3) 4)	Vasd=103mj Cat. II; Exp IE zone and C- 2-1-12 to 15- (1) 21-3-7 to zone; cantile exposed;C-C reactions shu DOL=1.60 TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct Unbalanced design. This truss ha load of 12.0 overhangs n Provide adet This truss ha	7-16; Vult=130mp ph; TCDL=6.0psf; E bi; TCDL=6.0psf; E 3; Enclosed; MWFF C Exterior(2E) -0-8 -3-7, Exterior(2R) 1 30-10-4, Exterior(2R) -1 30-10-4, Exterior(2R) 1 30-10-4, Exterior(2R) -0-8 -7, Exterior(2R) 1 -0-8 -7, Exte	BCDL=6 RS (env -1 to 2- 5-3-7 to 2E) 30-7 end vert forces =1.60 pl (roof LI Lum DC B; Fully been col or great at roof I or ther li prevent for a 10.	.0psf; h=25ft lelope) exteria 1-12, Interior 0 21-3-7, Inte 0 -4 to 33-10 ical left & MWFRS fo ate grip .: Lum DOL= 0L=1.15 Plate Exp.; Ce=0.1 asidered for t er of min roof aad of 20.0 p water pondin. 0 psf bottom	or (1) rior -4 r 1.15 9; his f live sf on g.					
FORCES	(lb) - Maximum Com Tension 1-2=0/27, 2-3=-1821 4-6=-631/31, 6-7=-7	1/362, 3-4=-1356/75, 6/364, 7-8=-6/0,	7)	on the bottor 3-06-00 tall b chord and ar	has been designed m chord in all areas by 2-00-00 wide wil hy other members,	where I fit betv with BC	a rectangle veen the bott DL = 10.0ps	om			A.L.	ORTH CA	ROLIN
BOT CHORD	9-11=-307/59	-16=-134/80, 15=-707/1755, 2-13=0/129, 11-12=-4/ 4=0/402, 4-13=-1053/3 3=-112/857,	32, 9) 08,	recommende UPLIFT at jt(only and doe This truss is International R802.10.2 a	Simpson Strong-Tie ed to connect truss (s) 9, 17, and 11. T as not consider late designed in accorc Residential Code and nd referenced stan	to bear his con ral force lance w sections dard AN	ing walls due nection is for es. ith the 2018 s R502.11.1 a ISI/TPI 1.	uplift and		And the state of t		SEA 0363	• -
NOTES	6-11=-1181/284, 7-1 7-9=-104/550, 2-16= 2-15=-594/1485	,						size			THE STATE	- minn	ILBERT IN

April 8,2022



Job	Truss	Truss Type	Qty	Ply	DRB - 100 FARM AT NEILLS CREEK	
22030102	C03	Piggyback Base Supported Gable	1	1	Job Reference (optional)	151256995

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Thu Apr 07 20:54:40 ID:YRYnCOFh?hCFcyHRX82cVpzhpj9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

818 Soundside Road Edenton, NC 27932

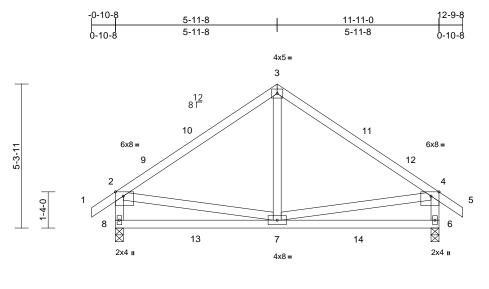
Job Truss		Truss Type	Qty	Ply	DRB - 100 FARM AT NEILLS CREEK	151050005	
22030102	C03 Piggyback Base Supported Gable		1	1	Job Reference (optional)	151256995	
Carter Components (Sanford), S	anford, NC - 27332,	Run: 8.53 S Dec 6 2	Page: 2				

ID:YRYnCOFh?hCFcyHRX82cVpzhpj9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Carter Components (Sanford), Sanford, NC - 27332,

- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 6) Provide adequate drainage to prevent water ponding.
- 7) All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing. 8)
- Truss to be fully sheathed from one face or securely 9) braced against lateral movement (i.e. diagonal web).
- 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

13) N/A


- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	DRB - 100 FARM AT NEILLS CREEK	
22030102	D01	Common	4	1	Job Reference (optional)	151256996

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Thu Apr 07 20:54:40 ID:NdhaA1ctP6R4bB1MzA7DpKzT?FF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

1	5-11-8	11-11-0	
	5-11-8	5-11-8	

Plate Offsets (X, Y): [2:0-3-8,Edge], [4:0-3-8,Edge]

Scale = 1:42.4

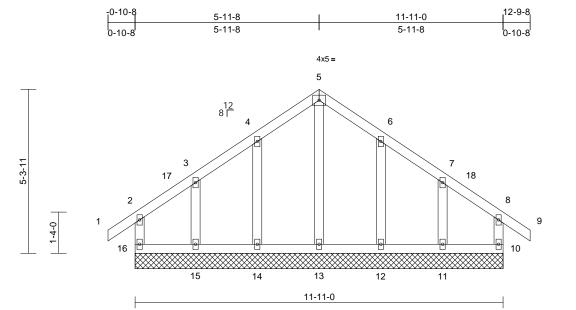
(,												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-MSH	0.91 0.30 0.13	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.05 -0.05 0.00	(loc) 7-8 7-8 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 69 lb	GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD WEBS NOTES	Max Horiz 8=145 (LC Max Uplift 6=-56 (LC Max Grav 6=619 (LC (lb) - Maximum Com Tension 1-2=0/34, 2-3=-539/ 4-5=0/34, 2-8=-566/ 7-8=-173/252, 6-7=- 3-7=-284/208, 2-7=-	cept end verticals. applied or 10-0-0 oc 3-8, 8=526/0-3-8 C 13) 1 15), 8=-56 (LC 14) C 22), 8=619 (LC 21) pression/Maximum 408, 3-4=-539/408, 356, 4-6=-566/356 115/252 88/249, 4-7=-92/249	; 7) 8)) 9)	design. This truss ha load of 12.0 overhangs n This truss ha chord live loa * This truss h on the bottor 3-06-00 tall t chord and ar One H2.5A S recommende UPLIFT at jtt and does no This truss is International	snow loads have b as been designed for psf or 1.00 times fit on-concurrent with as been designed for ad nonconcurrent w has been designed in chord in all areas by 2-00-00 wide will by other members. Simpson Strong-Tie ed to connect truss (s) 8 and 6. This co t consider lateral for designed in accord Residential Code s ind referenced stand Standard	or greate at roof lo other liv or a 10.0 /ith any for a liv where l fit betw connectio rces. lance w sections	er of min roof oad of 20.0 p ve loads. 0 psf bottom other live loa e load of 20.1 a rectangle veen the bott ctors ing walls due n is for uplift ith the 2018 s R502.11.1 a	f live sf on dds. Opsf om to only					
this design 2) Wind: ASC	OTES Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft;												

- Vind: TODL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 2-11-8, Exterior(2R) 2-11-8 to 8-11-8, Interior (1) 8-11-8 to 9-9-8, Exterior(2E) 9-9-8 to 12-9-8 zone; cantilever left and right exposed; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

SEAL 036322

GILD


April 8,2022

Communation of the second

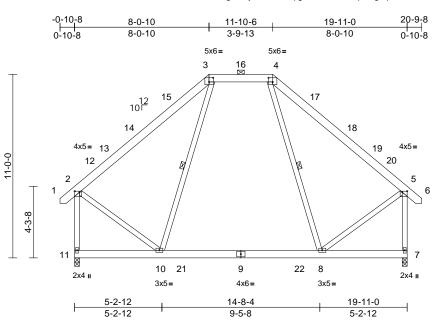
VULLING

Job	Truss	Truss Type	Qty	Ply	DRB - 100 FARM AT NEILLS CREEK	
22030102	D02	Common Supported Gable	1	1	Job Reference (optional)	151256997

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Thu Apr 07 20:54:40 ID:nUu8MssQiFyF_GZC8NUvdYzT?Ex-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale	=	1:37.3

Leading TCLL (roof) (ps) 200 Spacing Place Gip DOL Lumber DOL 1.15 CSI TC TCL DEFL TC in (cc) (idc) Udd IL Us PLATES 0.00 GRP 244/190 TCDL ECLL 0.00 Place Gip DOL 1.00 1.15 Co encore Co encore 0.00 No No PLATES GRP 244/190 TCDL ECLL 0.00 Place Gip DOL 1.00 1.15 Co encore No No No PLATES GRP 244/190 ECLL 0.01 Co encore No Second gust) No No No No No ERACING FOP CHORD FOP CHORD FOP CHORD FOP CHORD FOR CHORD FOR CHORD For Chord Region 2:4 SP No.3 2 Vind ASCE 7-16: Vul=130mph (Second gust) Vasid 103mph; TCDL=6.0gd; No No No No No Reaction (Ca encore) No Reaction (Ca encore) No No Reaction (Ca encore) No Reaction (Ca encore) Reaction (Ca encore) No	Scale = 1.37.5											
TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3 VEBS 2x4 SP No.3 OTHERS 2x4 SP No.3 BRACING Structural wood sheathing directly applied of 6-0-0 oc purins, except end verticals. BOT CHORD Structural wood sheathing directly applied of 6-0-0 oc purins, except end verticals. BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc purins, except end verticals. BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc purins, except end verticals. BOT CHORD (b/size) 10=131/11-11-0, 11=141/11-11-0, 12=165/11-11-0, 13=146/11-11-0, 14=165/11-11-0, 13=146/11-11-0, 14=16/11-11-0,	TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0*	Plate Grip DOL Lumber DOL Rep Stress Incr	1.15 1.15 YES	TC BC WB	0.11 0.06	Vert(LL) Vert(CT)	n/a n/a	-	n/a n/a	999 999	MT20	244/190
3-15=-162/117, b-12=-21//112, 7-11=-162/117 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. NOTES 13) N/A	TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3 OTHERS 2x4 SP No.3 OTHERS 2x4 SP No.3 OTHERS 2x4 SP No.3 BRACING TOP CHORD TOP CHORD Structural wood sh 6-0-0 oc purlins, et bracing. BOT CHORD Rigid ceiling direct bracing. REACTIONS (lb/size) 10=131, 12=165, 14=165, 16=131, Max Horiz Max Horiz 16=-141, 10=-46, 12=-53, 15=-82 Max Grav 10=143, 12=256, 14=256, 14=256, 15=-82 Max Grav 10=143, 12=256, 15=-82 Max Grav 10=143, 12=256, 14=256, 16=149 FORCES (lb) - Maximum Constant TOP CHORD 2-16=-118/157, 1- 3-4=-75/173, 4-59, 6-7=-75/173, 7-8= 8-10=-117/157 BOT CHORD 15-16=-71/68, 14- 12-13=-71/68, 11- WEBS S-13=-197/32, 4-1, 1- 3-15=-162/117, 6- 7-11=-162/117 NOTES 1) Unbalanced roof live loads have	Except end verticals. ly applied or 6-0-0 oc (11-11-0, 11=141/11-11- (11-11-0, 13=146/11-11- (11-11-0, 15=141/11-11- (11-11-0) (LC 12) (LC 12) (LC 14), 11=-80 (LC 15) (LC 14), 11=-80 (LC 15) (LC 24), 11=-200 (LC 22) (LC 22), 13=161 (LC 27 (LC 21), 15=200 (LC 21) (LC 22), 13=161 (LC 27 (LC 21), 15=200 (LC 21) (LC 23), 2-3=-77/96, 113/248, 5-6=-113/248, 68/96, 8-9=0/33, 15=-71/68, 13-14=-71/64 4=-217/112, 12=-217/112,	Vasd=103m Cat. II; Exp zone and C 1-11-8 to 2- (2N) 8-11-8 cantilever le right expose for reactions DOL=1.60 3) Truss desig only. For st -0, see Standa -0, or consult q 4) TCLL: ASC Plate DOL= 1.0; C 5) Unbalanced design. 7) All plates ar 8) Gable requi 9) Truss to be braced agai 10) Gable studs 11) This truss h chord live lo 8 8. (12) * This truss on the botto 3-06-00 tall chord and a	ph; TCDL=6.0psf; B B; Enclosed; MWFR -C Corner(3E) -0-10- 11-8, Corner(3R) 2- to 9-9-8, Corner(3E) ft and right exposed ed;C-C for members is shown; Lumber DC and for wind loads i uds exposed to wind d Industry Gable En ualified building desis E 7-16; Pr=20.0 psf (L Is=1.0; Rough Cat E = 1.10 is now loads have be as been designed for psf or 1.00 times fla ion-concurrent with e 2x4 MT20 unless of res continuous botto fully sheathed from inst lateral movement is paced at 2-0-0 oc, as been designed for ad nonconcurrent with has been designed for ad nonconcurrent with a period in all areas by 2-00-00 wide will	CDL=6. (S (enve- -8 to 1-1 11-8 to 8) 9-9-8 tt 1- ; end ve and forc DL=1.60 In the plating (normand Detailing in the plating (nor fLL: 	Opsf; h=25ft; lope) exterior 1-8, Exterior 1-8, Exterior 0 12-9-8 zone ertical left and zes & MWFRS plate grip ane of the trus I to the face), s as applicab per ANSI/TP and of the trus I to the face), s as applicab per ANSI/TP tal to the face	2N) or ;; 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Inte R8C LOAD (rnationa 12.10.2 a CASE(S)	Il Resid	dential Code sec erenced standar ndard	ANSI/TPI 1.


