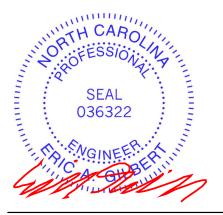


Trenco 818 Soundside Rd Edenton, NC 27932


Re: 22040111 DRB GROUP - 127 FARM AT NEILLS CREEK

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Sanford, NC)).

Pages or sheets covered by this seal: I51981934 thru I51981965

My license renewal date for the state of North Carolina is December 31, 2022.

North Carolina COA: C-0844

May 17,2022

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 127 FARM AT NEILLS CREEK			
22040111	A01	Piggyback Base	2	1	Job Reference (optional)			

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Mon May 16 15:10:12 ID:vmWSYKxMeSKeeaoGnh3QrczhvSE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

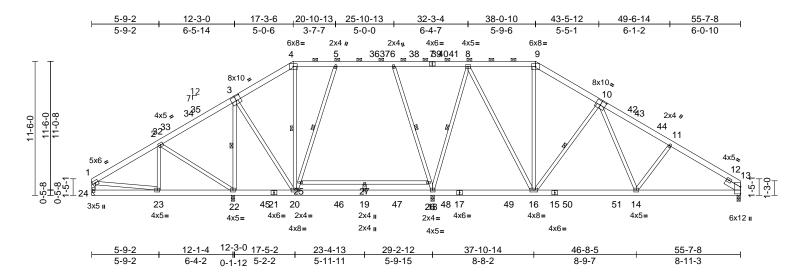
Page: 1

6-0-10 12-6-8 17-6-14 21-2-5 26-2-5 32-6-12 38-4-2 43-9-4 49-10-6 55-11-0 6-0-10 6-5-14 5-0-6 3-7-7 5-0-0 6-4-7 5-9-6 5-5-1 6-1-2 6-0-10 6x8= 2x4 // 2x4 🗤 4x6= 4x5 =6x8= 6 7 41428 43 944546 10 11 8x10 🛃 8x10👟 5 712 12 39⁴⁰ 4748 4x5 🛩 <u>11-6-0</u> 11-0-8 2x4 🍬 11-6-0 49 13 38 37 ⁴ 4x5 🖌 4x5👟 ¹⁴15 3 2 rŧ. TŦ Ø Ø 220 53 19 25 5023 22 21 52 54 18 17 55 56 16 51 24 2x4 u 4x6= 2x4= 4x5= 2x4 II 4x6= 4x8= 4x8 II 4x5= 2x4= 6x12 II 4x8= 2x4 II 4x6= 4x5= 12-4-12 12-6-8 17-8-10 6-0-10 23-8-5 29-6-4 38-2-6 46-11-13 55-11-0 6-0-10 6-4-2 0-1-12 5-2-2 5-11-11 5-9-15 8-8-2 8-9-7 8-11-3

Scale = 1:97.6

Plate Offsets (X, Y): [5:0-5-0,0-4-8], [12:0-5-0,0-4-8]

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.50	Vert(LL)	-0.10	· · ·	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.61	Vert(CT)	-0.31	21-22	>662	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.73	Horz(CT)	0.04	15	n/a	n/a		
BCLL	0.0*	Code	IRC201	8/TPI2014	Matrix-MSH		. ,						
BCDL	10.0											Weight: 475 lb	FT = 20%
BCDL LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	10.0 2x6 SP No.2 2x6 SP No.2 2x4 SP No.3 *Excep 22-6,22-7,20-8,20-10 SP No.2 Left 2x6 SP No.2 1-6-0 Structural wood she 4-7-7 oc purlins, exc 2-0-0 oc purlins, exc 2-0-0 oc purlins, exc 2-0-0 oc purlins, exc 2-0-0 cc purlins, exc 2-0-188(Max Grav 2=427 (LC 20=1924 (lb) - Maximum Com Tension 1-2=0/26, 2-4=-355/	tt* 0,18-10,18-11,26-27:2 1-6-0, Right 2x6 SP N athing directly applied rept -0 max.): 6-11. applied or 6-0-0 oc 5-24, 6-22, 7-22, 8-20 10-20, 12-18 3-8, 15=1066/0-3-8, 0-3-8, 24=1623/0-3-8 C 13) 14), 15=-124 (LC 15 LC 15), 24=-158 (LC C 41), 15=-1247 (LC 3: (LC 44), 24=1914 (LC 15), 24=-158 (LC C 41), 15=1277 (LC 3: (LC 44), 24=1914 (LC pression/Maximum 87, 4-6=-320/523, 312/172, 8-10=-166/1 -13=-1605/227, 25=-170/317, -22=-116/392, -20=-68/478,	(x4 o.2 or 1) 2)), (), (), (), (), (), (), (), (), (),	/EBS Unbalanced this design. Wind: ASCE Vasd=103m Cat. II; Exp E zone and C- 5-1-6 to 9-1- 26-1-7 to 29 Interior (1) 4 55-11-0 zon vertical left a forces & MW DOL=1.60 p TCLL: ASCE Plate DOL= DOL=1.15); Cs=1.00; Ct: Unbalanced design. This truss ha load of 12.0 overhangs n 200.0lb AC (from left end Provide adee	4-25=0/282, 4-24=- 5-22=0/934, 6-22=- 7-26=-333/130, 8-2 20-27=-505/129, 10 10-18=-151/952, 11 12-18=-831/226, 12 13-16=-244/179, 26 21-28=0/42 roof live loads have is 7-16; Vult=130mpl ph; TCDL=6.0psf; E 3; Enclosed; MWFF C Exterior(2E) -0-1 3, Exterior(2E) -0-1 4, Exterior(2E) -0	231/42, 7=-493, 0-20=-11 1-18=-7, 2-16=-3, 5-28=-6, a been of h (3-sec 3CDL=6 RS (env. 0-8 to 5 -3 to 26 29-10-7 Exterior d right e c-C for m shown; (roof LL Lum DC B; Fully een cor or great at roof k other lin the bott points, § revent of	22-26=-345/1 (142, 041/310, 195, 2/530, (7, 27-28=-6/7) considered for xond gust) .0psf, h=25ft; elope) exterion 1-6, Interior (-1-7, Interior (-1-7, Interior (-1-6, Interior (-1-7, Interior (-1-6, Interior (-1-7, Interior (-1-7, Interior (-1-7, Interior (-1-8, Interior (-1-7, Interior (-1-8, Interior (-1-8, Interior (-1-8, Interior (-1-7, Interior (-1-8, Interior (-1-7, Interior (-1-8, Interior (r 1) 1) 1) .15 ; is live f on 8-8	on 3-0 chc 11) On rec UP upl 12) Thi Inte R8 13) Gra or t bot	the botto 6-00 tall ord and a e H2.5A commence LIFT at j ift only a s truss is ernationa 02.10.2 d aphical p the orien tom choi CASE(S)	m cho by 2-0 iny oth Simps led to o t(s) 2, 2 ind doe e desig ul Resid and ref urlin re tation o rd. Star	een designed for rd in all areas wh 0-00 wide will fit I er members, with on Strong-Tie co connect truss to b 24, 20, and 15. T is not consider la ned in accordanc dential Code sect erenced standard spresentation doe of the purlin along	a live load of 20.0psf ere a rectangle between the bottom n BCDL = 10.0psf. nnectors bearing walls due to his connection is for teral forces. with the 2018 ions R502.11.1 and d ANSI/TPI 1. ss not depict the size of the top and/or
			9)		as been designed fo ad nonconcurrent w			ds.				A. G	ILLUIN.
												Mox	17 2022


May 17,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 127 FARM AT NEILLS CREEK			
22040111	A01A	Piggyback Base	4	1	Job Reference (optional)			

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Mon May 16 15:10:15 ID:vmWSYKxMeSKeeaoGnh3QrczhvSE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:98.8

Plate Offsets (X, Y): [3:0-5-0,0-4-8], [10:0-5-0,0-4-8]

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.48	Vert(LL)	-0.10	14-16	>999	240	MT20	244/190	
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.60	Vert(CT)	-0.31	19-20	>663	180			
TCDL	10.0	Rep Stress Incr	YES		WB	0.71	Horz(CT)	0.04	13	n/a	n/a			
BCLL	0.0*	Code	IRC201	8/TPI2014	Matrix-MSH									
BCDL	10.0											Weight: 476 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS	2x6 SP No.2 2x6 SP No.2 2x4 SP No.3 *Excep 20-4,20-5,18-6,18-8, 4 SP No.2		8	BS 2-23=0/276, 2-22=-636/158, 3-22=-1423/92, 3-20=0/950, 4-20=-247/50, 20-25=-349/116, 5-25=-337/129, 6-26=-490/142, 18-26=-502/128, 8-18=-1052/314, 8-16=-155/962, 9-16=0/186, 10-16=-824/227, 10-14=-32/533, 11-14=-240/180, 1-23=-111/179, 25-27=-5/7, 26-27=-5/7,						 9) Refer to girder(s) for truss to truss connections. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 15 lb uplift at joint 24. 11) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to 				
SLIDER	Right 2x6 SP No.2	- 1-6-0			,	-27=-5/7	, 20-27=-5/7,						connection is for	
BRACING					19-27=0/42							s not consider la ned in accordance		
TOP CHORD		athing directly applied	101	OTES	and the standard stand									
		cept end verticals, an	d 1)	this design.	roof live loads have	e been	considered for		International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.					
	2-0-0 oc purlins (6-0		2)		7-16; Vult=130mp	h (3-so	cond quet)						es not depict the size	
BOT CHORD	Rigid ceiling directly bracing.	applied or 6-0-0 oc	(۲		ph; TCDL=6.0psf; E				or the orientation of the purlin along the top and/or					
WEBS	0	3-22, 4-20, 5-20, 6-1	3.		B; Enclosed; MWFF			bot	tom chor	d.				
	·	8-18, 10-16		zone and C-C Exterior(2E) 0-5-4 to 6-5-2, Interior (1)						CASE(S)) Star	ndard		
	22=1640// Mechanic Max Horiz 24=-264 (Max Uplift 13=-121 (22=-183 (Max Grav 13=-1254 43), 22=1 40)	LC 12) LC 15), 18=-116 (LC LC 14), 24=-15 (LC 1 (LC 36), 18=1941 (LC 910 (LC 34), 24=348	15), 4)	 6-5-2 to 9-1-3, Exterior(2R) 9-1-3 to 26-1-7, Interior (1) 26-1-7 to 29-10-7, Exterior(2R) 29-10-7 to 46-9-13, Interior (1) 46-9-13 to 49-11-2, Exterior(2E) 49-11-2 to 55-11-0 zone; cantilever left and right exposed; end vertical left and right exposed; C- C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (cond DL: 1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; 							ROLA			
FORCES	(lb) - Maximum Com Tension	pression/Maximum		Cs=1.00; Ct=	=1.10		• • •			1	ir		XXX	
TOP CHORD	1-2=-343/143, 2-4=-	23=-157/267, 20=-124/367, 18=-63/456,	(1, 5) 6) 7)	design. 200.0lb AC u from left end Provide ader This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b	snow loads have b unit load placed on l, supported at two quate drainage to p as been designed f ad nonconcurrent v has been designed m chord in all areas by 2-00-00 wide wil hy other members,	the both points, sorevent or a 10.0 vith any for a live so where ll fit betw	om chord, 23- 5-0-0 apart. water ponding. D psf bottom other live load e load of 20.0 a rectangle veen the bottol	8-8 Is. osf		ATTITUTE.			EER. KIN	

May 17,2022

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 127 FARM AT NEILLS CREEK			
22040111	A02	Piggyback Base	1	1	Job Reference (optional)			

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Mon May 16 15:10:16 ID:vmWSYKxMeSKeeaoGnh3QrczhvSE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

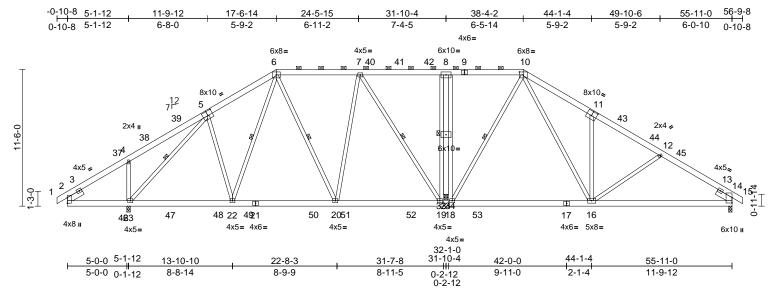
6-0-10 56-9-8 11-9-12 17-6-14 24-5-15 31-10-4 38-4-2 44-1-4 49-10-6 55-11-0 6-0-10 5-9-2 5-9-2 6-11-2 7-4-5 6-5-14 5-9-2 5-9-2 6-0-10 0-10-8 6x8= 4x5= 4x6= 2x4 II 6x8= 6 7 356 37 889409 10 Ð 8x10 🞜 8x10👟 7¹² 5 11 4142 3334 2x4、 2x4 🍫 11-6-0 32 43 1244 31 ⁴ 4x5 🛃 ¹³14₁₅ 3 2 -3-0 Ŧ Ð ₿ 18 22 17 52 45 21 46 20/748 19 49 50 51 16 4x8= 4x6= 4x5= 4x6= 4x6 =4x8= 6x12 u 4x8= 5x10 u 11-9-12 31-10-4 21-1-1 44-1-4 55-11-0 4 11-9-12 9-3-5 10-9-3 12-3-0 11-9-12

Scale = 1:95.7

Plate Offsets (X, Y): [5:0-5-0,0-4-8], [10:0-3-12,0-3-0], [11:0-5-0,0-4-8]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCLL BCDL LUMBER TOP CHORD	(psf) 20.0 20.0 10.0 0.0* 10.0 2x6 SP No.2	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	v	4	CSI TC BC WB Matrix-MSH 	22=-253/	1185,	in -0.14 -0.18 0.02	16-18 18-20 18 9) * T on	the botto	m cho	rd in all areas wh	a live load of 20.0psf ere a rectangle		
BOT CHORD	2x6 SP 2400F 2.0E No.2	^Except^ 21-19:2x6	SP		7-20=0/1237, 6-20 7-18=-1659/162, 1				 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 10) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2, 18, and 14. This connection is for uplift only and does not consider lateral forces. 						
WEBS	2x4 SP No.2 *Excep 22-4,16-11,16-12,5-2				10-16=-228/1321, 5-22=-679/235	12-16=-3	347/181,								
SLIDER	Left 2x6 SP No.2 1-6-0			IOTES	roof live loads hav	e been o	considered fo	r							
BRACING TOP CHORD	Structural wood she 4-7-5 oc purlins, exc 2-0-0 oc purlins (6-0	ept -0 max.): 6-10.	dor 2	 this design. Wind: ASCE Vasd=103mp Cat. II; Exp E 	7-16; Vult=130mp bh; TCDL=6.0psf; I 3; Enclosed; MWF	h (3-sec BCDL=6 RS (env	ond gust) .0psf; h=25ft; elope) exterio	 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or 							
BOT CHORD	Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 16		5-1-6 to 9-1-3, Exterior(2R) 9-1-3 to 26-0-9, Interior (1) 26-0-9 to 29-10-7, Exterior(2R) 29-10-7 to 46-9-13,							tom choi	rd.		g the top and/or		
	2 Rows at 1/3 pts (lb/size) 2=1144/0 18=2927/ Max Horiz 2=-253 (L Max Uplift 2=-113 (L 18=-44 (L	I Row at midpt 9-18, 10-18, 6-20 2 Rows at 1/3 pts 7-18 //size) 2=1144/0-3-8, 14=707/0-3-8, 18=2927/0-3-8 18=2927/0-3-8 Interior (1) 46-9-13 to 50-9-10, Exterior(2E) 50-9-10 to 56-9-8 zone; cantilever left and right exposed; end vertical left and right exposed; end vertical left and right exposed; end to 56-9-8 zone; cantilever left and right exposed; end vertical left and right exposed; end DOL=1.60 plate grip DOL=1.60 ax Uplift 2=-113 (LC 14), 14=-133 (LC 15), 14=919 (LC 37), 18=-140 (C 15) 31 ax Grav 2=1402 (LC 35), 14=919 (LC 37), esc (C 1=10) 32							OR DEES DA						
FORCES	(lb) - Maximum Com Tension	· /	4	design.	snow loads have b is been designed f						4 M		Dan		
TOP CHORD	1-2=0/26, 2-4=-1855/182, 4-6=-1683/293, 6-7=-673/108, 7-9=0/681, 9-10=0/681, 10-12=-853/325, 12-14=-1102/213, 14-15=0/26			 load of 12.0 j overhangs no 200.0lb AC u 23-11-12 from a part. Provide adeco This truss had a second secon	Is been designed f psf or 1.00 times fl on-concurrent with unit load placed on m left end, support quate drainage to p is been designed f ad nonconcurrent v	oad of 20.0 ps /e loads. om chord, o points, 5-0- water ponding) psf bottom	sf on 0 g.	SEAL 036322 A. GILBERT							

