

RE: 22040113 DRB GROUP - 119 FaNC Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:

Customer: Project Name: 22040113 Lot/Block: Address: City:

Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7-16 Roof Load: 40.0 psf Design Program: MiTek 20/20 8.5 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 16 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date
1	151773810	A01	5/5/2022
2	151773811	A02	5/5/2022
3	151773812	A03	5/5/2022
4	151773813	A04	5/5/2022
5	151773814	B01	5/5/2022
6	151773815	B02	5/5/2022
7	151773816	B03	5/5/2022
8	151773817	C01	5/5/2022
9	151773818	C02	5/5/2022
10	151773819	D01	5/5/2022
11	151773820	D02	5/5/2022
12	151773821	E01	5/5/2022
13	151773822	E02	5/5/2022
14	151773823	V1	5/5/2022
15	151773824	V2	5/5/2022
16	151773825	V3	5/5/2022

The truss drawing(s) referenced above have been prepared by

Truss Engineering Co. under my direct supervision

based on the parameters provided by Carter Components (Sanford, NC)).

Truss Design Engineer's Name: Gilbert, Eric

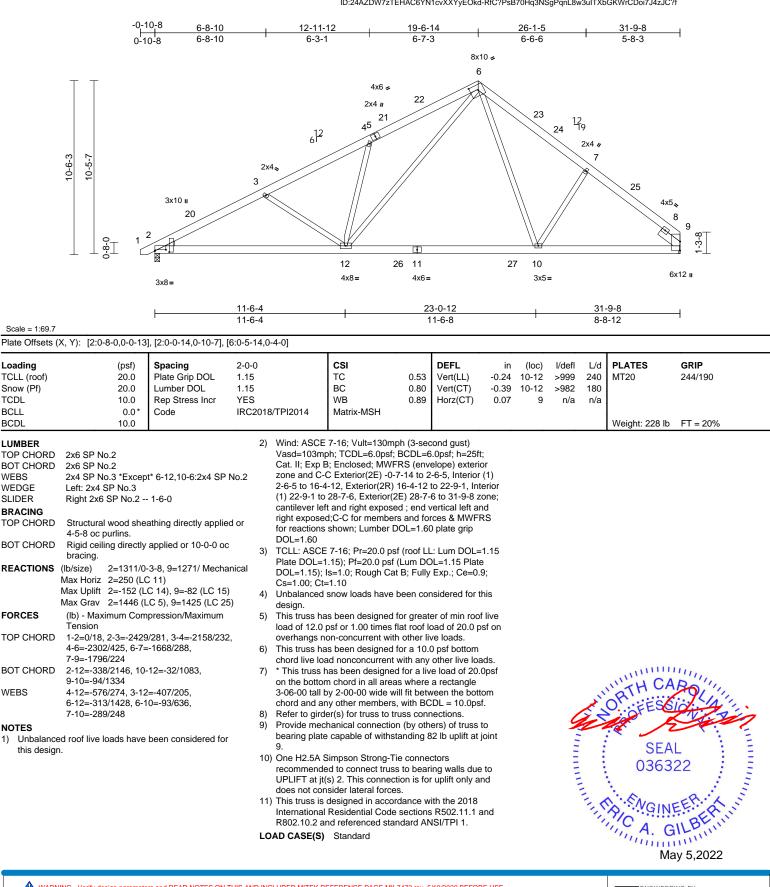
My license renewal date for the state of North Carolina is December 31, 2022

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 119 FaNC	
22040113	A01	Roof Special	6	1	Job Reference (optional)	151773810

TCDL


BCLL

BCDL

WEBS

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Thu May 05 09:43:07 ID:24AZDW7zTEHAC6YN1cvXXYyEOkd-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 119 FaNC	
22040113	A02	Roof Special	7	1	Job Reference (optional)	151773811

Loading

TCDL

BCLL

BCDL

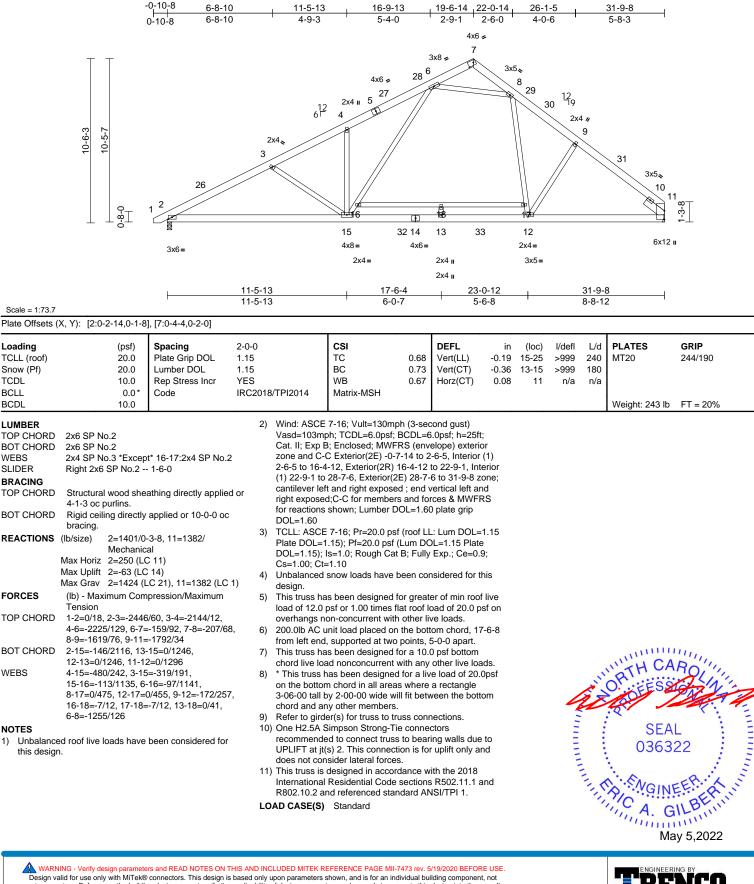
WEBS

SLIDER

FORCES

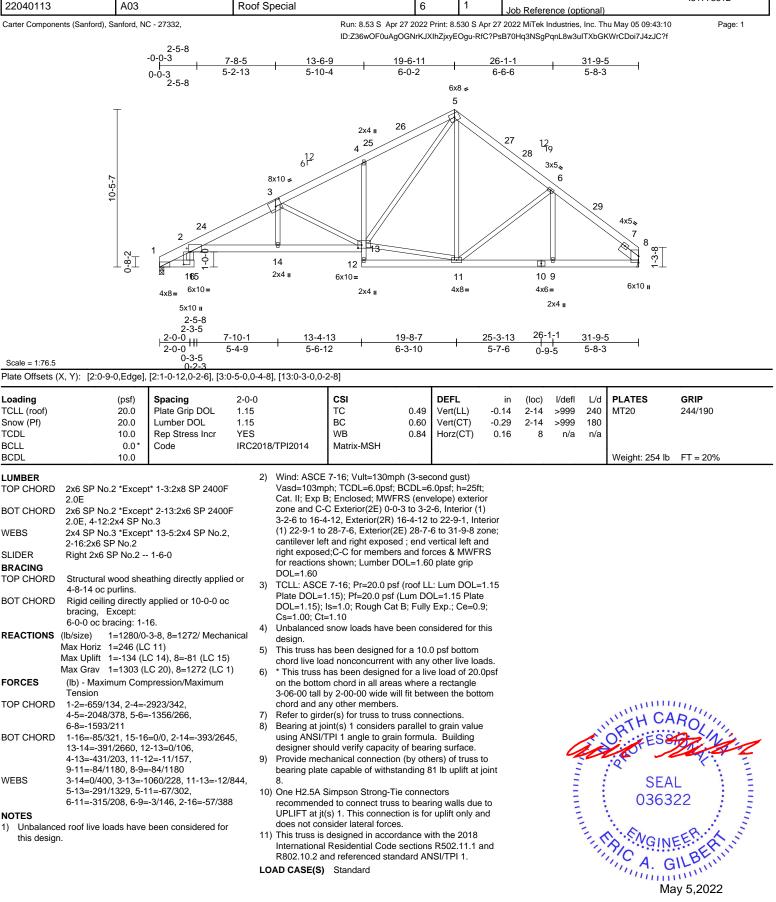
WEBS

NOTES


1)