- NOTES
- 1) Unbalanced roof live loads have been considered for this design.
 - WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

GILBLIN GILB

Job	Truss	Truss Type	Qty	Ply	DRB - 100 FARM AT NEILLS CREEK	
22030102	G01	Piggyback Base	1	1	Job Reference (optional)	151256998

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Thu Apr 07 20:54:41 ID:wN9MV2a7ngO0fSyKmTVeHIzhpg9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

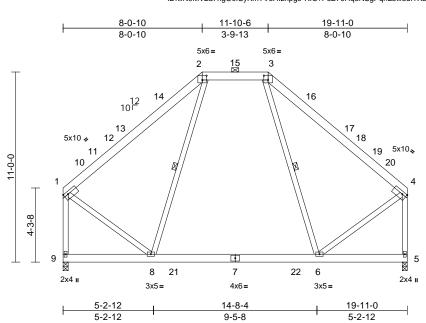
Scale = 1:69

Plate Offsets (X, Y): [2:0-3-8,0-0-12], [3:0-3-0,0-3-0], [4:0-3-0,0-3-0], [5:0-3-8,0-0-12]

					-								
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-MSH	0.88 0.47 0.23	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.10 -0.15 0.01	(loc) 8-10 8-10 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 170 lb	GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=103 Cat. II; Exp zone and 0 2-3-11 to 3 (1) 16-15 cantilever right expos	Structural wood she 6-0-0 oc purlins, exi 2-0-0 oc purlins, exi 2-0-0 oc purlins, (6-0 Rigid ceiling directly bracing. 1 Row at midpt (lb/size) 7=835/0-3 Max Horiz 11=-306 (Max Uplift 7=-73 (LC Max Grav 7=1070 (L (lb) - Maximum Com Tension 1-2=0/32, 2-3=-785/ 4-5=-785/186, 5-6=0 5-7=-1039/126 10-11=-298/292, 8-1 2-10=-82/633, 5-8=- 4-8=-130/178 ed roof live loads have b CE 7-16; Vult=130mph imph; TCDL=6.0psf; B M p B; Enclosed; MWFR: C-C Exterior(2E) -0-8- 3-9-11, Exterior(2R) 3- to 17-7-5, Exterior(2E) 4- 16f and right exposed sed;C-C for members	applied or 10-0-0 oc 3-10, 4-8 3-8, 11=835/0-3-8 LC 12) 2 15), 11=-73 (LC 14) .C 45), 11=1070 (LC pression/Maximum 186, 3-4=-461/236, 0/32, 2-11=-1039/126 10=-94/530, 7-8=-65// 83/634, 3-10=-130/12 been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior 5 to 2-3-11, Interior (' 9-11 to 16-1-5, Interio) 17-7-5 to 20-7-5 zor ; end vertical left and and forces & MWFRS	o.2 4) d or 5) (d) 5) (f) 7) (f) 7) (Plate DOL= ² DOL=1.15); Cs=1.00; Ct: Unbalanced design. This truss ha load of 12.0 overhangs n Provide adee This truss ha chord live loa * This truss la on the botton 3-06-00 tail If chord and at One H2.5A S recommende UPLIFT at jit only and doe 0) This truss is International R802.10.2 a	snow loads have I as been designed f psf or 1.00 times fi on-concurrent with quate drainage to j as been designed fad nonconcurrent in has been designed m chord in all area by 2-00-00 wide wi hy other members, Simpson Strong-Ti ed to connect truss (s) 11 and 7. This d es not consider late designed in accord Residential Code nd referenced star rilin representation ation of the purlin a	(Lum DC B; Fully been col- for great lat roof I o other li prevent for a 10. with any f for a liv s where ill fit betv with BC e connection and for connection and for a for sections addreas how the sections addreas how the sections addreas how the sections addreas how the sections addreas how the sections addreas how the sections addreas how th	DL=1.15 Plate Exp.; Ce=0. Insidered for t er of min roo oad of 20.0 p ve loads. water pondin 0 psf bottom o ther live loa ve load of 20. a rectangle ween the bott CDL = 10.0ps ing walls due on is for uplit es. with the 2018 s R502.11.1 i vSI/TP1 1. ot depict the	e 9; this if live osf on ng. ads. .0psf tom ff. e to ft		Contraction of the second seco		SEA 0363	22 EB
for reaction	ns shown; Lumber DO	L=1.60 plate grip										IL A G	ILBEIT

 Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-8-5 to 2-3-11, Interior (1) 2-3-11 to 3-9-11, Exterior(2R) 3-9-11 to 16-1-5, Interior (1) 16-1-5 to 17-7-5, Exterior(2E) 17-7-5 to 20-7-5 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



G١

mmm April 8,2022

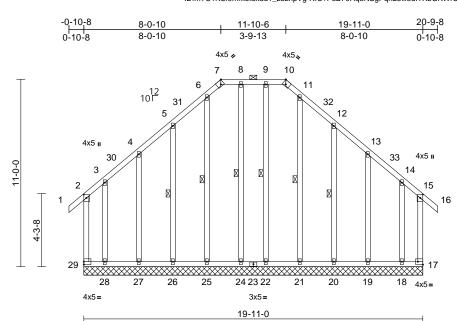
Job	Truss	Truss Type	Qty	Ply	DRB - 100 FARM AT NEILLS CREEK	
22030102	G02	Piggyback Base	8	1	Job Reference (optional)	151256999

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Thu Apr 07 20:54:41 ID:wN9MV2a7ngO0fSyKmTVeHIzhpg9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:66.7

Plate Offsets (X, Y): [1:0-3-0,0-1-12], [2:0-3-0,0-3-0], [3:0-3-0,0-3-0], [4:0-3-0,0-1-12]

					· · · · · · · · · · · · · · · · · · ·								
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.75 0.48 0.23	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.10 -0.15 0.00	(loc) 6-8 6-8 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 166 lb	GRIP 244/190 FT = 20%
this design 2) Wind: ASC Vasd=103 Cat. II; Ex zone and 3-1-12 to 3	2x6 SP No.2 2x4 SP No.3 *Excep Structural wood she 6-0-0 oc purlins, ex 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. 1 Row at midpt (lb/size) 5=785/0-3 Max Horiz 9=277 (LC Max Uplift 5=-57 (LC Max Grav 5=1028 (L (lb) - Maximum Com Tension 1-2=-789/165, 2-3=- 1-9=-1005/98, 4-5=- 8-9=-274/271, 6-8=- 1-8=-76/628, 4-6=-8 3-6=-135/177 ed roof live loads have	athing directly applied cept end verticals, an -0 max.): 2-3. applied or 10-0-0 oc 2-8, 3-6 3-8, 9=785/0-3-8 C 11) 15), 9=-56 (LC 14) LC 44), 9=1028 (LC 4 pression/Maximum 464/228, 3-4=-786/10 1004/98 97/524, 5-6=-63/51 1/631, 2-8=-135/177, been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) interior 2 to 3-1-12, Interior 9-11 to 16-1-5, Interior	1) or 1) 12 12 13 12 13 14 14 10 10 10 10 10 10 10 10 10 10	Plate DOL=1 DOL=1.15); Cs=1.00; Ct Unbalanced design. Provide aded This truss ha chord live loa * This truss ha chord and ar One H02.5A recommende UPLIFT at jtt and does no This truss is International R802.10.2 a	snow loads have I quate drainage to as been designed f ad nonconcurrent has been designed n chord in all area by 2-00-00 wide wi y other members, Simpson Strong-Ti ad to connect truss (s) 9 and 5. This of t consider lateral find designed in accor Residential Code nd referenced star rifin representation ation of the purlin a	(Lum DC B; Fully peeen col prevent for a 10. with any f for a liv s where a liv s where e connes s to bear onnection orces. dance w sections ndard AT	DL=1.15 Plate Exp.; Ce=0. Insidered for t water pondin 0 psf bottom other live loa re load of 20. a rectangle veen the bott DL = 10.0ps ctors ing walls due n is for uplift ith the 2018 is R502.11.1 a sSI/TPI 1. ot depict the	e 9; ihis g. ads. Opsf tom ff. e to only and				SEA 0363	• -
right expo	left and right exposed sed;C-C for members ons shown; Lumber DO 0	and forces & MWFRS									in the second se	A G	EER. KININ


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

GI munin April 8,2022

Job	Truss	Truss Type	Qty	Ply	DRB - 100 FARM AT NEILLS CREEK	
22030102	G03	Piggyback Base Supported Gable	1	1	Job Reference (optional)	151257000

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Thu Apr 07 20:54:41 ID:mTC1KUi0mrxofallau1_zozhpVg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:67.7 ~ "

. -

LUMBER TOP CHORD Zx4 SP No.2 TOP CHORD 2-29=-318/290, 1-2=0/38, 2-3=-269/264, 3-4=-111/250, 4-5=-154/333, 5-6=-207/438, G-7=-185/371, 7-8=-172/373, 8-9=-172/373, 9-10=-172/373, 10-11=-185/371, OTHERS 4) TCLL: ASCE 7-16; Pr=20.0 psf Plate DOL=1.15); Pf=20.0 psf DOL=1.15); Pf=20.0 ps	
TOP CHORD 2x4 SP No.2 3-4=-111/250, 4-5=-154/333, 5-6=-207/438, Plate DOL=1.15); Pf=20.0 psf BOT CHORD 2x4 SP No.2 6-7=-185/371, 7-8=-172/373, 8-9=-172/373, DOL=1.15); Pf=20.0 psf WEBS 2x4 SP No.3 9-10=-172/373, 10-11=-185/371, DOL=1.15); Pf=20.0 psf OTHERS 2x4 SP No.3 9-10=-172/373, 10-11=-185/371, Se=1.00; Ct=1.10 OTHERS 2x4 SP No.3 *Except* 24-8,22-9:2x4 SP No.2 11-12=-207/438, 12-13=-154/333, DOL=1.15); Pf=20.0 psf BRACING 50 Unbalanced snow loads have I 13-14=-111/250, 14-15=-266/262, 13-14=-111/250, 14-15=-266/262, 50 Unbalanced snow loads have I BRACING 50 CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins (10-0-0 max.): 7-10. BOT CHORD 28-29=-169/151, 22-24=-169/151, 60 This truss has been designed f BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. 91-22=-169/151, 22-24=-169/151, 70 Provide adequate drainage to 120 psf or 1.00 times f WEBS 1 Row at midpt 8-24, 9-22, 6-25, 5-26, 11-21, 12-20 12-22=-169/151, 22-21=-169/151, 80 All plates are 2x4 MT20 unless WEBS 1 Row at midpt 8-24, 9-22, 6-25, 5-26, 11-21, 12-20 8-24=-156/20, 9-22=-156/20, 6-25=-180/11, 80	GRIP 244/190 99 lb FT = 20%
19=161/19-11-0, 20=153/19-11-0, 21=160/19-11-0, 22=131/19-11-0, 24=131/19-11-0, 22=131/19-11-0, 26=153/19-11-0, 22=109/19-11-0, 28=106/19-11-0, 22=109/19-10-10, 28=106/19-100, 58=100-10, 58=10-10, 58=10-10, 50-	f (Lum DOL=1.15 Plate at B; Fully Exp.; Ce=0.9; e been considered for this d for greater of min roof live if flat roof load of 20.0 psf on ith other live loads. o prevent water ponding. ss otherwise indicated. bottom chord bearing. mone face or securely nent (i.e. diagonal web). oc. d for a 10.0 psf bottom t with any other live loads. ed for a live load of 20.0psf pass where a rectangle will fit between the bottom