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


May 17,2022

Job	Truss	Truss Type		Ply	DRB GROUP - 127 FARM AT NEILLS CREEK			
22040111	A03	Piggyback Base	3	1	I51981937 Job Reference (optional)			

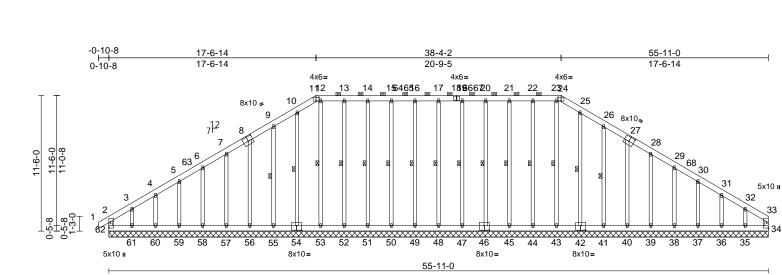
Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Mon May 16 15:10:16 ID:aoRBENz7FOPJS6leKNt1qPzFzyH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

May 17,2022

818 Soundside Road Edenton, NC 27932

Scale = 1:96.9

Plate Offsets (X, Y): [5:0-5-0,0-4-8], [10:0-3-12,0-3-0], [11:0-5-0,0-4-8]


	7, 1). [3.0-3-0,0-4-	oj, [10.0-3-12,0-3-0], [11.0-3-0,0-4-0]									
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr * Code	2-0-0 1.15 1.15 YES IRC2018/TPI20	CSI TC BC WB Matrix-MSH	0.47 0.84 0.86	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.35 -0.53 0.02	(loc) 16-18 16-18 14	l/defl >826 >541 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 497 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS DTHERS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x6 SP No.2 Left 2x6 SP No.2 1-6-0 Structural wood s 5-0-8 oc purlins, e 2-0-0 oc purlins (f Rigid ceiling direc bracing, 1 Row at midpt (lb/size) 14=981 24=203 Max Horiz 23=-25 Max Uplift 14=-24 24=-95 Max Grav 14=124	23-5,22-5:2x4 SP No.: 1-6-0, Right 2x6 SP heathing directly applie except 3-0-0 max.): 6-10. tly applied or 6-0-0 oc 10-18, 5-23, 6-22, 6 7-19, 8-24 /0-3-8, 23=1552/0-3-8 80/0-3-8	No.2 NOTES 1) Unba this of 2) Wind Vasd Cat. zone -20, 4-8-1 (1) 22 Interi 56-9- vertic cone (1) 22 Cat. 200 (1) 22 (1) 22		10-16=-1 5-23=-15 5-22=-67/4 =-1134/1 24-35=- -36=0/10 we been ph (3-set BCDL=(FRS (env 10-8 to 2 9-7-15 tr (2R) 30- xterior(2 d right e) C-C for r s shown; 0 f (roof LI (Lum DO	88/378, 26/280, 125, 6-20=-261 67, 8-24=-136 100/1106, 172 considered for cond gust) 3.0psf; h=25ft; elope) exterio -8-10, Interior 2 25-5-12, Inte 5-4 to 46-3-1, 2 51-2-6 to posed ; end nembers and Lumber .: Lum DOL=1 DL=1.15 Plate	s2/19, r (1) erior	on 1 3-0 cho 10) Bea usir dess 11) On rec UP upli 12) This Inte R80 13) Gra or t	the botto 6-00 tall ord and a aring at j ng ANSI bigner sh e H2.5A comment LIFT at j fft only a s truss is ernationa 02.10.2 s aphical p he orien tom cho CASE(S	om cho by 2-0 any oth joint(s) //TPI 1 hould v . Simps ded to jt(s) 23 and doe s desig al Resi and ref burlin re- tation rd.	ord in all areas wh 20-00 wide will fit 24 considers pai angle to grain for erify capacity of the constrong-Tie co- connect truss to the 1, 14, and 24. This as not consider lad ined in accordance dential Code sect ferenced standard apresentation does of the purlin along ndard	between the bottom n BCDL = 10.0psf. rallel to grain value mula. Building bearing surface. nnectors bearing walls due to s connection is for teral forces. be with the 2018 tions R502.11.1 and d ANSI/TPI 1. es not depict the size
FORCES TOP CHORD BOT CHORD	6-7=-670/272, 7-35=-145/368, 8-35=-136/367, 8-36=-136/367, 10-36=-144/372, 10-12=-1445/515, 12-14=-1573/392, 14-15=0/26			 e1.60 plate grip DOL=1.60 : ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate e-1.15); Pf=20.0 psf (Lum DOL=1.15 Plate e-1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; 0.0; Ct=1.10 lanced snow loads have been considered for this n. rruss has been designed for greater of min roof live of 12.0 psf or 1.00 times flat roof load of 20.0 psf on nangs non-concurrent with other live loads. de adequate drainage to prevent water ponding. ates are 4x5 MT20 unless otherwise indicated. truss has been designed for a 10.0 psf bottom live load nonconcurrent with any other live loads. 							EER. Kunning	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss Truss Type		Qty	Ply	DRB GROUP - 127 FARM AT NEILLS CREEK
22040111	A04	Piggyback Base Supported Gable	1	1	Job Reference (optional)

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Mon May 16 15:10:17 ID:ACS0SGCfmETEfJzgbpcWMMzhrbI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:97.7

Plate Offsets (2	Plate Offsets (X, Y): [8:0-5-0,0-4-8], [11:0-3-0,0-3-12], [24:0-3-0,0-3-12], [27:0-5-0,0-4-8], [42:0-5-0,0-4-8], [46:0-5-0,0-4-8], [54:0-5-0,0-4-8]															
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	20 20 10	osf) 0.0 0.0 0.0 0.0* 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2018/TPI201	4	CSI TC BC WB Matrix-	0.2		DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 34	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 585 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS	 RD 2x6 SP No.2 RD 2x6 SP No.2 2x4 SP No.3 *Except* 48-17,49-16,50-15,51-14,52-13,53-12,47-19, 46-20,45-21,44-22,43-23:2x4 SP No.2 RD Structural wood sheathing directly applied or 6-0-0 cc purlins, except end verticals, and 2-0-0 cc purlins, (6-0-0 max.): 11-24. RD Rigid ceiling directly applied or 10-0-0 cc bracing. 1 Row at midpt 17-48, 16-49, 15-50, 14-51, 13-52, 12-53, 10-54, 9-55, 19-47, 						$\begin{array}{c} 34 =-60 \ (LC \ 1\\ 36 =-32 \ (LC \ 1\\ 38 =-49 \ (LC \ 1\\ 40 =-53 \ (LC \ 1\\ 42 =-10 \ (LC \ 1\\ 45 =-26 \ (LC \ 1\\ 47 =-27 \ (LC \ 1\\ 49 =-25 \ (LC \ 1\\ 53 =-1 \ (LC \ 11\\ 55 =-60 \ (LC \ 1\\ 55 =-60 \ (LC \ 1\\ 57 =-39 \ (LC \ 1\\ 59 =-53 \ (LC \ 1\\ 61 =-155 \ (LC \ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 1$	15), 3 15), 4 15), 4 15), 4 11), 4 11), 4 11), 5 10), 5 10), 5 14), 9 14), 9 14), 9	37=-52 (LC 1 39=-39 (LC 1 41=-62 (LC 1 44=-26 (LC 1 46=-26 (LC 1 46=-26 (LC 1 46=-25 (LC 1 50=-25 (LC 1 52=-24 (LC 1 52=-24 (LC 1 56=-53 (LC 1 58=-49 (LC 1 60=-27 (LC 1 , 62=-127 (LC	15), 15), 15), 10), 10), 10), 10), 11), 10), 14), 14), 14), 14), 14), 14), 14), 14	TOP CH	IORD	3-4=-' 6-7=-' 10-11 12-13 14-15 16-17 19-20 21-22 23-24 25-26 28-29	159/150, 4-5=-15 122/162, 7-9=-13 =-181/291, 11-12 =-164/276, 13-14 =-164/276, 15-11 =-164/276, 20-2 =-164/276, 20-2 =-164/276, 22-22 =-164/276, 24-24 =-168/269, 26-22 =-91/132, 29-30	↓=-164/276, 5=-164/276, 9=-164/276, ↓=-164/276, 3=-164/276, 5=-182/292,	73,
	1 Row at midpt 17-48, 16-49, 15-50, 14-51, 13-52, 12-53, 10-54, 9-55, 19-47, 20-46, 21-45, 22-44, 23-43, 25-42, 26-41			М	ax Grav	34=127 (LC 3 36=155 (LC 3 38=226 (LC 4 40=234 (LC 4 42=226 (LC 4	39), 43), 43),	37=165 (LC 39=220 (LC 41=253 (LC	43), 43), 43),							
REACTIONS	36= 38= 40= 42= 44= 44= 50= 52= 54= 56= 58= 60=	155/55 156/55 154/55 152/55 155/55 155/55 155/55 155/55 152/55 156/55 156/55 156/55 156/55 156/55 156/55		11-0, 11		(lb) - Max Tension	44=217 (LC 46=211 (LC 48=156 (LC 50=211 (LC 50=211 (LC 52=218 (LC 54=225 (LC 56=233 (LC 60=159 (LC 62=232 (LC imum Compre	38), 55), 38), 38), 41), 41), 41), 39), 49)	47=171 (LC 49=173 (LC 51=218 (LC 53=183 (LC 55=252 (LC 57=219 (LC 59=165 (LC 61=226 (LC	38), 38), 38), 52), 41), 41), 24), 28),				SEA 0363	L 22 LLBERTITI	
	iviax horiz 62=2	209 (L	C 11)													

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

May 17,2022

Job	Truss	Truss Type	Qty Ply		DRB GROUP - 127 FARM AT NEILLS CREEK
22040111	A04	Piggyback Base Supported Gable	1	1	I51981938 Job Reference (optional)

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Mon May 16 15:10:17

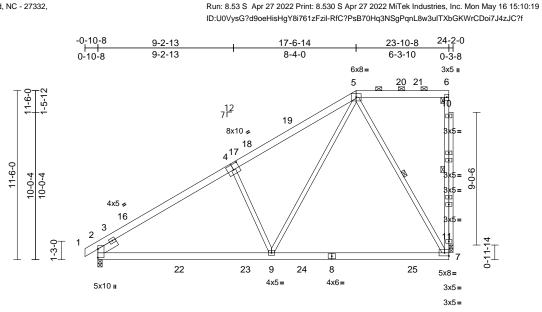
ID:ACS0SGCfmETEfJzgbpcWMMzhrbI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

Carter Components (Sanford), Sanford, NC - 27332,

BOT CHORD	61-62=-104/119, 60-61=-104/119,
	59-60=-104/119, 58-59=-104/119,
	57-58=-104/119, 56-57=-104/119,
	55-56=-105/118, 53-55=-105/118,
	52-53=-105/118, 51-52=-105/118,
	50-51=-105/118, 49-50=-105/118,
	48-49=-105/118, 47-48=-105/118,
	45-47=-105/118, 44-45=-105/118,
	43-44=-105/118, 41-43=-105/118,
	40-41=-105/118, 39-40=-103/117,
	38-39=-103/117, 37-38=-103/117,
	36-37=-103/117, 35-36=-103/117,
	34-35=-103/117
WEBS	17-48=-116/48, 16-49=-134/48,
	15-50=-172/48, 14-51=-179/51,
	13-52=-179/48, 12-53=-143/25,
	10-54=-187/38, 9-55=-214/83, 8-56=-194/77,
	7-57=-181/62, 6-58=-183/73, 5-59=-123/73,
	4-60=-120/64, 3-61=-146/121,
	19-47=-134/49, 20-46=-172/49,
	21-45=-179/51, 22-44=-179/49,
	23-43=-131/2, 25-42=-187/33,
	26-41=-215/84, 27-40=-195/76,

28-39=-181/62, 29-38=-187/73, 30-37=-127/73, 31-36=-119/66, 32-35=-147/112


NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 5-1-6, Exterior(2N) 5-1-6 to 11-6-15, Corner(3R) 11-6-15 to 23-6-12, Exterior(2N) 23-6-12 to 32-4-4, Corner(3R) 32-4-4 to 44-2-7, Exterior(2N) 44-2-7 to 49-9-6, Corner(3E) 49-9-6 to 55-9-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this desian.
- This truss has been designed for greater of min roof live 6) load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding.
- All plates are 2x4 MT20 unless otherwise indicated. 8)
- Gable requires continuous bottom chord bearing. 9)
- 10) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 11) Gable studs spaced at 2-0-0 oc.
- 12) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 13) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

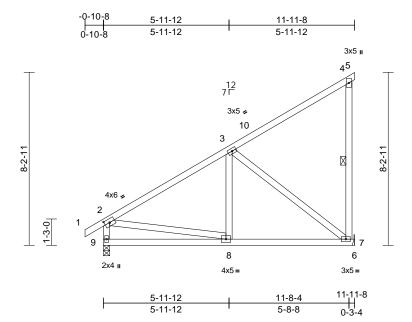
- 14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 127 lb uplift at joint 62, 60 lb uplift at joint 34, 24 lb uplift at joint 48. 25 Ib uplift at joint 49, 25 lb uplift at joint 50, 28 lb uplift at joint 51, 24 lb uplift at joint 52, 1 lb uplift at joint 53, 15 lb uplift at joint 54, 60 lb uplift at joint 55, 53 lb uplift at joint 56, 39 lb uplift at joint 57, 49 lb uplift at joint 58, 53 lb uplift at joint 59, 27 lb uplift at joint 60, 155 lb uplift at joint 61, 27 lb uplift at joint 47, 26 lb uplift at joint 46, 26 Ib uplift at joint 45, 26 lb uplift at joint 44, 10 lb uplift at joint 42, 62 lb uplift at joint 41, 53 lb uplift at joint 40, 39 Ib uplift at joint 39, 49 lb uplift at joint 38, 52 lb uplift at joint 37, 32 lb uplift at joint 36 and 132 lb uplift at joint 35.
- 15) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 16) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 127 FARM AT NEILLS CREEK
22040111	B01	Piggyback Base	4	1	I51981939 Job Reference (optional)

Scale = 1:78.4			 	<u>11-9-1</u> 11-9-1			2 <u>3-10-8</u> 2-0-12			-2-0 H -3-8	
Plate Offsets (X, Y):	[4:0-5-0,0-4-8]										
Loading	(psf)	Spacing	2-0-0		CSI	0.63	in 0.27	(loc)	l/defl		