LUMBER

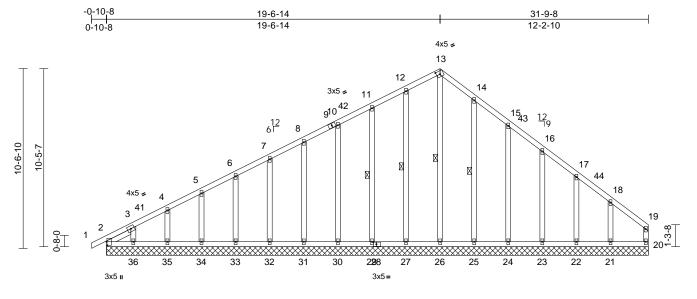
Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Thu May 05 09:43:09 ID:24AZDW7zTEHAC6YN1cvXXYyEOkd-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


Page: 1

818 Soundside Road Edenton, NC 27932

a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 119 FaNC	
22040113	A03	Roof Special	6	1	Job Reference (optional)	151773812


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 119 FaNC	
22040113	A04	Roof Special Supported Gable	2	1	Job Reference (optional)	151773813

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Thu May 05 09:43:11 ID:wSfeYGx?zDIrK7PgnUXd7GyEOeQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

31-9-8

Scale = 1:67.6 Plate Offsets (X, Y): [2:0-2-8,0-0-5], [13:0-2-10,0-2-4], [28:0-2-2,0-1-8]

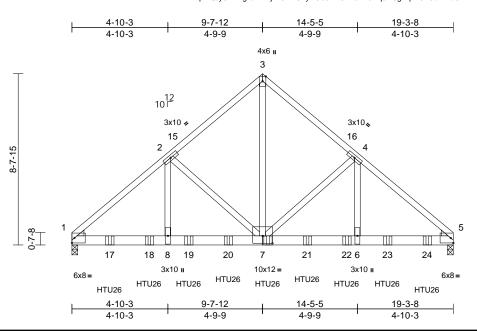
	(,, ,). [=:0 = 0,0	, , ,	[1010 2 1010 2 1]; [20		1									
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	20 20 10 (osf) 0.0 0.0 0.0 0.0 * 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TR	PI2014	CSI TC BC WB Matrix-MS	0.12 0.09 0.18 SH	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 20	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 229 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Left 2x4 SP No Structural woo 6-0-0 oc purlin Rigid ceiling di bracing. 1 Row at midp	d she s, ex rectly t	athing directly applied cept end verticals. applied or 10-0-0 oc 13-26, 12-27, 11-29, 14-25	FORC		2 2 2 3 3 3 3 (lb) - Maxim Tension 1-2=0/23, 2 4-5=-226/13	2=205 (LC 25), 3 1=210 (LC 25), 3 1=210 (LC 25), 3 15=266 (LC 22), 3 15=266 (LC 21), 10 15=155 (LC 21), 10 14=159 (LC 21), 10 14=159 (LC 21), 10 16=137 (LC 34), 10 16=137 (LC 34	22=161 (LC 24=220 (LC 29=228 (LC 29=228 (LC 31=160 (LC 33=160 (LC 37=205 (LC on/Maximum =-239/112, 4, 6-7=-199/	225), 225), 22), 15), 21), 34), 1), 25) 178,	Vas Cat zon (2N Ext 31- forc DO 3) Tru only see or c	sd=103n . II; Exp e and C) 2-3-10 erior(2N 7-12 zor tical left xes & M L=1.60 Juss desig y. For sis Standa consult q	nph; T(B; Enc -C Cor to 16-) 22-9- ne; can and rig VFRS blate g gned fo tuds ex rd Indu uualifier	closed; MWFRS (mer(3E) -0-10-8 4 4-12, Corner(3R) 1 to 28-5-10, Coi tillever left and rig that exposed;C-C for reactions sho rip DOL=1.60 or wind loads in th qoosed to wind (n ustry Gable End I d building design	DL=6.0psf; h=25ft; (envelope) exterior o 2-3-10, Exterior i 16-4-12 to 22-9-1, mer(3E) 28-5-10 to ght exposed ; end for members and wn; Lumber the plane of the truss iormal to the face), Details as applicable er as per ANSI/TPI
	21= 23= 25= 27= 30= 32= 34= 36= Max Horiz 2=2 24= 24= 24= 24= 24= 24= 31= 33= 33= 35=	174/3 161/3 166/3 165/3 160/3 160/3 159/3 136/3 71 (LC 52 (LC -52 (L -72 (L -72 (L -40 (L -48 (L -44 (L -44 (L -43 (L	$\begin{array}{l} -9-8, \ 20=84/31-9-8, \\ 1-9-8, \ 22=156/31-9-8, \\ 1-9-8, \ 24=159/31-9-8, \\ 1-9-8, \ 26=135/31-9-8, \\ 1-9-8, \ 29=159/31-9-8, \\ 1-9-8, \ 31=160/31-9-8, \\ 1-9-8, \ 35=160/31-9-8, \\ 1-9-8, \ 35=164/31-9-8, \\ 1-9-8, \ 1-9-8, \ 1-9-8, \\ 1-9-8, \ 1-9-8, \ 1-9-8, \\ 1-9-8, \ 1-9-8, \ 1-9-8, \ 1-9-8, \\ 1-9-8, \ 1-9-8, \ 1-9-8, \ 1-9-8, \ 1-9-8, \ 1-9-8, \\$, ,),),), WEB5), WEB5),),),	CHORD S	10-11=-159/296, 11-12=-147/344, 12-13=-149/380, 13-14=-164/415, 14-15=-135/349, 15-16=-105/268, 16-17=-79/192, 17-18=-56/18, 18-19=-80/36, 19-20=-66/15			81, /81, /81, /81, /81, /81,	Pla DO Cs= 5) Unt des	te DOL= L=1.15); =1.00; C palancec ign.	1.15); ; ls=1.0 t=1.10 d snow	Pf=20.0 psf (Lun); Rough Cat B; F loads have beer	
		- (-	/				ads have been o	considered fo	r					EER. KIN

B Unuminin . May 5,2022

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building design rm ust verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 119 FaNC	
22040113	A04	Roof Special Supported Gable	2	1	Job Reference (optional)	151773813

- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- All plates are 2x4 MT20 unless otherwise indicated. 7)
- 8) Gable requires continuous bottom chord bearing.
- Gable studs spaced at 2-0-0 oc. 9)
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 12) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 25, 24, 23, 22, and 21. This connection is for uplift only and does not consider lateral forces.
- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


LOAD CASE(S) Standard

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Thu May 05 09:43:11 ID:wSfeYGx?zDIrK7PgnUXd7GyEOeQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

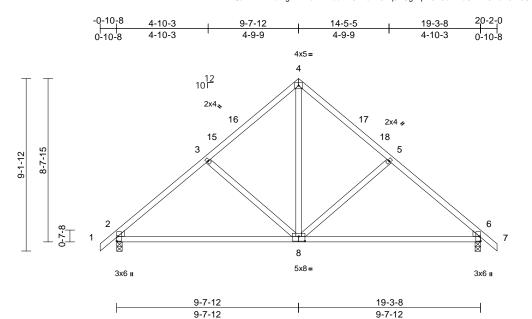
Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 119 FaNC	
22040113	B01	Common Girder	1	2	Job Reference (optional)	151773814

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Thu May 05 09:43:11 ID:pVQbySBA1gxsLMVjWOPYUhyEOe5-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:58.3