GILBE .. GILD April 8,2022

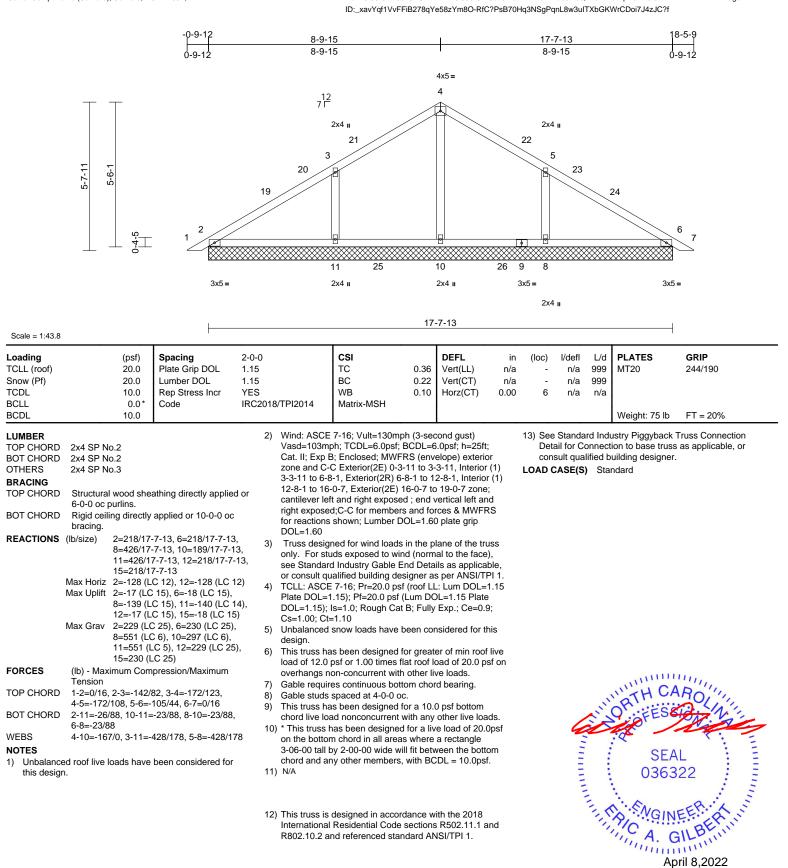
Page: 1

Job	Truss	Truss Type	Qty	Ply	DRB - 100 FARM AT NEILLS CREEK	
22030102	G03	Piggyback Base Supported Gable	1	1	Job Reference (optional)	151257000
Carter Components (Sanford), S	anford, NC - 27332,	Run: 8.53 S Dec 6 2	Page: 2			

ID:mTC1KUi0mrxofallau1_zozhpVg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

14) N/A

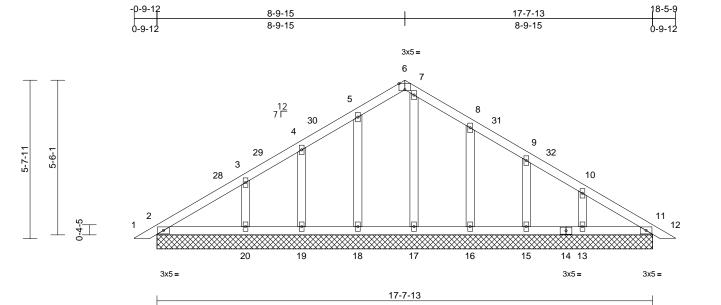
- 15) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 16) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.


LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	DRB - 100 FARM AT NEILLS CREEK	
22030102	PB1	Piggyback	7	1	Job Reference (optional)	151257001

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Thu Apr 07 20:54:42

Page: 1



ENGINEERING BY EREENCO AMITek Atfiliate 818 Soundside Road Edenton, NC 27932

Jo	b	Truss	Truss Type	Qty	Ply	DRB - 100 FARM AT NEILLS CREEK	
22	2030102	PB2	Piggyback	1	1	Job Reference (optional)	151257002

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Thu Apr 07 20:54:42 ID:ab6ubWRmFzKEEmoqgq1bUWzYjdH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:41

Plate Offsets	(X, '	Y):	[6:0-2-8,Edge]
---------------	-------	-----	----------------

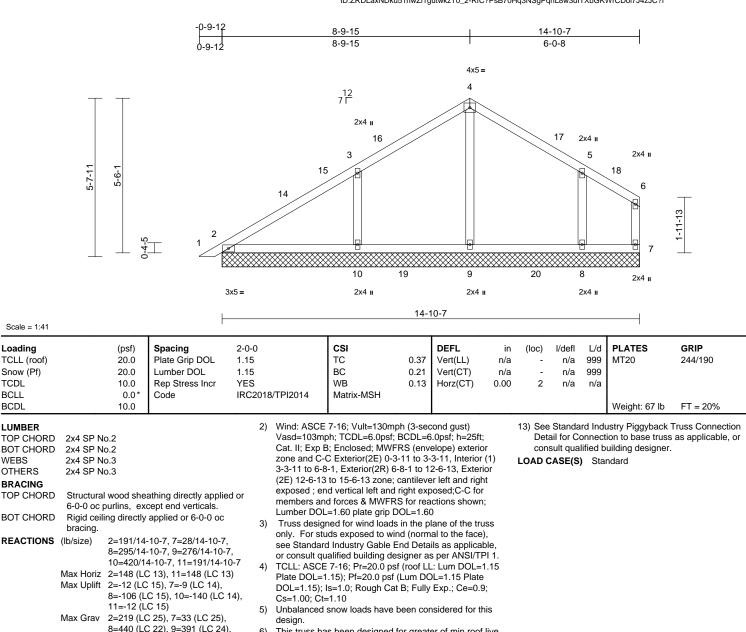
		1										
Loading	(psf)	Spacing	1-11-4	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	1	1.15	TC	0.10		n/a	(100)	n/a	999	MT20	244/190
Snow (Pf)	20.0		1.15	BC	0.08	· · /	n/a	_	n/a	999	101120	244/190
TCDL			YES	WB								
	10.0				0.07	Horz(CT)	0.00	11	n/a	n/a		
BCLL	0.0	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 90 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3		NOTES	3-20=-177/94, 4-19 7-17=-128/0, 8-16= 10-13=-145/80	-205/85	5, 9-15=-166/6	67,	on t 3-06	he botto 6-00 tall rd and a	m cho by 2-0	rd in all areas wl	a live load of 20.0psf here a rectangle between the bottom
		a a thing a diversity of a solid at	,	roof live loads hav	e been	considered for	r	/ 10/				
TOP CHORD		neathing directly applied		7 40. 1/1.14 400 mm	h (2 aa							
BOT CHORD	6-0-0 oc purlins.	ly applied or 10-0-0 oc		7-16; Vult=130mp ph; TCDL=6.0psf; I								
BOT CHORD	bracing.	iy applied of 10-0-0 0C		B; Enclosed; MWFI								
	(lb/size) 2=145/ 13=199 16=162 18=161 20=244 24=125 Max Horiz 2=-124 Max Uplift 2=-1 (L 15=-42 18=-39 20=-78 Max Grav 2=149 13=209 16=244 18=238	77-13, 11=125/17-7-13, /17-7-13, 15=141/17-7-13, /17-7-13, 17=131/17-7-13, /17-7-13, 19=123/17-7-13, /17-7-13, 21=145/17-7-13, /17-7-13, 21=145/17-7-13, /17-7-13, 21=145/17-7-13, /17-7-13, 21=145/1C 15), (LC 12), 21=-124 (LC 12), (LC 14), 19=-42 (LC 14), (LC 14), 19=-42 (LC 14), (LC 14), 11=125 (LC 1), (LC 22), 15=197 (LC 22), (LC 22), 17=165 (LC 22), (LC 24), 21=149 (LC 21), (LC 24), 21=149 (LC 21), (LC 14), 21=140 (LC 21), (LC 14), 21=1	 zone and C- 3, 3-3-11 to 6-4 12-8-1 to 16 cantilever le right expose for reactions DOL=1.60 Truss desig only. For sti see Standar or consult qu TCLL: ASCE Plate DOL=1.00; Cs=1.00; Ct Unbalanced design. 	C Exterior(2E) 0-3- 3-1, Exterior(2E) 6- 0-0, Exterior(2E) 1 ft and right exposed d;C-C for members shown; Lumber D ned for wind loads uds exposed to wind d Industry Gable E jalified building des 7-16; Pr=20.0 psf (15); Pf=20.0 psf (1s=1.0; Rough Cat =1.10 snow loads have b	-11 to 3- 8-1 to 1 6-0-0 to d; end v s and foo OL=1.60 in the p ad (norm nd Deta signer a: i (roof LL 'Lum DC B; Fully peen cor	3-11, Interior 2-8-1, Interior 0 19-0-7 zone; vertical left am rcces & MWFR 0 plate grip lane of the tru ial to the face) ils as applicat s per ANSI/TF .: Lum DOL=1 DL=1.15 Plate Exp.; Ce=0.9 hsidered for th	(1) r (1) ; dd RS Jss), ble, PI 1. 1.15 ; 9; his	Inte R8(14) See Det con LOAD (rnationa 02.10.2 a Standa ail for Co sult qua CASE(S)	I Resid and ref rd Indu onnect lified b) Sta	dential Code sec erenced standar ustry Piggyback ion to base truss uilding designer. ndard	Truss Connection as applicable, or
FORCES	(lb) - Maximum Co	mpression/Maximum		as been designed f					2		:2	K : 3
	Tension			psf or 1.00 times fl on-concurrent with			51 011				SEA	1 : =
TOP CHORD	1-2=0/16, 2-3=-95 4-5=-75/78, 5-6=- 7-8=-70/88, 8-9=- 10-11=-77/49, 11- 2-20=-42/100, 19- 18-19=-42/100, 11 16-17=-42/100, 11 13-15=-42/100, 11	77/95, 6-7=-59/72, 30/44, 9-10=-61/25, 12=0/16 20=-42/100, -18=-42/100, -16=-42/100,	 All plates are Gable require Gable studs This truss has 	on-concurrent with e 2x4 MT20 unless ess continuous bott spaced at 2-0-0 oc as been designed f ad nonconcurrent v	otherwi om chor c. or a 10.	se indicated. d bearing. 0 psf bottom	ds.		CONTRACT.	A A A A A A A A A A A A A A A A A A A		EER. KIN
											۸	

April 8,2022

Job	Truss	Truss Type	Qty	Ply	DRB - 100 FARM AT NEILLS CREEK	
22030102	PB3	Piggyback	10	1	Job Reference (optional)	151257003

Loading

TCDL


BCLL

BCDL

WEBS

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Thu Apr 07 20:54:43 ID:ZRDLaxNDku51nwZl1gutwkzT0_2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