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Plate Grip DOL 1 Lumber DOL 1 Rep Stress Incr Y	-0-0 .15 .15 ÆS RC2018	/TPI2014	CSI TC BC WB Matrix-MSH	0.63 0.79 0.71	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.27 -0.41 -0.05	(loc) 7-9 7-9 11	l/defl >999 >695 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 199 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD BOT CHORD	5-8-5 oc purlins, exo 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing.	I-6-0 athing directly applied or cept end verticals, and -0 max.): 5-6. applied or 10-0-0 oc	4) 5)	Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced design. This truss ha load of 12.0 p overhangs no Provide adeo This truss ha chord live loa	7-16; Pr=20.0 psf (15); Pf=20.0 psf (1 s=1.0; Rough Cat (1.10) snow loads have b s been designed for on-concurrent with juate drainage to p s been designed d nonconcurrent w as been designed	Lum DC B; Fully been cor or great at roof li other li orevent or a 10. vith any	DL=1.15 Plate Exp.; Ce=0.1 asidered for t er of min root bad of 20.0 p ve loads. water pondin. 0 psf bottom other live loa	e 9; his f live psf on g. ads.					
	(lb/size) 2=1003/0- Max Horiz 2=396 (LC Max Uplift 2=-116 (L	6-7, 5-7 3-8, 11=948/0-3-0 3 13) C 14), 11=-153 (LC 14) .C 40), 11=1116 (LC 24)	9)	on the botton 3-06-00 tall b chord and an Bearing at joi	n chord in all areas y 2-00-00 wide wil y other members, int(s) 11 considers PI 1 angle to grain	s where I fit betw with BC paralle	a rectangle veen the bott DL = 10.0ps to grain valu	om f.					
FORCES	(lb) - Maximum Com Tension 1-2=0/26, 2-5=-1501	' /250, 5-6=-160/164,	10)	designer sho One H2.5A S recommende	uld verify capacity simpson Strong-Tie d to connect truss	of bear conne to bear	ing surface. ctors ing walls due						
BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=103 Cat. II; Exp zone and 0 2-1-8 to 13 Interior (1) right expos for member	7-11=-119/1109, 6-1 2-9=-310/1366, 7-9= 5-7=-1007/216, 5-9= ed roof live loads have n. CE 7-16; Vult=130mph mph; TCDL=6.0psf; B(0 B; Enclosed; MWFR: C-C Exterior(2E) -0-10 3-3-15, Exterior(2E) -0-10 3-3-12 to 23-8-12 zo sed ; end vertical left a	1=-261/86 -156/545 -165/1254, 4-9=-596/31 been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior -8 to 2-1-8, Interior (1) -3-15 to 21-9-12, ne; cantilever left and nd right exposed;C-C RS for reactions shown;	12) LO	UPLIFT at jt(only and doe This truss is o International R802.10.2 ar Graphical pu	s) 2 and 11. This c s not consider late designed in accord Residential Code s do referenced stan- rlin representation tion of the purlin a	connecti ral force lance w sections dard AN does no	on is for uplif es. ith the 2018 s R502.11.1 a ISI/TPI 1. ot depict the s	it and		Contraction of the second		SEA 0363	• -

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



G mm May 17,2022

Page: 1

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 127 FARM AT NEILLS CREEK
22040111	C01	Monopitch	6	1	I51981940 Job Reference (optional)

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Mon May 16 15:10:19 ID:CLXxqOYYKtIC18TKvZ333yzFwJ8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

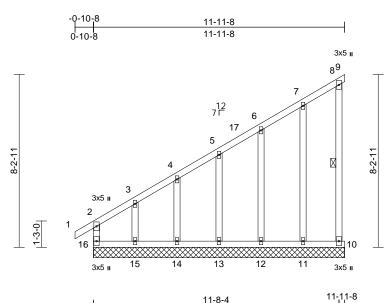
Scale = 1:54.9

Plate Offsets (X, Y): [2:0-2-14,0-2-0]

- 1410 0110010 ((,,,,,): [2:0 2 11,0 2 0	Ľ											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.61 0.34 0.51	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.05 0.01	(loc) 7-8 7-8 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 77 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt	cept end verticals. applied or 10-0-0 o 4-7 echanical, 9=525/0- C 13) C 14), 9=-43 (LC 14 C 21), 9=561 (LC 21	rc 7 3-8 4) 9	load of 12.0 overhangs n chord live lo * This truss ha chord live lo * This truss on the botto 3-06-00 tall chord and a Refer to girc Provide mee bearing plate joint 7. O ne H2.5A 4 recommend UPLIFT at jt	as been designed psf or 1.00 times ion-concurrent wit as been designed ad nonconcurrent has been designe m chord in all area by 2-00-00 wide w ny other members ler(s) for truss to ti chanical connection e capable of withs Simpson Strong-T ed to connect trus (s) 9. This connect	flat roof I h other li for a 10. with any d for a liv as where vill fit betv s. russ conion n (by oth tanding ' ie conne is to bear stion is fo	bad of 20.0 p ve loads. D psf bottom other live loa e load of 20. a rectangle veen the bott nections. ers) of truss 26 lb uplift a ctors ing walls due	osf on ads. 0psf tom to to t					
TOP CHORD BOT CHORD WEBS	1-2=0/31, 2-3=-559/ 4-5=-13/0, 4-7=-264	/64, 2-9=-508/151 101/419, 6-7=0/0		0) This truss is Internationa R802.10.2 a	nsider lateral force designed in accou l Residential Code ind referenced sta	rdance w e sections	8 R502.11.1 a	and					
NOTES 1) Wind: AS0 Vasd=103 Cat. II; Ex zone and 2-1-8 to 8 cantilever right expo for reaction DOL=1.60	CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; Br cp B; Enclosed; MWFR C-C Exterior(2E) -0-10 -11-8, Exterior(2E) 8-1 left and right exposed seed;C-C for members ons shown; Lumber DO	(3-second gust) CDL=6.0psf; h=25ft S (envelope) exterio -8 to 2-1-8, Interior 1-8 to 11-11-8 zone ; end vertical left an and forces & MWFF DL=1.60 plate grip	; or (1) ;; nd RS	OAD CASE(S)	Standard					0.1111	N	OR TH CA OR DEESS SEA 0363	• -

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.

036322 MGINEER A. GILBER May 17,2022


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 127 FARM AT NEILLS CREEK
22040111	C02	Monopitch Supported Gable	1	1	I51981941 Job Reference (optional)

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Mon May 16 15:10:19 ID:cwD4SPaRdognucCvbhdmhazFwJ5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Loading	(psf)	Spacing	1-11-4	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.69	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.20	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.17	Horz(CT)	-0.04	9	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MR								
BCDL	10.0										Weight: 84 lb	FT = 20%

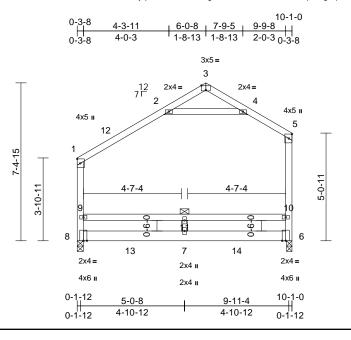
LUMBER		
TOP CHORD	2x4 SP N	0.2
BOT CHORD	2x4 SP N	0.2
WEBS	2x4 SP N	0.3
OTHERS	2x4 SP N	0.3
BRACING		
TOP CHORD	Structura	I wood sheathing directly applied or
		ourlins, except end verticals.
BOT CHORD	Riaid ceil	ing directly applied or 10-0-0 oc
	bracing.	3
WEBS	1 Row at	midpt 8-10
REACTIONS	(lb/size)	9=12/11-11-8, 10=57/11-11-8,
		11=156/11-11-8, 12=156/11-11-8,
		13=154/11-11-8, 14=158/11-11-8,
		15=141/11-11-8, 16=135/11-11-8
	Max Horiz	16=280 (LC 11)
	Max Uplift	
		11=-53 (LC 14), 12=-46 (LC 14),
		13=-58 (LC 14), 14=-14 (LC 14),
		15=-199 (LC 14), 16=-96 (LC 10)
	Max Grav	9=93 (LC 13), 10=144 (LC 10),
		11=232 (LC 21), 12=223 (LC 21),
		13=165 (LC 24), 14=158 (LC 1),
		15=237 (LC 24), 16=256 (LC 25)
FORCES	(lb) - Max Tension	imum Compression/Maximum
TOP CHORD		9/75, 1-2=0/30, 2-3=-259/166,
		/120, 4-5=-170/109, 5-6=-154/98,
	6-7=-145/ 8-10=-14	/99, 7-8=-109/117, 8-9=-87/66,
BOT CHORD		15/144, 14-15=-115/144,
		15/144, 12-13=-115/144,
		15/144, 10-11=-115/144
WEBS		4/105, 4-14=-119/83, 7/205, 6, 12-, 195/(118, 7, 11-, 102/57,
	3-13=-15	7/205, 6-12=-185/118, 7-11=-193/57
NOTES		

1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 1-11-12, Exterior (2N) 1-11-12 to 11-11-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this 4) desian.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 6) All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing. 7)
- 8) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- Gable studs spaced at 2-0-0 oc. 9) 10) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
- 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 96 lb uplift at joint 16, 82 lb uplift at joint 9, 146 lb uplift at joint 10, 58 lb uplift at joint 13, 14 lb uplift at joint 14, 199 lb uplift at joint 15, 46 lb uplift at joint 12 and 53 lb uplift at joint 11.

13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard



818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 127 FARM AT NEILLS CREEK
22040111	D01	Common	4	1	I51981942 Job Reference (optional)

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Mon May 16 15:10:20 ID:1yqKDdM?oLU90fiheg7MINzTRGw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

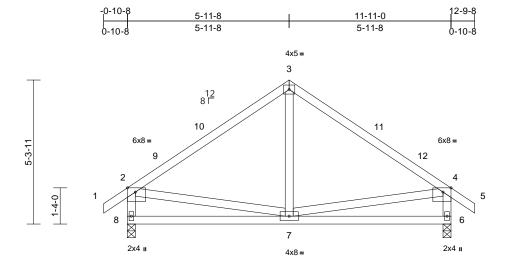
Scale = 1:54.1

Plate Offsets (X, Y): [3:0-2-8,Edge]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.95 0.41 0.49	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.07 -0.21 0.00	(loc) 7 7 6	l/defl >999 >569 n/a	L/d 240 180 n/a		GRIP 244/190 FT = 20%
BOT CHORD 2 WEBS 2 BRACING 7 TOP CHORD 5 BOT CHORD 6 WEBS 1 REACTIONS (bb Ma FORCES ((TOP CHORD 1 4	Structural wood shea I-7-8 oc purlins, exit Rigid ceiling directly pracing. I Row at midpt //size) 6=491/0-3 ax Horiz 8=218 (LC ax Grav 6=561 (LC lb) - Maximum Com Tension -2=-311/150, 2-3=-1	applied or 6-0-0 oc 9-10 -0, 8=493/0-3-8 2 11) 2 21), 8=564 (LC 20 pression/Maximum 324/86, 3-4=-373/11 395/144, 1-9=-381/1	6) ed or 7) 8)) 9)	 design. 200.0lb AC of from left ence This truss had chord live loo * This truss loo on the bottoo 3-06-00 tall loo chord and ai Bearing at joid using ANSI/ designer shoid This truss is International 	snow loads have I unit load placed on , supported at two is been designed f ad nonconcurrent has been designed n chord in all area by 2-00-00 wide wi y other members. int(s) 8, 6 conside IPI 1 angle to grai build verify capacity designed in accor Residential Code nd referenced star Standard	the bott points, or a 10. with any for a liv s where Il fit betw rs parall n formul of bear dance w sections	om chord, 5- 5-0-0 apart.) psf bottom other live loa e load of 20. a rectangle veen the bott el to grain va a. Building ng surface. ith the 2018 s R502.11.1 a	-0-0 ads. Opsf rom lue					
WEBS 9 22 NOTES	2-4=0/218	2/262 1=-222/167, 7-11=0 been considered for										WITH CA	ROLA

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-1-12 to 3-1-12, Exterior (2R) 3-1-12 to 9-0-8, Interior (1) 9-0-8 to 9-11-4 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

SEAL 036322 MGINEER May 17,2022

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 127 FARM AT NEILLS CREEK
22040111	E01	Common	5	1	I51981943 Job Reference (optional)

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Mon May 16 15:10:20 ID:_chtVMf3J_GcW_b8at2KjIzFzYt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

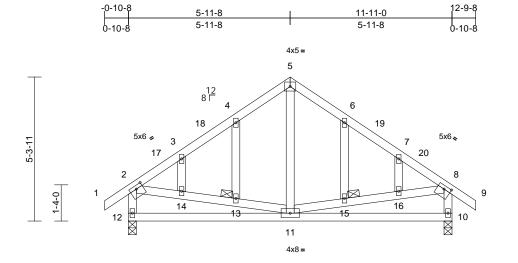
L	5-11-8	11-11-0
	5-11-8	5-11-8

Plate Offsets ((X. Y):	[2:0-3-8,Edge],	[4:0-3-8.Edge]

Scale = 1:42.4

Plate Offsets (X, Y): [2:0-3-8,Ed	gej, [4:0-3-8,Eage]						
Loading (psi TCLL (roof) 20. Snow (Pf) 20. TCDL 10. BCLL 0. BCDL 10.	 Plate Grip DOL Lumber DOL Rep Stress Incr Code 	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC 0.91 BC 0.30 WB 0.10 Matrix-MSH	DEFL in Vert(LL) -0.02 Vert(CT) -0.05 Horz(CT) 0.00	(loc) l/de 7-8 >99 7-8 >99 6 n.	9 240	MT20 244/190
6-0-0 oc purlins, Rigid ceiling dire bracing. REACTIONS (lb/size) 6=526 Max Horiz Max Horiz 8=145 Max Uplif 6=56 Max Grav FORCES (lb) - Maximum O Tension 6<19 Tension TOP CHORD 1-2=0/34, 2-3=-5 4-5=0/34, 2-8=-5 2 BOT CHORD 7-8=-153/263, 6 6	(LC 15), 8=-56 (LC 14) (LC 22), 8=619 (LC 21) compression/Maximum 39/122, 3-4=-539/122, 66/164, 4-6=-566/164 7=-85/252 36/249, 4-7=-39/249 ave been considered for nph (3-second gust) ; BCDL=6.0psf; h=25ft; FRS (envelope) exterior -10-8 to 2-1-8, Interior (1) 2-11-8 to 8-11-8, Interior (1) 2-11-8 to 8-11-8, Interior (1) 9-9-8 to 12-9-8 zone; ed ; end vertical left and ers and forces & MWFRS DOL=1.60 plate grip sf (roof LL: Lum DOL=1.1: f (Lum DOL=1.15 Plate	 design. 5) This truss ha load of 12.0 overhangs n 6) This truss ha chord live loa 7) * This truss live on the botton 3-06-00 tall live chord and at 8) One H2.5A S recommenda UPLIFT at jit and does no 9) This truss is International R802.10.2 a LOAD CASE(S) 	snow loads have been co as been designed for great psf or 1.00 times flat roof I on-concurrent with other li as been designed for a 10. ad nonconcurrent with any has been designed for a liv m chord in all areas where by 2-00-00 wide will fit beth oy other members. Simpson Strong-Tie conne ed to connect truss to bean (s) 8 and 6. This connection t consider lateral forces. designed in accordance w Residential Code section: nd referenced standard Al Standard	er of min roof live bad of 20.0 psf on ve loads. 0 psf bottom other live loads. re load of 20.0psf a rectangle veen the bottom ctors ing walls due to n is for uplift only ith the 2018 s R502.11.1 and		and a state of the	SEAL 036322

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


GI A. GILIN

May 17,2022

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 127 FARM AT NEILLS CREEK
22040111	E02	Common Structural Gable	1	1	I51981944 Job Reference (optional)

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Mon May 16 15:10:20 ID:sNxOLkiaNCm2?cvvpi6Gu8zFzYp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

5-11-8	11-11-0
5-11-8	5-11-8

Plate Offsets (X, Y):	[2:0-3-0,0-1-8],	[8:0-3-0,0-1-8]