Plate Offsets (X, Y): [7:0-6-0,0-4-8]
---------------------	--------------------

Loading	(psf)	Spacing	1-11-4		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.66		-0.10	7-8	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.43	· · ·	-0.19	7-8	>999	180		210,000
TCDL	10.0	Rep Stress Incr	NO		WB	0.81	Horz(CT)	0.03	. 0	n/a	n/a	1	
BCLL	0.0*	Code		3/TPI2014	Matrix-MSH		()		-				
BCDL	10.0											Weight: 251 lb	FT = 20%
	2x6 SP 2400F 2.0E 2x4 SP No.3 *Excep Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood she 4-0-7 oc purlins. Rigid ceiling directly bracing. (lb/size) 1=6260/0 Max Horiz 1=-183 (L Max Uplift 1=-325 (L	athing directly applied applied or 10-0-0 oc -3-8, 5=6725/0-3-8 C 10) C 12)	5) 6) 7)	this design. Wind: ASCE Vasd=103mp Cat. II; Exp E zone; cantile and right exp DOL=1.60 TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. This truss ha	snow loads have b as been designed fo	h (3-see BCDL=6 RS (env xposed L=1.60 (roof LI Lum DC B; Fully been col or a 10.	cond gust) .0psf; h=25ft elope) exterior ; end vertical plate grip .: Lum DOL= DL=1.15 Plate Exp.; Ce=0.5 nsidered for th D psf bottom	; left 1.15 e 9; his		oncentra Vert: 7= 19=-125	ted Lo -1252 52 (B),	3-5=-58, 9-12=-1 ads (lb) (B), 17=-1252 (B 20=-1252 (B), 21 23=-1362 (B), 24), 18=-1252 (B), ∣=-1252 (B),
FORCES	Max Grav 1=6306 (I (Ib) - Maximum Com		9) 8)		ad nonconcurrent v nas been designed								
TOP CHORD BOT CHORD WEBS	3-7=-280/6631, 4-7=	=-8045/0 =-346/6140, 5-6=-31/6 =-2640/0, 4-6=0/3038,	140 9)	on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.									
	2-7=-2588/325, 2-8=	-165/2988			s 1. This connecti		r uplift only ar	nd				"TH CA	ROUL
 (0.131"x3" Top chord oc. Bottom ch staggered Web conn 2) All loads a except if n CASE(S) s provided tr 	to be connected toge) nails as follows: s connected as follows: ords connected as follows: at 0-7-0 oc. ected as follows: 2x4 - re considered equally oted as front (F) or ba section. Ply to ply com o distribute only loads erwise indicated.	11 .D 12 LC	 9) One H2.5A Simpson Strong-lie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 1. This connection is for uplift only and does not consider lateral forces. 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 11) Use Simpson Strong-Tie HTU26 (20-10d Girder, 11-10dx1 1/2 Truss, Single Ply Girder) or equivalent spaced at 2-0-12 oc max. starting at 1-11-0 from the left end to 17-11-12 to connect truss(es) to back face of bottom chord. 12) Fill all nail holes where hanger is in contact with lumber. LOAD CASE(S) Standard 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (lb/ft) 					22 ER A					


May 5,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 119 FaNC	
22040113	B02	Common	5	1	Job Reference (optional)	151773815

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Thu May 05 09:43:12 ID:f1Qu7BWIv1Pa4lgBP4Ecl7zkPbb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

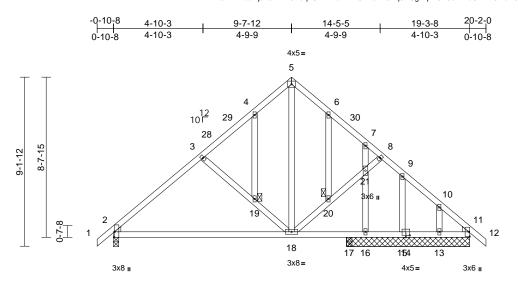
Page: 1

Scale =	1:61.1
---------	--------

Plate Offsets (X, Y): [8:0-4-0,0-3-0]

Loading TCLL (roof) (psf) Spacing 2-0-0 CSI DEFL in (loc) l/defl TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.48 Vert(LL) -0.13 8-11 >999	L/d PLATES GRIP 240 MT20 244/190
Snow (Pf) 20.0 Lumber DOL 1.15 BC 0.78 Vert(CT) -0.26 8-11 >897 TCDL 10.0 Rep Stress Incr YES WB 0.26 Horz(CT) 0.02 6 n/a BCLL 0.0* Code IRC2018/TPI2014 Matrix-MSH Vertice 0.02 6 n/a	180 n/a Weight: 101 lb FT = 20%
 LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3 BOT CHORD 2x4 SP No.3 WEBS 2x4 SP No.3 Right: 2x4 SP No.3 BRACING TOP CHORD Structural wood sheathing directly applied or 5-4-8 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (Ib/size) 2-824/0-3-8, 6-824/0-3-8 Max Horiz 2=-206 (LC 12) Max Uplit 2=-73 (LC 14), 6=-73 (LC 15). Max Grav 2=872 (LC 21), 0-8-72 (LC 12). Max Uplit 2=-73 (LC 14), 0-8-73 (LC 12). Max Grav 2=872 (LC 21), 0-8-73 (LC 12). Max Uplit 2=-73 (LC 14), 0-8-73 (LC 12). Max Grav 2=872 (LC 21), 0-8-73 (LC 12). FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/34, 2-3=-1005/137, 6-7=0/34 BOT CHORD 2-6-136/727 FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/56, 5-8=-325/198, 3-8=-325/198 NOTES 1) Unbalanced rool live loads have been considered for tris design. 2) Wind: ASCE 7-16; Vull=130mph (3-second gust) Vasd-1030mph; TCDL=6.0psf; he25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2R) 6-7-12 to 17-2-12, 117-2-0, Exterior(2R) (-7-12 to 17-2-12, 117-2-0, 2-0-2-0) 2-18:0 6-7-12, Exterior(2R) 6-7-12, Interior (1) 2-1-8:10 6-7-12, Exterior(2R) 6-7-12, Interior (1) 12-7-12 to 17-2-0, Exterior(2R) 6-7-12, Interior (1) 12-7-12 to 17	SEAL 036322

- zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 6-7-12, Exterior(2R) 6-7-12 to 12-7-12, Interior (1) 12-7-12 to 17-2-0, Exterior(2E) 17-2-0 to 20-2-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 - WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



GI minim May 5,2022

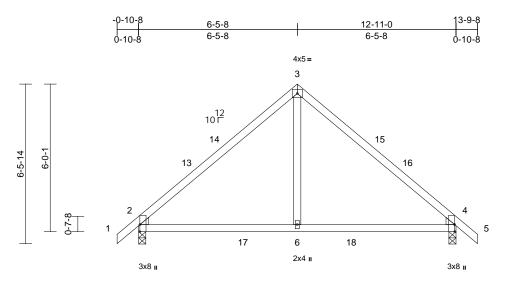
Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 119 FaNC	
22040113	B03	Common Structural Gable	1	1	Job Reference (optional)	151773816

Scale = 1:62.4

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Thu May 05 09:43:12 ID:0?DnAuaRja2sBWY9BeqnSAzkPbW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

