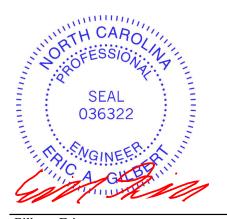


Trenco 818 Soundside Rd Edenton, NC 27932


Re: 22040116-A 78 Farm at Neills Creek-Cooper 3-Roof

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Sanford, NC)).

Pages or sheets covered by this seal: I53061954 thru I53061954

My license renewal date for the state of North Carolina is December 31, 2022.

North Carolina COA: C-0844

July 14,2022

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	٦	Truss	Truss Ty	rpe		Qty	Ply	78 Farm a	t Neills Creek-	Cooper 3-Roof		
22040116-A		A01	Piggyba	ack Base		6	1				153061954	
Z2040110-A A01 Piggyback base 0 1 Job Reference (optional) Carter Components (Sanford), Sanford, NC - 27332, Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTke Industries, Inc. Wed Jul 13 08:45:10 Page: 1 ID:vmWSYKxMeSKeeaoGnh3QrczhvSE-RfC?PsB70Ha3NSaPanL8w3ulTXbGKWrCDoi7J4zJC?ft ID:vmWSYKxMeSKeeaoGnh3QrczhvSE-RfC?PsB70Ha3NSaPanL8w3ulTXbGKWrCDoi7J4zJC?ft Page: 1												
		9-4-5 1	7-6-14	21-2-5	ID:vmWSYKxMeSł 26-2-5	KeeaoGnh3Qro 33-2-12		PsB70Hq3NS -4-2	gPqnL8w3uITXb(46-11-13	GKWrCDoi7J4zJ0	55-11-0	
			3-2-8	3-7-7	5-0-0	7-0-7		1-6	8-7-11		8-11-3	
REPAIR: REPLACE 3-0-0 OF WEB 5-17 AT JOINT 5 2x4 w INSTALL 2 X 4 SPF/DF/SP NO.2 6x8 = 2x4 w 16" X 16" 8x10 = 6x8 = 3 4 32335 345 36738 67 8												
	4x6 = 1	6x10 = 4 ¹² 30	712	23	1 3000			E	5x6 9 7	4x5 394010 41	42 4x5 11 12 0 0	
	⊠ 4x8=	43 44 [∞]		19 46 5= 4x5=	18 47 2x4 u	2417 481 2x4= ⁴	6 ×6=	49 15 4x8=	14 50	13 2x4 u	51 [⊠] 6x12 ⊪	
2x4 = 2x4 II 4x5 = 4x6 = APPLY 2 X 4 X 4'SPF/DF/SP NO.2 SCAB(S) TO EACH FACE OF TRUSS CENTERED ON SPLICE. ATTACH WITH (0.131" X 3") NAILS PER THE FOLLOWING NAIL SCHEDULE: 2 X 3'S - 1 ROW, 2 X 4'S - 2 ROWS, 2 X 6'S AND LARGER - 3 ROWS: SPACED @ 4' O.C. SPACING IN THE TRUSS. USE 2" MEMBER END DISTANCE. 2 X 3'S - 2 ROWS, 2 X 4'S - 3 ROWS, 2 X 6'S AND LARGER - 4 ROWS: SPACED @ 4' O.C. NAILS TO BE DRIVEN FROM BOTH FACES. STAGGER SPACING FROM FRONT TO BACK FACE FOR A NET 2" O.C. SPACING IN EACH COVERED TRUSS MEMBER. USE 2" MEMBER END DISTANCE. 1 12-4-12 17-8-10 23-8-5 29-6-4 38-5-14 46-11-13 55-11-0												
Scale = 1:97.2	├ ────	12-4-12	5-3-14	5-11-11	5-9-15		8-11-10	+	8-5-15		8-11-3	
Loading TCLL (roof) Snow (Pf) TCDL BCLL	2 2 1	psf) Spacing Plate Grip DOL 20.0 Lumber DOL 0.0 Rep Stress Incr 0.0* Code	2-0-0 1.15 1.15 YES IRC2018	T B W	С	0.75 Verti 0.65 Verti 0.74 Horz	(LL) -0. (CT) -0.	in (loc) 22 21-22 39 21-22 04 12	l/defl L/d >663 240 >383 180 n/a n/a	PLATES MT20	GRIP 244/190	
BCDL	1	0.0	-							-	b FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS	CHORD 2x6 SP No.2 19-23=-289/142, 4-23=-278/158, recommended to connect truss to bearing walls due CHORD 2x6 SP No.2 5-24=-569/188, 17-24=-580/174, UPLIFT at jt(s) 21, 17, 22, and 12. This connection is S 2x4 SP No.2 *Except* 6-17=-1043/333, 6-15=-151/966, uplift only and does not consider lateral forces. 21-2,15-10,10-13,25-18:2x4 SP No.3, 22-1:2x6 SP No.2 10-13=0/427, 2-22=-84/404, 23-25=-7/13, 10) This truss is designed in accordance with the 2018									b bearing walls due to 2. This connection is for lateral forces. nce with the 2018 actions R502.11.1 and		
SLIDER BRACING	Ū	NOTES 11) Graphical purlin representation does not depict the size									oes not depict the size	
TOP CHORD	5-0-13 oc purl	bd sheathing directly applie lins, except end verticals,	and	this design.				bott	or the orientation of the purlin along the top and/or bottom chord. LOAD CASE(S) Standard			
BOT CHORD	Rigid ceiling d	ns (6-0-0 max.): 3-8. lirectly applied or 6-0-0 oc	2)	Vasd=103mph;	d: ASCE 7-16; Vult=130mph (3-second gust) d=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; .II; Exp B; Enclosed; MWFRS (envelope) exterior							
WEBS	bracing. Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior 1 Row at midpt 3-21, 4-19, 5-17, 6-17, 8-15, 10-15 Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior 2 one and C-C Exterior(2E) 8-0-0 to 13-11-14, Interior (1) 13-11-14 to 17-1-9, Exterior(2R) 17-1-9 to 33-10-11,											
	21= Max Horiz 22= Max Uplift 12= 21= (lb) - Maximun Tension 1-2=-291/151, 4-5=-287/261, 8-10=-982/347 1-22=-466/188 21-22=-276/10 18-19=-92/351	134 (LC 15), 17=-111 (LC 151 (LC 14), 22=-118 (LC -1293 (LC 52), 17=1988 (L -1796 (LC 34), 22=498 (LC n Compression/Maximum , 2-3=-11/617, 3-4=-203/23 , 5-6=-137/205, 6-8=-693/3 7, 10-12=-1762/371, 8 09, 19-21=-77/292, 1, 17-18=-92/351, 7, 13-15=-182/1435,	(15), (10) (26), (43) (1, 4)	 Interior (1) 33-10-11 to 37-7-11, Exterior(2R) 37-7-11 to 54-9-1, Interior (1) 54-9-1 to 57-8-6, Exterior(2E) 57-8-6 to 63-8-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this design. 200.01b AC unit load placed on the bottom chord, 23-8-8 from left end, supported at two points, 5-0-0 apart. Provide adequate drainage to prevent water ponding. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 					SEAL 036322 July 14,2022			

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

ENGINEERING BY

EO