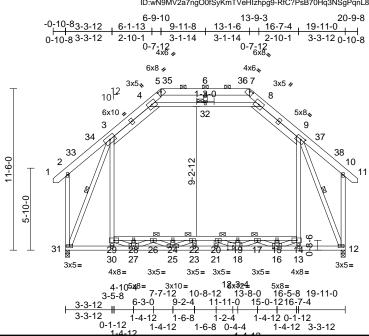
Scale = 1:42.4

	Λ, Ι). [2.0-5-0,0-1-0],	[0.0 0 0,0 1-0]										-	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.69 0.29 0.70	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.05 0.00	(loc) 11-12 11-12 10	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 81 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD JOINTS REACTIONS	6-0-0 oc purlins, exe Rigid ceiling directly bracing. 1 Brace at Jt(s): 13, 15	athing directly applied cept end verticals. applied or 10-0-0 oc -3-8, 12=526/0-3-8		Vasd=103m Cat. II; Exp I zone and C- 1-11-8 to 2-1 (1) 8-11-8 to cantilever lef right expose for reactions DOL=1.60 Truss desig only. For stu see Standar	7-16; Vult=130mp ph; TCDL=6.0psf; I 3; Enclosed; MWFI C Exterior(2E) -0-1 11-8, Exterior(2R) 2 9-9-8, Exterior(2E ft and right exposed d;C-C for members shown; Lumber D ned for wind loads uds exposed to wind d Industry Gable E	BCDL=6 RS (env 10-8 to 1 2-11-8 to 2-11-8 to 9-9-8 t d; end 5 and fo OL=1.6 in the p to (norm nd Deta	6.0psf; h=25ft; elope) exteric -11-8, Interior o 8-11-8, Interior o 12-9-8 zone vertical left an rcces & MWFR 0 plate grip lane of the tru al to the face ils as applical	or r (1) ior ∋; d &S uss), ble,	Ínte	rnationa)2.10.2 a	al Resid	ferenced standar	ions R502.11.1 and
	Max Horiz 12=-145 (Max Uplift 10=-56 (L Max Grav 10=619 (L	LC 12) C 15), 12=-56 (LC 14	/	or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9;									
FORCES	(lb) - Maximum Com Tension	pression/Maximum	5)	Cs=1.00; Ct			•						
TOP CHORD		380/134, 6-7=-436/98	3, 6)	design. This truss ha load of 12.0	as been designed for psf or 1.00 times floor-concurrent with	or great at roof l	er of min roof oad of 20.0 ps	live				WH CA	
BOT CHORD WEBS	11-13=-27/254, 11-1 15-16=-26/250, 8-16	-22/253, 13-14=-22/2 5=-31/254, ;=-25/253, 4-13=-82/4	43, 9)	All plates are Truss to be f braced agair Gable studs	e 2x4 MT20 unless fully sheathed from nst lateral moveme spaced at 2-0-0 oc	otherwi one fac nt (i.e. c	se indicated. te or securely liagonal web)			4	- AN	ORTHCA	ANNI T
3-14=-23/13, 6-15=-82/43, 7-16=-23/13 NOTES 1) Unbalanced roof live loads have been considered for this design.				 a) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. b) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. c) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 12 and 10. This connection is for uplift only and does not consider lateral forces. 								22 EERCHUU	

- chord and any other members.
- 12) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 12 and 10. This connection is for uplift only and does not consider lateral forces.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

mmm May 17,2022


Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 127 FARM AT NEILLS CREEK
22040111	G01	Attic	2	1	I51981945 Job Reference (optional)

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Mon May 16 15:10:20 ID:wN9MV2a7ngO0fSyKmTVeHIzhpg9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

May 17,2022

818 Soundside Road Edenton, NC 27932

Scale = 1:82

Scale = 1.02				1-4	-12		4.4.49	0	0.2				
Plate Offsets ((X, Y): [5:0-3-0,0-1-1]	, [7:0-3-0,0-1-1], [9:0-3	-8,0-2-4	, [18:0-4-4,0-3	3-4]		1-4-12					-	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.37 0.92 0.69	Vert(CT) Horz(CT)	in -0.23 -0.38 0.05 -0.20	(loc) 20-22 20-22 12 14-29	l/defl >999 >617 n/a >806	L/d 240 180 n/a 360	PLATES MT20 Weight: 226 I	GRIP 244/190
BODL	10.0											Weight. 2201	5 11 = 2078
LUMBER TOP CHORD BOT CHORD WEBS	2x4 SP No.2 *Excep	ot* 31-18:2x4 SP No.1 ot* 3-30,9-13,4-8:2x4 S P No.2		EBS	29-30=-98/396, 3 9-14=0/1022, 4-3 3-31=-1610/18, 9 14-16=0/1452, 27 27-28=-183/0, 16 26-27=-1204/0, 1	2=-645/3 -12=-160 /-29=0/14 -17=-118	69, 8-32=-645/3 6/14, 24, 15-16=-191 3/0,	369, I/0,	on 3-0 cho 10) Ce	the botto 6-00 tall ord and a iling dea	om cho by 2-0 any oth d load	rd in all areas v 0-00 wide will f er members. (5.0 psf) on me	or a live load of 20.0ps where a rectangle it between the bottom ember(s). 3-4, 8-9, 4-3 member(s).3-29, 9-14
BRACING TOP CHORD		eathing directly applied cept end verticals, and 0-0 max.): 5-7.	I		18-19=-165/0, 24 22-25=-474/52, 2 6-32=-1/59			,	11) Bot cho	ttom cho ord dead	rd live load (load (40.0 psf) 5.0 psf) applied	and additional bottom only to room. 28-29,
BOT CHORD	Rigid ceiling directly bracing, Except: 2-2-0 oc bracing: 16 3-1-0 oc bracing: 17 5-4-0 oc bracing: 26	7-26		this design. Wind: ASCI	l roof live loads ha E 7-16; Vult=130m nph; TCDL=6.0psf:	ph (3-seo	cond gust)		12) Thi Inte R8	s truss is ernationa 02.10.2 a	s desig al Resid and ref	ned in accorda dential Code se erenced standa	0, 17-19, 15-17, 14-15 nce with the 2018 actions R502.11.1 and ard ANSI/TPI 1. oes not depict the size
WEBS JOINTS REACTIONS	1 Row at midpt 1 Brace at Jt(s): 17, 26, 32 (lb/size) 12=1176/ Max Horiz 31=-337	3-31, 9-12 /0-3-8, 31=1176/0-3-8	46)	zone and C 2-3-11 to 17 cantilever le right expose	B; Enclosed; MWI -C Exterior(2E) -0- 7-7-5, Exterior(2E) eft and right expose ed;C-C for membe s shown; Lumber I	-8-5 to 2-3 17-7-5 to ed ; end v rs and fo	3-11, Exterior(2 20-7-5 zone; vertical left and rces & MWFRS	,	bot 14) Atti	tom choi	rd. checke) Sta	d for L/360 defl ndard	
FORCES	(lb) - Maximum Con Tension		,		E 7-16; Pr=20.0 ps			15				NITH C	11111
TOP CHORD	1-2=0/32, 2-3=-304/ 4-5=-806/248, 5-6=- 7-8=-807/251, 8-9=-	/232, 3-4=-698/162, -774/224, 6-7=-774/22 -698/162, 9-10=-302/2 437/207, 10-12=-434/2	33, 4)	DOL=1.15); Cs=1.00; C Unbalanced	:1.15); Pf=20.0 psf ; Is=1.0; Rough Ca t=1.10 d snow loads have	at B; Fully	Exp.; Ce=0.9;	6		4	in	All C	Print
BOT CHORD	30-31=-64/623, 27-3	30=-240/600, 5=0/3868, 21-23=0/38 6=-21/404, 29=-1200/57, -26=-3005/0, 22=-3400/0, 19=-3017/0,	5)	load of 12.0 overhangs Provide ade All plates a This truss h	as been designed psf or 1.00 times non-concurrent wit equate drainage to re 2x4 MT20 unles as been designed bad nonconcurrent	flat roof le th other line prevent s otherwing for a 10.1	oad of 20.0 psf ve loads. water ponding. ise indicated. 0 psf bottom	on			A A A A A A A A A A A A A A A A A A A		AL 322 VEER.HT

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 127 FARM AT NEILLS CREEK
22040111	G02	Attic	7	1	I51981946 Job Reference (optional)

3-1-14

+

6-9-10

0-7-12 6x8 🖌

4 32

6-1-13

2-10-1

3x5、

10 10

3-3-12

3-3-12

Carter Components (Sanford), Sanford, NC - 27332,

TCDL

BCLL

BCDL

WEBS

WEBS

JOINTS

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Mon May 16 15:10:21 ID:wN9MV2a7ngO0fSyKmTVeHIzhpg9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

13-9-3

4x6💊

336

3x5 🅢

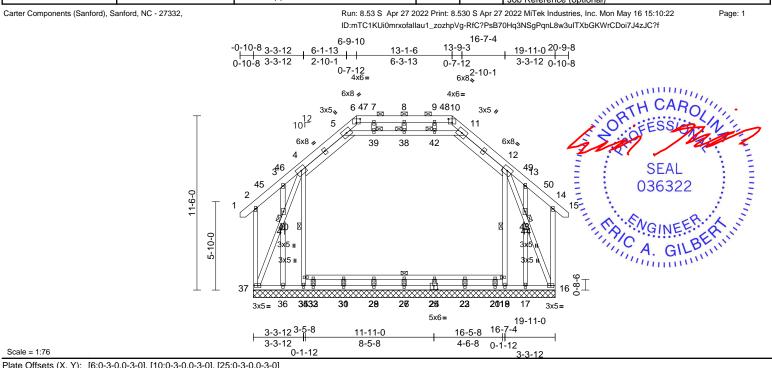
Page: 1

GRIP

244/190

FT = 20%

30 6x10 5x8. 2 8 31 34 11-6-0 9-2-12 q 5-10-0 29 10 K 28 25 23 21 19 16 14 3x5= 3x5= 11 3x5= 3x5= 4x8= 3x5= 3x10 =5x8= 5x8= 6x**13=**8-0 8-0 4x8= 16-5-8 19-11-0 15-0-1216-7-4 3x5= 0x18= 10-8-1212-3-4 4-10-4 7-7-12 3-3-123-5-8 6-3-0 9-2-4 11-11-0 1-6-81-6-8 0-4 2 1-2-4 3-3-12 1-4-12 0-1-12 1-4-12 3-3-12 1-4-12 0-4-4 0-1-12 1-4-12 1-4-12 Scale = 1:80 Plate Offsets (X, Y): [4:0-3-0,0-1-1], [6:0-3-0,0-1-1], [8:0-3-8,0-2-4], [16:0-4-4,0-3-4] 2-0-0 CSI DEFL in l/defl L/d PLATES Loading (psf) Spacing (loc) TCLL (roof) 20.0 Plate Grip DOL 1.15 тс 0.36 Vert(LL) -0.23 18-20 >999 240 MT20 Snow (Pf) 20.0 Lumber DOL 1.15 BC 0.92 Vert(CT) -0.38 18-20 >617 180 Rep Stress Incr WB 10.0 YES 0.69 Horz(CT) 0.05 10 n/a n/a 0.0 Code IRC2018/TPI2014 Matrix-MSH -0.20 >806 360 Attic 12-27 10.0 Weight: 221 lb LUMBER WEBS 27-28=-96/391, 2-27=0/1028, 11-12=-90/368, 9) Ceiling dead load (5.0 psf) on member(s). 2-3, 7-8, 3-30, 8-12=0/1022, 3-30=-655/364, 7-30=-655/364, 2x6 SP No.2 7-30: Wall dead load (5.0psf) on member(s).2-27. 8-12 TOP CHORD 2-29=-1597/21, 8-10=-1593/17, BOT CHORD 2x4 SP No.2 *Except* 29-16:2x4 SP No.1 12-14=0/1452, 25-27=0/1424, 13-14=-191/0, 2x4 SP No.3 *Except* 2-28,8-11,3-7:2x4 SP 10) Bottom chord live load (40.0 psf) and additional bottom No.2, 2-3,7-8:2x6 SP No.2 25-26=-183/0. 14-15=-1183/0. chord dead load (5.0 psf) applied only to room. 26-27, 24-25=-1204/0. 15-16=0/909. 23-24=0/894. 24-26, 22-24, 20-22, 18-20, 17-18, 15-17, 13-15, 12-13 BRACING 16-17=-165/0, 22-23=-156/0, 16-18=-447/37. 11) This truss is designed in accordance with the 2018 TOP CHORD Structural wood sheathing directly applied or 20-23=-470/51, 20-21=-13/45, 18-19=-12/41, International Residential Code sections R502.11.1 and 6-0-0 oc purlins, except end verticals, and 5-30=0/59R802.10.2 and referenced standard ANSI/TPI 1. 2-0-0 oc purlins (6-0-0 max.): 4-6. NOTES 12) Graphical purlin representation does not depict the size BOT CHORD Rigid ceiling directly applied or 10-0-0 oc or the orientation of the purlin along the top and/or Unbalanced roof live loads have been considered for bracing, Except: 1) this design. bottom chord. 2-2-0 oc bracing: 14-16. Wind: ASCE 7-16; Vult=130mph (3-second gust) 13) Attic room checked for L/360 deflection. 3-1-0 oc bracing: 15-24 Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; LOAD CASE(S) Standard 5-4-0 oc bracing: 24-27, 12-15 Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior 1 Row at midpt 2-29, 8-10 zone and C-C Exterior(2E) 0-1-12 to 3-3-12, Exterior 1 Brace at Jt(s): 15, (2R) 3-3-12 to 16-7-4, Exterior(2E) 16-7-4 to 19-9-4 24, 30 zone; cantilever left and right exposed ; end vertical left **REACTIONS** (lb/size) 10=1125/0-3-8, 29=1125/0-3-8 and right exposed;C-C for members and forces & Max Horiz 29=-321 (LC 10) MWFRS for reactions shown; Lumber DOL=1.60 plate Max Grav 10=1542 (LC 45), 29=1542 (LC 45) grip DOL=1.60 FORCES (lb) - Maximum Compression/Maximum TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Tension Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate TOP CHORD 1-2=-290/178, 2-3=-700/145, 3-4=-804/252, DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; 4-5=-770/230, 5-6=-770/230, 6-7=-804/255, Cs=1.00: Ct=1.10 7-8=-701/144, 8-9=-288/179, 1-29=-375/161, 4) Unbalanced snow loads have been considered for this 9-10=-372/162 design. BOT CHORD - CHARLEN AND THE PARTY NEW YORK 28-29=-66/617, 25-28=-240/591, 5) Provide adequate drainage to prevent water ponding. 23-25=0/2674, 21-23=0/3869, 19-21=0/3869, SEAL 6) All plates are 2x4 MT20 unless otherwise indicated. 14-19=0/3869, 11-14=-29/406, This truss has been designed for a 10.0 psf bottom 7) 036322 10-11=-38/596, 26-27=-1192/54 chord live load nonconcurrent with any other live loads. 24-26=-1192/54, 22-24=-3006/0, * This truss has been designed for a live load of 20.0psf 8) 20-22=-3006/0, 18-20=-3400/0, on the bottom chord in all areas where a rectangle 17-18=-3017/0, 15-17=-3017/0, 3-06-00 tall by 2-00-00 wide will fit between the bottom 13-15=-1202/44 12-13=-1202/44 chord and any other members. mm May 17,2022



G

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE
 Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 127 FARM AT NEILLS CREEK
22040111	G03	Attic Supported Gable	1	1	Job Reference (ontional)