5712	5 5 4	040	
9-7-12	3-3-4	6-4-8	
9-7-12	12-11-0	19-3-8	

									-	-			
ading	(psf)	Spacing	1-11-4		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.38	Vert(LL)		18-24	>987	240	MT20	244/190
now (Pf)	20.0	Lumber DOL	1.15		BC	0.64	Vert(CT)		18-24	>484	180		
DL	10.0	Rep Stress Incr	YES		WB	0.44	Horz(CT)	0.02	2	n/a	n/a		
CLL CDL	0.0 [°] 10.0	Code	IRC2018	3/TPI2014	Matrix-MSH							Weight: 129 lb	FT = 20%
				EBS	5-18=-49/336, 18-	20 2/2/	2 20 21 7/	242	10) * TI	nio truco	hoo h	, ,	a live load of 20.0
JMBER DP CHORD	2x4 SP No.2		VVI		3-21=-5/221, 3-19		,	243,	,			ord in all areas wh	
DT CHORD	2x4 SP No.2				18-19=-348/200, 4			2/43.					between the botto
EBS	2x4 SP No.3				7-21=-360/86, 16-		,	,				er members.	
HERS	2x4 SP No.3			1	9-15=-220/38, 10-	13=-98/1	18						
DGE	Left: 2x4 SP No.3		NC	DTES									
	Right: 2x4 SP No.	3	1)	Unbalanced	roof live loads hav	/e been	considered fo	or					
ACING			,	this design.									
P CHORD	Structural wood sl	eathing directly applie	ed or 2)		7-16; Vult=130m								
	6-0-0 oc purlins.				oh; TCDL=6.0psf;		· /	,					
OT CHORD		ly applied or 10-0-0 o	C		3; Enclosed; MWF								
	bracing.				C Exterior(2E) -0- 12, Exterior(2R) 6								
INTS	1 Brace at Jt(s): 1	9,			o 17-2-0, Exterior			nor					
	20				ver left and right e			left					
ACTIONS		-3-8, 11=231/6-8-0,			osed;C-C for mer								
		6-8-0, 15=261/6-8-0, /6-8-0, 17=-34/0-3-8,			reactions shown;			ate					
	25=231			grip DOL=1.	60								
	Max Horiz 2=-199		3)		ned for wind loads								
		_C 14), 13=-120 (LC 1	5).		ids exposed to wi								
		(LC 14), 16=-88 (LC 1			d Industry Gable E								1755
	17=-10	(LC 7)			alified building de							11111 01	1111
	Max Grav 2=705 (LC 21), 11=240 (LC 2	8), 4)		7-16; Pr=20.0 ps .15); Pf=20.0 psf							TH UA	Bally
		(LC 25), 15=261 (LC			Is=1.0; Rough Ca						S	ON SECK	in VIN'S
		(LC 22), 17=-15 (LC 2	21),	Cs=1.00; Ct		LD, Fully	Lxp., 0e=0.	5,		/	52	OFELO	W. Si
		(LC 28)	5)		snow loads have	been cor	sidered for t	his		9	V.		
ORCES	. ,	mpression/Maximum	- /	design.						1	E g		
	Tension	0/74 0 4 500/00	6)	This truss ha	s been designed	for great	er of min roof	live		=	:	SEA	L :
P CHORD	1-2=0/33, 2-3=-74	0/71, 3-4=-522/60, -383/113, 6-7=-426/9′			psf or 1.00 times f			sf on		=	:	0363	22 :
		-257/27, 9-10=-185/16	Ś		on-concurrent with					-		0303	~~ :
	10-11=-224/23, 11		· ()		2x4 MT20 unless		se indicated.				-	N	1 - A - A
T CHORD	2-18=-141/539, 17		8)		spaced at 2-0-0 o						2.	N.E.	Rich
	16-17=-10/184, 15		9)		ad nonconcurrent			de			25		EFIAN
	13-15=-10/184, 11	-13=-10/184			au nonconcurrent	with any	other live 108	105.			11	A. C	BEIN
												11, A. G	ILLIN
												111111	1111


May 5,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 119 FaNC	
22040113	C01	Common	2	1	Job Reference (optional)	151773817

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Thu May 05 09:43:13 ID:BAVIhIIxpR_1rFOLGf2a3byEObM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Plate Offsets (X, Y): [2:0-3-8,Edge], [4:0-3-8,Edge]

Scale = 1:46.9

Loading TCLL (roof) Snow (Pf) TCDL BCLL	(psf) 20.0 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/7	FPI2014	CSI TC BC WB Matrix-MSH	0.86 0.58 0.14	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.09 -0.13 0.03	(loc) 6-9 6-9 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0											Weight: 57 lb	FT = 20%
	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood shea 2-2-0 oc purlins. Rigid ceiling directly bracing. (Ib/size) 2=569/0-3 Max Horiz 2=-143 (Li Max Uplift 2=-54 (LC Max Grav 2=686 (LC (Ib) - Maximum Com Tension	applied or 10-0-0 oc 8, 4=569/0-3-8 C 12) 14), 4=-54 (LC 15) C 5), 4=686 (LC 6)	4) (4) (5) - 6) - 7) - 8) (7)	Plate DOL=1 DOL=1.15); I CS=1.00; Ct= Jubalanced i design. This truss ha oad of 12.0 p overhangs no This truss ha ond of 12.0 p overhangs no This truss ha on the bottom 3-06-00 tall b chord and an Dne H2.5A S recommende	7-16; Pr=20.0 psi .15); Pf=20.0 psf s=1.0; Rough Cat .1.10 snow loads have b s been designed f psf or 1.00 times fi pn-concurrent with s been designed f d nonconcurrent as been designed n chord in all area y 2-00-00 wide wi y other members, impson Strong-Ti d to connect truss s) 2 and 4. This co	(Lum DC B; Fully been cor or greate at roof lo other liv or a 10.0 with any I for a liv s where II fit betw with BC e conner s to bear	DL=1.15 Plate Exp.; Ce=0.9 asidered for the er of min roof bad of 20.0 pre- re loads. 0 psf bottom other live loa e load of 20.0 a rectangle reen the bottt DL = 10.0psf ctors ing walls due	e); i live sf on ds. Dpsf f. to				-	
TOP CHORD	1-2=0/34, 2-3=-671/ 4-5=0/34	145, 3-4=-671/145,	á	and does not	consider lateral for designed in accord	orces.							
BOT CHORD WEBS	2-6=-116/456, 4-6=-4 3-6=0/374	41/456	Ĺ	nternational	Residential Code	sections	R502.11.1 a	and				mm	UII.
NOTES	d roof live loads have	been considered for	LOA	D CASE(S)	Standard							WITH CA	RO

this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 3-5-8, Exterior(2E) 10-9-8 to 13-9-8 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

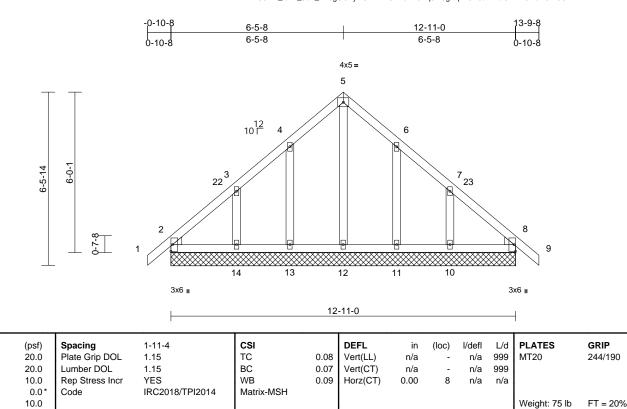
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 119 FaNC	
22040113	C02	Common Supported Gable	1	1	Job Reference (optional)	151773818

Scale = 1:43.2 Loading

TCLL (roof)

Snow (Pf)


TCDL

BCLL

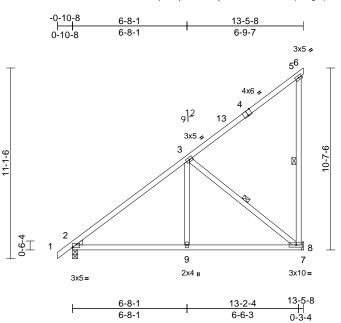
BCDL

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Thu May 05 09:43:13 ID:C3Bkf_lbn?_9cX_Dk8gUOhyEOZV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