- 8=440 (LC 22), 9=391 (LC 24) 10=546 (LC 21), 11=219 (LC 25) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/16, 2-3=-131/145, 3-4=-124/134, 4-5=-109/132, 5-6=-36/78, 6-7=-29/22 BOT CHORD 2-10=-30/64, 9-10=-28/33, 8-9=-28/33, 7-8=-28/33
- WEBS 4-9=-237/20, 3-10=-427/177, 5-8=-370/145 NOTES
- 1) Unbalanced roof live loads have been considered for this design.
- This truss has been designed for greater of min roof live 6) load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- Gable requires continuous bottom chord bearing.
- 8) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 9) chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

11) N/A

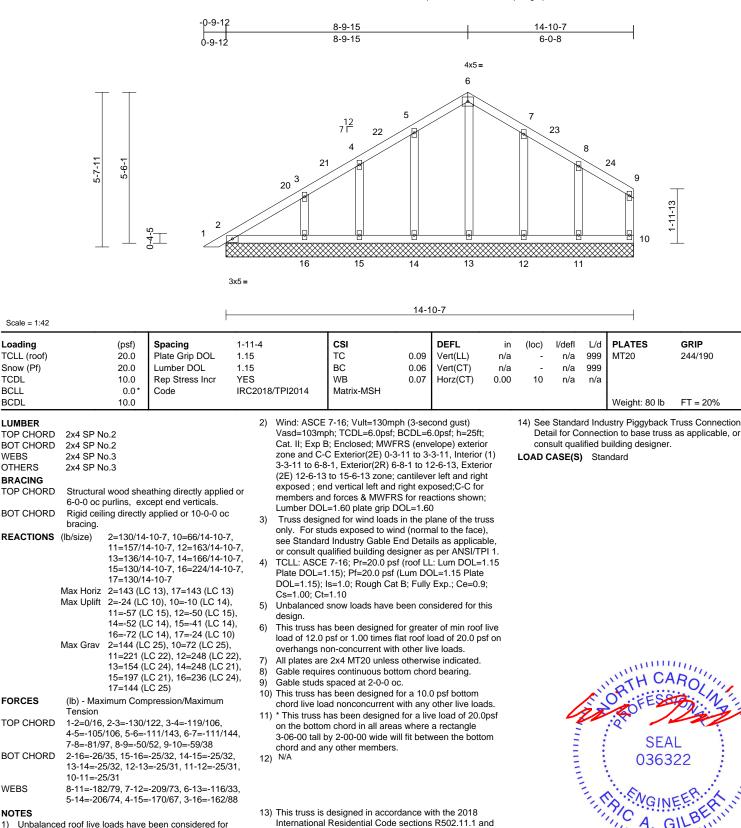
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- UTITITITI I SEAL 36322 G mm April 8,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall a duss system planteets and property incorporate dust using in the version of the system planteets and property incorporate dust using indicated is to prevent buckling of individual itruss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual itruss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual itruss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual itruss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB - 100 FARM AT NEILLS CREEK	
22030102	PB4	Piggyback	1	1	Job Reference (optional)	151257004

TCDL

BCLL


BCDL

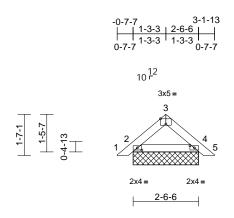
WEBS

WEBS

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Thu Apr 07 20:54:43 ID:?i7stkNbJ4avIbKkBAbpEXzT?co-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

- 1) Unbalanced roof live loads have been considered for this design.
- International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

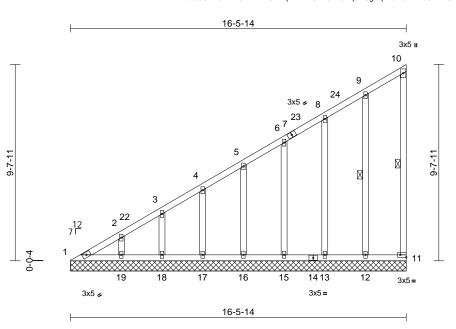

mm April 8,2022

Job	Truss	Truss Type	Qty	Ply	DRB - 100 FARM AT NEILLS CREEK	
22030102	PB5	Piggyback	10	1	Job Reference (optional)	151257005

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Thu Apr 07 20:54:43 ID:ZN0Itf_moqg2eZA45Pfiu9zT?DU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:44.6

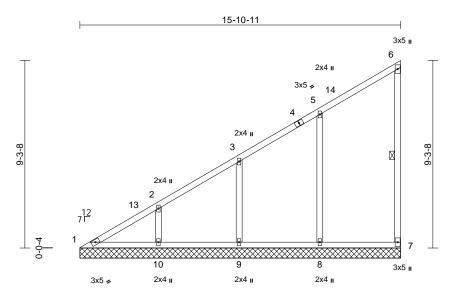

Plate Offsets ((X, Y): [2:0-2-1,0-1-0],	[3:0-2-8,Edge], [4:0-2-1,0)-1-0]							
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing2-CPlate Grip DOL1.1Lumber DOL1.1Rep Stress IncrYECodeIRC	5 5	CSI TC 0.00 BC 0.00 WB 0.00 Matrix-MP	Vert(CT)	in (n/a n/a 0.00	loc) l/de - n/ - n/ 9 n/	/a 999 /a 999	PLATES MT20 Weight: 11 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 Structural wood she: 3-9-13 oc purlins. Rigid ceiling directly bracing. (Ib/size) 2=138/2-6 6=138/2-6 Max Horiz 2=-33 (LC Max Uplift 2=-8 (LC - (LC 14), 9 Max Grav 2=167 (LC 6=167 (LC (lb) - Maximum Com Tension 1-2=0/22, 2-3=-73/42	6-6, 4=126/2-6-6, 5-6, 9=126/2-6-6 5-12), 6=-33 (LC 12) 14), 4=-15 (LC 15), 6=-8 I=-15 (LC 15) C 21), 4=155 (LC 22), C 21), 9=155 (LC 22)	 design. 6) This truss h load of 12.0 overhangs r 7) Gable requi 8) Gable studs 9) This truss h chord live lo 10) * This truss on the botto 3-06-00 tall chord and a 11) N/A 12) This truss is Internationa R802.10.2 a 	I snow loads have been c as been designed for grea psf or 1.00 times flat roof non-concurrent with other res continuous bottom ch s spaced at 4-0-0 oc. as been designed for a 10 and noncourrent with ar has been designed for a 1 m chord in all areas wher by 2-00-00 wide will fit be ny other members.	tter of min roof load of 20.0 p live loads. ord bearing. 0.0 psf bottom y other live load vive load of 20.0 e a rectangle tween the bott with the 2018 is R502.11.1 a NSI/TPI 1.	f live sf on ads. 0psf om			vveignt. TTD	1 1 - 20 /0
 this design Wind: ASC Vasd=103 Cat. II; Ex zone and exposed; members Lumber D Truss des only. For see Stand or consult TCLL: AS Plate DOL 	CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B(3mph; TCDL=6.0psf; B(p; B; Enclosed; MWFRS C-C Exterior(2E) zone; end vertical left and rig and forces & MWFRS OL=1.60 plate grip DO signed for wind loads in studs exposed to wind bard Industry Gable End qualified building desig CE 7-16; Pr=20.0 psf (Li =1.15); Pf=20.0 psf (Li 5); Is=1.0; Rough Cat B	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior ; cantilever left and right ght exposed;C-C for for reactions shown; L=1.60 the plane of the truss (normal to the face), d Details as applicable, gner as per ANSI/TPI 1. roof LL: Lum DOL=1.15 um DOL=1.15 Plate	Detail for Co	rd Industry Piggyback Tru onnection to base truss as lified building designer.) Standard			•	A CHARLEN CONTRACTOR	SEA 0363	EEP A

DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

Job	Truss	Truss Type	Qty	Ply	DRB - 100 FARM AT NEILLS CREEK	
22030102	V1	Valley	1	1	Job Reference (optional)	151257006

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Thu Apr 07 20:54:43 ID:obl8CR79AVIhJxhIYr2zsHzhpM4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:56.6


Plate Offsets (X, Y): [11:Edge,0-1-8]

Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	1-11-4 1.15	CSI TC	0.93	DEFL Vert(LL)	in n/a	(loc) -	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.27	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.18	Horiz(TL)	0.00	11	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2	014 Matrix-MSH								FT 000/
BCDL	10.0										Weight: 112 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she		Vaso dor Cat.	9-12=-200/78, 8 5-16=-122/88, 4 2-19=-135/86 I: ASCE 7-16; Vult=130r I=103mph; TCDL=6.0ps II; Exp B; Enclosed; MW	-17=-124/8 nph (3-see f; BCDL=6 /FRS (env	sond gust) cond gust) copsf; h=25ft; elope) exterio	/90, ⁻ r					
BOT CHORD	6-0-0 oc purlins, exe Rigid ceiling directly bracing.		3-0-7	and C-C Corner(3E) 0- 7 to 13-4-9, Corner(3E) lever left and right expo	13-4-9 to 1	6-4-9 zone;	,					
WEBS	0	10-11, 9-12	right	exposed;C-C for memb	ers and fo	rces & MWFR						
	12=163/10 15=155/11 17=159/10 19=202/11 Max Horiz 1=323 (LC Max Uplift 1=-35 (LC 12=-56 (L 15=-51 (L 17=-48 (L 19=-30 (L 19=-30 (L 12=241 (L 15=164 (L 17=164 (L 19=202 (L	C 11) 10), 11=-53 (LC 13) C 14), 13=-44 (LC 12 C 14), 16=-48 (LC 12 C 14), 18=-55 (LC 12 C 14), 18=-55 (LC 20) C 20), 13=223 (LC 2 C 20), 18=150 (LC 2 C 20), 18=150 (LC 2 C 20)	14, DOL 14, 2) Trus 14, only. see or cc 3) TCL 14, DOL 14, only. sec 14, only. 14, only.	eactions shown; Lumber =1.60 ss designed for wind loa For studs exposed to V Standard Industry Gable onsult qualified building of .: ASCE 7-16; Pr=20.0 ps =0.01, Ct=1.0; Rough C 1.00; Ct=1.10 alanced snow loads hav gn. ates are 2x4 MT20 unle e requires continuous b e studs spaced at 2-0-0 truss has been designe d live load nonconcurrer	ds in the p vind (norm End Deta designer a besigner a besigner a besigner a f (Lum DC tat B; Fully e been co ss otherw oc. d for a 10.	lane of the tru al to the face ils as applical s per ANSI/TF .: Lum DOL=' DL=1.15 Plate Exp.; Ce=0.9 asidered for th se indicated. d bearing.), Dle, Pl 1. I.15 J; his		U		ORTH CA	ROLU
FORCES	(lb) - Maximum Com Tension 1-2=-278/186, 2-3=- 4-5=-204/131, 5-6=- 8-9=-167/115, 9-10=	258/165, 3-4=-231/14 188/118, 6-8=-173/1	9) * Thi 49, on th 13, 3-06 /40 chor	s truss has been design le bottom chord in all are -00 tall by 2-00-00 wide d and any other membe	ed for a live as where will fit betw rs.	e load of 20.0 a rectangle veen the botto)psf om		11111		SEA 0363	• –
BOT CHORD	1-19=-133/163, 18-1 17-18=-133/163, 16- 15-16=-133/163, 13- 12-13=-133/163, 11-	9=-133/163, 17=-133/163, 15=-133/163,	10) Prov	ide mechanical connect ing plate capable of with							0363	FER. HALLING

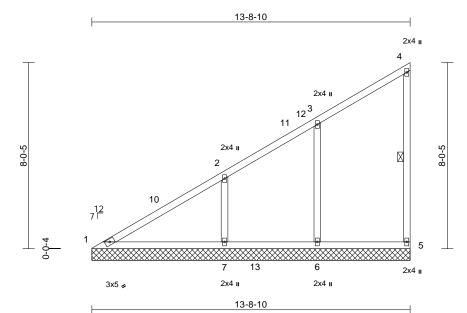
Job	Truss	Truss Type	Qty	Ply	DRB - 100 FARM AT NEILLS CREEK	
22030102	V2	Valley	1	1	Job Reference (optional)	151257007