Scale = 1:76

Plate Offsets (2	X, Y): [6:0-3-0,0-3-0]	, [10:0-3-0,0-3-0], [25:0)-3-0,0-3-0]											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MSH	0.32 0.09 0.19	Vert(CT)	in n/a n/a 0.01	(loc) - - 16	n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 231 lb	GRIP 244/190 FT = 20%		
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	4-5,11-12:2x6 SP N 2x4 SP No.3 Structural wood she	eathing directly applied		2-37=-186/193, 1-2 3-4=-125/268, 4-5= 6-7=-874/112, 7-8= 9-10=-874/112, 10- 11-12=-543/203, 12 13-14=-138/207, 14 14-16=-188/193 36-37=-142/275, 35 33-35=-138/259, 31 29-31=-138/259, 21 20-22, 20/205, 20	-543/20 -874/11 11=-88 2-13=-1 4-15=0/ 5-36=-1 1-33=-1 7-29=-1)3, 5-6=-884/ [,] 2, 8-9=-874/ [,] 4/134, 28/268, 31, 42/275, 38/259, 38/259,	123, 112,	Va Ca zo 2-: ca rig for D(3) Ti	asd=103n at. II; Exp ine and C 3-11 to 17 intilever le pht expose r reaction DL=1.60 russ desig	nph; TC B; Enc -C Exte 7-7-5, E eft and ed;C-C s show gned fo	closed; MWFRS erior(2E) -0-8-5 t Exterior(2E) 17-7 right exposed ; e for members an m; Lumber DOL= pr wind loads in t	DL=6.0psf; h=25ft; (envelope) exterior o 2-3-11, Exterior(2R) -5 to 20-7-5 zone; end vertical left and d forces & MWFRS =1.60 plate grip he plane of the truss		
BOT CHORD WEBS JOINTS	Rigid ceiling directly bracing. Except: 10-0-0 oc bracing: 1 1 Row at midpt 1 Brace at Jt(s): 38, 39, 40, 42, 43	4-35, 12-18	WEBS	23-27=-138/265, 21 18-21=-137/265, 17 16-17=-142/275, 32 28-30=-4/19, 26-28 22-24=-6/17, 20-22 37-41=-713/308, 40	7-18=-1 2-34=-4 =-4/19, =-6/17,)-41=-6	42/276, /19, 30-32=-4 24-26=-4/19, 19-20=-6/17 55/280,		se or 4) TC Pla DC	e Standa consult q CLL: ASC ate DOL= DL=1.15);	rd Indu ualified E 7-16 1.15); s Is=1.0	exposed to wind (normal to the face), ndustry Gable End Details as applicable, fied building designer as per ANSI/TPI 1. 16; Pr=20.0 psf (roof LL: Lum DOL=1.15 5); Pf=20.0 psf (Lum DOL=1.15 Plate 1.0; Rough Cat B; Fully Exp.; Ce=0.9; 10			
	(lb/size) 16=700/1 18=159/1 23=80/19 27=77/19 31=79/19 35=159/1 37=700/1 Max Horiz 37=-327 (Max Uplift 16=-227 (18=-159 (36=-109 (18=-368 (I 23=242 (I 27=232 (I 31=240 (I	(LC 12) (LC 11), 17=-109 (LC 1 (LC 10), 35=-194 (LC 1 (LC 39), 37=-261 (LC 1 (LC 23), 17=134 (LC 5 (LC 23), 17=134 (LC 2 (LC 21), 21=192 (LC 2 (LC 21), 25=230 (LC 2 (LC 21), 33=193 (LC 2 (LC 48), 36=132 (LC 4	0, 39), 11), 10) NOTES 1), 1) Unbalance 1), this design 1),	4-40=-748/319, 34- 4-34=-399/289, 18- 12-19=-370/253, 12 43-44=-629/244, 16 5-39=-57/616, 38-3 38-42=-57/616, 11- 26-27=-117/0, 7-39 30-31=-120/0, 32-3 36-41=-39/144, 9-4 22-23=-120/0, 20-2 17-44=-41/144 d roof live loads have	19=-36 2-43=-7 9=-57/6 42=-57/ =-6/63, 3=-97/0 2=-6/63 1=-97/0	8/185, 41/284, 02/274, 316, 8-38=-7 28-29=-115/(0, 3-40=-42/18 3, 24-25=-115 0, 13-43=-44/1	/221, /185, 5) 1/284, 2/274, 6) 66, 516, 8-38=-71/29, 28-29=-115/0, 3-40=-42/181, 24-25=-115/0, 13-43=-44/181,		Cs=1.00; Ct=1.10 Unbalanced snow loads have been considere design.			reater of min roof live oof load of 20.0 psf on		
FORCES	(Ib) - Maximum Com Tension	,												

May 17,2022

Continued on page 2 Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MIT-74/3 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

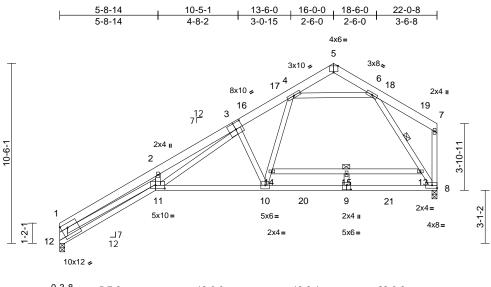
Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 127 FARM AT NEILLS CREE	
22040111	G03	Attic Supported Gable	1	1	Job Reference (optional)	151981947
Carter Components (Sanford). S	anford. NC - 27332.	Run: 8.53 S Apr 27 2	Page: 2			

ID:mTC1KUi0mrxofallau1_zozhpVg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Carter Components (Sanford), Sanford, NC - 27332,

- 7) Provide adequate drainage to prevent water ponding.
- 8) All plates are 2x4 MT20 unless otherwise indicated.
- 9) Gable requires continuous bottom chord bearing.
- 10) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 11) Gable studs spaced at 2-0-0 oc.
- 12) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 13) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members, with BCDL = 10.0psf. 14) Ceiling dead load (5.0 psf) on member(s). 4-5, 11-12, 5-39, 38-39, 38-42, 11-42; Wall dead load (5.0psf) on member(s).34-35, 4-34, 18-19, 12-19
- 15) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 261 lb uplift at joint 37, 227 lb uplift at joint 16, 194 lb uplift at joint 35, 159 lb uplift at joint 18, 109 lb uplift at joint 36 and 109 lb uplift at joint 17.
- 16) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 17) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 18) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Page: 2

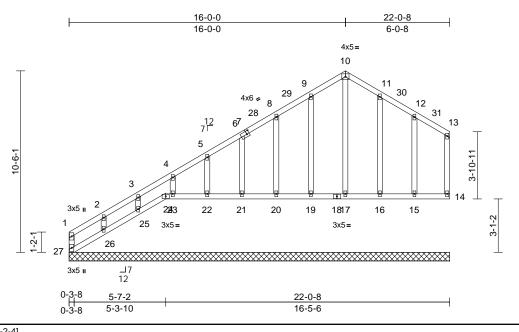
Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 127 FARM AT NEILLS CREEK
22040111	H01	Roof Special	6	1	I51981948 Job Reference (optional)

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Mon May 16 15:10:23 ID:x3WhtBY6w3X0nFQ?ReWD6FzFwFG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

0-3-8	5-7-2	12-0-0	16-9-1	22-0-8	
0-3-8	5-3-10	6-4-14	4-9-1	5-3-7	

		J-1-2	12-0-0
	0-3-8	5-3-10	6-4-14
Scale = 1:67.3			
Plate Offsets (X, Y):	[3:0-5-0,0-4-8], [5:0-3-0,Edge], [9:	0-3-0,0-3-0], [11:0-	6-8,0-2-4], [12:0-4-8,0-3-0]

Loading TCLL (roof) Snow (Pf)	(psf) 20.0 20.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15		CSI TC BC	0.99 0.84	DEFL Vert(LL) Vert(CT)	in -0.39 -0.74	(loc) 10-11 10-11	l/defl >664 >351	L/d 240 180	PLATES MT20	GRIP 244/190
CDL	10.0	Rep Stress Incr	YES		WB	0.97	Horz(CT)	0.44	8	n/a	n/a		
BCLL	0.0*	Code	IRC2018/	TPI2014	Matrix-MSH							Mainht 101 lb	FT 200/
BCDL	10.0											Weight: 164 lb	F1 = 20%
UMBER FOP CHORD SOT CHORD VEBS STACING FOP CHORD SOT CHORD VEBS REACTIONS	No.2 2x4 SP No.2 2x4 SP No.3 *Excep 11-1,13-14:2x4 SP N Structural wood she 2-1-15 oc purlins, e Rigid ceiling directly bracing. 1 Row at midpt (lb/size) 8=1019/0	t* 12-1:2x6 SP No.2, vo.2 athing directly applie xcept end verticals. applied or 10-0-0 oc 6-8, 13-14 -3-8, 12=914/0-3-8	d or 3)	Vasd=103mp Cat. II; Exp E zone and C-f 3-2-12 to 13- Exterior(2E) and right exp exposed;C-C reactions sho DOL=1.60 TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct=		BCDL=6 FRS (env 2-12 to 3- 13-0-0 to 0-12 zone al left and d forces of _=1.60 pl sf (roof LI (Lum DC t B; Fully	.0psf; h=25ft elope) exterio 2-12, Interior o 18-10-12, s; cantilever I d right & MWFRS fo ate grip :: Lum DOL= DL=1.15 Plate Exp.; Ce=0.9	or (1) eft r 1.15 e 9;					
ORCES	Max Horiz 12=272 (L Max Uplift 12=-34 (L Max Grav 8=1019 (L (lb) - Maximum Com	C 14) _C 1), 12=965 (LC 20) 5)	design. 200.0lb AC u	snow loads have nit load placed or , supported at two	n the bott	om chord, 16						
TOP CHORD	,	-33/119, 5-6=-527/6	6, 7)	chord live loa * This truss h	s been designed ad nonconcurrent as been designe n chord in all area	with any d for a liv	other live loa e load of 20.					mm	un,
BOT CHORD		-11=-133/1726,			y 2-00-00 wide w		veen the bott	om				"TH CA	ROUN
WEBS	8-10=0/789 1-11=-385/3332, 2-1 3-11=-642/2452, 3-1 10-14=-66/1450, 4-1 6-13=-1249/115, 8-1 14-15=-70/0, 13-15= 4-6=-511/82	0=-1293/287, 4=-27/1513, 3=-1326/77,	8) 9)	Bearing at jo using ANSI/T designer sho One H2.5A S recommende UPLIFT at jt(y other members int(s) 12 consider PI 1 angle to gra uld verify capacit simpson Strong-T d to connect trus s) 12. This conne	s paralle in formul y of bear ie conne s to bear ction is fo	a. Building ing surface. ctors ing walls due	to		4		SEA	
NOTES 1) Unbalance this desigr	ed roof live loads have n.	been considered for	10)	This truss is International	sider lateral force designed in accol Residential Code nd referenced sta Standard	rdance w sections	R502.11.1 a	and					ERREN
												111111	17,2022



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 127 FARM AT NEILLS CREEK
22040111	H02	Roof Special Structural Gable	1	1	I51981949 Job Reference (optional)

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Mon May 16 15:10:24 ID:DWIMNuBsIfQvL2sTt7VyadzFwH0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:66.7

Plate Offsets	(X, Y): [7:0-1-12,0-2-4	1]										
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2018/TPI201	CSI TC BC WB 4 Matrix-MR	0.30 0.19 0.14	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 14	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 132 lk	GRIP 244/190
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 cc purlins, ex- Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 24 (lb/size) 14=64/22	v applied or 10-0-0 oc 1-25. 2-0-8, 15=161/22-0-8,	WEBS	3-4=-186/153, 4 6-8=-137/126, 8 10-11=-137/174 12-13=-87/98, 1	-5=-164/13 -9=-124/13 , 11-12=-1 3-14=-80/7 25-26=-67 2-23=-53/5 9-20=-53/5 5-16=-53/5 9-19=-206 -22=-121/7 -26=-183/1	44, 5-6=-151/ 11, 9-10=-137 10/130, 10 10, 24-25=-7 11, 21-22=-53 11, 17-19=-53 11, 14-15=-53 172, 8-20=-18 11, 4-23=-126 63,	130, 7/174, 73/60, 8/51, 8/51, 8/51 80/73,	9) Gal 10) Thi cho 11) * Tl on 3-0 cho 12) Pro bea	ced aga ble stude s truss h ord live k his truss the botto 6-00 tall ord and a ovide me aring pla 4 lb upl	inst lat s space bas bee bad not has be om cho l by 2-0 any oth echanic te capa	heathed from or eral movement ed at 2-0-0 oc. an designed for nconcurrent with een designed fo ord in all areas w 00-00 wide will fi er members. al connection (t able of withstand	e face or securely (i.e. diagonal web). a 10.0 psf bottom n any other live loads. r a live load of 20.0ps where a rectangle t between the bottom ony others) of truss to ding 32 lb uplift at join to uplift at joint 26.
	19=161/2 21=155/2 23=149/2 25=151/2 27=57/22 Max Horiz 27=267 (Max Uplift 14=-50 (L 16=-52 (L 19=-49 (L 23=-53 (L 25=-4 (LC 27=-183) Max Grav 14=68 (L 16=243 (19=245 (21=162 (23=155 (LC 11) .C 14), 15=-41 (LC 1; .C 15), 17=-10 (LC 1; .C 14), 20=-50 (LC 1; .C 14), 22=-47 (LC 1; .C 14), 22=-47 (LC 1; .C 14), 26=-230 (LC 1; (LC 12) C 21), 15=227 (LC 2; LC 21), 17=161 (LC 2; LC 20), 20=219 (LC 2; LC 23), 22=161 (LC 2; LC 23), 24=34 (LC 1); LC 21), 26=282 (LC 2; .C 23), 24=34 (LC 1); .C 23), 24=34 (LC 2); .C 23), 24=34 (LC 1); .C 23), 24=34 (LC 2); .C 23), 24=34 (LC 2); .C 23), 24=34 (LC 2); .C 2), 24=34 (LC 2); .C 2), 25=34 (LC 2); .C 2),	NOTES 1) Unbala this des (a) Unict. (b) Unict. (c) Wind: A (c) A	nced roof live loads h sign. SCE 7-16; Vult=130 103mph; TCDL=6.0ps Exp B; Enclosed; MV nd C-C Exterior(2E) (to 13-0-0, Exterior(2F r(2E) 18-10-12 to 21- ht exposed ; end vert d;C-C for members a ns shown; Lumber DC .60 designed for wind loa for studs exposed to 1 andard Industry Gable ult qualified building a ASCE 7-16; Pr=20.0 po .15); Is=1.0; Rough C	have been for the provided state of the pro	considered fc cond gust) .0psf; h=25ft elope) exterior 1-12, Interior 0 18-10-12, s; cantilever lid d right & MWFRS for ate grip lane of the trr al to the face ils as applica s per ANSI/T c; Lum DOL= DL=1.15 Plate	; or (1) eft r uss ;), ble, PI 1. 1.15	14) Bev sur 22,	veled pla face with 23, 25,	h truss 26, 16,	chord at joint(s)	Mari
FORCES	(Ib) - Maximum Con Tension	,	5) Unbala design. 6) All plate	0; Ct=1.10 nced snow loads hav es are 2x4 MT20 unle requires continuous b	ess otherwi	se indicated.					A.C.	GILBERTIN'

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

May 17,2022

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 127 FARM AT NEILLS CRE	EK
22040111	H02	Roof Special Structural Gable	1	1	Job Reference (optional)	151981949
Carter Components (Sanford), Sa	Run: 8.53 S Apr 27 2	022 Print: 8.	530 S Apr 27	2022 MiTek Industries, Inc. Mon May 16 15:10:24	Page: 2	

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Mon May 16 15:10:24 ID:DWIMNuBsIfQvL2sTt7VyadzFwH0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

15) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 127 FARM AT NEILLS CREEK
22040111	PB1	Piggyback	10	1	I51981950 Job Reference (optional)

6-0-11

Scale = 1:44.6 Loading

TCLL (roof)

Snow (Pf)

TCDL

BCLL

BCDL

FORCES

TOP CHORD

BOT CHORD

this design.