BOBE		10.0				
LUMBER TOP CHORD BOT CHORD OTHERS WEDGE BRACING TOP CHORD BOT CHORD	2x4 SP N 2x4 SP N Left: 2x4 Right: 2x4 Structura 6-0-0 oc I	o.2 o.3 SP No.3 I SP No.3 I wood shea purlins.	athing directly applied applied or 10-0-0 oc	d or	Unbalanced ri this design. Wind: ASCE 7 Vasd=103mpl Cat. II; Exp B; zone and C-C 2-1-8 to 3-5-8 9-5-8 to 10-9- cantilever left right exposed for reactions s	7-16; Vult= h; TCDL= ; Enclosec ; Corner(3 d, Corner(3 8, Corner and right ;C-C for m
REACTIONS	(Ib/size) Max Horiz	10=181/12 12=100/12 14=181/12 19=169/12 2=-139 (L 2=-20 (LC 11=-66 (L 14=-112 (L 2=173 (LC 10=221 (L 12=136 (L	C 12), 15=-139 (LC 1 ; 10), 10=-108 (LC 15 C 15), 13=-65 (LC 14 LC 14), 15=-20 (LC 1 2 25), 8=169 (LC 1), .C 22), 11=256 (LC 2 .C 21), 13=256 (LC 2 .C 21), 15=173 (LC 2	$\begin{array}{c} 3 \\ 1-0, \\ 1-0, \\ 1-0, \\ 2 \\ 3 \\ 3 \\ 3 \\ 3 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	DOL=1.60 Truss design only. For stud see Standard or consult qua TCLL: ASCE Plate DOL=1. DOL=1.15); Is Cs=1.00; Ct= Unbalanced s design. This truss has load of 12.0 p overhangs no	ds expose Industry (alified build 7-16; Pr=2 15); Pf=2(s=1.0; Rou 1.10 snow loads s been des sf or 1.00 un-concurr
FORCES	(lb) - Max Tension		pression/Maximum		All plates are Gable require	s continuo
TOP CHORD	1-2=0/33, 4-5=-113		85, 3-4=-108/85, 113/179, 6-7=-102/85 3	, 5,	Gable studs s This truss has chord live load	s been des d nonconc
BOT CHORD	2-14=-77/ 12-13=-42	/144, 13-14	=-42/144, 2=-42/144,	11)	* This truss ha on the bottom 3-06-00 tall by) chord in a y 2-00-00 y
WEBS	5-12=-15	1/47, 4-13= 0/163, 6-11			chord and any	7 other me
NOTES	1 10 11	.,				

- ads have been considered for
- =130mph (3-second gust) 6.0psf; BCDL=6.0psf; h=25ft; d: MWFRS (envelope) exterior 3E) -0-10-8 to 2-1-8, Exterior(2N) 3R) 3-5-8 to 9-5-8, Exterior(2N) (3E) 10-9-8 to 13-9-8 zone; exposed ; end vertical left and nembers and forces & MWFRS umber DOL=1.60 plate grip
- nd loads in the plane of the truss ed to wind (normal to the face), Gable End Details as applicable, Iding designer as per ANSI/TPI 1.
- 20.0 psf (roof LL: Lum DOL=1.15 0.0 psf (Lum DOL=1.15 Plate ugh Cat B; Fully Exp.; Ce=0.9;
- Is have been considered for this
- signed for greater of min roof live times flat roof load of 20.0 psf on rent with other live loads.
- 0 unless otherwise indicated.
- ous bottom chord bearing.
- 2-0-0 oc.
- signed for a 10.0 psf bottom current with any other live loads.
- lesigned for a live load of 20.0psf all areas where a rectangle wide will fit between the bottom embers.


818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 119 FaNC	
22040113	D01	Monopitch	10	1	Job Reference (optional)	151773819

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Thu May 05 09:43:13 ID:Z0_dihojcXcRjIsBXhGf5kyEOZQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:67.2

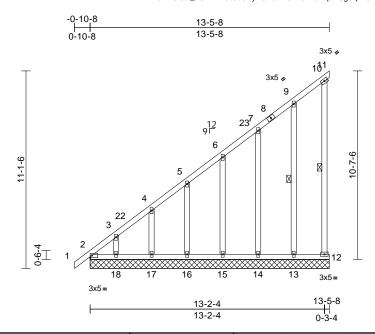
Plate Offsets (X, Y): [2:Edge,0-0-3], [4:0-3-0, Edge]

	(/i, /): [<u>L</u> . <u>L</u> ugojo o o];	[
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	/TPI2014	CSI TC BC WB Matrix-MSH	0.80 0.44 0.22	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.06 -0.10 0.01	(loc) 8-9 8-9 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 81 lb	GRIP 244/190 FT = 20%
Vasd=10 Cat. II; Ex zone and 2-1-8 to 1 cantilever right expo for reactic DOL=1.6 2) TCLL: AS Plate DO	 2x4 SP No.2 2x4 SP No.3 *Excep Left: 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt (lb/size) 2=582/0-3 Max Horiz 2=372 (LC Max Uplift 2=-24 (LC Max Uplift 2=-24 (LC Max Grav 2=609 (LC (lb) - Maximum Com Tension 1-2=0/32, 2-3=-657/ 5-6=-17/0, 5-8=-299. 2-9=-277/471, 8-9=- 3-9=0/306, 3-8=-558 3CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; Bf xp B; Enclosed; MWFR3; I C-C Exterior(2E) 10-1 r left and right exposed seed; C-C for members i ons shown; Lumber DO 0 SCE 7-16; Pr=20.0 psf (L =1.15); Pf=20.0 psf (L =1,15); Is=1.0; Rough Cat E 	athing directly applie cept end verticals. applied or 10-0-0 or 5-8, 3-8 3-8, 8=548/ Mechani C 13) C 14), 8=-162 (LC 14 C 21), 8=710 (LC 21) pression/Maximum 110, 3-5=-255/151, /101 127/471, 7-8=0/0 //222 (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior -8 to 2-1-8, Interior (5-8 to 13-5-8 zone; ; end vertical left an- and forces & MWFR L=1.60 plate grip roof LL: Lum DOL=1	5) ed or cal)) 10) LO r 1) d S	load of 12.0 overhangs n This truss ha chord live loa * This truss h on the bottor 3-06-00 tall h chord and ar Refer to gird Provide mec joint 8. One RT8A M truss to bear connection is forces. This truss is International	is been designed fi psf or 1.00 times fl on-concurrent with is been designed fi ad nonconcurrent v nas been designed in chord in all areas by 2-00-00 wide will y other members. er(s) for truss to tru hanical connection of capable of withsta tiTek connectors re ing walls due to UB s for uplift only and designed in accord Residential Code nd referenced stam Standard	at roof le other li or a 10. vith any for a liv s where II fit betw uss comme b (by oth anding 1 ecomme PLIFT at does not dance w sections	bad of 20.0 p ve loads. D psf bottom other live load e load of 20. a rectangle veen the bott nections. ers) of truss 62 lb uplift a ended to com i jt(s) 2. This of consider la ith the 2018 s R502.11.1 a	ads. Opsf om to t nect ateral		4		SEA 0363	• -

- DOL=1.60 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; 2) Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

G


mmm

May 5,2022

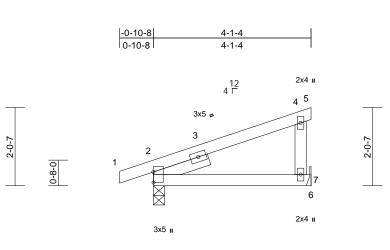
Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 119 FaNC	
22040113	D02	Monopitch Supported Gable	1	1	Job Reference (optional)	151773820

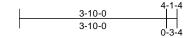
Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Thu May 05 09:43:14 ID:R3mZ6t3uf_FSkXzDGc8bSAyEOZ5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