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Thu Apr 07 20:54:44 ID:dZR1oJ6SMNhWOks6TOXq3xzTR1m-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

15-10-11

Scale = 1:57.1

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/1	TPI2014	CSI TC BC WB Matrix-MSH	0.85 0.23 0.33	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 81 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt (lb/size) 1=123/15 8=348/15 10=358/1 Max Horiz 1=321 (L0 Max Uplift 1=-20 (L0 8=-109 (L 10=-93 (L	cept end verticals. applied or 10-0-0 oc 6-7 -10-11, 7=126/15-10 5-10-11, 9=305/15-10 5-10-11 C 11) C 10), 7=-46 (LC 11), C 14), 7=-205 (LC 23), C 5), 9=405 (LC 23),	3) d or 4) (5) (-11, 7) - -11, 8) 4), 3 9) (1	only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced design. Gable truds: This truss ha chord live loa * This truss h chord live loa * This truss h on the bottom 3-06-00 tall b chord and an Provide mecl	ned for wind loads dis exposed to wi d Industry Gable F alified building de 7-16; Pr=20.0 ps (s=1.0; Rough Ca =1.10 snow loads have es continuous bot spaced at 4-0-0 c s been designed ad nonconcurrent nas been designed ad nonconcurrent in chord in all area by 2-00-00 wide w y other members hanical connectio e capable of withs	nd (norm End Deta ssigner as sf (roof LL (Lum DC tom chor tom chor tom chor tom chor tom chor tom a 10.0 with any d for a liv as where vill fit betv t, with BC	al to the face ils as applica s per ANS/TI :: Lum DOL= DL=1.15 Plate Exp.; Ce=0.9 nsidered for th d bearing. D psf bottom other live loa e load of 20.0 a rectangle veen the bottw DL = 10.0psf ers) of truss t), ble, PI 1. 1.15 9; ds. Dpsf om 5. 0						
FORCES TOP CHORD		· 227/150, 3-5=-195/1	24,								-	TH CA	Ro	
BOT CHORD	8-9=-131/146, 7-8=-)=-131/146, 131/146	100							4	and the second	ONCEESS	ichi hit	
WEBS NOTES	5-8=-388/136, 3-9=-	244/100, 2-10=-264/	133							-			1 N	-
1) Wind: ASC Vasd=103 Cat. II; Ex zone and 3-0-7 to 12 cantilever right expo	CE 7-16; Vult=130mph imph; TCDL=6.0psf; B p B; Enclosed; MWFR C-C Exterior(2E) 0-0-7 2-9-6, Exterior(2E) 12- left and right exposed sed;C-C for members ns shown; Lumber DC	CDL=6.0psf; h=25ft; S (envelope) exterior 7 to 3-0-7, Interior (1) 9-6 to 15-9-6 zone; ; end vertical left and and forces & MWFR	ł							11111AAA		A. C	22 EER.A	annun an


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

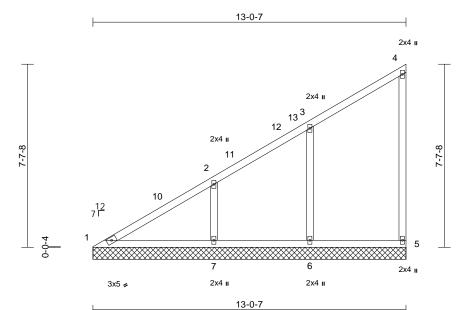
Job	Truss	Truss Type	Qty	Ply	DRB - 100 FARM AT NEILLS CREEK	
22030102	V3	Valley	1	1	Job Reference (optional)	151257008

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Thu Apr 07 20:54:44 ID:dlfQSUCwlL2q1s9Sv59O5YzhpM_-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:49.7

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.62 0.34 0.21	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 66 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt (lb/size) 1=189/13 6=293/13 Max Horiz 1=276 (LC Max Uplift 5=-40 (LC 7=-110 (L Max Grav 1=238 (LC	4-5 -8-10, 5=136/13-8-10 -8-10, 7=469/13-8-10 C 11) C 11), 6=-41 (LC 16), C 14)	4) d or 5) 6) 7) 8) 0,	Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. Gable requir Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b	7-16; Pr=20.0 ps .15); Pf=20.0 ps is=1.0; Rough Ca .10 snow loads have es continuous bot spaced at 4-0-0 o s been designed ad nonconcurrent nas been designed n chord in all area by 2-00-00 wide w by other members	(Lum DC t B; Fully been cor tom chor c. for a 10. with any d for a liv as where rill fit betw	DL=1.15 Plate Exp.; Ce=0.9 Insidered for the rd bearing. 0 psf bottom other live load of 20.0 a rectangle veen the botto	; is ds. psf m					
FORCES TOP CHORD	(lb) - Maximum Con Tension 1-2=-394/173, 2-3=- 4-5=-164/47	179/105, 3-4=-143/1	04,										
BOT CHORD WEBS		114/127, 5-6=-114/1 338/148	27									TH CA	ROUT
Vasd=103 Cat. II; Ex zone and 3-0-7 to 9- cantilever right expo- for reactio DOL=1.60 2) Truss des only. For see Stand	CE 7-16; Vult=130mph mph; TCDL=6.0psf; B p B; Enclosed; MWFR C-C Exterior(2E) 0-0-7 -4-7, Exterior(2R) 9-4- left and right exposed sed;C-C for members ns shown; Lumber DC) signed for wind loads in studs exposed to wind lard Industry Gable En qualified building desi	CDL=6.0psf, h=25ft; S (envelope) exterior 7 to 3-0-7, Interior (1) 7 to 13-7-5 zone; ; end vertical left and and forces & MWFR: DL=1.60 plate grip n the plane of the trus I (normal to the face) d Details as applicab	l S ss le,									SEA 0363	EER ALU


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB - 100 FARM AT NEILLS CREEK	
22030102	V4	Valley	1	1	Job Reference (optional)	151257009

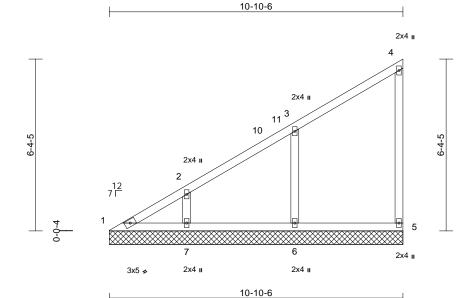
Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Thu Apr 07 20:54:44 ID:WLgYeg9zPbBytL9tiEbmDnzTR1i-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:48

Ocale = 1.40													
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.57 0.26 0.19	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 62 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (Ib/size) 1=166/13 6=312/13 Max Horiz 1=262 (LC Max Uplift 5=-38 (LC 7=-107 (L Max Grav 1=214 (LC 	cept end verticals. applied or 10-0-0 o -0-7, 5=132/13-0-7, -0-7, 7=421/13-0-7 C 11) C 11), 6=-43 (LC 16) C 14)	6 90 7 8	Plate DOL= DOL=1.15); Cs=1.00; Ct Unbalanced design. Gable requil Gable studs This truss h chord live lo * This truss on the botto 3-06-00 tall	7-16; Pr=20.0 ps 1.15); Pf=20.0 ps Is=1.0; Rough Ca =1.10 snow loads have res continuous bot spaced at 4-0-0 c as been designed ad nonconcurrent has been designe m chord in all area by 2-00-00 wide w ny other members	(Lum DC t B; Fully been con trom chor oc. for a 10. with any d for a liv as where vill fit bety	DL=1.15 Plate Exp.; Ce=0.9 Insidered for the d bearing. D psf bottom other live load e load of 20.1 a rectangle veen the botth	e); nis ds.)psf om					
FORCES	(lb) - Maximum Com Tension												
TOP CHORD	0 1-2=-351/160, 2-3=- 4-5=-162/46	172/107, 3-4=-141/9	98,										
BOT CHORD WEBS	0 1-7=-109/278, 6-7=- 3-6=-373/116, 2-7=-		121									TH CA	unin.
Vasd=10 Cat. II; Ez zone and 3-0-7 to 8 cantilever right expo for reaction DOL=1.6 2) Truss de only. For	SCE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B xp B; Enclosed; MWFR I C-C Exterior(2E) 0-0-7 -8-3, Exterior(2R) 8-8-3 r left and right exposed osed;C-C for members ons shown; Lumber DC 0 esigned for wind loads in r studs exposed to wind dard Industry Gable En	CDL=6.0psf; h=25ft S (envelope) exteric 'to 3-0-7, Interior (1 3 to 12-11-2 zone; ; end vertical left an and forces & MWFF IL=1.60 plate grip in the plane of the tru (normal to the face	or) nd RS uss e),							4.111111		SEA 0363	L

- cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.


818 Soundside Road Edenton, NC 27932

G١

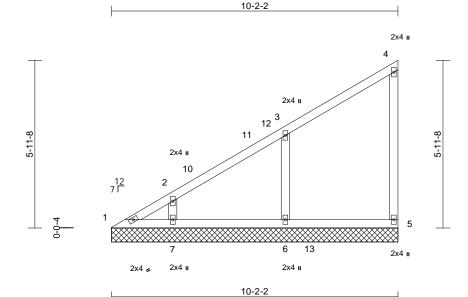
111111111 April 8,2022

Job	Truss	Truss Type	Qty	Ply	DRB - 100 FARM AT NEILLS CREEK	
22030102	V5	Valley	1	1	Job Reference (optional)	151257010

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Thu Apr 07 20:54:44 ID:VWvwIsFRpZYGWTSD8xEKGOzhpLw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:42.6

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	тс	0.38	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.16	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.12	Horiz(TL)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 49 lb	FT = 20%
LUMBER				CE 7-16; Pr=20.0 p								
TOP CHORD				L=1.15); Pf=20.0 ps								
BOT CHORD			Cs=1.00;	5); Is=1.0; Rough C	at B; Fully	Exp.; Ce=0.	9;					
WEBS	2x4 SP No.3		,	ed snow loads have	heen co	nsidered for t	his					
OTHERS	2x4 SP No.3		design.				1115					
BRACING	Other strengtheres and all		Coble real	uires continuous bo	ottom cho	rd bearing.						
TOP CHORD	6-0-0 oc purlins, e	eathing directly appli xcept end verticals.	6) Gable stu	ds spaced at 4-0-0 has been designed	oc.							
BOT CHORD	Rigid ceiling direct bracing.	y applied or 10-0-0 o	chord live	load nonconcurren	t with any	other live loa						
REACTIONS		-10-6, 5=126/10-10-6 0-10-6, 7=298/10-10	o, on the bo	ss has been designe ttom chord in all are	eas where	a rectangle						
	Max Horiz 1=216 (I	,	3-06-00 t	all by 2-00-00 wide								
	Max Uplift 1=-13 (L			any other member								
		C 14), 7=-83 (LC 14)	9) Plovide I	nechanical connecti late capable of with								
	Max Grav 1=127 (I 6=503 (I	C 24), 5=209 (LC 5) C 5), 7=352 (LC 23)	, 1 , 1		stanuing	is in upint at	ont					
FORCES	(lb) - Maximum Co Tension	mpression/Maximum										
TOP CHORD		-151/110, 3-4=-132/	80,									
BOT CHORD WEBS	1-7=-91/125, 6-7=- 3-6=-393/143, 2-7=	91/101, 5-6=-91/101 223/127									minin	unin.
NOTES	,									3	WTH CA	Rollin
	CE 7-16; Vult=130mp	h (3-second aust)								N	R	2114
	3mph; TCDL=6.0psf;		:						/	52	E FOU	A. an
	p B; Enclosed; MWF								4	Í D	K -	RAM
	C-C Exterior(2E) 0-0-								-		.4	N 1 E
	o 6-6-2, Exterior(2R) 6										SEA	
	left and right expose								=		0363	
	sed;C-C for members		RS						1		0363	22 ; =
DOL=1.6	ons shown; Lumber D	OL=1.60 plate grip								e		1 - E - E
	signed for wind loads	in the plane of the tr	220							-	·	airs
	studs exposed to win									25	S VGIN	EELAN
	dard Industry Gable E									11	10	REN
	t qualified building des										A. C	allun
											<i>1</i> 11111	11111,
											Δr	vril 8 2022