WEBS

NOTES

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Mon May 16 15:10:24 Page: 1 ID:BJweuyr2dKwhU0kO5sRv9pzG_Fp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -0-9-12 19-10-11 19-0-15 9-6-8 0-9-12 9-6-8 9-6-8 d-9-12 4x5 = 5 12 7 [25 26 4 6 24 27 5-11-1 23 28 3 0-4-5 15 14 29 13 12 30 11 10 3x5 =3x5 =3x5 =19-0-15 2-0-0 CSI DEFL l/defl L/d PLATES GRIP (psf) Spacing in (loc) 20.0 Plate Grip DOL 1.15 TC 0.30 Vert(LL) n/a n/a 999 MT20 244/190 20.0 BC Vert(CT) Lumber DOL 1 15 0.17 n/a n/a 999 10.0 Rep Stress Incr YES WB 0.13 Horz(CT) 0.00 19 n/a n/a 0.0 Code IRC2018/TPI2014 Matrix-MSH

LUMBER TOP CHORD BOT CHORD		
OTHERS	2x4 SP N	
BRACING		
TOP CHORD	Structural 6-0-0 oc p	l wood sheathing directly applied or purlins.
BOT CHORD	Rigid ceili bracing.	ing directly applied or 10-0-0 oc
REACTIONS	(lb/size)	$\begin{array}{l} 2{=}67/19{-}0{-}15, 8{=}67/19{-}0{-}15,\\ 10{=}253/19{-}0{-}15, 11{=}346/19{-}0{-}15,\\ 13{=}260/19{-}0{-}15, 14{=}346/19{-}0{-}15,\\ 15{=}253/19{-}0{-}15, 16{=}67/19{-}0{-}15,\\ 19{=}67/19{-}0{-}15 \end{array}$
	Max Horiz	2=-138 (LC 12), 16=-138 (LC 12)
	Max Uplift	2=-36 (LC 10), 8=-9 (LC 11), 10=-79 (LC 15), 11=-115 (LC 15), 14=-116 (LC 14), 15=-80 (LC 14), 16=-36 (LC 10), 19=-9 (LC 11)
	Max Grav	2=89 (LC 25), 8=75 (LC 22), 10=310 (LC 25), 11=479 (LC 6), 13=374 (LC 24), 14=479 (LC 5), 15=311 (LC 24), 16=89 (LC 25), 19=75 (LC 22)

Tension

7-8=-91/55, 8-9=0/16

10.0

(lb) - Maximum Compression/Maximum

1-2=0/16, 2-3=-127/108, 3-4=-130/87,

6-11=-395/164, 7-10=-206/128

1) Unbalanced roof live loads have been considered for

4-5=-147/128, 5-6=-147/111, 6-7=-90/52,

2-15=-39/90, 14-15=-39/90, 13-14=-39/90,

11-13=-39/90, 10-11=-39/90, 8-10=-39/90

5-13=-203/0, 4-14=-395/165, 3-15=-206/129,

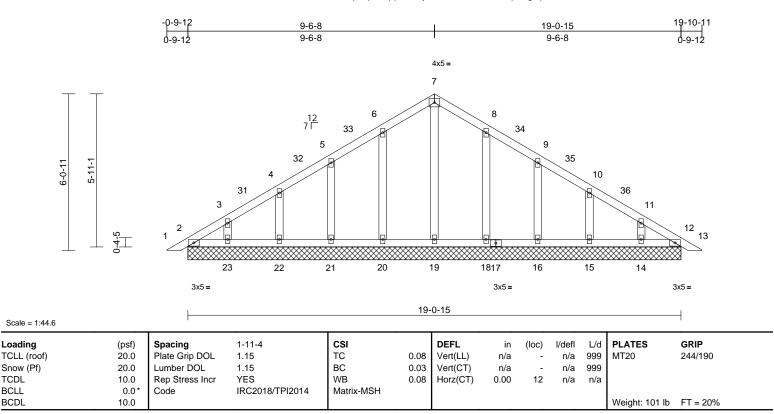
- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-3-11 to 3-3-11, Interior (1) 3-3-11 to 7-4-10, Exterior(2R) 7-4-10 to 13-4-10, Interior (1) 13-4-10 to 17-5-10, Exterior(2E) 17-5-10 to 20-5-10 zone; cantilever left and right exposed ; end vertical left and right exposed:C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this 5) desian.
- This truss has been designed for greater of min roof live 6) load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 7) All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing. 8)
- 9) Gable studs spaced at 4-0-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 11) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 12) N/A

13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

14) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer. LOAD CASE(S) Standard

Weight: 83 lb

FT = 20%



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 127 FARM AT NEILLS CREEK
22040111	PB2	Piggyback	1	1	I51981951 Job Reference (optional)

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Mon May 16 15:10:24 ID:qL3tquim6qzpeKtAr_y6F3zFzxL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood sheathing directly applied or	BOT CHORD	2-23=-42/92, 22-23=-42/92, 21-22=-42/92, 20-21=-42/92, 19-20=-42/92, 18-19=-42/92, 16-18=-42/92, 15-16=-42/92, 14-15=-42/92, 12-14=-42/92 7-19=-110/5, 6-20=-206/74, 5-21=-180/72, 4-22=-126/74, 3-23=-110/64, 8-18=-206/73,
	6-0-0 oc purlins.		9-16=-180/72, 10-15=-126/74, 11-14=-110/63
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.	NOTES 1) Unbalance	ed roof live loads have been considered for
REACTIONS	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	 Vasd=103 Cat. II; Ex zone and 3-3-11 to 7 (1) 13-4-1 zone; cani and right e MWFRS fr grip DOL 3) Truss des only. For see Stand or consult 4) TCLL: AS Plate DOL DOL=1.15 Cs=1.00; 5) Unbalance 	CE 7-16; Vult=130mph (3-second gust) mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; p B; Enclosed; MWFRS (envelope) exterior C-C Exterior(2E) 0-3-11 to 3-3-11, Interior (1) 7-4-10, Exterior(2E) 7-4-10 to 13-4-10, Interior 0 to 17-5-10, Exterior(2E) 17-5-10 to 20-5-10 tilever left and right exposed ; end vertical left exposed; C-C for members and forces & or reactions shown; Lumber DOL=1.60 plate 1.60 igigned for wind loads in the plane of the truss studs exposed to wind (normal to the face), ard Industry Gable End Details as applicable, qualified building designer as per ANSI/TPI 1. CE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 =1.15); Pf=20.0 psf (Lum DOL=1.15 Plate t); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9;
FORCES	(lb) - Maximum Compression/Maximum Tension	design. 6) This truss	has been designed for greater of min roof live
TOP CHORD	1-2=0/16, 2-3=-114/100, 3-4=-96/86, 4-5=-87/74, 5-6=-76/99, 6-7=-82/124, 7-8=-82/116, 8-9=-64/68, 9-10=-49/36, 10-11=-57/34, 11-12=-79/48, 12-13=0/16	overhangs 7) All plates a 8) Gable req 9) Gable stud	0 psf or 1.00 times flat roof load of 20.0 psf on s non-concurrent with other live loads. are 2x4 MT20 unless otherwise indicated. uires continuous bottom chord bearing. ds spaced at 2-0-0 oc. has been designed for a 10.0 psf bottom

- e been considered for
- h (3-second gust) BCDL=6.0psf; h=25ft; RS (envelope) exterior 11 to 3-3-11, Interior (1) '-4-10 to 13-4-10, Interior (2E) 17-5-10 to 20-5-10 xposed ; end vertical left bers and forces & umber DOL=1.60 plate
- in the plane of the truss d (normal to the face), nd Details as applicable signer as per ANSI/TPI 1.
- (roof LL: Lum DOL=1.15 Lum DOL=1.15 Plate B; Fully Exp.; Ce=0.9;
- been considered for this
- or greater of min roof live at roof load of 20.0 psf on other live loads.
- otherwise indicated
- om chord bearing.
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

13) This truss is designed in accordance with the 2018

11) * This truss has been designed for a live load of 20.0psf

3-06-00 tall by 2-00-00 wide will fit between the bottom

on the bottom chord in all areas where a rectangle

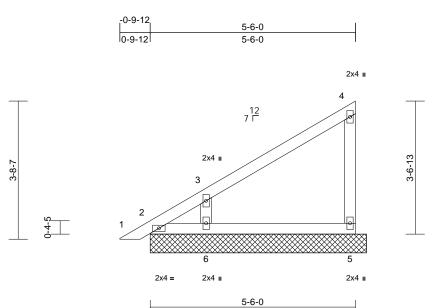
chord and any other members.

12) N/A

Page: 1

- International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 14) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

LOAD CASE(S) Standard



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

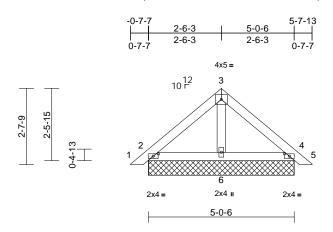
Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 127 FARM AT NEILLS CREEK
22040111	PB3	Piggyback	4	1	I51981952 Job Reference (optional)

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Mon May 16 15:10:25 ID:0qyafw_?OUWQ4iiU?QBuZpzFzim-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:30.9

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MP	0.32 0.12 0.08	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 24 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	6=312/5-9 Max Horiz 2=124 (LC Max Uplift 2=-18 (LC	applied or 10-0-0 oc 3, 5=125/5-9-8, -8, 7=23/5-9-8 2, 14), 7=124 (LC 14) 12), 5=-39 (LC 14), C 14), 7=-18 (LC 12)	8) 9) 10	design. This truss ha load of 12.0 j overhangs n Gable requir Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b	snow loads have b s been designed fi psf or 1.00 times fl on-concurrent with es continuous bott spaced at 4-0-0 oc is been designed fi ad nonconcurrent v has been designed in chord in all areas by 2-00-00 wide will by other members.	or great at roof le other liv om chor or a 10.0 vith any for a liv s where	er of min roof bad of 20.0 ps ve loads. d bearing. D psf bottom other live loa e load of 20.0 a rectangle	live sf on ds. 0psf					
FORCES TOP CHORD BOT CHORD WEBS NOTES	6=461 (LC (lb) - Maximum Com Tension 1-2=0/16, 2-3=-182/1 2-6=-29/2, 5-6=0/0 3-6=-420/225, 4-5=-7	114, 3-4=-114/58 152/78	12	International R802.10.2 ar See Standar Detail for Co	designed in accord Residential Code nd referenced stan d Industry Piggyba nnection to base tr fied building design Standard	sections dard AN ck Trus uss as a	s R502.11.1 a NSI/TPI 1. s Connection					WITH CA	ROUN

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10


Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 127 FARM AT NEILLS CREEK
22040111	PB5	Piggyback	10	1	I51981953 Job Reference (optional)

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Mon May 16 15:10:25 ID:FdqRVfn0ZNVmMDACD34oHRzTR4m-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:39.8

	1										
Loading (psf) TCLL (roof) 20.0 Snow (Pf) 20.0	Spacing1-1Plate Grip DOL1.1Lumber DOL1.1		CSI TC BC	0.11 0.12	DEFL Vert(LL) Vert(CT)	in n/a n/a	(loc) -	l/defl n/a n/a	L/d 999 999	PLATES MT20	GRIP 244/190
Initial Initial <thinitial< th=""> <th< td=""><td>Rep Stress Incr YE</td><td></td><td>WB Matrix-MP</td><td>0.01</td><td>Horz(CT)</td><td>0.00</td><td>4</td><td>n/a</td><td>n/a</td><td></td><td></td></th<></thinitial<>	Rep Stress Incr YE		WB Matrix-MP	0.01	Horz(CT)	0.00	4	n/a	n/a		
3CDL 10.0										Weight: 22 lb	FT = 20%
6-0-0 oc purlins. OT CHORD Rigid ceiling direct bracing. EACTIONS (lb/size) 2=140/5 11=140 Max Horiz 2=-55 (l Max Uplift 2=-24 (l 7=-24 (l Max Grav 2=199 (l 6=163 (l 11=199 ORCES (lb) - Maximum Correst	C 12), 7=-55 (LC 12) C 14), 4=-31 (LC 15), C 14), 11=-31 (LC 15), C 21), 4=199 (LC 22), C 21), 7=199 (LC 21), (LC 22) mpression/Maximum 7/104, 3-4=-117/104, /55 e been considered for h (3-second gust) 3CDL=6.0psf; h=25ft; RS (envelope) exterior ; cantilever left and right ight exposed;C-C for S for reactions shown;	 only. For stuse Standard or consult question of quest	snow loads have be as been designed fo psf or 1.00 times fla on-concurrent with es continuous botto spaced at 2-0-0 oc. is been designed fo ad nonconcurrent w has been designed in a chord in all areas by 2-00-00 wide will by other members. designed in accord: Residential Code s nd referenced stand d Industry Piggybad nnection to base trr. fied building design	I (norm d Detais gner as roof LL um DC 3; Fully eeen cor r greatet t roof Ic String t r an cor r a roof Ic to ther lin m chor r a 10.0 tith any fit betw ance wi ections lard AN & Truss uss as a	al to the face) Is as applicat per ANSI/TF L=1.15 Plate Exp.; Ce=0.9 sidered for the er of min roof nad of 20.0 ps re loads. d bearing. 0 psf bottom other live load e load of 20.0 a rectangle reen the botto the the 2018 R502.11.1 a S//TPI 1.), ole, PI 1. 1.15); live sf on ds. 0psf om				SEA 0363	EER. KIN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 127 FARM AT NEILLS CREEK
22040111	V1	Valley	1	1	I51981954 Job Reference (optional)

13-10-2

Carter Components (Sanford), Sanford, NC - 27332

Scale = 1:50 Loading

TCLL (roof)

Snow (Pf)

LUMBER

TOP CHORD

BOT CHORD

TCDL

BCLL

BCDL

WEBS

WEBS

FORCES

TOP CHORD

BOT CHORD

WEBS

NOTES

OTHERS

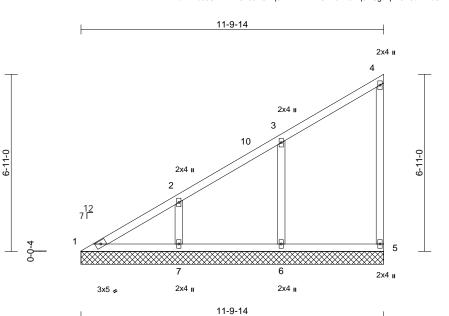
BRACING

TOP CHORD

BOT CHORD

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Mon May 16 15:10:25 ID:obl8CR79AVIhJxhIYr2zsHzhpM4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

> 3x5 II 7


Page: 1

6 18 5 17 4 ကု ကု X م ہ 3 2 16 12 7Γ 0-0-4 8 13 12 10 9 11 3x5 II 3x5 🟑 13-10-2 Spacing 1-11-4 CSI DEFL l/defl L/d PLATES GRIP (psf) in (loc) 20.0 Plate Grip DOL 1.15 TC 0.67 Vert(LL) n/a n/a 999 MT20 244/190 BC 20.0 1 15 Lumber DOL 0.20 Vert(TL) n/a n/a 999 10.0 Rep Stress Incr YES WB 0.17 Horiz(TL) 0.00 8 n/a n/a 0.0 Code IRC2018/TPI2014 Matrix-MSH 10.0 Weight: 85 lb FT = 20%1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; 2x4 SP No.2 2x4 SP No.2 Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) 0-0-7 to 3-0-7, Exterior(2N) 2x4 SP No.3 3-0-7 to 10-8-13, Corner(3E) 10-8-13 to 13-8-13 zone; 2x4 SP No.3 cantilever left and right exposed : end vertical left and right exposed;C-C for members and forces & MWFRS Structural wood sheathing directly applied or for reactions shown; Lumber DOL=1.60 plate grip 6-0-0 oc purlins, except end verticals. DOL=1.60 Rigid ceiling directly applied or 10-0-0 oc 2) Truss designed for wind loads in the plane of the truss bracing. only. For studs exposed to wind (normal to the face), 1 Row at midpt 7-8 see Standard Industry Gable End Details as applicable, REACTIONS (lb/size) 1=122/13-10-2, 8=58/13-10-2, or consult qualified building designer as per ANSI/TPI 1. 9=164/13-10-2, 10=150/13-10-2, 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 11=170/13-10-2, 12=94/13-10-2, Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate 13=302/13-10-2 DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Max Horiz 1=270 (LC 11) Cs=1.00; Ct=1.10 1=-11 (LC 10), 8=-40 (LC 13), Max Uplift 4) Unbalanced snow loads have been considered for this 9=-54 (LC 14), 10=-46 (LC 14), design. 11=-52 (LC 14), 12=-40 (LC 14), 5) All plates are 2x4 MT20 unless otherwise indicated. 13=-72 (LC 14) Gable requires continuous bottom chord bearing. 6) Max Grav 1=164 (LC 24), 8=87 (LC 20), 7) Gable studs spaced at 2-0-0 oc. 9=243 (LC 20), 10=220 (LC 20), 8) This truss has been designed for a 10.0 psf bottom 11=179 (LC 20), 12=101 (LC 23), chord live load nonconcurrent with any other live loads. 13=308 (LC 23) * This truss has been designed for a live load of 20.0psf 9) (lb) - Maximum Compression/Maximum on the bottom chord in all areas where a rectangle С Tension 3-06-00 tall by 2-00-00 wide will fit between the bottom 1-2=-263/158, 2-3=-190/116, 3-4=-164/108, chord and any other members. 4-5=-152/97, 5-6=-143/97, 6-7=-104/107, 10) Provide mechanical connection (by others) of truss to VIIIIIIIIIII 7-8=-72/30 bearing plate capable of withstanding 40 lb uplift at joint SEAL 1-13=-114/184. 12-13=-114/142 8, 11 lb uplift at joint 1, 54 lb uplift at joint 9, 46 lb uplift at 11-12=-114/142, 10-11=-114/142, joint 10, 52 lb uplift at joint 11, 40 lb uplift at joint 12 and 036322 9-10=-114/142, 8-9=-114/142 72 lb uplift at joint 13. 6-9=-201/63, 5-10=-184/114, 4-11=-132/96, 11) This truss is designed in accordance with the 2018 3-12=-92/80, 2-13=-201/142 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard G mm May 17,2022 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 127 FARM AT NEILLS CREEK
22040111	V2	Valley	1	1	Job Reference (optional)