?f

Scale =	1:64.8
---------	--------

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11 1.15 1.15 YES IRC2	-4 018/TPI2014	CSI TC BC WB Matrix-MSH	0.76 0.33 0.18	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a -0.01	(loc) - - 11	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 105 lb	GRIP 244/190 ET – 20%
		10.0		-		L		L					ů	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wo 6-0-0 oc purli	ood shea	athing directly applie ept end verticals. applied or 10-0-0 oc		NOTES 1) Wind: ASCE Vasd=103mp Cat. II; Exp E zone and C-1	9-13=-206/87, 7 5-15=-127/113, 4 1-17=-129/119, 3 7-16; Vult=130r ph; TCDL=6.0ps 8; Enclosed; MW C Corner(3E) -0 -8 zone; cantile'	5-16=-126 3-18=-117 nph (3-sec f; BCDL=6 /FRS (env -10-8 to 2-	/117, /132 cond gust) 6.0psf; h=25ft elope) exterior 1-8, Exterior(or 2N)		ring plat			/ others) of truss to ing 120 lb uplift at
WEBS	bracing.	,		•	end vertical I	eft and right exp FRS for reaction	osed;C-C	for members						
REACTIONS	bracing. 1 Row at midpt 10-12, 9-13 force 1 Row at midpt 10-12, 9-13 force 1 Row at midpt 10-12, 9-13 force 12=57/13-5-8, 13=157/13-5-8, 12=57/13-5-8, 12=57/13-5-8, 13=157/13-5-8, 14=156/13-5-8, 15=155/13-5-8, 18=127/13-5-8, 18=127/13-5-8, 18=127/13-5-8, 18=127/13-5-8, 18=127/13-5-8, 18=127/13-5-8, 18=127/13-5-8, 18=127/13-5-8, 18=127/13-5-8, 18=127/13-5-8, 18=127/13-5-8, 18=127/13-5-8, 18=127/13-5-8, 18=127/13-5-8, 18=127/13-5-8, 18=127/13-5-8, 19=110/13-5-8, 0r cc 18=127/13-5-8, 19=110/13-5-8, 0r cc 19=127/13-5-8, 0r cc 19=1					ate grip DOL=1. hed for wind loar ids exposed to v 1 Industry Gable alified building of 7-16; Pr=20.0 ps is=1.0; Rough C 1.10; Show loads have s been designed psf or 1.00 times on-concurrent w 2x4 MT20 unle	ds in the p vind (norm End Deta lesigner a lesigner a lesigner a sof (roof Ll of (Lum Dof at B; Fully be been cor d for great flat roof l ith other lin ss otherwi	al to the face ils as applica s per ANSI/T: .: Lum DOL= DL=1.15 Plate Exp.; Ce=0.! nsidered for t er of min roof bad of 20.0 p ve loads. se indicated.), ble, PI 1. 1.15 e 9; his f live sf on				NITH CA	NROLINI,
FORCES			C 28), 19=243 (LC 1 pression/Maximum	11)	8) Gable studs	es continuous be spaced at 2-0-0	oc.	0			4			A. T
TOP CHORD	4-5=-270/174 7-9=-205/140	4, 5-6=-2), 9-10≕		37,	chord live loa 10) * This truss h on the bottor	s been designer ad nonconcurrer has been design n chord in all are by 2-00-00 wide	t with any ed for a liv eas where	other live loa e load of 20. a rectangle	Opsf				SEA 0363	• -
BOT CHORD	10-11=-151/119, 10-12=-232/180 D 2-18=-215/185, 17-18=-147/185, 16-17=-147/185, 15-16=-147/185, 14-15=-147/185, 13-14=-147/185, 12-13=-147/185				11) Bearing at jo using ANSI/1	y other member int(s) 11 conside PI 1 angle to gr uld verify capac	ers paralle ain formul	a. Building	le			in the second se	SEA 0363	EER. ALBERT


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



May 5,2022

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 119 FaNC	
22040113	E01	Monopitch	3	1	Job Reference (optional)	51773821

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Thu May 05 09:43:14 ID:GUeFxkLKF29C?3Ee6x3_t0yEOYk-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

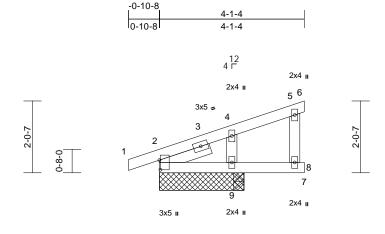
Scale = 1:30

Plate Offsets (X, Y): [2:0-3-5,0-0-1]

Loading TCLL (roof) (pst) 20.0 Spacing Plate Grip DCL 2-0-0 1.15 CSI TC 0.27 BC DEFL vertill in (loc) Videl L/d Snow (P) 20.0 1.15 TC 0.27 BC BC 0.27 Vertill 0.00 Vertill 0.02 7-10 >999 240 Month No.0 Rep Stress Incr YES BC 0.27 WB WB 0.00 Hort(CT 0.01 2 n/a n/a BCLL 0.0 2x4 SP No.2 Stress Incr YES WB 0.00 Hort(CT 0.01 2 n/a n/a BOT CHORD 2x4 SP No.2 Structural wood sheathing directly applied or 10-0 This truss has been designed for a 10.0 pst botom chord in elad ansyother members. Structural wood sheathing directly applied or 10-0-00 wide will fit between the botom chord and any other members. Structural wood sheathing directly applied or 10-0-00 wide will fit between the botom chord in all areas where a rectangle 306-00 tall by 2-00-00 wide will fit between the botom chord and any other members. Structural wood sheathing directly applied or 10-00 cores. Neft or botom shord in all areas where a rectangle 306-00 tall by 2-00-00 wide will fit between the botom chord in all areas where a rectangle 306-00 tall by 2-00-00 wide will fit between the botom chord in all acordance with the 2		())[]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]													
TOP CHORD 2x4 SP No.2 chord live load nonconcurrent with any other live loads. BOT CHORD 2x4 SP No.3 chord live load nonconcurrent with any other live loads. SLIDER Left 2x4 SP No.3 1-6-0 and a meas where a rectangle BRACING This truss has been designed for a live load of 20.0psf TOP CHORD Structural wood sheathing directly applied or 10-0-0 c bracing. BOT CHORD Rigid celling directly applied or 10-0-0 c bracing. REACTIONS (Ib/size) 2=211/0-3-8, 7=170/ Mechanical Max Horiz Max Horiz 2=68 (LC 13) Max Uplift 2=68 (LC 13) Max Uplift 2=68 (LC 21), 7=221 (LC 21) Max Grav 2=295 (LC 21), 7=221 (LC 21) Max Uplift 2=53 (LC 10), 7=32 (LC 10) Max Grav 2=295 (LC 21), 7=23 (LC 21) More Chore Chore Chore Chore Chore C	TCLL (roof) Snow (Pf) TCDL BCLL	20.0 20.0 10.0 0.0*	Plate Grip DOL Lumber DOL Rep Stress Incr	1.15 1.15 YES	TPI2014	TC BC WB	0.21	Vert(LL) Vert(CT)	0.02 -0.03	7-10 7-10	>999 >999	240 180	MT20	244/190	
Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 3) Unbalanced snow loads have been considered for this design. 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.	LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD NOTES 1) Wind: ASG Vasd=103 Cat. II; Ex zone and exposed ; members 2) TCLL: ASI Plate DOL DOL=1.15 CS=1.00; (3) Unbalance design. 4) This truss	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left 2x4 SP No.3 	eathing directly applied cept end verticals. r applied or 10-0-0 oc 3-8, 7=170/ Mechanica 13) C 10), 7=-32 (LC 14) C 21), 7=231 (LC 21) npression/Maximum '36, 4-5=-8/0, D/0 a (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior ; cantilever left and rig ght exposed;C-C for for reactions shown; DL=1.60 (roof LL: Lum DOL=1. m DOL=1.15 Plate 3; Fully Exp.; Ce=0.9; een considered for this r greater of min roof li	6) d or 7) al 9) 10) LOA ght 15 s	chord live loa * This truss h on the bottom 3-06-00 tall b chord and an Refer to girdd Provide mecl bearing plate 7. One H2.5A S recommende UPLIFT at jt(does not con This truss is 4 International R802.10.2 ar	ad nonconcurrent i has been designed n chord in all area y 2-00-00 wide w y other members er(s) for truss to tr hanical connection capable of withst Simpson Strong-Ti ad to connect truss s) 2. This connect sider lateral force designed in accor Residential Code nd referenced star	with any d for a liv is where ill fit betv uss conr n (by oth canding 3 ie conne s to bear tion is for s. dance w sections	other live load e load of 20. a rectangle ween the bott nections. ers) of truss 32 lb uplift at ctors ing walls due r uplift only a ith the 2018 \$ R502.11.1 a	0psf tom joint ≩ to nd				ORTH CA ORTESS SEA 0363	ROUTEERER	Mannung