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB - 100 FARM AT NEILLS CREEK	
22030102	V6	Valley	1	1	Job Reference (optional)	151257011

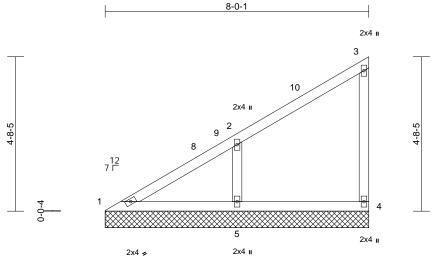
Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Thu Apr 07 20:54:45 ID:9eP49nIUaHiFJB4BPIpajJzTR1W-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:40.9

30ale = 1.40.5													
Loading TCLL (roof) Snow (Pf)	(psf) 20.0 20.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15		CSI TC BC	0.33 0.16	DEFL Vert(LL) Vert(TL)	in n/a n/a	(loc) - -	l/defl n/a n/a	L/d 999 999	PLATES MT20	GRIP 244/190
TCDL	10.0	Rep Stress Incr	YES		WB	0.11	Horiz(TL)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC201	8/TPI2014	Matrix-MSH								
BCDL	10.0											Weight: 45 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 3x4 SP No.3 5 8 8 9 9 8 9 9 8 9 9 8 9 9 9 9 9 9 9 9	cept end verticals. applied or 10-0-0 o 2-2, 5=125/10-2-2, I-2-2, 7=272/10-2-2 C 11)	6) c 7) 8) , 8)	Plate DOL= DOL=1.15); Cs=1.00; Ct Unbalanced design. Gable requii Gable studs This truss ha chord live lo * This truss on the botto 3-06-00 tall chord and a Provide med	E 7-16; Pr=20.0 ps 1.15); Pf=20.0 ps Is=1.0; Rough Ca =1.10 snow loads have res continuous bol spaced at 4-0-0 c as been designed ad nonconcurrent has been designe m chord in all area by 2-00-00 wide w ny other members chanical connectio e capable of withs	(Lum DC t B; Fully been cor tom chor c. for a 10.1 with any d for a liv as where vill fit betw s, with BC n (by oth	DL=1.15 Plate Exp.; Ce=0.9 Insidered for the d bearing. D psf bottom other live load e load of 20.0 a rectangle veen the bottwe DL = 10.0psf ers) of truss to	ds. Opsf om o					
FORCES	(lb) - Maximum Corr	=319 (LC 23)	6=495	1.			,						
TOP CHORD	Tension 1-2=-174/122, 2-3=- 4-5=-157/43	146/109, 3-4=-129/7	74,										
BOT CHORD												TH CA	1111.
WEBS	3-6=-395/151, 2-7=-	211/133										IN'TH CA	ROUL
Vasd=10 Cat. II; Ex zone and 3-0-7 to 5 cantilever right expo for reactin DOL=1.6 2) Truss de only. For see Stand	CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B kp B; Enclosed; MWFR C-C Exterior(2E) 0-0-7 5-9-15, Exterior(2R) 5-9 r left and right exposed ossed;C-C for members ons shown; Lumber DC 0 signed for wind loads in studs exposed to wind dard Industry Gable En t qualified building desi	CDL=6.0psf; h=25ft; S (envelope) exteric 7 to 3-0-7, Interior (1 I-15 to 10-0-13 zone ; end vertical left an and forces & MWFF DL=1.60 plate grip n the plane of the tru I (normal to the face d Details as applical	or) ; d &S uss), ble,							4	Ż	SEA 0363	L 22 EEERH

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



A. GILBE GILLIN

Job	Truss	Truss Type	Qty	Ply	DRB - 100 FARM AT NEILLS CREEK	
22030102	V7	Valley	1	1	Job Reference (optional)	151257012

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Thu Apr 07 20:54:45 ID:B7m_LeEVRTZtQvEnMP_oltzT?9H-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

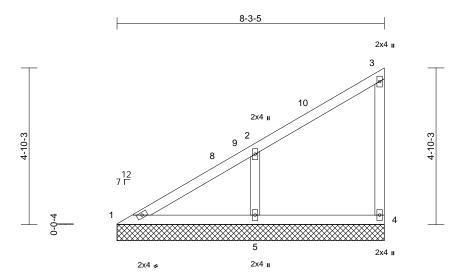
Page: 1

8-0-1

Scale	=	1:35

00010 = 1100													
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MP	0.32 0.14 0.08	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 34 lb	GRIP 244/190 FT = 20%
	6-0-0 oc purlins, ex Rigid ceiling directly bracing.	applied or 10-0-0 oc -1, 4=111/8-0-1, -1 C 11) C 11), 5=-102 (LC 14) C 24), 4=172 (LC 20)	4) d or 5) 6) 7) 8)	Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. Gable requir Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b	7-16; Pr=20.0 psf .15); Pf=20.0 psf (Is=1.0; Rough Cat =1.10 snow loads have t spaced at 4-0-0 or is been designed f ad nonconcurrent t has been designed in chord in all areas by 2-00-00 wide wi	(Lum DC B; Fully been cor om chor c. for a 10.0 with any I for a liv s where Il fit betw	DL=1.15 Plate Exp.; Ce=0.9 Insidered for the d bearing. D psf bottom other live loa e load of 20.0 a rectangle	e 9; his uds. Opsf					
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-2=-200/109, 2-3=- 1-5=-68/162, 4-5=-6 2-5=-400/179	112/55, 3-4=-146/42											
NOTES 1) Wind: ASC Vasd=103 Cat. II; Exp	CE 7-16; Vult=130mph mph; TCDL=6.0psf; B b B; Enclosed; MWFR C-C Exterior(2E) 0-0-7	CDL=6.0psf; h=25ft; S (envelope) exterior									Thu .	ORTH CA	ROUL

- 3-0-7 to 3-7-13, Exterior(2R) 3-7-13 to 7-10-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 2) only. For stude exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.



818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB - 100 FARM AT NEILLS CREEK	
22030102	V8	Valley	1	1	Job Reference (optional)	151257013

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Thu Apr 07 20:54:45 ID:7VulmKGlz5pbfCO9Tq0GNIzT?9F-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

8-3-5

Scale :	= 1:35.7
Scale	= 1.55.7

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MP	0.33 0.16 0.09	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 35 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	6-0-0 oc purlins, ex Rigid ceiling directly bracing.	cept end verticals. applied or 10-0-0 od 3-5, 4=108/8-3-5, 3-5 C 11), 5=-104 (LC 14 C 24), 4=169 (LC 20	6) 7) 8)	Plate DOL= DOL=1.15); Cs=1.00; Ct: Unbalanced design. Gable studs This truss ha chord live loù * This truss lo on the botton 3-06-00 tall l	7-16; Pr=20.0 1.15); Pf=20.0 p Is=1.0; Rough (=1.10 snow loads hav es continuous l spaced at 4-0-1 as been designed ad nonconcurrer has been designed been desig	sf (Lum DC Cat B; Fully ve been cor bottom chor 0 oc. ed for a 10.0 int with any ned for a liv reas where e will fit betw	DL=1.15 Plate Exp.; Ce=0. asidered for t d bearing. D psf bottom other live loa e load of 20. a rectangle	e 9; his ads. 0psf					
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD BOT CHORD	1-2=-217/113, 2-3=- 1-5=-71/179, 4-5=-7	,	5										
WEBS	2-5=-407/181	1///											
NOTES												mm	1111

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-7 to 3-0-7, Interior (1) 3-0-7 to 3-11-1, Exterior(2R) 3-11-1 to 8-1-15 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Job	Truss	Truss Type	Qty	Ply	DRB - 100 FARM AT NEILLS CREEK	
22030102	V9	Valley	1	1	Job Reference (optional)	151257014

12 7 Г

5-1-13

Carter Components (Sanford), Sanford, NC - 27332

Scale = 1:26 Loading

TCLL (roof)

Snow (Pf)

LUMBER

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

REACTIONS

FORCES

NOTES

1)

2)

3)

4)

5)

6)

design

TOP CHORD

BOT CHORD

TCDL

BCLL

BCDL

WEBS

BRACING

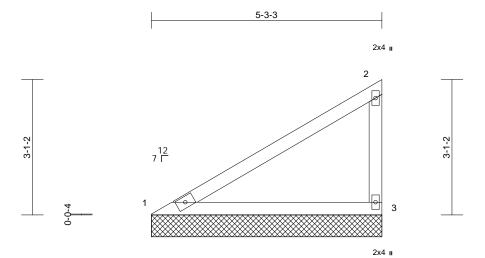
3-0-5

Run: 8,53 S Dec 6 2021 Print: 8,530 S Dec 6 2021 MiTek Industries, Inc. Thu Apr 07 20:54:45 ID:3u0VA0H?Vi3JvWXYbF2kSjzT?9D-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2x4 ı

3-0-5

2


Page: 1

먼 3 2x4 II 3x5 🖌 5-1-13 (psf) Spacing 2-0-0 CSI DEFL l/defl L/d PLATES GRIP in (loc) 20.0 Plate Grip DOL 1.15 TC 0.54 Vert(LL) n/a n/a 999 MT20 244/190 BC 20.0 Lumber DOL 1 15 0.55 Vert(TL) n/a n/a 999 10.0 Rep Stress Incr YES WB 0.00 Horiz(TL) 0.01 3 n/a n/a 0.0 Code IRC2018/TPI2014 Matrix-MP 10.0 Weight: 19 lb FT = 20%7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 2x4 SP No.2 2x4 SP No.2 * This truss has been designed for a live load of 20.0psf 8) 2x4 SP No.3 on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. Structural wood sheathing directly applied or Provide mechanical connection (by others) of truss to 9) 5-1-13 oc purlins, except end verticals. bearing plate capable of withstanding 17 lb uplift at joint Rigid ceiling directly applied or 10-0-0 oc 1. bracing. (lb/size) 1=200/5-1-13, 3=200/5-1-13 Max Horiz 1=97 (LC 11) Max Uplift 1=-17 (LC 14), 3=-46 (LC 14) Max Grav 1=296 (LC 20), 3=296 (LC 20) (lb) - Maximum Compression/Maximum Tension 1-2=-459/83, 2-3=-203/65 1-3=-82/389 Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. SEAL TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 036322 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this Gable requires continuous bottom chord bearing. Gable studs spaced at 4-0-0 oc. G mm April 8,2022 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB - 100 FARM AT NEILLS CREEK	
22030102	V10	Valley	1	1	Job Reference (optional)	151257015

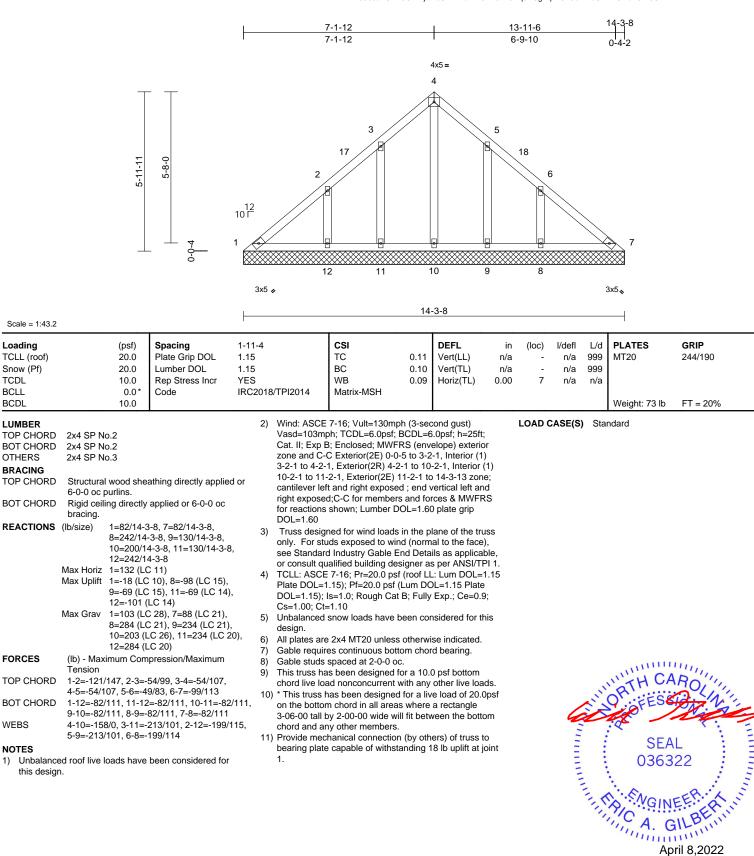
Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Thu Apr 07 20:54:45 ID:UThep1KuodSumzG7GNcR4MzT?9A-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