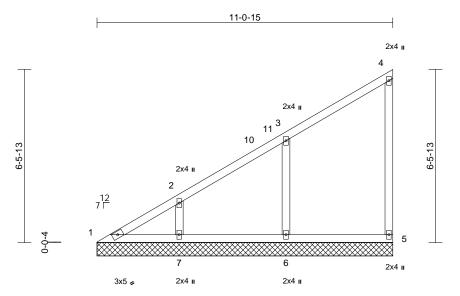
Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Mon May 16 15:10:25 ID:dZR1oJ6SMNhWOks6TOXq3xzTR1m-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:45

Loading (psf) Spacing 2-0-0 CSI DEFL in (loc) l/defi L/d TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.46 Vert(LL) n/a - n/a 999 Snow (Pf) 20.0 Lumber DOL 1.15 BC 0.16 Vert(LL) n/a - n/a 999 TCDL 10.0 Rep Stress Incr YES WB 0.15 Vert(TL) n/a - n/a 999 BCLL 0.0* Code IRC2018/TPI2014 WB 0.15 Vert(TL) n/a - n/a 999 BCLL 0.0* Code IRC2018/TPI2014 WB 0.15 Matrix-MSH Vert(TL) n/a - n/a IUMBER 10.0 2x4 SP No.2 Sport CHORD 2x4 SP No.2 Sport CHORD 2x4 SP No.3 Cs=1.00; Ct=1.10 Cs=1.00; Ct=1.15 Sc=1.00; Ct=1.10 Cs=1.00; Ct=1.10 Sc=1.00; Ct=1.10 Unbalanced snow loads have been considered for this design.	
TOP CHORD2x4 SP No.2Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 PlateBOT CHORD2x4 SP No.2DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9;WEBS2x4 SP No.3Cs=1.00; Ct=1.10OTHERS2x4 SP No.34)Unbalanced snow loads have been considered for this	PLATES GRIP MT20 244/190 Weight: 55 lb FT = 20%
 BRACING TOP CHORD TOP CHORD Structural wood sheathing directly applied or 6-0-0 c purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 c bracing. REACTIONS (Ib/size) 1=123/11-9-14, 5=128/11-9-14, 6=337/11-9-14, 7=346/11-9-14, 6=337/11-9-14, 7=34/141 (LC 5), 6=491 (LC 5), 7=413 (LC 23) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-268/139, 2-3=-160/110, 3-4=-136/89, 4-5=-159/45 BOT CHORD 1-7=-99/196, 6-7=-99/110, 5-6=-99/110 3-0-7 to 5-4-387/152, 2-7=254/148 NOTES 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vascl=103mph; TCDL=6.0ps; h=25ft; Cat. Ii; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-7 to 3-0-7, Interior (1), 3-0-7 to 8-9-9, Exterior(2E) 0-7 to 3-0-7, Interior (1), 3-0-7 to 8-9-9, Exterior(2E) 8-3-9 to 11-8-9 20re); consult qualifide building designer as per ANSI/TP1 1. 4-0-0	INTH CARO

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


A. GILB GIL

May 17,2022

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 127 FARM AT NEILLS CREEK
22040111	V3	Valley	1	1	I51981956 Job Reference (optional)

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Mon May 16 15:10:26 ID:dlfQSUCwlL2q1s9Sv59O5YzhpM_-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

11-0-15

Scale = 1:43.1

					_							
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MSH	0.40 0.16 0.13	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 51 lb	GRIP 244/190 FT = 20%
	6=347/11 Max Horiz 1=221 (LC Max Uplift 1=-11 (LC 6=-61 (LC Max Grav 1=137 (LC	cept end verticals. applied or 10-0-0 oc 0-15, 5=126/11-0-15 0-15, 7=308/11-0-15 C 11) C 10), 5=-33 (LC 11), C 14), 7=-86 (LC 14) C 24), 5=209 (LC 5),	Plate DOL= DOL=1.15); Cs=1.00; C 4) Unbalanced design. 5) Gable requi 6) Gable studs 7) This truss 6) Gable studs 7) This truss 6) * This truss 9) * This truss 90 on the botto 3-06-00 tall chord and a 9) Provide me bearing plai	E 7-16; Pr=20.0 p: 1.15); Pf=20.0 p: 1.15); Pf=20.0 ps 1.15; Pf=20.0 ps 1.15; Pf=20.0 ps 1.15; Pf=20.0 ps 1.15; Pf=20.0 ps tes=1.10 a show loads have res continuous bo as paced at 4-0-0 of as been designed and nonconcurrent has been designed and nonconcurrent has been designed m chord in all are by 2-00-00 wide v my other members chanical connection the capable of withs ft at joint 1, 61 lb v	f (Lum DC at B; Fully toom chor oc. I for a 10. t with any ed for a liv as where will fit betv s, with BC on (by oth standing 3	DL=1.15 Plate Exp.; Ce=0.9 nsidered for th d bearing. 0 psf bottom other live load e load of 20.0 a rectangle veen the bottt CDL = 10.0psf CDL = 10.0psf 3 lb uplift at ji); ds.)psf om o					
FORCES	(lb) - Maximum Com Tension		Ínternationa	designed in acco Residential Code	e sections	8 R502.11.1 a	nd					
TOP CHORD	1-2=-213/130, 2-3=- 4-5=-158/44	153/110, 3-4=-133/8	2, R802.10.2 a LOAD CASE(S	and referenced sta	andard AN	ISI/TPI 1.						
BOT CHORD	1-7=-93/142, 6-7=-9		LOAD CASE(S	Standard							WHTH CA	1111
WEBS NOTES	3-6=-392/141, 2-7=-	229/129								3	WITH CA	ABO
 Wind: ASC Vasd=103/ Cat. II; Exp zone and 0 3-1-6 to 6- cantilever right exposi for reaction DOL=1.60 Truss des only. For s 	E 7-16; Vult=130mph mph; TCDL=6.0psf; Bi b B; Enclosed; MWFR C-C Exterior(2E) 0-0-7 8-11, Exterior(2R) 6-8 left and right exposed sed;C-C for members ins shown; Lumber DO igned for wind loads in studs exposed to wind ard Industry Gable En-	CDL=6.0psf; h=25ft; S (envelope) exterior 'to 3-1-6, Interior (1) -11 to 10-11-10 zone ; end vertical left ann and forces & MWFR IL=1.60 plate grip n the plane of the tru (normal to the face)	r e; d S ss						9		SEA 0363	AL STAT

- cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


G

umm May 17,2022

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 127 FARM AT NEILLS CREEK
22040111	V4	Valley	1	1	Job Reference (optional)

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Mon May 16 15:10:26 ID:WLgYeg9zPbBytL9tiEbmDnzTR1i-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

8-11-9

Scale = 1:35.2

Scale = 1:35.2													
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MP	0.38 0.23 0.10	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 38 lb	GRIP 244/190 FT = 20%
BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS ((6-0-0 oc purlins, ex Rigid ceiling directly bracing. Ib/size) 1=158/8- 5=446/8- ⁻ Aax Horiz 1=177 (LC Aax Uplift 4=-27 (LC	applied or 10-0-0 od 11-9, 4=102/8-11-9, 11-9 C 11) C 11), S=-112 (LC 14 C 24), 4=165 (LC 20)	4 ed or 5 5 7 8	Plate DOL=1 DOL=1.15); Cs=1.00; Cti Unbalanced design. Gable requir Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall li chord and au Provide mec bearing plate	snow loads have es continuous bo spaced at 4-0-0 d so been designed ad nonconcurrent has been designe m chord in all are: by 2-00-00 wide v hanical connection e capable of withs	(Lum DC at B; Fully been cou- toon choroc. for a 10. with any d for a liv as where will fit betw s.	DL=1.15 Plate Exp.; Ce=0.5 asidered for th d bearing. D psf bottom other live loa e load of 20.0 a rectangle veen the botto ers) of truss t	ds. Opsf om					
TOP CHORD BOT CHORD	1-5=-79/227, 4-5=-7	124/65, 3-4=-144/45)) This truss is International	uplift at joint 5. designed in acco Residential Code nd referenced sta Standard	e sections	R502.11.1 a	nd					
	2-5=-442/189												
 Vasd=103m Cat. II; Exp zone and C 3-0-7 to 4-7 cantilever le right expose for reactions DOL=1.60 Truss desig only. For st see Standal 	-C Exterior(2E) 0-0-7 -5, Exterior(2R) 4-7 ft and right exposed ad;C-C for members s shown; Lumber DC gned for wind loads in uds exposed to wino rd Industry Gable En	CDL=6.0psf; h=25ft; S (envelope) exterio 7 to 3-0-7, Interior (1) 5 to 8-10-4 zone; ; end vertical left and and forces & MWFR	d S ss ,							4		OR FESS SEA 0363	L

- right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss 2)
 - only. For stude exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

GI 11111111 May 17,2022

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 127 FARM AT NEILLS CREEK
22040111	V5	Valley	1	1	Job Reference (optional)

Scale = 1:33.4 Loading

TCLL (roof)

Snow (Pf)

1)

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Mon May 16 15:10:26 ID:VWvwIsFRpZYGWTSD8xEKGOzhpLw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

GRIP

244/190

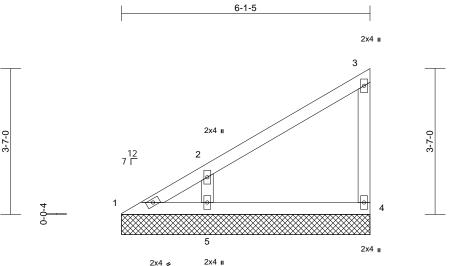
FT = 20%

8-2-10 2x4 II 3 10 2x4 II 2 4-9-13 33 9 8 12 7 Г 4 5 2x4 u 2x4 II 2x4 8-2-10 Spacing 2-0-0 CSI DEFL l/defl L/d PLATES (psf) in (loc) Plate Grip DOL 20.0 1.15 тс 0.34 Vert(LL) n/a n/a 999 MT20 BC 20.0 Lumber DOL 1 15 0.15 Vert(TL) n/a n/a 999 10.0 Rep Stress Incr YES WB 0.09 Horiz(TL) 0.00 4 n/a n/a 0.0 Code IRC2018/TPI2014 Matrix-MP 10.0 Weight: 35 lb TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 4) Unbalanced snow loads have been considered for this desian. Gable requires continuous bottom chord bearing. 5) Gable studs spaced at 4-0-0 oc. 6) 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 8) 1=130/8-2-10, 4=112/8-2-10, on the bottom chord in all areas where a rectangle 5=403/8-2-10 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. Provide mechanical connection (by others) of truss to 9) 1=142 (LC 24), 4=175 (LC 20), bearing plate capable of withstanding 26 lb uplift at joint 5=535 (LC 20) 4 and 107 lb uplift at joint 5. 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and

> 0 O SEAL 036322 G mm May 17,2022

> > 818 Soundside Road Edenton, NC 27932

VIIIIIIIIIIII


TCDL BCLL BCDL LUMBER TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD 2x4 SP No.3 WEBS OTHERS 2x4 SP No.3 BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (lb/size) Max Horiz 1=161 (LC 11) Max Uplift 4=-26 (LC 11), 5=-107 (LC 14) Max Grav FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-220/116, 2-3=-117/58, 3-4=-150/44 R802.10.2 and referenced standard ANSI/TPI 1. 1-5=-72/181, 4-5=-72/79 BOT CHORD LOAD CASE(S) Standard WFBS 2-5=-419/186 NOTES Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-7 to 3-0-7, Interior (1) 3-0-7 to 3-10-7, Exterior(2R) 3-10-7 to 8-1-5 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face). see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 127 FARM AT NEILLS CREEK
22040111	V6	Valley	1	1	I51981959 Job Reference (optional)

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Mon May 16 15:10:26 ID:9eP49nIUaHiFJB4BPIpajJzTR1W-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

6-1-5

Scale = 1:28.3

Ocale = 1.20.3													
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MP	0.31 0.12 0.08	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 24 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (Ib/size) 1=31/6-1- 5=320/6- Max Horiz 1=117 (LC Max Uplift 1=-12 (LC 5=-90 (LC 5=462 (LC	cept end verticals. applied or 10-0-0 or 5, 4=125/6-1-5, 1-5 C 11) C 11) C 10), 4=-24 (LC 14), C 14) 24), 4=186 (LC 20),	c 9) , 10	design. Gable requir Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Provide mec bearing plate 4, 12 lb upliff)) This truss is International	snow loads have b es continuous bott spaced at 4-0-0 oc is been designed f ad nonconcurrent v has been designed in chord in all areas by 2-00-00 wide wil by other members. hanical connection e capable of withsta at joint 1 and 90 ll designed in accord Residential Code ind referenced stan Standard	om choi c. or a 10. with any for a liv s where Il fit betv anding 2 b uplift a dance w sections	d bearing. D psf bottom other live loa e load of 20.0 a rectangle veen the botto ers) of truss t 24 lb uplift at j t joint 5. ith the 2018 s R502.11.1 a	ids. Dpsf om to oint					
FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-106/99, 2-3=-114/58, 3-4=-153/42 BOT CHORD 1-5=-54/59, 4-5=-54/59 WEBS 2-5=-415/211 NOTES 1) 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60										4		OPTOFESS	• •

- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

The man 036322 GI 100000 May 17,2022

Page: 1

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 127 FARM AT NEILLS CREEK
22040111	V7	Valley	1	1	Job Reference (optional)

2-7-4

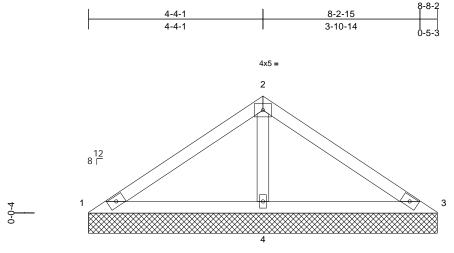
Spacing

Code

Plate Grip DOL

Rep Stress Incr

Lumber DOL


2-10-15

(psf)

20.0

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Mon May 16 15:10:26 ID:BJweuyr2dKwhU0kO5sRv9pzG_Fp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

2x4 II

in

n/a

n/a

0.00

(loc)

4

8-8-2

DEFL

Vert(LL)

Vert(TL)

Horiz(TL)

0.38

0.37

0.11

2-0-0

1.15

1 15

YES

IRC2018/TPI2014

CSI

TC

BC

WB

Matrix-MP

LUMBER	
BCDL	10.0
BCLL	0.0
TCDL	10.0
Snow (Pf)	20.0

Scale = 1:28.7

TCLL (roof)

LOWIDEN		
TOP CHORD	2x4 SP N	0.2
BOT CHORD	2x4 SP N	0.2
OTHERS	2x4 SP N	0.3
BRACING		
TOP CHORD	Structural 8-8-2 oc p	l wood sheathing directly applied or purlins.
BOT CHORD	Rigid ceili bracing.	ing directly applied or 6-0-0 oc
REACTIONS	(lb/size)	1=30/8-8-2, 3=30/8-8-2, 4=634/8-8-2
	Max Horiz	1=-64 (LC 10)
	Max Uplift	1=-40 (LC 21), 3=-40 (LC 20),
		4=-76 (LC 14)
	Max Grav	- () (-) /
		4=676 (LC 21)
FORCES	· · /	imum Compression/Maximum
	Tension	
TOP CHORD	1-2=-109/	/336, 2-3=-109/336
DOT OUODD	4 4 000	404 0 4 000/404

	1 2= 100,000, 2 0= 100,000
BOT CHORD	1-4=-228/161, 3-4=-228/161
WEBS	2-4=-501/208
NOTES	

 Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-6 to 3-0-6, Exterior(2R) 3-0-6 to 5-8-8, Exterior(2E) 5-8-8 to 8-8-8 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 40 lb uplift at joint 1, 40 lb uplift at joint 3 and 76 lb uplift at joint 4.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

3x5 💊

PLATES

Weight: 30 lb

MT20

GRIP

244/190

FT = 20%

L/d

l/defl

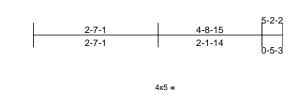
n/a 999

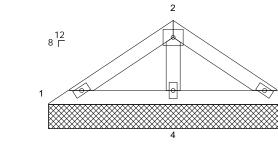
n/a 999

n/a n/a

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 127 FARM AT NEILLS CREEK
22040111	V8	Valley	1	1	I51981961 Job Reference (optional)