May 5,2022

Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 119 FaNC	
22040113	E02	Monopitch Structural Gable	1	1	Job Reference (optional)	

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Thu May 05 09:43:14 ID:dSS8_ROT3bnU5q6bvUe9a4yEOYf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

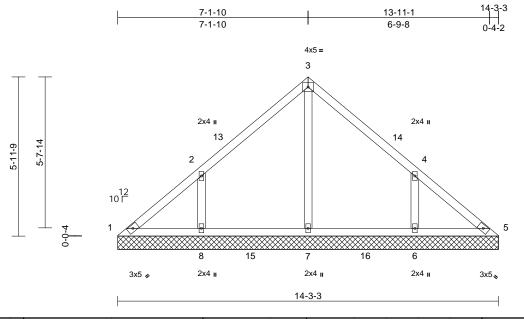
Page: 1

Scale = 1:32.6

Plate Offsets (X, Y): [2:0-3-5,0-0-5]

	(X, 1): [2:0 0 0;0 0 0]												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MP	0.26 0.25 0.07	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 9-12 9-12 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 20 lb	GRIP 244/190 FT = 20%
Vasd=103 Cat. II; Ex zone and exposed ; members Lumber D 2) Truss des only. For see Stand	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Left 2x4 SP No.3	athing directly applie cept end verticals. applied or 10-0-0 oc 12, 9=317/0-3-8, 4-12 13), 10=68 (LC 13) (10), 9=-72 (LC 11), C 10) 2(1), 9=-72 (LC 11), C 10) 2(1), 9=-431 (LC 21), C 2(1) apression/Maximum 134, 4-5=-46/29, 3 (31, 7-8=0/0 (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior; cantilever left and ri ght exposed;C-C for for reactions shown; L=1.60 n the plane of the trus (normal to the face) d Details as applicab	4) 5) d or 6) 7) 8) 8)	Plate DOL=1 DOL=1.15); Cs=1.00; Ct Unbalanced design. This truss ha load of 12.0 overhangs n Gable studs This truss ha chord live loa * This truss f on the bottor 3-06-00 tall h	7-16; Pr=20.0 ps 1.15); Pf=20.0 ps 1s=1.0; Rough Ca =1.10 snow loads have as been designed psf or 1.00 times i on-concurrent with spaced at 2-0-0 o is been designed ad nonconcurrent has been designed ad nonconcurrent has been designed ad nonconcurrent has been designed by 2-00-00 wide w hy other members	(Lum DC t B; Fully been cor for great ilat roof lin n other lin c. for a 10. with any d for a liv is where ill fit betw	DL=1.15 Plate Exp.; Ce=0.9 nsidered for the er of min roof bad of 20.0 pi ve loads. D psf bottom other live loa e load of 20.0 a rectangle	e 9; f live sf on ds. 0psf		An HILLIN.		SEA 0363	• -
												M	av 5 2022

May 5,2022


818 Soundside Road Edenton, NC 27932

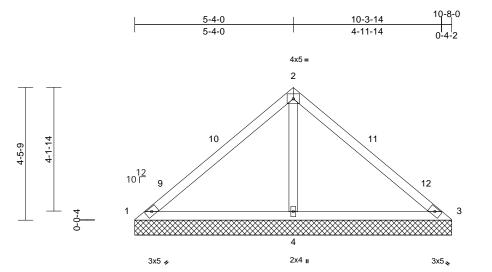
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 119 FaNC	
22040113	V1	Valley	1	1	Job Reference (optional)	151773823

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Thu May 05 09:43:14 ID:fxEGipx38KAuBA0Cp6bicAyEOiH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:43.2	2													
Loading TCLL (roof) Snow (Pf) TCDL		(psf) 20.0 20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.34 0.16 0.14	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCLL BCDL		0.0* 10.0	Code		18/TPI2014	Matrix-MSH	0.14	110112(12)	0.00	5	Π/a	Π/α	Weight: 62 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbaland this desig 2) Wind: AS Vasd=10 Cat. II; E: zone and	 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wo 6-0-0 oc puril Rigid ceiling bracing. (lb/size) 1= 6= 8= Max Horiz 1= Max Uplift 1= 8= Max Grav 1= 6= 8= (lb) - Maximu Tension 1-2=-151/138 4-5=-121/100 1-8=-57/124, 5-6=-57/98 3-7=-219/0, 2 ced roof live loac gn. CE 7-16; Vult=1 3mph; TCDL=6. xp B: Enclosed; 1 C-C Exterior(2E 	2-24 2-24/14-3 2-333/14- 2-333/14- 2-333/14- 2-333/14- 2-333/14- 2-34 (LC 2-136 (LL 2-136 (LL 2-132 (LC 2-452	C 10) : 10), 6=-153 (LC 15) C 14) 2 24), 5=98 (LC 23), 2 21), 7=397 (LC 23) 2 20) pression/Maximum 180/118, 3-4=-180/1 7/98, 6-7=-57/98, 4/195, 4-6=-374/194 been considered for (3-second gust) CDL=6.0psf; h=25ft; S (envelope) exterior to 3-1-14, Interior (1	5 6 7 8 9, 5 9, 5 12, 12, 7	 only. For stt see Standar or consult qu TCLL: ASCE Plate DOL=' DOL=1.15); Cs=1.00; Ct= Unbalanced design. Gable studs This truss ha chord live los * This truss l on the bottoo 3-06-00 tall l chord and at Provide med 	ned for wind load uds exposed to w d Industry Gable jailified building of 57-16; Pr=20.0 ps Is=1.0; Rough C =1.10 snow loads have res continuous bo spaced at 4-0-0 as been designe m chord in all are by 2-00-00 wide thanical connecti e capable of with	vind (norm End Deta lesigner a: osf (roof LL f (Lum DC at B; Fully e been cor oc. d for a 10. tt with any ed for a liv as where will fit betv s, with BC	al to the face ils as applica s per ANSI/T .: Lum DOL= DL=1.15 Plate Exp.; Ce=0.1 nsidered for t d bearing. 0 psf bottom other live loa re load of 20. a rectangle veen the bott DL = 10.0ps ers) of truss), ble, PI 1. 1.15 9; his ds. Opsf om f. to			X	ORTH CA	
Vasd=10 Cat. II; E: zone and 3-1-14 to (1) 10-1- ⁻ zone; car and right	3mph; TCDL=6. xp B; Enclosed; 4 C-C Exterior(2E 4-1-14, Exterior 14 to 11-1-14, E ntilever left and r exposed;C-C fo for reactions sho	.0psf; B(MWFR E) 0-0-5 r(2R) 4- xterior(2 right exp or memb	CDL=6.0psf; h=25ft; S (envelope) exterior) rior 3 eft							1111111	A A A A A A A A A A A A A A A A A A A		EER A



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 119 FaNC	
22040113	V2	Valley	1	1	Job Reference (optional)	151773824

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Thu May 05 09:43:15 ID:PwkSKQ9IklZIUun8rGrrs2yEOe8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