3x5 🍃

5-3-3	

					5-3-3							
Scale = 1:26.3								1				
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.57	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.57	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.01	3	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TP	2014 Matrix-MP								
BCDL	10.0		-								Weight: 20 lb	FT = 20%
LUMBER				s truss has been design								
TOP CHORD	2x4 SP No.2			ord live load nonconcurre	,							
BOT CHORD	2x4 SP No.2			his truss has been desig			Upst					
WEBS	2x4 SP No.3			the bottom chord in all a 6-00 tall by 2-00-00 wide			~ m					
BRACING			ch	ord and any other memb		veen the botto	om					
TOP CHORD	Structural wood she			vide mechanical connect		ers) of truss t	io.					
BOT CHORD	5-3-3 oc purlins, ex		, hor	aring plate capable of wi								
BOICHORD	Rigid ceiling directly bracing.	applied of 10-0-0 of	^۲ 1.		Ū	, ,						
REACTIONS	· /	3-3, 3=205/5-3-3										
	Max Horiz 1=99 (LC	,										
	Max Uplift 1=-18 (LC											
	Max Grav 1=303 (L0)									
FORCES	(lb) - Maximum Com	npression/Maximum										
	Tension	00/00										
TOP CHORD BOT CHORD	1-2=-471/85, 2-3=-2 1-3=-84/399	08/66										
	1-3=-04/399											
NOTES		(2 accord suct)										
	E 7-16; Vult=130mph nph; TCDL=6.0psf; B											
	B; Enclosed; MWFR											
	C-C Exterior(2E) zone											11
	end vertical left and ri										MULL CI	Dille
members a	and forces & MWFRS	for reactions shown	;								"ATH UP	NON
	DL=1.60 plate grip DC								/	S	ONEESS	ich / -
	igned for wind loads i								4	è è	120	N. T.
	tuds exposed to wind								-	Z		min
	ard Industry Gable En									1	· · · ·	
	qualified building desi CE 7-16; Pr=20.0 psf (_	:	SEA	L : =
,	=1.15); Pf=20.0 psf (L	`							= =		0363	22 E
	; Is=1.0; Rough Cat E										. 0000	44 i E
Cs=1.00; C		s, i unj 2/ipi, e e ele	,							2	N	1 1 2
4) Unbalance	d snow loads have be	een considered for th	nis							2.1	A. ENG	-cRik S
design.										1	SEA 0363	EF R N
	ires continuous botto	m chord bearing.								1	CA C	BEIN
Gable stud	s spaced at 4-0-0 oc.										A. C	
												1111
											Δr	ril 8 2022

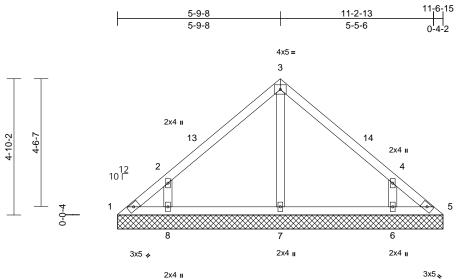

April 8,2022

Job	Truss	Truss Type	Qty	Ply	DRB - 100 FARM AT NEILLS CREEK	
22030102	V11	Valley	1	1	Job Reference (optional)	151257016

1)

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Thu Apr 07 20:54:45 ID:z7J90oaYUBX3ODMjaf7sUPzT1df-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



Job	Truss	Truss Type	Qty	Ply	DRB - 100 FARM AT NEILLS CREEK	
22030102	V12	Valley	1	1	Job Reference (optional)	151257017

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Thu Apr 07 20:54:46 ID:z7J90oaYUBX3ODMjaf7sUPzT1df-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

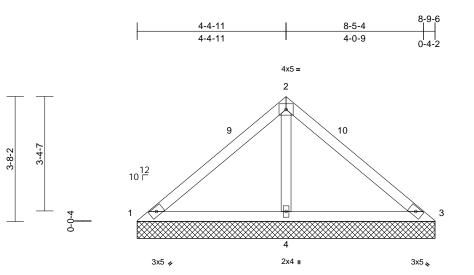
Page: 1

11-6-15

Scale	9 = 1	1:41
-------	-------	------

for reactions shown; Lumber DOL=1.60 plate grip

DOL=1.60


Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.31 0.12 0.08	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 47 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directh bracing. (Ib/size) 1=48/11- 6=297/11 8=297/11 Max Horiz 1=-109 (I Max Uplift 1=-37 (LC 6=-134 (I Max Grav 1=81 (LC	_C 10)	5; 5; 6; 7; 8; 8; 4) 9; 9; 4) 9; 9; 8; (LC	 only. For stt see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct=1 Unbalanced design. Gable requir Gable requir Gable studs This truss ha chord live loa * This truss ha on the bottor 3-06-00 tall h chord and ar 	ned for wind loa uds exposed to v d Industry Gable valified building of 7-16; Pr=20.0 p 1.15); Pf=20.0 ps Is=1.0; Rough C =1.10 snow loads hav es continuous b spaced at 4-0-0 is been designe ad nonconcurrer has been design n chord in all are by 2-00-00 wide hanical connecti	vind (norm End Deta lesigner a: sof (roof LL f (Lum DC t (Lum DC at B; Fully e been cor ottom chor oc. d for a 10. tt with any ed for a liv sas where will fit betw 's.	al to the face ils as applica s per ANS/IT :Lum DOL= :L1.15 Plate Exp.; Ce=0.1 d bearing. 0 psf bottom other live loa e load of 20.1 a rectangle veen the bott), ble, PI 1. 1.15 9; his dds. 0psf om					
FORCES	Tension	npression/Maximum		bearing plate	e capable of with uplift at joint 5.								
TOP CHORD	1-2=-119/100, 2-3= 4-5=-95/64	-222/114, 3-4=-222/11	14,										
BOT CHORD	1-8=-32/73, 7-8=-27 5-6=-29/73	7/73, 6-7=-27/73,										OR FESS	RO
WEBS	3-7=-166/0, 2-8=-42	20/234, 4-6=-420/234									1	A SECO	in the
this design 2) Wind: AS(Vasd=103 Cat. II; Ex zone and 3-0-5 to 8 cantilever	CE 7-16; Vult=130mpl smph; TCDL=6.0psf; E p B; Enclosed; MWFF C-C Exterior(2E) 0-0- -7-4, Exterior(2E) 8-7- left and right exposed	n (3-second gust) CDL=6.0psf; h=25ft; RS (envelope) exterior 5 to 3-0-5, Exterior(2R 4 to 11-7-4 zone; 1; end vertical left and and forces & MWFRS	r) I							Contraction of the second	i S		• •

MANDERINE IN April 2

Job	Truss	Truss Type	Qty	Ply	DRB - 100 FARM AT NEILLS CREEK	
22030102	V13	Valley	1	1	Job Reference (optional)	151257018

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Thu Apr 07 20:54:46 ID:obl8CR79AVIhJxhlYr2zsHzhpM4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

8-9-6

Scale = 1:34

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MP	0.42 0.39 0.15	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 33 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 8-9-6 oc purlins. Rigid ceiling directly bracing. (Ib/size) 1=22/8-9- 4=658/8-5 Max Horiz 1=-82 (LC Max Uplift 1=-50 (LC 4=-109 (L Max Grav 1=76 (LC (LC 21) (Ib) - Maximum Com Tension 1-2=-201/329, 2-3=-	applied or 6-0-0 oc 6, 3=22/8-9-6, 9-6 5 (12) 5 (21), 3=-50 (LC 20), C (14) 20), 3=76 (LC 21), 4 appression/Maximum 201/329	6) 7) 8) 9)	Plate DOL= DOL=1.15); Cs=1.00; Ct Unbalanced design. Gable requil Gable studs This truss h chord live lo * This truss on the botto 3-06-00 tall chord and a)) Provide mee bearing plat	7-16; Pr=20.0 ps 1.15); Pf=20.0 ps 1.15); Pf=20.0 ps 1s=1.0; Rough Ca =1.10 snow loads have res continuous bot spaced at 4-0-0 c as been designed ad nonconcurrent has been designed m chord in all area by 2-00-00 wide w ny other members chanical connectio e capable of withs uplift at joint 3.	(Lum DC t B; Fully been cor tom chor cc. for a 10.1 with any d for a liv as where vill fit betw s. n (by oth	DL=1.15 Plate Exp.; Ce=0.9 nsidered for the d bearing. D psf bottom other live loa e load of 20.0 a rectangle ween the botto ers) of truss t	e); ds. Dpsf om					
this design 2) Wind: AS0 Vasd=103 Cat. II; Ex zone and 3-0-5 to 5- cantilever right expo	CE 7-16; Vult=130mph Bmph; TCDL=6.0psf; Br p B; Enclosed; MWFR C-C Corner(3E) 0-0-5 -9-10, Corner(3E) 5-9- 16ft and right exposed used;C-C for members - ons shown; Lumber DC	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterio to 3-0-5, Corner(3R) 10 to 8-9-10 zone; ; end vertical left an and forces & MWFR	r I							Contraction of the second seco		SEA 0363	• –

 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

DOL=1.60

220 BEFORE USE. component, not pn into the overall d permanent bracing

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB - 100 FARM AT NEILLS CREEK	
22030102	V14	Valley	1	1	Job Reference (optional)	151257019

2-11-14

2-11-14

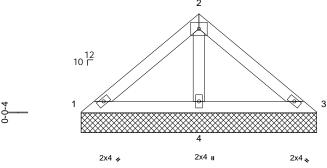
Carter Components (Sanford), Sanford, NC - 27332,

2-2-7

2-6-2

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Thu Apr 07 20:54:46 ID:MWSaDDa3r45vnCN9?HUMRnzT?8r-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-7-10


2-7-12

5-11-12

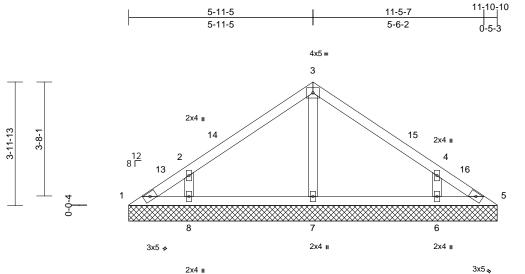
Page: 1

4x5 =

5-11-12

Scale	_	1.20.2

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MP	0.15 0.18 0.06	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 22 lb	GRIP 244/190 FT = 20%
I	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 5-11-12 oc purlins. Rigid ceiling directly bracing. (lb/size) 1=49/5-11 4=381/5-1 Max Horiz 1=-55 (LC Max Uplift 3=-4 (LC (LC 21) (lb) - Maximum Com Tension	applied or 6-0-0 oc -12, 3=49/5-11-12, 1-12 12) 15), 4=-50 (LC 14) 20), 3=99 (LC 21), 4=	design. 6) Gable requir 7) Gable studs 8) This truss ha chord live lo 9) * This truss on the botto 3-06-00 tall chord and a 10) Provide med bearing plate 3.	snow loads have res continuous bot spaced at 4-0-0 o as been designed ad nonconcurrent has been designed m chord in all area by 2-00-00 wide w ny other members thanical connection e capable of withst	tom chor c. for a 10.0 with any d for a liv is where ill fit betw n (by oth	d bearing.) psf bottom other live load e load of 20.0 a rectangle veen the botto ers) of truss to	ls. psf m					
this design 2) Wind: ASC Vasd=103r Cat. II; Exp zone and C exposed ; e members a	1-2=-88/157, 2-3=-8 1-4=-116/120, 3-4=- 2-4=-267/146 d roof live loads have	116/120 been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior cantilever left and rig ht exposed;C-C for for reactions shown;	ght								ORTH CA	L


- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB - 100 FARM AT NEILLS CREEK	
22030102	V15	Valley	1	1	Job Reference (optional)	151257020

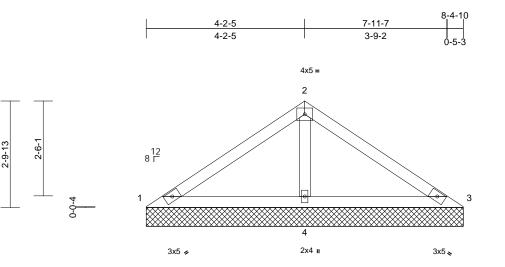
Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Thu Apr 07 20:54:46 ID:IkNFRv?HugPrGpa4YWNv_PzT016-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

11-10-10

Scale = 1:37.2													
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.30 0.12 0.08	Vert(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 45 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (Ib/size) 1=48/11-1 6=297/11 8=297/11 Max Horiz 1=-89 (LC Max Uplift 1=-21 (LC 8=-108 (L Max Grav 1=68 (LC	C 10) C 10), 6=-106 (LC 15),	or 5)), 6) 7) 8) 9) 43 LC	only. For stt see Standar or consult qu TCLL: ASCE Plate DOL=' DOL=1.15); Cs=1.00; Ct: Unbalanced design. Gable requir Gable studs This truss ha chord live lo: * This truss ha on the botton 3-06-00 tall li chord and an	ned for wind loads uds exposed to wi d Industry Gable I jalified building de 57-16; Pr=20.0 ps 1.15); Pf=20.0 ps 1.15); Pf=20.0 ps 1.15); Pf=20.0 ps 1.15); Pf=20.0 ps 1.15); Pf=20.0 ps 1.10 snow loads have res continuous bot spaced at 4-0-0 c as been designed ad nonconcurrent has been designe m chord in all area by 2-00-00 wide w ny other members chanical connectio	nd (norm End Deta ssigner as sf (roof LL (Lum DC (Lum DC tom chor tom chor tom chor to for a 10.0 with any d for a liv as where ill fit betw	al to the face ils as applica s per ANS/TI L=1.15 Plate Exp.; Ce=0.9 asidered for the d bearing. D psf bottom other live loa e load of 20.0 a rectangle veen the bottom), ble, PI 1. 1.15 9; bhis ds. Opsf					
FORCES	(lb) - Maximum Com Tension 1-2=-88/79, 2-3=-18			bearing plate 1.	e capable of withs	tanding 2	1 lb uplift at j	oint					
BOT CHORD	4-5=-63/52 1-8=-21/57, 7-8=-18 5-6=-18/57	/57, 6-7=-18/57,										TH CA	RO
this desig 2) Wind: AS Vasd=103 Cat. II; Ex zone and 3-0-6 to 8 cantilever right expo	ed roof live loads have	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior 5 to 3-0-6, Exterior(2R) 1-0 to 11-11-0 zone; ; end vertical left and and forces & MWFRS								Contraction of the second seco	3)	SEA 0363	L

cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


G

Un Ginnin April 8,2022

Job	Truss	Truss Type	Qty	Ply	DRB - 100 FARM AT NEILLS CREEK	
22030102	V16	Valley	1	1	Job Reference (optional)	151257021

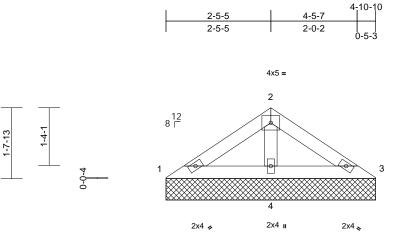
Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Thu Apr 07 20:54:47 ID:03WliM1fKHa0QdQMOoOJoqzT0_U-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

8-4-10

Scale = 1:30.5

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC 0.1 BC 0.1 WB 0.1 Matrix-MP	4 Vert(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 29 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.3 Structural wood shea 8-4-10 oc purlins. Rigid ceiling directly bracing.	applied or 6-0-0 oc 10, 3=33/8-4-10, 1-10 11) 2 21), 3=-34 (LC 20), 14) C 20), 3=104 (LC 21)	 Plate DOL=' DOL=1.15); Cs=1.00; Ct: Unbalanced design. Gable requir Gable studs This truss ha chord live lo: * This truss ha on the botton 3-06-00 tall li chord and an Provide mec bearing plate 	7-16; Pr=20.0 psf (roo 1.15); Pf=20.0 psf (Lum Is=1.0; Rough Cat B; F =1.10 snow loads have been es continuous bottom c spaced at 4-0-0 oc. as been designed for a ad nonconcurrent with a has been designed for a m chord in all areas wh by 2-00-00 wide will fit b ny other members. hanical connection (by e capable of withstandir uplift at joint 3.	DOL=1.15 Plate illy Exp.; Ce=0. considered for t nord bearing. 0.0 psf bottom ny other live loa live load of 20. ore a rectangle etween the bott others) of truss	e 9; his ads. Opsf to					
this design 2) Wind: ASC	1-4=-214/155, 3-4=- 2-4=-471/200 ed roof live loads have	102/314 214/155 been considered for (3-second gust)		aprint at joint 0.					A	OR FES	NROVIN

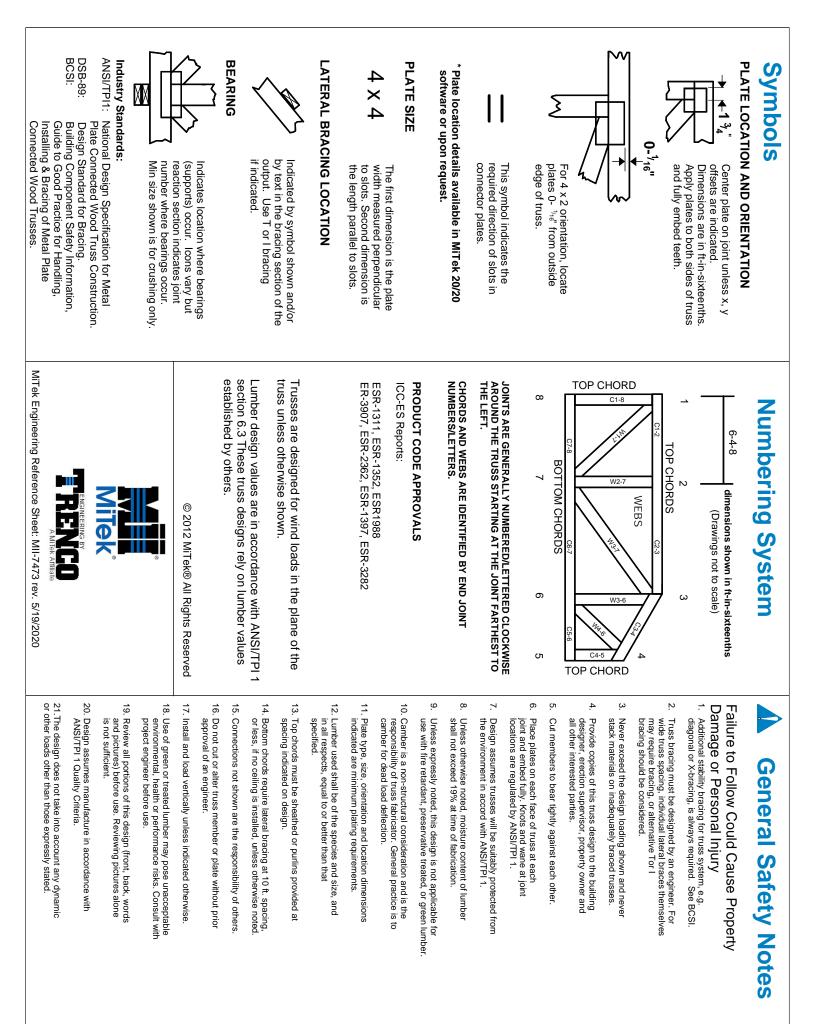
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-6 to 3-0-6, Exterior(2R) 3-0-6 to 5-5-0, Exterior(2E) 5-5-0 to 8-5-0 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.


SEAL 036322 A. GILBERT

> ENGINEERING BY AMITEK Affiliate AMITEK Affiliate B18 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB - 100 FARM AT NEILLS CREEK		
22030102	V17	Valley	1	1	Job Reference (optional)	151257022	

Run: 8.53 S Dec 6 2021 Print: 8.530 S Dec 6 2021 MiTek Industries, Inc. Thu Apr 07 20:54:47 ID:O3WIiM1fKHa0QdQMOoOJoqzT0_U-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


4-10-10

Scale = 1:26.8

00010 - 1.20.0													
Loading	(p:		Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20		Plate Grip DOL	1.15	TC	0.08	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20		Lumber DOL	1.15	BC	0.10	Vert(TL)	n/a	-	n/a	999		
TCDL		0.0	Rep Stress Incr	YES	WB	0.04	Horiz(TL)	0.00	4	n/a	n/a		
BCLL BCDL		0.0*	Code	IRC2018/TP	I2014 Matrix-MP							Waint 10 lb	FT 200/
SCDL		0.0										Weight: 16 lb	FT = 20%
					LL: ASCE 7-16; Pr=20.0								
	2x4 SP No.2				ate DOL=1.15); Pf=20.0 DL=1.15); Is=1.0; Rough								
BOT CHORD OTHERS	2x4 SP No.2 2x4 SP No.3				=1.00; Ct=1.10	Cal D, Fully	Exp., Ce=0.8	9,					
	2X4 SP N0.5				balanced snow loads ha	ave been co	nsidered for th	nis					
BRACING TOP CHORD	Structural wood	d choo	athing directly applie	, do	sign.								
TOP CHORD	4-10-10 oc purl		aning unecuy applie	6) Ga	ble requires continuous	bottom choi	rd bearing.						
BOT CHORD			applied or 6-0-0 oc		ble studs spaced at 4-0-								
	bracing.	, .			is truss has been design								
REACTIONS	(lb/size) 1=51	/4-10	-10, 3=51/4-10-10,		ord live load nonconcurr								
	4=28	38/4-1	0-10		his truss has been desig the bottom chord in all a			Jpst					
	Max Horiz 1=-3			3-0	06-00 tall by 2-00-00 wid		0	om					
		`	4), 3=-11 (LC 15), 4		ord and any other memb								
	(LC		20), 3=86 (LC 21), 4		ovide mechanical conne								
	(LC :		20), 3=00 (LC 21), 2	De	aring plate capable of wi	ithstanding §	5 lb uplift at jo	int 1					
FORCES		'	pression/Maximum	an	d 11 lb uplift at joint 3.								
ONOLO	Tension	Com											
TOP CHORD	1-2=-84/107, 2-	-3=-84	/107										
BOT CHORD	1-4=-82/76, 3-4	=-82/	76										
WEBS	2-4=-176/89												
NOTES													1111
1) Unbalance	ed roof live loads	have I	been considered for	r								WHY CA	AD all
this design											1	aTHO	10/14
	CE 7-16; Vult=130										N'	O'EES	idin Vill
			CDL=6.0psf; h=25ft; 6 (envelope) exterio							6	15	1P/	1 de la
			cantilever left and r									.0	- T :
			ht exposed;C-C for							-		SEA	u : =
members a	and forces & MW	FRSf	or reactions shown	;						=		JL/	• –
	OL=1.60 plate gri									=		0363	322 <u>:</u> E
			the plane of the tru								8		1 2
			(normal to the face)								2		all S
			I Details as applicat ner as per ANSI/TF							10000000000000000000000000000000000000	2.5	NGIN	EETAN
or consult	quanieu punulity	ucaly	1101 do per A1101/17								11	710	BEIN
												11, A. C	ALPIN
												A. C	mm
												Ar	oril 8 2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