1-5-4


0-0-4

1-8-15

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Mon May 16 15:10:26 ID:BJweuyr2dKwhU0kO5sRv9pzG_Fp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

2x4 🍫

2x4 💊

2x4 II

5-2-2

3

Scale = 1:23.9

Scale = 1:23.9	9											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MP	0.09 0.12 0.04	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 17 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORE BOT CHORE OTHERS BRACING TOP CHORE BOT CHORE REACTIONS	 2x4 SP No.2 2x4 SP No.3 Structural wood she 5-2-2 oc purlins. Rigid ceiling directly bracing. (lb/size) 1=52/5-2: 4=311/5-7 Max Horiz 1=-37 (LC Max Uplift 1=-5 (LC (LC 14) Max Grav 1=90 (LC (LC 20) (lb) - Maximum Con Tension 1-2=-88/120, 2-3=-8 	2 applied or 6-0-0 oc -2, 3=52/5-2-2, 2-2 2 10) 14), 3=-11 (LC 15), - 20), 3=90 (LC 21), - appression/Maximum 18/120	 Plate DO DOL=1.1 Cs=1.00; Unbalanci design. Gable rer Gable rer Gable stu This truss chord live * This truss chord live * This truss 3-06-00 t 4=-28 4=-28 10) Provide r bearing p 1, 11 lb u 11) This truss: Internatic R802.10. 	CCF 7-16; Pr=20.0 p L=1.15); Pf=20.0 p L=1.15); Pf=20.0 p S5); Is=1.0; Rough C Ct=1.10 ed snow loads have quires continuous bo dos spaced at 4-0-0 s has been designed load nonconcurren ss has been designed any other member nechanical connecti late capable of with plift at joint 3 and 28 is designed in acco nal Residential Cod 2 and referenced st (S) Standard	f (Lum DC at B; Fully be been co- bottom cho- oc. d for a 10. t with any ed for a liv as where will fit betv 's. on (by oth standing f 3 lb uplift a ordance w le sections	DL=1.15 Plate Fxp.; Ce=0.9 Insidered for the rd bearing. 0 psf bottom other live load re load of 20.1 a rectangle ween the botth the sol f truss 1 5 lb uplift at jo at joint 4. ith the 2018 s R502.11.1 at	e 9; his ads. Opsf om to					
WEBS	2-4=-196/100		LUAD CASE	(S) Standard								
NOTES											min	1111.
 this designed to the second second	ced roof live loads have gn. SCE 7-16; Vult=130mph I3mph; TCDL=6.0psf; B xp B; Enclosed; MWFR d C-C Exterior(2E) zone ; end vertical left and ri s and forces & MWFRS DOL=1.60 plate grip DC DOL=1.60 plate grip DC solgned for wind loads i r studs exposed to winc idard Industry Gable En It qualified building desi	(3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior; c cantilever left and 1 ght exposed;C-C for for reactions shown $DL=1.60in the plane of the trutf (normal to the face)d Details as applical$; right ; Jss), ble,						A		SEA 0363	EER. HUM

en manufiliti GI 1111111 May 17,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 127 FARM AT NEILLS CREEK
22040111	V9	Valley	1	1	I51981962 Job Reference (optional)

7-1-12

7-1-12

Carter Components (Sanford), Sanford, NC - 27332

Scale = 1:43.2

Loading

TCLL (roof)

Snow (Pf)

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

FORCES

TOP CHORD

BOT CHORD

this design.

WEBS

NOTES

1)

TCDL

BCLL

BCDL

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Mon May 16 15:10:27 ID:Xyqa7uB2KgCrbU49EiFAJ8zFwaO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

13-11-6

6-9-10

14-3-8

4x5 = 4 3 5 17 18 5-11-11 5-8-0 2 6 12 10 Г 7-0-0 12 11 10 a 8 3x5 🍫 3x5、 14-3-8 1-11-4 CSI DEFL l/defl L/d PLATES GRIP (psf) Spacing in (loc) 20.0 Plate Grip DOL 1.15 TC 0.11 Vert(LL) n/a 999 MT20 244/190 n/a BC 20.0 Lumber DOL 1 15 0.10 Vert(TL) n/a n/a 999 10.0 Rep Stress Incr YES WB 0.09 Horiz(TL) 0.00 7 n/a n/a 0.0 Code IRC2018/TPI2014 Matrix-MSH 10.0 Weight: 73 lb FT = 20%Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; 2x4 SP No.2 2x4 SP No.2 Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior 2x4 SP No.3 zone and C-C Exterior(2E) 0-0-5 to 3-2-1, Interior (1) 3-2-1 to 4-2-1, Exterior(2R) 4-2-1 to 10-2-1, Interior (1) 10-2-1 to 11-2-1, Exterior(2E) 11-2-1 to 14-3-13 zone; Structural wood sheathing directly applied or cantilever left and right exposed ; end vertical left and 6-0-0 oc purlins. right exposed:C-C for members and forces & MWFRS Rigid ceiling directly applied or 6-0-0 oc for reactions shown; Lumber DOL=1.60 plate grip bracing. DOL=1.60 REACTIONS (lb/size) 1=82/14-3-8, 7=82/14-3-8, Truss designed for wind loads in the plane of the truss 3) 8=242/14-3-8, 9=130/14-3-8, only. For studs exposed to wind (normal to the face), 10=200/14-3-8, 11=130/14-3-8, see Standard Industry Gable End Details as applicable 12=242/14-3-8 or consult qualified building designer as per ANSI/TPI 1. Max Horiz 1=-132 (LC 12) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Max Uplift 1=-18 (LC 10), 8=-98 (LC 15), Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate 9=-69 (LC 15), 11=-69 (LC 14), DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; 12=-101 (LC 14) Cs=1.00; Ct=1.10 Max Grav 1=103 (LC 24), 7=88 (LC 21), 5) Unbalanced snow loads have been considered for this 8=284 (LC 21), 9=234 (LC 21), desian. 10=203 (LC 26), 11=234 (LC 20), All plates are 2x4 MT20 unless otherwise indicated. 6) 12=284 (LC 20) 7) Gable requires continuous bottom chord bearing. (Ib) - Maximum Compression/Maximum Gable studs spaced at 2-0-0 oc. 8) Tension 9) This truss has been designed for a 10.0 psf bottom ORT 1-2=-121/147, 2-3=-54/99, 3-4=-54/107, chord live load nonconcurrent with any other live loads. 4-5=-54/107, 5-6=-49/83, 6-7=-99/113 10) * This truss has been designed for a live load of 20.0psf 1-12=-82/111 11-12=-82/111 10-11=-82/111 on the bottom chord in all areas where a rectangle 9-10=-82/111, 8-9=-82/111, 7-8=-82/111 3-06-00 tall by 2-00-00 wide will fit between the bottom A COLORANDA DE LA COLORANDA DE 4-10=-158/0, 3-11=-213/101, 2-12=-199/115, chord and any other members. 5-9=-213/101, 6-8=-199/114 11) Provide mechanical connection (by others) of truss to SEAL bearing plate capable of withstanding 18 lb uplift at joint 036322 1, 69 lb uplift at joint 11, 101 lb uplift at joint 12, 69 lb Unbalanced roof live loads have been considered for uplift at joint 9 and 98 lb uplift at joint 8. 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard G

Page: 1

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 127 FARM AT NEILLS CREEK
22040111	V10	Valley	1	1	I51981963 Job Reference (optional)

Scale = 1:41 Loading

TCLL (roof)

Snow (Pf)

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

FORCES

TOP CHORD

BOT CHORD

this design.

DOL=1.60

WEBS

2)

NOTES 1)

REACTIONS (lb/size)

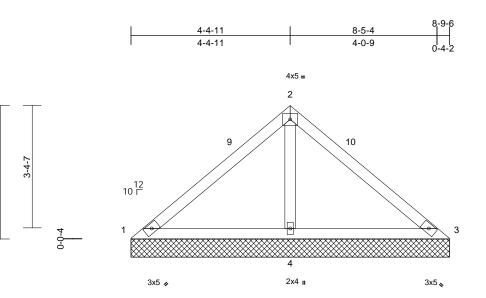
bracing.

TCDL

BCLL

BCDL

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Mon May 16 15:10:27 ID:3mGCwYAQZM4_zKVzh_kxnwzFwaP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1


11-6-15 5-9-8 11-2-13 5-9-8 5-5-6 4x5 = 3 2x4 II 4-10-2 13 14 1-9-1 2x4 II 12 10 Г 2 4 5 0-0-4 8 7 6 2x4 🛛 3x5 🍫 2x4 ı 3x5 💊 2x4 II 11-6-15 Spacing 2-0-0 CSI DEFL l/defl L/d PLATES GRIP (psf) in (loc) 20.0 Plate Grip DOL 1.15 TC 0.31 Vert(LL) n/a n/a 999 MT20 244/190 BC 20.0 1 15 Lumber DOL 0.12 Vert(TL) n/a n/a 999 10.0 Rep Stress Incr YES WB 0.08 Horiz(TL) 0.00 5 n/a n/a 0.0 Code IRC2018/TPI2014 Matrix-MSH 10.0 Weight: 47 lb FT = 20%3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), 2x4 SP No.2 2x4 SP No.2 see Standard Industry Gable End Details as applicable, 2x4 SP No.3 or consult qualified building designer as per ANSI/TPI 1. 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate Structural wood sheathing directly applied or DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; 6-0-0 oc purlins. Cs=1.00: Ct=1.10 Rigid ceiling directly applied or 10-0-0 oc Unbalanced snow loads have been considered for this 5) desian. 1=48/11-6-15, 5=48/11-6-15, 6) Gable requires continuous bottom chord bearing. 6=297/11-6-15, 7=236/11-6-15, Gable studs spaced at 4-0-0 oc. 7) 8=297/11-6-15 8) This truss has been designed for a 10.0 psf bottom Max Horiz 1=-109 (LC 10) chord live load nonconcurrent with any other live loads. Max Uplift 1=-37 (LC 10), 5=-10 (LC 11), * This truss has been designed for a live load of 20.0psf 9) 6=-134 (LC 15), 8=-138 (LC 14) on the bottom chord in all areas where a rectangle Max Grav 1=81 (LC 24), 5=61 (LC 30), 6=438 3-06-00 tall by 2-00-00 wide will fit between the bottom (LC 21), 7=254 (LC 20), 8=438 (LC chord and any other members. 20) 10) Provide mechanical connection (by others) of truss to (Ib) - Maximum Compression/Maximum bearing plate capable of withstanding 37 lb uplift at joint Tension 1, 10 lb uplift at joint 5, 138 lb uplift at joint 8 and 134 lb 1-2=-119/100, 2-3=-222/114, 3-4=-222/114, uplift at joint 6. 4-5=-95/64 11) This truss is designed in accordance with the 2018 1-8=-32/73. 7-8=-27/73. 6-7=-27/73. International Residential Code sections R502.11.1 and 5-6=-29/73 R802.10.2 and referenced standard ANSI/TPI 1. 3-7=-166/0, 2-8=-420/234, 4-6=-420/234 LOAD CASE(S) Standard \cap Unbalanced roof live loads have been considered for on a contraction Wind: ASCE 7-16; Vult=130mph (3-second gust) SEAL Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; 036322 Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Exterior(2R) 3-0-5 to 8-7-4, Exterior(2E) 8-7-4 to 11-7-4 zone; cantilever left and right exposed ; end vertical left and right exposed:C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip G mm May 17,2022 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 818 Soundside Road Edenton, NC 27932

Job		Truss	Truss Type	Qty	Ply	DRB GROUP - 127 FARM AT NEILLS CREEK
2204	0111	V11	Valley	1	1	I51981964 Job Reference (optional)

3-8-2

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Mon May 16 15:10:27 ID:FE3V3NLeysANU4qPI9TSgAzFwYv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

8-9-6

Scale = 1:31.8

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-MP	0.42 0.39 0.15	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 33 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD TOP CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS	8-9-6 oc purlins. Rigid ceiling directly bracing.	6, 3=22/8-9-6, 9-6 ; 10) ; 21), 3=-50 (LC 20), C 14) 20), 3=76 (LC 21), 4 pression/Maximum 132/329	d or 6778	 Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced design. Gable require Gable studs This truss ha chord live loa * This truss ha on the bottom 3-06-00 tall b chord and an Provide meci bearing plate 1, 50 lb uplift This truss is International 	snow loads have es continuous bo spaced at 4-0-0 s been designed ad nonconcurren as been designed n chord in all are y 2-00-00 wide v y other member hanical connectii capable of with- at joint 3 and 10 designed in acco Residential Cod nd referenced sta	f (Lum DC at B; Fully been cor ottom chor oc. I for a 10.0 t with any ed for a 10.4 t with any ed for a liv as where will fit bet standing 5 9 Ib uplift ordance w e sections	DL=1.15 Plate Exp.; Ce=0.9 hsidered for the d bearing. D psf bottom other live loa e load of 20.0 a rectangle veen the botto ers) of truss t io lb uplift at j at joint 4. ith the 2018 is R502.11.1 a	ds. Dpsf om o oint					
NOTES	ed roof live loads have	been considered for										TH CA	Politic

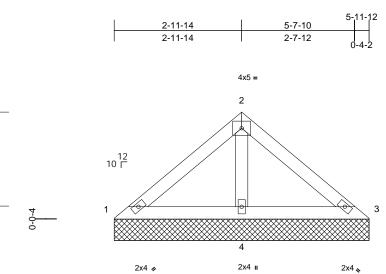
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Exterior(2R) 3-0-5 to 5-9-10, Exterior(2E) 5-9-10 to 8-9-10 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

818 Soundside Road Edenton, NC 27932

SEAL 036322

"nummin


Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 127 FARM AT NEILLS CREEK
22040111	V12	Valley	1	1	I51981965 Job Reference (optional)

2-2-7

2-6-2

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Mon May 16 15:10:27 ID:h77FQXXj0dIrgEwK2ihK7bzFvJu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

5-11-12

1.07 c.

Scale = 1:27											1		
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MP	0.15 0.18 0.06	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 22 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 5-11-12 oc purlins. Rigid ceiling directly bracing. (Ib/size) 1=49/5-11 4=381/5-11 Max Horiz 1=55 (LC Max Uplift 3=-4 (LC Max Grav 1=99 (LC	applied or 6-0-0 oc I-12, 3=49/5-11-12, I1-12 13) 15), 4=-50 (LC 14)	6) 7) 8) ed or 9) 11	 design. Gable requiries Gable studs This truss hat chord live load * This truss hat on the bottor 3-06-00 tall be chord and are bearing plate and 50 lb up This truss is 	snow loads have es continuous bot spaced at 4-0-0 o is been designed ad nonconcurrent has been designed n chord in all area by 2-00-00 wide w y other members hanical connectio e capable of withsi lift at joint 4. designed in accor Residential Code	tom choi oc. for a 10. with any d for a liv as where rill fit betv as n (by oth tanding 4 rdance w	d bearing. D psf bottom other live loa e load of 20.0 a rectangle veen the botto ers) of truss t I b uplift at joi ith the 2018	ds. Dpsf om o int 3				vvegnit. 22 ib	11 = 2076
FORCES TOP CHORD BOT CHORD WEBS	,	8/157	L	R802.10.2 a OAD CASE(S)	nd referenced star Standard	ndard Al	ISI/TPI 1.						
	ed roof live loads have	been considered fo	r									WITH CA	unn.
Vasd=103 Cat. II; Exp zone and exposed; members Lumber D 3) Truss des only. For see Stand or consult 4) TCLL: ASP Plate DOL	CE 7-16; Vult=130mph Smph; TCDL=6.0psf; Bi p B; Enclosed; MWFR C-C Exterior(2E) zone end vertical left and rig and forces & MWFRS OL=1.60 plate grip DC signed for wind loads ir studs exposed to wind lard Industry Gable En qualified building desig CE 7-16; Pr=20.0 psf (L =1.15); Pf=20.0 psf (L 5); Is=1.0; Rough Cat E	CDL=6.0psf; h=25ft; S (envelope) exterior ; cantilever left and in ght exposed;C-C for for reactions shown PL=1.60 In the plane of the true (normal to the face d Details as applicat gner as per ANSI/TF roof LL: Lum DOL= um DOL=1.15 Plate	rr right ; iss), ple, Pl 1. 1.15							Marine and and a second		FES	

May 17,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