10-8-0

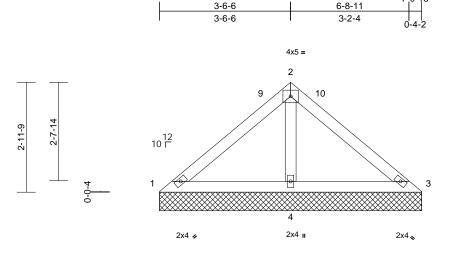
Scolo	_	1.20	0

												-	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	20.0 20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-MSH	0.56 0.50 0.25	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 41 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood sheat 10-0-0 oc purlins. Rigid ceiling directly a bracing. (lb/size) 1=15/10-8-0 4=823/10-8 Max Horiz 1=-100 (LC Max Uplift 1=-70 (LC 2 4=-133 (LC Max Grav 1=78 (LC 20)	pplied or 6-0-0 oc 0, 3=15/10-8-0, 1-0 12) 21), 3=-70 (LC 20), 14)	5 d or 7 8 9	 Plate DOL=² DOL=1.15); Cs=1.00; Ct: Unbalanced design. Gable requir Gable studs This truss ha chord live loo; * This truss I on the botton 3-06-00 tall I chord and ai Provide mec bearing plate 	E 7-16; Pr=20.0 p 1.15); Pf=20.0 psi ls=1.0; Rough Ca =1.10 snow loads have es continuous bo spaced at 4-0-0 as been designed an chord in all are by 2-00-00 wide v ny other membersi chanical connecting e capable of withs polifit at joint 3.	f (Lum DC at B; Fully been cor- torn choroc. I for a 10.1 t with any sed for a liv as where vill fit betw S. on (by oth	DL=1.15 Plate Exp.; Ce=0. Insidered for t d bearing. D psf bottom other live loz e load of 20. a rectangle ween the bott ers) of truss	e 9; his ads. Opsf to					
FORCES	(lb) - Maximum Compi Tension	ression/Maximum											
TOP CHORD	1-2=-139/440, 2-3=-13												
BOT CHORD	1-4=-255/194, 3-4=-25	55/194											
WEBS	2-4=-695/306												
NOTES	ad voof live loode heve h	ann annaidered for										minin	11111
 Unbalance this design 	ed roof live loads have b	een considered for										NITH CA	Roille
•	CE 7-16; Vult=130mph (3	2 accord quat)										A	In'l

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Exterior(2R) 3-0-5 to 7-8-5, Exterior(2E) 7-8-5 to 10-8-5 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), 3) see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. VIIIIIIII SEAL 036322 WILLING IN G minin May 5,2022

Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	DRB GROUP - 119 FaNC	
22040113	V3	Valley	1	1	Job Reference (optional)	151773825

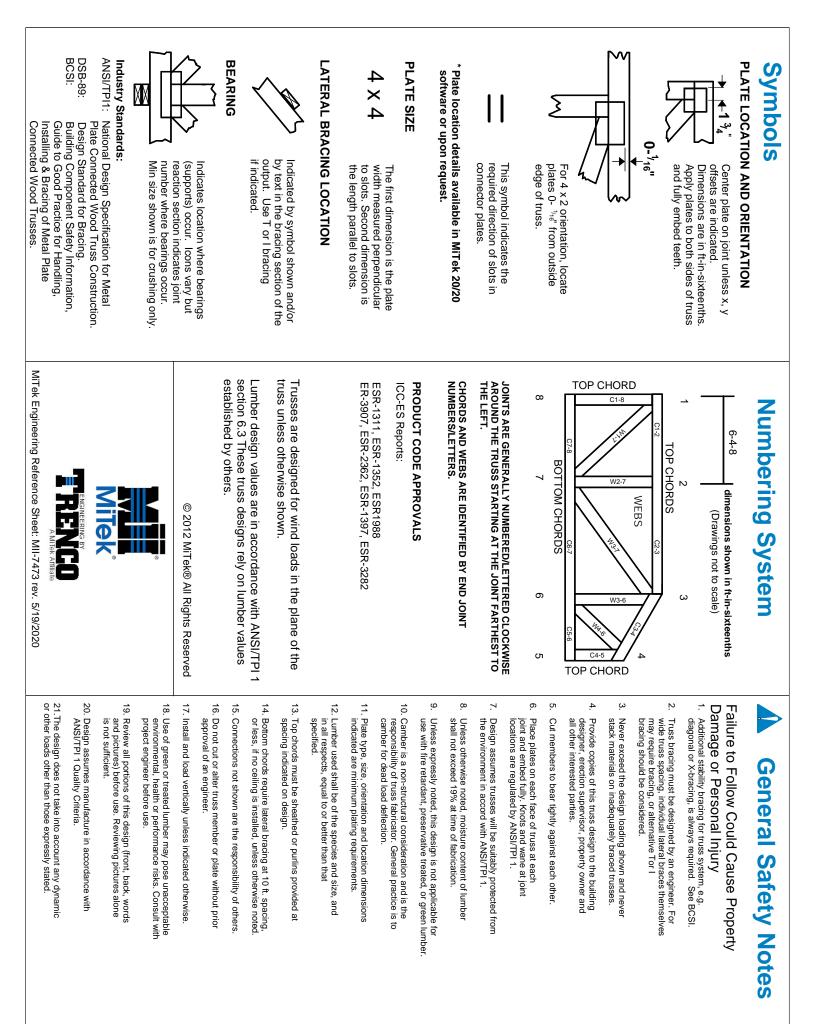
Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Thu May 05 09:43:15 ID:PwkSKQ9lklZIUun8rGrrs2yEOe8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

7-0-13

7-0-13

Scale = 1:31.1

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC 0.24 BC 0.25 WB 0.08 Matrix-MP	DEFLinVert(LL)n/aVert(TL)n/aHoriz(TL)0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 26 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 7-0-13 oc purlins. Rigid ceiling directly bracing. (lb/size) 1=42/7-0 4=481/7- Max Horiz 1=65 (LC Max Uplift 1=-14 (LC 4=-70 (LC Max Grav 1=104 (L 4=513 (L (lb) - Maximum Con Tension 1-2=-85/218, 2-3=-8 1-4=-154/147, 3-4=- 2-4=-363/192	: 13) C 21), 3=-14 (LC 20), C 14) C 20), 3=104 (LC 21) C 20) npression/Maximum 35/218 -154/147	Plate DOL= DOL=1.15); Cs=1.00; Ct 5) Unbalanced design. 6) Gable requii 7) Gable studs 8) This truss ha chord live lo 9) * This truss on the botto 3-06-00 tall chord and a 10) Provide mec bearing plat 1 and 14 lb	E 7-16; Pr=20.0 psf (roof LL 1.15); Pf=20.0 psf (Lum DC Is=1.0; Rough Cat B; Fully =1.10 snow loads have been cor res continuous bottom chor spaced at 4-0-0 oc. as been designed for a 10. ad nonconcurrent with any has been designed for a 10. m chord in all areas where by 2-00-00 wide will fit betw ny other members. chanical connection (by oth e capable of withstanding fu uplift at joint 3.	DL=1.15 Plate Exp.; Ce=0.9; asidered for this d bearing. D psf bottom other live loads. e load of 20.0psf a rectangle veen the bottom ers) of truss to				Weight: 26 lb	FT = 20%
 this design Wind: ASC Vasd=103 Cat. II; Exp zone and (3-0-5 to 4- cantilever right exposion for reaction DOL=1.60 Truss des only. For sise see Stand. 	CE 7-16; Vult=130mph imph; TCDL=6.0psf; B p B; Enclosed; MWFR C-C Exterior(2E) 0-0-f -1-2, Exterior(2E) 4-1- left and right exposed left and right exposed sed;C-C for members ns shown; Lumber DC	n (3-second gust) CDL=6.0psf; h=25ft; IS (envelope) exterior 5 to 3-0-5, Exterior(2F 2 to 7-1-2 zone; ; end vertical left and and forces & MWFR: DL=1.60 plate grip n the plane of the true 4 (normal to the face) bd Details as applicab	r ?) S ss ,				Contraction of the second seco		SEA 0363	


Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

GI

minim May 5,2022

